
Technische Universität Dresden
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

On the Decidability of Verifying
LTL Properties of Golog Programs

(Extended Version)

Benjamin Zarrieß Jens Claßen

LTCS-Report 13-10

In this extended version we extend the decidability result for the
verification problem to the temporal logic CTL∗ over C2-axioms.

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nöthnitzer Str. 46

Dresden

On the Decidability of Verifying
LTL Properties of Golog Programs∗

Benjamin Zarrieß
Theoretical Computer Science

TU Dresden, Germany
zarriess@tcs.inf.tu-dresden.de

Jens Claßen
Knowledge-Based Systems Group

RWTH Aachen University, Germany
classen@kbsg.rwth-aachen.de

March 3, 2014

Abstract

Golog is a high-level action programming language for controlling au-
tonomous agents such as mobile robots. It is defined on top of a logic-based
action theory expressed in the Situation Calculus. Before a program is deployed
onto an actual robot and executed in the physical world, it is desirable, if not
crucial, to verify that it meets certain requirements (typically expressed through
temporal formulas) and thus indeed exhibits the desired behaviour. However,
due to the high (first-order) expressiveness of the language, the corresponding
verification problem is in general undecidable. In this paper, we extend earlier
results to identify a large, non-trivial fragment of the formalism where verifica-
tion is decidable. In particular, we consider properties expressed in a first-order
variant of the branching-time temporal logic CTL∗. Decidability is obtained by
(1) resorting to the decidable first-order fragment C2 as underlying base logic,
(2) using a fragment of Golog with ground actions only, and (3) requiring the
action theory to only admit local effects.

∗Supported by DFG Research Unit FOR 1513, project A1

1

Contents

1 Introduction 3

2 Preliminaries 4

2.1 The Modal Situation Calculus ES based on C2 4

2.1.1 Syntax . 4

2.1.2 Semantics . 5

2.2 Golog Programs . 6

3 Verification 8

3.1 Programs over Ground and Local-effect Actions 9

3.1.1 Regression with Ground Actions . 12

3.1.2 Types of worlds . 16

3.1.3 Constructing the Quotient Transition System 22

3.2 Undecidable Extensions . 24

3.2.1 Undecidability due to Non-Local Effects 24

3.2.2 Undecidability due to Pick Operators . 29

4 Related Work 31

5 Conclusion 31

2

1 Introduction

Golog [GLL00, LRL+97], a family of high-level action programming languages, has proven to
be a useful means for the control of autonomous agents such as mobile robots [BCF+99, FL08].
It is defined on top of action theories expressed in the Situation Calculus [MH69, Rei01], a
dialect of first-order logic (with some second-order features) for representing and reasoning in
dynamic application domains. Before a Golog program is deployed onto a robot and executed
in the physical world, it is often desirable, if not crucial, to verify that certain criteria are met,
typical examples being safety, liveness and fairness conditions.

Verification of Golog programs was first considered by De Giacomo, Ternovska and Reiter
[GTR97] who presented a corresponding semantics of non-terminating processes defined by
means of (second-order) Situation Calculus axioms, expressed temporal properties through
(second-order) fixpoint formulas, and provided manual, meta-theoretic proofs to show the sat-
isfaction of such properties. Since it is more preferable to do verification in automated fashion,
Claßen and Lakemeyer [CL08] later proposed an approach based on a new logic called ESG, an
extension of the modal Situation Calculus variant ES [LL10] by modalities for expressing tem-
poral properties of Golog programs. Using regression-based reasoning and a newly introduced
graph representation for programs, they provided algorithms for the verification of a fragment of
the formalism resembling a first-order, but non-nested variant of the branching-time temporal
logic CTL. Their procedures, which perform a fixpoint computation to do a systematic explo-
ration of the state space, could be proven to be sound, but no general termination guarantee
could be given due to the verification problem being highly undecidable.

It would of course be desirable if termination were guaranteed, which could be achieved by
imposing appropriate restrictions on the input formalism such that the verification problem
becomes decidable, while preferably retaining as much first-order expressiveness as possible.
One corresponding approach is presented by Baader, Liu and ul Mehdi [BLM10] who, instead
of using fully-fledged Situation Calculus and Golog, resort to an action language [BLM+05]
based on the decidable Description Logic (DL) ALC [BCM+03] and approximate programs
through finite Büchi automata. They could show that verification of LTL properties over
ALC axioms thus reduces to a decidable reasoning task within the underlying DL. Baader
and Zarrieß [BZ13] later lifted these results to support a more expressive fragment of Golog
program expressions that goes beyond what can be represented by Büchi automata, in particular
regarding test conditions φ? that are needed for expressing imperative programming constructs
such as while loops and conditionals, but restricts all actions to be ground.

Another approach is taken in [CLL13] where it is shown that Claßen and Lakemeyer’s original
verification algorithms can be guaranteed to terminate by restricting oneself to a decidable, two-
variable fragment of the Situation Calculus [GS10] as base logic, allowing only ground action
terms in Golog programs, and requiring actions to only have local effects [LL09]. Compared
to the above mentioned results by Baader and Zarrieß, local-effect action theories represents an
increase in expressiveness as ALC-based action definitions only allow for basic STRIPS-style
addition and deletion of literals, but the class of non-nested CTL-like properties supported by
Claßen and Lakemeyer’s method is less expressive than LTL.

In this paper, we turn towards unifying these earlier approaches within a single formal frame-
work, while even increasing expressiveness. In particular, we (1) use C2 as base logic, the two
variable fragment of first-order logic with counting quantifiers, which subsumes both ALC and
the two-variable Situation Calculus; we (2) formulate action effects through ES-style local-effect
action theories; and (3) we show that verification is decidable for Golog programs with only
ground actions even in the case of properties expressed in the branching-time temporal logics
CTL∗, which is strictly more expressive than both CTL and LTL. We obtain decidability by
constructing a finite abstraction of the infinite transition system induced by a program, and

3

showing that the abstraction preserves satisfiability of CTL∗ properties over C2 axioms. We
also obtain a 2-NexpTime upper bound for the computational complexity of the problem.

The remainder of this paper is organized as follows. Section 2 presents our decidable base
logic, namely the modal Situation Calculus variant ES based on the two-variable fragment of
first-order logic with counting quantifiers C2, as well as Golog programs and their semantics.
In Section 3 we then define the problem of verifying CTL∗ properties over such programs, and
show (in a constructive manner) that the problem is indeed decidable. We then discuss related
work and conclude.

2 Preliminaries

2.1 The Modal Situation Calculus ES based on C2

In this subsection we recall the main definitions of the modal Situation Calculus variant ES
[LL10]. But instead of using full first-order logic, we restrict ourselves to the two variable
fragment with equality and counting of FOL named C2.

2.1.1 Syntax

We start by defining a set of terms.

Definition 1 (Terms). In our language we consider terms of two sorts object and action. They
can be built using the following symbols:

• variables x, y, · · · of sort object ;

• a single variable a of sort action;

• a countably infinite set NI of rigid object constant symbols (i.e. 0-ary function symbols);

• a countably infinite set NA of rigid action function symbols with arguments of sort object;

A term is called ground term if it contains no variables. We denote the set of all ground terms
(also called standard names) of sort object by NO, and those of sort action by NA. N

To build formulas we consider fluent and rigid predicate symbols with at most two arguments of
sort object and one unary predicate Poss with one argument of sort action later used to define
pre-conditions of actions. Fluents vary as the result of actions, but rigids do not. Formulas are
then built using the usual logical connectives and in addition we have two modal operators [·]
and 2 referring to future situations.

Definition 2 (Formulas). Let NF be a set of fluent predicate symbols and NR a set of rigid
predicate symbols. The set of formulas is defined as the least set satisfying the following
conditions:

• If t1, ..., tk are terms and P ∈ NF ∪ NR a k-ary predicate symbol with 0 ≤ k ≤ 2, then
P (t1, ..., tk) is a formula.

• If t1 and t2 are terms, then t1 = t2 is a formula.

4

• If α and β are formulas, x a variable and t a term of sort action, then α ∧ β, ¬α, ∀x.α,
∃≤mx.α and ∃≥mx.α with m ∈ N, 2α (α always holds) and [t]α (α holds after executing
t) are formulas.

We understand ∨, ∃, ⊃ and ≡ as the usual abbreviations and use true for a tautology. A
formula is called fluent formula if it contains no 2, no [·] and not the predicate Poss. A fluent
sentence is a fluent formula without free variables. N

2.1.2 Semantics

The semantics of formulas is defined in terms of worlds.

Definition 3 (Worlds). Let PF be the set of all primitive formulas F (n1, ..., nk), where F is
k-ary predicate symbol with 0 ≤ k ≤ 2 and the ni are standard names. Let Z := N ∗A. A world
w is a mapping

w : PF ×Z → {0, 1}

such that if R is a rigid predicate symbol, then for all z, z′ ∈ Z it holds that w[R(n1, . . . , nk), z] =
w[R(n1, . . . , nk), z′]. The set of all worlds is denoted by W. N

A world thus maps primitive formulas to truth values. The rigidity constraint ensures that rigid
predicate symbols do not take different values in different situations, as expected.

We use the symbol 〈〉 to denote the empty sequence of action standard names. We are now
equipped to define the truth of formulas:

Definition 4 (Satisfaction of Formulas). Given a world w ∈ W and a formula α, we define
w |= α as w, 〈〉 |= α, where for any z ∈ Z:

1. w, z |= F (n1, . . . , nk) iff w[F (n1, . . . , nk), z] = 1;

2. w, z |= (n1 = n2) iff n1 and n2 are identical;

3. w, z |= α ∧ β iff w, z |= α and w, z |= β;

4. w, z |= ¬α iff w, z 6|= α;

5. w, z |= ∀x.α iff w, z |= αxn for all n ∈ Nx;

6. w, z |= ∃≤mx.α iff |{n ∈ Nx | w, z |= αxn}| ≤ m;

7. w, z |= ∃≥mx.α iff |{n ∈ Nx | w, z |= αxn}| ≥ m;

8. w, z |= 2α iff w, z · z′ |= α for all z′ ∈ Z;

9. w, z |= [t]α iff w, z · t |= α;

N

Above, Nx refers to the set of all standard names of the same sort as x. We moreover use αxn
to denote the result of simultaneously replacing all free occurrences of x by n. Note that by
rule 2 above, the unique names assumption (UNA) for actions and object constants is part of
our semantics.

5

Basic Action Theories We now define a theory as a set of axioms of a pre-defined structure
in order to model a dynamic application domain.

Definition 5 (Basic Action Theory). A basic action theory (BAT) D = D0 ∪ Dpre ∪ Dpost
describes the dynamics of a specific application domain, where

1. D0, the initial theory, is a finite set of fluent sentences describing the initial state of the
world.

2. Dpre is a set of precondition axioms such that for any action function A relevant to the
application domain, there is an axiom of the form 2Poss(A(~x)) ≡ ϕ(~x), with ϕ(~x) being
a fluent formula with free variables ~x. Note that ~x can be either empty or it consists of
one or two variables.

3. Dpost is a finite set of successor state axioms (SSAs), one for each fluent relevant to
the application domain, incorporating Reiter’s [Rei01] solution to the frame problem,
and encoding the effects the actions have on the different fluents. The SSA for a fluent
predicate has the form 2[a]F (~x) ≡ γ+

F ∨F (~x)∧¬γ−F , where γ
+
F and γ−F are fluent formulas

with free variables ~x and a.

N

2.2 Golog Programs

Given a BAT axiomatizing pre-conditions and effects of atomic actions, we now define syntax
and semantics of complex actions.

The program expressions we consider here are the ones admitted by the following grammar:

δ ::= 〈〉 | t | α? | δ1; δ2 | δ1|δ2 | πx.δ | δ1||δ2 | δ∗ (1)

That is we allow the empty program 〈〉, primitive actions t (where t can be any action term),
tests α? (where α is a fluent sentence), sequence, nondeterministic branching, nondeterministic
choice of argument, concurrency, and nondeterministic iteration. Recall, that thus also if
statements and while loops are included:

if α then δ1 else δ2 endIf def= [α?; δ1] | [¬α?; δ2] (2)

while α do δ endWhile def
= [α?; δ]

∗
;¬φ? (3)

A Golog program consists of a BAT and a program expression.

Definition 6 (Golog Program). A Golog program P = (D, δ) consists of a BAT D and a
program expression δ which only mentions actions and fluents defined in D. The set of action
terms occurring in δ is denoted by Act. N

Semantics Program expressions are interpreted as follows. A configuration 〈z, δ〉 consists of
an action sequence z and a program expression δ, where intuitively z is the history of actions
that have already been performed, while δ is the program that remains to be executed.

Definition 7 (Program Transition Semantics). The transition relation w−→ among configura-
tions, given a world w, is the least set satisfying

1. 〈z, t〉 w−→ 〈z · t, 〈〉〉, if w, z |= Poss(t);

6

2. 〈z, δ1; δ2〉
w−→ 〈z · t, γ; δ2〉, if 〈z, δ1〉

w−→ 〈z · t, γ〉;

3. 〈z, δ1; δ2〉
w−→ 〈z · t, δ′〉, if 〈z, δ1〉 ∈ Fw and 〈z, δ2〉

w−→ 〈z · t, δ′〉;

4. 〈z, δ1|δ2〉
w−→ 〈z · t, δ′〉, if 〈z, δ1〉

w−→ 〈z · t, δ′〉 or 〈z, δ2〉
w−→ 〈z · t, δ′〉;

5. 〈z, πx.δ〉 w−→ 〈z · t, δ′〉, if 〈z, δxn〉
w−→ 〈z · t, δ′〉 for some n ∈ Nx;

6. 〈z, δ1||δ2〉
w−→ 〈z · t, δ′||δ2〉, if 〈z, δ1〉

w−→ 〈z · t, δ′〉;

7. 〈z, δ1||δ2〉
w−→ 〈z · t, δ1||δ′〉, if 〈z, δ2〉

w−→ 〈z · t, δ′〉;

8. 〈z, δ∗〉 w−→ 〈z · t, γ; δ∗〉, if 〈z, δ〉 w−→ 〈z · t, γ〉.

The set of final configurations Fw of a world w is the smallest set such that

1. 〈z, α?〉 ∈ Fw if w, z |= α;

2. 〈z, δ1; δ2〉 ∈ Fw if 〈z, δ1〉 ∈ Fw and 〈z, δ2〉 ∈ Fw;

3. 〈z, δ1|δ2〉 ∈ Fw if 〈z, δ1〉 ∈ Fw or 〈z, δ2〉 ∈ Fw;

4. 〈z, πx.δ〉 ∈ Fw if 〈z, δxn〉 ∈ Fw for some n ∈ Nx;

5. 〈z, δ1||δ2〉 ∈ Fw if 〈z, δ1〉 ∈ Fw and 〈z, δ2〉 ∈ Fw;

6. 〈z, δ∗〉 ∈ Fw;

7. 〈z, 〈〉〉 ∈ Fw.

N

Let w−→∗ denote the reflexive and transitive closure of w−→. Let P = (D, δ) be a program. The
set of reachable subprograms, denoted by sub(δ), is defined as follows:

sub(δ) := {δ′ | ∃w |= D, z ∈ Z s.t. 〈〈〉, δ〉 w−→∗〈z, δ′〉}

Note that by induction on the size of |δ| it can be shown that for a transition 〈z, δ〉 w−→ 〈z · t, δ′〉
it follows that w, z |= Poss(t).

To handle non-terminating, terminating and failing runs of a program uniformly, we introduce
two fresh 0-ary fluents Term and Fail and two 0-ary action functions ε and f and include axioms
2Poss(ε) ≡ true and 2Poss(f) ≡ true in Dpre as well as axioms 2[a]Term ≡ a = ε ∨ Term
and 2[a]Fail ≡ a = f ∨ Fail in Dpost. Termination and failure are thus represented through
non-terminating runs by having “sinks” that continue looping ε and f indefinitely.

Now, we define an infinite transition system for a given program P = (D, δ).

Definition 8 (Transition System). Let P = (D, δ) be a Golog program. The transition system
TP = (Q,→, I) induced by P consists of the set of states

Q := {(w, z, δ′) | w |= D, z ∈ Z, δ′ ∈ sub(δ)},

a transition relation →⊆ Q × NA × Q and a set of initial states I ⊆ Q, which are defined as
follows:

• I := {(w, 〈〉, δ) | w, 〈〉 |= D0}

7

• It holds that (w, z, ρ)
t→ (w, z · t, ρ′) if one of the following conditions is satisfied:

1. 〈z, ρ〉 w−→ 〈z · t, ρ′〉.
2. 〈z, ρ〉 ∈ Fw, t = ε and ρ′ = 〈〉.

3. There is no 〈z′′, ρ′′〉 s.t. 〈z, ρ〉 w−→ 〈z′′, ρ′′〉 and 〈z, ρ〉 /∈ Fw, and we have t = f and
ρ′ = ρ.

N

A run of a program P is now defined as an infinite path in the corresponding transition system
TP starting in an initial state. A run in TP = (Q,→, I) has the following form:

r = (w, z0, ρ0)
t0→ (w, z1, ρ1)

t1→ (w, z2, ρ2)
t2→ · · ·

with (w, z0, ρ0) ∈ I, z0 = 〈〉 and zi = zi−1 · ti−1 for i = 1, 2, · · · . The action trace of a run r,
denoted by act(r), is an infinite word over NA given by act(r) = t0t1t2 · · · .

3 Verification

First, we define the temporal logic used to specify properties of a given program. We define
the logic ES-C2-CTL∗, whose syntax is the same as for propositional CTL∗, but in place of
propositions we allow for C2-fluent sentences:

Φ ::= α | ¬Φ | Φ1 ∧ Φ2 | EΨ (4)
Ψ ::= Φ | ¬Ψ | Ψ1 ∧Ψ2 | XΨ | Ψ1 U Ψ2 (5)

Above, α can be any C2-fluent sentence. We call formulas according to (4) state formulas, and
formulas according to (5) path formulas. We use the usual abbreviations AΨ for ¬E¬Ψ, FΨ for
>U Ψ and GΨ for ¬F¬Ψ. ES-C2-CTL∗ formulas are interpreted w.r.t. an ES-transition system:

Definition 9 (ES-C2-CTL∗ Semantics). Let Φ be a ES-C2-CTL∗ state formula and T = (Q,→
, I) an ES-transition system. Truth of Φ in T in a state s = (ws, zs, δs) ∈ Q, denoted by
T, s |= Φ, is defined as follows:

• T, s |= α iff ws, zs |= α;

• T, s |= ¬Φ iff T, s 6|= Φ;

• T, s |= Φ1 ∧ Φ2 iff T, s |= Φ1 and T, s |= Φ2;

• T, s |= EΨ iff there exists π ∈ Paths(s) such that T, π |= Ψ.

Let Ψ be a ES-C2-CTL∗ path formula and T a transition system as above. Truth of Ψ in T in
a path π starting in some state s0 ∈ Q, denoted by T, π |= Ψ, is defined as follows:

• T, π |= Φ iff T, s0 |= Φ;

• T, π |= ¬Ψ iff T, π 6|= Ψ;

• T, π |= Ψ1 ∧Ψ2 iff T, π |= Ψ1 and T, π |= Ψ2;

• T, π |= XΨ iff T, π[1..] |= Ψ;

8

• T, π |= Ψ1 U Ψ2 iff
∃k ≥ 0 : T, π[k..] |= Ψ2 and ∀j, 0 ≤ j < k : T, π[j..] |= Ψ1.

We write T |= Φ if T, s0 |= Φ for all s0 ∈ I. N

We are now ready to define the verification problem :

Definition 10 (Verification Problem). Let P = (D, δ) be a Golog program, TP = (Q,→, I)
the corresponding transition system and Φ an ES-C2-CTL∗ state formula. The formula Φ is
valid in P if TP |= Φ. The formula Φ is satisfiable in P if there exists a s0 ∈ I such that
TP , s0 |= Φ. N

Note that the logic ES-C2-CTL∗ is expressive enough to encode several variants of the verifi-
cation problem. For example, one can express global domain constraints as a conjunction ϕ
of C2-fluent sentences. The problem of whether these constraints persist during the execution
of a program P corresponds to validity of the formula AGϕ in the program P. Furthermore,
the fluents Term and Fail can be used to express facts about the termination or failing of a
program.

In the following we focus only on decidability of the satisfiability problem. This is sufficient
since it clearly holds that Φ is valid in P iff ¬Φ is not satisfiable in P.

3.1 Programs over Ground and Local-effect Actions

The main problem we have to deal with when testing satisfiability of a property in a Golog
program is that the corresponding transition system is infinite in general. To achieve decidability
we have to make certain restrictions on the action theory and on the programs. In the following
we show that for a so called local-effect basic action theory and a program where we disallow
the pick operator, a finite abstraction of the infinite transition system can be constructed that
preserves the relevant information to verify the property.

In particular, we consider Golog programs P = (D, δ) where δ is a program expression that can
be built according to the following grammar

δ ::= 〈〉 | t | α? | δ1; δ2 | δ1|δ2 | δ1||δ2 | δ∗ (6)

where t is a ground action term and α a fluent sentence.

Since we have to consider in this restricted setting only finitely many ground actions, the set
of reachable subprograms sub(δ) is finite and bounded by the size of δ. The size of a program
expression |δ| is defined as the number of ground actions, tests and program constructs occurring
in δ.

Lemma 11. Let δ be a program expression over ground actions. The cardinality of sub(δ) is
exponentially bounded in the size |δ| of δ.

Before we prove this lemma we introduce some additional notation. As in [BZ13], we introduce
the notion of a guarded action. A guarded action is a ground action preceded by a test. Since
in our semantics a test does not cause a transition, we consider a test and an action as a unit.

Definition 12 (Guarded Action). Let δ be a program expression. A guarded action in δ is of
the form α?; t where t ∈ Act or t = ε and α is a fluent sentence of the form α1 ∧ · · · ∧ αn where
the αi for i = 1, ..., n are tests occurring in δ. N

9

We define two functions head(·) and tail(·, ·). Intuitively, head(δ) contains those guarded actions
that can be executed first when executing δ and tail(α?; t, δ) yields the program expressions
that remain to be executed after executing the guarded action α?; t from the head of δ.

Definition 13. The function head(·) maps a program expression to a set of guarded actions.
It is defined by induction on the structure of program expressions:

1. head(〈〉) := {ε};

2. head(t) := {t} for all t ∈ Act;

3. head(α?) := {α?; ε};

4. head(δ∗) := {ε} ∪ head(δ);

5. head(δ1; δ2) := {t | t = α?; t ∈ head(δ1) ∧ t 6= ε} ∪ {α1 ∧ α2?; t | α1?; ε ∈ head(δ1) ∧
α2?; t ∈ head(δ2)}

;

6. head(δ1|δ2) := head(δ1) ∪ head(δ2);

7. head(δ1‖δ2) := {t | t = α?; t ∈ head(δi) ∧ i ∈ {1, 2} ∧ t 6= ε} ∪
{α1 ∧ α2?; t | α1?; ε ∈ head(δi) ∧ α2?; t ∈ head(δj) ∧ {i, j} = {1, 2}}.

N

Definition 14. The function tail(·, ·) maps a guarded action and a program expression to a set
of program expressions.

• If t /∈ head(δ), then tail(t, δ) = ∅.

• If t ∈ head(δ) and t = α?; ε, then tail(t, δ) = {〈〉}.

• If t ∈ head(δ) and t = α1∧ ...∧α2?; t for t ∈ Act\{ε}, then tail(t, δ) is defined by induction
on the combined size of t and δ:

1. tail(t, t′) := {〈〉} for t ∈ Act;1

2. tail(t, δ∗) := {δ′; (δ)∗ | δ′ ∈ tail(t, δ)};
3. tail(t, δ1; δ2) := {δ′; δ2 | δ′ ∈ tail(t, δ1)} ∪ {δ′′ | α1?; ε ∈ head(δ1) ∧ α2?; t ∈ head(δ2) ∧

δ′′ ∈ tail(α2?; t, δ2) ∧
t is of the form (α1 ∧ α2)?; t};

4. tail(t, δ1|δ2) := tail(t, δ1) ∪ tail(t, δ2);

5. tail(t, δ1‖δ2) := {δ′‖δ2 | δ′ ∈ tail(t, δ1)} ∪ {δ1‖δ′ | δ′ ∈ tail(t, δ2)} ∪
{δ′′ | α1?; ε ∈ head(δi) ∧ α2?; t ∈ head(δj) ∧

δ′′ ∈ tail(α2?;α, δj) ∧ {i, j} = {1, 2} ∧
t is of the form (α1 ∧ α2)?; t}.

N

In the next lemma we show that the transition semantics defined in Definition 7 using transition
rules and the program semantics in [BZ13] that uses the functional-style definition with head(·)
and tail(·, ·) coincide.

0Note that t ∈ head(t′) implies t = t′.

10

Lemma 15. Let P = (D, δ) be a program, w a world with w |= D and z ∈ Z.

1. 〈z, δ〉 ∈ Fw iff there exists α?; ε ∈ head(δ) and w, z |= α.

2. 〈z, δ〉 w−→ 〈z · t, δ′〉 iff there exists α?; t ∈ head(δ), δ′ ∈ tail(α?; t, δ) and w, z |= α∧Poss(t).

Proof. We show the claims by induction on the structure of δ.

1. δ = α? : We have 〈z, α?〉 ∈ Fw iff w, z |= α. By definition it holds that head(α?) = {α?; ε}.
δ = δ1; δ2 : We have 〈z, δ1; δ2〉 ∈ Fw implies 〈z, δ1〉 ∈ Fw and 〈z, δ2〉 ∈ Fw. By the

induction hypothesis there are α1; ε ∈ head(δ1), α2; ε ∈ head(δ2) and w, z |= α1 and
w, z |= α2. By definition of head(δ1; δ2) it holds that (α1 ∧ α2)?; ε ∈ head(δ1; δ2) and
it holds that w, z |= α1 ∧ α2.
Since α?; ε ∈ head(δ1; δ2) there are α1?; ε ∈ head(δ1)and α2?; ε ∈ head(δ2) s.t. α =
α1 ∧ α2. By the induction hypothesis and the assumption w, z |= α it follows that
〈z, δ1〉 ∈ Fw and 〈z, δ2〉 ∈ Fw. Therefore, 〈z, δ1; δ2〉 ∈ Fw.

δ = δ1|δ2 : 〈z, δ1|δ2〉 ∈ Fw implies 〈z, δ1〉 ∈ Fw or 〈z, δ2〉 ∈ Fw. By induction it follows
that there exists α1?; ε ∈ head(δ1) with w, z |= α1 or there exists α2?; ε ∈ head(δ2)
with w, z |= α2. Assume w.l.o.g. the latter. Clearly, α2?; ε ∈ head(δ1|δ2).
α?; ε ∈ head(δ1|δ2) and w, z |= α implies α?; ε ∈ head(δ1) or α?; ε ∈ head(δ2). Assume
w.l.o.g. the latter. By induction it follows 〈z, δ2〉 ∈ Fw and therefore 〈z, δ1|δ2〉 ∈ Fw.

δ = δ1‖δ2 : This case can be shown in a similar way as the case δ = δ1; δ2.

The cases for δ = δ′∗ and δ = 〈〉 are trivial.

2. δ = t : We have 〈z, t〉 w−→ 〈z · t, 〈〉〉. Clearly, it holds that t ∈ head(t) and 〈〉 ∈ tail(t, t) and
w, z |= Poss(t).
We have head(t′) = {t′}, tail(t′, t′) = {〈〉} and w, z |= Poss(t′). It holds that 〈z, t′〉 w−→
〈z · t′, 〈〉〉.

δ = δ1; δ2 : First, assume that 〈z, δ1; δ2〉
w−→ 〈z · t, γ; δ2〉 and 〈z, δ1〉

w−→ 〈z · t, γ〉. By the
induction hypothesis it holds that there exists α?; t ∈ head(δ1), γ ∈ tail(α?; t, δ1) and
w, z |= α ∧ Poss(t). By the definition of head and tail we get α?; t ∈ head(δ1; δ2)

and γ; δ2 ∈ tail(α?; t, δ1; δ2). Now, assume 〈z, δ1; δ2〉
w−→ 〈z · t, δ′〉, 〈z, δ1〉 ∈ Fw and

〈z, δ2〉
w−→ 〈z · t, δ′〉. By the first claim of this lemma it holds that there exists

α1?; ε ∈ head(δ1) and w, z |= α1. By the induction hypothesis it follows that there
exists α2?; t ∈ head(δ2), δ′ ∈ tail(α2?; t, δ2) and w, z |= α2∧Poss(t). By the definition
of head and tail we get (α1 ∧ α2)?; t ∈ head(δ1; δ2) and δ′ ∈ tail(α1 ∧ α2?; t, δ1; δ2).
Clearly, we have also w, z |= α1 ∧ α2.
Assume α?; t ∈ head(δ1; δ2), δ′ ∈ tail(α?; t, δ1; δ2) and w, z |= α ∧ Poss(t). First,
assume t 6= ε and α?; t ∈ head(δ1). It follows that there exists γ ∈ tail(α?; t, δ1). By
induction it follows that 〈z, δ1〉

w−→ 〈z · t, γ〉. Therefore, it holds that δ′ = γ; δ2 ∈
tail(α?; t, δ1; δ2) and 〈z, δ1; δ2〉

w−→ 〈z · t, δ′〉.
Next, assume α = α1 ∧ α2 and α1; ε ∈ head(δ1) and α2; t ∈ head(δ2). It holds that
δ′ ∈ tail(α2; t, δ2). By induction it follows that 〈z, δ2〉

w−→ 〈z · t, δ′〉. By claim 1 it also
holds that 〈z, δ1〉 ∈ Fw and therefore 〈z, δ1; δ2〉

w−→ 〈z · t, δ′〉.
The remaining cases for δ = δ1|δ2, δ = δ1‖δ2 and δ = (δ′)∗ can be shown in a similar
way.

It follows that we can obtain all reachable subprograms by a sequence of head and tail appli-
cations. The following lemma is a direct consequence of the lemma above and the definition of
sub(δ):

11

Lemma 16. Let P = (D, δ) be a program. It holds that ρ ∈ sub(δ) iff there exists a sequence
δ0, ..., δn such that

• δ0 = δ, δn = ρ;

• there exists a world w, 〈〉 |= D0, αi?; ti ∈ head(δi), δi+1 ∈ tail(αi?; ti, δi) for i = 0, ..., n
such that w, 〈〉 |= α0 ∧ Poss(t0) and w, t0 · · · tj−1 |= αj ∧ Poss(tj) for j = 1, ..., n.

Having this characterization of the set of reachable subprograms, Lemma 11 is a direct conse-
quence of Lemma 10 in [BZ13].

In addition to the program expressions, we also restrict the structure of the action theory to be
local-effect. Intuitively, this means a fluent can change its value as result of an action application
only for arguments that occur as parameters of this action or are explicitly mentioned as
constants in the SSA.

Definition 17 (Local-effect SSAs). A successor state axiom is local-effect if both γ+
F and γ−F

are disjunctions of formulas that are either of the form ∃~z[a = A(~y)∧φ(~y)], where A is an action
function, ~y contains ~x, ~z is the remaining variables of ~y, and φ(~y) is a fluent formula with free
variables ~y and at most two non-free variables that are all of sort object. The formulas φ(~y) and
φ are called context formulas. A BAT D is local-effect if each SSA in Dpost is local-effect. N

Note, that this definition subsumes the definitions of local-effect BATs given in [VLL08, LL09].
Moreover, the DL-based action descriptions introduced in [BLM+05] can be translated into a
local-effect BAT according to the above definition. Also note that even in this restricted setting
the transition system of the Golog program is infinite: We still have to consider infinitely many
possible worlds over an infinite domain of standard names, since the tests in the program, the
preconditions and the context formulas in the SSAs possibly contain quantifiers that quantify
over the whole domain.

We basically follow the approach from [BZ13] to test whether a ES-C2-CTL∗ formula Φ is
satisfiable in a program P = (D, δ) where D is a local-effect BAT and δ a program expression
over ground actions. It consists of the following steps: First we construct a finite abstraction of
the infinite transition system that retains enough information to test satisfiability. To do this
we introduce the notion of a type of a world such that if in any situation in two worlds the same
relevant formulas are satisfied, then these two worlds are of the same type. Having these types,
we define an equivalence relation on the states of the transition system. Then it is possible
to construct the finite quotient transition system w.r.t. this equivalence relation. Essentially,
this works because the computation of the (finitely many) world types reduces to a bounded
number of consistency checks in the underlying decidable base logic C2.

Given this finite abstraction we can then apply standard model checking techniques to verify
the ES-C2-CTL∗ formula.

First, we introduce some auxiliary notions needed to define the types of worlds.

3.1.1 Regression with Ground Actions

We use an idea from [LL05, LL09] to simplify the SSAs in presence of ground actions only.

Since we have only finitely many ground actions in our program it is enough to consider only the
so called ground instantiations of the SSAs where the action variable a in the SSA is replaced
with a ground action term. Because we have made the unique names assumption for constants
and action functions, such a ground instantiated SSA can be further simplified as shown in the
next lemma.

12

Lemma 18. Let D be a BAT, 2[a]F (~x) ≡ γ+
F ∨ F (~x) ∧ ¬γ−F ∈ Dpost the SSA for the fluent

F (~x) and t = A(~c) a ground action term. For the ground instantiated SSA for F (~x) with t,
given as 2[t]F (~x) ≡ γ+

F

a

t ∨ F (~x) ∧ ¬γ−F
a

t , it holds that both γ+
F

a

t and γ−F
a

t are equivalent to a
disjunctions of the form

~x = ~c1 ∧ φ1 ∨ · · · ∨ ~x = ~cn ∧ φn, (7)

where the vectors of constants ~ci are contained in ~c and the formulas φi are fluent sentences
with i = 1, ..., n.

Proof. This lemma is a direct consequence from the one shown in [LL05].

From now on we assume that in the ground instantiated SSAs the formulas γ+
F

a

t and γ−F
a

t are
of the form 7. We use the notation (~c, φ) ∈ γ+

F

a

t and (~c, φ) ∈ γ−F
a

t if there exists a disjunct of
the form ~x = ~c ∧ φ in γ+

F

a

t and γ−F
a

t , respectively.

As we will see in the following, the restriction to ground actions and local-effect BAT makes
it possible to represent the effects of executing a ground action as a finite set of fluent literals
that can be read off from the ground instantiated SSAs. We define an effect function mapping
a world w, a finite action sequence z and a ground action t to a set of fluent literals if the
precondition Poss(t) is satisfied in the situation represented by w, z.

Definition 19 (Effect Function). Let P = (D, δ) be a Golog program and Lit be the set of all
positive and negative ground fluent atoms, given as follows:

Lit := {F (~c),¬F (~c) | ∃t ∈ Act, φ s.t. (~c, φ) ∈ γ+
F

a

t or (~c, φ) ∈ γ−F
a

t }

The effect function E : W × Z × Act → 2Lit for P is a partial function and if w, z |= Poss(t)
then

E(w, z, t) :={F (~c) ∈ Lit | ∃(~c, φ) ∈ γ+
F

a

t ∧ w, z |= φ} ∪
{¬F (~c) ∈ Lit | ∃(~c, φ) ∈ γ−F

a

t ∧ w, z |= F (~c) ∧ φ}
and otherwise, if w, z 6|= Poss(t), then E(w, z, t) is undefined. N

We illustrate this definition with an example.

Example 20. As an example we consider a simple BAT modeling a blocks word. We have two
fluents On(x, y) saying block x is on top of block y and Clear(x) means that there is no block
on top of block x. We consider a single action move(x, y, z) moving a block x on block y to
block z. There is the following pre-condition axiom in Dpre:

2Poss(move(x, y, z)) ≡ On(x, y) ∧ Clear(x) ∧ Clear(z).

We have the following SSAs for On(x, y) and Clear(x):

2[a]On(x, y) ≡ [∃z.a = move(x, z, y)] ∨On(x, y) ∧ ¬[∃z.a = move(x, y, z)],

2[a]Clear(x) ≡ [∃y, z.a = move(y, x, z)] ∨ Clear(x) ∧ ¬[∃y, z.a = move(y, z, x)].

Consider the initial theory

D0 = {On(c1, c2),¬Clear(c2), Clear(c1), Clear(c3)}

and the ground action move(c1, c2, c3). The effect conditions of the ground instantiated SSAs
with move(c1, c2, c3) look as follows:

γ+
On(~x, a) = ∃z.a = move(x, z, y) γ+

On(~x,move(c1, c2, c3)) ≡ x = c1 ∧ y = c3,

γ−On(~x, a) = ∃z.a = move(x, y, z) γ−On(~x,move(c1, c2, c3)) ≡ x = c1 ∧ y = c2,

γ+
Clear(x, a) = ∃y, z.a = move(y, x, z) γ+

Clear(x,move(c1, c2, c3)) ≡ x = c2,

γ−Clear(x, a) = ∃y, z.a = move(y, z, x) γ−Clear(x,move(c1, c2, c3)) ≡ x = c3.

13

Now, let w be a world such that w, 〈〉 |= D0. As expected, the effect function gives us the
following set of literals:

E(w, 〈〉,move(c1, c2, c3)) = {On(c1, c3),¬On(c1, c2), Clear(c2),¬Clear(c3)}.

N

Next, we show that Reiter’s version of the regression operator can be reformulated using the
effect function. We define our version of the regression operator for a consistent set of fluent
literals and a fluent sentence. A subset E ⊆ Lit is called non-contradictory if there is no fluent
atom F (~c) such that {F (~c),¬F (~c)} ⊆ E.

Definition 21 (Regression Operator). Let F (~v) be a formula where F is a fluent and ~v a
vector of variables or constants and let E ⊆ Lit be non-contradictory. We define the regression
of F (~v) through E, written as [F (~v)]R(E), as follows:

[F (~v)]R(E) :=

(
F (~v) ∨

∨
F (~c)∈E

(~v = ~c)

)
∧

∧
¬F (~c)∈E

(~v 6= ~c)

Let α be a fluent sentence. The fluent sentence αR(E) is obtained by replacing any occurrence
of a fluent F (~v) by [F (~v)]R(E). N

Clearly, it holds that the regression result αR(E) is again a C2 fluent sentence. Intuitively, if
we want to know whether a formula will hold after executing an action, it is sufficient to test
whether the regressed formula is satisfied in the current situation.

Lemma 22. Let D be a BAT, w ∈ W with w |= D, α a fluent sentence and t = A(~c) a ground
action term. For all z ∈ Z it holds that

w, z |= αR(E) iff w, z · t |= α

with E = E(w, z, t).

Proof. We show this claim by induction on the size of the fluent sentence α. As base case we
assume that α is a primitive formula. Let F (~n) = F (n1, ..., nk) with k ∈ {0, 1, 2} be a primitive
formula and E = E(w, z, t) is non-contradictory. We get

F (~n)R(E) =

(
F (~n) ∨

∨
F (~c)∈E

(~n = ~c)

)
∧

∧
¬F (~c)∈E

(~n 6= ~c)

We show that w, z |= F (~n)R(E) iff w, z · t |= F (~n). Since we have made the UNA (see Def. 4
rule 2), it holds that ~n = ~c iff ~n and ~c are identical vectors of standard names. In addition we
have that E is non-contradictory. Therefore, the following equivalence holds:(

F (~n) ∨
∨

F (~c)∈E

(~n = ~c)

)
∧

∧
¬F (~c)∈E

(~n 6= ~c) ≡

∨
F (~c)∈E

(~n = ~c) ∨ F (~n) ∧
∧

¬F (~c)∈E

(~n 6= ~c)

Considering the SSA for F , we get the following equivalence by Lemma 18:

[t]F (~n) ≡ γ+
F

a~x

t ~n ∨ F (~n) ∧ ¬γ−F
a~x

t ~n .

14

It holds that w, z |= γ+
F

a~x

t ~n ∨ F (~n) ∧ ¬γ−F
a~x

t ~n iff w, z · t |= F (~n). It follows from the definition of
E(w, z, t) that

w, z |= γ+
F

a~x

t ~n iff w, z |=
∨

F (~c)∈E(w,z,t)

(~n = ~c).

We show:
w, z |= F (~n) ∧ ¬γ−F

a~x

t ~n iff w, z |= F (~n) ∧
∧

¬F (~c)∈E(w,z,t)

(~n 6= ~c).

We have
F (~n) ∧ ¬γ−F

a~x

t ~n ≡ F (~n) ∧ ¬(~n = ~c1 ∧ φ1 ∨ · · · ∨ ~n = ~cm ∧ φm)

≡ F (~n) ∧ (~n 6= ~c1 ∨ ¬φ1) ∧ · · · ∧ (~n 6= ~cm ∨ ¬φm).

for some number m. First we show that assuming w, z |= F (~n) ∧
∧

¬F (~c)∈E(w,z,t)

(~n 6= ~c) and

w, z 6|= F (~n) ∧ ¬γ−F
a~x

t ~n leads to a contradiction. Since we have w, z |= F (~n) there exists an
i ∈ {1, · · · ,m} such hat w, z 6|= (~n 6= ~ci ∨ ¬φi). It follows that w, z |= (~n = ~ci ∧ φi). This
implies that ~n and ~ci are identical and therefore it is also implied that w, z |= F (~ci)∧ φi holds.
By definition of E(w, z, t) it follows that ¬F (~ci) ∈ E(w, z, t) and therefore ~n 6= ~ci is a conjunct
in

∧
¬F (~c)∈E(w,z,t)

(~n 6= ~c) which is a contradiction to our assumption.

To show the other direction assume to the contrary

w, z |= F (~n) ∧ ¬γ−F
a~x

t ~n and w, z 6|= F (~n) ∧
∧

¬F (~c)∈E(w,z,t)

(~n 6= ~c).

Since w, z |= F (~n) there exists a vector ~c such that ¬F (~c) ∈ E(w, z, t) and ~n and ~c are identical.
By definition of E(w, z, t) there exists an i ∈ {1, · · · ,m} and a disjunct ~n = ~ci ∧ φi in γ−F

a~x

t ~n
such that ~c = ~ci and w, z |= F (~ci) ∧ φi. Therefore we have w, z 6|= ~n 6= ~ci ∨ ¬φi which is a
contradiction to the assumption w, z |= F (~n)∧¬γ−F

a~x

t ~n . This finishes the proof of the base case.

Let α be of the form α1 ∧ α2 or ¬α0. Clearly, α0, α1, α2 are also fluent sentences and we can
apply the induction hypothesis to them. If α is of the form ∀x.α′, ∃≤mx.α′ or ∃≥mx.α′, then
the induction hypothesis can be applied to all fluent sentences of the form α′xn for some n ∈ NO.
Therefore the claim easily follows also for complex α.

An iterated application of the regression operator can be reduced to an application of the
operator for a single set of fluent literals. For a set E ⊆ Lit we define ¬E := {¬l | l ∈ E}
(modulo double negation).

Lemma 23. Let α be a fluent sentence and E,E′ non-contradictory subsets of Lit . It holds
that

[
αR(E′)

]R(E) ≡ αR(E\¬E′∪E′).

Proof. It is sufficient to show the claim for α = F (~v) where F is a fluent and ~v a vector of terms
of sort object. Let L ⊆ Lit be non-contradictory. We define the abbreviations

L+(~v) :=
∨

F (~c)∈L

~v = ~c and L−(~v) :=
∧

¬F (~c)∈L

~v 6= ~c.

Since L is non-contradictory and we have made the unique name assumption it holds that
L+(~v) ∧ L−(~v) ≡ L+(~v). We have

αR(E′) = (F (~v) ∨ E′+(~v)) ∧ E′−(~v)

15

and [
αR(E′)

]R(E)

=

((
[F (~v) ∨ E+(~v)] ∧ E−(~v)

)
∨ E′+(~v)

)
∧ E′−(~v)

≡
(

[F (~v) ∧ E−(~v)] ∨ E+(~v) ∨ E′+(~v)

)
∧ E′−(~v)

≡ [F (~v) ∧ E−(~v) ∧ E′−(~v)]∨
[E+(~v) ∧ E′−(~v)]∨
[E′+(~v) ∧ E′−(~v)]

≡ [F (~v) ∧ E−(~v) ∧ E′−(~v)]∨
[E+(~v) ∧ E′−(~v)]∨
E′+(~v)

Let D = E \ ¬E′ ∪ E′. It is easy to see that it holds that

[E+(~v) ∧ E′−(~v)] ∨ E′+(~v) ≡ D+(~v).

and
[F (~v) ∧ E−(~v) ∧ E′−(~v)] ∨D+(~v) ≡ [F (~v) ∧D−(~v)] ∨D+(~v).

Since D is non-contradictory it holds that

[F (~v) ∧D−(~v)] ∨D+(~v) ≡ [F (~v) ∨D+(~v)] ∧D−(~v)

and we finally get [
F (~v)R(E′)

]R(E) ≡ [F (~v)]R(E\¬E′∪E′).

3.1.2 Types of worlds

Next, we identify a finite set of relevant fluent sentences occurring in the program and the
action theory.

Definition 24 (Context). Let P = (D, δ) be a program. A context C for P is a finite set of
fluent sentences satisfying the following condition: Let α be a fluent sentence. If

• α is a test in δ;

• or α = ϕx~c and there is a ground action A(~c) in δ with 2Poss(A(~x)) ≡ ϕ ∈ Dpre;

• or α = φ and there exists a ground action t in δ and a vector of constants ~c such that
(~c, φ) ∈ γ+

F

a

t or (~c, φ) ∈ γ−F
a

t ;

• or α = F (~c) and there exists a ground action t in δ such that (~c, φ) ∈ γ−F
a

t for some φ,

then α ∈ C. Further we close up C under negation. N

For the states in the transition system TP = (Q,→, I) and a context C for P we introduce
a context labeling LC : Q → 2C that is defined by LC(w, z, ρ) := {α ∈ C | w, z |= α} for all
(w, z, ρ) ∈ Q. We also apply LC only to w, z ∈ W × Z. The context label LC(w, z) is defined
accordingly.

Next, we show some properties of C. Intuitively, the effects of applying a ground action in a
situation w, z depend only on the context label. Furthermore, it depends only on the formulas
in C whether a transition in the transition system TP can be taken or not.

16

Lemma 25. Let C be a context for a program P = (D, δ). Let w0, w1 ∈ W satisfying D and
z0, z1 ∈ Z such that LC(w0, z0) = LC(w1, z1).

1. Let t be a ground action that occurs in δ. It holds that E(w0, z0, t) = E(w1, z1, t).

2. Let ρ ∈ sub(δ). It holds that (w0, z0, ρ)
t→ (w0, z0 · t, ρ′) iff (w1, z1, ρ)

t→ (w1, z1 · t, ρ′)

Proof.

1. Let t = A(~c). The effect function is defined for E(w0, z0, t) iff w0, z0 |= Poss(A(~c)).
According to the equivalence axiom in Dpre we have that Poss(A(~c)) is equivalent to a
fluent sentence ϕ contained in C. Therefore it is implied that w0, z0 |= Poss(A(~c)) iff
w1, z1 |= Poss(A(~c)).

It holds that F (~c′) ∈ E(w0, z0, t) iff (~c′, φ) ∈ γ+
F

a

t and w0, z0 |= φ iff w1, z1 |= φ (by
assumption and φ ∈ C) iff F (~c′) ∈ E(w1, z1, t). It holds that ¬F (~c′) ∈ E(w0, z0, t) iff
(~c′, φ) ∈ γ+

F

a

t and w0, z0 |= F (~c′)∧φ iff w1, z1 |= F (~c′)∧φ (by assumption and φ, F (~c′) ∈ C)
iff ¬F (~c′) ∈ E(w1, z1, t).

2. For any α1∧· · ·∧αn?; t ∈ head(ρ), there exists a formula ϕ ≡ Poss(t) and ϕ ∈ C. It is also
implied that {α1, ..., αn} ⊆ C since ρ ∈ sub(δ) and α1, . . . , αn are tests in δ. By assumption
it follows that w0, z0 |= α1 ∧ · · · ∧ αn ∧ Poss(t) iff w1, z1 |= α1 ∧ · · · ∧ αn ∧ Poss(t) and
therefore (w0, z0, ρ)

t→ (w0, z0 · t, ρ′) iff (w1, z1, ρ)
t→ (w1, z1 · t, ρ′).

Clearly, the context label LC(w, z) is a maximal consistent subset of C. We define an abstraction
of the effect function that takes a maximal consistent subset of C and a ground action as input.
Let P = (D, δ) be a program and C a context for P. Let 2C denote the set of all maximal
consistent subsets of C and 2Lit the set of all non-contradictory subsets of Lit . The abstract
effect function Ê : 2C ×Act→ 2Lit is defined as follows: Let (M, t) ∈ 2C ×Act. If Poss(t) ∈M
then

Ê(M, t) :={F (~c) ∈ Lit | ∃(~c, φ) ∈ γ+
F

a

t ∧ φ ∈M} ∪
{¬F (~c) ∈ Lit | ∃(~c, φ) ∈ γ−F

a

t ∧ {F (~c), φ} ⊆M}.

and otherwise, if Poss(t) /∈ M , then Ê(M, t) is undefined. It follows that Ê(LC(w, z), t) =
E(w, z, t).

Note that even if LC(w, 〈〉) = LC(w
′, 〈〉) holds for two worlds w,w′ it is not implied that also

LC(w, t) = LC(w
′, t) holds for a ground action t. Therefore, the context labels do not provide

sufficient information to partition the set of worlds into equivalence classes which we will call
types in the following. Intuitively, if two worlds are of the same type, we want them to satisfy
the same temporal properties if we execute the program in these worlds. In the following we
use the notation 2Lit to denote the set of all non-contradictory subsets of Lit . First, we define
a set of type elements for a program P and a context C for P:

TE(P, C) := {(α,E) | α ∈ C, E ∈ 2Lit}.

The type of a world is now defined as a set of type elements.

Definition 26 (Type of a World). Let P be a program, C a context for P and w a world with
w |= D. The type of w w.r.t. P and C is given as follows:

type(w) := {(α,E) ∈ TE(P, C) | w, 〈〉 |= αR(E)}.

N

17

To illustrate this definition we give an example.

Example 27. Consider a single fluent OnTable(x), an action remove(x) and an object constant
b. The initial theory is given by D0 = {OnTable(b)}, Dpost contains a single SSA

2[a]OnTable(x) ≡ OnTable(x) ∧ ¬a = remove(x).

and in Dpre we have the axiom

2Poss(remove(x)) ≡ OnTable(x).

As a context for the BAT D and program remove(b) we choose

C = {(¬)OnTable(b), (¬)∃x.OnTable(x)}.

We consider two worlds w0, w1 such that

w0, 〈〉 |= OnTable(b) and
w0, 〈〉 6|= OnTable(b′) for all b′ ∈ NO with b 6= b′

and in w1 it holds that

w1, 〈〉 |= OnTable(b) and
w1, 〈〉 |= OnTable(b′) for some b′ ∈ NO with b 6= b′.

We have to consider three non-contradictory sets of literals L0 = ∅, L+ = {OnTable(b)} and
L− = {¬OnTable(b)}. We abbreviate OnTable(b) by αb and ∃x.OnTable(x) by α∃. The
different types of w0 and w1 are given by:

type(w0) := {(αb, L0), (α∃, L0), (αb, L
+), (α∃, L

+),

(¬αb, L−), (¬α∃, L−)};
type(w1) := {(αb, L0), (α∃, L0), (αb, L

+), (α∃, L
+),

(¬αb, L−), (α∃, L
−)}.

In this simple example b is the only object known to be on the table initially and it is the
only object that can be affected by an action. But nevertheless, since we have only incomplete
information about the initial world, we also have to consider possibly unknown objects. For
example, we don’t know whether there is exactly one object on the table or not. As we see
here, the type of w1 is different from the type of w0, because the formula ∃x.OnTable(x) in
context C remains true in w1 after removing the object b. N

In the next lemma we show some properties of types.

Lemma 28. Consider two worlds w,w′ and their types w.r.t. P and context C for P.

1. It holds that (α,E) ∈ type(w) iff (¬α,E) /∈ type(w) for all (α,E) ∈ TE(P, C).

2. Let z ∈ N ∗A be a sequence of ground actions that occur in δ. If type(w) = type(w′), then
LC(w, z) = LC(w

′, z).

Proof.

18

1. Let (α,E) ∈ TE(P, C). Since C is closed under negation we have also (¬α,E) ∈ TE(P, C).
It holds that:

(¬α,E) /∈ type(w) iff

w, 〈〉 6|= (¬α)R(E) iff

w, 〈〉 6|= ¬(αR(E)) iff

w, 〈〉 |= αR(E) iff
(α,E) ∈ type(w).

2. We show the claim by induction on the length n of z. Let n = 0. It has to be shown that
LC(w, 〈〉) = LC(w

′, 〈〉). It holds that α ∈ LC(w, 〈〉) iff w, 〈〉 |= α iff (α, ∅) ∈ type(w) iff
(α, 〈〉) ∈ type(w′) iff α ∈ LC(w′, 〈〉).
Now, let z = t0t1 · · · tntn+1 and we assume by induction that LC(w, z[0..i]) = LC(w

′, z[0..i])
for all i = 0, . . . , n.
Let Ew0 = E(w, 〈〉, t0) and Ewj+1 = Ewj \ ¬E(w, z[0..j], tj+1) ∪ E(w, z[0..j], tj+1). for j =

0, ..., n. By the induction hypothesis and Lemma 25.1 it holds that Ewk = Ew
′

k for all
k = 0, ..., n + 1. We have α ∈ LC(w, z) iff w, z |= α iff w, 〈〉 |= [α]R(Ew

n+1) (by Lemma 22
and 23) iff (α,Ewn+1) ∈ type(w) iff (α,Ewn+1) ∈ type(w′) iff w′, 〈〉 |= [α]R(Ew

n+1) iff w′, z |= α
iff α ∈ LC(w′, z).

As a consequence of this lemma we can determine E(w, z, t) based on type(w). Consider a
sequence z = t0t1 · · · tn of ground actions in δ. Since Lemma 23 holds we can accumulate the
set of effects of each prefix of z into a single set of literals as follows:

E0 = Ê(LC(w, 〈〉), t0)

Ei+1 = Ei \ ¬Ê(LC(w, z[0..i]), ti+1) ∪ Ê(LC(w, z[0..i]), ti+1).
(8)

for i = 0, ..., n − 1. We define E(w, z) := En. We have that E0 depends only on the type
elements of the form (φ, ∅) in type(w) and the set Ei+1 depends only on the type elements of
the form (φ,Ei) in type(w). Also the context labels of all future situations in a world w are
encoded in type(w) and can be obtained as follows:

LC(w, 〈〉) = {α | (α, ∅) ∈ type(w)}
LC(w, t0) = {α | (α,E0) ∈ type(w)}

LC(w, t0t1) = {α | (α,E1) ∈ type(w)}
...

Now, we are ready to define an equivalence relation on the states of the transition system.

Definition 29. Consider P, C and the transition system TP = (Q,→, I). Let (w, z, ρ), (w′, z′, ρ′)
be states in Q. (w, z, ρ) and (w′, z′, ρ′) are equivalent, written as (w, z, ρ) ' (w′, z′, ρ′) iff
type(w) = type(w′) and E(w, z) = E(w′, z′) and ρ = ρ′. N

Next, we show the desired property that two equivalent states simulate each other, i.e. they are
bisimilar w.r.t. the formulas in C.

Lemma 30. Let C be a context for the program P with the corresponding transition system
TP = (Q,→, I). Let s0, s1 ∈ Q with s0 ' s1.

1. LC(s0) = LC(s1)

19

2. (a) If there exists a state s′0 with s0
t→ s′0 and zs′0 = zs0 · t for some t ∈ Act, then there

exists a state s′1 with s1
t→ s′1, zs′1 = zs1 · t and s′0 ' s′1.

(b) If there exists a state s′1 with s1
t→ s′1 and zs′1 = zs1 · t for some t ∈ Act, then there

exists a state s′0 with s0
t→ s′0, zs′0 = zs0 · t and s′0 ' s′1.

Proof. Let s0 = (w0, z0, ρ) and s1 = (w1, z1, ρ).

1. It holds that α ∈ LC(s0) iff w0, z0 |= α iff w0, 〈〉 |= αR(E(w0,z0)) (see (8)) iff (α,E(w0, z0)) ∈
type(w0) iff (α,E(w1, z1)) ∈ type(w1) (since type(w0) = type(w1) and E(w0, z0) =
E(w1, z1)) iff α ∈ LC(s1).

2. Assume w.l.o.g. (w0, z0, ρ)
t→ (w0, z0 · t, ρ′). By Claim 1 of this lemma it follows that

LC(w0, z0) = LC(w1, z1). If follows by Lemma 25.2 that (w1, z1, ρ)
t→ (w1, z1 · t, ρ′). Since

LC(w0, z0) = LC(w1, z1) it follows that Ê(LC(w0, z0), t) = Ê(LC(w1, z1), t) and therefore
also E(w0, z0 · t) = E(w1, z1 · t). This implies (w0, z0 · t, ρ′) ' (w1, z1 · t, ρ′).

Basically, this property of ' allows us to replace the transition system TP by the finite quotient
transition system of TP w.r.t. ' that is defined as follows.

Definition 31 (Quotient transition system). Let C be a context for a program P with TP =
(Q,→, I). The quotient transition system TP/' = (Q/',�, I/') is defined with

Q/' := {[s]' | s ∈ Q},

� := {[s]'
t
� [s′]' | s

t→ s′} and
I/' := {[s]' | s ∈ I}.

N

The equivalence class [w, z, ρ]', i.e. a state in the quotient transition system, can be character-
ized by the type type(w), the subset E(w, z) of Lit and ρ ∈ sub(δ). There are only finitely many
world-types, subsets of Lit and reachable subprograms of δ. Therefore, the quotient transition
system is finite. To show how the quotient transition system can be used to decide whether
TP |= Φ for a ES-C2-CTL∗ formula Φ we introduce the notion of propositional abstraction.
Consider TP = (Q,→, I) of a program P, a ES-C2-CTL∗ state formula Φ and a context C for P
that also contains all C2-fluent sentences occurring in Φ. For any α ∈ C we introduce an atomic
proposition α̂. We define the relevant set of atomic proposition Ĉ := {α̂ | α ∈ C}. Let Φ̂ denote
the propositional CTL∗ formula that is obtained from Φ by replacing any fluent sentence in Φ
by the corresponding atomic proposition. Further, we introduce a labeling L̂C that labels the
states in TP/' with subsets of Ĉ as follows: L̂C([s]') := {α̂ | α ∈ LC(s)}. L̂C([s]') is uniquely
defined since all states in the equivalence class [s]' have the same context label. We define a
binary relation ∼̂ := {(s, q) ∈ Q × Q/' | s ∈ q}, i.e. we have s ∼̂ q if s is contained in the
equivalence class represented by q. For two paths πs = s0s1s2 · · · and πq = q0q1q2 · · · in TP
and TP/', respectively, we write πs ∼̂ πq iff si ∼̂ qi for all i = 0, 1, 2, · · · . We assume the usual
definition of satisfaction of propositional state and path CTL∗ formulas in states and paths in
a propositional transition system.

Lemma 32. Let TP = (Q,→, I) be the transition system of a program P, C a context for P,
TP/' the quotient transition system equipped with the labeling function L̂C as defined above, Φ
a ES-C2-CTL∗ state formula over C and Ψ a ES-C2-CTL∗ path formula over C.

20

1. If s ∼̂ q, then TP , s |= Φ iff TP/', q |= Φ̂.

2. If πs ∼̂ πq, then TP , πs |= Ψ iff TP/', πq |= Ψ̂.

Proof. We prove both claims by induction over the structure of Φ and Ψ. Let s ∼̂ q and Φ = α.
By Lemma 30 equivalent states have the same context label. Therefore it holds that α ∈ LC(s)
iff α̂ ∈ L̂C(q). It follows that TP , s |= α iff TP/', q |= α̂.

Assume that Claim 1 holds for Φ1,Φ2 and Claim 2 holds for Ψ.

Φ = ¬Φ1 : It holds that TP , s |= ¬Φ1 iff TP , s 6|= Φ1 iff TP/', q 6|= Φ̂1 (by induction hypothesis)
iff TP/', q |= ¬̂Φ1.

Φ = Φ1 ∧ Φ2 : It holds that TP , s |= Φ1 ∧ Φ2 iff TP , s |= Φ1 and TP , s |= Φ2 iff TP/', q |= Φ̂1

and TP/', q |= Φ̂2 (by induction hypothesis) iff TP/', q |= Φ̂1 ∧ Φ2.

Φ = EΨ : First, we show that TP , s0 |= EΨ implies TP/', q0 |= ÊΨ with s0 ∼̂ q0. There exists
a path πs0 = s0s1s2 · · · starting in s0 such that TP , πs0 |= Ψ. Since s0 ∼̂ q0 we have
q0 = [s0]', i.e. q0 represents the equivalence class that contains s0. By construction of
TP/' there exists a path πq0 = [s0]'[s1]'[s2]' · · · in TP/' starting in q0. By definition
it holds that si ∼̂ [si]' for all i = 0, 1, 2, . . . and therefore πs0 ∼̂ πq0 . By applying the
induction hypothesis for Ψ we get TP/', πq0 |= Ψ̂ and finally TP/', q0 |= ÊΨ.

Now, assume TP/', q0 |= ÊΨ. There exists a path πq0 = q0q1q2 · · · in TP/' starting
in q0 such that TP/', πq0 |= Ψ̂. By construction of TP/' there exists a sequence of
states s′0, s′1, s′2 ∈ Q with qi = [s′i]' for all i = 0, 1, 2, . . . such that s′0s′1s′2 · · · is path in
TP . Since s0 ' s′0 and Lemma 30 holds, there exists a path πs0 starting in s0 of the
form πs0 = s0s1s2 · · · with si ' s′i for all i = 0, 1, 2, · · · . It follows that si ∼̂ qi and
πs0 ∼̂ πq0 . By applying the induction hypothesis for Ψ it follows that TP , πs0 |= Ψ and
hence TP , s0 |= EΨ.

Assume Claim 1 holds for Φ and Claim 2 for Ψ1 and Ψ2. Let πs0 ∼̂ πq0 .

Ψ = Φ : Assume πs0 starts in s0 and πq0 starts in q0. It holds that TP , πs0 |= Φ iff TP , s0 |= Φ

iff TP/', q0 |= Φ̂ (with s0 ∼̂ q0 and induction hypothesis) iff TP/', πq0 |= Φ̂.

Ψ = ¬Ψ1 : It holds that TP , πs0 |= ¬Ψ1 iff TP , πs0 6|= Ψ1 iff TP/', πq0 6|= Ψ̂1 (by induction) iff
TP/', πq0 |= ¬̂Ψ1.

Ψ = Ψ1 ∧Ψ2 : It holds that TP , πs0 |= Ψ1 ∧ Ψ2 iff TP , πs0 |= Ψ1 and TP , πs0 |= Ψ2 iff
TP/', πq0 |= Ψ̂1 and TP/', πq0 |= Ψ̂2 (by induction) iff TP/', πq0 |= Ψ̂1 ∧Ψ2.

Ψ = XΨ1 : It holds that TP , πs0 |= XΨ1 iff TP , πs0 [1..] |= Ψ1 iff TP/', πq0 [1..] |= Ψ̂1 (by applying
the induction hypothesis to Ψ1 and πs0 [1..] ∼̂ πq0 [1..]) iff TP/', πq0 |= X̂Ψ1.

Ψ = Ψ1 U Ψ2 : It holds that TP , πs0 |= Ψ1 U Ψ2 iff there exists a k such that TP , πs0 [k..] |= Ψ2

and TP , πs0 [j..] |= Ψ1 for all j = 0, . . . , k − 1. iff TP/', πq0 [k..] |= Ψ̂2 and TP/', πq0 [j..] |=
Ψ̂1 for all j = 0, . . . , k − 1 (by induction) iff TP/', πq0 |= Ψ̂1 U Ψ2.

21

Together with the labeling L̂C the quotient transition system TP/' can be viewed as a finite
propositional transition system. To verify whether TP/' |= Φ̂ we can apply standard model
checking techniques for CTL∗. It remains to be shown how the quotient transition system can
be constructed.

3.1.3 Constructing the Quotient Transition System

Next, we describe how the quotient transition system can be constructed. Consider a program
P = (D, δ) and a context C. First, we guess a set of type elements τ ⊆ TE(P, C) such that for
all α ∈ C and for all non-contradictory E ⊆ Lit , it holds that either (α,E) ∈ τ or (¬α,E) ∈ τ .
Using the regression operator we test whether τ is indeed a type of a world that satisfies the
BAT. This is done by checking consistency of the C2 KB, given by D0 ∪ {αR(E) | (α,E) ∈ τ}.
If this KB is consistent, then there exists a world w, 〈〉 |= D0 with type(w) = τ . We get that
(τ, ∅, δ) represents the initial state [(w, 〈〉, δ)]' in the quotient transition system TP/'.

In detail, the construction works as follows:

First we introduce some auxiliary notions:

To construct the state space of the finite quotient transition system we consider the set of all
types, denoted by Types(P, C). For a set τ with τ ⊆ TE(P, C) it holds that τ ∈ Types(P, C) iff

1. For all (α,E) ∈ TE(P, C) it holds that (α,E) ∈ τ iff (¬α,E) /∈ τ (modulo double nega-
tion).

2. There exists w ∈ W and w, 〈〉 |= D0 ∪ {αR(E) | (α,E) ∈ τ}.

Obviously, for a world w, 〈〉 |= D0 it holds that type(w) ∈ Types(P, C) and for any τ ∈
Types(P, C) there exists world w, 〈〉 |= D0 with type(w) = τ .

Definition 33 (Abstract transition system). Let C be a context for the Golog program P =
(D, δ) and 2Lit the set of all non-contradictory subsets of Lit . The abstract transition system
T̃P = (Q̃, ↪→, Ĩ, LC) with ↪→⊆ Q̃×Act× Q̃, Ĩ ⊂ Q̃ and labeling function LC : Q̃→ 2C is defined
as follows:

• Q̃ := Types(P, C)× 2Lit × sub(δ);

• LC(τ, E, ρ) := {α | (α,E) ∈ τ};

• Ĩ := {(τ, E, ρ) | E = ∅, ρ = δ};

• It holds that ((τ, E, ρ), t, (τ, E′, ρ′)) ∈ ↪→ iff one of the following conditions is satisfied:

1. There exists α1 ∧ · · · ∧αn?; t ∈ head(ρ) s.t. αi ∈ LC(τ, E, ρ) for all i = 1, ..., n and we
have either t = ε or ϕ~x~c ∈ LC(τ, E, ρ) where 2Poss(A(~x)) ≡ ϕ ∈ Dpre and t = A(~c).
And it holds that

E′ := E \ ¬Ê(LC(τ, E, ρ), t) ∪ Ê(LC(τ, E, ρ), t)

and we have ρ′ ∈ tail(α1 ∧ · · · ∧ αn?; t, ρ′).

2. There exists no α1 ∧ · · · ∧αn?; t ∈ head(ρ) s.t. αi ∈ LC(τ, E, ρ) for all i = 1, ..., n and
either t = ε or ϕ~x~c ∈ LC(τ, E, ρ) where 2Poss(A(~x)) ≡ ϕ ∈ Dpre and t = A(~c) and it
holds that t = f, ρ′ = ρ and

E′ := E \ {¬Fail} ∪ {Fail}.

22

N

Next, we show that the construction of the abstraction transition system indeed yields the
quotient transition system.

Lemma 34. Let P = (D, δ) be a Golog program, C a context and TP/' the quotient transition
system and T̃P = (Q̃, ↪→, Ĩ) the abstract transition system. For a transition in TP/' it holds

that [(w, z, ρ)]'
t
� [(w, z′, ρ′)]' iff (type(w), E(w, z), ρ)

t
↪→ (type(w), E(w, z′), ρ′).

Proof. ⇒: Assume t 6= f. From [(w, z, ρ)]'
t
� [(w, z′, ρ′)]' it follows that there exists α1 ∧

· · · ∧ αn?; t ∈ head(ρ) and ρ′ ∈ tail(α1 ∧ · · · ∧ αn?; t, ρ) such that w, z |= α1 ∧ · · · ∧ αn
and w, z |= Poss(t) and we have E(w, z′) = E(w, z) \ ¬Ê(L(w, z, ρ), t) ∪ Ê(L(w, z, ρ), t).
Therefore, it holds that (αi, E(w, z)) ∈ type(w) and (ϕ,E(w, z)) ∈ type(w) for Poss(t) ≡
ϕ ∈ Dpre. It is implied that (type(w), E(w, z), ρ)

t
↪→ (type(w), E(w, z′), ρ′). Now, assume

t = f. There is no guarded action in the head of ρ such that the guard and the pre-
condition is satisfied. Therefore, the second case in the definition of ↪→ applies here and
we get (type(w), E(w, z), ρ)

t
↪→ (type(w), E(w, z′), ρ′) with z′ = z · f and ρ′ = ρ.

⇐: Consider a transition in T̃P of the form (τ, E, ρ)
t
↪→ (τ, E′, ρ′). There exists (w, z) ∈ W ×Z

with τ = type(w) and E = E(w, z). Assume that the first case in the definition of ↪→
applies. There exists α?; t ∈ head(ρ) and (αi, E) ∈ type(w) for the conjuncts αi in α. It
is implied that w, z |= α and w, z |= Poss(t). Therefore, we have (w, z, ρ)

t→ (w, z · t, ρ′)
by Lemma 15 and [(w, z, ρ)]'

t
� [(w, z · t, ρ′)]'. Clearly, the claim also holds if t = f.

The decision procedure for checking satisfiability of an ES-C2-CTL∗ formula Φ in a Golog
program P = (D, δ) works as follows. First, we choose a context C that covers all fluent sentences
that occur in Φ and construct the finite abstract transition system based on this context.
Then we apply standard model checking techniques to check satisfiability of the propositional
abstraction Φ̂ in the finite abstract transition system.

To analyze the complexity of the decision procedure consider a Golog program P = (D, δ) and
a property Φ. Obviously, it is possible to choose a context C covering also all fluent sentences
occurring in Φ with size linear in the size of P and Φ. To build the abstract transition system
we guess a subset τ ⊆ TE(P, C) such that either (α,E) ∈ τ or (¬α,E) ∈ τ for all α ∈ C and all
E ∈ 2Lit . The set τ is exponentially large in the size of P and C. To test whether τ represents
the type of a world we have to test consistency of an exponentially large C2 knowledge base.
Consistency in C2 can be decided in NexpTime [PST00]. Therefore checking whether τ is a
type can be done in 2-NexpTime. Given a type τ , there are |2Lit×sub(δ)|many reachable states
in the abstract transition system. The size of |2Lit × sub(δ)| is at most exponential in the size
of P. This reachable fragment can be constructed by reading off the value of the effect function
from the SSAs in the BAT D and by using the head and tail functions in exponential time in
the size of the input. The satisfiability test of the propositional abstraction Φ̂ in the reachable
fragment from the initial state (τ, ∅, δ) can be done in polynomial space in the size of Φ̂ and the
size of the reachable fragment. It is implied that this test can be done in exponential space and
therefore in double-exponential time in the size of the input. Therefore, the complexity upper
bound of this decision procedure is in 2-NexpTime.

Theorem 35. Satisfiability of a ES-C2-CTL∗ formula in a Golog program P = (D, δ) consisting
of a local-effect BAT D and a program over ground actions δ is decidable in 2-NexpTime.

23

3.2 Undecidable Extensions

In this section we show that the assumptions we made in order to establish the decidability re-
sults presented in the previous section are not arbitrary, but actually necessary. More precisely,
we employed the following restrictions:

1. Fluent formulas have to be expressed in the base logic C2.

2. Successor state axioms are all local-effect.

3. Disallow pick operators in Golog programs.

These restrictions are necessary in the sense that once we drop any one of them, the verification
problem becomes undecidable again.

Cleary, dropping restriction 1 immediately leads to undecidability as this would allow us to
formulate arbitrary first-order sentences as tests and preconditions:

Theorem 36. The verification problem is undecidable if we drop restriction 1.

Proof. To see why, consider a basic action theory D = D0 ∪Dpre ∪Dpost where D0 = Dpost = ∅
and Dpost = {2Poss(A) ≡ >}. That is to say we have an empty initial theory, no successor
state axioms and some action A that is always possible. Furthermore, suppose δ is the program
Aω, which repeats A indefinitely. Let α be a sentence that mentions at most rigid predicates
and functions, which implies that the truth value of α does not change by the application of
actions. Then α is valid iff EFα is valid in Tδ. Since any sentence of first-order logic corresponds
to such an α, the proposition follows.

In the following two subsections, we discuss the remaining two restrictions.

3.2.1 Undecidability due to Non-Local Effects

In this subsection, we show that the verification problem becomes undecidable again once we
allow arbitrary SSAs, but still restrict ourselves to ground actions only.

To prove undecidability, we show that the resulting fragment is sufficiently expressive to simulate
a Turing machine. That is, given a Turing machine T , we construct a BAT DT and a program
δT such that the runs they admit correspond precisely to the computations of T .

Here we consider a deterministic Turing machine with a right-infinite tape. We assume w.l.o.g.
that it never attempts to move its head left when its head is on the leftmost tape cell. Let
T = (Q,Σ,Γ, θ, q0,2, qF) be a Turing Machine, where

• Q is a finite set of states;

• Σ is the finite input alphabet;

• Γ is the finite tape alphabet, Γ = Σ ∪ {2};

• θ : Q× Γ→ Q× Γ× {`, n, r} is the transition function;

• q0 ∈ Q is the initial state;

• 2 ∈ Γ is the blank symbol;

• qF ∈ Q is the (accepting) final state.

24

Note that in the following we will assume that there is no input word, i.e. the Turing machine
starts on an empty tape. This is without loss of generality since a run of some Turing machine
M on an input word u can always be simulated by devising a Turing machine Mu that first
writes u on the tape, goes back to the initial position and from then on operates like M . In
other words, the Halting Problem is equally undecidable if the machine starts on the empty
tape as it is if an input word is given.

A configuration of the Turing machine T is a word uqv with u, v ∈ Γ∗ and q ∈ Q. The meaning
of the word uqv is that the right-infinite tape contains the word uv with only blanks behind it
and T is in state q, and the head is on the leftmost symbol of v.

Fluents and Rigids

The BAT DT uses the following fluents:

• the unary fluent predicate Pos(x), intuitively denoting that the head is currently at tape
cell x;

• for each q ∈ Q, a 0-ary fluent Stateq, intuitively denoting that the machine is currently
in state q;

• for each b ∈ Γ, a unary fluent Symbol b(x), intuitively denoting that tape cell x currently
holds symbol b;

• the unary fluent predicate Visited(x), intuitively meaning that the tape cell x was visited
at least once during the run of the Turing machine;

• the unary fluent predicate Right(x), denoting the rightmost cell that has been visited.

Moreover, we have

• the binary rigid predicate NextTo(x, y), intuitively meaning that tape cell y is directly
right of cell x.

Actions

The BAT DT will use the following actions: one 0-ary action apply(q,b,q′,b′,m) for each transition
(q, b) ∈ Q× Γ and (q′, b′,m) ∈ Q× Γ× {`, r, n} such that θ(q, b) = (q′, b′,m).

Constants

Finally, we have a distinguished constant pos0 representing the leftmost tape cell.

Initial Theory

The initial theory contains the following sentences. First, the head is initially on the leftmost
tape cell pos0 (and is only on pos0):

∀x.(Pos(x) ≡ x = pos0). (9)

25

Furthermore, the machine is in the initial state:

Stateq0 ∧
∧

q∈Q\{q0}

¬Stateq. (10)

Next, all tape cells are blank:

∀x.(Symbol2(x) ∧
∧
b∈Σ

¬Symbol b(x)). (11)

Moreover, only the cell under the head’s starting position has been visited, being the rightmost
such cell:

∀x.(Visited(x) ≡ x = pos0); (12)
∀x.(Right(x) ≡ x = pos0). (13)

Finally, each tape cell has a cell right next to it:

∀x.∃y.NextTo(x, y). (14)

We don’t require that every cell has exactly one cell next to it. We also allow several cells next
to one cell. The idea is to represent a configuration of the Turing machine T in a world w
satisfying the reduction BAT DT as an acyclic graph of visited cells with a special structure.
The nodes of this graph are the standard names n such that Visited(n) is true in the world
w. The edge relation is given by the NextTo predicate. The standard name pos0 is the root of
this graph, i.e. pos0 has no ingoing edges (there is no n such that NextTo(n, pos0) holds) and
all nodes in the graph are connected to pos0. For one node n in the graph there can be several
paths from pos0 to this node n. But all these paths have the same length. This means we can
distinguish the nodes by their distance from pos0. All nodes with the same distance belong
to the same level and represent a single tape cell in the configuration. There are only finitely
many levels since a configuration of T is a given as a finite word.

We have to ensure that the changes corresponding to a transition action affect all nodes on the
current level, i.e. the level labeled with the fluent Pos , simultaneously. Intuitively, a move of
the head to the left or right means that we go one level to the left or to the right in the graph,
respectively. The rightmost level (i.e. the nodes with the largest distance from pos0) in the
graph are labeled with the fluent Right . To enforce the desired structure we require that a cell
labeled with Right has only cells next to it that are not visited. This constraint is modeled as
a precondition of each transition action.

Preconditions

A transition can be taken just in case the Turing machine is in the correct state and reads the
correct symbol. In addition we have to require that a cell x with Right(x) has only cells next
to it that are not visited. For every transition θ(q, b) = (q′, b′,m), we thus have

2Poss(apply(q,b,q′,b′,m)) ≡ Stateq ∧ ∃x.Pos(x) ∧ ∀x.(Pos(x) ⊃ Symbolb(x))

∧ ∀x, y.
(
Right(x) ∧ NextTo(x, y) ⊃ ¬V isited(y)

)
.

Successor State Axioms

For the fluents, we have the following successor state axioms. First, the Stateq fluents change
according to the transition action that is applied:

2[a]Stateq ≡
∨

θ(q′,b′)=(q,b,m)

a = apply(q′,b′,q,b,m)

26

Similarly, the symbol under the head changes accordingly. That is a cell contains a symbol b
just in case it was just overwritten with b or it already contained b and was not overwritten by
anything else.

2[a]Symbol b(x) ≡ (15)

(Pos(x) ∧
∨

θ(q′,b′)=(q,b,m)

a = apply(q′,b′,q,b,m))

∨ Symbol b(x) ∧

¬(Pos(x) ∧
∨

θ(q′,b′)=(q′′,b′′,m′)
b′′ 6=b

a = apply(q′,b′,q′′,b′′,m′))

The head position again changes according to the movement m of the applied transition action:

2[a]Pos(x) ≡
∨

θ(q,b)=(q′,b′,m)

a = apply(q,b,q′,b′,m) ∧NextPosm(x)

Above, NextPosm is an abbreviation as follows:

NextPos`(x)
def
= ∃y.

(
Pos(y) ∧ NextTo(x, y)

)
∧ V isited(x); (16)

NextPosr(x)
def
= ∃y.

(
Pos(y) ∧NextTo(y, x)

)
; (17)

NextPosn(x)
def
= Pos(x). (18)

Thus, a cell x belongs to the resulting head position, i.e. the next level in the configuration
tree, after moving left, if this cell x was visited before and is on the left-hand side of a cell y in
the current level according to the NextTo(x, y) relation. Such an x always exists since we have
assumed that in the leftmost position pos0 the Turing machine don’t move to the left. The
result of moving right is determined in a similar fashion, but here x can be also a non-visited
cell. If the head is not moved, the new position is identical to the previous one.

Note that due to the existentially quantified subformulas ∃y. . . . above, the successor state
axioms are not local-effect. The new position x of the head depends on individuals y that are
not given as arguments of the action term.

2[a]Visited(x) ≡ (19)∨
θ(q,b)=(q′,b′,m)

a = apply(q,b,q′,b′,m) ∧ NextPosm(x)

∨Visited(x)

A cell has been visited iff we just moved there or it has been visited before. The rightmost
visited cell is a non-visited cell reached by moving right or the previous rightmost visited cell
if the head was not in the previous rightmost position or we didn’t move to the right.

2[a]Right(x) ≡ (20)∨
θ(q,b)=(q′,b′,r)

a = apply(q,b,q′,b′,r) ∧ NextPosr(x) ∧ ¬Visited(x)

∨ Right(x) ∧ ¬
(
Pos(x) ∧

∨
θ(q,b)=(q′,b′,r)

a = apply(q,b,q′,b′,r)

)

Golog Program

Let θ = {((q1
1 , b

1
1), (q2

1 , b
2
1,m1)), . . . , ((q1

n, b
1
n), (q2

n, b
2
n,mn))}. We define our Golog program to

perform a non-terminating loop, where in each cycle a transition action is executed. Inside the

27

loop we have a non-deterministic choice over all transition actions:

δT
def
= (apply(q11 ,b

1
1,q

2
1 ,b

2
1,m1) | · · · | apply(q1n,b

1
n,q

2
n,b

2
n,mn))

∗ (21)

We note that all transitions (if any) of δT always lead to a configuration which has δT as
program again:

Lemma 37. If 〈〈〉, δT 〉
w−→∗〈z, δ′〉, then δ′ = δT .

Proof. This property follows directly from the transition semantics.

In this paper, we use a notation for Turing machine configurations that includes all blank
symbols for previously visited cells. For example, if we start with an empty tape, then write
the string “100”, move left and erase the last “0”, we write:

q02 ` 1q12 ` 10q22 ` 100q32 ` 10q402 ` 10q522

For the correctness proof, we need the following notion of a situation encoding a Turing con-
figuration.

Definition 38. Let uqv be a Turing machine configuration with q ∈ Q, u = b1 . . . bk (k ≥ 0)
and v = bk+1 · · · bk+l (l ≥ 0). Then we define

Encode(uqv)
def
= Stateq ∧

∧
q′∈Q\{q}

¬Stateq′ (22)

∧ ∃x1 . . . ∃xk+l.
∧
i 6=j

(xi 6= xj) ∧
k+l−1∧
i=1

NextTo(xi, xi+1)

∧ ∀y(Pos(y) ≡ y = xk+1)

∧ ∀y(Right(y) ≡ y = xk+l)

∧
k+l∧
i=1

Symbol bi(xi) ∧
∧
b 6=bi

¬Symbol b(xi)

∧
k+l∧
i=1

Visited(xi) ∧ ∀y.
k+l∧
i=1

(y 6= xi) ⊃ ¬Visited(y)

N

In the following, we rely on the definition from [LL04] that, given a world w and a BAT D,
determines a world wD that is like w in the initial situation, but where Poss and the other
fluents are interpreted in successive situations such that the precondition and successor state
axioms from D are satisfied. wD is unique and guaranteed to exist, and if w |= D0, then
wD |= D.

The central ingredient for the undecidability proof is the fact that a Turing machine configu-
ration is reachable just in case there is a world that encodes that configuration in a situation
reachable by the corresponding program transitions:

Lemma 39. q02 `∗ uqv iff there is some world w with w |= DT such that 〈〈〉, δT 〉
w−→∗〈z, δT 〉

and w, z |= Encode(uqv).

Proof. We prove this property by induction on the length of the computation. The base case
is trivial: The only Turing configuration reachable in zero steps is q02, and clearly D0 |=

28

Encode(q02). Since D0 is obviously satisfiable, there is a world w with w |= D0, hence wDT |=
DT , and wDT |= Encode(q02).

“⇒”: We construct a canonical model as follows. Assume that the set of object standard names
is given by NO = {pos0, n1, n2, . . . }. Let w be a world so that for all z,

w[NextTo(pos0, n1), z] = 1

w[NextTo(ni, nj), z] = 1 iff j = i+ 1, for all i = 1, 2, 3, . . .

w[Pos(n), 〈〉] = 1 iff n = pos0

w[Visited(n), 〈〉] = 1 iff n = pos0

w[Right(n), 〈〉] = 1 iff n = pos0

w[Stateq0 , 〈〉] = 1

w[Stateq, 〈〉] = 0 iff q ∈ Q \ {q0}
w[Symbol2(n), 〈〉] = 1 for all n ∈ NO
w[Symbol b(n), 〈〉] = 0 for all n ∈ NO, for all b ∈ Σ.

Now let wT = wDT . Clearly, wT |= DT . It is also easy to check that the model correctly
captures the computations of the Turing machine, and that hence 〈〈〉, δT 〉

w−→ ∗〈z, δT 〉 and
w, z |= Encode(uqv) if z consists of the transition actions apply(q,b,q′,b′,m) for the transitions
used in the computation q02 `∗ uqv.

“⇐”: In case of the if-direction, let w be some world with w |= DT such that

〈〈〉, δT 〉
w−→∗〈z, δT 〉

w−→ 〈z · t, δT 〉

and w, z · t |= Encode(uqv), where t is equal to some apply(q,b,q′,b′,m). It is straightforward
to show that w, z |= Encode(u′q′v′) for some predecessor configuration u′q′v′. By induction,
q02 `∗ u′q′v′, and it can then be shown that u′q′v′ ` uqv.

As a consequence, we get:

Corollary 40. If q02 `∗ uqF v then EFStateqF is satisfiable in P = (DT , δT).

The other direction also follows from the construction of P = (DT , δT). Due to the undecid-
ability of the Halting Problem for Turing machines, we obtain:

Theorem 41. Satisfiability of a ES-C2-CTL∗ formula in a Golog program over ground actions
based on an unrestricted BAT is undecidable.

3.2.2 Undecidability due to Pick Operators

In order to show that the verification problem is equally undecidable in case we introduce pick
operators (but require SSAs to be local-effect again), we proceed as follows. We represent a
given Turing machine T in a very similar manner as in the previous section. As before, we use
the fluents Pos(x), Stateq, Symbolb(x), Visited(x) and Right(x) as well as the rigid predicate
NextTo(x, y) and the constant pos0 to encode configurations.

Actions

The BAT DT uses one binary action apply(q,b,q′,b′,m)(x, y) for each transition θ(q, b) = (q′, b′,m).
Different from the previous subsection, actions thus now have two parameters. Intuitively, the
x parameter denotes the current tape cell, while y is the one to which the head moves after
writing a new symbol.

29

Initial Theory

The initial theory is exactly the same as before, i.e. consists of formulas (9) to (14).

Preconditions

For every transition action apply(q,b,q′,b′,m)(x, y) we have:

2Poss(apply(q,b,q′,b′,m)(x, y)) ≡ ∀x, y.
(
Right(x) ∧ NextTo(x, y) ⊃ ¬V isited(y)

)
Successor State Axioms

Successor state axioms are very similar to the ones in the previous subsection. The only
differences are that we now have to quantify action parameters that are not arguments of
the corresponding fluent, and that we do not require the NextPos subformulas since the next
position of the head is determined by the second action parameter:

2[a]Pos(x) ≡
∨

θ(q,b)=(q′,b′,m)

∃y.a = apply(q,b,q′,b′,m)(y, x)

2[a]Stateq ≡
∨

θ(q′,b′)=(q,b,m)

∃x, y.a = apply(q′,b′,q,b,m)(x, y)

2[a]Symbol b(x) ≡ (Pos(x) ∧
∨

θ(q′,b′)=(q,b,m)

∃y.a = apply(q′,b′,q,b,m)(x, y)

∨ Symbol b(x) ∧

¬(Pos(x) ∧
∨

θ(q′,b′)=(q′′,b′′,m′)
b′′ 6=b

∃y.a = apply(q′,b′,q′′,b′′,m′)(x, y))

2[a]Visited(x) ≡
∨

θ(q,b)=(q′,b′,m)

∃y.a = apply(q,b,q′,b′,m)(y, x) ∨ Visited(x)

2[a]Right(x) ≡
∨

θ(q,b)=(q′,b′,r)

∃y.a = apply(q,b,q′,b′,r)(y, x) ∧ ¬Visited(x)

∨ Right(x) ∧ ¬
(
Pos(x) ∧

∨
θ(q,b)=(q′,b′,r)

∃y.a = apply(q,b,q′,b′,r)(x, y)
)

Note that the above axioms are indeed local-effect according to Definition 17.

Golog Program

Let θ = {((q1
1 , b

1
1), (q2

1 , b
2
1,m1)), . . . , ((q1

n, b
1
n), (q2

n, b
2
n,mn))}. The Golog program we use in

this construction does a non-terminating loop, where in each a cycle a subbranch is chosen
that executes one of the rules of the Turing machine. Action parameters are chosen using pick
operators, and test operators ensure that the machine is in the correct state and reads the right
symbol to apply that rule and that the x parameter is indeed the current head position and y

30

the resulting one:

δT
def
= (δ(q11 ,b11,q21 ,b21,m1) | · · · | δ(q1n,b1n,q2n,b2n,mn))

ω (23)

δ(q,b,q′,b′,`)
def
= (24)

πxπy.

Pos(x) ∧ NextTo(y, x) ∧ Visited(y) ∧ Stateq ∧ Symbol b(x)?;

apply(q,b,q′,b′,`)(x, y)

δ(q,b,q′,b′,r)
def
= (25)

πxπy.

Pos(x) ∧ NextTo(x, y) ∧
(
Right(x) ∨ Visited(y)

)
∧ Stateq ∧ Symbol b(x)?;

apply(q,b,q′,b′,r)(x, y)

δ(q,b,q′,b′,n)
def
= (26)

πx.

Pos(x) ∧ Stateq ∧ Symbol b(x)?;

apply(q,b,q′,b′,n)(x, x)

Since we can show Lemmas 37 and 39 as well as Corollary 40 accordingly for the construction
in this subsection, we get:

Theorem 42. Satisfiability of an ES-C2-CTL∗ formula in a Golog program over non-ground
actions based on a local-effect BAT is undecidable.

4 Related Work

Apart from what was discussed in the introduction, other researchers have looked at decid-
able verification in the context of the Situation Calculus. One line of research is followed by
De Giacomo, Lespérance and Patrizi [DLP12] who show decidability for first-order µ-calculus
properties for a class of BATs that only admit finitely many instances of fluents to hold. In
contrast, our approach also allows fluents with infinite extensions. Moreover, their notion of
boundedness is a semantical condition that is in general undecidable to check, whereas our ap-
proach relies on purely syntactical restrictions. In related work, Hariri et al. [HCM+13] consider
the verification of µ-calculus properties in the context of light-weight DLs, where new informa-
tion may be added at any time. Among other things, they show that decidability obtains if the
added information is bounded. But in contrast to the action theories we consider, the frame
problem is not solved in their underlying action formalism, i.e. the actions are memoryless.

5 Conclusion

We presented results on the verification of temporal properties for Golog programs. We have
extended previous decidability results as presented in [CLL13] and [BZ13] to a fragment that
uses the expressive, yet decidable fragment C2 of FOL as base logic, that allows for local-effect
actions with arbitrarily many arguments, and that admits properties expressed in the branching-
time temporal logics CTL∗ over C2 axioms. Decidability is obtained by constructing a finite
abstraction of the infinite transition system induced by the Golog program and its action
theory. Note that the restrictions we impose (decidable base logic, ground actions only, and

31

local-effects) are all necessary in the sense that we can show [ZC13] that dropping any one of
them would instantly render the verification problem undecidable again.

There are many directions for future work. We plan to further investigate the exact compu-
tational complexity and evaluate the approach practically by means of an implementation. It
would also be interesting to extend our results in terms of expressiveness, e.g. by considering
SSAs that go beyond local-effect theories, or by re-introducing non-ground actions in a limited,
decidable fashion.

References

[BCF+99] Burgard, Wolfram ; Cremers, Armin B. ; Fox, Dieter ; Hähnel, Dirk ; Lake-
meyer, Gerhard ; Schulz, Dirk ; Steiner, Walter ; Thrun, Sebastian: Expe-
riences with an Interactive Museum Tour-Guide Robot. In: Artificial Intelligence
114 (1999), Nr. 1–2, S. 3–55

[BCM+03] Baader, Franz (Hrsg.) ; Calvanese, Diego (Hrsg.) ; McGuinness, Deborah L.
(Hrsg.) ; Nardi, Daniele (Hrsg.) ; Patel-Schneider, Peter F. (Hrsg.): The De-
scription Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press, 2003

[BLM+05] Baader, Franz ; Lutz, Carsten ; Miličić, Maja ; Sattler, Ulrike ; Wolter,
Frank: Integrating Description Logics and Action Formalisms: First Results. In:
Veloso, Manuela M. (Hrsg.) ; Kambhampati, Subbarao (Hrsg.): Proceedings of
the Twentieth National Conference on Artificial Intelligence (AAAI 2005), AAAI
Press, 2005, S. 572–577

[BLM10] Baader, Franz ; Liu, Hongkai ; Mehdi, Anees ul: Verifying Properties of Infinite
Sequences of Description Logic Actions. In: Coelho, Helder (Hrsg.) ; Studer,
Rudi (Hrsg.) ; Wooldridge, Michael (Hrsg.): Proceedings of the Nineteenth Eu-
ropean Conference on Artificial Intelligence (ECAI 2010) Bd. 215, IOS Press, 2010
(Frontiers in Artifical Intelligence and Applications), S. 53–58

[BZ13] Baader, Franz ; Zarrieß, Benjamin: Verification of Golog Programs over De-
scription Logic Actions. In: Fontaine, Pascal (Hrsg.) ; Ringeissen, Christophe
(Hrsg.) ; Schmidt, Renate A. (Hrsg.): Proceedings of the Ninth International Sym-
posium on Frontiers of Combining Systems (FroCoS’13) Bd. 8152, Springer-Verlag,
2013 (Lecture Notes in Artificial Intelligence)

[CL08] Claßen, Jens ; Lakemeyer, Gerhard: A Logic for Non-Terminating Golog Pro-
grams. In: Brewka, Gerhard (Hrsg.) ; Lang, Jérôme (Hrsg.): Proceedings of the
Eleventh International Conference on the Principles of Knowledge Representation
and Reasoning (KR 2008), AAAI Press, 2008, S. 589–599

[CLL13] Claßen, Jens ; Liebenberg, Martin ; Lakemeyer, Gerhard: On Decidable Ver-
ification of Non-terminating Golog Programs. In: Ji, Jianmin (Hrsg.) ; Strass,
Hannes (Hrsg.) ; Wang, Xun (Hrsg.): Proceedings of the 10th International Work-
shop on Nonmonotonic Reasoning, Action and Change (NRAC 2013), 2013, S.
13–20

[DLP12] De Giacomo, Giuseppe ; Lespérance, Yves ; Patrizi, Fabio: Bounded Situation
Calculus Action Theories and Decidable Verification. In: Proc. KR 2012, 2012

[FL08] Ferrein, Alexander ; Lakemeyer, Gerhard: Logic-based Robot Control in Highly
Dynamic Domains. In: Robotics and Autonomous Systems (2008)

32

[GLL00] Giacomo, Giuseppe D. ; Lespérance, Yves ; Levesque, Hector J.: ConGolog,
a concurrent programming language based on the situation calculus. In: Artificial
Intelligence 121 (2000), Nr. 1–2, S. 109–169

[GS10] Gu, Yilan ; Soutchanski, Mikhail: A description logic based situation calculus.
In: Annals of Mathematics and Artificial Intelligence 58 (2010), Nr. 1–2, S. 3–83

[GTR97] Giacomo, Giuseppe D. ; Ternovska, Evgenia ; Reiter, Raymond: Non-
terminating Processes in the Situation Calculus. In: Working Notes of “Robots,
Softbots, Immobots: Theories of Action, Planning and Control”, AAAI’97 Work-
shop, 1997

[HCM+13] Hariri, Babak B. ; Calvanese, Diego ; Montali, Marco ; Giacomo, Giuseppe D.
; Masellis, Riccardo D. ; Felli, Paolo: Description Logic Knowledge and Action
Bases. In: Journal of Artificial Intelligence Research 46 (2013), S. 651–686. http:
//dx.doi.org/10.1613/jair.3826. – DOI 10.1613/jair.3826

[LL04] Lakemeyer, Gerhard ; Levesque, Hector J.: Situations, Si! Situation Terms, No!
In: Dubois, Didier (Hrsg.) ; Welty, Christopher A. (Hrsg.) ; Williams, Mary-
Anne (Hrsg.): Proceedings of the Ninth International Conference on the Principles
of Knowledge Representation and Reasoning (KR 2004), AAAI Press, 2004, S. 516–
526

[LL05] Liu, Yongmei ; Levesque, Hector J.: Tractable Reasoning with Incomplete First-
Order Knowledge in Dynamic Systems with Context-Dependent Actions. In: Kael-
bling, Leslie P. (Hrsg.) ; Saffiotti, Alessandro (Hrsg.): IJCAI, Professional Book
Center, 2005. – ISBN 0938075934, S. 522–527

[LL09] Liu, Yongmei ; Lakemeyer, Gerhard: On First-Order Definability and Com-
putability of Progression for Local-Effect Actions and Beyond. In: Boutilier,
Craig (Hrsg.): Proceedings of the Twenty-First International Joint Conference on
Artificial Intelligence (IJCAI 2009), AAAI Press, 2009, S. 860–866

[LL10] Lakemeyer, Gerhard ; Levesque, Hector J.: A semantic characterization of a
useful fragment of the situation calculus with knowledge. In: Artificial Intelligence
175 (2010), Nr. 1, S. 142–164. – in press

[LRL+97] Levesque, Hector J. ; Reiter, Raymond ; Lespérance, Yves ; Lin, Fangzhen
; Scherl, Richard B.: GOLOG: A Logic Programming Language for Dynamic
Domains. In: Journal of Logic Programming 31 (1997), Nr. 1–3, S. 59–83

[MH69] McCarthy, John ; Hayes, Patrick: Some philosophical problems from the stand-
point of artificial intelligence. In: Meltzer, B. (Hrsg.) ; Michie, D. (Hrsg.):
Machine Intelligence 4. New York : American Elsevier, 1969, S. 463–502

[PST00] Pacholski, Leszek ; Szwast, Wieslaw ; Tendera, Lidia: Complexity Results for
First-Order Two-Variable Logic with Counting. 2000

[Rei01] Reiter, Raymond: Knowledge in Action: Logical Foundations for Specifying and
Implementing Dynamical Systems. MIT Press, 2001

[VLL08] Vassos, Stavros ; Lakemeyer, Gerhard ; Levesque, Hector J.: First-Order
Strong Progression for Local-Effect Basic Action Theories. In: Brewka, Gerhard
(Hrsg.) ; Lang, Jérôme (Hrsg.): Proceedings of the Eleventh International Con-
ference on the Principles of Knowledge Representation and Reasoning (KR 2008),
AAAI Press, 2008, S. 662–672

33

[ZC13] Zarrieß, Benjamin ; Claßen, Jens: On the Decidability of Verifying
LTL Properties of Golog Programs / Chair of Automata Theory, TU Dres-
den. Dresden, Germany, 2013 (13-10). – LTCS-Report. – See http://lat.inf.tu-
dresden.de/research/reports.html.

34

