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Abstract

A knowledge-based program defines the behavior of an agent by combining primitive
actions, programming constructs and test conditions that make explicit reference to the
agent’s knowledge. In this paper we consider a setting where an agent is equipped with
a Description Logic (DL) knowledge base providing general domain knowledge and an
incomplete description of the initial situation. We introduce a corresponding new DL-
based action language that allows for representing both physical and sensing actions, and
that we then use to build knowledge-based programs with test conditions expressed in the
epistemic DL. After proving undecidability for the general case, we then discuss a restricted
fragment where verification becomes decidable. The provided proof is constructive and
comes with an upper bound on the procedure’s complexity.

∗Supported by DFG Research Unit FOR 1513, project A1, http://www.hybrid-reasoning.org
†This is an extended version of an article in Proceedings of IJCAI-15 [ZC15]
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1 Introduction

Since the Golog [LRL+97,DLL00] family of action programming languages has become a pop-
ular means for control of high-level agents, the verification of temporal properties of Golog
programs has recently received increasing attention [CL08,DLP10]. Both the Golog language
itself and the underlying Situation Calculus [MH69,Rei01a] are of high (first-order) expressiv-
ity, which renders the general problem undecidable. Identifying non-trivial fragments where
decidability is given is therefore a worthwhile endeavour [DLP12,ZC14].

Here we consider the class of so-called knowledge-based programs, which are suited for more re-
alistic scenarios where the agent possesses only incomplete information about its surroundings
and has to use sensing in order to acquire additional knowledge at run-time. As opposed to clas-
sical Golog, knowledge-based programs contain explicit references to the agent’s knowledge,
thus enabling it to choose its course of action based on what it knows and does not know. For-
malizations of knowledge-based programs were proposed by Reiter [Rei01b] and later by Claßen
and Lakemeyer [CL06] based on Scherl and Levesque’s [SL03] account of an epistemic Situation
Calculus and Lakemeyer and Levesque’s [LL04,LL10] modal variant ES, respectively. Common
to these approaches is that conditions in the program are evaluated by reducing reasoning about
both knowledge and action to standard first-order theorem proving.

In this paper, we propose a new epistemic action formalism based on the basic Description Logic
(DL) ALC by combining and extending earlier proposals for DL action formalisms [BLM+05]
and epistemic DLs [DLN+98]. From the latter we use a concept constructor for knowledge
to formulate test conditions within programs and desired properties thereof, while we extend
the former by not only including physical, but also sensing actions. As will become appar-
ent, representing and verifying knowledge-based programs with this language yields multiple
advantages. First, we obtain decidability of verification for a formalism whose expressiveness
goes far beyond propositional logic. Moreover, it enables us to resort to powerful DL reasoning
systems [TH06,SLG14]. Finally, the new formalism also inherits many useful properties of the
epistemic Situation Calculus and ES such as Reiter’s [Rei91] solution to the frame problem, a
variant of Levesque’s [Lev90] notion of only-knowing, and a reasoning mechanism resembling
Levesque and Lakemeyer’s [LL01] Representation Theorem where reasoning about knowledge
is reduced to standard DL reasoning.

As a motivating example, consider a mobile robot in a factory whose task it is to detect faults
in gears and do the necessary repairs before turning them on. The agent is equipped with an
(objective) DL knowledge base consisting of a TBox and an ABox, as usual. The TBox defines
basic terminology such as the role name has-f that relates a system to its faults. The ABox gives
an incomplete description of the initial situation and provides some properties of possible faults.
Assume that the agent has two pure sensing actions at its disposal, namely sense-f(gear, x) to
sense whether the individual gear has fault x and sense-on(gear) to check if gear is on or not.
Furthermore, the physical action repair(gear, x) is available to remove a fault. An example
for a knowledge-based program for this agent is given in Figure 1. As long as the agent does
not know that gear has no known fault, a known fault x is chosen non-deterministically for
which it is unknown whether gear has it or not. The agent then senses whether gear has this
fault and repairs it if necessary. After completing the loop the agent turns on the gear system
and checks if this was successful. If not, then there must be an unknown fault and an alarm
is raised. An example for a property of this program to be verified is if a gear initially has an
unknown critical fault, then the agent will eventually come to know it.

The remainder of this paper starts with recalling basic notion of DLs for representing initial
knowledge, effect conditions of primitive actions, sensing properties, tests in programs and tem-
poral properties of programs. In Section 3 we present our new action formalism that allows
us to model both sensing and acting and consider the projection problem as a basic reasoning
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while ¬K(∀has-f.¬KFault)(gear)
pick(x) : KFault(x) ∧ ¬Khas-f(gear, x) ∧ ¬K¬has-f(gear, x)?.

sense-f(gear, x);

if Khas-f(gear, x) then repair(gear, x) else continue;

end
turn-on(gear); sense-on(gear);
if K¬On(gear) then raise-alarm else continue;

Figure 1: Example program

problem. Section 4 then is about the verification of programs. We define syntax and seman-
tics of the programming language and show how to specify temporal properties of programs.
Afterwards, we discuss a restricted fragment where verification becomes decidable and that
in some respect even goes beyond earlier work on non-epistemic programs [ZC14], namely by
re-introducing a limited variant of the operator for the non-deterministic choice of arguments
(“pick operator”). We provide a constructive proof (along with an upper bound on the proce-
dure’s complexity) in which our variant of the Representation Theorem is used to build a finite
abstraction of a program’s transition system by means of DL reasoning, after which standard
propositional model checking can be applied.

2 Epistemic Description Logic ALCOK

The epistemic DL ALCOK extends the basic DL ALC by nominals (O) i.e., singleton concepts
and by a concept constructor for explicit references to knowledge (K). In this section we recall
the definitions of syntax and semantics of ALCOK following [DLN+92, DLN+98]. Although
we often only use the objective sub-logics ALC and ALCO in this paper, we present all basic
notions here for full ALCOK.

Let NR, NC , NI be countably infinite sets of role names, concept names and individual names,
respectively.

A generalized ALCOK-role P is built from role names using the epistemic role constructor and
role negation (see Table 1). A simple ALCOK-role (role for short) is a generalized role without
role negation. ALCOK-concept descriptions (concepts for short) are built from simple roles,
concept names and the concept constructors shown in the lower part of Table 1.

In the following, we often use the symbols A,B to denote concept names, r for a role name,
R for a role, P for a generalized role, a, b for individual names (individuals for short), and
C,D,E, F,G for possibly complex concepts. In addition, we use KwC as an abbreviation for
KC tK¬C. Intuitively, an object is an instance of KwC if it is known whether it belongs to C
or to ¬C.

The different kinds of ALCOK-axioms are shown in Table 2. A TBox T is a finite set of concept
inclusions (CIs for short) and an ABox is a finite set of concept and role assertions (also called
ABox assertions) and equality and inequality assertions. A concept definition of the form A ≡ C
is viewed as an abbreviation of the two CIs A v C and C v A. ABox assertions of the form
A(a),¬A(a), r(a, b),¬r(a, b) are called literals. A knowledge base (KB) K = (T ,A) consists of
a TBox T and an ABox A.

The semantics of ALCOK is a possible world semantics defined in terms of interpretations.
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Syntax Semantics under (I,W)

role name r rI

role negation ¬P (∆×∆) \ P I,W

epistemic role KP
⋂
J∈W PJ ,W

concept name A AI

top > ∆
bottom ⊥ ∅
negation ¬C ∆ \ CI,W

conjunction C uD CI,W ∩DI,W
disjunction C tD CI,W ∪DI,W
existential restriction ∃R.C {d | ∃e : (d, e) ∈ RI,W , e ∈ CI,W}
value restriction ∀R.C {d | (d, e) ∈ RI,W implies e ∈ CI,W}
nominal {a} {aI}
epistemic concept KC

⋂
J∈W(CJ ,W)

Table 1: Syntax and semantics of roles and concepts

Axiom % (I,W) ||= %, iff

TBox T concept inclusion C v D CI,W ⊆ DI,W
concept definition A ≡ C AI,W = CI,W

ABox A

concept assertion C(a) a ∈ CI,W
role assertion P (a, b) (a, b) ∈ P I,W
equality assertion a ≈ b a = b
inequality assertion a 6≈ b a 6= b

Table 2: Syntax and semantics of axioms

An interpretation I = (∆I , ·I) consists of a non-empty domain ∆I and a mapping ·I with
AI ⊆ ∆I for all A ∈ NC , rI ⊆ ∆I × ∆I for all r ∈ NR and aI ∈ ∆I for all a ∈ NI . Here
we adopt the so called standard name assumption (SNA): all interpretations are defined over
a fixed countably infinite domain of standard names, denoted by ∆, and the interpretation
of individuals is also fixed. W.l.o.g. we define ∆ := NI . If not stated otherwise, we assume
from now on that for any interpretation I it holds that ∆I = ∆ and aI = a for all a ∈ NI .
An epistemic interpretation is a pair (I,W) consisting of an interpretation I and a set of
interpretations W. The interpretation function ·I,W maps concepts and roles to subsets of ∆
and ∆ × ∆, respectively, as given in Table 1. Satisfaction of an axiom % in (I,W), denoted
by (I,W) ||= %, is defined as given in Table 2. An ABox A and TBox T is satisfied in (I,W),
written as (I,W) ||= T and (I,W) ||= A, respectively, if for all % ∈ T and all %′ ∈ A it holds
that (I,W) ||= % and (I,W) ||= %′, respectively. A KB K = (T ,A) is satisfied in (I,W),
written as (I,W) ||= K, if (I,W) ||= T and (I,W) ||= A.

An epistemic model of a KB K is a non-empty set of interpretationsM such that:

• for all I ∈ M it holds that (I,M) ||= K and

• for all sets of interpretationsM′ withM (M′ there exists J ∈M′ such that (J ,M′) 6||=
K.

An axiom % is epistemically entailed by K, written as K ||= %, iff for all epistemic modelsM of
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K and for all I ∈ M it holds that (I,M) ||= %. K is called consistent if K has an epistemic
model.

A concept, axiom, TBox, ABox or KB without any occurrences of K is called objective, and
subjective if all occurring concept and role names occur within the scope of a K. Note that
for example a concept composed only of nominals is both objective and subjective since in
our semantics an individual name is mapped to the same domain element in each possible
interpretation. And a concept such as A uKB is neither subjective nor objective.

Since it holds that (KKP )I,W = (KP )I,W for any epistemic interpretation (I,W) and gener-
alized role P , we assume w.l.o.g. in the following that any simple role as used in concepts is
either of the form r or Kr. In case of a non-empty set of interpretations W it also holds that
(K¬KP )I,W = (¬KP )I,W and (K¬KC)I,W = (¬KC)I,W .

If we deal with a subjective concept or role X, then we sometimes write XW instead of XI,W
to denote the extension of X under an epistemic interpretation (I,W). In case of an objective
concept C we sometimes write CI instead of CI,W and I |= X instead of (I,W) ||= X for an
objective axiom, KB, TBox or ABox X. Likewise, for an objective KB K and objective axiom
% we write K |= % instead of K ||= %. An interpretation I is a model of an objective KB K,
denoted by I |= K, if all axioms in K are satisfied in I.

The sublanguages ALCO, ALCK or ALC of ALCOK are obtained by dropping either the K-
constructor or nominals ({a}) or both, respectively. If we want to emphasize that a concept,
role, axiom or KB is formulated in a specific DL L ∈ {ALCO,ALCK,ALC,ALCOK}, then we
write L-concept, L-role, L-axiom or L-KB, respectively.

The set of all subconcepts of a concept C is denoted by sub(C). For a given axiom, TBox,
ABox or KB X the set sub(X) is defined as the set of all subconcepts of concepts occurring in
X.

Usually, the standard semantics of non-epistemic DLs [BCM+03] is defined without the SNA,
but w.r.t. first-order interpretations with an arbitrary (possibly finite) non-empty domain and
an arbitrary interpretation of individual names. The consequences of the additional restrictions
imposed by the SNA are for example discussed in detail in [MR11]. It holds that the semantics
with SNA and the standard semantics are incompatible in the non-epistemic case. Clearly,
there is no epistemic interpretation in which the objective CI > v {a} is satisfied. However
under the standard semantics > v {a} is satisfiable.

Compatibility can be achieved by disallowing nominals in the knowledge base. This was shown
in [MR11] for the DL SRIQ without the universal role. Let K = (T ,A) be an objective KB
without nominals, % an objective axiom and Ind a finite set of individuals that contains all
individuals occurring in K and in %. It holds that K′ = (T ,A∪{a 6≈ b | a, b ∈ Ind}) has a model
(under the standard semantics) iff K has an epistemic model and K′ |= % iff K ||= %. Intuitively,
if T is nominal-free, then finiteness of the model cannot be enforced.

For an objective KB K there exists a unique epistemic model. This unique epistemic model of
K is denoted byM(K). We have

M(K) = {I | I |= K,∆I = ∆, aI = a for all a ∈ NI}.

The main reasoning problem studied in [MR11,DLN+98] was deciding entailment of a subjective
axiom w.r.t. an objective KB. Intuitively, the objective KB represents everything that is known
about the world. The formal relationship to only-knowing [Lev90] is discussed in more detail
in the next section.
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3 Actions with Sensing

We introduce a simple notion of primitive actions describing the basic abilities of an agent
to change the world and to gain new information from the environment. Primitive actions
are defined as extra-logical syntactical objects composed of (parametrized) ABox assertions
representing effects, effect conditions and properties of the environment that can be sensed,
and are equipped with a purely model-based semantics. To justify the semantics of our action
formalism we also present an embedding into a variant of the epistemic Situation Calculus
ES [LL04,LL10]. Furthermore we investigate the complexity of projection.

3.1 Syntax and Semantics of Primitive Actions

To define the syntax of actions we first need some further preliminary notions:

Variables are taken from a countably infinite set NV of variable names.

An atom is an ABox assertion where in place of individuals also variables are allowed, i.e. atoms
are of the form C(z), P (z, z′), z 6≈ z′ or z ≈ z′, where z, z′ ∈ NV ∪NI . Primitive atoms are of
the form A(z), ¬A(z), r(z, z′) or ¬r(z, z′). A formula is a boolean combination of atoms. The
set of all variables occurring in a formula ψ is denoted by Var(ψ). A formula without variables
is called ground formula, i.e. it is a boolean combination of ABox assertions. Our notion of
subjectivity and objectivity is extended to formulas in the obvious way. In the following we use
the (possibly indexed) symbols ϕ for atoms, γ for primitive atoms and ψ for formulas.

Now we are ready to define the syntax of primitive actions.

Definition 1 (Primitive action). An effect is either of the form ψ/γ (conditional effect) or of
the form γ (unconditional effect), where ψ is an objective formula called effect condition and γ
a primitive atom.

A primitive action α is a pair α = (eff, sense) where eff is a set of effects and sense a set of
objective formulas. The set of variables occurring in α is denoted by Var(α). We often write
α(x1, . . . , xn) instead of just α where Var(α) = {x1, . . . , xn} are called arguments of α. A
primitive action that contains no variables is called ground action. N

turn-on(x) = (eff : {(¬∃has-f.CritFault(x))/On(x)}, sense : ∅)
repair(x, y) = (eff : {has-f(x, y)/¬has-f(x, y)}, sense : ∅)
sense-f(x, y) = (eff : ∅, sense : {has-f(x, y)})
sense-on(x) = (eff : ∅, sense : {On(x)})

Figure 2: Example primitive actions

Figure 2 shows examples of two pure physical actions and two pure sensing actions. For instance
consider the action turn-on(x). It has a single conditional effect that causes x to be On after
the action is executed only if x previously has no critical fault. Note that here effects and their
conditions are restricted to be objective since eff is supposed to only encode physical effects.
sense-on(x) is a sensing action that represents the agent’s ability to perceive whether On(x)
is true in the real world. Again, formulas in sense are objective since sensors only provide
information about the outside world.

Semantically, a primitive action induces a binary relation on epistemic interpretations (I,W)
which allows us to explicitly distinguish changes affecting the real world represented by I and
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changes to the knowledge state W.

To execute an action we first need to instantiate it. A variable mapping ν is a total function of
the form ν : NV → ∆. The formula ψx1···xn

a1···an where xi ∈ NV and ai ∈ ∆ with i = 1, . . . , n and
n ≥ 0, denotes the formula that is obtained from ψ by simultaneously replacing each occurence
of xi in ψ by ai for all i = 1, . . . , n. Let ψ be a formula with Var(ψ) = {x1, . . . , xn} and ν a
variable mapping. We write ψν as an abbreviation of the ground formula ψx1···xn

ν(x1)···ν(xn).

Satisfaction of a ground formula in an epistemic interpretation and of an objective ground
formula in a single interpretation is defined in the obvious way. Let P be a set of formulas
and E a set of effects. We also use the following abbreviations defined by Pν := {ψν | ψ ∈ P},
¬P := {¬ψ | ψ ∈ P} and Eν := {ψν/γν | ψ/γ ∈ E} ∪ {γν | γ ∈ E}. The instantiation of a
primitive action α = (eff, sense) using ν is defined by αν = (effν , senseν).

Next we define how a single interpretation is affected by a set unconditional ground effects.

Let I be an interpretation and L a set of unconditional ground effects, i.e. L is a set of literals.
The update of I with L is an interpretation IL, that is defined as follows:

• AIL

:= (AI \ {a | ¬A(a) ∈ L}) ∪ {a | A(a) ∈ L} for all A ∈ NC and

• rIL

:= (rI \ {(a, b) | ¬r(a, b) ∈ L}) ∪ {(a, b) | r(a, b) ∈ L} for all r ∈ NR.

The following property of iterative updates of an interpretation is a direct consequence of the
definition.

Lemma 2. Let I be an interpretation and L0 and L1 two sets of literals. It holds that (IL0)
L1

=
IL′ with L′ = L0 \ ¬L1 ∪ L1.

For a given set of (possibly conditional) ground effects E and an interpretation I we define an
effect function E(·, ·) that maps E and I to a set of literals given by:

E(E, I) := {γ | ψ/γ ∈ E, I |= ψ}.

To define how sensing affects the knowledge of the agent we adapt the notion of sensing com-
patibility of worlds from [LL04]:

Let α = (eff, sense) be a primitive ground action and I and J two interpretations. I and J
are sensing compatible w.r.t. α, written as I ∼α J , iff for all ψ ∈ sense it holds that I |= ψ iff
J |= ψ.

Now we are ready to define the execution semantics of a primitive ground action.

Definition 3. Let α = (eff, sense) be a primitive ground action, (I,W) an epistemic interpre-
tation with I ∈ W and (I ′,W ′) an epistemic interpretation. We write (I,W) =⇒α (I ′,W ′),
iff the following conditions are satisfied:

• I ′ = IL with L = E(eff, I) and

• W ′ = {J L | J ∈ W ,J ∼α I, L = E(eff,J )}.

Let σ = β0, . . . , βn−1 be a sequence of primitive ground actions. We write (I0,W0) =⇒σ

(In,Wn) as an abbreviation for (I0,W0) =⇒β0
(I1,W1) =⇒β1

· · · =⇒βn−1
(In,Wn). N

The real world I of an epistemic interpretation (I,W) is updated according to the physical
effects eff. Intuitively, from I the agent receives information about the truth of each formula
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in sense. Interpretations in W contradicting this information are discarded, while those that
agree with I are updated as well, yielding the new knowledge state. Thus, in our semantics the
agent is fully aware of all effects of an action.

Note that it is ensured that I ∈ W and (I,W) =⇒α (I ′,W ′) implies I ′ ∈ W ′.

3.2 Projection and the Relation to the Epistemic Situation Calculus

The projection problem is the problem to decide whether a given axiom holds after a sequence
of actions has been performed. In our setting we assume that the knowledge of the agent about
the initial world is represented as an ALC-KB. Thus the agent has only incomplete knowledge
about the world. Since the KB is objective, there exists according to the semantics only one
unique epistemic model. This means we have complete information about what is known and
what is not known about the world. In addition the agent has complete knowledge about how
the primitive actions affect the state of the world. The projection problem is defined as follows.

Definition 4 (projection). Let K = (T ,A) be an objective KB, σ a sequence of primitive
ground actions and Φ an ALCOK-ground formula or ALC-CI called projection query. We say
that Φ is valid after executing σ in K iff for all I ∈ M(K) it holds that (I ′,W ′) ||= Φ where
(I,M(K)) =⇒σ (I ′,W ′). And we say that Φ is satisfiable after executing σ in K iff there exists
an I ∈ M(K) such that for the epistemic interpretation (I ′,W ′) with (I,M(K)) =⇒σ (I ′,W ′)
it holds that (I ′,W ′) ||= Φ. N

It clearly holds that Φ is valid after executing σ in K iff ¬Φ is not satisfiable after executing σ
in K. Let Ind be the set of individuals occurring in K and σ and cu ∈ ∆ \ Ind. It holds that the
ALC-CI C v D is valid after executing σ in K iff the ALC-ground formula given by∨

a∈Ind∪{cu}

(C u ¬D)(a)

is not satisfiable after executing σ in K. In the following we focus only on the validity problem
of ALCOK-ground formulas as projection queries. All other variants of the projection problem
can be reduced to this case.

Note that the TBox T is only required to hold and to be known in the initial state, and that
later states resulting from the execution of actions may violate it. While the persistence of T
is thus not enforced in our formalization, checking this property is simply a special case of the
projection problem.

T = {Fault v CritFault t UncritFault,
∃has-f.> v System,System v ∀has-f.Fault}

A = {System(gear),¬On(gear),Fault(blocked)}

Figure 3: Example initial knowledge base K = (T ,A)

Example 5. Figure 3 shows an initial KB K for our example domain. The first CI in T states
that faults are critical faults or uncritical ones, the last two CIs define the domain System and
range Fault for the role has-f. A describes a simple initial situation. Assume K is all the agent
knows initially about the world. Thus, it is known that gear is not on, but the effect condition
¬∃has-f.CritFault(gear) of turn-on(gear) is unknown (there is a least one possible world in
M(K) satisfying it and one that does not). Consequently, after executing turn-on(gear) in K,
we get that ¬KwOn(gear) is valid. If the agent now in turn executes sense-on(gear), it will
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also come to know whether gear has a critical fault, i.e. both Kw∃has-f.CritFault(gear) and
KwOn(gear) are valid. N

In the following we show that the projection problem can be equivalently formulated as an
entailment problem in the first-order modal logic ES [LL04, LL10], that was designed for rea-
soning about knowledge and action and is capable of representing Reiter-style basic action
theories (BAT) extended with an account of sensing.

A first epistemic extension of the classical situation calculus [Rei01a,MH69] was proposed by
Scherl and Levesque [SL03] . However in Scherl and Levesque’s purely axiomatic formalization
complete information about knowledge cannot be represented. An explicit axiomatization of
what is known and also of what is not known would be required to achieve this. In ES there
is a a modal operator for only-knowing to overcome this problem. Furthermore, in ES we also
have a fixed countably infinite domain and an embedding of the introduced DL-based action
formalism into ES is rather straightforward.

First, we recall the main definitions of the logic ES and basic action theories (BATs) according
to [LL04,Cla14].

We define a set of terms as follows.

Definition 6 (terms). There are terms of two sorts object and action. They can be built using
the following symbols:

• variables x, y, · · · of sort object ;

• a single variable a of sort action;

• a countably infinite set NO of rigid object constant symbols ;

• a non-empty set NA of rigid action function symbols with arguments of sort object;

Every variable is a term, every c ∈ NO is a term and if α is an action function of arity k and
t1, . . . , tk are terms of sort object, then also α(t1, . . . , tk) is a term. A term is called ground
term if it contains no variables. We denote the set of all ground terms (also called standard
names) of sort object by NO (i.e. NO = NO), and those of sort action by NA. N

To build formulas we use predicate symbols (called fluents) taken from a set NF with arguments
of sort object and two distinguished unary predicates Poss and SF , each with one argument of
sort action.

Formulas are then built using the usual logical connectives and in addition we have modal
operators [·] and 2 referring to future situations and Know and OKnow for knowledge.

Definition 7 (ES-Formulas). The set of formulas is defined as the least set satisfying the
following conditions:

• If t1, ..., tk are terms of sort object, ta a term of sort action and F ∈ NF a k-ary fluent,
then F (t1, ..., tk), Poss(ta) and SF (ta) are formulas.

• If t1 and t2 are terms, then t1 = t2 is a formula.

• If φ and φ′ are formulas, v a variable and t a term of sort action, then φ ∧ φ′, ¬φ, ∀v.φ,
2φ, [t]φ, Know(φ) and OKnow(φ) are formulas.
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We understand ∨, ∃, ⊃ and ≡ as the usual abbreviations and use true for a tautology. A
formula [t0][t1] · · · [tn]φ is abbreviated by [t0t1 · · · tn]φ. A formula is called fluent formula if it
contains no 2, no [·] and not the predicates Poss and SF . A fluent sentence is a fluent formula
without free variables. N

Intuitively, the formula [t]φ means that φ is true after doing action t and 2φ means that φ
holds after any sequence of actions. The semantics of formulas is defined in terms of worlds.

Definition 8 (Worlds). Primitive formulas are of the form F (d1, ..., dk), Poss(ta), SF (ta)
where F ∈ NF is k-ary fluent, di ∈ NO for all i = 1, . . . , k and ta ∈ NA. The set of all primitive
formulas is denoted by PF and the set of all action sequences is given by Z := N ∗A. A world w
is a total function of the form

w : PF ×Z → {0, 1}.

The set of all worlds is denoted by W . A set of worlds e ⊆W is called epistemic state. N

A world thus maps primitive formulas to truth values. To define the meaning of the epistemic
operators Know and OKnow some additional notions are needed.

We use the symbol 〈〉 to denote the empty sequence of action standard names.

Let w,w′ ∈ W , σ ∈ Z and t ∈ NA. Sensing compatibility of w and w′ w.r.t. σ, denoted by
w 'σ w′, is defined inductively as follows: It holds that w '〈〉 w′. It holds that w 'σ·t w′ iff
w 'σ w′ and w[SF (t), σ] = w′[SF (t), σ].

Let w ∈ W and σ ∈ Z. The progression of w through σ is a world wσ such that wσ[ξ, σ′] =
w[ξ, σ · σ′] for all ξ ∈ PF and all σ′ ∈ Z.

Let e be an epistemic state, w ∈ W and σ ∈ Z. The progression of e through σ w.r.t. w,
denoted by ewσ , is an epistemic state, that is defined as follows:

ewσ := {w′σ | w′ ∈ e, w′ 'σ w}.

We are now equipped to define the truth of formulas:

Definition 9 (Satisfaction of Formulas). Given an epistemic state e ⊆W , a world w ∈W and
a sentence φ, we define e, w |= φ as e, w, 〈〉 |= φ, where for any σ ∈ Z:

1. e, w, σ |= ξ iff w[ξ, σ] = 1 for all ξ ∈ PF ;

2. e, w, σ |= (c1 = c2) iff c1 and c2 are identical;

3. e, w, σ |= φ1 ∧ φ2 iff e, w, σ |= φ1 and e, w, σ |= φ2;

4. e, w, σ |= ¬φ iff e, w, σ 6|= φ;

5. e, w, σ |= ∀v.φ iff e, w, σ |= φvd for all d ∈ Nv;

6. e, w, σ |= 2φ iff e, w, σ · σ′ |= φ for all σ′ ∈ Z;

7. e, w, σ |= [t]φ iff e, w, σ · t |= φ;

8. e, w, σ |= Know(φ) iff for all w′ ∈ ewσ : ewσ , w′, 〈〉 |= φ;

9. e, w, σ |= OKnow(φ) iff for all w′ ∈W : w′ ∈ ewσ iff ewσ , w′, 〈〉 |= φ.

N
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Above, Nv refers to the set of all standard names of the same sort as the variable v. We moreover
use the notation φvt denoting the result of simultaneously replacing all free occurrences of v by
the term t of the same sort as v in φ.

We recall the definition of a basic action theory.

Definition 10. A basic action theory (BAT)

D = D0 ∪ Dpre ∪ Dpost ∪ Dsense

describes the dynamics of a specific application domain, where

1. D0, the initial theory, is a finite set of fluent sentences describing the initial state of the
world.

2. Dpre is a set containing a single precondition axiom of the form

∀a.2
(
Poss(a) ≡ ϑ

)
where ϑ is a fluent formula.

3. Dpost is a finite set of successor state axioms (SSAs), one for each fluent relevant to
the application domain, incorporating Reiter’s [Rei01a] solution to the frame problem,
and encoding the effects the actions have on the different fluents. The SSA for a fluent
predicate has the form

∀a.∀~x.2
((

[a]F (~x)
)
≡ γ+

F ∨ F (~x) ∧ ¬γ−F
)

where the positive effect condition γ+
F and negative effect condition γ−F are fluent formulas

with free variables ~x and a.

4. Dsense contains a single sentence of the following form

∀a.2
(
SF (a) ≡ ς

)
where ς is a fluent formula.

N

First, we define a translation of generalized ALCOK-roles, ALCOK-concepts, ALCOK-axioms
and ALCOK-formulas to fluent formulas in ES, that is basically defined as the well-known
standard translation of DLs into first-order logic. In addition we replace K by the Know -
constructor available in ES. Concept names are identified with unary fluent predicates, role
names with binary fluents and individual names from NI with rigid constant symbols in NO.
We define NF := NC ∪NR and NO := NI .

Definition 11. Let x, y be variables of sort object. The function trx,y(·) maps a generalized
role to an ES-fluent formula with exactly the free variables x and y. It is inductively defined by

trx,y(r) := r(x, y) with r ∈ NR;

trx,y(¬P ) := ¬trx,y(P );

trx,y(KP ) := Know(trx,y(P )).

The functions trx(·) and try(·) map a given ALCOK-concept C to a fluent formula trx(C) and
try(C) with exactly one free variable of sort object x and y, respectively. trx(·) is inductively
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defined as follows:

trx(>) := x = x

trx(A) := A(x) with A ∈ NC
trx({a}) := x = a

trx(¬D) := ¬trx(D)

trx(D1 uD2) := trx(D1) ∧ trx(D2)

trx(∃R.D) := ∃y.
(
trx,y(R) ∧ try(D)

)
trx(KD) := Know(trx(D))

The mapping try(·) is defined as trx(·) but with x and y swapped. For ALCOK-CIs and ALCOK-
atoms a translation tr(·) is defined as follows, where variables from NV are viewed as variables
of sort object:

tr(C v D) := ∀x.(trx(C) ⊃ trx(D))

tr(C(z)) :=
(
trx(C)

)x
z

tr(P (z, z′)) :=
(
trx,y(P )

)x y
z z′

tr(z 6≈ z′) := z 6= z′.

The translation tr(ψ) of an ALCOK-formula ψ is defined in the obvious way. N

To show that this translation is correct we define a compatibility relation “∼=R” between DL
interpretations and ES-worlds in the obvious way. Note that NO = ∆.

Definition 12. Let R ⊆ NC ∪NR be a finite set of names, I an interpretation, w a world and
σ ∈ Z. We write I ∼=R (w, σ) iff

• for all concept names A ∈ R and all d ∈ ∆ it holds that w[A(d), σ] = 1 iff d ∈ AI and

• for all role names r ∈ R and all d, d′ ∈ ∆ it holds that w[r(d, d′), σ] = 1 iff (d, d′) ∈ rI .

We use I ∼=R w as abbreviation for I ∼=R (w, 〈〉). We extend this embedding to the epis-
temic case as follows: Let e ⊆ W be an epistemic state, w a world and (I,W) an epistemic
interpretation. We write (I,W) ∼=R (e, w, σ) iff

• I ∼=R (w, σ) and

• for all I ′ ∈ W there exists w′ ∈ ewσ such that I ′ ∼=R w′ and

• for all w′ ∈ ewσ there exists I ′ ∈ W such that I ′ ∼=R w′.

N

Basically, the two semantic structures are in “∼=R”-relation if both agree on the truth values of
the atomic formulas that can be built from names in R. Therefore, the following lemma is a
direct consequence of the definition of ∼=R and the definition of the translation functions.

Lemma 13. Let (I,W) be an epistemic interpretation, w ∈W a world, e ⊆W a set of worlds,
σ ∈ Z such that (I,W) ∼=R (e, w, σ), P a generalized role C a concept and ψ an ALCOK-axiom
or ground formula with names only from R. It holds that

1. (d, d′) ∈ P I,W iff e, w, σ |=
(
trx,y(P )

)x y

d d′
for all d, d′ ∈ ∆;

13



2. d ∈ CI,W iff e, w, σ |=
(
trx(C)

)x
d
for all d ∈ ∆ and

3. (I,W) ||= ψ iff e, w, σ |= tr(ψ).

Proof. The first two claims can be shown by induction on the structure of P and C using
the definition of the translation functions and the compatibility relation. The third claim is
a consequence of the first two and the definition of the translation. We omit a detailed proof
here.

Now we are ready to axiomatize the meaning of primitive actions, defined in the previous
section, as a BAT using the embedding of ALCOK-axioms and formulas into fluent formulas in
ES. However we first need some minor additional restrictions on the primitive actions. In ES
each ground action ta has a single (binary) sensing result given by the truth value of SF (ta)
whereas in the definition of primitive DL actions sense is a set of formulas and we therefore
obtain a (possibly empty) set of binary sensing results. For the sake of simplicity we consider
here only primitive actions α = (eff, sense) where sense is a singleton set. In case of a purely
physical α we simply assume that sense : {>(b)} for some b ∈ ∆. Furthermore, we assume that
unconditional effects γ ∈ eff are written as conditional ones of the form >(b)/γ. Note that also
the general case with a set of sensing results can be easily modeled in ES by generalizing some
of the definitions related to sensing. For example one could introduce a sufficient finite number
of different sensing fluents, add a corresponding axiom to Dsense for each of them and generalize
the definition of sensing compatibility accordingly.

Let K = (T ,A) be an ALC-KB and Σ = {α1(~x1), . . . , αn(~xn)} a finite set of primitive actions
with αi(~xi) = (effi, sensei : {ςi}) and variables ~xi = (xi1, . . . , x

i
mi) as arguments.

From now we consider a fixed finite set of relevant names, denoted by R ⊂ NC ∪ NR, that
contains all concept and role names occurring in K, Σ and in the projection query. For the
definition of the BAT each primitive action αi(~x

i) ∈ Σ is identified with an action function
αi ∈ NA with arity mi. The set of all ground actions obtained from Σ is given by

Σg := {αν | α ∈ Σ, ν is a variable mapping}.

For the translation we simply view an instantiated actions αν as a primitive ground action term
in ES in the obvious way. Thus, we have Σg ⊆ NA and Σ∗g ⊆ Z.

We construct the BAT DK,Σ = DK0 ∪DΣ
pre ∪DΣ

post ∪DΣ
sense as follows: The KB K represents the

initial theory:

DK0 = {tr(%) | % ∈ T ∪ A}.

The primitve actions don’t have preconditions, i.e. they are always possible. Thus, we define
DΣ
pre = {∀a.2

(
Poss(a) ≡ ϑ

)
} with

ϑ =
∨

i∈{1,...,n}

∃~xi.
(
a = αi(~x

i)
)
.

DΣ
post consists of an SSA for each concept name A and role name r in R of the form

∀a.∀x.2
(
[a]A(x) ≡ γA

)
and ∀a.∀x, y.2

(
[a]r(x, y) ≡ γr

)
, respectively,

with γA = γ+
A ∨ A(x) ∧ ¬γ−A and γr = γ+

r ∨ r(x, y) ∧ ¬γ−r . The positive and negative effect
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conditions γ+
A and γ−A are defined according to the sets effi.

γ+
A =

∨
i∈{1,...,n}
ψ/A(z)∈effi

∃~xi.
(
a = αi(~x

i) ∧ x = z ∧ tr(ψ)
)

γ−A =
∨

i∈{1,...,n}
ψ/¬A(z)∈effi

∃~xi.
(
a = αi(~x

i) ∧ x = z ∧ tr(ψ)
)
.

The effect conditions for roles are defined following the same scheme as for concept names.

γ+(−)
r =

∨
i∈{1,...,n}

ψ/(¬)r(z,z′)∈effi

∃~xi.
(
a = αi(~x

i) ∧ x = z ∧ y = z′ ∧ tr(ψ)
)
.

As for DΣ
pre, the set DΣ

sense contains a single definition of the form ∀a.2
(
SF (a) ≡ γSF

)
with

γSF =
∨

i∈{1,...,n}

∃~xi.
(
a = αi(~x

i) ∧ tr(ςi)
)
.

The projection problem can be formulated as an entailment problem in ES as follows:

OKnow(D) ∧ D′ |= [σ]φ

where D is a BAT that defines everything that is known about the world, D′ a second BAT
describing the world as it is assumed to be in reality, σ ∈ Z an action sequence and the
projection query φ is a fluent sentence.

We will show the following: An ALCOK-ground formula or CI ψ is valid after executing the
ground action sequence σ ∈ Σ∗g in the KB K iff OKnow(DK,Σ) ∧ DK,Σ |= [σ]tr(ψ).

For the proof we need some further preliminaries.

Let I be an interpretation, w a world and DK,Σ the BAT as constructed above. We define a
world wI that coincides initially with I and satisfies the SSAs, the precondition axiom and the
sensing axiom in DK,Σ. wI is a world satisfying the following conditions:

1. For all concept names A ∈ R and all d ∈ NO it holds that:

(a) wI [A(d), 〈〉] = 1 iff d ∈ AI and

(b) wI [A(d), σ · t] = 1 iff wI , σ |= (γA)
x a
d t for all σ · t ∈ Z.

2. For all role names r ∈ R and all d, d′ ∈ NO it holds that

(a) wI [r(d, d′), 〈〉] = 1 iff (d, d′) ∈ rI and

(b) wI [r(d, d′), σ · t] = 1 iff wI , σ |= (γr)
x y a
d d′ t for all σ · t ∈ Z.

3. For all F (d1, . . . , dk) ∈ PF with F ∈ NF and F /∈ R and all σ ∈ Z it holds that
wI [F (d1, . . . , dk), σ] = w[F (d1, . . . , dk), σ].

4. For all t ∈ NA and all σ ∈ Z it holds that

(a) wI [Poss(t), σ] = 1 and

(b) wI [SF (t), σ] = 1 iff wI , σ |= (γSF )
a
t .

The definition of wI is very similar to Definition 1 in [LL04] and as in [LL04] we can show the
following properties:

15



Lemma 14. Let I be an interpretation and w a world. It holds that:

1. wI exists and is uniquely determined;

2. I ∼=R wI ;

3. If I ∈ M(K), then wI |= DK,Σ;

4. If I ∼=R w and w |= DK,Σ, then w = wI .

Proof. 1. Obviously, for given I, w and DK,Σ the world wI exists and is uniquely determined.

2. I ∼=R wI follows directly from the conditions 1. (a) and 2. (a).

3. Since I ∈ M(K) and I ∼=R wI it follows with Lemma 13 that wI |= DK0 . By definition wI
satisfies also the SSAs and the precondition and sensing axiom. Therefore, wI |= DK,Σ.

4. With I ∼=R w it follows that w satisfies the conditions 1. (a) and 2. (a). And since
w |= DK,Σ also the remaining conditions are satisfied.

In the next lemma we show that the construction of DK,Σ ensures that the relation ∼=R is
preserved after executing an action.

Lemma 15. Let I be an interpretation, w ∈ W a world with w |= DK,Σ, σ ∈ Z an action
sequence and β = (eff, sense) ∈ Σg. It holds that I ∼=R (w, σ) implies IE(eff,I) ∼=R (w, σ · β).

Proof. Let I ′ = IE(eff,I). We show that I ∼=R (w, σ) implies I ′ ∼=R (w, σ · β) given that
w |= DK,Σ. Let A ∈ R be a concept name.

We show that w[A(d), σ · β] = 1 iff d ∈ AI′ for d ∈ ∆.

⇒ : First, assume w[A(d), σ · β] = 1. Since w |= DΣ
post it is implied by Lemma 14 that

w, σ |=
(
γ+
A

)x a
d β
∨A(d) ∧ ¬

(
γ−A
)x a
d β
.

First, assume w, σ |=
(
γ+
A

)x a
d β

, i.e. by definition of γ+
A there exists ψ/A(d) ∈ eff such that

w, σ |= tr(ψ). Since I ∼=R (w, σ) by assumption it follows that I |= ψ and therefore
A(d) ∈ E(eff, I). With I ′ = IE(eff,I) it follows that d ∈ AI′ .
Now assume w, σ |= A(d) ∧ ¬

(
γ−A
)x a
d β

. It follows that w, σ |= A(d) and w, σ · β |= A(d)

(by assumption). The construction of γ−A implies that there is no ψ/¬A(d) ∈ eff with
w, σ |= tr(ψ). Again with I ∼=R (w, σ) it follows that d ∈ AI and ¬A(d) /∈ E(eff, I) and
therefore d ∈ AI′ .

⇐ : To show the other direction we assume d ∈ AI
′
and show w[A(d), σ · β] = 1. Assume

A(d) ∈ E(eff, I). It follows that w, σ |=
(
γ+
A

)x a
d β

and therefore w[A(d), σ ·β] = 1 by Lemma

14. Otherwise, if A(d) /∈ E(eff, I), then d ∈ AI′ implies d ∈ AI and ¬A(d) /∈ E(eff, I). It
follows that w, σ |= A(d) ∧ ¬

(
γ−A
)x a
d β

and therefore w[A(d), σ · β] = 1.

For relevant role names r ∈ R the proof is analogous.

In the other direction we construct an interpretation from a given world and an action sequence.
For a given world w and σ ∈ Z an interpretation Iw,σ = (∆, ·Iw,σ ) is defined as follows:
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• AIw,σ := {d ∈ ∆ | w[A(d), σ] = 1} for all A ∈ NC and

• rIw,σ := {(d, d′) ∈ ∆×∆ | w[r(d, d′), σ] = 1} for all r ∈ NR.

Again we omit σ if σ = 〈〉.

Since DK,Σ is objective, there exists a unique epistemic state e ⊆W such that

e |= OKnow(DK,Σ)

with e = {w | w |= DK,Σ}. In the next lemma we show the relation between e andM(K).

Lemma 16. Let σ ∈ Σ∗g ∩ Z and e = {w | w |= DK,Σ}.

1. Let I ∈ M(K). It holds that for (I ′,W ′) with (I,M(K)) =⇒σ (I ′,W ′) there exists w ∈ e
such that (I ′,W ′) ∼=R (e, w, σ).

2. Let w ∈ e. It holds that here exists I ∈ M(K) and (I ′,W ′) with (I,M(K)) =⇒σ (I ′,W ′)
such that (I ′,W ′) ∼=R (e, w, σ).

Proof. The claim is shown by induction on the length ` of the action sequence σ.

` = 0:

1. We have σ = 〈〉. Let w ∈ W be arbitrary but fixed and I ∈ M(K). We show that
(I,M(K)) ∼=R (e, wI): From Lemma 14 it follows that wI ∈ e and I ∼=R wI . By
definition it holds that ewI〈〉 = e. For all J ∈M(K) it follows that wJ ∈ e and J ∼=R wJ .
And for all w′ ∈ e it holds by definition that Iw′ ∼=R w′. Since w′ |= DK0 we also have
Iw′ ∈M(K).

2. Let w ∈ e. As argued in the proof of 1. it holds that Iw ∈M(K). As in the proof of 1. it
can be shown that (Iw,M(K)) ∼=R (e, w).

`− 1→ `:

Let σ = σ′ · β with ground action β = (eff, sense : {ς}).

1. Let I ∈ M(K). By induction there exists w ∈ e such that (I ′,W ′) ∼=R (e, w, σ′) for
(I,M(K)) =⇒σ′ (I ′,W ′). We show that for (I ′′,W ′′) with (I ′,W ′) =⇒β (I ′′,W ′′) it
holds that (I ′′,W ′′) ∼=R (e, w, σ′ · β):

• Since I ′′ = I ′E(eff,I′) and I ′ ∼=R (w, σ′) it follows from Lemma 15 that I ′′ ∼=R
(w, σ′ · β).
• Let J ′′ ∈ W ′′. We need to show that there exists w′′ ∈ ewσ′·β such that J ′′ ∼=R w′′.

It holds that J ′′ = J ′E(eff,J ′) for an interpretation J ′ ∈ W ′. By induction there
exists w′ ∈ ewσ such that J ′ ∼=R w′. By Lemma 15 it follows that J ′′ ∼=R (w′, β). We
show that w′β ∈ ewσ′·β . For this, it is sufficient to show w′ 'β wσ′ , i.e. w′[SF (β), 〈〉] =
wσ′ [SF (β), 〈〉]. To show this we proceed as follows:
Since J ′E(eff,J ′) ∈ W ′′ it follows that I ′ ∼β J ′. With sense = {ς} it follows that
I ′ |= ς iff J ′ |= ς. We have J ′ ∼=R w′ and I ′ ∼=R (w, σ′). Therefore, since ς is
objective and with Lemma 13 we get w′ |= tr(ς) iff J ′ |= ς and w, σ′ |= tr(ς) iff
I ′ |= ς. Consequently, w′ |= tr(ς) iff wσ′ |= tr(ς). By assumption both w′ and wσ′
are the progression of a world that satisfies the BAT DK,Σ. With w′ |= tr(ς) iff
wσ′ |= tr(ς) and by construction of DΣ

sense it follows that w′ |=
(
γSF

)a
β
iff wσ′ |=(

γSF
)a
β
and therefore w′[SF (β), 〈〉] = wσ′ [SF (β), 〈〉]. This implies w′β ∈ ewσ′·β and we

get J ′′ ∼=R w′′ with w′′ = w′β .

17



• Let w′′ ∈ ewσ′·β . We need to show that there exists J ′′ ∈ W ′′ such that J ′′ ∼=R w′′.
By definition of the progression of an epistemic state we have

w′′ ∈ {ŵσ′·β | ŵ ∈ e, ŵ 'σ′·β w}.

Thus, there exists a world w′ ∈ ewσ′ such that w′′ = w′β . Since by induction we
have (I ′,W ′) ∼=R (e, w, σ′), there exists J ′ ∈ W ′ such that J ′ ∼=R w′. By applying
Lemma 15 we get J ′E(eff,J ′) ∼=R (w′, β) and therefore J ′E(eff,J ′) ∼=R w′β . We need

to show that J ′E(eff,J ′) ∈ W ′′. This holds iff I ′ ∼β J ′. We have that w′ 'β wσ′ .
And since I ′ ∼=R wσ′ and J ′ ∼=R w′, it can be shown as in the previous item that
I ′ ∼β J ′.

2. Let w ∈ e. By induction there exists I ∈ M(K) and (I ′,W ′) with (I,M(K)) =⇒σ′

(I ′,W ′) such that (I ′,W ′) ∼=R (e, w, σ′). As in the proof of 1. it can be shown that for
(I ′′,W ′′) with (I ′,W ′) =⇒β (I ′′,W ′′) it holds that (I ′′,W ′′) ∼=R (e, w, σ′ · β).

Now we are ready to show the correctness of the construction as a consequence of Lemma 16.

Theorem 17. Let K be an ALC-KB, Σ a set of primitive actions, σ ∈ Σ∗g a sequence of ground
actions, ψ an ALCOK-ground formula or axiom and DK,Σ the BAT constructed as described
above. It holds that ψ is valid after executing σ in K iff OKnow(DK,Σ) ∧ DK,Σ |= [σ]tr(ψ).

Proof.

⇒ : Assume to the contrary that ψ is valid after executing σ in K and there exists a world
w′ such that e, w′ |= OKnow(DK,Σ) ∧ DK,Σ and e, w′, σ 6|= tr(ψ). It holds that e =
{w | w |= DK,Σ} and w′ ∈ e. By Lemma 16 there exists I ∈ M(K) and (I ′,W ′)
with (I,M(K)) =⇒σ (I ′,W ′) such that (I ′,W ′) ∼=R (e, w′, σ). Since by assumption
e, w′, σ 6|= tr(ψ) it follows from Lemma 13 that (I ′,W ′) 6||= ψ which is a contradiction to
the assumption that ψ is valid in K after executing σ.

⇐ : Assume to the contrary that OKnow(DK,Σ)∧DK,Σ |= [σ]tr(ψ) and there exists I ∈ M(K)
and (I ′,W ′) with (I,M(K)) =⇒σ (I ′,W ′) such that (I ′,W ′) 6||= ψ. By Lemma 16
there exists w′ ∈ e = {w | w |= DK,Σ} such that (I ′,W ′) ∼=R (e, w′, σ). By Lemma
13 we therefore have e, w′, σ 6|= tr(ψ) which is a contradiction to the assumption that
OKnow(DK,Σ) ∧ DK,Σ |= [σ]tr(ψ) because e, w′ |= OKnow(DK,Σ) ∧ DK,Σ.

3.3 Deciding the Projection Problem

In Theorem 17 we have characterized the projection problem as a standard entailment problem
in the epistemic situation calculus. The Representation Theorem for ES [LL04] provides us with
a method for reducing projection to standard (non-modal) first-order reasoning by eliminating
the action and knowledge modalities in the projection query. For the action modality regression
is used to obtain a sentence that refers only to the initial situation. Given the initial KB
subformulas of the form Know(φ) are then replaced by objective formulas φ′ that capture the
known instances of φ w.r.t. the initial KB. To obtain a decision procedure for the projection
problem we show that a similar reduction can be done within ALCO. We combine the reduction
approach used in [BLM+05] for the non-epistemic projection problem and a method for rewriting
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subjective concepts to objective ones in the projection query resembling the Representation
Theorem [Lev84, LL01] in presence of only-knowing. We show that the projection problem is
ExpTime-complete.

First, we consider some basic properties of knowledge states that evolve from the initial epis-
temic model by executing a sequence of primitive ground actions. In the following Ind denotes
the finite set of all individuals that are mentioned in the input, i.e. we assume that all concepts,
axioms, formulas, KBs and primitive actions use only individuals from Ind. The elements in Ind
are called named elements and the ones in ∆ \ Ind are called anonymous or unnamed elements.

Lemma 18. Let K be an ALC-KB, I0 ∈ M(K) an interpretation, σ a sequence of primi-
tive ground actions, D an ALCO-concept and (In,Wn) the epistemic interpretation such that
(I0,M(K)) =⇒σ (In,Wn). It holds that

(
KD

)Wn ∩
(
∆ \ Ind

)
6= ∅ implies ∆ \ Ind ⊆

(
KD

)Wn .

We first present a short outline of the proof. Donini et. al [DLN+98] showed that the interpre-
tations contained in the epistemic model M(K) of an ALC-KB K are closed under renaming
of anonymous elements. As the term “anonymous” suggests anonymous elements are indis-
tinguishable. We use this observation for the proof of Lemma 18 as follows. Assume to the
contrary that there exist two unnamed elements d, e ∈ ∆ \ Ind such that d ∈

(
KD

)Wn and
e /∈

(
KD

)Wn . We show that there exists an interpretation Jn ∈ Wn such that d ∈ DJn but
e /∈ DJn . To obtain the contradiction we construct an interpretation J ′n also contained in Wn

with d /∈ DJ ′n by just “swapping” the two unnamed elements d and e in Jn.

First, we define the renaming of an interpretation.

Definition 19 (renamed interpretation). Let Y = (∆Y , ·Y) be an interpretation with a count-
ably infinite domain ∆Y and a mapping ·Y that satisfies aY 6= bY for all a, b ∈ NI . As before
∆ := NI denotes the domain of standard names. Let ι : ∆Y → ∆ be a bijection. The renamed
interpretation of Y with ι, denoted by ι(Y), is defined as follows:

aι(Y) := a for all a ∈ NI ;
Aι(Y) := {ι(d) | d ∈ AY} for all A ∈ NC ;

rι(Y) := {(ι(d), ι(e)) | (d, e) ∈ rY} for all r ∈ NR.

N

We show that updating an interpretation and its renamed version again yields isomorphic
interpretations if names of named elements are fixed.

Proposition 20. Let I be an interpretation, ι : ∆→ ∆ a bijection with ι(a) = a for all a ∈ Ind,
L a set of literals, C an ALCO-concept, % an ALCO-axiom and J := ι(I).

1. d ∈ AIL

iff ι(d) ∈ AJ L

for all d ∈ ∆ and A ∈ NC ;

2. (d, e) ∈ rIL

iff (ι(d), ι(e)) ∈ rJ L

for all d, e ∈ ∆ and r ∈ NR;

3. d ∈ CIL

iff ι(d) ∈ CJ L

for all d ∈ ∆;

4. IL |= % iff J L |= %.

Proof.
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1. Let A ∈ NC and d ∈ ∆. We show d ∈ AIL

iff ι(d) ∈ AJ L

. By the definition of renamed
interpretations we have d ∈ AI iff ι(d) ∈ AJ .
Furthermore it holds that d ∈ {a | ¬A(a) ∈ L}

iff there exists b ∈ Ind such that d = b and ¬A(b) ∈ L, since by assumption it holds
that {a | ¬A(a) ∈ L} ⊆ Ind

iff ι(d) = b and ¬A(b) ∈ L, by assumption on ι

iff ι(d) ∈ {a | ¬A(a) ∈ L}.

In the same way it can be shown that d ∈ {a | A(a) ∈ L} iff ι(d) ∈ {a | A(a) ∈ L}. By the
definition of interpretation updates it now follows that d ∈ AIL

iff ι(d) ∈ AJ L

.

2. The proof is analogous to the proof of claim 1.

3. The claim is proven by induction on the structure of C.

C = A : for some A ∈ NC . See proof of claim 1.

C = {a} : for some a ∈ Ind. We get d ∈ {a}IL

iff d ∈ {aIL} iff d = a iff ι(d) = a iff
ι(d) ∈ {aJ L} iff ι(d) ∈ {a}J L

.

We omit the proof of the remaining cases.

4. The claim directly follows from the other three claims.

For the proof of Lemma 18 we need another auxiliary proposition that is a direct consequence
of the one shown above.

Proposition 21. Let (I0,W0) =⇒α0
(I1,W1) =⇒α1

· · · =⇒αn−1
(In,Wn) be a sequence of

epistemic interpretations with W0 = M(K) for an ALC-KB K and αj = (effj , sensej) with
j = 0, . . . , n− 1. Let Y0,Y1, . . . ,Yn be a sequence of interpretations such that

• Yi ∈ Wi for all i = 0, . . . , n and

• Yj+1 = YjE(effj ,Yj) for all j = 0, . . . , n− 1.

Furthermore, let J0 ∈ M(K) be an interpretations such that for all sets of literals L and all
ALCO-ground formulas ϕ it holds that Y0

L |= ψ iff J0
L |= ψ. The claim is that for each

i ∈ {0, . . . , n} there exists a set of literals Li such that J0
Li ∈ Wi and Yi = Y0

Li .

Proof. We prove it by induction on n.

n = 1 : For i = 0 the claim trivially holds for L0 = ∅. Let i := 1. By definition it holds
that Y1 = Y0

E(eff0,Y0). By assumption we have Y0 |= ψ iff J0 |= ψ for all ground
formulas occurring in α0. Hence, Y0 ∼α0 J0 and E(eff0,Y0) = E(eff0,J0). Consequently,
J0
E(eff0,J0) ∈ W1.

n− 1→ n : We assume that there exists a set of literals L such that Yn−1 = Y0
L and J0

L ∈
Wn−1. Due to the assumption we have Yn−1 |= ψ iff Jn−1 |= ψ for any ALCO-ground
formula ψ. Consequently, E(effn−1,Yn−1) = E(effn−1,J0

L) and Y0 ∼αn−1
J0

L. We obtain
Yn = Y0

L′ and J0
L′ ∈ Wn with L′ = L\¬E(effn−1,Yn−1)∪E(effn−1,Yn−1) due to Lemma

2.
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Now we are ready to prove Lemma 18.

Proof of Lemma 18. Let (I0,W0) =⇒α0
(I1,W1) =⇒α1

· · · =⇒αn−1
(In,Wn) be the se-

quence of epistemic interpretations obtained by executing σ = α0, . . . , αn−1 in (I0,M(K)). As-
sume

(
KD

)Wn∩
(
∆\Ind

)
6= ∅ for anALCO-conceptD. We need to show that ∆\Ind ⊆

(
KD

)Wn .
Assume to the contrary that there is an anonymous elements e ∈ ∆ \ Ind such that e /∈ KDWn .
Consequently, there exists a sequence of interpretations Y0,Y1, . . . ,Yn such that Yi ∈ Wi for
all i = 0, . . . , n, Yj+1 = YjE(effj ,Yj) for all j = 0, . . . , n− 1 and e /∈ DYn .

Next we choose an anonymous element d ∈ ∆ \ Ind with d ∈ KDWn . By assumption such an
element exists. Furthermore, we choose a bijection ι : ∆→ ∆ such that ι(a) = a for all a ∈ Ind
and ι(e) = d and ι(d) = e. Let J0 := ι(Y0). Using Proposition 20.4 it follows that for all set
of literals L and all ALCO-axioms % it holds that Y0

L |= % iff J0
L |= % and J0 ∈ M(K) as

required for Proposition 21. Therefore, Proposition 21 implies that there exists a set of literals
L such that J0

L ∈ Wn and Yn = Y0
L. Let Jn := Y0

L. With Proposition 20.3, e /∈ DYn implies
ι(e) /∈ DJn . Since ι(e) = d and Jn ∈ Wn it follows that d /∈ KDWn which is a contradiction.

For epistemic concepts where the concept under the scope of the K-constructor is K-free and in
addition also nominal-free we can even show a simpler property as well as for epistemic roles.

Lemma 22. Let K be an ALC-KB, I0 ∈ M(K) an interpretation, σ = α0, . . . , αn−1 a se-
quence of primitive ground actions, C an ALC-concept, r ∈ NR and (In,Wn) the epistemic
interpretation with (I0,M(K)) =⇒σ (In,Wn). It holds that

1. if K 6|= > v C, then (KC)Wn ⊆ Ind and

2. (Kr)Wn ⊆ Ind× Ind.

Before we prove this lemma we consider the static case where the action sequence is empty. A
proof for this case was given by Mehdi [Meh14] (page 76, Lemma 4) also using the swapping
technique for unnamed elements from [DLN+98]. Mehdi’s proof can be outlined as follows.
Assume to the contrary that there exists an unnamed element d ∈ ∆ \ Ind such that d ∈
(KC)M(K). Since K 6|= > v C, there exists a model J ∈ M(K) and an anonymous element
e ∈ ∆ \ Ind such that e /∈ CJ . Now consider a bijection ι : ∆ → ∆ with ι(e) = d and ι(d) = e
and ι(a) = a for all a ∈ Ind. The renaming ι just swaps the two unnamed elements d and e. The
renaming of the model J using ι yields an interpretation, denoted by ι(J ), that is isomorphic
to J and is also a model of K. Thus, from J ∈M(K) and e /∈ CJ it follows that ι(J ) ∈M(K)
and ι(e) /∈ Cι(J ). With ι(e) = d we get a contradiction to the assumption d ∈ (KC)M(K). To
reuse this idea for the dynamic case we need to show that if initially K 6|= > v C holds, then we
can still find in Wn an interpretation J such that there exists an unnamed domain element not
contained in the extension of C under J . This domain element will serve as the “swap partner”
for the unnamed known instance d of KD under Wn and will lead to the contradiction as in
the static case.

For the construction of such an interpretation J ∈ Wn we introduce an operation that merges
two interpretations together in one.

Definition 23. Let I0 and I1 be two interpretations. The sum of I0 and I1 is an interpretation,
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denoted by I0 ⊕ I1, that is defined as follows:

∆I0⊕I1 := ∆× {0, 1};
AI0⊕I1 := {〈d, 0〉 | d ∈ AI0} ∪ {〈d, 1〉 | d ∈ AI1} for all A ∈ NC
rI0⊕I1 := {(〈d, 0〉, 〈e, 0〉) | (d, e) ∈ rI0} ∪ {(〈d, 1〉, 〈e, 1〉) | (d, e) ∈ rI1} for all r ∈ NR
aI0⊕I1 := 〈a, 0〉 for all a ∈ NI .

N

Note that the operation is non-commutative due to the interpretation of individual constants.
We now consider a renaming of the sum I0 ⊕ I1 that interprets the named part of the domain
given by Ind as in I0.

Proposition 24. Let I0, I1 and I0 ⊕ I1 be as above, ι : ∆ × {0, 1} → ∆ a bijection such
that ι(〈a, 0〉) = a for all a ∈ Ind, L a set of literals, C an ALCO-concept, ϕ an ALCO-ABox
assertion and J := ι(I0 ⊕ I1).

1. d ∈ AI0L

iff ι(〈d, 0〉) ∈ AJ L

for all d ∈ ∆ and A ∈ NC ;

2. (d, e) ∈ rI0L

iff
(
ι(〈d, 0〉), ι(〈e, 0〉)

)
∈ rJ L

for all d, e ∈ ∆ and r ∈ NR;

3. d ∈ CI0L

iff ι(〈d, 0〉) ∈ CJ L

for all d ∈ ∆;

4. I0
L |= ϕ iff J L |= ϕ.

Proof.

1. Let d ∈ ∆ and A ∈ NC and L a set of literals. First we show

d ∈ AI0 iff ι(〈d, 0〉) ∈ AJ . (1)

Using the definitions we get d ∈ AI0 iff 〈d, 0〉 ∈ AI0⊕I1 iff ι(〈d, 0〉) ∈ Aι(I0⊕I1). Since
L contains only individuals from Ind and by construction ι(〈a, 0〉) = a for all a ∈ Ind, it
follows that

d ∈ {a | A(a) ∈ L} iff ι(〈d, 0〉) ∈ {a | A(a) ∈ L} (2)

and

d ∈ {a | ¬A(a) ∈ L} iff ι(〈d, 0〉) ∈ {a | ¬A(a) ∈ L}. (3)

By definition of interpretation update and (1), (2) and (3) it follows that d ∈ AI0
L

iff
ι(〈d, 0〉) ∈ AJ L

.

2. The proof is analogous to the proof of 1.

3. The proof is by induction on the structure of C.

C = A : for some A ∈ NC , see 1.

C = {b}: for some b ∈ Ind. It holds that d ∈ {b}I0L

iff d ∈ {bI0L}
iff d ∈ {b}
iff d = b
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iff ι(〈d, 0〉) = b

iff ι(〈d, 0〉) ∈ {b}
iff ι(〈d, 0〉) ∈ {bJ L}
iff ι(〈d, 0〉) ∈ {b}J L

.

C = ¬D: It holds that d ∈ (¬D)I0
L

iff d /∈ DI0L

iff ι(〈d, 0〉) /∈ DJ L

(by induction)
iff ι(〈d, 0〉) ∈ (¬D)J

L

.

C = D1 uD2: It holds that d ∈ (D1 uD2)I0
L

iff d ∈ DI0
L

1 and d ∈ DI0
L

2

iff ι(〈d, 0〉) ∈ DJ
L

1 and ι(〈d, 0〉) ∈ DJ
L

2 (by induction)

iff ι(〈d, 0〉) ∈ (D1 uD2)J
L

.

C = ∃r.D: It holds that d ∈ (∃r.D)I0
L

iff there exists an e ∈ ∆ s.t. (d, e) ∈ rI0L

and e ∈ DI0L

iff
(
ι(〈d, 0〉), ι(〈e, 0〉)

)
∈ rJ L

(by claim 2.) and ι(〈e, 0〉) ∈ DJ0
L

(by induction)

iff ι(〈d, 0〉) ∈ (∃r.D)J
L

.

The last equivalence holds because (d, e) ∈ rJ L

and ι−(d) = 〈d′, 0〉 for some d′ ∈ ∆
implies ι−(e) = 〈e′, 0〉 for some e′ ∈ ∆.

4. It follows from claim 2 and 3 and the fact that ι(〈a, 0〉) = a for all a ∈ Ind.

Intuitively, the I0-part of ι(I0 ⊕ I1) behaves like I0 whereas the I1-part remains unchanged as
shown in the next proposition.

Proposition 25. Let I0, I1 and I0 ⊕ I1 be as above, ι : ∆ × {0, 1} → ∆ be a bijection such
that ι(〈a, 0〉) = a for all a ∈ Ind, L a set of literals, C an ALC-concept and J := ι(I0 ⊕ I1).

1. d ∈ AI1 iff ι(〈d, 1〉) ∈ AJ L

for all d ∈ ∆ and A ∈ NC ;

2. (d, e) ∈ rI1 iff
(
ι(〈d, 1〉), ι(〈e, 1〉)

)
∈ rJ L

for all d, e ∈ ∆ and r ∈ NR;

3. d ∈ CI1 iff ι(〈d, 1〉) ∈ CJ L

for all d ∈ ∆.

Proof. 1. Due to the construction of J := ι(I0 ⊕ I1) it holds that d ∈ AI1 iff 〈d, 1〉 ∈ AI0⊕I1
iff ι(〈d, 1〉) ∈ Aι(I0⊕I1). By definition of ι it holds that ι(〈d, 1〉) /∈ Ind for all d ∈ ∆. Since
L contains only individuals from Ind, it follows that ι(〈d, 1〉) ∈ AJ iff ι(〈d, 1〉) ∈ AJ

L

.
Consequently, d ∈ AI1 iff ι(〈d, 1〉) ∈ AJ L

.

2. The proof is analogous to the proof of claim 1.

3. The proof is by induction on the structure of the ALC-concept C using claim 1 and 2 and
the property that for all (d, e) ∈ ∆ ×∆ it holds that (d, e) ∈ rJ L

and ι−(d) = 〈d′, 1〉 for
some d′ ∈ ∆ implies ι−(e) = 〈e′, 1〉 for some e′ ∈ ∆.
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Now we are ready to proof Lemma 22.

Proof of Lemma 22. Let K be an ALC-KB, I0 ∈M(K), σ an action sequence, (In,Wn) the
epistemic interpretation with (I0,M(K)) =⇒σ (In,Wn), C an ALC-concept with K 6|= > v C
and r ∈ NR.

1. We have to show that
(
KC
)Wn ⊆ Ind. Let d ∈

(
KC
)Wn . Assume to the contrary

that d ∈ ∆ \ Ind. Since K 6|= > v C, there exists Y0 ∈ M(K) and e ∈ ∆ such that
e /∈ CY0 . Consider the sum I0 ⊕ Y0. Obviously, there exists a bijection ι : ∆×{0, 1} → ∆
such that ι(〈a, 0〉) = a for all a ∈ Ind and ι(〈e, 1〉) = d. Let J := ι(I0 ⊕ Y0) be the
corresponding renamed interpretation. From Proposition 24 and 25 it follows that J ∈
M(K). Proposition 24 implies that I0

L |= ψ iff J L |= ψ for all sets of literals L and
all ALCO-ground formulas ψ. Due to Proposition 21 there exists a set of literals L such
that J L ∈ Wn and In = I0

L. Using Proposition 25.3 it holds that e ∈ (¬C)Y0 implies
ι(〈e, 1〉) ∈ (¬C)J

L

. Since ι(〈e, 1〉) = d and J L ∈ Wn, we have a contradiction to the
assumption d ∈

(
KC
)Wn and d /∈ Ind.

2. Let (d, e) ∈ (Kr)Wn . We show that (d, e) ∈ Ind× Ind. First, assume to the contrary that
d ∈ ∆ \ Ind. Let Y0 ∈ M(K) be an arbitrary model and I0 ⊕ Y0 the sum of I0 and Y0.
Since d /∈ Ind, there exists a bijection ι : ∆ × {0, 1} → ∆ such that ι(〈a, 0〉) = a for all
a ∈ Ind, ι(〈d, 1〉) = d and ι(〈e, 0〉) = e. Let J := I0 ⊕ Y0 be the corresponding renamed
interpretation. As in the first part of the lemma we can show that there exists a set of
literals L such that J L ∈ Wn. By definition of the sum it holds that

(
〈d, 1〉, 〈e, 0〉

)
/∈ rI0⊕Y0

which implies also
(
ι(〈d, 1〉), ι(〈e, 0〉)

)
/∈ rι(I0⊕Y0). The bijection ι is defined such that

ι(〈d, 1〉) /∈ Ind. Therefore,(
ι(〈d, 1〉), ι(〈e, 0〉)

)
/∈ {(a, b) | r(a, b) ∈ L} ⊆ Ind× Ind.

Consequently, we have
(
ι(〈d, 1〉), ι(〈e, 0〉)

)
/∈ rJ L

with J = ι(I0 ⊕ Y0). Hence,
(
d, e
)
/∈

rJ
L

. Since J L ∈ Wn, this is a contradiction to the assumption (d, e) ∈ (Kr)Wn and
d /∈ Ind. Using symmetric arguments it can be shown that also the assumption e /∈ ∆\ Ind
leads to a contradiction.

Thus, the extension of KC with an ALC-concept C under a knowledge state that evolves from
the epistemic model of an ALC-KB by execution of primitive ground action sequence is either
the whole domain or a finite set of named elements. Note that for this property to hold the
restriction to a nominal-free and K-free concept C is necessary as the following example shows.

Example 26. Consider the following KB, concept and primitive ground action:

K0 = (T0 = ∅,A0 = {∀r.¬A(b)}), C = ∀r.(¬A t ¬{a}) and α = (eff : {¬A(a)}, sense : ∅).

It holds that

K0 6|= > v C and
(
KC
)M(K0)

= {b}.

After executing α in (I,M(K0)) =⇒α (I ′,W ′) we get
(
KC
)W′

= ∆. N

In the following we use Lemma 18 and Lemma 22.2 to equivalently rewrite epistemic concepts
into objective concepts using nominals.
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We introduce the notion of an instance function. The intuition is that the instance function
captures known instances of concepts and known role successors of an individual represented
as a set of nominal concepts.

Definition 27. Let Ind be a finite set of individuals. An instance function w.r.t. Ind maps
concepts of the form KD to a subset of

{{a} | a ∈ Ind} ∪ {¬N} with N :=
⊔
a∈Ind

{a}

and an individual from Ind and a role name to a subset of {{a} | a ∈ Ind}. Let W a set of
interpretations. The instance function of W w.r.t. Ind, denoted by κW,Ind, is defined as follows.

κW,Ind(KD) := {{a} | a ∈ (KD)W , a ∈ Ind} ∪ {¬N | ∃c : c ∈ ∆ \ Ind, c ∈ (KD)W};
κW,Ind(a, r) := {{b} | (a, b) ∈ (Kr)W , b ∈ Ind}

for all concepts of the form KD, a ∈ Ind and r ∈ NR. Since the set of individuals Ind is fixed,
we write only κW to denote an instance function of W . N

Since we only consider non-empty knowledge states in the following, we assume for the rest
of the report, that all simple ALCOK-roles are of the form r or Kr for some r ∈ NR and a
generalized role has one of the following forms: r, ¬r, Kr, ¬Kr, K¬r, ¬K¬r for some r ∈ NR.

We define an operator J·, ·K that rewrites subjective subconcepts and roles to objective ones
based on a given instance function. Given an ALCOK-concept D and an instance function κ an
objective concept JD,κK is defined by induction on the structure of D as shown in Figure 4.

JX,κK := X with X ∈ NC ∪ {>,⊥} or X = {a} for some a ∈ Ind

J¬D,κK := ¬JD,κK
JD1 uD2, κK := JD1, κK u JD2, κK
JD1 tD2, κK := JD1, κK t JD2, κK
J∃r.E, κK := ∃r.JE, κK
J∀r.E, κK := ∀r.JE, κK

JKD,κK :=
⊔
κ(KJD,κK)

J∃Kr.D, κK :=
⊔
a∈Ind

(
{a} u ∃r.

((⊔
κ(a, r)

)
u JD,κK

))
J∀Kr.D, κK := ¬J∃Kr.¬D,κK.

Figure 4: Operator for rewriting K using an instance function

Lemma 28. Let K be an ALC-KB, I0 ∈M(K) an interpretation, σ = α0, . . . , αn−1 a sequence
of primitive ground actions, C an ALCOK-concept and (In,Wn) the epistemic interpretation
with (I0,M(K)) =⇒σ (In,Wn). It holds that CJ ,Wn = JC, κWnKJ for any interpretation J .

Proof. It follows from the definition of J·, ·K that JC, κWnK is objective. Therefore JC, κWnKJ

is well-defined. Note that the operator J·, ·K implies the instance function only to concepts KD
where D is objective. We show the claim by induction on the structure of C. The claim trivially
holds if C is of the form A with A ∈ NC , {a} with a ∈ Ind or > or ⊥.
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C = ¬D : Let I be an interpretation and assume by induction DI,Wn = JD,κWnKI :

(¬D)I,Wn = ∆ \DI,Wn = ∆ \ JD,κWn
KI = (¬JD,κWn

K)I = J¬D,κWn
KI .

C = KD : ⇒: Let d ∈ (KD)I,Wn for an interpretation I and d ∈ ∆. We show d ∈ JKD,κWnKI .
It holds that d ∈

⋂
J∈Wn

DJ ,Wn . Since by induction we have DJ ,Wn = JD,κWnKJ for

any interpretation J , it is implied that d ∈
⋂

J∈Wn

JD,κWnKJ . First, assume d ∈ Ind.

By definition of the instance function it follows that {d} ∈ κWn
(KJD,κWn

K).
Therefore {d} is a disjunct in JKD,κWnK =

⊔
κWn(KJD,κWnK) and it follows that

d ∈ JKD,κWn
KI .

Now assume d ∈ ∆ \ Ind. It is implied that ¬N ∈ κWn
(KJD,κWn

K). Therefore ¬N
is a disjunct in JKD,κWn

K with d ∈ (¬N)I . Consequently, d ∈ JKD,κWn
KI .

⇐: Let d ∈ JKD,κWnKI for an interpretation I and d ∈ ∆. We have

JKD,κWn
K =

⊔
κWn

(KJD,κWn
K) with κWn

(KJD,κWn
K) ⊆ {{a} | a ∈ Ind}∪ {¬N}.

First, assume d ∈ Ind. Since d /∈ (¬N)I , it follows that {d} ∈ κWn(KJD,κWnK) and
therefore

d ∈
⋂
J∈Wn

JD,κWn
KJ =

⋂
J∈Wn

DJ ,Wn

by induction. Consequently, d ∈ (KD)I,Wn .
Now, assume d ∈ ∆ \ Ind. It follows that ¬N ∈ κWn

(KJD,κWn
K). By definition of

κWn
it follows that there exists a c ∈ ∆ \ Ind such that

c ∈
⋂
J∈Wn

JD,κWn
KJ =

⋂
J∈Wn

DJ ,Wn

by induction. With c ∈ ∆ \ Ind and c ∈ (KD)Wn using Lemma 18 it follows that
∆ \ Ind ⊆ (KD)Wn . Hence, d ∈ (KD)Wn .

C = ∃Kr.D : Let d ∈ (∃Kr.D)I,Wn for some interpretation I and d ∈ ∆

iff there exists an e ∈ DI,Wn and (d, e) ∈ KrI,Wn

iff there exists an e ∈ JD,κWnKI (by induction) and (d, e) ∈
⋂

J∈Wn

rJ

iff there exists an e ∈ JD,κWnKI , (d, e) ∈
⋂

J∈Wn

rJ and d, e ∈ Ind by Lemma 22.2

iff there exists an e ∈ JD,κWnKI , d ∈ Ind and {e} ∈ κWn(d, r)

iff d ∈ J∃Kr.D, κWn
KI .

We omit the remaining cases. They can be proven using the induction hypothesis and the
semantics of concepts.

To compute the objective concept JC, κK for a given ALCOK-concept C and instance function
κ, we need to compute the image of κ for the epistemic sub-concepts and roles of C.

Since the instance function is applied only to concepts KD where D is objective, we only need
to determine the known instances of objective concepts after executing the sequence of ground
actions σ. To do this we adapt the reduction approach from [BLM+05]. We construct a KB to
capture the models contained in Wn. For now we just ignore sensing.
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Consider an initial ALC-KB K = (T ,A) and an action sequence σ = α0α1 . . . αn−1 with
αi = (effi, sensei), i = 0, . . . , n − 1. We say that the sequence I0, . . . , In of interpretations
is generated from I0 by σ iff Ii+1 = IiE(effi,Ii) for all i = 0, . . . , n − 1. We now construct
an ALCO-KB Kσred such that any sequence of interpretations generated from an interpretation
I0 ∈ M(K) by σ is encoded in a single interpretation that satisfies Kσred and the other way
round, each model of Kσred encodes a sequence of interpretations that is generated from a model
of K by σ. We recall the construction of Kσred and the pertinent results from [FMC+05]:

As before, R ⊂ NC ∪ NR denotes a fixed finite set of relevant names that contains all names
used in the input, i.e. in the initial KB, the action sequence and the projection query.

For each concept name A ∈ R and role name r ∈ R we introduce time-stamped copies A(i) and
r(i) for all i = 0, . . . , n. Furthermore, for each subconcept C occurring in K or σ and for each i
we use a fresh concept name T (i)

C . The TBox Tsub consists of concept definitions according to
Figure 5, i.e. exactly one axiom for each new name T (i)

C . The reduction TBox T σred is defined as

T
(i)
A ≡ (N uA(i)) t (¬N uA(0))

T
(i)
{a} ≡ {a}

T
(i)
¬C ≡ ¬T

(i)
C

T
(i)
CuD ≡ T

(i)
C u T

(i)
D

T
(i)
CtD ≡ T

(i)
C t T

(i)
D

T
(i)
∃r.C ≡

(
N u

(
(∃r(0).(¬N u T (i)

C )) t (∃r(i).(N u T (i)
C ))

))
t (¬N u ∃r(0).T

(i)
C )

T
(i)
∀r.C ≡

(
N →

(
(∀r(0).(¬N → T

(i)
C )) u (∀r(i).(N → T

(i)
C ))

))
u (¬N → ∀r(0).T

(i)
C )

Figure 5: concept definitions in Tsub ( [BLM+05])

follows:
T σred := Tsub ∪ {T (0)

C v T (0)
D | C v D ∈ T } ∪ {N ≡

⊔
a∈Ind

{a}}

To construct the reduction ABox we use a fresh auxiliary individual name ahelp ∈ ∆ \ Ind and
we introduce a new role name rb for each b ∈ Ind. The new role names are constrained as
follows:

Aaux := {
(
∃rb.{b} u ∀rb.{b}

)
(a) | a ∈ Ind ∪ {ahelp}, b ∈ Ind}.

For a given i ∈ {0, . . . , n} we translate an ALCO-ground formula occurring in the input into a
concept as follows:

tconi(C(a)) := ∀ra.T (i)
C

tconi(r(a, b)) := ∀ra.∃r(i).{b}
tconi(¬ψ) := ¬tconi(ψ)

tconi(ψ1 ∨ ψ2) := tconi(ψ1) t tconi(ψ2)

tconi(ψ1 ∧ ψ2) := tconi(ψ1) u tconi(ψ2).

We use the following abbreviation for a ground formula ψ:

ψ(i) := tconi(ψ)(ahelp).
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For each i ∈ {1, . . . , n} the following ABoxes capture the action effects:

A(i)
eff := {

(
tconi−1(ψ)→ tconi(γ)

)
(ahelp) | ψ/γ ∈ effi}

and the ABox A(i)
min contains

• for each a ∈ Ind and each concept name A ∈ R the following assertions((
A(i−1) u

l

ψ/¬A(a)∈effi

¬tconi−1(ψ)
)
→ A(i)

)
(a)

((
¬A(i−1) u

l

ψ/A(a)∈effi

¬tconi−1(ψ)
)
→ ¬A(i)

)
(a)

• similarly for each pair of named elements a, b ∈ Ind and every role name r ∈ R:((
∃r(i−1).{b} u

l

ψ/¬r(a,b)∈effi

¬tconi−1(ψ)
)
→ ∃r(i).{b}

)
(a)

((
∀r(i−1).¬{b} u

l

ψ/r(a,b)∈effi

¬tconi−1(ψ)
)
→ ∀r(i).¬{b}

)
(a).

Next, we encode the initial ABox:

Aini := {ϕ(0) | ϕ ∈ A}.

The reduction ABox as a whole is now obtained as follows:

Aσred := Aini ∪ Aaux ∪ A(1)
eff ∪ · · · ∪ A

(n)
eff ∪ A

(1)
min ∪ · · · ∪ A

(n)
min.

The reduction KB is given by Kσred = (T σred,Aσred).

In addition we use the following auxiliary notions: For a given objective concept, axiom or
formula X and action sequence σ of length n the TBox, denoted by T σsub(X), consists of a

definition for each new concept name T (i)
D with D ∈ sub(X) and i ∈ {0, . . . , n} according to

Figure 5. Given a KB K = (T ,A), a TBox T ′ and an ABox A′, we write K ∪ T ′ to denote the
KB (T ∪ T ′,A) and K ∪A′ for the KB (T ,A ∪A′).

In the next lemma we show that the models of Kσred correctly encode the sequences of interpre-
tations generated from models of K by σ.

Lemma 29. Let K be an ALC-KB, σ = α0α1 . . . αn−1 a sequence of ground actions, Kσred the
reduction KB as constructed above, ψ an ALCO-ground formula and C an ALCO-concept with
sub(ψ) ∪ sub(C) ⊆ sub(K).

1. For every sequence of interpretations I0, . . . , In generated from an interpretation I0 with
I0 ∈ M(K), there exists an interpretation J such that J |= Kσred and for every j ∈
{0, . . . , n} it holds that

(a) Ij |= ψ iff J |= ψ(j) and

(b) CIj = (T
(j)
C )J .

2. For every interpretation J with J |= Kσred, there exists I0 ∈ M(K) such that for the
sequence I0, . . . , In generated from I0 by σ it holds that
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(a) Ij |= ψ iff J |= ψ(j) and

(b) CIj = (T
(j)
C )J for all j ∈ {0, . . . , n}.

Proof. We omit the proof here. Essentially, the proof works in the same way as the one given
in [FMC+05] (page 17, Theorem 14).

Next, we incorporate the sensing results of an action sequence.

Definition 30. Let σ = α0α1 . . . αn−1 with αi = (effi, sensei) and i = 0, . . . , n−1 be a sequence
of primitive ground actions. A sensing result of σ is a sequence A = S0S1 · · · Sn−1 such that
for all i ∈ {0, . . . , n − 1} it holds that Si ⊆ sensei ∪ ¬sensei and ψ ∈ Si iff ¬ψ /∈ Si for all
ψ ∈ sensei ∪¬sensei. Let I0 be an interpretation and I0, . . . , In the sequence of interpretations
generated from I0 by σ. The sensing result of σ w.r.t. I0, denoted by AI0,σ = S0S1 · · · Sn−1, is
given by Si = {ψ | ψ ∈ sensei ∪ ¬sensei, Ii |= ψ} for all i ∈ {0, . . . , n− 1}. N

The reduction ABox AA
sense for a given sensing result A of σ is given by

AA
sense :=

⋃
i∈{0,...,n−1}

{ψ(i) | ψ ∈ Si}.

Lemma 31. Let K and σ be as above and A = S0S1 · · · Sn−1 a sensing result of σ. There exists
an I0 ∈M(K) such that AI0,σ = A iff Kσred ∪ AA

sense is consistent.

Proof.

⇒: Assume there exists an I0 ∈ M(K) such that AI0,σ = A. Let I0, . . . , In be the sequence
generated from I0 by σ. For all i ∈ {0, . . . , n − 1} and all ψ ∈ Si it holds by assumption
that Ii |= ψ. From Lemma 29.1 it follows that there exists a model J such that J |= Kσred
and J |= ψ(i) for all i ∈ {0, . . . , n− 1} and all ψ ∈ Si. This implies J |= Kσred ∪ AA

sense.

⇐: Assume Kσred ∪ AA
sense is consistent. There exists a model J such that J |= Kσred ∪ AA

sense.
It follows from Lemma 29.2 that there exists I0 ∈ M(K) such that for the sequence
I0, . . . , In generated from I0 by σ it holds that J |= ψ(i) iff Ii |= ψ for an ALCO-ground
formula and all i ∈ {0, . . . , n}. Since J |= AA

sense, it follows that AI0,σ = A.

Using the reduction ABox for the sensing results we can now represent the knowledge state
after a sequence of ground actions was performed.

Lemma 32. Let K, σ, ψ, C and I0 ∈M(K) be as above and (In,Wn) the epistemic interpre-
tation with (I0,M(K)) =⇒σ (In,Wn) and A = AI0,σ.

1. For every interpretation Jn ∈ Wn there exists an interpretation J such that J |= Kσred ∪
AA

sense and it holds that (a) Jn |= ψ iff J |= ψ(n) and (b) CJn = (T
(n)
C )J .

2. For every interpretation J with J |= Kσred∪AA
sense there exists an interpretation Jn ∈ Wn

such that (a) Jn |= ψ iff J |= ψ(n) and (b) CJn = (T
(n)
C )J .

Proof.
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1. Let Jn ∈ Wn with

(I0,M(K)) =⇒α0
(I1,W1) =⇒α1

· · · =⇒αn−1
(In,Wn).

There exists J0 ∈ M(K) such that J0, . . . ,Jn is the sequence generated from J0 by
σ = α0α1 · · ·αn−1. By the definition of the action semantics it follows that Ji ∼αi Ii
for all i ∈ {0, . . . , n − 1}. Therefore, AI0,σ = AJ0,σ. By Lemma 29.1 there exists an
interpretation J with J |= Kσred such that J |= AAJ0,σ

sense = AA
sense and Jn |= ψ iff J |= ψ(n)

and CJn = (T
(n)
C )J for an ALCO-ground formula ψ and an ALCO-concept C.

2. Let J be an interpretation such that J |= Kσred and J |= AA
sense. According to Lemma

29.2, there exists J0 ∈ M(K) such that the interpretations in the sequence J0, . . . ,Jn
generated from J0 by σ satisfy the claims (a) and (b) in Lemma 29.2. It remains to be
shown that Jn ∈ Wn. Since J |= AA

sense and Lemma 29.2 holds, it follows that AJ0,σ = A.
Therefore, Ji ∼αi Ii for all i ∈ {0, . . . , n− 1} and consequently, Jn ∈ Wn.

Based on the reduction KB and the representation of a sensing result we can now compute the
image of the corresponding instance function. We choose an individual name cu ∈ ∆ \ Ind not
occurring in K or σ.

Given an initial KB K = (T ,A), a sequence of ground action σ of length n and a sensing result
A of σ such that the KB Kσred ∪ AA

sense is consistent, the instance function κA is defined for
concepts of the form KC where C is objective as follows:

κA(KC) := {{a} | Kσred ∪ T σsub(C) ∪ A
A
sense |= T

(n)
C (a), a ∈ Ind}∪

{¬N | Kσred ∪ T σsub(C) ∪ A
A
sense |= T

(n)
C (cu)}

For concepts KD where D is not objective we define κA(KD) := ∅. And for an individual a
and role name r κA is defined as follows:

κA(a, r) := {b | Kσred ∪ T σsub(C) ∪ A
A
sense |= r(n)(a, b), b ∈ Ind}.

Lemma 33. Let K and σ be as above, D an ALCOK-concept, I0 ∈ M(K), A = AI0,σ the
sensing result of σ w.r.t. I0 and (In,Wn) the epistemic interpretation with (I0,M(K)) =⇒σ

(In,Wn). It holds that JD,κAK = JD,κWn
K.

Proof. The claim is a direct consequence of Lemma 32.

To check whether a subjective projection query ψ is valid after executing σ in K we proceed as
follows: for all sensing results A of σ such that Kσred is consistent with AA

sense we use the operator
J·, κAK to compute an equivalent objective query ψ̂ and then check whether the transformed
projection query ψ̂(n) is entailed by Kσred ∪ AA

sense.

We can assume w.l.o.g. that ψ consists only of concept assertions. Role assertions can be
equivalently replaced by concept assertions:

(¬)r(a, b) ; (¬)∃r.{b}(a)

(¬)Kr(a, b) ; (¬)∃Kr.{b}(a)

(¬)K¬r(a, b) ; (¬)(K∀r.¬{b})(a).
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ψ̂A denotes the formula that is obtained from ψ by replacing each concept assertion C(a) in ψ
by the assertion JC, κAK(a). Clearly, ψ̂A is objective.

The following lemma is a direct consequence of Lemma 28 and 33.

Lemma 34. Let K and σ be as above, ψ an ALCOK-ground formula, I0 ∈ M(K), A =
AI0,σ and (In,Wn) the epistemic interpretation with (I0,M(K)) =⇒σ (In,Wn). It holds that
(In,Wn) ||= ψ iff In |= ψ̂A.

Finally, the projection problem can be decided by a finite number of non-epistemic entailment
checks.

Lemma 35. Let K be a consistent ALC-KB, σ a sequence of primitive ground actions and ψ
an ALCOK-ground formula. It holds that ψ is valid after executing σ in K iff for all sensing
results A of σ such that Kσred ∪AA

sense is consistent it holds that Kσred ∪T σsub(ψ̂A)
∪AA

sense |= ψ̂
(n)
A .

Proof.

⇒: Assume to the contrary that ψ is valid after executing σ in K and there exists a sensing
result A of σ such that Kσred∪AA

sense is consistent and Kσred∪T σsub(ψ̂A)
∪AA

sense 6|= ψ̂
(n)
A . Since

Kσred ∪ AA
sense is consistent, there exists I0 ∈ M(K) such that AI0,σ = A (by Lemma 31).

Since Kσred ∪ T σsub(ψ̂A)
∪ AA

sense 6|= ψ̂
(n)
A holds by assumption, there exists an interpretation

J such that J |= Kσred ∪ T σsub(ψ̂A)
∪ AA

sense and J 6|= ψ̂
(n)
A . Let (In,Wn) be the epistemic

interpretation such that

(I0,M(K)) =⇒α0
(I1,W1) =⇒α1

· · · =⇒αn−1
(In,Wn).

with σ = α0α1 · · ·αn−1. By Lemma 32 there exists Jn ∈ Wn such that Jn 6|= ψ̂A. Since
Jn ∈ Wn, there exists (by definition of the action semantics) a sequence J0, . . . ,Jn gener-
ated from J0 by σ such that J0 ∈M(K) and Ii ∼αi Ji for all i = 0, . . . , n− 1. Therefore
and by the definition of the action semantics we obtain (J0,M(K)) =⇒σ (Jn,Wn). With
Jn 6|= ψ̂A and Lemma 34 it follows that (Jn,Wn) 6||= ψ. Since (J0,M(K)) =⇒σ (Jn,Wn)
this is a contradiction to the assumption that ψ is valid after executing σ in K.

⇐: Assume to the contrary that ψ is not valid after executing σ in K and for all sensing results A
of σ such that Kσred∪AA

sense is consistent it holds that Kσred∪T σsub(ψ̂A)
∪AA

sense |= ψ̂
(n)
A . There

exists I0 ∈ M(K) and an epistemic interpretation (In,Wn) such that (I0,M(K)) =⇒σ

(In,Wn) and (In,Wn) 6||= ψ. Let A = AI0,σ. By Lemma 31 the KB Kσred ∪ AA
sense is

consistent. From Lemma 34 and (In,Wn) 6||= ψ it follows that In 6|= ψ̂A. Since it holds
that In ∈ Wn, it is implied by Lemma 32 that there exists a model J of Kσred ∪T σsub(ψ̂A)

∪

AA
sense and J 6|= ψ̂

(n)
A . Since Kσred ∪ AA

sense is consistent, it follows by assumption that
Kσred ∪ T σsub(ψ̂A)

∪ AA
sense |= ψ̂

(n)
A which is a contradiction.

We can now show the main result of this section. The complexity of the decision procedure for
the projection problem is measured in the size of the input, i.e. the number of symbols needed
to write down the projection query ψ, all axioms in K and the action sequence σ.

Theorem 36. Let K = (T ,A) be an initial ALC-KB, σ a sequence of primitive ground action
and ψ an ALCOK-ground formula. The problem of deciding whether or not ψ is valid after
executing σ in K is ExpTime-complete and PSpace-complete if T is empty.
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Proof. First we show that the projection problem is decidable in ExpTime. The decision
procedure consists of the following steps:

1. The KB Kσred is constructed. This can be done in polynomial time in the size of K and σ
and Kσred is of polynomial size.

2. All sensing results A of σ each of polynomial size in the size of σ are enumerated. There
are exponentially many sensing results. They can be enumerated in exponential time.

3. For each sensing result A we check whether Kσred∪AA
sense is consistent. Since Kσred∪AA

sense
is of polynomial size, the consistency check can be done in exponential time [BCM+03].

4. For each A such that Kσred ∪ AA
sense is consistent the objective formula ψ̂A is constructed.

To do this we need to compute JC, κAK for all concepts C in ψ. In order to compute the
concept JC, κAK for a given C, the instance function κA is applied exactly m times, where
m is the number of Ks occurring in C. The size of a concept JD,κAK is polynomial in
the size of D and |Ind|. The computation of the set κA(KJD,κAK) requires |Ind|+ 1 many
instance checks w.r.t. the KB Kσred∪T σsub(JD,κAK)∪A

A
sense. Each instance check can be done

in exponential time. The computation of κA(a, r) requires |Ind|·|Ind| many instance checks
in exponential time. Thus ψ̂A is of polynomial size and can be computed in exponential
time.

5. Finally, we check whether Kσred∪T σsub(ψ̂A)
∪AA

sense |= ψ̂
(n)
A for each consistent sensing result.

Each of the exponentially many checks can be done in exponential time.

In sum, the decision procedure requires at most exponential time in the size of the input.
Therefore we get an ExpTime upper-bound for the complexity of the projection problem. The
matching lower-bound follows from the ExpTime-hardness of ABox consistency in ALC w.r.t.
TBoxes with CIs.

Next we consider the case where the initial TBox T is empty. We show that the satisfiability
problem can be solved using only polynomial space in the size of the input. The first step is to
guess a sensing result A of σ. Since the KB Kσred∪AA

sense only has an acyclic TBox, consistency is
decidable in PSpace. The computation of ψ̂A requires a polynomial number of instance checks
that are solved each in polynomial space. The check whether Kσred ∪ T σsub(ψ̂A)

∪ AA
sense ∪ {ψ̂

(n)
A }

is consistent can be done in PSpace. Since NPSpace = PSpace, we obtain a PSpace upper-
bound. The matching lower-bound is obtained as in the previous case.

4 Verification of Knowledge-Based Programs

We define a programming language that allows us to build complex actions describing the
behavior of a knowledge-based agent. To specify desired properties of such programs we use a
temporal extension of ALCOK. Our main objective is to identify fragments of the programming
language such that the verification problem, i.e. the problem of deciding whether all runs of a
program satisfy the specified property, is decidable.

4.1 Syntax and Semantics of ALCOK-Golog Programs

In this section we define the syntax and semantics of a Golog-like action programming language
that uses the action formalism as introduced in the previous section. Program expressions de-
scribe how a complex action is constructed from primitive actions using programming constructs
and tests formulated in ALCOK.
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Definition 37 (ALCOK-Golog program). Let α be a primitive action and ψ an ALCOK-
formula. A program expression is defined inductively as follows.

• α is a program expression.

• The test ψ? is a program expression.

• The empty program [] is a program expression.

• If δ is a program expression, then the non-deterministic iteration of δ, denoted by (δ)∗,
is a program expression.

• If δ1 and δ2 are program expressions, then the sequence of δ1 and δ2, denoted by (δ1; δ2),
is a program expression.

• If δ1 and δ2 are program expressions, then the non-deterministic choice between δ1 and
δ2, denoted by (δ1|δ2), is a program expression.

• Let n ≥ 0. If x1, ..., xn is a sequence of variables, ψ? a test and δ a program expression,
then (pick(x1, ..., xn) : ψ?.δ) (non-deterministic choice of arguments) is also a program
expression. The expression pick(x1, ..., xn) : ψ? is called guarded pick and the test ψ? is
called guard.

The set of all variables occurring in a program expression is denoted by Var(δ). The set of free
variables, i.e. those that are not bound by a guarded pick, of a program expression δ, is denoted
by FVar(δ), given by

• FVar(α) := Var(α),

• FVar(ψ?) := Var(ψ);

• FVar([]) := ∅,

• FVar((δ)∗) := FVar(δ),

• FVar(δ1; δ2) := FVar(δ1) ∪ FVar(δ2),

• FVar(δ1|δ2) := FVar(δ1) ∪ FVar(δ2),

• FVar(pick(x1, ..., xn) : ψ?.δ) := (Var(ψ) ∪ FVar(δ)) \ {x1, ..., xn}.

For a guarded pick of the form pick(x1, ..., xn) : ψ? we define

FVar(pick(x1, ..., xn) : ψ?) := Var(ψ) \ {x1, . . . , xn}.

A closed program expression has no free variables.

Let ε = (eff : {Term(p)}, sense : ∅) and f = (eff : {Fail(p)}, sense : ∅) be two predefined actions
for indicating termination and failure of a program, respectively.

An ALCOK-Golog program P = (K,Σ, δ) consists of an initial consistent ALC-KB K = (T ,A),
a finite set of primitive actions and a closed program expression δ satisfying the following
conditions:

• {¬Term(p),¬Fail(p)} ⊆ A,

• the names Term and Fail do not occur in T and A \ {¬Term(p),¬Fail(p)},
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• {ε, f} ⊆ Σ and

• every primitive action occurring in δ is contained in Σ \ {ε, f}.

An ALCOK-Golog program P = (K,Σ, δ) is called a knowledge-based program if all tests occur-
ring in δ are subjective. N

Together with the other constructs, tests can for example be used to express while-loops and
if-then-else statements:

while ψ? do δ end := (ψ?; δ)∗;¬ψ?

if ψ? then δ1 else δ2 end := ψ?; δ1 | ¬ψ?; δ2

In the following we use the notation ~x to denote an n-tuple of variables ~x = (x1, . . . , xn) with
n ∈ N. Likewise, ~a denotes an n-tuple of domain elements (a1, . . . , an) with n ∈ N and ai ∈ ∆,
i = 1, . . . , n.

For the execution of a program we split up the program expression into its atomic programs and
then execute these atomic programs step by step. An atomic program, denoted by a, is either
a primitive action, a test or a guarded pick. As in [ZC14,BZ13a] we introduce two functions
head(·) and tail(·, ·). Intuitively, head(δ) contains those atomic programs that can be executed
first when executing the program expression δ. For a ∈ head(δ), tail(a, δ) yields the remainder
of the program, i.e., the part that still needs to be executed after a has been executed. The
functions head(·) and tail(·, ·) are defined by induction on the size of program expressions as
given in Table 3.

Program expr. δ head(δ) tail(a, δ) with a ∈ head(δ)

[] {ε} {[]}

α {α} {[]}

ψ? {ψ?} {[]}

δ∗ {ε} ∪ head(δ) {δ′; (δ)∗ | δ′ ∈ tail(a, δ), a 6= ε}∪
{[] | a = ε}

δ1; δ2 {a ∈ head(δ1) | a 6= ε}∪
{a ∈ head(δ2) | ε ∈ head(δ1)}

{δ′; δ2 | δ′ ∈ tail(a, δ1)}∪
{δ′ ∈ tail(a, δ2) | ε ∈ head(δ1)}

δ1|δ2 head(δ1) ∪ head(δ2) tail(a, δ1) ∪ tail(a, δ2)

pick(~x) : ψ?.δ {pick(~x) : ψ?} {δ}

Table 3: Definition of head and tail of a program expression and atomic program, respectively.
For a /∈ head(δ) we define tail(a, δ) := ∅.

Intuitively, executing a program δ means first execute an atomic program of its head, then an
atomic program of the head of its tail, etc. Thus, the program δ is consumed step by step and
if a program is “eaten up” completely, the termination action ε can be found in the head. We
call a program expression that can be reached by a sequence of such head and tail applications
a reachable subprogram.

Definition 38. Let δ be a program expression. The program expression ρ is a reachable
subprogram of δ if there is an n ≥ 0 and program expressions δ0, δ1, . . . , δn such that δ0 = δ,
δn = ρ, and for all i = 0, · · · , n − 1 there exists ai ∈ head(δi) such that δi+1 ∈ tail(ai, δi). We
denote the set of all reachable subprograms of δ by sub(δ). N
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Clearly, the number of reachable subprograms of a given program expression i s bounded in the
size of the program expression. The size |δ| of a program expression δ is given by the number
of symbols needed to write δ.

Lemma 39. Let δ be a program expression. The cardinality of sub(δ) is polynomially bounded
in the size |δ| of δ.

Proof. The proof can be done with very similar arguments as used for the proof of Lemma 11
in [BZ13b] (page 9). We omit the proof here.

Note that in [Cla14, ZC14,BZ13a] tests in program expressions are handled differently. They
are viewed as conditions that are required to be satisfied before the next primitive action can be
executed and do not cause separate execution steps in order to avoid unintended interleaving of
tests and action in presence of a concurrency operator. Since we do not consider the interleaving
constructor here, we use here a slightly simpler definition of head and tail.

Note that a reachable subprogram of a closed program expression may contain free variables.
We show the following properties of closed program expressions.

Lemma 40. Let δ be a closed program expression. The following properties are satisfied.

1. If a ∈ head(δ), then FVar(a) = ∅.

2. If a ∈ head(δ) is a test or primitive action and ρ ∈ tail(a, δ), then ρ is closed.

3. If a ∈ head(δ), ρ ∈ tail(a, δ) and a is a guarded pick of the form pick(~x) : ψ?, then
Var(ψ) ⊆ ~x and FVar(ρ) ⊆ ~x.

Proof. The lemma can be proven by a simple induction on the structure of δ using the definitions
of head and tail.

Semantically, a state of a program is of the form 〈(I,W), δ〉 where (I,W) is an epistemic
interpretation and δ a closed program expression. We say that an atomic program a ∈ head(δ)
is executable in 〈(I,W), δ〉 iff one of the following conditions is satisfied:

• a is a primitive action;

• a is a test of the form ψ? and (I,W) ||= ψ;

• a is a guarded pick of the form pick(~x) : ψ? and there exists a variable mapping ν such
that (I,W) ||= ψν .

From Lemma 40 it follows that executability is well defined.

Intuitively, the agent executes a guarded pick by non-deterministically choosing a binding ~a
from ∆ for the ~x such that ψ with ~x replaced by ~a is satisfied, after which it executes δ using
the same bindings.

Let δ be a program expression and ν a variable mapping. The closed program expression δν is
obtained from δ by simultaneously replacing each occurrence of a free variable x ∈ FVar(δ) in δ
by ν(x). The set of all instantiated reachable subprograms of a program expression δ is given
by

subg(δ) := {ζν | ζ ∈ sub(δ), ν is a variable mapping}.
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Let K be an objective KB and Σ a set of primitive actions. We define the set of all ground
actions and all possible evolutions of epistemic interpretations, respectively, as follows.

Σg := {αν | α ∈ Σ, ν is a variable mapping};
JK,Σ := {(I ′,W ′) | there is I ∈ M(K) and σ ∈ Σ∗g s.t. (I,M(K)) =⇒σ (I ′,W ′)}.

Definition 41 (Program semantics). Let P = (K,Σ, δ) be an ALCOK-Golog program. The
transition system TP = (Q,→, I) induced by P consists of the set of states Q as well as a set
of initial states I ⊆ Q with

Q := JK,Σ × subg(δ) and I := {〈(I,M(K)), δ〉 | I ∈ M(K)}

and a labeled transition relation

→ ⊆ Q× {a | a ∈ head(ζ) for some ζ ∈ subg(δ) or a = f} ×Q

such that
〈(I,W), ρ〉 a→ 〈(I ′,W ′), ρ′〉

iff one of the following conditions is satisfied:

1. a ∈ head(ρ), a ∈ Σg such that a 6= f, (I,W) =⇒a (I ′,W ′) and ρ′ ∈ tail(a, ρ).

2. a ∈ head(ρ), a is a test of the form ψ?, (I,W) ||= ψ, (I ′,W ′) = (I,W) and ρ′ ∈ tail(ψ?, ρ).

3. a ∈ head(ρ), a is a pick of the form pick(~x) : ψ?, there exists a variable mapping ν such
that (I,W) ||= ψν and there exists ζ ∈ tail(a, ρ) such that ρ′ = ζν , and (I ′,W ′) = (I,W).

4. No atomic program in head(ρ) is executable, a = f, (I,W) =⇒f (I ′,W ′) and ρ′ = ρ.

N

Due to the distinguished actions ε and f a successor state is always guaranteed to exist. A run
π of an ALCOK-Golog program P = (K,Σ, δ) is an infinite path in TP = (Q,→, I) of the form

π = 〈(I0,W0), δ0〉
a0→ 〈(I1,W1), δ1〉

a1→ 〈(I2,W2), δ2〉
a2→ · · ·

starting in an initial state 〈(I0,W0), δ0〉 ∈ I. The infinite sequence of epistemic interpretations
occurring in the states along a run π is denoted by I(π).

4.2 Specifying Temporal Properties of Programs

To specify temporal properties of a given program we use a logic we call ALCOK-LTL. The
syntax is the same as for propositional LTL, but in place of propositions we allow for ALCOK-
ABox assertions or ALC-CIs. More precisely, ALCOK-LTL formulas are built according to the
following grammar:

Φ ::= % | ¬Φ | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | XΦ | Φ1 U Φ2

where % stands for an ALCOK-ABox assertion or ALC-CI. As usual, 3Φ (eventually) and 2Φ
(globally) are used as abbreviations for >(a) U Φ and ¬3¬Φ, respectively.

The semantics of ALCOK-LTL is based on the notion of an ALCOK-LTL structure, which is an
infinite sequence of epistemic interpretations I = (Ii,Wi)i=0,1,2,.... Let Φ be an ALCOK-LTL
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formula, I an ALCOK-LTL structure, and i ∈ {0, 1, 2, . . .} a time point. Validity of Φ in I at
time i, denoted by I, i |= Φ, is defined as follows:

I, i |= % iff (Ii,Wi) |= %,

I, i |= ¬Φ iff I, i 6|= Φ,

I, i |= Φ1 ∧ Φ2 iff I, i |= Φ1 and I, i |= Φ2,

I, i |= Φ1 ∨ Φ2 iff I, i |= Φ1 or I, i |= Φ2,

I, i |= XΦ iff I, i+ 1 |= Φ,

I, i |= Φ1 U Φ2 iff ∃k ≥ i : I, k |= Φ2 and ∀j, i ≤ j < k : I, j |= Φ1

Now, we are ready to define the verification problem.

Definition 42 (verification problem). Let P = (K,Σ, δ) be an ALCOK-Golog program and
Φ an ALCOK-LTL formula. The formula Φ is valid in P iff for all runs π of P it holds
that I(π), 0 |= Φ. The formula Φ is satisfiable in P iff there exists a run π of P such that
I(π), 0 |= Φ. N

It holds that a formula Φ is valid in P iff ¬Φ is not satisfiable in P.

Example 43. For a program in our example domain one might want to verify that the agent
always knows whether gear is on or not, expressed by 2KwOn(gear). To ensure successful
termination we can check whether 3Term(p) is valid. For the program expression given in
Figure 1 and the initial KB shown in Figure 3 the following property is valid:

∃has-f.(CritFault u ¬KFault)(gear)→ 3K∃has-f.(CritFault u ¬KFault)(gear)

saying that if gear has an unknown critical fault initially, then the agent will eventually recognize
it. We can also verify executability and whether the TBox T is preserved along each run by
checking validity of 2

(∧
%∈T % ∧ ¬Fail(p)

)
. N

4.3 Undecidability of the Verification Problem

As expected the verification problem is in general undecidable. However we show that this
holds for already very restricted subsets of our language. The main source of undecidability
is the high degree of non-determinism introduced by the guarded pick operator that allows to
quantify arguments ranging over the whole countably infinite domain ∆.

First, we reduce the entailment problem of boolean conjunctive queries (BCQs) w.r.t. ALC-KBs
to the validity problem of the verification problem. A boolean conjunctive query is of the form
∃x1 · · · ∃xm.ψ where x1, . . . , xm ∈ NV are variables and ψ is a conjunction of primitive atoms
such that Var(ψ) ⊆ {x1, . . . , xm}, i.e. all variables in ψ are existentially quantified.

A BCQ q = ∃x1 · · · ∃xm.ψ is satisfied in an interpretation I written as I |= q iff there exists
a variable mapping ν such that I |= ψν . We say that q is entailed by the ALC-KB K iff q is
satisfied in all models of K. The entailment problem is undecidable even if q contains only four
variables and K is restricted to the DL AL [Ros07]. AL is the sublogic of ALC where negation
is only allowed in front of concept names and existential restrictions are restricted to be of the
form ∃r.>.

The reduction to the verification problem is straightforward. Let K = (T ,A) be an ALC-KB
and q = ∃x1 · · · ∃xm.ψ a BCQ. We define a program as follows: The initial KB is given by

K′ = (T ,A ∪ {¬Term(p),¬Fail(p)}).
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and the program expression is given by

δ = pick(x1, . . . , xm) : ψ?.[]

It easy to see that q is entailed by K iff Φ = X
(
XTerm(p)

)
is valid in P = (K′,Σ = {ε, f}, δ).

Theorem 44. The validity problem of the verification problem is undecidable even if the tem-
poral property and the tests in the program are objective and no iteration is used.

Next, we consider the class of knowledge-base programs. We show undecidability by a reduction
of the halting problem of two-counter machines [Min67]. A two-counter machine M manipulates
the non-negative integer values of two counters, denoted by c0 and c1 in the following. A machine
M is given by a finite sequence of instructions of the form

M = J0; · · · ; Jm.

Let i, j ∈ {0, . . . ,m} and n ∈ {0, 1}. There are three kinds of instructions:

• Inc(n, i) : Increment cn by one and jump to instruction Ji.

• Dec(n, i, j) : If cn = 0 jump to Ji, else if cn > 0 decrement cn by one and jump to Jj .

• Halt: The machine stops.

A configuration of M is of the form (i, v0, v1) where i ∈ {0, . . . ,m} is the index of the instruction
to be executed next and v0, v1 ∈ N are the values of the two counters. M induces a transition
relation on configurations, denoted by `M, that is defined as explained above.

We assume that initially both counters are set to zero and the execution of M starts with instruc-
tion J0. We say that M halts iff there exists a computation such that (0, 0, 0) `M

∗ (j, v0, v1) for
some v0, v1 ∈ N and Jj = Halt. The problem of deciding whether a given two-counter machine
halts or not is undecidable [Min67]. Simulating a two-counter machine with an ALCOK-Golog
program is straightforward.

Theorem 45. The verification problem for knowledge-based programs is undecidable even if the
initial TBox is empty, primitive actions have only unconditional effects, at most one argument,
and provide no sensing result.

Proof. Let M = J0; · · · ; Jm be a two-counter machine with the two counters c0 and c1. We
construct a program PM = (KM = (TM,AM),ΣM, δM) and a ALCOK-LTL formula ΦM such that
ΦM is satisfiable in PM iff M reaches a halting configuration starting in the initial configuration
(0, 0, 0).

We use concept names J0, . . . , Jm, one for each instruction, and an individual s ∈ ∆ with
the intended meaning that s is a known instance of Ji iff Ji is the instruction that will be
executed next. Furthermore, s is an instance of the concept name H iff M has reached a
halting configuration. For the two counters c0 and c1 we introduce role names r0 and r1

and individuals a0 and a1. The value of the counter cn with n ∈ {0, 1} is represented in an
epistemic interpretation as the number of known rn-successors of the individual an. Thus, the
initial configuration of M is represented in KM as follows:

KM = (TM = ∅,AM = {∀r0.⊥(a0), ∀r1.⊥(a1), J0(s)}). (4)

This means that it is known that a0 and a1 do not have any r0-successors and r1-successors,
respectively. And J0(s) expresses that J0 will be executed first.
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ΣM contains the following primitive actions: For each counter cn with n = 0, 1 there is a unary
increment and decrement action (without any sensing result).

incn(x) = (eff : {rn(an, x)}) and decn(x) = (eff : {¬rn(an, x)}). (5)

Thus, an element x is added as an rn-successor to an or is removed, respectively. For each
instruction Ji with i = 0, . . . ,m there is a jump action given by

jumpi = (eff : {Ji(s)} ∪ {¬Jb(s) | b 6= i, 0 ≤ b ≤ m}) (6)

which determines the index of instruction that will be executed next. And there is an halting
action:

halt = (eff : {H(s)}).
Next, we define for each instruction Ji with i = 0, . . . ,m a program expression δi. If Ji is of the
form Inc(n, j), then we define

δi = KJi(s)?; pick(x) : K¬rn(an, x)?.incn(x); jumpj , (7)

and if Ji = Dec(n, j, j′), then

δi = KJi(s)?;
(
δi,cn=0 | δi,cn>0

)
with

δi,cn=0 = K∀rn.⊥(an)?; jumpj

δi,cn>0 = pick(x) : Krn(an, x)?.decn(x); jumpj′

(8)

and if Ji = Halt, then δi = KJi(s)?; halt. Now, we can assemble the program as follows:

δM :=
(
δ0 | · · · | δm

)∗ (9)

Obviously, M halts iff 3KH(s) is satisfiable in PM.

In the reduction above we have used role atoms with epistemic roles of the form K¬r and
concepts of the form ∀r.⊥. Next, we show that even if we disallow role names the verification
problem stays undecidable.

Lemma 46. The verification problem is undecidable even if role names are disallowed.

Proof. We slightly modify the reduction given in Theorem 45. Again we use the concept names
J0, . . . , Jm, H, the individual s and the actions jump0, . . . , jumpm and halt as before.

For each counter cn we use now three concept names Cn, Ĉn and Zn. The number of known
instances of Cn represents the value of the counter cn and if s is an instance of Zn, then the
value of cn is zero.

The initial KB is given as follows:

KM = (TM = {C0 v ⊥,> v Ĉ0, C1 v ⊥,> v Ĉ1},
AM = {J0(s), Z0(s), Z1(s)}).

(10)

The increment actions are now defined by

incn(x) = (eff : {¬Ĉn(x), Cn(x),¬Zn(s)}). (11)

Thus, we shift an element x from Ĉn to Cn. After incrementing cn the value cannot be equal
to zero therefore Zn(s) is set to false. There are two different kinds of decrement actions:

decn(x) = (eff : {¬Cn(x), Ĉn(x)}) and

deczn(x) = (eff : {¬Cn(x), Ĉn(x), Zn(s)}).
(12)

39



To decrement cn an element x is shifted from Cn to Ĉn. In case cn = 0 after decrementing cn
the second version of the action is chosen.

For an instruction Ji = Inc(cn, j) we use the program expression

δi := KJi(s)?; pick(x) : KĈ(x)?.incn(x); jumpj . (13)

For Ji = Dec(n, j, j′) we have

δi := KJi(s)?;
(
δi,cn=0 | δi,cn>0

)
with

δi,cn=0 := KZn(s)?; jumpj

δi,cn>0 := pick(x) : KCn(x)?.
(
decn(x) | deczn(x)

)
; jumpj′

(14)

The program expression for a halting instruction and δM are defined as before. The property
ΦM is defined as follows

2(KZ0(s)→ C0 v ⊥) ∧2(KZ1(s)→ C1 v ⊥) ∧3KH(s).

Obviously, M halts iff ΦM is satisfiable in PM.

In this section we have identified the non-deterministic guarded pick construct as the main
source of undecidability. One possible restriction to achieve decidability could be to consider
weaker variants of the verification problem. For instance we could introduce a fixed finite horizon
on the transition system and consider only finite prefixes of runs up to a given length k instead
of examining the complete transition system. However as we have seen in the reduction of the
BCQ entailment problem such a boundedness restriction alone does not suffice for achieving
decidability. The reason is that the initial TBox and the test used as guard in the guarded pick
expression can be used to enforce complex structures of models such as domino tilings used
in Rosati’s undecidability proof [Ros07] of BCQ entailment. The changes caused by actions
are not important here. In the cases considered in Theorem 45 and Lemma 46 the source of
undecidability is of a quite different nature. Here the problem is that the pick inside the loop
allows us to inject an unbounded number of new objects as known instances of a concept such
that the knowledge base of the agent may grow indefinitely.

4.4 Decidable Verification of Restricted Programs

In order to retain decidability of the verification problem for ALCOK-Golog programs we restrict
the syntax of the guards allowed in the pick-operators. With this restriction we achieve that
only known individuals, i.e. those individuals that have a name given in the program, can be
chosen for instantiation.

Definition 47 (restricted programs). Let P = (K,Σ, δ) be an ALCOK-Golog program. P is
called restricted if all guarded picks occurring in δ are of the form

pick(x1, . . . , xn) : (ψ1 ∨ · · · ∨ ψm) ∧ ψ′?

with m ≥ 1 and for each ψi with 1 ≤ i ≤ m it holds that {x1, . . . , xn} ⊆ Var(ψi) and ψi is a
conjunction of concept and role atoms of the form KC(z) and Kr(z, z′), respectively, where C
is an ALC-concept with K 6|= > v C and r ∈ NR. There are no restrictions on the formula
ψ′. N

Note that the example program in Figure 1 is restricted. The restricted atoms in the guard of
the pick-operator can also be viewed as objective instance queries posed to the current KB of
the agent. The agent then chooses a binding for the variables among the retrieved answers.
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We argue that the restrictions imposed on the first conjunct (ψ1 ∨ · · · ∨ ψm) of the guards are
necessary to achieve decidability in the sense that dropping one of these restrictions leads to
undecidability again:

• Allowing in addition also atoms of the form K¬r(x, y) or ¬Kr(x, y) causes undecidability:
The program in the proof of Theorem 45 satisfies all the restriction except for the guard of
the increment action (see (7)) where the variable x only appears in the atom K¬rn(an, x).
The same reduction also works if we replace K¬rn(an, x) by ¬Krn(an, x). Thus, allowing
in addition also negated subjective atoms leads to undecidability.

• The condition K 6|= > v C for concept atoms KC(x) is also necessary. The program in
the proof of Lemma 46 satisfies all the restrictions except for the guard KĈn(x)? of the
increment action (see (13)) where it holds that KM |= > v Ĉn.

• If we allow nominals or nesting of the K-constructor in concept atoms, then any knowledge-
based program can be equivalently modified into a restricted one as we have seen in
Example 26. Similarly, dropping the condition {x1, . . . , xn} ⊆ Var(ψi) would allow us to
undermine all the other restriction.

As shown in Lemma 22 concepts like KC where C is nominal- and K-free and not equivalent to
> and roles of the form Kr are interpreted as finite subsets of Ind and Ind × Ind, respectively,
under an epistemic interpretation that can be reached from the initial epistemic model by
performing a sequence of ground actions where Ind are the individuals mentioned in the actions
or in the initial KB. As a consequence we get that the agent is allowed to only choose objects
from the set of known individuals as formulated in the next lemma. From now on Ind denotes
the set of all individuals occurring in P.

Lemma 48. Let 〈(I,W), ρ〉 ∈ Q be a state reachable from an initial state in the transition
system TP = (Q,→, I) of a restricted ALCOK-Golog program P. It holds that ρ contains only
individuals from Ind.

Proof. We show this claim for all states in Q reachable from an initial state by induction on
the length n of a shortest initial fragment of a run leading to the state. Let P = (K,Σ, δ) and
〈(I,W), ρ〉 ∈ Q. First assume n = 0. Consequently, 〈(I,W), ρ〉 is an initial state with ρ = δ.
By definition of Ind δ contains only individuals from Ind. Consider n > 0. There exists the
initial fragment of a run of the form:

〈(I1,W1), δ1〉
a1→ 〈(I2,W2), δ2〉

a2→ · · · an−1→ 〈(In,Wn), δn〉

with 〈(I,W), ρ〉 = 〈(In,Wn), δn〉. By induction the program expressions δ1, . . . , δn−1 contain
only individuals from Ind and are closed. Assume that an−1 is a primitive action, test or the
failing action. It follows that δn ∈ tail(an−1, δn−1). Since δn−1 contains only individuals from
Ind also the tails of δn−1 including δn only contain individuals from Ind. For the remaining case
assume that an−1 is a guarded pick of the form:

pick(x1, . . . , xm) : (ψ1 ∨ · · · ∨ ψ`) ∧ ψ′?.

There exists a variable mapping ν and a k ∈ {1, . . . , `} such that (In−1,Wn−1) ||= ψk
ν . Since

all program expression δ1, . . . , δn−1 contain only individuals from Ind also all the heads of them
contain only individuals from Ind. Therefore, there exists a sequence of ground actions σ with
individuals only from Ind such that (I1,W1) =⇒σ (In−1,Wn−1). We have that {x1, . . . , xm} =
Var(ψk) and ψk is a conjunction of atoms of the form KC(x) or Kr(x, y) where C is an ALC-
concept with K 6|= > v C by definition of the restricted guards. Since (In−1,Wn−1) ||= ψk

ν , for
each variable xj ∈ {x1, . . . , xm} it holds that there exists a concept KC and ν(xj) ∈ KCWn−1
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or there exists a role Kr and xj′ ∈ {x1, . . . , xm} such that (ν(xj), ν(xj′)) ∈ KrWn−1 . From
Lemma 22.1 and 22.2 it follows that ν(xj) ∈ Ind. Finally, there exists

ζ ∈ tail(pick(x1, . . . , xm) : (ψ1 ∨ · · · ∨ ψ`) ∧ ψ′?, δn−1)

such that δn = ζν . Since δn−1 is closed and contains only individuals from Ind, it follows that
ζ from the tail also contains only individuals from Ind and the free variables in ζ are among
the set {x1, . . . , xm}. As shown above all variables from {x1, . . . , xm} are mapped to some
individual in Ind by ν. Therefore δ = ζν only contains individuals from Ind.

As a consequence we obtain that the (reachable fragment of the) transition system of a re-
stricted program has a finite branching degree bounded by the number of individuals in Ind.
Furthermore, from Lemma 39 and Lemma 48 it follows that the number of reachable program
expressions in the transition system is polynomially bounded in the size of δ and Ind. However
the transition system TP = (Q,→, I) still has infinitely many initial states. To reduce the
verification problem to model checking we define an equivalence relation on epistemic interpre-
tations with a finite number of equivalence classes that we call types. We start with identifying
a finite set of relevant (possibly epistemic) axioms, which we call context of a program P. For
this we consider all possible groundings of atoms that appear in the program. Given an atom
ϕ, a variable mapping ν is called grounding for ϕ if for all x ∈ Var(ϕ) it holds that ν(x) ∈ Ind.
In addition to ABox assertions and CIs we also consider negated CIs of the form ¬(C v D).
Satisfaction of a negated CI in an interpretation is defined in the obvious way.

Definition 49 (context). Let P = (K = (T ,A),Σ, δ). The context of P, denoted by CK(P), is
defined as the least set satisfying the following conditions:

• T ⊆ CK(P) and A ⊆ CK(P);

• If ϕ is an atom occurring in P and ν is a grounding for ϕ, then ϕν ∈ CK(P).

• If r ∈ NR is a role name occurring in P and a, b ∈ Ind, then r(a, b) ∈ CK(P).

• If % ∈ CK(P), then also ¬% ∈ CK(P).

N

Now we extend the context with a finite set of non-epistemic axioms by considering all relevant
rewritings of subjective sub-concepts and roles. The objective nominal concepts that replaces
an epistemic sub-concept is determined by an instance function. We define a rewriting operator
as a small modification of J·, ·K (see Figure 4). Let C be an ALCOK-concept and κ an instance
function. The ALCO-concept [C, κ] is defined inductively on the structure of C exactly in the
same way as JC, κK except for the case C = KD where instead of JKD,κK :=

⊔
κ(KJD,κK) we

define [KD,κ] :=
⊔
κ(KD). We show that both operators yield the same result.

Lemma 50. Let C be an ALCOK-concept and 〈(J ,W), ρ〉 ∈ Q a reachable state in TP . It
holds that JC, κWK = [C, κW ].

Proof. The claim is shown by induction on the structure of C. Consider the case where C is of
the form KD. By definition of TP there exists I ∈ M(K) and a sequence of primitive ground
actions σ such that (I,M(K)) =⇒σ (J ,W). Therefore, using the definition of the instance
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function and Lemma 28 we obtain

JKD,κWK : =
⊔
κW(KJD,κWK)

=
⊔
{{a} | a ∈

⋂
J∈W

JD,κWKJ ,W , a ∈ Ind} ∪

{¬N | ∃c : c ∈ ∆ \ Ind, c ∈
⋂
J∈W

JD,κWKJ ,W}

=
⊔
{{a} | a ∈

⋂
J∈W

JD,κWKJ , a ∈ Ind} ∪

{¬N | ∃c : c ∈ ∆ \ Ind, c ∈
⋂
J∈W

JD,κWKJ }

=
⊔
{{a} | a ∈

⋂
J∈W

DJ ,W , a ∈ Ind} ∪

{¬N | ∃c : c ∈ ∆ \ Ind, c ∈
⋂
J∈W

DJ ,W}

=
⊔
κW(KD)

= [KD,κW ].

The remaining cases are trivial.

Using the rewriting operator we close up the context under all possible rewritings of epistemic
subconcepts occurring in the context.

Definition 51. Let CK(P) be the context of a program P and cu ∈ ∆ \ Ind an anonymous
individual. Furthermore, let F be the set of all instance functions. The knowledge closure of
CK(P), denoted by ĈK(P, cu), is defined as follows:

ĈK(P, cu) := CK(P) ∪
⋃

C(a)∈CK(P)
κ∈F

{[C, κ](a),¬[C, κ](a)} ∪
{[D,κ](b),¬[D,κ](b) | KD ∈ sub(C), b ∈ Ind ∪ {cu}}.

The subset of ĈK(P, cu) containing all K-free axioms contained in ĈK(P, cu) is denoted by
Ĉ(P, cu). N

Note, that the distinguished individual cu ∈ ∆\ Ind will be used to indicate whether there exists
an anonymous element in KD or not. To handle epistemic roles we have already included all
assertions of the form r(a, b) and ¬r(a, b) with a, b ∈ Ind (see third item Def. 49) in the context.

Lemma 52. ĈK(P, cu) is at most exponentially large in the size of P.

Proof. For a fixed instance function κ ∈ F there are polynomially many new K-free assertions
that are added to the context CK(P). One for each concept assertion C(a) in CK(P) and
|Ind|+ 1 many for each subconcept of the form KD occurring in CK(P). Each new assertion is
of polynomial size in the size of C and D, respectively, and Ind.

Consider the following sets

SC := {KD | C(a) ∈ CK(P),KD ∈ sub(C)} and
SR := {(a, r) | a ∈ Ind, r ∈ NR and r occurs in CK(P)}.
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Let κ ∈ F be an instance function. The instance function κ�SC∪SR is defined as κ but restricted
to the domain SC ∪ SR. F�SC∪SR denotes the set of all restricted instance functions. It is
easy to see that we obtain exactly the same set if we replace F by F�SC∪SR in the definition of
ĈK(P, cu). There are exponentially many different instance functions in F�SC∪SR in the size of
CK(P) and Ind. Each function in κ ∈ F�SC∪SR is a total function of the form:

κ : SC ∪ SR → 2{{a}|a∈Ind}∪{¬N} ∪ 2{{a}|a∈Ind}.

Consequently,
|F�SC∪SR | = nm with

n = |2{{a}|a∈Ind}∪{¬N} ∪ 2{{a}|a∈Ind}| and
m = |SC ∪ SR|.

Therefore, the size of the knowledge closure ĈK(P, cu) is exponential in the size of P and Ind.

The two sets of axioms CK(P) and Ĉ(P, cu) are used to partition epistemic interpretations and
interpretations into finitely many equivalence classes which we call static types.

Definition 53 (static types). Let CK(P) be the context of a program P and (I,W) an epistemic
interpretation with I ∈ W and J = (∆, ·J ) an interpretation. The epistemic static type of
(I,W) w.r.t. CK(P), denoted by s-typeK(I,W), is given by:

s-typeK(I,W) := {ϕ ∈ CK(P) | (I,W) ||= ϕ}.

The non-epistemic static type of a single interpretation J w.r.t. Ĉ(P, cu) is given by:

s-type(I) := {ϕ ∈ Ĉ(P, cu) | I |= ϕ}.

N

From the definition it follows that for an epistemic static type sK = s-typeK(I,W) it holds that
% ∈ sK iff ¬% /∈ sK for all % ∈ CK(P). And likewisefor a static type s = s-type(I) it holds that
% ∈ s iff ¬% /∈ s for all % ∈ Ĉ(P, cu). Note that CK(P) and Ĉ(P, cu) are closed under negation
and we assume (¬¬% := %).

In the following we show that the epistemic static type of (I,W) is uniquely determined by the
non-epistemic static type of I and by the non-epistemic static types of the interpretations in
W. First, we define an instance function based on a set of non-epistemic static types S.

κS(KD) := {{a} | D(a) ∈
⋂

S} ∪ {¬N | D(cu) ∈
⋂

S}

κS(a, r) := {{b} | r(a, b) ∈
⋂

S}

κS(a,¬r) := {{b} | ¬r(a, b) ∈
⋂

S}.

Next we show that the instance function κW can be equivalently replaced by κS with

S = {s-type(J ) | J ∈ W}.

Lemma 54. Let 〈(I,W), ρ〉 be a reachable state in TP and

s = s-type(I) and S = {s-type(J ) | J ∈ W}

the corresponding static types w.r.t. Ĉ(P, cu).
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1. Let a ∈ Ind and r ∈ NR. It holds that κW(a, r) = κS(a, r).

2. Let D ∈ sub(C) for some C(a) ∈ CK(P). It holds that JD,κWK = JD,κSK.

3. Let C(a) ∈ CK(P). It holds that

(I,W) ||= C(a) iff C(a) ∈ s-typeK(I,W) iff JC, κSK(a) ∈ s.

Proof.

1. It holds that {b} ∈ κW(a, r)

iff (a, b) ∈
⋂
J∈W

rJ

iff J |= r(a, b) for all J ∈ W
iff r(a, b) ∈ s-type(J ) for all J ∈ W (since r(a, b) ∈ CK(P))

iff r(a, b) ∈
⋂
J∈W

s-type(J )

iff {b} ∈ κS(a, r).

2. Consider the following set of concepts:

sub(P) := {D | D ∈ sub(C), C(a) ∈ CK(P)}.

By induction we prove that for all concept C ∈ sub(P) it holds that JC, κWK = JC, κSK.
For concepts of the form A, {a}, > or ⊥ in sub(P) the claim trivially holds.

C = ¬D: Obviously, ¬D ∈ sub(P) implies D ∈ sub(P). The induction hypothesis yields
JD,κWK = JD,κSK. Using the definition of J·, ·K we obtain

J¬D,κWK = ¬JD,κWK = ¬JD,κSK = J¬D,κSK.

C = D1 uD2, ∃r.D: The proof is analogous to the previous case using the induction hy-
pothesis and the definition of J·, ·K.

C = ∃Kr.D: By claim 1 it holds that κW(a, r) = κS(a, r) for all a ∈ Ind. It holds that
D ∈ sub(P). Therefore, the induction hypothesis yields JD,κWK = JD,κSK. It
follows that J∃Kr.D, κWK = J∃Kr.D, κSK.

C = KD: Since KD ∈ sub(P), we have D ∈ sub(P). Using Lemma 50 and the induction
hypothesis we obtain:

[D,κW ]
L. 50
= JD,κWK i. h.

= JD,κSK. (15)

Furthermore, by definition of Ĉ(P, cu) it holds that KD ∈ sub(P) implies

[D,κW ](b) ∈ Ĉ(P, cu) for all b ∈ Ind ∪ {cu}. (16)

By definition it holds that

JKD,κWK =
⊔
κW(KJD,κWK) and JKD,κSK =

⊔
κS(KJD,κSK).

We show κW(KJD,κWK) = κS(KJD,κSK) as follows.
It holds that {a} ∈ κW(KJD,κWK) for an a ∈ Ind
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iff a ∈
⋂
J∈W

JD,κWKJ ,W

iff a ∈
⋂
J∈W

JD,κWKJ

iff a ∈
⋂
J∈W

[D,κW ]
J (with (15))

iff J |= [D,κW ](a) for all J ∈ W
iff [D,κW ](a) ∈ s-type(J ) for all J ∈ W (with (16))
iff JD,κSK(a) ∈ s-type(J ) for all J ∈ W (with (15))
iff {a} ∈ κS(KJD,κSK).

Similarly, it holds that ¬N ∈ κW(KJD,κWK)
iff there exists c ∈ ∆ \ Ind such that c ∈ (KJD,κWK)W

iff ∆ \ Ind ⊆ (KJD,κWK)W (by Lemma 18)
iff there exists a cu ∈ ∆ \ Ind such that J |= JD,κWK(cu) for all J ∈ W
iff there exists a cu ∈ ∆ \ Ind such that J |= [D,κW ](cu) for all J ∈ W (with (15))
iff [D,κW ](cu) ∈ s-type(J ) for all J ∈ W (with (16))
iff JD,κSK(cu) ∈ s-type(J ) for all J ∈ W (with (15))
iff ¬N ∈ κS(KJD,κSK).

3. It holds that (I,W) ||= C(a)

iff C(a) ∈ s-typeK(I,W) (by definition of static type)
iff a ∈ CI,W

iff a ∈ JC, κWKI (by Lemma 28)
iff JC, κWK(a) ∈ s (by Lemma 50: JC, κWK = [C, κW ] and by definition of the knowledge

closure it holds that [C, κW ](a) ∈ Ĉ(P, cu))
iff JC, κSK(a) ∈ s (by claim 2).

Similarly, for role assertions of the form Kr(a, b) ∈ CK(P) it holds that

Kr(a, b) ∈ s-typeK(I,W) iff {b} ∈ κS(a, r)

with S = {s-type(J ) | J ∈ W} and

K¬r(a, b) ∈ s-typeK(I,W) iff {b} ∈ κS(a,¬r).

For the corresponding abstraction of an epistemic interpretation (I,W) given as a pair (s,S)
with s = s-type(I) and S = {s-type(J ) | J ∈ W} we define satisfaction of an axiom from
CK(P) in (s,S) as follows:

(s,S) ||= C(a) iff JC, κSK(a) ∈ s

(s,S) ||= r(a, b) iff r(a, b) ∈ s

(s,S) ||= ¬r(a, b) iff ¬r(a, b) ∈ s

(s,S) ||= Kr(a, b) iff b ∈ κS(a, r)

(s,S) ||= ¬Kr(a, b) iff b /∈ κS(a, r)

(s,S) ||= K¬r(a, b) iff b ∈ κS(a,¬r)
(s,S) ||= ¬K¬r(a, b) iff b /∈ κS(a,¬r)
(s,S) ||= C v D iff C v D ∈ s.

(17)
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For an ALCOK-ground formula ψ build from assertions from CK(P) satisfaction in (s,S), de-
noted by (s,S) ||= ψ, is defined in the obvious way. Likewise, for a non-epistemic static type
s = s-type(I) of an interpretation I and an objective ground formula ψ over assertions from
Ĉ(P, cu), satisfaction of ψ in s, denoted by s |= ψ, is defined in the obvious way.

As a consequence of Lemma 54 we get that satisfaction in (I,W) and (s,S) coincide.

Lemma 55. Let 〈(I,W), ρ〉 be a reachable state in TP , s = s-type(I) and S = {s-type(J ) |
J ∈ W}, % ∈ CK(P) an axiom and ψ a ground formula over assertions from CK(P). It holds
that (I,W) ||= % iff (s,S) ||= % and (I,W) ||= ψ iff (s,S) ||= ψ.

Given the abstraction of an epistemic interpretation in terms of the static type of the external
world and the static types of all possible worlds we need to determine the abstraction of the
updated epistemic interpretation after an action was performed. As in [BZ13a] we use the
notion of a dynamic type of an interpretation. The dynamic type captures also the static types
of all possible updated interpretations and is defined as in [BZ13a] based on the set Ĉ(P, cu)
and the set of all literals given as follows:

Lit :={A(a),¬A(a) | (eff, sense) ∈ Σ, a ∈ Ind, ψ/(¬)A(x) ∈ eff} ∪
{r(a, b),¬r(a, b) | (eff, sense) ∈ Σ, a, b ∈ Ind, ψ/(¬)r(x, y) ∈ eff}.

Definition 56 (dynamic types). Let P be a program and I an interpretation. The dynamic
type of I w.r.t. Ĉ(P, cu) is defined as follows:

d-type(I) := {(%, L) ∈ Ĉ(P, cu)× 2Lit | IL |= %}.

N

Thus, a dynamic type d of an interpretation is a set d ⊆ Ĉ(P, cu) × 2Lit such that for each
% ∈ Ĉ(P, cu) and each L ∈ 2Lit it holds that either (%, L) ∈ d or (¬%, L) ∈ d.

Let d = d-type(I) be the dynamic type of an interpretation I and L ∈ 2Lit a set of literals. The
static type of (d, L) is defined by

s-type(d, L) := {% | (%, L) ∈ d}.

Obviously, it holds that

s-type(d-type(I), L) = s-type(IL) (18)

for any interpretation I and L ∈ 2Lit .

The set of all dynamic types w.r.t. Ĉ(P, cu) is denoted by

D = {d-type(I) | I ∈ M(K)}.

Let W be a knowledge state reachable in TP . For each J ∈ W there exists I ∈ M(K) and
L ∈ 2Lit such that J = IL. For the construction of the finite abstract transition system we
use the pair (d-type(I), L) as abstraction of J , where L are the current accumulated physical
effects and d-type(I) already encodes the static types of all future evolutions of I. Thus, the
abstraction of an epistemic interpretation (I,W) occurring in a state of TP is a pair (t,T) with
T ⊆ D× 2Lit and t ∈ T. We define a simulation relation between (I,W) and (t,T).

Definition 57. Let P = (K,Σ, δ) be a program, D the set of all dynamic types w.r.t. Ĉ(P, cu)
and Lit as defined above. Let (I,W) be an epistemic interpretation and (t,T) a pair with
T ⊆ D× 2Lit and t ∈ T. It holds that (I,W) ' (t,T) iff the following conditions are satisfied:
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1. There exists I0 ∈M(K) and L ∈ 2Lit such that t = (d-type(I0), L) and I = I0
L.

2. For each J ∈ W there exists J0 ∈ M(K) and L ∈ 2Lit such that J = J0
L and

(d-type(J0), L) ∈ T.

3. For each (d, L) ∈ T there exists J0 ∈M(K) such that d = d-type(J0) and J0
L ∈ W .

N

Next, we lift the transition relation on epistemic interpretations induced by a primitive ground
action to the abstract level of types. Let t, t′ ∈ D× 2Lit and α = (eff, sense) ∈ Σg. We define

Ê(eff, t) := {γ | ψ/γ ∈ eff, s-type(t) |= ψ}.

And it holds that t and t′ are sensing compatible w.r.t. α, written as t ∼̂α t′, iff for all ψ ∈ sense
it holds that s-type(t) |= ψ iff s-type(t′) |= ψ. Let T,T′ ⊆ D× 2Lit with t = (d, L). It holds that
(t,T) =⇒α (t′,T′) iff the following conditions are satisfied:

• t′ = (d, L \ ¬L′ ∪ L′) with L′ = Ê(eff, t) and

• T′ = {(d′, L \ ¬L′ ∪ L′) | (d′, L) ∈ T, t ∼̂α (d′, L), L′ = Ê(eff, (d′, L))}.

We show that executing actions preserves the simulation relation.

Lemma 58. Let 〈(I0,W0), ρ〉 be a reachable state in TP , D the set of all dynamic types w.r.t.
Ĉ(P, cu), T0 ⊆ D × 2Lit , t0 ∈ T0 such that (I0,W0) ' (t0,T0) and α = (eff, sense) ∈ Σg. For
(I1,W1) and (t1,T1) with (I0,W0) =⇒α (I1,W1) and (t0,T0) =⇒α (t1,T1), respectively, it
holds that (I1,W1) ' (t1,T1).

Proof. (I0,W0) ' (t0,T0) implies that there exists I ∈ M(K) and L ∈ 2Lit such that I0 = IL

and t0 = (d-type(I), L). It follows that s-type(I0) = s-type(t0) with (18). Let ψ/γ ∈ eff. By
definition ψ is a boolean combination of objective assertions from Ĉ(P, cu). Using Lemma 55 it
follows that I0 |= ψ iff s-type(I0) |= ψ iff s-type(t0) |= ψ. It follows that E(I0, eff) = Ê(t0, eff).
By definition of the transition relation and with t0 = (d-type(I), L) we have

t1 = (d-type(I), L \ ¬Ê(t0, eff) ∪ Ê(t0, eff))

and with Lemma 2

I1 = I0
E(I0,eff) = ILE(I0,eff)

= IL\¬E(I0,eff)∪E(I0,eff).

Therefore, I1 and t1 satisfy the first condition of '.

Next, we show that the second condition is also satisfied. Let J1 ∈ W1. There exists J0 ∈
W0 with I0 ∼α J0 and J1 = J0

E(J0,eff). Since by assumption (I0,W0) ' (t0,T0), there
is J ∈ M(K) and L ∈ 2Lit such that J0 = J L and (d-type(J ), L) ∈ T0. It follows that
s-type(J0) = s-type(d-type(J ), L). Let ψ ∈ sense. By definition ψ is a boolean combination of
objective assertions from Ĉ(P, cu). It follows that s-type(t0) |= ψ

iff s-type(I0) |= ψ (since s-type(I0) = s-type(t0))

iff I0 |= ψ

iff J0 |= ψ (since I0 ∼α J0)
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iff s-type(d-type(J ), L) |= ψ. (since s-type(J0) = s-type(d-type(J ), L))

It follows that t0 ∼̂α (d-type(J ), L). Let L′ := Ê((d-type(J ), L), eff). By definition of the
transition relation it holds that

(d-type(J ), L \ ¬L′ ∪ L′) ∈ T1.

From s-type(J0) = s-type(d-type(J ), L) it follows that E(J0, eff) = L′. We obtain

J1 = J0
E(J0,eff) = J LE(J0,eff)

=
(
J L
)L′

= J L\¬L′∪L′ .

Therefore, the second condition of ' is satisfied. The proof the third condition works using the
same arguments in the other direction.

Now we are ready to define the abstract transition system.

In the finite abstract transition system of a restricted program P = (K,Σ, δ) a state is of the
form 〈(t,T), ρ〉 with T ⊆ D× 2Lit , t ∈ T and ρ ∈ subg(δ).

Furthermore, we define executability of an atomic program a ∈ head(ρ) in a state 〈(t,T), ρ〉. Let
s = s-type(t) and S = {s-type(t′) | t′ ∈ T}. a ∈ head(ρ) is executable in 〈(t,T), ρ〉 iff

• a is a primitive action or

• a is a test of the form ψ? and (s,S) ||= ψ or

• a is of the form pick(~x) : ψ? and there exists a variable mapping ν with ν(x) ∈ Ind for all
x ∈ Var(ψ) such that (s,S) ||= ψν .

The state 〈(t,T), ρ〉 is called failure state iff no atomic program in head(ρ) is executable.

Definition 59 (abstract transition system). Let P = (K,Σ, δ) be a restricted program and
D the set of all dynamic types w.r.t. Ĉ(P, cu). The abstract transition system T̂P = (Q̂,�, Î)
induced by P consists of the set of states

Q̂ := {〈(t,T), ρ〉 | T ⊆ D× 2Lit , t ∈ T, ρ ∈ subg(δ)},

a set of initial state Î ⊆ Q̂ given by

Î := {〈(t,D× {∅}), δ〉 | t ∈ D× {∅}}

and a labeled transition relation on Q̂ that is defined as follows: Let 〈(t,T), ρ〉 ∈ Q̂ and
〈(t′,T′), ρ′〉 ∈ Q̂ be two states and s = s-type(t) and S = {s-type(t′′) | t′′ ∈ T}. It holds
that

〈(t,T), ρ〉
a
� 〈(t′,T′), ρ′〉

iff one of the following conditions is satisfied:

1. a ∈ head(ρ), a ∈ Σg such that a 6= f, (t,T) =⇒a (t′,T′) and ρ′ ∈ tail(a, ρ).

2. a ∈ head(ρ), a is a test of the form ψ?, (s,S) ||= ψ, (t′,T′) = (t,T) and ρ′ ∈ tail(ψ?, ρ).

3. a ∈ head(ρ), a is a pick of the form pick(~x) : ψ?, there exists a variable mapping ν
such that (s,S) ||= ψν and there exists ζ ∈ tail(pick(~x) : ψ?, ρ) such that ρ′ = ζν , and
(t′,T′) = (t,T).

4. 〈(t,T), ρ〉 is a failure state, a = f, (t,T) =⇒f (t′,T′) and ρ′ = ρ.
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N

We define a binary relation on the states of TP = (Q,→, I) and T̂P = (Q̂,�, Î). Let
〈(I,W), ρ〉 ∈ Q and 〈(t,T), ζ〉 ∈ Q̂. We write 〈(I,W), ρ〉 ./ 〈(t,T), ζ〉 iff (I,W) ' (t,T)
and ρ = ζ.

We proof the relation of the concrete transition system with the abstract one.

Lemma 60. Let 〈(I,W), ρ〉 and 〈(t,T), ρ〉 be two reachable states in TP and T̂P , respectively
such that 〈(I,W), ρ〉 ./ 〈(t,T), ρ〉.

1. If there is a transition 〈(I,W), ρ〉 a→ 〈(I ′,W ′), ρ′〉 in TP , then there is a transition
〈(t,T), ρ〉

a
� 〈(t′,T′), ρ′〉 in T̂P such that 〈(I ′,W ′), ρ′〉 ./ 〈(t′,T′), ρ′〉.

2. If there is a transition 〈(t,T), ρ〉
a
� 〈(t′,T′), ρ′〉 in T̂P , then there is a transition 〈(I,W), ρ〉 a→

〈(I ′,W ′), ρ′〉 in TP such that 〈(I ′,W ′), ρ′〉 ./ 〈(t′,T′), ρ′〉.

Proof. Assume that a ∈ Σg. With Lemma 58 it follows that (I ′,W ′) ' (t′,T′) with (I,W) =⇒a

(I ′,W ′) and (t,T) =⇒a (t′,T′). With ρ′ ∈ tail(a, ρ) it follows that 〈(I ′,W ′), ρ′〉 ./ 〈(t′,T′), ρ′〉
with 〈(I,W), ρ〉 a→ 〈(I ′,W ′), ρ′〉 and 〈(t,T), ρ〉

a
� 〈(t′,T′), ρ′〉.

Now, assume that a ∈ head(ρ) is a test or a guarded pick. By assumption it holds that
(I,W) ' (t,T). It follows that

s := s-type(I) = s-type(t) and S := {s-type(J ) | J ∈ W} = {s-type(̂t) | t̂ ∈ T}. (19)

Lemma 48 implies that all individuals occurring in a are contained in Ind. Assume that a = ψ?
is a test. We know that ψ is a formula built from assertions contained in CK(P). Lemma 55
and (19) implies that a is executable in 〈(I,W), ρ〉 iff it is executable in 〈(t,T), ρ〉.

Assume that a = pick(~x) : ψ? is a guarded pick. It holds that a is executable in 〈(I,W), ρ〉

iff there exists a variable mapping ν such that (I,W) ||= ψν

iff there exists a variable mapping ν such that ν(x) ∈ Ind for all x ∈ Var(ψ) and (I,W) ||= ψν

(by Lemma 48)

iff there exists a variable mapping ν such that ν(x) ∈ Ind for all x ∈ Var(ψ) and (s,S) ||= ψν

(by Lemma 55 and (19))

iff a is executable in 〈(t,T), ρ〉.

Thus, it follows that a ∈ head(ρ) is executable in 〈(t,T), ρ〉 iff it is executable in 〈(I,W), ρ〉.
Consequently, it also follows that 〈(t,T), ρ〉 is a failure state iff 〈(I,W), ρ〉 is one. It easy to see
that if a test or guarded pick is executed in 〈(I,W), ρ〉 and in 〈(t,T), ρ〉 with the same variable
mapping, then the resulting states are also in ./-relation.

We now lift the ./-relation to runs as follows: Let π be a run in TP of the form

π = 〈(I0,W0), δ0〉
a0→ 〈(I1,W1), δ1〉

a1→ 〈(I2,W2), δ2〉
a2→ · · ·

and π̂ an infinite path in T̂P starting in an initial state of the form

π̂ = 〈(t0,T0), ρ0〉
a0

� 〈(t1,T1), ρ1〉
a1

� 〈(t2,T2), ρ2〉
a2

� · · ·

We write π ./ π̂ iff for all i = 0, 1, 2, . . . it holds that 〈(Ii,Wi), δi〉 ./ 〈(ti,Ti), ρi〉.
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Lemma 61. Let TP be the transition system of a restricted program P = (K,Σ, δ) and T̂P the
corresponding abstract transition system. For each run π in TP there exists an infinite path π̂
in T̂P starting in an initial state such that π ./ π̂ and for each infinite path π̂′ in T̂P starting
in an initial state there exists a run π′ in TP such that π′ ./ π̂′.

Proof. Let π = s0s1s2 · · · be a run in TP = (Q,→, I) such that si = 〈(Ii,Wi), δi〉 and si
ai→ si+1

for all i ∈ N. We inductively define a corresponding path π̂ = ŝ0ŝ1ŝ2 · · · in T̂P = (Q̂,�, Î) such
that ŝ0 ∈ Î, ŝi

ai
� ŝi+1 and si ./ ŝi for all i ∈ N.

It holds that W0 = M(K) and δ0 = δ. We define ŝ0 := 〈(t0,T0), δ〉 with t0 = (d-type(I0), ∅)
and T0 = D× {∅}. Clearly, ŝ0 ∈ Î and s0 ./ ŝ0.

Let n > 0 and assume that states ŝ0ŝ1 · · · ŝn are already defined such that for all j = 0, . . . , n−1

it holds that ŝj
aj
� ŝj+1 and sj ./ ŝj and sn ./ ŝn. By assumption there is a transition sn

an→ sn+1

in the concrete transition system and it holds that sn ./ ŝn. Lemma 60 now implies that we
can choose a state ŝn+1 ∈ Q̂ such that ŝn

an
� ŝn+1 and sn+1 ./ ŝn+1.

For the other direction consider a path in T̂P = (Q̂,�, Î) starting in an initial state of the form
π̂ = ŝ0ŝ1ŝ2 · · · with ŝi = 〈(ti,Ti), δi〉 and ŝi

ai
� ŝi+1 for all i ∈ N and ŝ0 ∈ Î. As before, we

inductively define a run π = s0s1s2 · · · in TP = (Q,→, I) such that π ./ π̂.

It holds that ŝ0 = 〈(t0,T0), δ〉 with T0 = D × {∅} where D is the set of all dynamic types
w.r.t. Ĉ(P, cu) and t0 = (d-type(I0), ∅) for some I0 ∈ M(K). We define s0 := 〈(I0,M(K)), δ〉.
Obviously, s0 ∈ I and s0 ./ ŝ0.

Let n > 0 and assume that states s0s1 · · · sn are already defined such that for all j = 0, . . . , n−1

it holds that sj
aj→ sj+1, sj ./ ŝj and sn ./ ŝn. Consider the transition ŝn

an
� ŝn+1 in π̂. Since

sn ./ ŝn and Lemma 60 holds, we can choose a state sn+1 ∈ Q such that sn
an→ sn+1 and

sn+1 ./ ŝn+1.

Now, we can use the finite abstract transition system for model checking. We first build the
propositional abstraction of the ALCOK-LTL formula Φ that we want to verify in P. We
introduce for each axiom in the context CK(P) an atomic proposition. Let

AP := {p% | % ∈ CK(P)}.

be the finite set of all relevant atomic propositions. For convenience we assume that all axioms in
Φ are taken from CK(P). The propositional abstraction of Φ, denoted by Φ̂, is a propositional
LTL-formula that is obtained from Φ by replacing each axiom % in Φ by the corresponding
atomic proposition p%. The semantics of LTL is defined in terms of a propositional LTL-
structure which is an infinite sequence of the form L = X0X1X2 . . . with Xi ∈ 2AP for all
i = 0, 1, 2, . . . Satisfaction of an LTL-formula in an LTL-structure L at a given time point is
defined in the usual way.

We introduce a labeling function LAP : Q̂→ 2AP for the abstract states defined as follows: Let
ŝ = 〈(t,T), ρ〉 ∈ Q̂ be a state in T̂P = (Q̂,�, Î) and s := s-type(t) and S := {s-type(t′) | t′ ∈ T}.

LAP(ŝ) := {p% ∈ AP | (s,S) ||= %}.

The propositional LTL-structure for an infinite path π̂ = ŝ0ŝ1ŝ2 · · · in T̂P with ŝ0 ∈ Î is given
as follows:

L(π̂) = LAP(ŝ0)LAP(ŝ1)LAP(ŝ2) · · ·
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Lemma 62. Let P be a restricted program, Φ an ALCOK-LTL formula over axioms in CK(P),
π a run in TP and π̂ an infinite path in T̂P such that π ./ π̂. For all time points i ∈ N it holds
that I(π), i |= Φ iff L(π̂), i |= Φ̂.

Proof. The claim is shown by induction over the structure of Φ. Let π = s0s1s2 · · · with
si = 〈(Ii,Wi), δi〉, π̂ = ŝ0ŝ1ŝ2 · · · with ŝi = 〈(ti,Ti), δi〉 and si ./ ŝi for all i = 0, 1, 2, . . .

Φ = %: We have % ∈ CK(P). Let i be a time point. It holds that I(π), i |= %

iff (Ii,Wi) ||= %

iff (si,Si) ||= % with si = s-type(Ii) and Si = {s-type(J ) | J ∈ Wi}. (by Lemma 55)

iff (s′i,S
′
i) ||= % with s′i = s-type(ti) and S′i = {s-type(t′) | t′ ∈ Ti} since si ./ ŝi implies

(Ii,Wi) ' (ti,Ti) which implies si = s′i and Si = S′i.

iff p% ∈ LAP(〈(ti,Ti), δi〉)
iff L(π̂), i |= p%.

Φ = ¬Φ′: By induction we assume that I(π), j |= Φ′ iff L(π̂), j |= Φ̂′ for all j = 0, 1, 2, . . .

Therefore, I(π), i |= ¬Φ′ iff I(π), i 6|= Φ′ iff L(π̂), i 6|= Φ̂′ iff L(π̂), i |= ¬̂Φ′.

Φ = Φ1 ∧ Φ2: By induction we assume that I(π), j |= Φz iff L(π̂), j |= Φ̂z for all j = 0, 1, 2, . . .
and z ∈ {0, 1}.

Therefore I(π), i |= Φ1 ∧ Φ2 iff L(π̂), i |= Φ̂1 ∧ Φ2.

Φ = XΦ′: By induction we assume that I(π), j |= Φ′ iff L(π̂), j |= Φ̂′ for all j = 0, 1, 2, . . .

Therefore, I(π), i |= XΦ′ iff I(π), i+ 1 |= Φ′ iff L(π̂), i+ 1 |= Φ̂′ iff L(π̂), i |= X̂Φ′.

Φ = Φ1 U Φ2: By induction we assume that I(π), n |= Φz iff L(π̂), n |= Φ̂z for all n = 0, 1, 2, . . .
and z ∈ {0, 1}.
Therefore, I(π), i |= Φ1 U Φ2 iff ∃k ≥ i : I(π), k |= Φ2 and ∀j, i ≤ j < k : I(π), j |= Φ1 iff
∃k ≥ i : L(π̂), k |= Φ̂2 and ∀j, i ≤ j < k : L(π̂), j |= Φ̂1 iff L(π̂), i |= Φ̂1 U Φ2.

From Lemma 61 and 62 it follows that the verification problem for a restricted program P
and an ALCOK-LTL formula Φ reduces to a propositional LTL model checking problem for T̂P
and Φ̂. To decide the verification problem we need to construct T̂P . The essential part is to
compute the set of all dynamic types w.r.t. Ĉ(P, cu) denoted by D. The objective axioms of the
knowledge closure contained in Ĉ(P, cu) can be obtained from CK(P). To compute D we first
enumerate all finitely many sets d ⊆ Ĉ(P, cu) × 2Lit such that for each % ∈ Ĉ(P, cu) and each
L ∈ 2Lit either (%, L) ∈ d or (¬%, L) ∈ d. Then we need to check for each such set d whether
a model I ∈ M(K) exists such that d = d-type(I). For this type checking task we use the
same idea as for solving the projection problem. For a given complete set d ⊆ Ĉ(P, cu) × 2Lit

we construct a knowledge base Kd
red such that Kd

red has a model iff d = d-type(I) for some
I ∈ M(K). Let I ∈ M(K) and 2Lit = {L0, . . . , Lm}. The idea of constructing Kd

red is to encode
the set of models {IL0 , IL1 , . . . , ILm} into a single model of Kd

red. However, we first need to deal
with the negated ALC-CIs of the form ¬(C v D) contained in CK(P). We introduce additional
concept assertions as witnesses for a violation of a CI.

Let G ⊆ Ĉ(P, cu) be the set of all CIs contained in CK(P). Let G := {C0 v D0, . . . , Cn v Dn}
and 2Lit = {L0, . . . , Lm}, we choose a finite set of anonymous individuals W ⊆ ∆ \ (Ind ∪ {cu})
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such that for each Ci v Di ∈ G and each Lj ∈ 2Lit with i = 0, . . . , n and j = 0, . . . ,m there
exists a distinct individual ci,j ∈W. The additional assertions are defined as follows

G¬ := {(C u ¬D)(c) | C v D ∈ G, c ∈ Ind ∪ {cu} ∪W}.

In the following lemma we show that we can rename an interpretation without changing its
dynamic type w.r.t. Ĉ(P, cu) such that if a CI C v D is violated then a corresponding assertion
(C u ¬D)(c) from G¬ is satisfied.

Lemma 63. For every I ∈ M(K) there exists a J ∈M(K) such that it holds that

d-type(I) = d-type(J )

for the dynamic types w.r.t. Ĉ(P, cu) and for all C v D ∈ G and all L ∈ 2Lit it holds that if
(¬(C v D), L) ∈ d-type(I), then there exists c ∈ Ind ∪W such that J L |= (C u ¬D)(c).

Proof. Let I ∈ M(K). For each Ci v Di ∈ G and each Lj ∈ 2Lit such that (¬(Ci v Di), Lj) ∈
d-type(I) we choose exactly one domain element di,j ∈ ∆ with di,j ∈ (Ci u ¬Di)

ILj . Let V be
the set of all chosen di,j ’s. It holds that |V | ≤ |G| · |2Lit |.

Let ι̂ : V → Ind ∪ {cu} ∪W be a total injective function assigning to each element d ∈ V an
element ι̂(d) ∈ Ind ∪ {cu} ∪W such that ι̂(d) = d if d ∈ Ind ∪ {cu} and ι̂(d) /∈ Ind ∪ {cu} if
d /∈ Ind ∪ {cu} for all d ∈ V . Now, let ι : ∆ → ∆ be a bijection such that ι(a) = a for all
a ∈ Ind ∪ {cu} and ι(d) = ι̂(d) for all d ∈ V . Clearly, such functions ι̂ and ι exist.

Let J := ι(I) be the renaming of I w.r.t. ι according to Definition 19. Since ι(a) = a for all
a ∈ Ind∪{cu}, it is easy to see that Proposition 20 yields J ∈M(K) and d-type(I) = d-type(J ).

Let (¬(C v D), L) ∈ d-type(I) = d-type(J ). There exists an element d ∈ V such that d ∈ (C u
¬D)I

L

and consequently ι(d) ∈ (Cu¬D)J
L

. By construction we have ι(d) ∈ Ind∪W. Therefore,
there exists an assertion of the form (C u ¬D)(c) ∈ G¬ such that J L |= (C u ¬D)(c).

A set d ⊆ (Ĉ(P, cu)∪G¬∪¬G¬)×2Lit is called admissible if the following conditions are satisfied:

1. (%, L) ∈ d iff (¬%, L) /∈ d for all % ∈ Ĉ(P, cu) ∪ G¬ ∪ ¬G¬ and all L ∈ 2Lit (with ¬¬% := %);

2. If (¬(C v D), L) ∈ d for some C v D ∈ G and L ∈ 2Lit , then there exists c ∈ Ind∪{cu}∪W
such that ((C u ¬D)(c), L) ∈ d.

With the second condition we achieve that the negated CIs can be omitted for the construction
of Kd

red. Given P = (K,Σ, δ) with K = (T ,A) and an admissible subset d of (Ĉ(P, cu) ∪
G¬ ∪ ¬G¬)× 2Lit we are now ready to define Kd

red: For each concept name A and role name r
occurring in Ĉ(P, cu) and each L ∈ 2Lit we introduce copies A(L) and r(L). For each subconcept
C occurring in Ĉ(P, cu) and each L ∈ 2Lit we have a new name T (L)

C . The TBox Tsub contains
a definition for all new names T (L)

C according to Figure 5 but where i is replaced by L and
0 by ∅. For ABox assertions and L ∈ 2Lit we define the abbreviations (C(a))(L) := T

(L)
C (a),

(r(a, b))(L) := r(L)(a, b) and (¬r(a, b))(L) := ¬r(L)(a, b). The reduction TBox T d
red is defined as

follows:
T d
red := Tsub∪

{T (∅)
C v T (∅)

D | C v D ∈ T }∪

{T (L)
C v T (L)

D | (C v D, L) ∈ d}∪

{N ≡
⊔

a∈Ind∪{cu}∪W

}
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The reduction ABox consists of the following components: First we consider the initial ABox

Aini := {ϕ(∅) | ϕ ∈ A}.

For each L ∈ 2Lit we have A(L) := {γ(L) | γ ∈ L} and A(L)
min consists of the following assertions:

• for each a ∈ Ind∪{cu}∪W and each concept name A occurring in the input with ¬A(a) /∈ L:
(A(∅) → A(L))(a) and if A(a) /∈ L: (¬A(∅) → ¬A(L))(a).

• for each pair of named elements a, b ∈ Ind∪{cu}∪W and every role name r with ¬r(a, b) /∈
L: (∃r(∅).{b} → ∃r(L).{b})(a) and if r(a, b) /∈ L: (∀r(∅).¬{b} → ∀r(L).¬{b})(a).

The ABox Ad contains for each pair (ϕ, L) ∈ d where ϕ is an ABox assertion an assertion ϕ(L).
Putting everything together we get

Ad
red := Aini ∪ Ad ∪ A(L0)

min ∪ · · · ∪ A
(Lm)
min ∪ A

(L0) ∪ · · · ∪ A(Lm)

and Kd
red = (T d

red,Ad
red).

Lemma 64. Let d be an admissible subset of (Ĉ(P, cu) ∪ G¬ ∪ ¬G¬) × 2Lit . There exists
I ∈ M(K) such that d \ (G¬ ∪ ¬G¬)× 2Lit = d-type(I) iff Kd

red is consistent.

Proof. The claim follows from Lemma 63 and from the construction of Kd
red.

The set of all dynamic types D w.r.t. Ĉ(P, cu) can be computed by enumerating all admissible
subsets of (Ĉ(P, cu)∪G¬∪¬G¬)×2Lit , constructing the ALCO-KB Kd

red for each admissible set
d and then checking whether Kd

red is consistent. The size of the set (Ĉ(P, cu)∪G¬∪¬G¬)×2Lit

is exponential in the size of P = (K,Σ, δ). Thus, there are at most 2-exponentially many
dynamic types and at most 3-exponentially many states in the abstract transition system T̂P .
To decide whether a ALCOK-LTL formula Φ is satisfiable in P we need to check whether there
is an infinite path in T̂P starting in an initial state such that the corresponding LTL-structure
satisfies Φ̂. This can be done using standard automata-based LTL model checking techniques.

Theorem 65. Let P = (K,Σ, δ) be a restricted ALCOK-Golog program and Φ an ALCOK-LTL
formula. The problem whether Φ is satisfiable in P or not is decidable in 2ExpSpace.

Proof. Let P = (K,Σ, δ). We assume w.l.o.g. that all axioms in Φ are contained in CK(P).

We first sketch the main steps of the decision procedure. We construct T̂P = (Q̂,�, Î) and
the propositional abstraction Φ̂ of Φ. We need to deal with infinite words over the alphabet
consisting of all subsets of AP = {p% | % ∈ CK(P)}. Let B be a (generalized) Büchi automaton
over the alphabet 2AP. The language accepted by B is define as follows:

L(B) := {w ∈
(
2AP
)ω | B has an accepting run on w}.

Likewise for a given propositional LTL-formula φ over AP the language L(φ) ⊆
(
2AP
)ω denotes

the set of all LTL-structures L such that L, 0 |= φ. For the formula Φ̂ a Büchi automaton BΦ̂

can be constructed such that L(Φ̂) = L(BΦ̂). Now consider the following language

L(T̂P) := {L(π̂) | π̂ = ŝ0ŝ1ŝ2 · · · is an infinite path in T̂P , ŝ0 ∈ Î}.

We can show the following claim.
Claim I. It holds that L(T̂P) ∩ L(BΦ̂) 6= ∅ iff Φ is satisfiable in P.
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Proof. Assume L(T̂P) ∩ L(BΦ̂) 6= ∅. There exists w ∈ L(T̂P) ∩ L(BΦ̂) and an infinite path
π̂ = ŝ0ŝ1ŝ2 · · · in T̂P such that L(π̂) = w and L(π̂), 0 |= Φ̂ (since L(Φ̂) = L(BΦ̂)). By Lemma
61 there exists a run π in TP such that π ./ π̂. From Lemma 62 and L(π̂), 0 |= Φ̂ it follows that
I(π), 0 |= Φ. Therefore Φ is satisfiable in TP .

Assume Φ is satisfiable in P. There exists a run π in TP such that I(π), 0 |= Φ. By Lemma 61
there exists an infinite path π̂ in T̂P starting in an initial state such that π ./ π̂. With Lemma
62 I(π), 0 |= Φ we get L(π̂), 0 |= Φ̂. Therefore L(π̂) ∈ L(T̂P) ∩ L(BΦ̂).

Checking whether L(T̂P)∩L(BΦ̂) is empty can be done by performing an emptiness test on the
product Büchi automaton T̂P × BΦ̂. We show that a non-deterministic algorithm for this test
exists that uses double exponential space in the size of P and Φ.

First we compute the set (Ĉ(P, cu) ∪ G¬ ∪ ¬G¬) × 2Lit that can be done in exponential time
and space in the size of P (by Lemma 52). All 2-exponentially many admissible subsets of
(Ĉ(P, cu)∪G¬∪¬G¬)×2Lit can be enumerated in double exponential space. For each admissible
set d the KB Kd

red can be constructed in polynomial time and space in the size of d and K.
Since the size of d is exponential in the size of the input, the size of Kd

red is also exponential
in the size of the input. Consistency of ALCO-KBs is in ExpTime. Therefore the consistency
checks of the KBs Kd

red can be done in 2ExpTime and thus in 2ExpSpace. Consequently, the
set of all dynamic types D can be computed and stored in double exponential time and space,
respectively. From Lemma 39 we know that there are at most polynomially many reachable
subprograms of δ in the size of δ. Thus also subg(δ) contains only polynomially many elements.
For a state 〈(t,T), ρ〉 ∈ Q̂ in the abstract transition system it holds that t ∈ D×2Lit , T ⊆ D×2Lit

and ρ ∈ subg(δ). It follows that

|Q̂| ≤ |D× 2Lit | · 2|D×2Lit | · |subg(δ)|,

i.e. there are at most 3-exponentially many states in the size of P in T̂P . Given a state of the
form 〈(t,T), ρ〉 the labeling LAP(〈(t,T), ρ〉) can be computed in linear time and space in the size
of 〈(t,T), ρ〉. Given a ∈ head(ρ), executability and the successor state can be computed also in
linear time and space in the size of 〈(t,T), ρ〉.

Let S be the set of states of BΦ̂. BΦ̂ can be constructed such that |S| ≤ 2|Φ̂| · |Φ̂|.

We now proceed in the standard way of checking emptiness of the language accepted by T̂P×BΦ̂:
We guess an infinite periodic accepting path in the product of the form

u0 . . . un−1(un . . . un+m)ω

such that n ≤ |Q̂| · |S| and m ≤ |Q̂| · |S|.

First, we guess the two numbers n andm encoded in binary. They can be stored in 2-exponential
space. Then we guess step by step the infinite path until the bounds n and m are reached where
we do not need to keep the whole path in memory but only the current state and the previous
one. As mentioned above the labeling of a state in T̂P and the representation of a successor
state can be computed in 2ExpSpace. This way we obtain a non-deterministic algorithm that
uses at most 2-exponential space.

An ExpSpace lower bound for the verification problem can be obtained by reducing the plan
existence problem with conditional propositional actions which is ExpSpace-hard [Rin04]. The
exact complexity of the problem remains open.
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5 Related Work

So far, little work has been done on decidable verification of knowledge-based programs. De Gi-
acomo, Lespérance and Patrizi [DLP13] present a class of epistemic Situation Calculus action
theories for which they show decidability of µ-calculus properties, however they do not con-
sider Golog and rely on a purely semantical definition of this class. On the propositional level,
Lang and Zanuttini [LZ12] have investigated the complexity of verifying post-conditions of
knowledge-based programs.

Finally, alternative approaches for reasoning about actions and programs using DLs were pro-
posed. The formalization presented in [CDGLR11] for example adopts Levesque’s functional
view on knowledge bases, where all interactions with the agent’s KB to happen through the two
operations ask (test evaluation) and tell (update after action execution). While this allows
for tractable solutions to the executability and projection problems for certain light-weight DLs,
this non-declarative representation makes no distinction between world-changing and sensing
actions as we do. Also, verification of temporal properties is not considered.

6 Conclusion

In this report, we introduced an action language for both physical and sensing actions based on
the epistemic DL ALCOK. We showed that under suitable restrictions, verifying LTL properties
over possibly epistemic ALCOK-axioms of knowledge-based Golog programs based on our action
language is decidable. The main idea to obtain decidability is to syntactically limit the domain
of the guarded pick operator to contain named objects only. Intuitively, under this restriction
the agent won’t be able to directly cope with unknown individuals. As seen in our running
example, the agent is able to recognize whether or not there is some unknown fault, but there
is no possibility to directly access it. We also showed that omitting any of the restrictions on
the guarded pick operator leads to undecidability.

Furthermore, we investigated the complexity of projection as the basic reasoning task for exe-
cuting knowledge-based programs. As future work, among other things, we want to investigate
whether the obtained upper complexity bound of the verification problem can be improved, or
it is actually tight.
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