
Technische Universität Dresden
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

The Complexity of Fuzzy Description Logics over
Finite Lattices with Nominals

Stefan Borgwardt

LTCS-Report 14-02

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nöthnitzer Str. 46

Dresden



Abstract

The complexity of reasoning in fuzzy description logics (DLs) over fi-
nite lattices usually does not exceed that of the underlying classical DLs.
This has recently been shown for the logics between L-IALC and L-ISCHI
using a combination of automata- and tableau-based techniques. In this
report, this approach is modified to deal with nominals and constants in
L-ISCHOI. Reasoning w.r.t. general TBoxes is ExpTime-complete, and
PSpace-completeness is shown under the restriction to acyclic terminolo-
gies in two sublogics. The latter implies two previously unknown complexity
results for the classical DLs ALCHO and SO.

1 Introduction

Fuzzy extensions of DLs have first been studied in [27, 31, 33] to model concepts
that do not have a precise meaning. Such concepts occur in many application
domains. For example, a physician may base a diagnosis on the patient having
a high fever, which is not clearly characterized even by the precise body temper-
ature. The main idea behind fuzzy DLs is that concepts are not interpreted as
sets, but rather as fuzzy sets, which assign a membership degree from [0, 1] to
each domain element. As a fuzzy concept, HighFever could assign degree 0.7 to a
patient with a body temperature of 38 ◦C, and 0.9 when the body temperature
is 39 ◦C.

The first fuzzy DLs were based on the so-called Zadeh semantics that is derived
from fuzzy set theory [34]. Later, it was proposed [22] to view fuzzy DLs from
the point of view of Mathematical Fuzzy Logic [21] and t-norm-based semantics
were introduced. A t-norm is a binary operator on [0, 1] that determines how the
conjunction of two fuzzy statements is evaluated. Unfortunately, it was shown
that many t-norm-based fuzzy DLs allowing general TBoxes have undecidable
consistency problems [3, 11, 14]. This can be avoided by either choosing a t-
norm that allows the consistency problem to be trivially reduced to classical
reasoning [9], restricting to acyclic TBoxes [5], or taking the truth values from
a finite structure, usually a total order [7, 8, 28] or a lattice [10, 12, 23, 29].
Recently, it was shown that the complexity of reasoning in fuzzy DLs over finite
lattices with (generalized) t-norms often matches that of the underlying classical
DLs [12, 13].

In this report, we analyze the complexity of fuzzy extensions of SHOI using
a finite lattice L. In the classical case, deciding consistency of ontologies with
general TBoxes is ExpTime-complete in all logics between ALC and SHOI [17,
25], and we show that this also holds for L-ISCHOI. The additional letters I and
C in the name of the logic denote the presence of the constructors for implication
and involutive negation, respectively. This nomenclature was introduced to make

1



the subtle differences between different fuzzy DLs more explicit [11, 15]. As all
fuzzy DLs considered in this report have both I and C, it is safe to ignore these
letters here and simply read L-SHOI instead of L-ISCHOI.

Consistency remains ExpTime-complete in the classical DLs ALCOI and SH
even w.r.t. the empty TBox [19, 30]. However, when restricting to acyclic (or
empty) TBoxes in SI, it is only PSpace-complete [1, 20]. Similar results have
been shown before under finite lattice semantics in L-IALCHI and L-ISCIc [12].
The latter restricts all roles to be crisp, i.e. they are allowed to take only the two
classical truth values. Here, we extend these results to L-IALCHO and L-ISCOc,
which also shows previously unknown complexity results for the classical DLs
ALCHO and SO with acyclic TBoxes.

2 Preliminaries

We first introduce looping automata on infinite trees and several helpful notions
from [1], which will be used later for our reasoning procedures. Afterwards, we
briefly recall relevant definitions from lattice theory [16].

2.1 Looping Automata

We consider the infinite tree of fixed arity k ∈ N, represented by the set K∗ of
its nodes, where K abbreviates {1, . . . k}. Here, ε represents the root node, and
ui, i ∈ K, is the i-th successor of the node u ∈ K∗. An ancestor of u ∈ K∗ is a
node u′ ∈ K∗ for which there is a u′′ ∈ K∗ with u = u′u′′. A path in this tree is
a sequence u1, . . . , um of nodes such that u1 = ε and, for every i, 1 ≤ i ≤ m− 1,
ui+1 is a successor of ui.

Definition 2.1 (looping automaton). A looping (tree) automaton is a tuple
A = (Q, I,∆) where Q is a finite set of states, I ⊆ Q is a set of initial states, and
∆ ⊆ Qk+1 is the transition relation. A run of A is a mapping r : K∗ → Q such
that r(ε) ∈ I and (r(u), r(u1), . . . , r(uk)) ∈ ∆ for every u ∈ K∗. The emptiness
problem is to decide whether a given looping automaton has a run.

The emptiness problem for such automata is decidable in polynomial time [32].
However, the automata we construct in Section 4 are exponential in the size of
the input. In order to obtain PSpace decision procedures, we need to identify
the length of the longest possible path in a run that does not repeat any states.

Definition 2.2 (invariant, blocking). Let A = (Q, I,∆) be a looping automaton
and � a binary relation over Q, called the blocking relation. A is �-invariant
if (q0, q1, . . . , qi, . . . , qk) ∈ ∆ and qi � q′i always imply (q0, q1, . . . , q

′
i, . . . , qk) ∈ ∆.

2



If this is the case, then A is m-blocking for m ∈ N if in every path u1, . . . , um of
length m in a run r of A there are two indices 1 ≤ i < j ≤ m with r(uj) � r(ui).

The notion of blocking is similar to that used in tableau algorithms for DLs [4, 20].
If q is blocked by its ancestor q′ (q � q′), then we do not need to consider
the subtree below q since every transition involving q can be replaced by one
using q′ instead. Of course, every looping automaton is =-invariant and |Q|-
blocking. However, as mentioned above the size of Q may already be exponential
in some external parameter. To obtain m-blocking automata with m bounded
polynomially in the size of the input, we can use a faithful family of functions to
prune the transition relation.

Definition 2.3 (faithful). Let A = (Q, I,∆) be a looping automaton. A family
f = (fq)q∈Q of functions fq : Q→ Q is called faithful (w.r.t. A) if

• for all (q, q1, . . . , qk) ∈ ∆, we have (q, fq(q1), . . . , fq(qk)) ∈ ∆, and

• for all (q0, q1, . . . , qk) ∈ ∆, we have (fq(q0), fq(q1), . . . , fq(qk)) ∈ ∆.

The subautomaton Af := (Q, I,∆f) induced by f is defined by

∆f := {(q, fq(q1), . . . , fq(qk)) | (q, q1, . . . , qk) ∈ ∆}.

The name faithful reflects the fact that the resulting subautomaton simulates all
runs of A. The following connection between the two automata was shown in [1].

Proposition 2.4. Let A be a looping automaton and f be a faithful family of
functions for A. Then A has a run iff Af has a run.

Together with some other assumptions, polynomial blocking allows us to test
emptiness in polynomial space.

Definition 2.5 (PSpace on-the-fly construction). Let I be a set of inputs. A
construction that yields, for each i ∈ I, an mi-blocking looping automaton Ai over
ki-ary trees is called a PSpace on-the-fly construction if there is a polynomial P
such that, for every input i of size n,

(i) mi ≤ P (n) and ki ≤ P (n),

(ii) the size of every state of Ai is bounded by P (n), and

(iii) one can guess in time bounded by P (n) an initial state, and, given a state q,
a transition (q, q1, . . . , qk) of Ai.

The following result is again taken from [1].

Proposition 2.6. If the looping automata Ai are obtained by a PSpace on-the-fly
construction, then emptiness of Ai can be decided in PSpace in the size of i.

3



2.2 Residuated Lattices

A lattice is an algebraic structure (L,∨,∧) with the two commutative, associative,
and idempotent binary operators supremum (∨) and infimum (∧) that satisfy
x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x for all x, y ∈ L. The natural partial order
on L is given by x ≤ y iff x ∧ y = x for all x, y ∈ L. An antichain is a set S ⊆ L
of incomparable elements. The width of the lattice L is the maximum cardinality
of all its antichains. This lattice is complete if suprema and infima of arbitrary
subsets S ⊆ L exist; these are denoted by

∨
x∈S x and

∧
x∈S x, respectively. It is

distributive if ∧ and ∨ distribute over each other, finite if L is finite, and bounded
if it has a least element 0 and a greatest element 1. Every finite lattice is complete,
and every complete lattice is bounded by 0 :=

∧
x∈L x and 1 :=

∨
x∈L x.

A De Morgan lattice is a distributive lattice L with a unary involutive operator ∼
on L satisfying ∼(x ∨ y) = ∼x ∧ ∼y and ∼(x ∧ y) = ∼x ∨ ∼y for all x, y ∈ L.
A t-norm over a bounded lattice L is a commutative, associative, monotone
binary operator ⊗ on L that has 1 as its unit. A residuated lattice is a bounded
lattice L with a t-norm ⊗ and a residuum ⇒ : L×L→ L satisfying x⊗ y ≤ z iff
y ≤ x ⇒ z for all x, y, z ∈ L. We always assume that ⊗ is join-preserving, that
is, x ⊗

∨
y∈S y =

∨
y∈S x ⊗ y holds for all x ∈ L and S ⊆ L. This is a natural

assumption that corresponds to the left-continuity assumption for t-norms over
the standard fuzzy interval [0, 1] [21].

3 L-ISCHOI

Since fuzzy DLs over infinite lattices easily become undecidable when dealing
with GCIs [3, 11, 13, 14], we now fix a finite residuated De Morgan lattice L. For
the complexity analysis, we assume that L is given as a list of its elements and
that all lattice operations are computable in polynomial time.1

The syntax of the fuzzy description logic L-ISCHOI is similar to that of classi-
cal SHOI: complex roles and concepts are constructed from disjoint sets NC of
concept names, NR of role names, and NI of individual names.

Definition 3.1 (syntax). The set N−R of (complex) roles is {r, r− | r ∈ NR}. The
set of (complex) concepts is constructed as follows:

• every concept name is a concept, and

• for concepts C,D, r ∈ N−R , a ∈ NI, and p ∈ L, the following are also
concepts: p (constant), {a} (nominal), ¬C (negation), C u D (conjunc-

1If instead the size of the input encoding of L is logarithmic in the cardinality of L, then all
complexity results except Theorem 5.8 remain valid.

4



tion), C → D (implication), ∃r.C (existential restriction), and ∀r.C (value
restriction).

For a complex role s, the inverse of s (written s) is s− if s ∈ NR and r if s = r−.

Definition 3.2 (semantics). A (fuzzy) interpretation I = (∆I , ·I) consists of a
non-empty domain ∆I and an interpretation function ·I that assigns to every
A ∈ NC a fuzzy set AI : ∆I → L, to every r ∈ NR a fuzzy binary relation
rI : ∆I × ∆I → L, and to every a ∈ NI a domain element aI ∈ ∆I. This
function is extended to complex roles and concepts as follows for all x, y ∈ ∆I:

• (r−)I(x, y) := rI(y, x);

• pI(x) := p;

• {a}I(x) := 1 if x = aI, and {a}I(x) := 0 otherwise;

• (¬C)I(x) := ∼CI(x);

• (C uD)I(x) := CI(x)⊗DI(x);

• (C → D)I(x) := CI(x)⇒ DI(x);

• (∃r.C)I(x) :=
∨

y∈∆I r
I(x, y)⊗ CI(y); and

• (∀r.C)I(x) :=
∧

y∈∆I r
I(x, y)⇒ CI(y).

One can express fuzzy nominals [6] of the form {p1/a1, . . . , pn/an} with pi ∈ L
and ai ∈ NI, 1 ≤ i ≤ n, by ({a1}up1)t· · ·t ({an}upn), where CtD abbreviates
¬(¬C u ¬D). Unlike in classical DLs, existential and value restrictions need not
be dual to each other, i.e. in general we have (¬∃r.C)I 6= (∀r.¬C)I .

Definition 3.3 (ontology). An axiom is a concept assertion 〈a:C ./ p〉, a con-
cept definition 〈A .

= C ≥ p〉, a general concept inclusion (GCI) 〈C v D ≥ p〉, a
role inclusion 〈r v s〉, or a transitivity axiom trans(r), where C,D are concepts,
r, s ∈ N−R , a ∈ NI, A ∈ NC, p ∈ L, and ./ ∈ {<,≤,=,≥, >}.

An acyclic TBox is a finite set T of concept definitions where every A ∈ NC has
at most one definition 〈A .

= C ≥ p〉 in T and the relation >T on NC is acyclic,
where A >T B iff B occurs in the definition of A. A general TBox is a finite
set of GCIs, an ABox a finite set of concept assertions, and an RBox a finite
set of role inclusions and transitivity axioms. An ontology is a triple (A, T ,R)
consisting of an ABox A, an (acyclic or general) TBox T , and an RBox R.

An interpretation I satisfies (or is a model of)

• an assertion 〈a:C ./ p〉 if CI(aI) ./ p.

5



• a concept definition 〈A .
= C ≥ p〉 if for every element x ∈ ∆I it holds that

(AI(x)⇒ CI(x))⊗ (CI(x)⇒ AI(x)) ≥ p.

• a GCI 〈C v D ≥ p〉 if for every x ∈ ∆I we have CI(x)⇒ DI(x) ≥ p.

• a role inclusion 〈r v s〉 if rI(x, y) ≤ sI(x, y) holds for all x, y ∈ ∆I.

• a transitivity axiom trans(r) if rI(x, y) ⊗ rI(y, z) ≤ rI(x, z) holds for all
x, y, z ∈ ∆I.

• an ABox, TBox, RBox, or ontology if it satisfies all axioms in it.

We denote by NI(O) and NR(O) the sets of individual names and role names,
respectively, occurring in an ontology O, and set N−R (O) := {r, r− | r ∈ NR(O)}.
As usual, for an ontology O = (A, T ,R) we define the role hierarchy vR as the
reflexive transitive closure of {(r, s) ∈ N−R (O) | r vR s ∈ R or r vR s ∈ R}, and
we call a role r transitive if either trans(r) ∈ R or trans(r) ∈ R.

For an acyclic TBox T , all concept names that occur on the left-hand side of a
definition in T are called defined. All other concept names occurring in T are
primitive. In a general TBox, all concept names are primitive.

We do not consider role assertions of the form 〈(a, b):r ./ p〉 since in the presence
of nominals they can be simulated by concept assertions, e.g. 〈a:∃r.{b} ./ p〉.

Definition 3.4 (reasoning). Let C,D be concepts, O an ontology, and p ∈ L.

• O is consistent if it has a model.

• C is p-satisfiable w.r.t. O if there is a model I of O and an element x ∈ ∆I

such that CI(x) ≥ p.

• C is p-subsumed by D w.r.t. O if every model of O is also a model of
〈C v D ≥ p〉.

• The best satisfiability degree for C w.r.t. O is the supremum of all p′ ∈ L
such that C is p′-satisfiable w.r.t. O.

• The best subsumption degree of C and D w.r.t. O is the supremum of all
p′ ∈ L such that C is p′-subsumed by D w.r.t. O.

Observe that C is p-satisfiable w.r.t. O = (A, T ,R) iff (A ∪ {〈a:C ≥ p〉, T ,R)
is consistent, where a is a fresh individual name. Similarly, C is p-subsumed
by D w.r.t. O iff (A ∪ {〈a:C → D < p〉}, T ,R) is inconsistent. To compute
the best degrees to which these inferences hold, one has to solve polynomially
many consistency problems (cf. [13]). Thus, in the following we focus on deciding
consistency.

6



4 Deciding Consistency

Consistency in L-ISCHOI with general TBoxes is ExpTime-complete, matching
the complexity of classical SHOI [17]. To show this, we adapt the automata-
based procedures from [1, 12] to this more expressive logic. The conditions for the
role hierarchy, inverse roles, and transitive roles are similar to the tableaux rules
used in [20]. To deal with nominals, we employ pre-completions inspired by the
approaches in [2, 13, 18]. In Section 5, we derive additional complexity results for
consistency in the sublogics L-IALCHO (without transitivity and inverse roles)
and L-ISCOc (without role inclusions, inverse roles, and fuzzy roles) with acyclic
TBoxes.

It was shown in [12] that over a finite lattice L every interpretation I is n-
witnessed, where n is the width of the lattice. This means that for every con-
cept C, r ∈ N−R , and x ∈ ∆I there are n witnesses y1, . . . , yn ∈ ∆I such that
(∃r.C)I(x) =

∨n
i=1 r

I(x, yi)⊗CI(yi), and similarly for the value restrictions. For
the sake of simplicity, we present the following reasoning procedure only for the
case of n = 1, i.e. we assume that all interpretations are (1-)witnessed. It can be
generalized to handle arbitrary n by easy adaptations of the following definitions,
in particular the introduction of more than one witness in Definition 4.3.

We now consider an ontology O = (A, T ,R) that we want to test for consistency.
The main idea of the algorithm is to find an abstract representation of a tree-
shaped model of O, a so-called Hintikka tree. Every node of this tree consists
of a Hintikka function that describes the values of all relevant concepts for one
domain element of the model. Additionally, each Hintikka function stores the
values of all role connections from the parent node. We define the set sub(O) to
contain all subconcepts of concepts occurring in O, together with all ∃s.C (and
∀s.C) for which ∃r.C (∀r.C) occurs in O, s vR r, and s is transitive.

Definition 4.1 (Hintikka function). A Hintikka function for O is a partial func-
tion H : sub(O) ∪ N−R (O)→ L satisfying the following conditions:

• H(s) is defined for all s ∈ N−R (O);

• if H(p) is defined, then H(p) = p;

• if H({a}) is defined, then H({a}) ∈ {0,1};

• if H(C uD) is defined, then H(C) and H(D) are also defined and it holds
that H(C uD) = H(C)⊗H(D); and similarly for ¬C and C → D.

This function is compatible with

• an assertion 〈a:C ./ `〉 if, whenever H({a}) = 1, then H(C) is defined and
H(C) ./ `.

7



• a concept definition 〈A .
= C ≥ `〉 if, whenever H(A) is defined, then H(C)

is defined and (H(A)⇒ H(C))⊗ (H(C)⇒ H(A)) ≥ `.

• a GCI 〈C v D ≥ `〉 if H(C) and H(D) are defined and H(C)⇒ H(D) ≥ `.

• a role inclusion r v s if H(r) ≤ H(s).

• an ABox/TBox/RBox/ontology if it is compatible with all axioms in it.

The support of H is the set supp(H) of all C ∈ sub(O) for which H is defined,
and Ind(H) is the set of all a ∈ NI(O) for which H({a}) = 1.

To deal with nominals, our algorithm maintains a polynomial amount of global
information about the named domain elements, called a pre-completion. Since one
domain element can have several names, we first consider a partition of NI(O) that
specifies which names are interpreted by the same elements. The pre-completion
further contains one Hintikka function for each named individual, and the values
of all role connections between them.

Definition 4.2 (pre-completion). A pre-completion for the ontology O is a triple
P = (P ,HP ,RP), where P is a partition of NI(O), HP = (HX)X∈P is a family
of Hintikka functions for O, and RP = (rP)r∈NR(O) is a family of fuzzy binary
relations rP : P × P → L, such that, for all X ∈ P,

• Ind(HX) = X and

• HX is compatible with O.

A Hintikka function H for O is compatible with P if for all a ∈ Ind(H), we have
H|sub(O) = H[a]P |sub(O).

We further set r−P (X, Y ) := rP(Y,X) for all X, Y ∈ P and r ∈ NR(O).

The arity k of our Hintikka trees is the number of existential and value restrictions
in sub(O). Each successor in the tree describes the witness for one restriction. For
the following definition, we consider K := {1, . . . , k} as before and fix a bijection
ϕ : {C | C ∈ sub(O) is of the form ∃r.D or ∀r.D} → K.

Definition 4.3 (Hintikka condition). The tuple (H0, H1, . . . , Hk) of Hintikka
functions for O satisfies the Hintikka condition if the following hold:

a) For every existential restriction ∃r.C ∈ sub(O):

• If ∃r.C ∈ supp(H0) and i = ϕ(∃r.C), then we have C ∈ supp(Hi) and
H0(∃r.C) = Hi(r)⊗Hi(C).

8



• If ∃r.C ∈ supp(H0), then for all i ∈ K, we have C ∈ supp(Hi) and
H0(∃r.C) ≥ Hi(r) ⊗ Hi(C); moreover, for all transitive roles s vR r,
we have ∃s.C ∈ supp(Hi) and H0(∃r.C) ≥ Hi(s)⊗Hi(∃s.C).

• For all i ∈ K with ∃r.C ∈ supp(Hi), we have C ∈ supp(H0) and
Hi(∃r.C) ≥ Hi(r) ⊗ H0(C); moreover, for all transitive roles s vR r,
we have ∃s.C ∈ supp(H0) and Hi(∃r.C) ≥ Hi(s)⊗H0(∃s.C).

b) For every value restriction ∀r.C ∈ sub(O):

• If ∀r.C ∈ supp(H0) and i = ϕ(∀r.C), then we have C ∈ supp(Hi) and
H0(∀r.C) = Hi(r)⇒ Hi(C).

• If ∀r.C ∈ supp(H0), then for all i ∈ K, we have C ∈ supp(Hi) and
H0(∀r.C) ≤ Hi(r) ⇒ Hi(C); moreover, for all transitive roles s vR r,
we have ∀s.C ∈ supp(Hi) and H0(∀r.C) ≤ Hi(s)⇒ Hi(∀s.C).

• For all i ∈ K with ∀r.C ∈ supp(Hi), we have C ∈ supp(H0) and
Hi(∀r.C) ≤ Hi(r) ⇒ H0(C); moreover, for all transitive roles s vR r,
we have ∀s.C ∈ supp(H0) and Hi(∀r.C) ≤ Hi(s)⇒ H0(∀s.C).

c) For all r ∈ N−R (O) and i, j ∈ K such that a ∈ Ind(Hi), b ∈ Ind(Hj), and
[a]P = [b]P , we have Hi(r) = Hj(r).

d) For all a ∈ Ind(H0), r ∈ N−R (O), i ∈ K, and b ∈ Ind(Hi), it holds that
Hi(r) = rP([a]P , [b]P).

Intuitively, Condition a) ensures that the designated successor satisfies the wit-
nessing condition for ∃r.C, and that the other successors do not interfere; this
includes the parent node, which is a r-predecessor. Additionally, existential re-
strictions are transferred along transitive roles, similar to the ∀+-rule in [20].
Conditions c) and d) are concerned with the behavior of named successors; in
particular, the values for the role connections between named individuals speci-
fied by the pre-completion should be respected.

Given a pre-completion P = (P ,HP ,RP), a Hintikka tree for O starting with HX ,
X ∈ P , is a mapping T that assigns to each u ∈ K∗ a Hintikka function T(u)
for O that is compatible with T , R, and P such that T(ε) = HX and every tuple
(T(u),T(u1), . . . ,T(uk)) satisfies the Hintikka condition.

Lemma 4.4. O is consistent iff there exist a pre-completion P = (P ,HP ,RP)
for O and, for each X ∈ P, a Hintikka tree for O starting with HX .

Proof. Assume that such a pre-completion and Hintikka trees TX for O starting
with HX exist. We first remove irrelevant nodes in these Hintikka trees. A
node u ∈ K∗ is relevant in TX if Ind(TX(u′)) = ∅ for all (non-empty) ancestors
u′ ∈ K+ of u. The idea is that if a ∈ Ind(TX(u′)), then by the compatibility
with P the Hintikka function TX(u′) agrees with H[a]P = T[a]P (ε) on the values

9



of all concepts in sub(O), and thus TX(u′) can be replaced with T[a]P (ε). The
root nodes are always relevant since they are needed to represent the named
individuals. We now define the interpretation I with domain

∆I := {(X, u) ∈ P ×K∗ | u is relevant in TX}.

We set aI := ([a]P , ε) for all a ∈ NI(O). For r ∈ NR, we first define the fuzzy
binary relation rT on ∆I as follows for all (X, u), (Y, v) ∈ ∆I :

• rT((X, u), (Y, v)) := TX(ui)(r) if r ∈ N−R (O) and for i ∈ K it holds that
(i) (Y, v) = (X, ui) or (ii) v = ε and Ind(TX(ui)) ∩ Y 6= ∅;

• rT((X, u), (Y, v)) := TY (vi)(r−) if r− ∈ N−R (O) and for i ∈ K it holds that
(i) (X, u) = (Y, vi) or (ii) u = ε and Ind(TY (vi)) ∩X 6= ∅; and

• rT((X, u), (Y, v)) := 0 otherwise.

To see that this is well-defined, consider the following three cases.

• If r ∈ N−R (O) and there are i, j ∈ K such that v = ε, Ind(TX(ui)) ∩ Y 6= ∅,
and Ind(TX(uj)) ∩ Y 6= ∅, then from Condition c) of Definition 4.3 we get
TX(ui)(r) = TX(uj)(r).

• If r− ∈ N−R (O), i, j ∈ K, u = ε, and Ind(TY (vi)) ∩X and Ind(TY (vj)) ∩X
are non-empty, we have TY (vi)(r−) = TY (vj)(r−) by the same condition.

• If r, r− ∈ N−R (O), u = v = ε and there are i, j ∈ K with a ∈ Ind(TX(i))∩ Y
and b ∈ Ind(TY (j)) ∩X, then Y = [a]P and X = [b]P . By Condition d) of
Definition 4.3, we obtain TX(i)(r) = rP(X, Y ) = r−P (Y,X) = TY (j)(r−).

We also set (r−)T((X, u), (Y, v)) := rT((Y, v), (X, u)) for all (X, u), (Y, v) ∈ ∆I .
Before we proceed to define I, we show that this definition satisfies the following
property, which mainly follows from the Hintikka condition:

Claim 1. For all ∃r.C ∈ sub(O) and (X, u), (Y, v) ∈ ∆I such that TX(u)(∃r.C)
is defined, we have TX(u)(∃r.C) ≥ rT((X, u), (Y, v)) ⊗ TY (v)(C), and, for all
transitive roles s vR r, TX(u)(∃r.C) ≥ sT((X, u), (Y, v))⊗TY (v)(∃s.C).

The first part is trivial if rT((X, u), (Y, v)) = 0; otherwise, there must be an index
i ∈ K such that (A) rT((X, u), (Y, v)) = TX(ui)(r) and (A.i) (Y, v) = (X, ui) or
(A.ii) v = ε and Ind(TX(ui)) ∩ Y 6= ∅; or (B) rT((X, u), (Y, v)) = TY (vi)(r) and
(B.i) (X, u) = (Y, vi) or (B.ii) u = ε and Ind(TY (vi)) ∩X 6= ∅.

In Case (A), the Hintikka condition implies that TX(ui)(C) is defined and we
have TX(u)(∃r.C) ≥ TX(ui)(r) ⊗ TX(ui)(C). It thus suffices to show that
TY (v)(C) = TX(ui)(C). In Case (A.i), this is immediate; in Case (A.ii), we
have TY (v)(C) = HY (C) = TX(ui)(C) by the compatibility with P.

10



In Case (B.i), we get TX(u)(∃r.C) = TY (vi)(∃r.C); in Case (B.ii), we also have
TX(u)(∃r.C) = HX(∃r.C) = TY (vi)(∃r.C) by the compatibility with P. In both
cases, we have TX(u)(∃r.C) = TY (vi)(∃r.C) ≥ TY (vi)(r) ⊗ TY (v)(C) by the
Hintikka condition.

The remaining part of Claim 1 can be shown by similar arguments, using the
parts of Definition 4.3 about transitive roles.

To properly interpret transitive roles, we now set, for all x1, . . . , xn ∈ ∆I with
n ≥ 3, rT(x1, . . . , xn) := rT(x1, x2)⊗ . . .⊗ rT(xn−1, xn) and

rI(x, y) := rT(x, y) ∨
∨

svRr
s transitive

∨
n≥1

∨
z1,...,zn∈∆I

sT(x, z1, . . . , zn, y)

for all r ∈ NR and x, y ∈ ∆I . By the above definitions, the same expression is
valid for inverse roles. Furthermore, if r is transitive, then rI is the transitive
closure of rT, and thus a transitive fuzzy binary relation. For every r v s ∈ R
and x, y ∈ ∆I , we have rT(x, y) ≤ sT(x, y) by the compatibility with R. Since
r′ vR r then implies that r′ vR s, we have rI(x, y) ≤ sI(x, y), and thus I
satisfies R.

We now define the interpretation of concept names under I. For every primitive
concept name A, we simply set AI(X, u) := TX(u)(A) for all (X, u) ∈ ∆I . I is
extended to the defined concept names while showing the following claim:

Claim 2. For all (X, u) ∈ ∆I and all C ∈ sub(O) for which TX(u)(C) is defined,
we have CI(X, u) = TX(u)(C).

We prove this by induction on the weight o(C):

• o(A) := o(p) := o({a}) := 0 for every primitive concept name A, p ∈ L,
and a ∈ NI;

• o(A) := o(C) + 1 for every definition 〈A .
= C ≥ `〉 ∈ T ;

• o(¬C) := o(C) + 1;

• o(C uD) := o(C → D) := max{o(C), o(D)}+ 1; and

• o(∃r.C) := o(∀r.C) := o(C) + 1.

This weight is well-defined for general and acyclic TBoxes.

For every constant concept, Claim 2 follows immediately from Definition 4.1. For
a primitive concept name A, it holds by the definition of AI above.

If TX(u)({a}) is defined for some a ∈ NI(O), then by Definition 4.1 this value is
either 0 or 1. If it is 0, then we cannot have TX(u) = H[a]P by Definition 4.2.

11



Thus, aI = ([a]P , ε) 6= (X, u), and hence {a}I(X, u) = 0 = TX(u)({a}). Other-
wise, we have TX(u)({a}) = 1, i.e. a ∈ Ind(TX(u)). Since u is relevant in TX ,
we infer that u = ε. By Definition 4.2, we get a ∈ Ind(TX(u)) = Ind(HX) = X,
and thus aI = ([a]P , ε) = (X, u). We conclude {a}I(X, u) = 1 = TX(u)({a}).

Consider now a defined concept name A with the definition 〈A .
= C ≥ `〉 ∈ T .

If TX(u)(A) is defined, then by the compatibility with T the value TX(u)(C)
is also defined and

(
TX(u)(A) ⇒ TX(u)(C)

)
⊗
(
TX(u)(C) ⇒ TX(u)(A)

)
≥ `.

Since o(C) < o(A), we get CI(X, u) = TX(u)(C) by induction. Thus, we can
define AI(X, u) := TX(u)(A) to ensure that I satisfies 〈A .

= C ≥ `〉 at (X, u).
Whenever TX(u)(A) is undefined, we can set AI(X, u) := CI(X, u) to satisfy
this concept definition without violating the claim.

If TX(u)(¬C) is defined, then TX(u)(C) is also defined. By induction, we obtain
(¬C)I(X, u) = ∼CI(X, u) = ∼TX(u)(C) = TX(u)(¬C). Similar arguments
show Claim 2 for conjunctions and implications.

Assume now that ` := TX(u)(∃r.C) is defined for ∃r.C ∈ sub(O) and consider
i := ϕ(∃r.C). We first prove the existence of an element (Y, v) ∈ ∆I such
that rI((X, u), (Y, v)) ⊗ CI(Y, v) ≥ `. By the Hintikka condition, we know that
TX(ui)(C) is defined and ` = TX(ui)(r)⊗TX(ui)(C). Since u is relevant in TX ,
ui can only be irrelevant in TX if Ind(TX(ui)) 6= ∅. We make a case distinction
on whether ui is relevant or not.

• If there exists a ∈ Ind(TX(ui)), then by compatibility of TX(ui) with P the
value T[a]P (ε)(C) = H[a]P (C) = TX(ui)(C) is defined. Since the root ε is
relevant in T[a]P , by induction we get CI([a]P , ε) = T[a]P (ε)(C). Since also
rI((X, u), ([a]P , ε)) ≥ rT((X, u), ([a]P , ε)) = TX(ui)(r) and ⊗ is monotone,
we can choose (Y, v) := ([a]P , ε).

• Otherwise, we have Ind(TX(ui)) = ∅ and (X, ui) ∈ ∆I . By induction,
this implies that CI(X, ui) = TX(ui)(C), and from the definition of rI we
obtain rI((X, u), (X, ui)) ≥ rT((X, u), (X, ui)) = TX(ui)(r), which allows
us to choose (Y, v) := (X, ui).

If we can show that rI((X, u), (Z,w)) ⊗ CI(Z,w) ≤ ` holds for all (Z,w) ∈ ∆I ,
then we obtain (∃r.C)I(X, u) = `, as desired. By the definition of rI and since ⊗
is join-preserving, it suffices to show that (a) rT((X, u), (Z,w)) ⊗ CI(Z,w) ≤ `
and (b) sT((X, u), (Y1, v1), . . . , (Yn, vn), (Z,w)) ⊗ CI(Z,w) ≤ ` for all transitive
roles s vR r and (Yi, vi) ∈ ∆I , 1 ≤ i ≤ n, with n ≥ 1.

(a) We have ` = TX(u)(∃r.C) ≥ rT((X, u), (Z,w))⊗CI(Z,w) by Claim 1 and
induction.

(b) Again, by Claim 1 we have ` ≥ sT((X, u), (Y1, v1)) ⊗ TY1(v1)(∃s.C), and
moreover TYj

(vj)(∃s.C) ≥ sT((Yj, vj), (Yj+1, vj+1))⊗TYj+1
(vj+1)(∃s.C) for

12



all j, 1 ≤ j ≤ n−1. Also, TYn(vn)(∃s.C) ≥ sT((Yn, vn), (Z,w))⊗TZ(w)(C),
and thus ` ≥ sT((X, u), (Y1, v1), . . . , (Yn, vn), (Z,w)) ⊗ CI(Z,w) by mono-
tonicity of ⊗ and induction.

The remaining case of Claim 2 for value restrictions can be shown using similar
arguments and a variant of Claim 1.

We have thus defined an interpretation I that satisfies all concept definitions
in T . In the case that T is a general TBox, consider any GCI 〈C v D ≥ `〉 ∈ T
and (X, u) ∈ ∆I . By the compatibility of TX(u) with T , we know that TX(u)(C)
and TX(u)(D) are defined and TX(u)(C)⇒ TX(u)(D) ≥ `. By Claim 2, we thus
have CI(X, u) ⇒ DI(X, u) ≥ `, which shows that I satisfies the GCI. Finally,
consider an assertion 〈a:C ./ `〉 ∈ A. By the compatibility of H[a]P with A (see
Definition 4.2), we know that H[a]P (C) is defined and H[a]P (C) ./ `. By Claim 2,
we conclude CI(aI) = CI([a]P , ε) = T[a]P (ε)(C) = H[a]P (C) ./ `; that is, I
satisfies the assertion.

Conversely, let I be a model of O. We define a pre-completion P := (P ,HP ,RP)
for O based on the partition P := {{b ∈ NI(O) | aI = bI} | a ∈ NI(O)}. For
all r ∈ NR(O) and X, Y ∈ P , we set rP(X, Y ) := rI(aI , bI), where (a, b) is an
arbitrary element of X × Y . Similarly, we set HX(r) := 0 for every r ∈ N−R (O)
and HX(C) := CI(aI) for every C ∈ sub(O) to define the family HP = (HX)X∈P .
Since I satisfies T , this obviously defines Hintikka functions that are compatible
with T and R, and we also have Ind(HX) = X for every X ∈ P . Furthermore,
for every 〈a:C ./ `〉 ∈ A, we have CI(aI) ./ `, and thus H[a]P (C) ./ `, which
shows that P is indeed a pre-completion for O.

For a given X ∈ P , we now define the Hintikka tree TX starting with HX by
inductively constructing a mapping gX : K∗ → ∆I that specifies which elements
of ∆I represent the nodes of TX and satisfies the following property:

Claim 3. For all u ∈ K∗, C ∈ sub(O), r ∈ N−R (O), and i ∈ K, we have
TX(u)(C) = CI(gX(u)) and TX(ui)(r) = rI(gX(u), gX(ui)).

This in particular ensures that all constructed Hintikka functions are compatible
with T , R, and P.

We start the construction by setting TX(ε) := HX and gX(ε) := aI for an
arbitrary a ∈ X. Thus, TX starts with HX and Claim 3 is satisfied at ε
by the definition of HX above. Let now u ∈ K∗ be a node for which TX

and gX have already been defined while satisfying Claim 3, and consider any
∃r.C ∈ sub(O) and i := ϕ(∃r.C). Since I is witnessed, there must be a y ∈ ∆I

such that (∃r.C)I(gX(u)) = rI(gX(u), y) ⊗ CI(y). We now set gX(ui) := y,
TX(ui)(s) := sI(gX(u), y) for all s ∈ N−R (O), and TX(ui)(C) := CI(y) for all
C ∈ sub(O) to satisfy Claim 3 at ui. Likewise, for any ∀r.C ∈ sub(O) there must
be a y ∈ ∆I with (∀r.C)I(gX(u)) = rI(gX(u), y) ⇒ CI(y), and we proceed as
above to define TX and gX at ui for i := ϕ(∀r.C).

13



We now show that every tuple (TX(u),TX(u1), . . . ,TX(uk)), u ∈ K∗, satisfies
the Hintikka condition. The first point of Condition a) from Definition 4.3 is
obviously satisfied by the above construction. Consider now any ∃r.C ∈ sub(O)
and i ∈ K. By Claim 3 and the semantics of existential restrictions, we obtain

TX(u)(∃r.C) = (∃r.C)I(gX(u))

≥ rI(gX(u), gX(ui))⊗ CI(gX(ui))

= TX(ui)(r)⊗TX(ui)(C),

and, for all transitive roles s vR r,

TX(u)(∃r.C) = (∃r.C)I(gX(u))

=
∨

y∈∆I

rI(gX(u), y)⊗ CI(y)

≥
∨

y∈∆I

sI(gX(u), y)⊗ CI(y)

≥
∨

y∈∆I

sI(gX(u), gX(ui))⊗ sI(gX(ui), y)⊗ CI(y)

= sI(gX(u), gX(ui))⊗ (∃s.C)I(gX(ui))

= TX(ui)(s)⊗TX(ui)(∃s.C).

The remaining part of a) and b) can be shown by similar arguments. For c),
consider u ∈ K∗, r ∈ N−R (O), i, j ∈ K, a ∈ Ind(TX(ui)), and b ∈ Ind(TX(uj))
with [a]P = [b]P . Then Claim 3 yields gX(ui) = aI = bI = gX(uj), and thus
TX(ui)(r) = rI(gX(u), aI) = TX(uj)(r). For d), let u ∈ K∗, a ∈ Ind(TX(u)),
r ∈ N−R (O), i ∈ K, and b ∈ Ind(TX(ui)). By Claim 3, gX(u) = aI , gX(ui) = bI ,
and TX(ui)(r) = rI(gX(u), gX(ui)) = rI(aI , bI) = rP([a]P , [b]P).

Given a pre-completion P = (P ,HP ,RP) for O and X ∈ P , the Hintikka au-
tomaton for O and HX is the looping automaton AO,HX

:= (QO, IHX
,∆O), where

QO consists of all pairs (H, i) of Hintikka functions H for O that are compatible
with T , R, and P and indices i ∈ K, IHX

:= {(HX , 1)}, and ∆O is the set of all
tuples ((H0, i0), (H1, 1), . . . , (Hk, k)) such that (H0, . . . , Hk) satisfies the Hintikka
condition. It is easy to see that the first components of the runs of AO,HX

are
exactly the Hintikka trees for O starting with HX , and the second components
simply store the index of the existential or value restriction for which the state
acts as a witness. By Lemma 4.4, consistency of O is thus equivalent to the
existence of a pre-completion and the non-emptiness of the Hintikka automata
AO,HX

for each equivalence class X.

Since the number of pre-completions is bounded exponentially in the size of the
input (O and L) and each pre-completion is of size polynomial in the size of the
input, we can enumerate all pre-completions in exponential time and for each of

14



them check emptiness of the polynomially many automata AO,HX
. Since the size

of these automata is exponential in the size of the input, by [32] we obtain the
following complexity result. ExpTime-hardness holds already in ALC [25].

Theorem 4.5. In L-ISCHOI over a finite residuated De Morgan lattice L, con-
sistency w.r.t. general TBoxes is ExpTime-complete.

5 Acyclic TBoxes

We now extend the previous complexity results for lattice-based fuzzy DLs with
acyclic TBoxes [12, 13] by showing that consistency in L-IALCHO and L-ISCOc

is PSpace-complete in this setting. Recall that in L-ISCOc, roles must always
be interpreted as crisp functions that only take the values 0 and 1. Due to the
absence of inverse roles, in the following we can restrict all definitions to use
NR(O) instead of N−R (O), and we can remove Condition d) and the last items of
Conditions a) and b) from Definition 4.3.

Let now O = (A, T ,R) be such that T is acyclic. We can guess a triple
P = (P ,HP ,RP) and verify the conditions of Definition 4.2 in (nondetermin-
istic) polynomial space. Thus, if emptiness of the polynomially many Hintikka
automata AO,HX

could be decided in polynomial space, we would obtain a PSpace
upper bound for consistency [24]. The idea is to modify the construction of AO,HX

using a faithful family of functions to obtain a PSpace on-the-fly construction.
As in [12], these automata already satisfy most of Definition 2.5, except the poly-
nomial bound on the maximal length a path before (equality) blocking occurs.
The faithful families of functions we use are very similar to those employed in [12]
for L-IALCHI and L-ISCIc.

For the subsequent constructions to work, we need to change the notion of com-
patibility of a Hintikka function H with P to a weaker variant: we only require
that for every a ∈ Ind(H) and every C ∈ sub(O) for which H(C) is defined,
H[a]P (C) is also defined and H(C) = H[a]P (C). This new definition does not
work in the presence of inverse roles. However, in L-IALCHO and L-ISCOc, all
previous results remain valid. The only changes necessary are in two places of
the proof of Lemma 4.4, belonging to the proofs of Claims 1 and 2 for existential
(and value) restrictions. In both cases, it suffices to infer from a ∈ Ind(H) and
C ∈ supp(H) that also C ∈ supp(H[a]P ) and H(C) = H[a]P , which is precisely the
new definition given above.

5.1 L-IALCHO

We now present a faithful family of functions for the case that O is formulated
in L-IALCHO. For this, we denote by rdT (C) the role depth of the unfolding of

15



a concept C w.r.t. the acyclic TBox T , by rdT (H) for a Hintikka function H the
maximal rdT (C) of a concept C ∈ supp(H), and by sub≤n(O) the restriction of
sub(O) to concepts C with rdT (C) ≤ n.

Definition 5.1 (family f). We define f = (fq)q∈QO for all q = (H, i) ∈ QO with
n := rdT (H) and all q′ = (H ′, i′) ∈ QO by fq(q

′) := (H ′′, i′), where, for every
C ∈ sub(O) and r ∈ NR(O),

H ′′(C) :=

{
H ′(C) if C ∈ sub≤n−1(O),
undefined otherwise;

H ′′(r) :=

{
H ′(r) if supp(H) 6= ∅,
0 otherwise.

For all q, q′ ∈ QO, we have that fq(q
′) is again a state of AO,HX

(according to
the new definition of compatibility with P). The idea of this definition is to
reduce the maximal role depth of the Hintikka function in every transition of the
automaton.

Lemma 5.2. In L-IALCHO, the family f is faithful w.r.t. AO,HX
.

Proof. Consider states q = (H, i), q0 = (H0, i0), and qj = (Hj, j), 1 ≤ j ≤ k, and
define n := rdT (H), q′0 := (H ′0, i0) := fq(q0), and q′j := (H ′j, j) := fq(qj) for each
j, 1 ≤ j ≤ k. Assuming that (H,H1, . . . , Hk) satisfies the Hintikka condition, we
have to verify it for (H,H ′1, . . . , H

′
k). Note that we consider neither inverse nor

transitive roles, and thus half of this condition is vacuous.

For a), consider any ∃r.C ∈ sub(O) and j ∈ K. If ∃r.C ∈ supp(H), then
rdT (C) < rdT (∃r.C) ≤ rdT (H). Since Hj(C) is defined, we have H ′j(C) = Hj(C).
Furthermore, supp(H) 6= ∅, and thus H ′j(r) = Hj(r), which shows that the re-
quired (in)equalities remain satisfied after applying fq. Similar arguments can be
used for b). For c), let r ∈ NR(O) and j1, j2 ∈ K. If there are a ∈ Ind(H ′j1) and
b ∈ Ind(H ′j2) with [a]P = [b]P , this must already have been true for Hj1 and Hj2 .
Since supp(H) cannot be empty, we have H ′j1(r) = Hj1(r) = Hj2(r) = H ′j2(r).

For the second condition of Definition 2.3, we show that (H ′0, H
′
1, . . . , H

′
k) satisfies

the Hintikka condition whenever (H0, H1, . . . , Hk) does. For all ∃r.C ∈ supp(H ′0)
and j ∈ K, we have H0(∃r.C) = H ′0(∃r.C), rdT (C) < rdT (∃r.C) < rdT (H),
and supp(H). Thus, we get H ′j(C) = Hj(C) and H ′j(r) = Hj(r) as before. The
remaining conditions follow from the same arguments as above.

It remains to show that emptiness of the induced subautomaton Af
O,HX

can be
decided in PSpace. For the following result, we use the equality on QO as the
blocking relation.

Lemma 5.3. In L-IALCHO, the construction of Af
O,HX

from L, O, and HX is
a PSpace on-the-fly construction.

16



Proof. We show that Af
O,HX

is polynomially blocking (with equality as blocking
relation). Consider any path in a run of this automaton. Since the maximal
role depth of the Hintikka functions is decreased in each transition, after at most
m := max{rdT (C) | C ∈ sub(O)} + 1 transitions, we must reach a state (H, i)
with supp(H) = ∅. From the next transition on, the first component of each state
additionally assigns 0 to all role names. Thus, after m + k + 2 transitions, we
have seen at least one state twice. This number is linear in the size of O.

Propositions 2.4 and 2.6 yield the desired complexity result. PSpace-hardness
holds already in classical ALC w.r.t. the empty TBox [26].

Theorem 5.4. In L-IALCHO over a finite residuated De Morgan lattice L, con-
sistency w.r.t. acyclic TBoxes is PSpace-complete.

5.2 L-ISCOc

For L-ISCOc, the construction is a little more involved. Since now the interpre-
tations of roles are restricted to 0 and 1, all Hintikka functions H for O need to
satisfy the additional condition that H(r) ∈ {0,1} for all r ∈ NR(O). We further
denote by ϕr(O) for r ∈ NR(O) the set of all indices i ∈ K such that i = ϕ(C) for
a concept C of the form ∃r.D or ∀r.D. We then replace K in Definition 4.3 by
ϕr(O). The idea is that in the absence of role inclusions it suffices to consider one
role for each successor. The resulting definition is closer to the Hintikka condition
from [12].

Lemma 4.4 remains valid under these modifications. Again, it is only necessary
to change the proof of the “if” direction. In particular, in the definition of rT we
have to replace the first occurrence of K by ϕr(O), and the second one by ϕr−(O).
Moreover, all following references to K have to be changed to ϕr(O) or ϕr−(O)
as appropriate.

Given a Hintikka function H for O and a role name r, we define the sets

H|r := {C ∈ supp(H) | C = ∃r.D or C = ∀r.D},
H−r := {C ∈ supp(H) | ∃r.C or ∀r.C ∈ sub(O)}.

Definition 5.5 (family g). We define g = (gq)q∈QO for all q = (H, i) ∈ QO with
n := rdT (H) and all q′ = (H ′, i′) ∈ QO and r′ ∈ NR(O) such that i′ ∈ ϕr′(O) by

17



gq(q
′) := (H ′′, i′), where, for all C ∈ sub(O) and r ∈ NR(O):

P :=

{
sub≤n(O) ∩H ′|r′ if r′ is transitive,
∅ otherwise;

H ′′(C) :=

{
H ′(C) if C ∈ sub≤n−1(O) ∪ P ,
undefined otherwise;

H ′′(r) :=

{
H ′(r) if supp(H) 6= ∅ and r = r′,
0 otherwise.

Again, the resulting pair (H ′′, i′) is an element of QO. In contrast to the previous
section, we cannot always reduce the role depth of the Hintikka functions, but
have to keep some restrictions over transitive roles.

Lemma 5.6. In L-ISCOc, the family g is faithful w.r.t. AO,HX
.

Proof. Let q = (H, i), q0 = (H0, i0), qj = (Hj, j), q′0 := (H ′0, i0) := gq(q0), and
q′j := (H ′j, j) := gq(qj), 1 ≤ j ≤ k, be states of AO,HX

. We let n := rdT (H)
and rj be the unique role name with j ∈ ϕrj(O), 1 ≤ j ≤ k. We assume that
(q, q1, . . . , qk) ∈ ∆O, and verify that then also (q, q′1, . . . , q

′
k) ∈ ∆O.

For Condition a) of Definition 4.3, consider any ∃r.C ∈ supp(H). This implies
that rdT (∃r.C) ≤ rdT (H) = n and supp(H) 6= ∅. For every j ∈ ϕr(O), we
thus have H ′j(C) = Hj(C) and H ′j(r) = Hj(r). This shows that the equal-
ity and the first inequality are still satisfied. Consider now a transitive role
s vR r, which must be equal to r since O does not contain any role inclusions.
By the Hintikka condition, we have ∃r.C ∈ supp(Hj), and thus ∃r.C ∈ Hj|r
and H ′j(∃r.C) = Hj(∃r.C), which proves the final inequality. Condition b)
can be shown by similar arguments. For c), let r ∈ NR(O), j1, j2 ∈ ϕr(O),
a ∈ Ind(Hj1), and b ∈ Ind(Hj2) with [a]P = [b]P . Since supp(H) 6= ∅, we have
H ′j1(r) = Hj1(r) = Hj2(r) = H ′j2(r) by the Hintikka condition.

The proof of the second condition of Definition 2.3 is analogous.

To prove the counterpart of Lemma 5.3 for L-ISCOc, we use the blocking relation
�L-ISCOc on QO defined by (H, i) �L-ISCOc (H ′, i′) iff

A. i = i′ = ϕ(E) for E ∈ sub(O) of the form ∃r.F or ∀r.F ;

B. Ind(H) = Ind(H ′) = ∅ or there is some X ∈ P such that Ind(H) ∩ X 6= ∅
and Ind(H ′) ∩X 6= ∅; and

C. one of the following alternatives holds:

i. H = H ′;

18



ii. H(r) = H ′(r) = 0 and H|r ∪H−r = H ′|r ∪H ′−r; or

iii. 1. r is transitive, H(r) = H ′(r) = 1, H(F ) = H ′(F ),
2. H(C) = H ′(C) for every concept C in Q(H,H ′, r) := H|r ∪ H ′|r,

and
3. H ′(C) ≤ H ′(∃r.C) for every ∃r.C ∈ H ′|r and H ′(C) ≥ H ′(∀r.C)

for every ∀r.C ∈ H ′|r.

This is an extended version of the blocking relation used for L-ISCIc in [12].

We now verify that Ag
O,HX

is �L-ISCOc-invariant. Condition B ensures that Con-
dition c) of Definition 4.3 remains satisfied, and thus we only need to consider
the influence of C.i–C.iii on a) (for b) the arguments are similar):

i. The equality relation is always invariant.

ii. The (in)equalities of the Hintikka condition remain satisfied when replacing
one successor H with H(r) = 0 by an H ′ that also satisfies H ′(r) = 0. Thus,
H ′ only needs to be defined for all relevant concepts, which is expressed by
the second part of this condition.

iii. Condition 1 ensures that the first equality is still satisfied. Condition 2 re-
stricts all existential restrictions that are transferred by r to be evaluated by
identical values, and thus the second inequality remains satisfied. Finally,
Condition 3 yields the first inequality: Since H0(∃r.C) ≥ H ′(r) ⊗ H ′(∃r.C)
and H ′(∃r.C) ≥ H ′(C), it follows that also H0(∃r.C) ≥ H ′(r)⊗H ′(C).

It remains to show that these definitions ensure polynomial blocking.

Lemma 5.7. In L-ISCOc, the construction of Ag
O,HX

from L, O, and HX is a
PSpace on-the-fly construction.

Proof. We show that the automata are polynomially blocking w.r.t. �L-ISCOc .
Consider three consecutive states (H0, i0), (H1, i1), (H2, i2) of a path in a run
of Ag

O,HX
, and let rj be such that ij ∈ ϕrj(O), 0 ≤ j ≤ 2. By the definition

of g(H,i), we have rdT (H0) ≥ rdT (H1) ≥ rdT (H2). If r1 is not transitive, then
rdT (H0) > rdT (H1). Furthermore, if r1 6= r2, then rdT (H0) > rdT (H2), whether
r1 and r2 are transitive or not. Thus, after max{rdT (C) | C ∈ sub(O)} + 1
transitions using non-transitive roles or different consecutive roles we must reach
a state (H, i) where supp(H) is empty.

However, if r1 = r2 is transitive, then the role depth need not decrease. By the
Hintikka condition, we know that H1|r1 ⊆ H2|r1 and H−r11 ⊆ H−r12 . Thus, there
can be at most 2 · |sub(O)| many transitions using the same transitive role r1 with
H(r1) = 0 without triggering Condition C.ii of the blocking relation.

19



Finally, if H1(r1) > 0, then we must have H1(r1) = 1. Thus, by the Hin-
tikka condition we have H0(∃r1.C) ≥ H1(r1) ⊗ H1(∃r1.C) = H1(∃r1.C) for all
∃r1.C ∈ supp(H0), and dually for all value restrictions over r1. Hence, after at
most |L||sub(O)| transitions with the transitive role r1 to degree 1, the values
of all concepts in H|r1 remain fixed (cf. Condition C.iii.2). For the next tran-
sition, we have H1(∃r1.C) = H0(∃r1.C) ≥ H1(r1) ⊗ H1(C) = H1(C), and thus
Condition C.iii.3 is also satisfied.

An additional number of k|L|(|P| + 1) transitions ensure that the we find two
states (H, i), (H ′, i′) that also satisfy the remaining Conditions A and B of
�L-ISCOc .

In total, every path longer than 2(|L|+ 1)(|sub(O)|+ 1)4 must contain two nodes
that are in the blocking relation. This number is polynomial in the size of the
input.

Propositions 2.4 and 2.6 and [26] now entail the following result.

Theorem 5.8. In L-ISCOc over a finite residuated De Morgan lattice L, consis-
tency w.r.t. acyclic TBoxes is PSpace-complete.

As a side effect, we obtain new, albeit not surprising, complexity results for the
underlying classical description logics.

Corollary 5.9. In classical ALCHO and SO, consistency w.r.t. acyclic TBoxes
is PSpace-complete.

6 Conclusions

We have extended previous complexity results about fuzzy DLs with finite lat-
tice semantics to cover nominals. This required extensive adaptations of the
automata-based algorithm used for L-ISCHI and its sublogics in [12]. We em-
ployed pre-completions similar to those in [2, 13, 18] to show complexity results for
ontology consistency. Due to the expressivity of our ABoxes, these easily transfer
to other standard reasoning problems. In particular, we have shown that con-
sistency in L-ISCHOI w.r.t. general TBoxes can be decided in ExpTime. This
drops to PSpace when restricting to acyclic TBoxes in the sublogics L-IALCHO
and L-ISCOc. To the best of our knowledge, only the sublogics SI [1, 20] and
ALCHI [12, 13] of classical SHOI were known to have PSpace-complete rea-
soning problems w.r.t. acyclic TBoxes. On the other hand, in ALCOI and SH
reasoning is already ExpTime-hard without any TBox [19, 30]. The present re-
sults for ALCHO and SO thus complete the picture about reasoning w.r.t. acyclic
TBoxes in the logics between ALC and SHOI (see Figure 1).

20



ALC

ALCI ALCHALCO S

ALCOI ALCHO SI SHALCHI SO

ALCHOI SHISOI SHO

SHOI

Figure 1: The PSpace/ExpTime boundary in classical DLs with acyclic TBoxes

It would be interesting to extend the presented results to deal with fuzzy role
inclusions (〈r v s ≥ p〉) or cardinality restrictions (≥n r.C), although it is not
clear how to define the semantics of the latter in a setting where already a simple
existential restriction may entail the existence of n > 1 witnessing role successors.
We also plan to extend the automata-based algorithm for the fuzzy DL G-IALC
based on the so-called Gödel t-norm over the truth degrees from [0, 1] to more
expressive logics using the ideas presented here and in [12, 13].

Acknowledgments

The author is indebted to Rafael Peñaloza for many discussions on the topics of
(fuzzy) DLs in general and automata-based reasoning procedures in particular.

References

[1] Franz Baader, Jan Hladik, and Rafael Peñaloza. Automata can show
PSPACE results for description logics. Information and Computation, 206(9-
10):1045–1056, 2008.

[2] Franz Baader, Carsten Lutz, Maja Miličić, Ulrike Sattler, and
Frank Wolter. Integrating description logics and action for-
malisms for reasoning about web services. LTCS-Report 05-02,

21



Chair for Automata Theory, TU Dresden, Germany, 2005. See
http://lat.inf.tu-dresden.de/research/reports.html.

[3] Franz Baader and Rafael Peñaloza. On the undecidability of fuzzy descrip-
tion logics with GCIs and product t-norm. In Cesare Tinelli and Viorica
Sofronie-Stokkermans, editors, Proc. of the 8th Int. Symp. on Frontiers of
Combining Systems (FroCoS’11), volume 6989 of Lecture Notes in Computer
Science, pages 55–70. Springer-Verlag, 2011.

[4] Franz Baader and Ulrike Sattler. An overview of tableau algorithms for
description logics. Studia Logica, 69(1):5–40, 2001.

[5] Fernando Bobillo, Félix Bou, and Umberto Straccia. On the failure of the
finite model property in some fuzzy description logics. Fuzzy Sets and Sys-
tems, 172(1):1–12, 2011.

[6] Fernando Bobillo, Miguel Delgado, and Juan Gómez-Romero. A crisp rep-
resentation for fuzzy SHOIN with fuzzy nominals and general concept in-
clusions. In Paulo Cesar G. da Costa, Claudia d’Amato, Nicola Fanizzi,
Kathryn B. Laskey, Kenneth J. Laskey, Thomas Lukasiewicz, Matthias Nick-
les, and Michael Pool, editors, Uncertainty Reasoning for the Semantic Web
I, volume 5327 of Lecture Notes in Artificial Intelligence, pages 174–188.
Springer-Verlag, 2008.

[7] Fernando Bobillo, Miguel Delgado, Juan Gómez-Romero, and Umberto
Straccia. Joining Gödel and Zadeh fuzzy logics in fuzzy description log-
ics. International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, 20(4):475–508, 2012.

[8] Fernando Bobillo and Umberto Straccia. Finite fuzzy description logics and
crisp representations. In Fernando Bobillo, Paulo C. G. da Costa, Claudia
d’Amato, Nicola Fanizzi, Kathryn Laskey, Ken Laskey, Thomas Lukasiewicz,
Matthias Nickles, and Michael Pool, editors, Uncertainty Reasoning for the
Semantic Web II, volume 7123 of Lecture Notes in Computer Science, pages
102–121. Springer-Verlag, 2013.

[9] Stefan Borgwardt, Felix Distel, and Rafael Peñaloza. How fuzzy is my fuzzy
description logic? In Bernhard Gramlich, Dale Miller, and Uli Sattler, edi-
tors, Proc. of the 6th Int. Joint Conf. on Automated Reasoning (IJCAR’12),
volume 7364 of Lecture Notes in Artificial Intelligence, pages 82–96. Springer-
Verlag, 2012.

[10] Stefan Borgwardt and Rafael Peñaloza. Description logics over lattices with
multi-valued ontologies. In Toby Walsh, editor, Proc. of the 22nd Int. Joint
Conf. on Artificial Intelligence (IJCAI’11), pages 768–773. AAAI Press,
2011.

22



[11] Stefan Borgwardt and Rafael Peñaloza. Undecidability of fuzzy description
logics. In Gerhard Brewka, Thomas Eiter, and Sheila A. McIlraith, editors,
Proc. of the 13th Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR’12), pages 232–242. AAAI Press, 2012.

[12] Stefan Borgwardt and Rafael Peñaloza. The complexity of lattice-based fuzzy
description logics. Journal on Data Semantics, 2(1):1–19, 2013.

[13] Stefan Borgwardt and Rafael Peñaloza. Consistency reasoning in lattice-
based fuzzy description logics. International Journal of Approximate Rea-
soning, 2014. In press.

[14] Marco Cerami and Umberto Straccia. On the (un)decidability of fuzzy de-
scription logics under Łukasiewicz t-norm. Information Sciences, 227:1–21,
2013.

[15] Marco Cerami, Àngel Garcia-Cerdaña, and Francesc Esteva. From classical
description logic to n-graded fuzzy description logic. In Proc. of the 2010
IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE’10), pages 1–8. IEEE Com-
puter Society Press, 2010.

[16] Nikolaos Galatos, Peter Jipsen, Tomasz Kowalski, and Hiroakira Ono. Resid-
uated Lattices: An Algebraic Glimpse at Substructural Logics, volume 151 of
Studies in Logic and the Foundations of Mathematics. Elsevier, 2007.

[17] Jan Hladik. To and Fro Between Tableaus and Automata for Description
Logics. PhD thesis, Technische Universität Dresden, Germany, 2007.

[18] Bernhard Hollunder. Consistency checking reduced to satisfiability of con-
cepts in terminological systems. Annals of Mathematics and Artificial Intel-
ligence, 18(2-4):133–157, 1996.

[19] Ian Horrocks. Optimising Tableaux Decision Procedures for Description Log-
ics. PhD thesis, University of Manchester, UK, 1997.

[20] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for
very expressive description logics. Logic Journal of the Interest Group in
Pure and Applied Logic, 8(3):239–263, 2000.

[21] Petr Hájek. Metamathematics of Fuzzy Logic (Trends in Logic). Springer-
Verlag, 2001.

[22] Petr Hájek. Making fuzzy description logic more general. Fuzzy Sets and
Systems, 154(1):1–15, 2005.

[23] Yuncheng Jiang, Yong Tang, Ju Wang, Peimin Deng, and Suqin Tang. Ex-
pressive fuzzy description logics over lattices. Knowledge-Based Systems,
23(2):150–161, 2010.

23



[24] Walter J. Savitch. Relationships between nondeterministic and deterministic
tape complexities. Journal of Computer and System Sciences, 4(2):177–192,
1970.

[25] Klaus Schild. A correspondence theory for terminological logics: Preliminary
report. In John Mylopoulos and Raymond Reiter, editors, Proc. of the 12th
Int. Joint Conf. on Artificial Intelligence (IJCAI’91), pages 466–471. Morgan
Kaufmann, 1991.

[26] Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descriptions
with complements. Artificial Intelligence, 48(1):1–26, 1991.

[27] Umberto Straccia. A fuzzy description logic. In Proc. of the 15th Nat. Conf.
on Artificial Intelligence (AAAI’98), pages 594–599, 1998.

[28] Umberto Straccia. Transforming fuzzy description logics into classical de-
scription logics. In José Júlio Alferes and João Alexandre Leite, editors, Proc.
of the 9th Eur. Conf. on Logics in Artificial Intelligence (JELIA’04), volume
3229 of Lecture Notes in Computer Science, pages 385–399. Springer-Verlag,
2004.

[29] Umberto Straccia. Uncertainty in description logics: A lattice-based ap-
proach. In Proc. of the 10th Int. Conf. on Information Processing and
Management of Uncertainty in Knowledge-Based Systems (IPMU’04), pages
251–258, 2004.

[30] Stephan Tobies. The complexity of reasoning with cardinality restrictions
and nominals in expressive description logics. Journal of Artificial Intelli-
gence Research, 12:199–217, 2000.

[31] Christopher B. Tresp and Ralf Molitor. A description logic for vague knowl-
edge. In Henri Prade, editor, Proc. of the 13th Eur. Conf. on Artificial
Intelligence (ECAI’98), pages 361–365. John Wiley and Sons, 1998.

[32] Moshe Y. Vardi and Pierre Wolper. Automata-theoretic techniques for modal
logics of programs. Journal of Computer and System Sciences, 32(2):183–
221, 1986.

[33] John Yen. Generalizing term subsumption languages to fuzzy logic. In
John Mylopoulos and Raymond Reiter, editors, Proc. of the 12th Int. Joint
Conf. on Artificial Intelligence (IJCAI’91), pages 472–477. Morgan Kauf-
mann, 1991.

[34] Lotfi A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.

24


	Introduction
	Preliminaries
	Looping Automata
	Residuated Lattices

	mbxbold0mu mumu L-ISC H  OI  L-ISC H  OI  Haje-01L-ISC H  OI  L-ISC H  OI  L-ISC H  OI  L-ISC H  OI  mbxbold0mu mumu L-ISC H  OI  L-ISC H  OI  Haje-01L-ISC H  OI  L-ISC H  OI  L-ISC H  OI  L-ISC H  OI  L-ISC H  OI  
	Deciding Consistency
	Acyclic TBoxes
	mbxbold0mu mumu L-IAL C H O  L-IAL C H O  BoPe-JoDS13L-IAL C H O  L-IAL C H O  L-IAL C H O  L-IAL C H O  mbxbold0mu mumu L-IAL C H O  L-IAL C H O  BoPe-JoDS13L-IAL C H O  L-IAL C H O  L-IAL C H O  L-IAL C H O  L-IAL C H O  
	mbxbold0mu mumu L-ISC O  L-ISC O  ScSm-AI91L-ISC O  L-ISC O  L-ISC O  L-ISC O  mbxbold0mu mumu L-ISC O  L-ISC O  ScSm-AI91L-ISC O  L-ISC O  L-ISC O  L-ISC O  L-ISC O  c

	Conclusions

