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Abstract

Recently, a lot of research has combined description logics (DLs) of the
DL-Lite family with temporal formalisms. Such logics are proposed to be
used for situation recognition and temporalized ontology-based data ac-
cess. In this report, we consider DL-Lite-LTL, in which axioms formulated
in a member of the DL-Lite family are combined using the operators of
propositional linear-time temporal logic (LTL). We consider the satisfiabil-
ity problem of this logic in the presence of so-called rigid symbols whose
interpretation does not change over time. In contrast to more expressive
temporalized DLs, the computational complexity of this problem is the
same as for LTL, even w.r.t. rigid symbols.
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1 Introduction

Description logics (DLs) [BCM+07] are a well-investigated family of logic-based
knowledge representation formalisms. The combination of DLs with temporal
formalisms provides expressive power to represent dynamical aspects of the ap-
plication domain, e.g. the specification of a system that evolves over time. Various
temporalized DLs have been proposed in the literature (see [LWZ08] for a survey).
Recently, a lot of research has focused on combining members of the DL-Lite fam-
ily with temporal logics [AKL+07, AKRZ09, AKRZ10, AKWZ13, BLT13]. Logics
of the DL-Lite family are tailored towards conceptual modeling and ontology-
based data access [CDL+09, CDL+05]. Thus, such temporalized DLs and tem-
poral query languages are proposed to be used in context-aware applications and
for temporalized ontology-based data access.

In this report, we consider DL-Lite-LTL, which is a combination of DL-Lite with
propositional linear-time temporal logic (LTL) [Pnu77]. Instead of allowing tem-
poral operators to occur within the DL-Lite axioms, as it is done in various other
temporal extensions of DL-Lite, we follow the approach of [BGL12]. The lat-
ter paper introduces the temporalized DL ALC-LTL, whose formulae combine
axioms of the expressive DL ALC using the operators of LTL.

As an example of a DL-Lite-LTL formula, consider

Process(p1) ∧3(∃sendSignal−(p1) ∧ Terminated(p1)),

which expresses that p1 is a process that at some point receives a signal although
it has already been terminated. In the form of concept inclusions, we can also
incorporate terminological knowledge into our formulae. For example,

2(∃sendSignal v Process ∧ ∃sendSignal− v Process) ∧ . . .

expresses the restriction that only processes can send and receive signals. We are
interested here in the satisfiability of such formulae, i.e. in deciding whether the
described situation can actually happen.

Temporal languages are often augmented with so-called rigid symbols, which are
symbols whose interpretation does not change over time. For instance, in our
example above, it makes sense to designate Process as rigid, but sendSignal as not
rigid (flexible) to allow a process to send different signals at different points in
time.

In [BGL12], it is shown that the complexity of satisfiability in ALC-LTL increases
if rigid symbols are allowed. More precisely, it jumps from ExpTime-complete
(without rigid symbols) to NExpTime-complete in the presence of rigid concepts.
When rigid roles are considered in addition, the satisfiability problem is even
2-ExpTime-complete.
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We show in this report that for DL-Lite-LTL this does not apply: satisfiability
in DL-Lite-LTL (even with rigid roles) is PSpace-complete, and thus has the
same complexity as satisfiability in LTL. To show that, we roughly follow the
approach from [BGL12], where the satisfiability problem is split into two indepen-
dent problems—one for the temporal dimension and one for the DL dimension.
However, here we cannot treat both problems independently in order to obtain a
tight complexity result. Instead, we have to integrate the DL-Lite satisfiability
test into the PSpace decision procedure for LTL satisfiability [SC85].

2 Preliminaries

In this section, we define the syntax and semantics of DL-Lite-LTL. For the DL
part, we focus on DL-Litecore [ACKZ09], which is the core language of the DL-
Lite family. Throughout this report, let NC, NR, and NI be non-empty, pairwise
disjoint sets of concept, role, and individual names, respectively. We additionally
denote by N−R the set of all roles of the form R or R− with R ∈ NR.

Definition 2.1. Basic concepts B and (general) concepts C are built from con-
cept names A ∈ NC and roles R ∈ N−R according to the following syntax rules:

B ::= A | ∃R C ::= B | ¬B

A concept inclusion (CI) is of the form B v C, where B is a basic concept
and C is a general concept. An assertion is of the form B(a) or R(a, b), where
B is a basic concept, R ∈ NR, and a, b ∈ NI. A TBox is a finite set of concept
inclusions, and an ABox is a finite set of assertions and negated assertions of the
form ¬B(a) or ¬R(a, b). Together, a TBox T and an ABox A form an ontology
O = (T ,A).

We call both concept inclusions and assertions axioms. The notion of an ontol-
ogy as defined above extends the common definition of a DL-Litecore-ontology
by negated assertions. However, the additional expressivity does not affect the
complexity of reasoning in this logic [ACKZ09] (see also Section 3). For the sake
of brevity, we refer to this kind of ontology as DL-Lite-ontology.

We sometimes use the abbreviations R−(a, b) := R(b, a), (R−)− := R, and
¬(¬B(a)) := B(a) for R ∈ NR, a, b ∈ NI, and a basic concept B.

We now define the semantics of DL-Litecore.

Definition 2.2. An interpretation is a pair I = (∆I , ·I), where ∆I is a non-
empty set (called domain) and ·I is a function that assigns to every A ∈ NC a set
AI ⊆ ∆I, to every R ∈ NR a binary relation RI ⊆ ∆I ×∆I, and to every a ∈ NI
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an element aI ∈ ∆I. This function is extended as follows:

(R−)I := {(y, x) | (x, y) ∈ RI};
(∃R)I := {x | there is an y ∈ ∆I such that (x, y) ∈ RI}; and
(¬C)I := ∆I \ CI .

I is a model of a CI B v C if BI ⊆ CI, of a concept assertion A(a) if aI ∈ AI,
and of a role assertion R(a, b) if (aI , bI) ∈ RI. It is a model of a negated assertion
¬α iff it is not a model of α. Furthermore, I is a model of a set of axioms or
an ontology if it is a model of all axioms contained in it. For an axiom, set of
axioms, or ontology α, we write I |= α if I is a model of α. For a set of axioms
or an ontology O, we further write O |= α if every model of O is also a model
of α. An ontology is consistent if it has a model.

We assume that all models I of an axiom, a set of axioms, or an ontology α
satisfy the unique name assumption (UNA); that is, for all distinct individual
names a, b occurring in α, we have aI 6= bI .

In a temporal setting, it may be desirable that the interpretation of certain con-
cepts and roles does not change over time. Thus, in the following we consider a
set NRC ⊆ NC of rigid concept names and a set NRR ⊆ NR of rigid role names.
Correspondingly, we use N−RR to denote all rigid roles, i.e. roles built from rigid
role names. We call basic concepts, general concepts, and CIs rigid if they contain
only rigid symbols. Entities that are not rigid are called flexible.

We now define the syntax and semantics of DL-Lite-LTL. It differs from LTL in
that the propositional variables are replaced by DL-Litecore axioms.

Definition 2.3. DL-Lite-LTL formulae are defined by induction:

• Every axiom is a DL-Lite-LTL formula.

• If φ1 and φ2 are DL-Lite-LTL formulae, then so are φ1 ∧ φ2, ¬φ1, #φ1
(“next”), and φ1 Uφ2 (“until”).

As usual in LTL, we define φ1 ∨ φ2 := ¬(¬φ1 ∧ ¬φ2), true := A(a) ∨ ¬A(a) for
some a ∈ NI and A ∈ NC, 3φ1 := true Uφ1 (“eventually in the future”), and
2φ1 := ¬3¬φ1 (“always in the future”).

We denote by NI(φ) the set of all individual names that occur in a DL-Lite-LTL
formula φ, and similarly for NC, NRC, NR, NRR, N−R , and N−RR. Further, we use the
notation BC(φ) for the set of all basic concepts that can be built from NC(φ) and
N−R (φ), BC¬(φ) for the set BC(φ) extended by negation, BC¬R(φ) for the restriction
of BC¬(φ) to rigid concepts, and BCR(φ) := BC¬R(φ) ∩ BC(φ). We define the sets
NI(O), BC¬(O), etc. for a DL-Lite-ontology O in the same way.
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The semantics of DL-Lite-LTL is based on DL-Lite-LTL structures, which are
sequences of DL-Lite-interpretations over the same non-empty domain ∆, i.e. we
make the constant domain assumption, which is also made in [BGL12].
Definition 2.4. A DL-Lite-LTL structure is a sequence I = (Ii)i≥0 of interpreta-
tions Ii = (∆, ·Ii) that respect rigid names, i.e. we have xIi = xIj for all i, j ≥ 0
and x ∈ NRC ∪ NRR ∪ NI. A DL-Lite-LTL formula φ is valid in a DL-Lite-LTL
structure I = (Ii)i≥0 at a time point i ≥ 0 (written I, i |= φ) if the following
recursive conditions are satisfied:

I, i |= α iff Ii |= α for an axiom α
I, i |= φ1 ∧ φ2 iff I, i |= φ1 and I, i |= φ2
I, i |= ¬φ1 iff not I, i |= φ1
I, i |= #φ1 iff I, i+ 1 |= φ1
I, i |= φ1 Uφ2 iff there is some k ≥ i such that I, k |= φ2

and I, j |= φ1 for all j, i ≤ j < k

As before, we additionally assume that every interpretation Ii in I satisfies the
UNA w.r.t. NI(φ). A DL-Lite-LTL formula φ is satisfiable iff there is such a
DL-Lite-LTL structure I with I, 0 |= φ, and it is valid if I, 0 |= φ holds for all
DL-Lite-LTL structures I.

In addition to the UNA, we assume that the interpretation of individual names
is rigid. This is a standard assumption in temporalized DLs [BGL12, GKWZ03,
WZ00].

In propositional LTL, satisfiability is defined in the same way, with the exception
that LTL-structures are sequences J = (wi)i≥0 of worlds wi that are sets of
propositional variables, and we have J, i |= p for a propositional variable p iff
p ∈ wi.

In this report, we show that the satisfiability problem for DL-Lite-LTL formulae
is PSpace-complete, and thus the same holds for validity. In our formalism, we
can also incorporate background knowledge in the form of temporal knowledge
bases K = (T , (Ai)0≤i≤n) that consist of a global TBox and a finite sequence of
ABoxes, as introduced in [BBL13, BLT13]. A DL-Lite-LTL structure I = (Ii)i≥0
is a model of K if Ii |= Ai for all i, 0 ≤ i ≤ n, and Ii |= T for all i ≥ 0. It is easy
to see that K can be encoded into a DL-Lite-LTL formula φK of size quadratic
in the size of K that is valid in exactly the models of K. Thus, the satisfiability
of a DL-Lite-LTL formula φ in a model of K is equivalent to the satisfiability of
φ ∧ φK, and similarly, φ is valid in all models of K iff ¬φK ∨ φ is valid.

3 Canonical Models Revisited

As a preliminary step to solving the satisfiability problem for arbitrary DL-Lite-
LTL formulae, we consider the special case of deciding the consistency of a DL-
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Lite-ontology. For this, it suffices to check whether the canonical interpretation
(similar to the one constructed in [KLT+10]) is a model of a given ontology. We
show that this is true even in the presence of negated assertions. The canonical in-
terpretation for a DL-Lite-ontology is constructed by introducing individuals cR,
R ∈ N−R , to witness relevant existential restrictions from the ontology.

Definition 3.1. Let O = (T ,A) be a DL-Lite-ontology, R,R′ ∈ N−R (O), and
a ∈ NI(A). We denote by a ; cR the fact that O |= ∃R(a). We further write
cR ; cR′ if T |= ∃R− v ∃R′ and R− 6= R′. The role R is called generat-
ing in O if there exist b ∈ NI(A) and R1, ..., Rn = R, Ri ∈ N−R (O), such that
b ; cR1 ; · · ·; cRn.

The canonical interpretation IO for O is defined as follows, for all a ∈ NI(A),
A ∈ NC, and R ∈ NR:

∆IO := NI(A) ∪ {cR | R ∈ N−R is generating in O},
aIO := a,

AIO := {a ∈ NI(A) | O |= A(a)} ∪ {cR ∈ ∆IO | T |= ∃R− v A}, and
RIO := {(a, b) | R(a, b) ∈ A} ∪ {(x, cR) | x ∈ ∆IO , x ; cR} ∪

{(cR− , x) | x ∈ ∆IO , x ; cR−}.

The above definition differs from that in [KLT+10] in that the latter restricts the
definition of a ; cR to those cases where the ABox A does not already contain
an assertion of the form R(a, b).

If O is inconsistent, then it is obvious that IO cannot be a model of O. The
converse of this statement is a little harder to show. Lemma 3.2 states an even
more general result that is needed later in the report.

Lemma 3.2. Let O = (T ,A) be a DL-Lite-ontology and A¬ a finite set of
negated assertions formulated over NC(O), N−R (O), and NI(O). If (T ,A∪A¬) is
consistent, then IO is a model of this ontology.

Proof. By the definition of IO, the latter is clearly a model of all positive asser-
tions in A. For the remaining axioms, we first prove the following claim:

For all B ∈ BC(O) and a ∈ NI(O), we have O |= B(a) iff a ∈ BIO . (1)

If B is a concept name, the definition of IO directly yields the claim. Otherwise,
B is of the form ∃R for some R ∈ N−R (O). By the definition of IO, we then have
a ∈ (∃R)IO iff either (i) R(a, b) ∈ A for some b ∈ NI(A), or (ii) a ; cR. But (i)
implies (ii) since if R(a, b) ∈ A, then a always has an R-successor. We conclude
that a ∈ (∃R)IO iff O |= ∃R(a), which completes the proof of (1).

Consider now any negated concept assertion ¬B(a) ∈ A∪A¬. Since the ontology
(T ,A ∪ A¬) is consistent, it has a model I that in particular satisfies aI /∈ BI .
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This implies that O 6|= B(a), and thus a /∈ BIO by (1), which shows IO |= ¬B(a).
Similarly, for every negated role assertion ¬R(a, b) ∈ A ∪ A¬ we know that
R(a, b) /∈ A by our assumption that (T ,A ∪ A¬) is consistent. The definition
of IO thus yields that (a, b) /∈ RIO .

It remains to show that IO is also a model of all CIs B v C in T . For any
a ∈ BIO ∩ NI(A), we obtain O |= B(a) from (1). Since O |= B v C, this implies
that O |= C(a), and thus a ∈ CIO , again by (1).

Consider now any unnamed domain element cR ∈ ∆IO where R is a generating
role in O. We first show the following:

For all B′ ∈ BC(O) with cR ∈ B′IO , we have T |= ∃R− v B′. (2)

If B′ is a concept name, then this follows directly from the definition of IO.
Otherwise, B′ is of the form ∃R′ for some R′ ∈ N−R (O). From cR ∈ (∃R′)IO , it
follows that either (i) cR ; cR′ , or (ii) R = R′− and x ; cR for some x ∈ ∆IO .
In case (i), we have T |= ∃R− v ∃R′ by definition. In case (ii), this inclusion is
trivial since we then have ∃R− = ∃R′. This completes the proof of (2).

If cR ∈ BIO , then from (2) and B v C ∈ T it follows that T |= ∃R− v C. To
conclude the proof, we show that this implies cR ∈ CIO .

• If C is a concept name, this follows directly from the definition of IO.

• If C is of the form ∃R′ for a role R′ ∈ N−R (O), we know from T |= ∃R− v ∃R′
and the fact that R is generating in O that R′ is also generating in O and
cR ; cR′ . Hence, we get (cR, cR′) ∈ R′IO and thus cR ∈ (∃R′)IO .

• If C = ¬B′ for a basic concept B′, assume by contradiction that cR ∈ B′IO .
By (2), we obtain T |= ∃R− v B′. But since we also have T |= ∃R− v ¬B′,
we conclude T |= ∃R− v ¬∃R−, i.e. ∃R− must be empty. But this contra-
dicts the fact that cR ∈ (∃R−)IO since R is generating in O.

Thus, negated assertions are irrelevant for the construction of the canonical
model, as long as they do not cause the ontology to become inconsistent.

4 Satisfiability in DL-Lite-LTL

We first show PSpace-hardness, which is a straightforward consequence of the
complexity of the satisfiability problem in propositional LTL.

Lemma 4.1. Satisfiability in DL-Lite-LTL is PSpace-hard even if no rigid
names are available.
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Proof. We reduce the satisfiability problem of propositional LTL formulae, which
is PSpace-complete [SC85]. Let ψ be a propositional LTL formula over the
propositional variables p1, . . . , pn. The formula φ is obtained from ψ by replacing
every propositional variable pi with Ai(a) for i, 1 ≤ i ≤ n, where a is an individual
name and A1, . . . , An are n distinct concept names. Obviously, φ is a DL-Lite-
LTL formula. It is easy to see that every propositional LTL structure satisfying ψ
induces a DL-Lite-LTL structure satisfying φ, and vice versa.

The proof of the upper bound follows the basic approach from [BGL12], but
additionally utilizes the characteristics of DL-Lite. In the following, let φ be a
DL-Lite-LTL formula to be tested for satisfiability. The propositional abstrac-
tion φp of φ is created by replacing each axiom by a propositional variable such
that there is a 1–1 relationship between the axioms α1, . . . , αn occurring in φ
and the propositional variables p1, . . . , pn used for the abstraction. In what fol-
lows, we assume that pi was used to replace αi for all i, 1 ≤ i ≤ n. For a
subset X ⊆ {p1, . . . , pn}, we denote by X its complement {p1, . . . , pn} \X.

We now consider sets of the form S ⊆ 2{p1,...,pn} that constrain the types of
interpretations allowed to occur in the model of φ. Every such set induces the
following LTL formula:

φp
S = φp ∧2

 ∨
X∈S

 ∧
p∈X

p ∧
∧
p∈X

¬p


If φ is satisfiable in a DL-Lite-LTL structure I = (Ii)i≥0, then there is a set
S ⊆ 2{p1,...,pn} such that φp

S is satisfiable in a propositional LTL structure. To see
this, for each i ≥ 0 we define

Xi := {pj | 1 ≤ j ≤ n, Ii |= αj}

and set S := {Xi | i ≥ 0}. We say that S is induced by the DL-Lite-LTL
structure I. The fact that I satisfies φ implies that its propositional abstraction
satisfies φp

S , where the propositional abstraction Ip = (wi)i≥0 of I is defined such
that wi contains pj iff Ii satisfies αj.

However, guessing such a set S and then testing whether the induced formula φp
S

is satisfiable is not sufficient for checking satisfiability of φ. It must also be
checked whether S can indeed be induced by some DL-Lite-LTL structure that
also respects the rigid concept and role names.

Assume for now that a set S = {X1, . . . , Xk} ⊆ 2{p1,...,pn} is given. We introduce
the set Nn

I := {aij | pj ∈ Xi, αj is a CI} of auxiliary individual names that do not
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occur in φ, and define the ontologies (Ti,Ai), 1 ≤ i ≤ k, where

Ti := {αj | pj ∈ Xi, αj is a CI} and
Ai := {αj | pj ∈ Xi, αj is an assertion} ∪

{¬αj | pj ∈ Xi, αj is an assertion} ∪
{B(aij),¬C(aij) | pj ∈ Xi, αj = B v C}.

Definition 4.2. A set S = {X1, . . . , Xk} ⊆ 2{p1,...,pn} is r-satisfiable if there are
interpretations J1, . . . ,Jk such that

• each Ji, 1 ≤ i ≤ k, is a model of (Ti,Ai); and

• they share the same domain and respect rigid names (cf. Definition 2.4).

The following basic reduction is similar to the one used in [BGL12, Lemma 4.3],
except for the introduction of the explicit counterexamples aij for the CIs that
should not be satisfied.

Lemma 4.3. The DL-Lite-LTL formula φ is satisfiable iff there is an r-satisfiable
set S = {X1, . . . , Xk} ⊆ 2{p1,...,pn} such that the propositional LTL formula φp

S is
satisfiable.

Proof. As described above, every DL-Lite-LTL structure I = (Ii)i≥0 satisfy-
ing φ induces a set S = {X1, . . . , Xk} such that φp

S is satisfiable. In this con-
struction, one can find a mapping ι : {1, . . . , k} → N such that the equality
Xi = {pj | 1 ≤ j ≤ n, Iι(i) |= αj} holds for all i between 1 and k. By assumption,
the interpretations Ji := Iι(i), 1 ≤ i ≤ k, have a common domain ∆, respect rigid
names, and satisfy the UNA w.r.t. NI(φ). Furthermore, by construction each Ji
already satisfies Ti and those elements of Ai induced by assertions αj. To satisfy
the remaining assertions in Ai (i.e. those involving the new names from Nn

I ), we
extend J1, . . . ,Jk simultaneously to new interpretations J ′1, . . . ,J ′k over a larger
domain.

Observe that for all aij ∈ Nn
I we have pj ∈ Xi, and hence Ji = Iι(i) 6|= αj by

the construction of ι above. Thus, there is a mapping f : Nn
I → ∆ such that

for all aij ∈ Nn
I with αj = B v C we have f(aij) ∈ BJi \ CJi . In other words,

each Ji already contains domain elements f(aij) required to refute the CIs αj for
which pj ∈ Xi. To ensure that the UNA remains satisfied for the new individual
names aij, we have to copy these domain elements. For convenience, we extend
the mapping f to ∆ by setting f(x) := x for all x ∈ ∆.

We define ∆′ := ∆ ∪ Nn
I as the common domain of the new interpretations

J ′1, . . . ,J ′k, where we assume that the new domain elements aij do not occur
in ∆. We define (ai′j )J ′i := ai

′
j for all ai′j ∈ Nn

I , and set aJ ′i := aJi for all other
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individual names a. For all concept names A and role names r, we set

AJ
′
i := {x ∈ ∆′ | f(x) ∈ AJi} and

rJ
′
i := {(x, y) ∈ ∆′ ×∆′ | (f(x), f(y)) ∈ rJi}.

It is easy to see that for all basic concepts B ∈ BC(φ) we have x ∈ BJ
′
i iff

f(x) ∈ BJi . Thus, each J ′i still satisfies the assertions of Ai not involving the new
names. Furthermore, all CIs in Ti remain satisfied since any counterexample in J ′i
would immediately yield a counterexample in Ji (observe that f is surjective).
Additionally, this construction ensures that the assertions involving Nn

I are now
satisfied. We thus obtain models J ′i of (Ti,Ai) that all share the same domain ∆′,
respect rigid names, and satisfy the UNA w.r.t. NI(φ) ∪ Nn

I ⊇ NI(Ai).

Conversely, assume that there are a set S = {X1, . . . , Xk} ⊆ 2{p1,...,pn} and inter-
pretations J1, . . . ,Jk sharing the same domain and respecting rigid names such
that each Ji is a model of (Ti,Ai) and φp

S is satisfiable. Then, there must be an
LTL structure J = (wi)i≥0 with J, 0 |= φp

S . By construction, there is a mapping
ι : N → {1, . . . , k} such that wi = Xι(i) holds for all i ≥ 0. We construct the
DL-Lite-LTL structure I = (Ii)i≥0 by setting Ii := Jι(i) for each i ≥ 0. These
interpretations have a common domain and respect rigid names. By construction,
each Ii satisfies the axioms specified by the propositional variables in Xι(i) = wi
and refutes the axioms corresponding to {p1, . . . , pn} \ wi. Since J, 0 |= φp, this
means that I, 0 |= φ (see Definition 2.4).

Obviously, we can guess a single set Xi ⊆ {p1, . . . , pn} within PSpace. However,
the propositional LTL formula φp

S is of size exponential in the size of φ. Thus,
a direct application of the PSpace decision procedure for satisfiability in propo-
sitional LTL would only yield an ExpSpace upper bound. Also, keeping S in
memory already requires exponential space. The latter problem is addressed in
the following by guessing polynomially many additional axioms that allow us to
separate the r-satisfiability test for S into independent consistency tests for each
(Ti,Ai).

Given three sets XI ⊆ NI, XC ⊆ NC, and XR ⊆ N−R , an ABox type ≈ for XI , XC ,
and XR is a subset of the closure under negation of

{A(a), R(a, b), (∃R)(a) | a, b ∈ XI , A ∈ XC , R ∈ XR},

with the property that for each of these assertions α we have α ∈ ≈ iff ¬α /∈ ≈.
The additional information we guess is divided in two parts:

• A binary relation SubR ⊆ BCR(φ) × BC¬R(φ) that specifies which rigid CIs
hold in the models of (Ti,Ai).
We denote by NR

I := {aB,C | B ∈ BCR(φ), C ∈ BC¬R(φ), (B,C) /∈ SubR} a
set of fresh individual names that will be used to ensure that certain rigid
CIs do not hold.
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• An ABox type for NI(φ)∪NR
I , NRC(φ), and N−RR(φ) that completely describes

the behavior of all named individuals on the relevant concepts and roles.

This is formalized in the following definition.
Definition 4.4. An ontology OR = (TR,AR) is called r-complete for φ if there are
a binary relation SubR ⊆ BCR(φ)×BC¬R(φ) and an ABox type ≈R for NI(φ)∪NR

I ,
NRC(φ), and N−RR(φ) such that

• TR := {B v C | (B,C) ∈ SubR} and

• AR is the union of {B(aB,C),¬C(aB,C) | aB,C ∈ NR
I } and ≈R.

The idea is that the additional information in OR is enough to test r-satisfiability
of S using independent consistency tests for OiR := (Ti ∪ TR,Ai ∪AR), 1 ≤ i ≤ k.
Lemma 4.5. If S is r-satisfiable, then there is an r-complete ontology OR for φ
such that all OiR, 1 ≤ i ≤ k, are consistent.

Proof. Let J1, . . . ,Jk be the interpretations that exist by the r-satisfiability of S.
We construct the r-complete ontology OR by defining

SubR := {(B,C) ∈ BCR(φ)× BC¬R(φ) | J1 |= B v C} and
≈R := {α | α ∈ Aφ, J1 |= α} ∪ {¬α | α ∈ Aφ, J1 6|= α},

where Aφ denotes the set of all assertions over NI(φ) ∪ NR
I , NRC(φ), and N−RR(φ).

Note that every rigid axiom is satisfied by J1 iff it is satisfied by J2, . . . ,Jk since
they agree on the interpretation of the rigid names. Using the same technique
as in the proof of Lemma 4.3 to copy the counterexamples for the rigid CIs that
do not hold, we can thus extend the interpretations Ji to models of the induced
ontologies OiR for all i, 1 ≤ i ≤ k.

In the remainder of this section, we prove the converse of this lemma. Let
OR = (TR,AR) be an r-complete ontology with a relation SubR and an ABox
type ≈R and Ii models of OiR for all i, 1 ≤ i ≤ k. By Lemma 3.2, we can assume
these to be the canonical models IOi

R
. To distinguish the unnamed elements, we

write cR,i for the element cR in the domain of IOi
R
.

Thus, the domain of each Ii = IOi
R
is ∆Ii = NI(φ) ∪ NR

I ∪∆Ii
u , where

∆Ii
u := {aij ∈ Nn

I } ∪ {cR,i | R ∈ N−R , R is generating in OiR}

contains the domain elements unique to this interpretation. Apart from the
unnamed domain elements, the domains also differ in the individual names aij
in Nn

I that were introduced to provide counterexamples for CIs αj with pj ∈ Xi.

The following is a first easy observation about the rigid CIs that hold in these
interpretations.
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Lemma 4.6. For all B ∈ BCR(φ), C ∈ BC¬R(φ), and 1 ≤ i ≤ k, we have
Ii |= B v C iff (B,C) ∈ SubR.

Proof. If (B,C) ∈ SubR, then B v C ∈ TR, and thus our assumption that
Ii |= TR yields Ii |= B v C. Conversely, if (B,C) /∈ SubR, then by Ii |= AR we
get aB,C ∈ BIi \ CIi , and thus aB,C is a counterexample to the rigid CI B v C
in Ii, which means that Ii 6|= B v C.

Consequently, a rigid CI either holds in all Ii, 1 ≤ i ≤ k, or in none of them.

We now construct the models Ji of (Ti,Ai) required for the r-satisfiability of S
by joining the domains of the interpretations Ii and ensuring that they in-
terpret all rigid names in the same way. We now use the common domain
∆ := NI(φ)∪NR

I ∪
⋃k
i=1 ∆Ii

u and define, for all i, 1 ≤ i ≤ k, the interpretations Ji
as follows:

• For all a ∈ NI(φ) ∪ NR
I ∪ Nn

I , we set aJi := a.

• For all rigid concept names A, we define AJi := ⋃k
j=1 A

Ij .

• For all flexible concept names A, we define

AJi := AIi ∪
k⋃
j=1

⋃
B∈BCR(φ)
Ii|=BvA

BIj .

• For all rigid role names R, we define RJi := ⋃k
j=1 R

Ij .

• For all flexible role names R, we define

RJi := RIi ∪
k⋃
j=1

 ⋃
B∈BCR(φ)
Ii|=Bv∃R

BIj × {cR,i} ∪
⋃

B∈BCR(φ)
Ii|=Bv∃R−

{cR−,i} × BIj

.

To prove that this last definition is well-defined, we have to verify that cR,i is
actually an element of ∆Ii

u whenever BIj is non-empty for some B ∈ BCR(φ) with
Ii |= B v ∃R. In this case, we have Ij 6|= B v ¬B, and thus (B,¬B) /∈ SubR by
Lemma 4.6, which implies that B(aB,¬B) ∈ AR. Since Ii |= B v ∃R and Ii |= AR,
this implies that Ii = IOi

R
cannot be a model of ¬∃R(aB,¬B). By Lemma 3.2, OiR

together with ¬∃R(aB,¬B) is inconsistent, and thus OiR |= ∃R(aB,¬B). This shows
that R is generating in OiR, and hence cR,i ∈ ∆Ii

u .

We have thus constructed interpretations J1, . . . ,Jk that have the same domain,
respect rigid names, and satisfy the UNA for all relevant individual names. It
remains to show that each Ji is still a model of (Ti,Ai). We first prove a basic
connection between the interpretations Ji and Ii.
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Lemma 4.7. For all i, 1 ≤ i ≤ k and B ∈ BC(φ), the following hold:

a) for every a ∈ NI(φ) ∪ NR
I , we have a ∈ BJi iff a ∈ BIi;

b) if B is rigid, then for every x ∈ ∆Ij
u , 1 ≤ j ≤ k, we have x ∈ BJi iff

x ∈ BIj ; and

c) if B is flexible, then for every x ∈ ∆Ij
u , 1 ≤ j ≤ k, we have x ∈ BJi iff

• i = j and x ∈ BIi, or
• there is a B′ ∈ BCR(φ) with x ∈ (B′)Ij and Ii |= B′ v B.

Proof. For a), consider first the case that B ∈ NRC(φ). Recall that all Ij,
1 ≤ j ≤ k, agree on the interpretation of all rigid concept names on NI(φ) ∪ NR

I
since they satisfy ≈R. Thus, we have have BJi∩(NI(φ)∪NR

I ) = BIi∩(NI(φ)∪NR
I ).

If B is of the form ∃R for a rigid role R ∈ N−RR(φ), then a ∈ BIi clearly implies
a ∈ BJi since RIi is contained in RJi . On the other hand, if a ∈ BJi , then by the
definition of Ji, a must have an R-successor in at least one Ij, 1 ≤ j ≤ k. Since
Ij |= ≈R, we cannot have ¬∃R(a) ∈ ≈R, and thus we must have ∃R(a) ∈ ≈R
since ≈R is an ABox type. Since Ii |= ≈R, this implies that a ∈ (∃R)Ii = BIi .

Consider now any flexible basic concept B. By the definition of Ji on the flexible
names, we have a ∈ BJi iff either (i) a ∈ BIi , or (ii) a ∈ (B′)Ij for some j,
1 ≤ j ≤ k, and B′ ∈ BCR(φ) with Ii |= B′ v B. But (ii) implies (i) since
a ∈ (B′)Ij yields B′(a) ∈ ≈R, and thus a ∈ (B′)Ii ⊆ (∃R)Ii , as above. We
conclude that a ∈ BJi iff a ∈ BIi , as desired.

For b), let B be rigid and x ∈ ∆Ij
u . Since x does not belong to any ∆Ij′

u with
j′ 6= j, by the definition of Ji on the rigid concept and role names, we immediately
get x ∈ BJi iff x ∈ BIj .

For c), we consider first the case that B ∈ NC(φ) is a flexible concept name. Then
the definition of Ji directly yields x ∈ BJi iff i = j and x ∈ BIi or x ∈ (B′)Ij for
some B′ ∈ BCR(φ) with Ii |= B′ v B. If B is of the form ∃R for a flexible role
R ∈ N−R (φ), then by the definition of Ji we have x ∈ BJi iff one of the following
alternatives is satisfied:

• i = j and x ∈ BIi ,

• there is a B′ ∈ BCR(φ) with x ∈ (B′)Ij and Ii |= B′ v B, or

• x is of the form cR−,i ∈ ∆Ii
u and there is a B′ ∈ BCR(φ) such that (B′)Ij is

not empty and Ii |= B′ v ∃R−.

But the last case is included in the first one, because then we also have i = j and
x = cR−,i ∈ (∃R)Ii = BIi since R− is generating in OiR (see Definition 3.1).

14



In particular, this implies that for all i, 1 ≤ i ≤ k, B ∈ BC(φ), and x ∈ ∆Ii

we have x ∈ BJi iff x ∈ BIi . This means that on the original domain ∆Ii the
interpretation of the basic concepts does not change.

The next lemmas show that Ji is in fact as intended. To show that Ji is a model
of (Ti,Ai), we first consider the assertions.

Lemma 4.8. For all i, 1 ≤ i ≤ k, Ji is a model of Ai.

Proof. Let C(a) be a (negated) basic concept assertion in Ai. If a ∈ NI(φ),
then Lemma 4.7a) yields that Ji |= C(a) since we have Ii |= C(a) by assump-
tion. For every (negated) role assertion R(a, b) (¬R(a, b)) in Ai, we know by
construction that a, b ∈ NI(φ). Since all Ij, 1 ≤ j ≤ k, satisfy ≈R, we have
RJi ∩ (NI(φ)× NI(φ)) = RIi ∩ (NI(φ)× NI(φ)) by the definition of Ji, regardless
of whether R is rigid or not. The claim now follows from the fact that Ii satisfies
R(a, b) (¬R(a, b)).

It remains to consider those concept assertions C(a) in Ai where a ∈ Nn
I ∩ ∆Ii

u
and C ∈ BC¬(φ). But then Lemma 4.7b) and c) yield Ji |= C(a) since we know
that Ii |= C(a). To see this, note that i = j and a only occurs in the domain
of Ii, and thus the second condition of c) is subsumed by the first condition.

It remains to show that all CIs in Ti are satisfied by Ji.

Lemma 4.9. For all i, 1 ≤ i ≤ k, Ji is a model of Ti.

Proof. Let B v C be a CI in Ti. By assumption, we know that

Ii |= B v C. (3)

To show that BJi ⊆ CJi , take any x ∈ BJi . If x ∈ NI(φ) ∪ NR
I , then by

Lemma 4.7a) we get x ∈ BIi . By (3), this implies x ∈ CIi , which yields x ∈ CJi ,
again by Lemma 4.7a).

Otherwise, x must be an element of ∆Ij
u , for some j, 1 ≤ j ≤ k.

In the special case that B is flexible and the first condition of Lemma 4.7c)
applies, we have i = j and x ∈ BIi . We then obtain from (3) that x ∈ CIi . By
Lemma 4.7b) and c), on ∆Ii the interpretation of all basic concepts is the same
under Ii and Ji, and thus we get x ∈ CJi .

In the remaining two cases, namely that (i) B is rigid, or (ii) B is flexible
and the second condition of Lemma 4.7c) applies, we first show that there is
a B1 ∈ BCR(φ) satisfying the following two conditions:

x ∈ BIj

1 (4)
Ii |= B1 v C (5)
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In case (i), we can simply choose B1 := B, which already satisfies both require-
ments by our assumption that x ∈ BIj and (3). In case (ii), from Lemma 4.7c)
we get a B′ ∈ BCR(φ) with x ∈ (B′)Ij and Ii |= B′ v B. But then (3) implies
that also Ii |= B′ v C holds, and thus we can set B1 := B′.

Given a rigid basic concept B1 satisfying (4) and (5), we now make a case dis-
tinction on the shape of C to show that x ∈ CJi .

• If C is also rigid, then Lemma 4.6 and (5) yield that Ij |= B1 v C. From (4),
we thus get x ∈ CIj , and hence x ∈ CJi by Lemma 4.7b).

• If C ∈ BC(φ) is a flexible basic concept, then (4) and (5) yield x ∈ CJi by
Lemma 4.7c).

• If C is of the form ¬B2 for a flexible basic concept B2 ∈ BC(φ), we have to
show that x /∈ BJi

2 . Assume to the contrary that x ∈ BJi
2 . Then one of the

alternatives of Lemma 4.7c) must hold.

If i = j and x ∈ BIi
2 , then (5) and C = ¬B2 yield that x /∈ BIi

1 = B
Ij

1 , in
contradiction to (4).
Otherwise, there is a B′ ∈ BCR(φ) with x ∈ (B′)Ij and Ii |= B′ v B2.
Together with (5) and C = ¬B2, we obtain Ii |= B′ v ¬B1, and thus
Lemma 4.6 yields Ij |= B′ v ¬B1. This implies that x /∈ BIj

1 , which again
contradicts (4).

We have thus shown the converse of Lemma 4.5.

Lemma 4.10. If there is an r-complete ontology OR for φ such that all OiR,
1 ≤ i ≤ k, are consistent, then S is r-satisfiable.

It remains to show how to combine the reductions described in this section in
order to obtain a PSpace-satisfiability test for DL-Lite-LTL formulae.

This procedure is based on the original polynomial space-bounded Turing ma-
chines for LTL-satisfiability constructed in [SC85]. Given a propositional LTL-
formula φp, the machine Aφp iteratively guesses complete sets of (negated) sub-
formulae of φp specifying which subformulae are satisfied at each point in time.
Every such set induces a unique Xi ⊆ {p1, . . . , pn} containing the propositional
variables that are true.

In [SC85, Theorem 4.7], it is shown that if φp is satisfiable, there must be a
periodic model of φp with a period that is exponential in the size of φp. Hence,
Aφp first guesses two polynomial-sized indices specifying the beginning and end of
the first period. Then, it continuously increments a (polynomial-sized) counter
and in each step guesses a complete set of (negated) subformulae of φp. It then
checks Boolean consistency of this set and consistency with the set of the previous
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time point according to the temporal operators. For example, if the previous set
contains the formula p1 U p2, then either it must also contain p2 or it contains p1
and the current set contains p1 U p2. In this way, the satisfaction of the U-formula
is deferred to the next time point.

In each step, the oldest set is discarded and replaced by the next one. When
the counter reaches the beginning of the period, it stores the current set and
continues until it reaches the end of the period. At that point, instead of guessing
the next set of subformulae, the stored set is used and checked for consistency
with the previous set as described above. Aφp additionally has to ensure that all
U-subformulae are satisfied within the period. Thus, the Turing machine never
has to remember more than three sets of polynomial size.

We now modify this procedure for our purposes.

Theorem 4.11. Satisfiability in DL-Lite-LTL is PSpace-complete.

Proof. By Lemmata 4.3, 4.5, and 4.10, the satisfiability of a DL-Lite-LTL for-
mula φ is equivalent to the existence of a set S = {X1, . . . , Xk} ⊆ 2{p1,...,pn} and
an r-complete ontology OR for φ such that φp

S is satisfiable and all OiR, 1 ≤ i ≤ n,
are consistent. Note that the only difference between φp and φp

S is the require-
ment that all worlds in a model of φp

S should be included in S. Additionally,
OR is independent of S and the additional individual names aji used in each Ai
are not shared among the ontologies OiR. It is thus not necessary to actually
construct the whole set S—it is enough to show that each set Xi we encounter
when checking φp (not φp

S) for satisfiability induces a consistent ontology OiR.

To check φ for satisfiability, we can thus run a modified version of the Turing
machine Aφp that additionally guesses an r-complete ontology OR in the begin-
ning, and then tests for each guessed set of subformulae whether the induced
set Xi ⊆ {p1, . . . , pn} satisfies the additional requirement that OiR is consistent.
Note that the latter tests can clearly be done in NPSpace since the OiR are (ex-
tended) DL-Litecore-ontologies of size polynomial in the size of φ, and ontology
consistency in this logic can be decided in NLogSpace [ACKZ09]. The set S
required for Lemma 4.3 can be obtained by collecting all sets Xi encountered by
this machine. However, as described before, this set does not have to be stored
explicitly.

Since all this can be done with a nondeterministic Turing machine using only
polynomial space (in the size of φ), according to [Sav70], satisfiability in DL-Lite-
LTL can be decided in PSpace. We have PSpace-hardness by Lemma 4.1.
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5 Conclusions

In this report, we have shown that the satisfiability problem for DL-Lite-LTL
is PSpace-complete and thus has the same complexity as satisfiability in LTL.
Interestingly, the complexity stays in PSpace even if rigid names are allowed.
In contrast, in the more expressive temporalized DL ALC-LTL, the satisfiability
problem is ExpTime-complete if no rigid names are allowed and increases to
2-ExpTime-complete if rigid names are considered [BGL12]. Sometimes, rigid
names can even cause undecidability in temporalized DLs [AKL+07, LWZ08].

Although the complexity stays the same, augmenting practical satisfiability tests
for propositional LTL such as those described in [BCM+92, CGH97, VW86] to
deal with DL-Lite-LTL formulae will be more complicated. While all these algo-
rithms can be adapted by executing the consistency test for OiR at each encoun-
tered world Xi, one still has to obtain the right r-complete ontology OR in the
first place; trying all possible OR is hardly practical. One possibility to improve
this is to try to analyze the structure of φ to deduce at least parts of OR directly.

Another option is to encode the behavior of OR in the DL-Lite-LTL formula φ
as follows. For each rigid axiom α that can occur in an r-complete ontology, we
simply add the conjunct α↔ 2α to φ, where↔ and 2 are the usual abbreviations
used in propositional LTL. In this way, one could use the temporal operators
to directly enforce the rigidity of all (polynomially many) relevant axioms, and
thus “outsource” the problem of guessing OR to an optimized propositional LTL
solver [BHSV+96, CCGR00, Hol97]. However, it remains to be seen whether this
will really increase performance since the LTL solver still does not know anything
else about the semantics of these axioms. A solution where the temporal and DL-
Lite solvers are better integrated is desirable, but more difficult to implement.
Analyzing the practical performance of DL-Lite-LTL is a topic for future work.

On the theoretical side, we want to investigate the combination of LTL with more
expressive members of the DL-Lite family. It will be interesting to see how far
we can extend the DL part of DL-Lite-LTL without increasing the complexity
of the satisfiability problem. Moreover, the precise complexity of satisfiability
in EL-LTL (EL is another famous sub-Boolean DL [BBL05]) is still an open
problem.

We also want to study whether the decision procedure developed in this report
can be adapted to obtain complexity results for temporal query entailment w.r.t.
DL-Lite-ontologies similar to what was done for ALC in [BBL13].
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