
Technische Universität Dresden
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

Hybrid Unification in the Description Logic EL

Franz Baader Oliver Fernández Gil Barbara Morawska

LTCS-Report

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nöthnitzer Str. 46

Dresden

Hybrid Unification in the Description Logic EL

Franz Baader Oliver Fernández Gil
Barbara Morawska∗

Theoretical Computer Science, TU Dresden, Germany

July 25, 2013

Abstract

Unification in Description Logics (DLs) has been proposed as an in-
ference service that can, for example, be used to detect redundancies in
ontologies. For the DL EL, which is used to define several large biomedical
ontologies, unification is NP-complete. However, the unification algorithms
for EL developed until recently could not deal with ontologies containing
general concept inclusions (GCIs). In a series of recent papers we have made
some progress towards addressing this problem, but the ontologies the de-
veloped unification algorithms can deal with need to satisfy a certain cycle
restriction. In the present paper, we follow a different approach. Instead
of restricting the input ontologies, we generalize the notion of unifiers to
so-called hybrid unifiers. Whereas classical unifiers can be viewed as acyclic
TBoxes, hybrid unifiers are cyclic TBoxes, which are interpreted together
with the ontology of the input using a hybrid semantics that combines fix-
point and descriptive semantics. We show that hybrid unification in EL is
NP-complete and introduce a goal-oriented algorithm for computing hybrid
unifiers.

∗Supported by DFG under grant BA 1122/14-2

1

Contents

1 Introduction 3

2 The Description Logic EL 5

2.1 The concept description language 5

2.2 Classical ontologies and subsumption 6

2.3 Hybrid ontologies . 6

2.4 Subsumption w.r.t. hybrid EL-ontologies 7

3 Hybrid unification in EL 9

3.1 Flat unification problems . 11

3.2 Local unifiers . 14

4 Some properties of proof trees I 15

5 Hybrid EL-unification is NP-complete 18

6 A goal-oriented algorithm for hybrid EL-unification 24

6.1 Soundness . 28

6.2 Some properties of proof trees II 36

6.3 Completeness . 46

6.4 Termination and complexity . 50

7 Conclusions 52

2

1 Introduction

Description logics [5] are a well-investigated family of logic-based knowledge rep-
resentation formalisms. They can be used to represent the relevant concepts of
an application domain using concept descriptions, which are built from concept
names and role names using certain concept constructors. The DL EL, which
offers the constructors conjunction (u), existential restriction (∃r.C), and the top
concept (>), has recently drawn considerable attention since, on the one hand,
important inference problems such as the subsumption problem are polynomial
in EL, even in the presence of GCIs [11]. On the other hand, though quite in-
expressive, EL can be used to define biomedical ontologies, such as the large
medical ontology SNOMEDCT.1 From a semantic point of view, concept names
and concept descriptions represent sets of individuals, whereas role names repre-
sent binary relations between individuals. For example, using the concept names
Head_injury and Severe, and the role names finding and status, we can describe
the concept of a patient with severe head injury as

Patient u ∃finding.(Head_injury u ∃status.Severe). (1)

In a DL ontology, one can use concept definitions to introduce abbreviations for
concept descriptions. For example, we could use the definition Head_injury ≡
Injury u ∃finding_site.Head to define Head_injury as an injury that is located at
the head. More generally, GCIs can be used to require that certain inclusions
hold in all models of the ontology. For example,

∃finding.∃status.Severe v ∃status.Emergency (2)

is a GCI that says that a severe finding entails an emergency status.

Knowledge representation systems based on DLs provide their users with various
inference services that allow them to deduce implicit knowledge from the explic-
itly represented knowledge. For instance, the subsumption algorithm allows one
to determine subconcept-superconcept relationships. For example, the concept
description (1) is subsumed by (i.e., is a subconcept of) the concept description
∃finding.∃status.Severe. With respect to the GCI (2), it is thus also subsumed
by ∃status.Emergency, i.e., in all models of this GCI, patients with severe head
injury have an emergency status.

Unification in DLs has been proposed in [8] as a novel inference service that
can, for instance, be used to detect redundancies in ontologies. For example,
assume that one developer of a medical ontology describes the concept of a patient
with severe head injury using the concept description (1), whereas another one
represents it as

Patient u ∃finding.(Severe_injury u ∃finding_site.Head). (3)
1see http://www.ihtsdo.org/snomed-ct/

3

These two concept descriptions are not equivalent, but they are nevertheless
meant to represent the same concept. They can obviously be made equivalent by
introducing definitions for the concept names Head_injury and Severe_injury: if
we define Head_injury ≡ Injury u ∃finding_site.Head and Severe_injury ≡ Injury u
∃status.Severe, then the two concept descriptions (1) and (3) are equivalent w.r.t.
these definitions. If such definitions exist, we say that the descriptions are unifi-
able, and call the TBox consisting of these definitions a unifier. More precisely, it
is required that this TBox is acyclic, i.e., there are no cyclic dependencies between
the definitions.

To motivate our interest in unification w.r.t. GCIs, assume that the second de-
veloper uses the description

Patient u ∃status.Emergency u ∃finding.(Severe_injury u ∃finding_site.Head) (4)

instead of (3). The descriptions (1) and (4) are not unifiable without additional
GCIs, but they are unifiable, with the same unifier as above, if the GCI (2) is
present in a background ontology.

In [6], we were able to show that unification in the DL EL (without background
ontology) is NP-complete. In addition to a brute-force “guess and then test”
NP-algorithm [6], we have also developed a goal-oriented unification algorithm
for EL, in which nondeterministic decisions are only made if they are triggered
by “unsolved parts” of the unification problem [7]. In [7] it was also shown that
these two approaches for unification of EL-concept descriptions (without any
background ontology) can easily be extended to the case of an acyclic TBox as
background ontology without really changing the algorithms or increasing their
complexity. For more general GCIs, such a simple solution is no longer possible.

In [3], we extended the brute-force “guess and then test” NP-algorithm from [6]
to the case of GCIs. Unfortunately, the algorithm is complete only for ontologies
that satisfy a certain restriction on cycles, which, however, does not prevent
all cycles. For example, the cyclic GCI ∃child.Human v Human satisfies this
restriction, whereas the cyclic GCI Human v ∃parent.Human does not. In [4],
we introduced a more practical, goal-oriented unification algorithm that can also
deal with role hierarchies and transitive roles, but still needs the ontology (now
consisting of GCIs and role axioms) to be cycle-restricted. At the moment, it is
not clear how similar brute-force or goal-oriented algorithms could be obtained
for the general case without cycle-restriction.

In this paper, we follow another line of attack on this problem. Instead of re-
stricting the input ontology, we allow cyclic TBoxes to be used as unifiers. Sub-
sumption w.r.t. cyclic TBoxes in EL has been investigated in detail in [1]. In
addition to the classical descriptive semantics, it also makes sense to use greatest
fixpoint semantics (gfp-semantics) for such TBoxes. For example, w.r.t. this se-
mantics, the definition X ≡ ∃parent.X describes exactly those domain elements
that are the origin of an infinite parent-chain, whereas descriptive semantics would

4

also allow the empty set to be an interpretation of X, even if there are infinite
parent-chains. Hybrid semantics deals with the case where a TBox interpreted
with gfp-semantics is combined with GCIs that are interpreted with descriptive
semantics [12, 16]. Its introduction was originally motivated by the fact that the
least common subsumer (lcs) w.r.t. a set of GCIs interpreted with descriptive
semantics need not exist. For example, w.r.t. the GCIs

Human v ∃parent.Human and Horse v ∃parent.Horse, (5)

there is no least concept description (w.r.t. subsumption) that subsumes both
Human and Horse. What elements of these two concepts have in common is
that they are the origin of an infinite parent-chain, and thus the concept X with
definition X ≡ ∃parent.X is their lcs, if we interpret this definition with gfp-
semantics, but the GCIs (5) still with descriptive semantics. A hybrid unifier is
a cyclic TBox that, together with the background ontology consisting of GCIs,
entails the unification problem w.r.t. hybrid semantics. We will show that hybrid
unification in EL, i.e., the problem of testing whether a hybrid unifier exists,
is NP-complete. In addition, we will introduce a goal-oriented algorithm for
computing hybrid unifiers.

2 The Description Logic EL

The expressiveness of a DL is determined both by the formalism for describing
concepts (the concept description language) and the terminological formalism,
which can be used to state additional constraints on the interpretation of concepts
in a so-called ontology.

2.1 The concept description language

The concept description language considered in this paper is called EL. Starting
with a finite setNC of concept names and a finite setNR of role names, EL-concept
descriptions are built from concept names using the constructors conjunction
(C u D), existential restriction (∃r.C for every r ∈ NR), and top (>). Since
in this paper we only consider EL-concept descriptions, we will usually dispense
with the prefix EL.

On the semantic side, concept descriptions are interpreted as sets. To be more
precise, an interpretation I = (∆I , ·I) consists of a non-empty domain ∆I and
an interpretation function ·I that maps concept names to subsets of ∆I and
role names to binary relations over ∆I . This function is inductively extended to
concept descriptions as follows:

>I := ∆I , (C uD)I := CI ∩DI , (∃r.C)I := {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}

5

2.2 Classical ontologies and subsumption

A concept definition is an expression of the form X ≡ C where X is a concept
name and C is a concept description, and a general concept inclusion (GCI) is
an expression of the form C v D, where C,D are concept descriptions. An
interpretation I is a model of this concept definition (this GCI) if it satisfies
XI = CI (CI ⊆ DI). This semantics for GCIs and concept definitions is usually
called descriptive semantics.

A TBox is a finite set T of concept definitions that does not contain multiple
definitions, i.e., {X ≡ C,X ≡ D} ⊆ T implies C = D. Note that we do not
prohibit cyclic dependencies among the concept definitions in a TBox, i.e., when
defining a concept X we may (directly or indirectly) refer to X. An acyclic TBox
is a TBox without cyclic dependencies. An ontology is a finite set of GCIs. The
interpretation I is a model of a TBox (ontology) iff it is a model of all concept
definitions (GCIs) contained in it.

A concept description C is subsumed by a concept descriptionD w.r.t. an ontology
O (written C vO D) if every model of O is also a model of the GCI C v D. We
say that C is equivalent to D w.r.t. O (C ≡O D) if C vO D and D vO C. As
shown in [11], subsumption w.r.t. EL-ontologies is decidable in polynomial time.

Note that TBoxes can be seen as special kinds of ontologies since concept defi-
nitions X ≡ C can of course be expressed by GCIs X v C,C v X. Thus, the
above definition of subsumption also applies to TBoxes. However, in our hybrid
ontologies we will interpret concept definitions using greatest fixpoint semantics
rather than descriptive semantics.

2.3 Hybrid ontologies

We assume in the following that the set of concept names NC is partitioned
into the set of primitive concepts Nprim and the set of defined concepts Ndef .
In a hybrid TBox, concept names occurring on the left-hand side of a concept
definition are required to come from the set Ndef , whereas GCIs must not contain
concept names from Ndef .

Definition 1 (Hybrid EL-ontologies). A hybrid EL-ontology is a pair (O, T),
where O is an EL-ontology containing only concept names from Nprim , and T is
a (possibly cyclic) EL-TBox such that X ≡ C ∈ T for some concept description
C iff X ∈ Ndef .

The idea underlying the definition of hybrid ontologies is the following: O can be
used to constrain the interpretation of the primitive concepts and roles, whereas
T tells us how to interpret the defined concepts occurring in it, once the inter-
pretation of the primitive concepts and roles is fixed.

6

A primitive interpretation J is defined like an interpretation, with the only dif-
ference that it does not provide an interpretation for the defined concepts. A
primitive interpretation can thus interpret concept descriptions built over Nprim

and NR, but it cannot interpret concept descriptions containing elements of Ndef .
Given a primitive interpretation J , we say that the (full) interpretation I is based
on J if it has the same domain as J and its interpretation function coincides
with J on Nprim and NR.

Given two interpretations I1 and I2 based on the same primitive interpretation
J , we define I1 �J I2 iff XI1 ⊆ XI2 for all X ∈ Ndef .

It is easy to see that the relation �J is a partial order on the set of interpretations
based on J . In [1] the following was shown: given an EL-TBox T and a primitive
interpretation J , there exists a unique model I of T such that

• I is based on J ;

• I ′ �J I for all models I ′ of T that are based on J .

We call such a model I a gfp-model of T .

Definition 2 (Semantics of hybrid EL-ontologies). The interpretation I is a
hybrid model of the hybrid EL-ontology (O, T) iff I is a gfp-model of T and the
primitive interpretation J it is based on is a model of O.

It is well-known that gfp-semantics coincides with descriptive semantics for acyclic
TBoxes. Thus, if T is actually acyclic, then I is a hybrid model of (O, T)
according to the semantics introduced in Definition 2 iff it is a model of T ∪ O
w.r.t. descriptive semantics, i.e., iff I is a model of every GCI in O and of every
concept definition in T .

2.4 Subsumption w.r.t. hybrid EL-ontologies

Definition 3. Let (O, T) be a hybrid EL-ontology and C,D EL-concept descrip-
tions. Then C is subsumed by D w.r.t. (O, T) (written C vgfp,O,T D) iff every
hybrid model of (O, T) is also a model of the GCI C v D.

As shown in [12, 16], subsumption w.r.t. hybrid EL-ontologies is also decidable
in polynomial time.

Here, we sketch the proof-theoretic approach for deciding subsumption from [16]
since our algorithms for hybrid unification in EL are based on it. The proof
calculus is parametrized with a hybrid EL-ontology (O, T) and a finite set of
GCIs ∆ for which we want to decide subsumption. A sequent for (O, T) and ∆
is of the form C vn D, where C,D are sub-descriptions of concept descriptions

7

C vn C (Refl) C vn > (Top) C v0 D (Start)

C vn E
C uD vn E (AndL1)

D vn E
C uD vn E (AndL2)

C vn D C vn E
C vn D u E (AndR)

C vn D
∃r.C vn ∃r.D (Ex)

C vn D
X vn D (DefL)

D vn C
D vn+1 X (DefR)

C vn E F vn D
C vn D (GCI)

for X ≡ C ∈ T for X ≡ C ∈ T for E v F ∈ O

Figure 1: The calculus HC(O, T ,∆).

occurring in O, T , and ∆, and n ≥ 0. If (O, T) and ∆ are clear from the context,
we will sometimes simply say sequent without specifying (O, T) and ∆ explicitly.

The rules of theHybrid EL-ontologyCalculus HC(O, T ,∆) are depicted in Fig. 1.
Again, if (O, T) and ∆ are clear from the context, we will sometimes dispense
with specifying them explicitly and just talk about the calculus HC. The rules of
this calculus can be used to derive new sequents from sequents that have already
been derived. For example, the sequents in the first row of the figure can always
be derived without any prerequisites, using the rules (Refl), (Top), and (Start),
respectively. Using the rule (AndR), the sequent C vn D u E can be derived in
case both C vn D and C vn E have already been derived. Note that the rule
Start applies only for n = 0. Also note that, in the rule (DefR), the index is
incremented when going from the prerequisite to the consequent.

A derivation in HC(O, T ,∆) can be represented in an obvious way by a proof
tree whose nodes are sequents: a proof tree for C vn D has this sequent as its
root, instances of the rules Refl, Top, and Start as leaves, and each parent-child
relation corresponds to an instance of a rule of HC other than Refl, Top, and
Start (see [16] for more details)

Definition 4. Let C,D be sub-descriptions of concept descriptions occurring in
O, T , and ∆. Then we say that C v∞ D can be derived in HC(O, T ,∆) if all
sequents C vn D for n ≥ 0 can be derived using the rules of HC(O, T ,∆).

The calculus HC is sound and complete for subsumption w.r.t. hybrid EL-ontologies
in the following sense.

Theorem 5 (Soundness and Completeness of HC). Let (O, T) be a hybrid EL-
TBox, ∆ a finite set of GCIs, and C,D sub-descriptions of concept descriptions

8

occurring in O, T , and ∆. Then C vgfp,O,T D iff C v∞ D can be derived in
HC(O, T ,∆).

In [16], soundness and completeness of HC is actually formulated for a restricted
setting where ∆ is empty and C,D are elements of Ndef that occur as left-hand
sides in T . It is, however, easy to see that the proof given in [16] generalizes to
the above theorem.

For n ∈ N ∪ {∞}, we collect the GCIs C v D such that C vn D is derivable in
HC(O, T ,∆) in the set Dn(O, T ,∆). Obviously, D0(O, T ,∆) consists of all GCIs
built from sub-descriptions of concept descriptions occurring in O, T , and ∆, and
it is not hard to show that Dn+1(O, T ,∆) ⊆ Dn(O, T ,∆) holds for all n ≥ 0 [16].
Thus, to compute D∞(O, T ,∆), one can start with D0(O, T ,∆), and then com-
pute D1(O, T ,∆),D2(O, T ,∆), . . ., until Dm+1(O, T ,∆) = Dm(O, T ,∆) holds
for some m ≥ 0, and thus Dm(O, T ,∆) = D∞(O, T ,∆). Since the cardinality of
the set of sub-descriptions is polynomial in the size of the input O, T , and ∆, the
computation of each set Dn(O, T ,∆) can be done in polynomial time, and we
can be sure that only polynomially many such sets need to be computed until an
m with Dm+1(O, T ,∆) = Dm(O, T ,∆) is reached. This shows that the calculus
HC(O, T ,∆) indeed yields a polynomial-time subsumption algorithm (see [16] for
details).

3 Hybrid unification in EL

We will first introduce the new notion of hybrid unification and then relate it to
the notion of unification in EL w.r.t. background ontologies considered in [3, 4].

Definition 6. Let O be an EL-ontology containing only concept names from
Nprim . An EL-unification problem w.r.t. O is a finite set of GCIs Γ = {C1 v
D1, . . . , Cn v Dn} (which may also contain concept names from Ndef). The
TBox T is a hybrid unifier of Γ w.r.t. O if (O, T) is a hybrid EL-ontology that
entails all the GCIs in Γ, i.e. , C1 vgfp,O,T D1, . . . , Cn vgfp,O,T Dn. We call such
a TBox T a classical unifier of Γ w.r.t. O if it is acyclic.

It is easy to see that the notion of a classical unifier indeed corresponds to the
notion of a unifier introduced in [3, 4]. In fact, Nprim and Ndef respectively
correspond to the sets of concept constants and concept variables in previous
papers on unification in DLs. Using acyclic TBoxes rather than substitutions as
unifiers is also not a relevant difference. As explained in [2], by unfolding concept
definitions, the acyclic TBox T can be transformed into a substitution σT such
that Ci vT ∪O Di iff σT (Ci) vO σT (Di). Conversely, replacements X 7→ E of a
substitution σ can be expressed as concept definitions X ≡ E in a corresponding
acyclic TBox. In contrast, hybrid unifiers cannot be translated into substitutions
since the unfolding process would not terminate for a cyclic TBox.

9

Obviously, any classical unifier is a hybrid unifier, but the converse need not hold.
The following is an example of an EL-unification problem w.r.t. a background
ontology that has a hybrid unifier, but no classical unifier.

Example 7. Let O be the ontology consisting of the GCIs (5), and

Γ := {Human v X,Horse v X,X v ∃parent.X},

where X ∈ Ndef and Human,Horse ∈ Nprim . Intuitively, this unification problem
asks for a concept such that all horses and humans belong to this concept and
every element of it has a parent also belonging to it.

It see that T := {X ≡ ∃parent.X} is a hybrid unifier of Γ w.r.t. O. In fact, we
have already mentioned in the introduction that X is then the lcs of Human and
Horse, and obviously the hybrid ontology (O, T) also entails the third GCI in Γ.
This unification problem does not have a classical unifier.

Assume to the contrary, that an acyclic TBox T is a classical unifier of Γ w.r.t.
O and let σT be the corresponding substitution. We know that σT solves ev-
ery subsumption in Γ, i.e. Human vO σT (X), Horse vO σT (X) and σT (X) vO
∃parent.σT (X) must hold. We also can assume without loss of generality that σT
is a ground substitution.

In the argument below, we will use the fact that the ground subsumptions can
be easily decided with existing procedures [11].

One can easily see that σT (X) cannot be > since > 6vO ∃parent.>. Thus, let
σT (X) be a ground concept description C (i.e. it does not contain concepts from
Ndef). Hence Human vO C, Horse vO C and C vO ∃parent.C .

To show the contradiction, we prove that such C cannot exist. For that we use the
characterization of subsumption in the presence of GCIs given in [3] and proceed
by induction on the role depth of C, rd(C).

Base case is when rd(C) = 0. Then C is a conjunction of concept names. But
we can check that no concept name A can satisfy Human vO A and Horse vO A
at the same time.

Assume now that rd(C) = n and that no concept description C ′ of the smaller role
depth satisfies both subsumptions at the same time: Human vO C ′, Horse vO C ′.

In general C may be a conjunction of concept names and existential restrictions
C1u. . . ,uCn. Obviously for each Ci both subsumptions: Human vO Ci, Horse vO
Ci must be satisfied. By the base case, rd(Ci) > 0 for each Ci.

Since and rd(Human) = rd(Horse) = 0 and rd(Ci) > 0 neither of the pairs of the
above subsumptions are structural [3]. Therefore there must be concept names
or existential restrictions Ai1, . . . , Ain, Bi in O such that:

Human vO Ai1, . . . ,Human vO Ain, Bi vO Ci

10

where all these subsumptions are structural and also Ai1 u · · · uAin vO Bi holds.

In general Bi may be a concept name or existential restriction from O, but since
rd(Ci) > 0, Bi must be an existential restriction, Bi = ∃parent.Bi

1. Obviously
since rd(Ci) > 0, Ci has to be an existential restriction ∃parent.C ′i.

By the definition of structural subsumption, B1
1 u · · · u Bn

1 vO C ′1 u · · · u C ′n.
Notice that if C ′1u · · · uC ′n = >, then σT (X) = ∃parent.>, but this is impossible,
since we can easily check that ∃parent.> 6vO ∃parent∃parent.>.

Now each Bi
1 is either Human or Horse.

If any Bi
1 is Horse, then Bi = ∃parent.Horse, which leads to contradition, since

then Human vO ∃parent.Horse which does not hold.

If each Bi
1 is Human, then Human vO C ′1 u · · · u C ′n. But since the role depth of

C ′1 u · · · u C ′n is smaller than rd(C), hence by induction we have that Horse 6vO
C ′1 u · · · u C ′n.

Now since the subsumption Horse vO C must also hold, because of role depth
difference between Horse and C, we must again have concept names or existential
restrictions A′i1, . . . , A′

i
n, B

′i in O for each Ci such that:

Horse vO A′i1, . . . ,Horse vO A′im, B′
i vO Ci

where all these subsumptions are structural and also A′i1u· · ·uA′
i
m vO B′

i holds.

For the same reason as above B′i must be an existential restriction from O,
B′i = ∃parent.B′1

i. B′1
i is either Human or Horse.

If anyB′1
i is Human, then we have a contradition, because then Horse vO ∃parent.Human

should hold, but it does not.

Hence each B′1
i is Horse. But this leads also to a contradiction because it implies

that Horse vO C ′1 u · · · u C ′n.

3.1 Flat unification problems

To simplify the technical development, it is convenient to normalize the unification
problem appropriately. To introduce this normal form, we need the notion of an
atom. An atom is a concept name or an existential restriction. Obviously, every
EL-concept description C is a finite conjunction of atoms, where > is considered
to be the empty conjunction. An atom is called flat if it is a concept name or an
existential restriction of the form ∃r.A for a concept name A.

The GCI C v D is called flat if C is a conjunction of n ≥ 0 flat atoms and D
is a flat atom. The unification problem Γ w.r.t. the ontology O is called flat if
both Γ and O consist of flat GCIs.

11

C1 u ∃r.D̂ u C2 ρ E −→ {A ≡ D̂, C1 u ∃r.A u C2 ρ E} (R1)

E ρ C1 u ∃r.D̂ u C2 −→ {E ρ C1 u ∃r.A u C2, A ≡ D̂} (R2)

E ≡ B1 u · · · u Bn −→ {E v B1, . . . , E v Bn, B1 u · · · u Bn v E} (R3)
E ≡ ∃r.B −→ {E v ∃r.B, ∃r.B v E} (R4)

E v B1 u · · · u Bn −→ {E v B1, . . . , E v Bn} (R5)

Figure 2: Rules used to normalize a general TBox.

Flattening of an ontology. To transform a given ontology O into a flat on-
tology, we use a slightly modified normalization procedure proposed in [10] that
consists of the exhaustive application of rules (R1)− (R5) shown in Figure 2. In
these rules C1, C2, E stand for possibly empty conjunctions of concept descrip-
tions, D̂ is a concept description that is neither a concept name nor >, A is
always a new concept name not occurring in O or Γ, r ∈ NR, ρ ∈ {v,≡} and
B,B1, . . . , Bn represent concept names.

First, rules (R1), (R2) are exhaustively applied to obtain a new ontology that
consists of GCIs constructed from conjunctions of flat atoms and additional flat
concept definitions. Second, the application of rules (R3), (R4) transforms those
remaining concept definitions into subsumptions, (R5) transforms these subsump-
tions into the required form.

It is clear that the number of applications of rules (R1), (R2) is limited linearly
in the size of the original ontology and applying these rules increases the size of
ontology only polynomially. Afterwards, the number of (R3) and (R4) applica-
tions is linear in the number of equivalences and subsumptions in the modified
ontology and they increase the size polynomially. The same is again true about
the applications of (R5).

Now we have to see that Γ has a (hybrid or classical) unifier w.r.t. O iff Γ has a
(hybrid or classical) unifier w.r.t. O′.

Since the above normalization rules preserve equivalence in the descriptive sem-
mantics, we have that for any concept descriptions C and D build over the sig-
nature of O, C vO D iff C vO′ D. Now we prove a similar fact for the hybrid
semantics.

Lemma 8. Let O2 be obtained from O1 by normalization and let C,D be any
concept descriptions constructed in the signature of O1, and T be any TBox.

12

Then
C vgfp,O1,T D iff C vgfp,O2,T D

Proof. (⇒) Assume that C vgfp,O1,T D holds. We have to show that for each
hybrid-model I of (O2, T) for any T , CI ⊆ DI holds.

For each GCI E v F in O1 one can see that:

• E and F are concept descriptions defined over sig(O1).

• Obviously, E vO1 F holds.

• Hence E vO2 F holds as well.

Now, consider any hybrid-model I of (O2, T) and let J be the primitive inter-
pretation that I is based on. By a definition of a hybrid model (Definition 2),
J must be a model of O2 and hence EJ ⊆ FJ holds for all GCI E v F in O1.
Thus, J is a model of O1 and consequently I is a hybrid-model of (O1, T).

Finally, by the definition of hybrid subsumption (Definition 3) we obtain that
CI ⊆ DI . Thus, C vgfp,O2,T D holds.

(⇐) Assume that C vgfp,O2,T D holds, and consider an arbitrary hybrid-model
I of (O1, T). It is not difficult to see that I can be extended to a hybrid-model
I ′ of (O2, T), by assigning values to the new primitive concepts introduced in O2

during the normalization. Therefore, CI′ ⊆ DI
′ holds.

Now, let I ′|sig(O∪T) be the restriction of I ′ to sig(O∪T). Since C and D are de-
fined over sig(O∪T), it follows that CI′ |sig(O∪T) ⊆ DI

′ |sig(O∪T) holds. Obviously,
I = I ′|sig(O∪T) and consequently CI ⊆ DI .

Thus, C vgfp,O1,T D holds.

Flattening of a unification problem Γ. To transform a given set of goal
equivalences into a set of flat subsumptions, we use the same procedure as for
flattening an ontology, with one exception: the new concept names used for
flattening (A in (R1) and (R2)) are defined as new defined concepts i.e. they are
added to the set Ndef .

Lemma 9. Let Γ′ be obtained from Γ by normalization, then:

• if T is a hybrid unifier of Γ′ w.r.t. O, then it is also a hybrid unifier of Γ
w.r.t. O,

• if T ′ is a hybrid unifier of Γ w.r.t. O, then T ′ can be extended to T such
that T is a unifier of Γ′.

13

Proof. In order to prove the first statement of the lemma, we define an auxiliary
TBox in the following way.

Taux := {A ≡ D̂ | A ≡ D̂ was produced by rules (R1), (R2) after the first stage in
the normalization of Γ}

Since Taux is an acyclic TBox, we know that it induces a substitution σTaux . It is
also clear that for each C v D ∈ Γ, there are subsumptions C ′ v D1, . . . , C

′ v
Dk ∈ Γ′ such that σTaux(C ′) = C and σTaux(D1 u · · · u Dk) = D. Now, we
know that C ′ vgfp,O,T D1, . . . , C

′ vgfp,O,T Dk, but then also σTaux(C ′) vgfp,O,T
σTaux(D1 u · · · uDk) and hence C vgfp,O,T D as required.

For the second statement of the lemma, we assume that T ′ is a hybrid unifier of
Γ w.r.t. O. It is easy to see that a TBox T := T ′ ∪ Taux is a hybrid unifier of Γ′

w.r.t. O.

If C v D ∈ Γ′ then either σTaux(C) v σTaux(D) uD′ is in Γ (D′ is a conjunction
of some atoms in Γ) or σTaux(C) v σTaux(D) is a subsumption of the form E1 u
· · · u En v Ei for 0 < i ≤ n, which is trivially satisfied. Hence σTaux(C) vgfp,O,T ′

σTaux(D) and thus C vgfp,O,T ′∪Taux D as required.

In the following we will assume that all unification problems are flat.

3.2 Local unifiers

The main reason why EL-unification without background ontologies is in NP is
that any unification problem that has a unifier also has a local unifier. For clas-
sical unification w.r.t. background ontologies this is only true if the background
ontology is cycle-restricted.

Given a flat unification problem Γ w.r.t. an ontology O, we denote by At the set
of atoms occurring as sub-descriptions in GCIs in Γ or O. The set of non-variable
atoms is defined by Atnv := At \ Ndef . Though the elements of Atnv cannot be
defined concepts, they may contain defined concepts if they are of the form ∃r.X
for some role r and a concept name X ∈ Ndef .

In order to define local unifiers, we consider assignments ζ of subsets ζX of Atnv
to defined concepts X ∈ Ndef . Such an assignment induces a TBox

Tζ := {X ≡
l

D∈ζX

D | X ∈ Ndef }.

We call such a TBox local. The (hybrid or classical) unifier T of Γ w.r.t. O is
called local unifier if T is local, i.e., there is an assignment ζ such that T = Tζ .

14

As shown in [3], there are unification problems that have a classical unifier, but
no local classical unifier.

Example 10. Let O = {B v ∃s.D, D v B} and consider the unification
problem

Γ := {A1 u B v Y1, Y1 v A1 u B, A2 uB v Y2, Y2 v A2 uB,
∃s.Y1 v X, ∃s.Y2 v X, X v ∃s.X},

where A1, A2, B ∈ Nprim and X, Y1, Y2 ∈ Ndef . This problem has the classical
unifier T := {Y1 ≡ A1 u B, Y2 ≡ A2 u B,X ≡ ∃s.B}, which is not local since it
uses the atom ∃s.B. As shown in [3], Γ actually does not have a local classical
unifier w.r.t. O. However, it is easy to see that T := {Y1 ≡ A1 u B, Y2 ≡
A2 u B,X ≡ ∃s.X} is a local hybrid unifier of T . In fact, gfp-semantics applied
to T ensures that X consists of exactly those domain elements that are the origin
of an infinite s-chain, and O ensures that any element of B (and thus also of
∃s.B) is the origin of an infinite s-chain.

To overcome the problem of missing local unifiers, the notion of a cycle-restricted
ontology was introduced in [3]: the EL-ontology O is called cycle-restricted if
there is no nonempty sequence r1, . . . , rn of role names and EL-concept description
C such that C vO ∃r1. · · · ∃rn.C. Note that the ontology O of Example 10 is not
cycle-restricted since B vO ∃s.B.

The main technical result shown in [3] is that any EL-unification problem Γ
that has a classical unifier w.r.t. the cycle-restricted ontology O also has a local
classical unifier. This yields the following brute-force algorithm for classical EL-
unification w.r.t. cycle-restricted ontologies: first guess an acyclic local TBox T ,
and then check whether T is indeed a unifier of Γ w.r.t. O. As shown in [3],
this algorithm runs in nondeterministic polynomial time. NP-hardness follows
from the fact that already classical unification in EL w.r.t. the empty ontology
is NP-hard [6].

4 Some properties of proof trees I

In this section we show some properties of proof trees in HC(O, T ,∆), which will
be used as auxiliary lemmas in the next section. The reader is advised to skip
this section and return to it when needed.

Lemma 11. Let C,D be sub-descriptions of concept descriptions occurring in O,
T , and ∆ such that C is ground and O is also ground. Then, for all n ≥ 0 and
any proof tree P for C vn D in HC(O, T ,∆), it is true that every sequent at a
node in P is left-hand side ground.

15

Proof. This is a straight-forward proof. It goes by induction on the structure
of proof trees. First, because C is ground, one can see that the only rule from
HC(O, T ,∆) that cannot be used to obtain C vn D in P is the rule (DefL).

Second, if C vn D is an instance of one of the rules (Refl), (Top) or (Start), we
have that P is a one-element proof tree and the left-hand side ground condition
is implicit.

Finally, it can be seen that the left-hand side of the premise (premises) of any
other instance of a rule that could have been applied to obtain C vn D, is
either C, a sub-description of C, or an atom from a GCI in O which is also
ground. Then, applying induction to the sub-proof tree (trees) of P that has this
premise (premises) as its root, we obtain that every sequent in P is left-hand side
ground.

Now, we define the notion of maximal sub-proof tree w.r.t. a set of rules from
HC(O, T ,∆).

Definition 12. Let R = {R1, . . . , Rm} be a subset of rules from HC(O, T ,∆)
and P a proof tree for the sequent C vn D in HC(O, T ,∆). A maximal sub-proof
tree of P w.r.t. R is the subtree PR of P with the same root as P , that satisfies
the following conditions:

1. Each sequent at an internal node in PR is the consequence of an instance
of a rule from R.

2. Each sequent at a leaf in PR is either an instance of a rule in {(Refl), (Top),
(Start)} or it is obtain as the consequence of an instance of a rule that is
not in R.

Based on this definition, we prove the next two propositions w.r.t. the sets of
rules R1 = {(AndL1), (AndL2), (AndR)} and R2 = {(AndL1), (AndL2),
(AndR), (Ex), (GCI)}.

Lemma 13. Let P be a proof tree for the sequent C vn D in HC(O, T ,∆) and
B a top-level atom of D. Consider the maximal sub-proof tree PR of P w.r.t.
R = {(AndL1), (AndL2), (AndR)}. The following two statements are true:

1. There exists a leaf E vn F in PR such that B is a top-level atom of F .

2. For every leaf E vn F in PR, the concept description E is a sub-description
of C.

Proof. Again, we use induction on the structure of proof trees. First, we consider
the case when C vn D is obtained in P by using an instance of a rule that is not

16

in R. This means, that PR has only one leaf whose sequent is C vn D and thus,
(1) and (2) are trivially satisfied.

Second, we analyze the case where one of the rules from R is used to obtain
C vn D in P . An instance of such a rule has the form:

C ′ vn D
C vn D

(AndLi) or
C vn D1 C vn D2

C vn D
(AndR)

where C ′ and D1, D2 are sub-descriptions of C and D respectively.

Let P ′,P1 and P2 be the corresponding sub-proof trees for the premises of the
instances mentioned above. Applying induction to these sub-trees we have that
(1) and (2) hold for the leaves in their corresponding maximal sub-proof trees
w.r.t. R.

Finally, it can be seen that each leaf in PR is a leaf in P ′ in the first case, or a
leaf in either P1 or P2 for the second case. Then, it follows immediately that (1)
and (2) are also satisfied for PR.

Lemma 14. Let T ′ be a TBox and C vn D be a sequent. If we have that:

1. R = {(AndL1), (AndL2), (AndR), (Ex), (GCI)}

2. There is a proof tree P for C vn D in HC(O, T ,∆).

3. For each sequent E1 vn E2 at a leaf in the maximal sub-proof tree of P
w.r.t. R, it is the case that E1 vk E2 is derivable in HC(O, T ′,∆) for some
k ≥ 0.

then, there exists a proof tree P ′ for C vk D in HC(O, T ′,∆).

Proof. The proof is by induction on the structure of proof trees. Assume that
(1), (2) and (3) hold, we make a two cases distinction w.r.t. the rule used to
obtain C vn D in P :

1. C vn D is the consequence of an instance of a rule not in R. By Definition
12, PR is a one-element tree with the root C vn D which means that
C vn D is also a leaf in PR. Then, C vk D is derivable in HC(O, T ′,∆) for
some k and thus, there exists a proof tree P ′ for C vk D in HC(O, T ′,∆).

2. C vn D is the consequence of an instance of a rule in R. We show the case
where C vn D is obtained by an application of the (GCI) rule, the other
four cases can be shown in a similar way.

There is a GCI E v F in O such that C vn E and F vn D are the premises
of the (GCI)-instance used to obtain C vn D in P . By definition of a proof

17

tree, it can be seen that the subtrees P1 and P2 of P with roots C vn E
and F vn D, are proof trees for C vn E and F vn D in HC(O, T ,∆).

Moreover, it is not difficult to see that the leaves in the maximal sub-proof
trees of P1 and P2 w.r.t. R are also leaves in PR. Then, by induction we
obtain that there exist proof trees for C vk E and F vk D in HC(O, T ′,∆).
Thus, a further application of the GCI rule yields a proof tree for C vk D
in HC(O, T ′,∆).

5 Hybrid EL-unification is NP-complete

The fact that hybrid EL-unification w.r.t. arbitrary EL-ontologies is in NP is an
easy consequence of the following proposition.

Proposition 15. Consider a flat EL-unification problem Γ w.r.t. an EL-ontology
O. If Γ has a hybrid unifier w.r.t. O then it has a local hybrid unifier w.r.t. O.

In fact, the NP-algorithm simply guesses a local TBox and then checks (using
the polynomial-time algorithm for hybrid subsumption) whether it is a hybrid
unifier.

To prove the proposition, we assume that T is a hybrid unifier of Γ w.r.t. O. We
use this unifier to define an assignment ζT as follows:

ζTX := {D ∈ Atnv | X vgfp,O,T D}.

Let T ′ be the TBox induced by this assignment. To show that T ′ is indeed a
hybrid unifier of Γ w.r.t. O, we consider the set of GCIs

∆ := {C1 u . . . u Cm v D | C1, . . . , Cm, D ∈ At},

and prove that, for any GCI C1u. . .uCm v D ∈ ∆, derivability of C1u. . .uCm v∞
D in HC(O, T ,∆) implies derivability of C1u. . .uCm v∞ D also in HC(O, T ′,∆).
Soundness and completeness of HC, together with the facts that Γ ⊆ ∆ and T
is a hybrid unifier of Γ w.r.t. O, then imply that T ′ is also a hybrid unifier of Γ
w.r.t. O. Thus, to complete the proof of Proposition 15, it is enough to prove the
following lemma.

Lemma 16. Let C1 u . . . u Cm v D ∈ ∆. If C1 u . . . u Cm v∞ D is derivable
in HC(O, T ,∆), then C1 u . . . u Cm vn D is derivable in HC(O, T ′,∆) for all
n ≥ 0.

18

Proof. We prove derivability of C1u . . .uCm vn D in HC(O, T ′,∆) by induction
on n. The base case is trivial due to the rule (Start).

Induction Step: We assume that the statement of the lemma holds for n− 1, and
show that it then also holds for n. Let ` be such that D`(O, T ,∆) = D∞(O, T ,∆).
We know that there exists a proof tree P for C1u . . .uCm v` D in HC(O, T ,∆).
Consider the subtree of P that is obtained from it by cutting branches at the
nodes obtained by an application of one of the rules (DefL) or (DefR). The tree
obtained this way contains only sequents with index ` and has as its leaves

• instances of the rules (Refl), (Top), or (Start),

• consequences E1 v` E2 of instances of the rules (DefL) or (DefR).

In order to show that C1 u . . .uCm vn D is derivable in HC(O, T ′,∆), it is suffi-
cient to show that, for leaves E1 v` E2 of the second kind, E1 vn E2 is derivable
in HC(O, T ′,∆). One can see that such a tree is a maximal sub-proof tree of
P w.r.t. to the set of rules R = {(AndL1), (AndL2), (AndR), (Ex), (GCI)} and
therefore the application of Lemma 14 will complete the proof.

First, assume that E1 v` E2 was obtained by an application of (DefR). Then
E2 ∈ Ndef . Assume that ζTE2

= {F1, . . . , Fq}. By the definition of ζT , we have
E2 vgfp,O,T Fi for all i, 1 ≤ i ≤ q. In addition, by our choice of `, derivability of
E1 v` E2 in HC(O, T ,∆) (using the subtree of P with this node as root) yields
E1 vgfp,O,T E2, and thus E1 vgfp,O,T Fi for all i, 1 ≤ i ≤ q. Consequently, E1 v∞
Fi is derivable in HC(O, T ,∆) for all i, 1 ≤ i ≤ q. Since E1 is a conjunction of
elements of At and F1, . . . , Fq ∈ At, induction yields that E1 vn−1 Fi is derivable
in HC(O, T ′,∆) for all i, 1 ≤ i ≤ q. Performing q − 1 applications of (AndR)
thus allows us to derive E1 vn−1 F1u . . .uFq in HC(O, T ′,∆). Since T ′ contains
the definition E2 ≡ F1 u . . . u Fq, an application of (DefR) shows that E1 vn E2

is derivable in HC(O, T ′,∆).

Second, assume that E1 v` E2 was obtained by an application of (DefL). Then
E1 ∈ Ndef and E2 = F1u. . .uFm for elements F1, . . . , Fm of At. By our choice of `
we have E1 vgfp,O,T E2, and thus E1 vgfp,O,T Fi for all i, 1 ≤ i ≤ q. It is sufficient
to show, for all i, 1 ≤ i ≤ q, that E1 vn Fi is derivable in HC(O, T ′,∆) since
q−1 applications of (AndR) then yield derivability of E1 vn E2 in HC(O, T ′,∆).

If Fi does not belong to Ndef , then it is an element of Atnv. The definition of ζT
thus yields Fi ∈ ζTE1

. Consequently, Fi occurs as a conjunct on the right-hand
side of the definition of E1 in T ′. This implies E1 vgfp,O,T ′ Fi, and thus E1 vn Fi
is derivable in HC(O, T ′,∆).

If Fi ∈ Ndef , then E1 vgfp,O,T Fi implies that ζTFi
⊆ ζTE1

. Consequently, every
conjunct on the right-hand side of the definition of Fi in T ′ is also a conjunct on
the right-hand side of the definition of E1 in T ′. This implies E1 vgfp,O,T ′ Fi, and
thus E1 vn Fi is derivable in HC(O, T ′,∆).

19

This finishes the proof of Proposition 15, and thus shows that hybrid EL-unification
w.r.t. arbitrary EL-ontologies is in NP. NP-hardness does not follow directly from
NP-hardness of classical EL-unification. In fact, as we have seen in Example 7,
an EL-unification problem that does not have a classical unifier may well have
a hybrid unifier. Instead, we reduce EL-matching modulo equivalence to hybrid
EL-unification.

Using the notions introduced in this paper, EL-matching modulo equivalence can
be defined as follows. An EL-matching problem modulo equivalence is an EL-
unification problem of the form {C v D,D v C} such that D does not contain
elements of Ndef . A matcher of such a problem is a classical unifier of it. As
shown in [13], testing whether a matching problem modulo equivalence has a
matcher or not is an NP-complete problem.

Thus, NP-hardness of hybrid EL-unification w.r.t. EL-ontologies is an immediate
consequence of the following lemma.

Lemma 17. If an EL-matching problem modulo equivalence has a hybrid unifier
w.r.t. the empty ontology, then it also has a matcher.

For the proof of this theorem we will show that if an EL-matching problem modulo
equivalence has a hybrid unifier w.r.t. the empty ontology, it must have a hybrid
unifier which is an acyclic TBox. As mentioned above, acyclic hybrid unifier is a
classical unifier i.e. a matcher.

Before proving the lemma, we have to refer to another property of cyclic TBoxes,
which comes handy in this place.

Namely, it has been shown in [14] that in the presence of greatest fixpoint seman-
tics a TBox T containing component cycles can be transformed into a TBox T ′
that is free of component cycles, where component cycles are defined as follows.

Definition 18. Let T be a TBox and A0, An defined concepts in T .

A0 uses An as a component in its definition iff there is a sequence of defined
concepts A0, . . . , An(n > 0) in T such that: for each i, 0 ≤ i < n, Ai ≡ C ∈ T
and Ai+1 occurs in C, and, Ai+1 is a top-level atom in the definition of Ai for
all i > 0, i.e., Ai+1 appears outside the scope of any existential restriction in the
definition of Ai. If, in addition, A0 = An then A0, . . . , An is called a component-
cycle in T .

Then, we say that a cyclic-defined concept A in T is component-cyclic-defined if
it uses itself as a component, i.e., there is a component-cycle in T that contains
A. Otherwise, we call it restricted-cyclic-defined.

The following lemma is proved in [14].

20

Lemma 19. Let T be a TBox that contains component cycles. Then, there exists
a TBox T ′ that does not contain component cycles such that:

I is a gfp-model of T iff I is a gfp-model of T ′

Assume that C is a ground concept description. We will show that a subsumption
C v∞ D cannot be proved in HC w.r.t. empty ontology and a cyclic TBox when a
cyclic-defined variable occurs in D. The next lemma is used to identify a sequent
in a proof tree for C v∞ D, which cannot have a proof in HC.

Lemma 20. Let C and D be two concept descriptions such that C is ground and
at least one variable occurs in D.

For all n > 0 and any proof tree P for C vn D w.r.t. a hybrid TBox (∅, T): if B
is a non-ground top-level atom of D then there exists a node in P with a sequent
of the form G vn B, where G is a concept description.

Proof. Let P be a proof tree for C vn D for an arbitrary n > 0. There are two
observations that can be done about P . First, since C is ground, Lemma 11 says
that every sequent at a node in P is left-hand side ground and therefore, the rule
(DefL) is never used to build P . Second, since P is built w.r.t. the hybrid TBox
(∅, T) then, it is clear that no instance of the rule (GCI) is used to build P .

Now, consider the set of rules R = {(AndL1), (AndL2), (AndR)} and the max-
imal sub-proof tree PR of P w.r.t. R. Applying Lemma 13 (1) to PR we have
that if B is a top-level atom of D then, there exists a leaf in PR with the sequent
G vn E where E is of the form . . . u B u

Since G is ground and E is not ground, G vn E is neither a consequence of an
instance of (Refl) nor of an instance of (Top). In addition, n > 0 implies that it is
not an instance of (Start) as well. Hence, since (DefL) and (GCI) are not used to
build P , by Definition 12 G vn E must be the consequence of an instance either
of rule (Ex) or rule (DefR). Looking at the structure of these two rules, there are
two possible cases for the form of E:

1. E = X for some variable X or,

2. E = ∃s.E ′ for some role name s and a concept description E ′.

We can conclude that E contains only one top-level atom and thus, since B is a
top-level atom of E it follows directly that E = B and G vn B is the sequent of
a node in P .

In the next lemma we will show that for an empty ontology and a cyclic TBox, the
number n of a sequentf C vn D provable in HC is restricted by the role depth

21

of C, which is ground. This is basically because before applying a definition
from a cyclic TBox requires application of the rule (Ex). In order to prove the
next lemma, we assume without loss of generality that our cyclic TBox does not
contain component cycles.

Lemma 21. Let C and D be two concept descriptions, T be a cyclic TBox such
that C is ground and at least one cyclic-defined variable occurs in D and r be the
role depth of C. Then there is no proof tree for C vr+2 D in HC w.r.t. empty
ontology.

Proof. We show that in a proof tree C vr+2 D there has to be a node with a
sequent of the form A vl ∃r.E, where A is a primitive concept name and l > 0.
This is a contradiction, because such sequent cannot be obtained by any rule in
HC.

Hence it is enough to prove the following claim:

If P is a proof tree for C vr+2 D, then there is a node in P with a sequent of the
form: A vl ∃r.E, where A is a primitive concept name and l > 0.

We proceed by induction on the role depth r of C.

Base Case: r = 0. By assumption C v2 D holds and C is of the form A1u. . .uAk
where Ai is a primitive concept name for all i, 1 ≤ i ≤ k. Let X be a cyclic-
defined variable in T and B a top level atom of D where X occurs. By Lemma
20, there is a sequent of the form G v2 B at a node in P .

Since G v2 B is a leaf in PR as described in Lemma 20, then by Lemma 13 (2)
we have that G is a sub-description of C and consequently it is also a conjunction
of primitive concept names. We can assume that G is of the form Aiu . . .uAj for
1 ≤ i, j ≤ k. Next, we make a two cases distinction with respect to the structure
of B:

1. B = ∃s.E. Since G is ground and a conjunction of primitive concept names,
the sequent G v2 B can only be derived using successive applications of
rules (AndL1) and (AndL2), which are rules that preserve the right-hand
side of a sequent. Hence, there must exist a node in P with a sequent of
the form Aq v2 ∃s.E where i ≤ q ≤ j.

2. B = X. In this case, we can use the rules (AndL1), (AndL2) and (DefR)
in order to obtain a sequent of the form G v2 X. Actually, it is not only
that rule (DefR) can be used but, it has to be used:

Suppose that G vn X is obtained by only applying rules (AndL1) and
(AndL2). As shown in the previous case, there is a node in P with a sequent
of the form Aq v2 X where Aq is a primitive concept name. Obviously, this
sequent is not proved yet in HC, and the only rule that could have been
used to obtain it, is the rule (DefR).

22

Hence, we can assume that P has a node with a sequent of the form G′ v2 X
that is obtained as a consequence of an instance of rule (DefR), where G′
is a sub-description of G. The premise of such an instance is also a sequent
at a node in P , i.e., G′ v1 D1 u . . . u Dm where X ≡ D1 u . . . u Dm is a
concept definition in T .
Since X is cyclic-defined in T then for some i, Di is of the form ∃s.E ′ where
E ′ is not ground and it contains an occurrence of a cyclic-defined variable
in T . A second application of Lemma 20 w.r.t. G′ v1 D1 u . . . u Dm and
Di = ∃s.E ′, yields case 1 w.r.t. v1.

This completes the proof of the claim for r = 0, since one case is proved w.r.t.
v2 and the other one w.r.t. v1.

Induction Step: Assume that the claim holds whenever the role depth of C is
less than r and let us see that it holds for r. Using the same reasoning as before
one can see that there is a sequent in P of the form G vr+2 B where B is a
non-ground top level atom in D. There are two cases w.r.t. the role depth of G:

1. The role depth of G is less than r. Then, induction hypothesis can be
applied to show the claim.

2. The role depth of G is r. If B = ∃s.E, G vr+2 B can be obtained using
rules (AndL1), (AndL2) or (Ex). A similar reasoning as in the base case
for the existence of a (DefR) application, yields that the rule (Ex) must be
applied. Then, there is a sequent G′ vr+2 E in P to which the rule (Ex) is
applied and it is clear that the role depth of G′ is less than r.

The other possibility is the case when B = X, but using the same reason-
ing as for the base case the existential case is obtained w.r.t. vr+1, and
induction can also be applied.

Thus, the claim is proved. Notice that the proof implicitely says that the result
not only holds for C vr+2 D but for C v>r+2 D as well.

Proof of Lemma 17 Assume that Γ has a hybrid unifier T w.r.t. empty ontology
i.e. C vgfp,∅,T D holds.

If D does not contain any occurrence of a cycle-defined variable in T , then the
definitions of cyclic-defined variables can be removed from T to obtain an acyclic
TBox that is still a hybrid unifier of Γ w.r.t. the empty ontology.

Otherwise, if D contains a cyclic-defined variable, since by assumption C vgfp,∅,T
D, we have that C vn D for each n ≥ 0 and in particular C vr+2 D, where r
is a role depth of C. But Lemma 21 says that C vr+2 D cannot have a proof
tree in HC w.r.t. (∅, T) which is a contradiction. Therefore D does not contain

23

a cyclic-defined variable, and there is an acyclic hybrid unifier T of Γ w.r.t. the
empty ontology. Acyclicity of T implies the equivalence between greatest fixpoint
semantic and descriptive semantics. Hence T is a classical unifier and a matcher.

To sum up, we have thus determined the exact worst-case complexity of hybrid
EL-unification.

Theorem 22. The problem of testing whether an EL-unification problem w.r.t.
an arbitrary EL-ontology has a hybrid unifier or not is NP-complete.

6 A goal-oriented algorithm for hybrid EL-unification

The brute-force algorithm is not practical since it blindly guesses a local TBox
and only afterwards checks whether the guessed TBox is a hybrid unifier. We now
introduce a more goal-oriented unification algorithm, in which nondeterministic
decisions are only made if they are triggered by “unsolved parts” of the unification
problem. In addition, failure due to wrong guesses can be detected early. Any
non-failing run of the algorithm produces a hybrid unifier, i.e., there is no need
for checking whether the TBox computed by this run really is a hybrid unifier.
This goal-oriented algorithm is based on ideas similar to the ones used in the
algorithm for classical unification in EL w.r.t. cycle-restricted ontologies in [4].
However, it differs from the previous algorithm in several respects.

First, it is based on the proof calculus HC rather than on a structural charac-
terization of subsumption, as employed in [4]. Basically, to solve the unification
problem Γ w.r.t. the ontology O, the rules of the algorithm try to build, for each
GCI C v D ∈ Γ, a proof tree for the sequent C v` D while simultaneously
generating the hybrid unifier T by adding non-variable atoms to an assignment
ζ inducing T . The index ` of the sequent is chosen large enough, i.e., such that
derivability of C v` D implies derivability of C v∞ D.

Second, to avoid nonterminating runs of the algorithm, a blocking mechanism
needs to be employed. This mechanism prevents cyclic dependencies between
sequents where the derivability of one sequents depends on the derivability of
another sequent and vice versa. This problem did not occur in the algorithm
for classical unification in [4] due to the fact that, for classical unification, the
generation of a cyclic assignment causes the run to fail. For hybrid unification,
cyclic assignments may lead to valid hybrid unifiers. In order to realize blocking,
we need to keep track of dependencies between sequents. For this reason, we
work with p-sequents rather than sequents.

We assume without loss of generality that the input unification problem Γ w.r.t.
the input ontology O is flat. Given O and Γ, the sets At and Atnv are defined as
above.

24

Definition 23. A flat sequent for Γ and O is of the form C1 u . . . u Cm vn D
where C1, . . . , Cm ∈ At, D ∈ At ∪ {>}, m ≥ 0, and 0 ≤ n ≤ `. This sequent is
called ground if no element of Ndef occurs in it. A p-sequent for Γ and O is a
pair (C vn D,P) such that {C vn D} ∪ P is a finite set of flat sequents for Γ
and O.

Intuitively, the p-sequent (C vn D,P) says that we need to find a proof tree for
C vn D, and that the proof trees for all the elements of P must contain this
proof tree, i.e., the derivations of the elements of P depend on the derivation of
C vn D.

Starting with the initial set of p-sequents

Γ(0)
p := {(C v` D, ∅) | C v D ∈ Γ}

the algorithm maintains a current set of p-sequents Γp and a current assignment
ζ, which initially assigns the empty set to all X ∈ Ndef . In addition, for each p-
sequent in Γp it maintains the information on whether it is solved or not. Initially,
all p-sequents are unsolved, except those with a defined concept on the right-hand
side of its first component.2 Rules are applied only to unsolved p-sequents. A
(non-failing) rule application does the following:

• it solves exactly one unsolved p-sequent,

• it may extend the current assignment ζ, and

• it may add new p-sequents to Γp, which are marked unsolved unless their
first component has a defined concept on the right-hand side.

Adding a new p-sequent is realized through the blocking procedure. This proce-
dures checks whether the new sequent introduces cyclic derivability obligations
(in which case it fails) and whether the sequent to be added already exists (in
which case it re-uses the existing sequent, but updates the dependency informa-
tion). Only if these two cases do not apply does it add the new sequent. To
be more precise, given a set of p-sequents Γp and a p-sequent (C vn D,P), the
procedure blocking applied to this input does the following:

B1: If the sequent C vn D belongs to P , then blocking fails.

B2: Otherwise, if there is a p-sequent of the form (C vn D,P ′) in Γp, then do
the following:

• Extend the second component of this sequent to P ′ ∪ P .
• For each p-sequent (_, P ′′) in Γp such that C vn D is in P ′′, extend

the second component to P ′′ ∪ P ,

25

Eager Axiom Solving:

Condition: This rule applies to (s, P), if s is of the form C1 u . . . uCm v0 D or C1 u . . . u
Cm vn >.
Action: Its application marks (s, P) as solved.

Eager Ground Solving:

Condition: This rule applies to (s, P) with s = C1 u . . . u Cm vn D, if s is ground.
Action: If C1 u . . . u Cm vO D does not hold, the rule application fails. Otherwise, (s, P)
is marked as solved.

Eager Solving:

Condition: This rule applies to (s, P) with s = C1 u . . . u Cm vn D, if there is an index
i ∈ {1, . . . ,m} such that Ci = D or Ci = X ∈ Ndef and D ∈ ζX .
Action: The application marks (s, P) as solved.

Figure 3: The eager rules of hybrid unification.

B3: Otherwise, add (C vn D,P) to Γp.

Each rule application that extends ζX additionally expands Γp w.r.t. X as follows:
every p-sequent of the form (C1 u · · · u Cn vn X,P) is expanded by applying
blocking to (C1 u · · · uCn vn−1 D, ∅) and Γp for every D ∈ ζX . Since the second
components of the p-sequents provided as inputs for blocking are empty, blocking
cannot fail during expansion. Note that expansion basically corresponds to an
application of the rule (DefR) of HC together with an appropriate number of
applications of (AndR).

If a p-sequent p is marked as solved, this does not mean that a proof tree for its
first component s has already been constructed (w.r.t. O and the TBox induced
by the current assignment). It may be the case that the task of constructing the
proof tree for s was deferred to constructing a proof tree for the first component
s′ of a “smaller” p-sequent p′. The proof tree for s′ is then part of the proof tree
for s, and thus s needs to be added to the second component of p′.

The rules of the algorithm consist of three eager rules, which are deterministic
(see Figure 3), and three nondeterministic rules (see Figure 4). Eager rules are
applied with higher priority than nondeterministic rules. Among the eager rules,
Eager Axiom Solving has the highest priority, then comes Eager Ground Solving,
and then Eager Solving.

Algorithm 24. Let Γ w.r.t. O be a flat EL-unification problem. We compute a
“large enough” index `, and set Γp := Γ

(0)
p and ζX := ∅ for all X ∈ Ndef . While

Γp contains an unsolved p-sequent, apply the steps (1) and (2).

(1) Eager rule application: If some eager rules apply to an unsolved p-sequent
p in Γp, apply one of highest priority. If the rule application fails, then return
“no hybrid unifier”.

2Such p-sequents are dealt with by expansion rather than by applying a rule (see below).

26

Decomposition:

Condition: This rule applies to (s, P) with s = C1 u . . . u Cm vn ∃s.D′, if there is a
Ci = ∃s.C ′ such that blocking does not fail if applied to (C ′ vn D

′, P ∪ {s}) and Γp.
Action: Its application chooses such an index i and applies blocking to (C ′ vn D

′, P ∪ {s})
and Γp. Once blocking was applied, it expands Γp w.r.t. D′ if D′ ∈ Ndef , and marks (s, P)
as solved.

Extension:
Condition: This rule applies to (s, P) with s = C1 u . . . u Cm vn D if there is at least one
i ∈ {1, . . . ,m} with Ci ∈ Ndef .
Action: Its application chooses such an index i and adds D to ζCi . Γp is expanded w.r.t.
Ci and (s, P) is marked as solved.

Mutation:
Condition: This rule applies to (s, P) with s = C1 u . . . u Cm vn D, if there is a GCI
E1 u . . . u Ek v F in O such that blocking does not fail if applied to Γp and each of
the p-sequents (C1 u . . . u Cm vn E1, P ∪ {s}), . . . , (C1 u . . . u Cm vn Ek, P ∪ {s}), and
(F vn D,P ∪ {s}).
Action: Its application chooses such a GCI E1u . . .uEk v F . It applies blocking to Γp and
each of the p-sequents (C1 u . . . u Cm vn E1, P ∪ {s}), . . . , (C1 u . . . u Cm vn Ek, P ∪ {s}),
and (F vn D,P ∪ {s}). Once blocking was applied, (s, P) is marked as solved.

Figure 4: The nondeterministic rules of hybrid unification.

(2) Nondeterministic rule application: If no eager rule is applicable, let p
be an unsolved p-sequent in Γp. If one of the nondeterministic rules applies
to p, nondeterministically choose one of these rules and apply it. If none of
these rules apply to p, then return “no hybrid unifier”.

Once all p-sequents are solved, return the TBox T induced by the current assign-
ment.

For a given input Γ and the ontology O, the index ` is computed as:

` := ((#(Γ) + |At|)× |Ndef |) + 1

where #(Γ) is the number of subsumptions in Γ. In the proof of the soundness of
the algorithm, we will see that this number is "large enough" for the algorithm
to yield a unifier.

In step (2), the choice which unsolved p-sequent to consider next is don’t care
nondeterministic. However, choosing which rule to apply to the chosen p-sequent
is don’t know nondeterministic. Additionally, the application of nondeterministic
rules requires don’t know nondeterministic guessing.

The eager rules are mainly there for optimization purposes, i.e., to avoid nonde-
terministic choices if a deterministic decision can easily be made. For example,
given a ground sequent C vn D, as considered in the Eager Ground Solving rule,
the GCI C v D either follows from the ontology O, in which case any TBox

27

is a hybrid unifier of it, or it does not, in which case there is no hybrid unifier.
This condition can be checked in polynomial time since subsumption w.r.t. hybrid
EL-ontologies is polynomial [12, 16]. In the case considered in the Eager Solving
rule, the TBox induced by the current assignment obviously already implies the
GCI C1 u . . . uCm v D. The Eager Axiom Solving rule corresponds to the rules
(Top) and (Start) of HC. Note that the rule (Refl) of HC is covered by Eager
Solving.

The nondeterministic rules only come into play if no eager rules can be applied.
In order to solve an unsolved p-sequent (s, P), one considers which rule of HC
could have been applied to obtain s. The rules Extension and Decomposition
respectively correspond to applications of rules (DefL) and (Ex) of HC, together
with an appropriate number of applications of the rules (AndLi). The Mutation
rule corresponds to an application of the (GCI) rule from HC, again together
with an appropriate number of applications of the rules (AndLi).

6.1 Soundness

In this section, we show that if the Algorithm 24 returns a TBox T given as its
input the unification problem Γ, then Ci v∞ Di can be derived in HC(O, T ,Γ)
for each Ci v Di ∈ Γ. Thus, the computed TBox T is a hybrid-unifier of Γ w.r.t.
the ontology O.

Assume that Algorithm 24 has a non-failing run on input Γ, and let ζ be the final
assignment computed by this run and T the induced (cyclic) TBox from ζ. In
addition, we denote the final set of p-sequents computed by this run as Γ̂.

We prove that for each p-sequent (C vn D,P) in Γ̂ there is a proof tree for
C vn D in HC(O, T ,Γ). To show that, we use well founded-induction [9] on the
following well-founded � order on Γ̂.

Definition 25. Let p = (C vn D,P) be a p-sequent in Γ̂.

• We define m(p) := (m1(p),m2(p)), where

– m1(p) := n, where n is from vn.
– m2(p) :=|P |.

• The strict partial order � is the lexicographic order, where the first com-
ponent is compared w.r.t. the normal order > on natural numbers and the
second component is compared with the opposite order < on the finite set
of natural numbers {0, . . . , k}, where k is at most |Γ̂|.

• We extend � to Γ̂ as: p1 � p2 iff m(p1) � m(p2).

28

Notice that the set Γ̂ is finite and since every sequent in P corresponds to a p-
sequent in Γ̂, then P has a finite number of elements. Consequently, the value of
k can be properly selected for Γ̂.

Since the lexicographic product of well-founded strict partial orders is again well-
founded [9], then � is a well-founded strict partial order on Γ̂.

Lemma 26. If Algorithm 24 outputs a TBox T , then for each p-sequent (C vn
D,P) in Γ̂ there is a proof tree for C vn D in HC(O, T ,Γ).

Proof. Let p = (s, P) ∈ Γ̂ and assume that for all p′ = (s′, P ′) ∈ Γ̂ with p � p′,
there is a proof tree for s′ in HC(O, T ,Γ). We make a two cases distinction w.r.t.
s.

• If s has a non-variable atom on the right-hand side, then it was initially
marked as unsolved and must be solved by a non-failing rule application.
Let us see the rules that could have been applied:

– Eager Axiom Solving: This case is trivially satisfied since s is the
consequence of an instance of one of the rules (Refl) or (Top) in HC.

– Eager Ground Solving: s is of the form C1 u . . . u Cm vn D and
ground. Since there are no defined concepts (variables) occcurring
in C1, . . . , Cm, D, then C1 u . . . u Cm vgfp,O,T D holds for any TBox
T . Application of Theorem 5 yields that there is a proof tree for
C1 u . . . u Cm vn D in HC(O, T ,Γ) for all n ≥ 0.

– Eager Solving: s is of the form C1 u . . . u Cm vn D with Ci = D
for some i ∈ {1, . . . ,m}. Starting with the sequent D vn D, several
applications of (AndLi) rules yield a proof tree for s in HC(O, T ,Γ).
Otherwise, if it is the case that Ci = X and D ∈ ζX , a proof for s can
be obtained in the following way:

(Refl)
D vn D (AndLi)

... (AndLi)d
E∈ζX E vn D (DefL)
X vn D (AndLi)

... (AndLi)
C1 u . . . u Cm vn D

– Decomposition: s is of the form C1u. . .uCm vn ∃s.D′ with Ci = ∃s.C ′
for some i ∈ {1, . . . ,m}. Since blocking did not fail when the rule was
applied, then there is a p-sequent p′ = (C ′ vn D′, P ′) in Γ̂ such that

29

P ∪{s} ⊆ P ′. We have that m1(p) = m1(p
′) and that m2(p) < m2(p

′),
therefore, p � p′.
Applying induction we obtain that there is a proof tree for C ′ vn D′
in HC(O, T ,Γ). Thus, an application of the (Ex) rule in HC yields
that there is a proof tree for ∃s.C ′ vn ∃s.D′ and furthermore, m − 1
applications of (AndLi) rules give a proof tree for s in HC(O, T ,Γ).

– Extension: s is of the form C1 u . . . u X u . . . u Cm vn D for a
defined concept X and the definition of X in T is of the form X ≡
D1u. . .uDu. . .uDq. Then, starting withD vn D and q applications of
(AndLi) rules, we can obtain a proof tree forD1u. . .uDu. . .uDq vn D.
Finally, an application of the rule (DefL) yields a proof tree for X vn D
and again, subsequent applications of (AndLi) rules give a proof tree
for s in HC(O, T ,∆) (see the following diagram).

D vn D (AndL1)
... (AndL1)

D1 u . . . uD u . . . uDq vn D
(DefL)

X vn D (AndL1)
... (AndL1)

C1 u . . . uX u . . . u Cm vn D

– Mutation: s is of the form C1 u . . . u Cm vn D. Again, since blocking
did not fail there exists a GCI E1 u · · · u Ek v F in O such that,
the p-sequents p1 = (C1 u . . . u Cm vn E1, P1), . . . , pk = (C1 u . . . u
Cm vn Ek, Pk) and pk+1 = (F vn D,Pk+1) are in Γ̂ where P ∪ {s} ⊆
P1, . . . , P ∪{s} ⊆ Pk and P ∪{s} ⊆ Pk+1. Then, we have that m1(p) =
m1(p1) = · · · = m1(pk) = m1(pk+1), m2(p) < m2(p1), . . . ,m2(p) <
m2(pk) and m2(p) < m2(pk+1), therefore p � p1, . . . , p � pk and p �
pk+1.
We apply induction hypothesis to obtain that there are proof trees
QE1 , . . . QEk

and QF for C1 u . . .uCm vn E1, . . . , C1 u . . .uCm vn Ek
and F vn D respectively. Thus, several applications of (AndR) rule
and an application of the (GCI) rule yield a proof tree for C1 u . . . u
Cm vn D in HC(O, T ,Γ) (see the following diagram).

QE1

C1 u . . . u Cm vn E1

QE2

C1 u . . . u Cm vn E2 (AndR)
C1 u . . . u Cm vn E1 u E2

. . .
(AndR)

C1 u . . . u Cmvn E1 u · · · u Ek−1

. . .

QEk

C1 u . . . u Cm vn Ek
(AndR)

C1 u . . . u Cm vn E1 u · · · u Ek−1 u Ek
QF

F vn D
(GCI)

C1 u . . . u Cm vn D

30

• If s has a variable as its right-hand side, then it is of the form C1u. . .uCm vn
X. If ζX is empty, then X ≡ > is the definition of X in T . Obviously,
there is a proof tree for C1 u . . .uCm vn−1 > and the rest follows applying
rule (DefR) in HC.

Otherwise, the definition of X in T is of the form X ≡ D1u . . .uDq and for
every Di there is a p-sequent of the form pi = (C1 u . . . u Cm vn−1 Di, P)

in Γ̂, because Γ̂ is expanded w.r.t. X.

Clearly, m1(p) > m1(pi) and therefore, m(p) � m(pi) for all i, 1 ≤ i ≤ q.

Now, by induction there is a proof tree for each sequent C1u . . .uCm vn−1
Di. A series of applications of rule (AndR) from HC yield a proof tree Q for
C1u . . .uCm vn−1 D1u . . .uDq. Then, a proof tree for C1u . . .uCm vn X
is obtained as follows

Q
C1 u . . . u Cm vn−1 D1 u . . . uDq

(DefR)
C1 u . . . u Cm vn X

The proof of Lemma 26 shows how to construct a proof for a sequent C vn D in
HC(O, T ,Γ), if C vn D is the first component of a p-sequent in Γ̂ and provided
Algorithm 24 terminates successfully. Since the initialization of Algorithm 24
adds a p-sequent of the form (Ci v` Di, ∅) to Γ

(0)
p for each subsumption Ci v Di

in Γ and p-sequents with Ci v` Di as the first components are in Γ̂, this means
that we know that Ci v` Di is derivable in HC(O, T ,Γ).

We also know that there is a number ` such that if a sequent C v` D is derivable
in HC(O, T ,Γ), C vn D is derivable in HC(O, T ,Γ) for all n ≥ 0 and thus
C v∞ D holds in HC(O, T ,Γ). Hence if we know such number ` which has this
property, we can run Algorithm 24 with this ` as index for the p-sequents in Γ

(0)
p

and use Theorem 5 to infer that Ci vgfp,O,T Di for each subsumption in Γ. This
implies that T is a unifier of Γ with respect to O.

We will now estimate the proper value of `. The numerical index n in a sequent
C vn D is meant to control the number of allowed applications of the rule (DefR).
This rule is increasing such indices and thus allows some paths in a proof tree to
reach the root from the leaves with index 0, i.e. the leaves that are instances of
(Start).

Notice that the rule (DefR) has the following form:

D vn−1 C1 u · · · u Ck
D vn X

31

where X ≡ C1 u · · · u Ck is in T .

Now we want to estimate a maximal number of subsumptions of the form D v X
that can appear with an index n in the sequent D vn X in p-sequents Γ̂.

In order to do it, we notice that there are only |Ndef | possibilities for the right
hand side of such a subsumption.

Now we consider the possible concepts occurring as the left hand sides in the
first components of the p-sequents of the form D vn X in Γ̂. By inspecting the
inference rules of Algorithm 24, we can see that such D can be only one of the
following.

1. D is the left hand side of a subsumption in Γ or

2. D is an atom of Γ (Decomposition) or

3. D is an atom of O (Mutation).

Hence the number of the subsumptions of the form D v X that our algorithm
can use is less than

` = ((#(Γ) + |At|)× |Ndef |) + 1

where #(Γ) is the number of subsumptions in Γ.

Before we come to proving soundness of our algorithm we need one more definition
and easy observation.

In the next definition we describe a method that can be used to obtain a proof
tree for a sequent C vn D starting from a proof tree for C vm D, provided that
n < m.

Definition 27. Let P be a proof tree for a sequent C vm D in HC(O, T ,∆).

The following construction is called trimming of proof tree P .

1. Let n′ := m− n.
Subtract n′ from all indices in the sequents occurring in P .

2. Delete all successors of nodes with indices equal to 0.

Example 28. This example illustrates the above described method of trimming
a proof tree.

Let O := {∃r.B v A} and let T := {X ≡ ∃r.X u A}.

We have the following proof tree for ∃r.B v2 X in HC(O, T ,∆), where ∃r.B v2

X ∈ ∆:

32

(Start)
B v0 ∃r.X u A (DefR)

B v1 X (Ex)
∃r.B v1 ∃r.X

(Refl)
∃r.B v1 ∃r.B

(Refl)
A v1 A (GCI)

∃r.B v1 A (AndR)
∃r.B v1 ∃r.X u A (DefR)
∃r.B v2 X

In order to obtain the proof tree for ∃r.B v1 X from the above proof tree first
we substract 1 from all the indices in the sequents in the proof:

(Start)
B v−1 ∃r.X u A

(DefR)
B v0 X (Ex)

∃r.B v0 ∃r.X

(Refl)
∃r.B v0 ∃r.B

(Refl)
A v0 A (GCI)

∃r.B v0 A (AndR)
∃r.B v0 ∃r.X u A (DefR)
∃r.B v1 X

Now in order to obtain a trimmed proof tree we delete all successors of sequents
with index 0:

(Start)
∃r.B v0 ∃r.X u A (DefR)
∃r.B v1 X

In the soundness lemma below we show that the number ` is big enough for our
algorithm to yield the correct unifier.

Lemma 29. Let O be a flat general TBox and Γ = {C1 v D1, . . . , Cm v Dm} be
a flat unification problem. If Algorithm 24 with the choice of ` as above outputs
a TBox T on input Γ, then T is a hybrid-unifier of Γ w.r.t. O.

Proof. Assuming that Algorithm 24 with ` computed as above has a successful run
on the unification problem Γ, by Lemma 26 we know that for each subsumption
Ci v Di ∈ Γ we have a proof tree P of Ci v` Di in HC(O, T ,Γ) constructed as
in the proof of Lemma 26. We will call such a proof tree, a proof tree induced by
Algorithm 24. Now we will show that having such a proof tree, we can construct
a proof tree for Ci vn Di for any n ≥ 0.

First of all, it is clear that having the proof tree P we can construct a proof tree
for Ci vn Di for any n ≤ `, by trimming the proof tree P (Definition 27).

Now we show how to construct a proof tree for n > `. We have to look at the
structure of the proof P . The construction is by induction on n′, where n = `+n′.

The assumption that we make about the proof tree P is that the sequents of the
form D vk X that appear in the proof tree are also in the p-sequents in Γ̂. This is
satisfied in the base case, i.e. if n′ = 1, because the proof for Ci v` Di is induced
by Algorithm 24.

33

Now consider the leaves of P , i.e. instances of (Refl), (Top), (Start). If there
are no (Start) instances among the leaves of P , then we obtain a proof tree for
Ci vn Di, where n = `+ n′ and n′ > 0 by adding n′ to all indices in the sequents
of the proof tree P . It is easy to see that we obtain a valid proof tree in this way.
The proof tree satisfies our assumption about the sequents of the form D vk X
too.

Example 30. Let O := {∃r.B v A} and T := {X ≡ ∃r.B}. Let the proof tree
for X v1 A be the following:

(Refl)
∃r.B v1 ∃r.B (DefL)
X v1 ∃r.B

(Refl)
A v1 A (GCI)

X v1 A

The proof tree has no (Start) instances in the leaves, hence it can be easily reused
for the proof tree of the same sequent with a bigger index, e.g. :

(Refl)
∃r.B v4 ∃r.B (DefL)
X v4 ∃r.B

(Refl)
A v4 A (GCI)

X v4 A

Now we consider the case where there are leaves in P which are instances of
(Start).

Consider a path from such a leaf to the root Ci v` Di. There are ` applications
of (DefR) on the path. Hence there are ` consequences of these applications of
the form D vk X. It is easy to see that all consequences of (DefR) in the proofs
induced by Algorithm 24 are in Γ̂. Since ` is bigger than the number of possible
subsumptions of the form D v X explored by the algorithm, there are at least
two nodes with D vi X and D vj X as conclusions of (DefR) with i > j on this
path.

We choose such pair of repeated nodes for each path. Let the node with a smaller
index (e.g. D vj X) be called pumping point and the node with the bigger index
be called a node associated with the pumping point.

We choose such pumping points for each path starting with a (Start) instance,
one for each path. Notice that if there are multiple (Start) instances in the proof
tree, several paths may share such point provided the node is shared by these
paths.

We then perform two actions.

1. We increase the indices in the sequents below pumping points and on the
paths that do not lead to (Start) instances by 1.

34

2. Replace subtree rooted in a pumping point on each path by the sub-tree
rooted at the node associated with this pumping point trimmed to the proof
tree for D vj+1 X.

Now, since i > j, i ≥ j + 1, hence the proof tree for D vi X can always be
trimmed to the correct proof tree for D vj+1 X.

In this way we can obtain a proof tree for Ci v`+1 Di from the proof tree induced
by Algorithm 24 and hence this new proof tree satisfies the assumption about the
sequents of the form D vk X.

Example 31. Let O = {B v ∃s.B} and T = {X ≡ ∃s.X}. We show a proof
tree for ∃s.B v2 ∃s.X and show how to obtain a proof tree for ∃s.B v3 ∃s.X
using the ideas of the above construction.

(Refl)
B v1 B

(Start)
B v0 ∃s.X (DefR)
B v1 X (Ex)

∃s.B v1 ∃s.X (GCI)
B v1 ∃s.X (DefR)
B v2 X (Ex)

∃s.B v2 ∃s.X

This proof tree has a (Start) instance as a leaf. We choose B v1 X as a pumping
point and B v2 X as the associated node.

First we increase all indices in the sequents that are below the pumping point or
are not on the path to (Start).

(Refl)
B v2 B

(Start)
B v0 ∃s.X (DefR)
B v1 X (Ex)

∃s.B v2 ∃s.X (GCI)
B v2 ∃s.X (DefR)
B v3 X (Ex)

∃s.B v3 ∃s.X

We want to reuse the proof tree rooted in B v2 X for B v1 X with the index
increased by 1. It happens in this example that i = j + 1, i.e. we can reuse the
proof for B v2 X without trimming (this may be different if the pumping point
and its associated node are seperated by some other applications of (DefR) in
other proof trees).

The new proof tree has thus the following form.

35

(Refl)
B v2 B

(Refl)
B v1 B

(Start)
B v0 ∃s.X (DefR)
B v1 X (Ex)

∃s.B v1 ∃s.X (GCI)
B v1 ∃s.X (DefR)
B v2 X (Ex)

∃s.B v2 ∃s.X (GCI)
B v2 ∃s.X (DefR)
B v3 X (Ex)

∃s.B v3 ∃s.X

Now, let us assume that we have already constructed a proof tree P ′ for Ci vn Di

with n > ` such that every sequent of the formD vk X that appears in P ′ appears
also in a p-sequent in Γ̂. We show how to construct a proof tree for Ci vn+1 Di

with the same property.

To do this, it is enough to find all nodes D v` C in P ′, such that there is no
another node D′ v` C ′ in P ′ which is a predecessor of D v` C (i.e. the nodes
with index ` which are closest to the root). Note that the sub-trees rooted at
such nodes satisfy the property about the sequents of the form D vk X, and thus
we can apply to them the base case construction.

Lets call such nodes pumping points for P ′. In order to obtain a proof tree for
Ci vn+1 Di we again perform two actions.

1. We increase the indices in the sequents below the pumping points and on
the paths that do not lead to pumping points by 1.

2. Replace subtrees rooted in each pumping point D v` C by a proof tree for
D v`+1 C obtained as in the construction in the base case.

Notice that since the proofs that we have plugged into the pumping points satisfy
the property about D vk X nodes, the new proof tree satisfies this property too.

Now the statement of the lemma follows immediately. Since for each Ci v Di ∈ Γ
and each n ≥ 0 we can construct a proof tree for Ci vn Di in HC(O, T ,Γ), hence
Ci v∞ Di holds in HC(O, T ,Γ). By Theorem 5, we know that Ci vgfp,O,T Di for
each Ci v Di ∈ Γ and thus T is a hybrid unifier of Γ w.r.t. O.

6.2 Some properties of proof trees II

In this section we show some properties of proof trees in HC(O, T ,Γ) which will
be used as auxiliary lemmas when proving completeness of Algorithm 24 in the

36

next section. The reader is advised to skip this section and to return to it when
needed.

In Lemma 3.1.2 from [15], the following two statements were shown:

1. C vn D1 uD2 iff C vn D1 and C vn D2.

2. C vn+1 X iff C vn DX , where X ≡ DX ∈ T .

In particular, these two statements say that whenever there exists a proof tree
for C vn D1 uD2 (C vn+1 X) there is also a proof tree for C vn Di (C vn DX),
1 ≤ i ≤ 2. In the following proposition we show that, in addition, for the first
case the number of (GCI) rule applications on those new trees do not need to
increase (for the second case, the same proposition can also be shown in a similar
way).

Lemma 32. Suppose that n > 0. If P is a proof tree for C vn D1 u D2 and p
is the number of (GCI) rule applications occurring in P. Then, there is a proof
tree Pi(1 ≤ i ≤ 2) for C vn Di with number of (GCI) rule applications pi ≤ p.

Proof. We use the same inductive argumentation as the "only if" direction in
Lemma 3.1.2(1) from [15]. Consider the cases representing the last rule used to
derive C vn D1 uD2:

• Last rule used: (Refl). Then, C is of the form D1 uD2 and P :

(Refl)
D1 uD2 vn D1 uD2

Then, using (Refl) and (AndLi) we obtain the proof tree:

(Refl)
Di vn Di (AndLi)

D1 uD2 vn Di

Since no (GCI) rule is used, the claim trivially holds.

• Last rule used: (AndR), (AndLi) or (DefL). The case for the rule (AndR) is
trivial because the proof trees already exist as subtrees in P . For the other
two cases, since the new tree is completed not using an application of the
(GCI) rule after applying induction, then the claim also holds.

• Last rule used: (GCI). Then, P is of the following form:

...
C vn E

...
F vn D1 uD2 (GCI) with E v F ∈ O

C vn D1 uD2

37

Let Q1 be the subtree rooted at C vn E, Q2 the one rooted at F vn D1uD2

and qj(1 ≤ j ≤ 2) be the number of (GCI) rule applications in Qj. Since
Q2 is a proof tree for the sequent F vn D1 uD2 then, induction hypothesis
yields that there is a proof tree Q2i(1 ≤ i ≤ 2) with number of (GCI) rule
applications q2i ≤ q2 for the sequent F vn Di. We build a proof tree Pi for
C vn Di as follows:

Q1

C vn E
Q2i

F vn Di (GCI) with E v F ∈ O
C vn Di

Since p = q1 + q2 + 1, pi = q1 + q2i + 1 and q2i ≤ q2 then pi ≤ p.

Next, we define the notion of good derivation and show that derivable sequents
in HC(O, T ,∆) always have good derivations in HC(O, T ,∆).

Definition 33. Let P be a proof tree in HC(O, T ,∆) and s a sequent occurring
in P . We say that s is bad for P if it is not an instance of one of the rules (Refl),
(Start) or (Top) and one of the following conditions hold:

1. s is of the form C vn D1 uD2 and it is derived in P in the following way:

...
E vn F (R 6= AndR)

C vn D1 uD2

i.e.: (AndR) is not the last rule used to derive C vn D1 uD2.

2. s is of the form C1 u C2 vn D and it is derived in P in the following way:

...
Ci vn E

...
F vn D (GCI) with E v F ∈ O

Ci vn D (AndLi)
C1 u C2 vn D

Otherwise, the sequent is called good for P . In addition, P is called a good proof
tree if there is no bad sequent occurring on it. Finally, we say that a sequent
C vn D has a good derivation in HC(O, T ,∆) if there is a good proof tree for
C vn D in HC(O, T ,∆).

38

We show that for each proof tree P in HC(O, T ,∆), rooted at a sequent C vn D,
there is a good proof tree P ′ for C vn D. We use well founded-induction [9] on
the following well-founded � order on the set of proof trees in HC(O, T ,∆).

Definition 34. Let P be a proof tree for a sequent C vn D in HC(O, T ,∆).

• We define m(P) := (m1(P),m2(P),m3(P),m4(P)), where

– m1(P) := n, where n is from vn.
– m2(P) := p, where p is the number of (GCI) rule applications occurring

in P .
– m3(P) :=| D |, the size of the concept description D.
– m4(P) :=| P |, the size of the proof tree P .

• The strict partial order � is the lexicographic order, where all components
in m(P) are compared w.r.t. the normal order > on natural numbers.

• We extend � to the set of proof trees in HC(O, T ,∆) as: P1 � P2 iff
m(P1) � m(P2).

Since the lexicographic product of well-founded strict partial orders is again well-
founded [9], then � is a well-founded strict partial order on the set of proof trees
in HC(O, T ,∆).

Lemma 35. For each proof tree in HC(O, T ,∆), rooted at a sequent s, there
exists a good proof tree in HC(O, T ,∆) for the same sequent.

Proof. Let P be a proof tree in HC(O, T ,∆) for some sequent s, m(P) =
(m1,m2,m3,m4) and assume that for all proof trees P ′ with P � P ′ the claim
holds. First, we can assume that P is not a one-element proof tree, otherwise it
would be already a good proof tree. Second, we do a case distinction on the form
of the sequent s:

• s is a sequent that can be derived directly by an application of one of the
rules (Refl), (Top) or (Start). It is clear that there is a good proof tree for
s.

• s is of the form C vn D1 u D2 where C,D1, D2 are concept descriptions.
Application of Lemma 32 yields that there exists a proof tree Pi(1 ≤ i ≤ 2)
for C vn Di such that the number of (GCI) rule applications pi in Pi is
at most the one in P , i.e., pi ≤ m2. In addition, since | Di |<| D1 u D2 |
one can see that m(Pi) is of the form (m1,m2i,m3i,_) with m2i ≤ m2 and
m3i < m3. Therefore, m(P) � m(Pi), P � Pi and thus, induction can be
applied to Pi to obtain a good proof tree Qi in HC(O, T ,∆) for C vn Di.
Then, we can obtain a new proof tree for C vn D1 u D2 in the following
way:

39

Q1

C vn D1

Q2

C vn D1 (AndR)
C vn D1 uD2

and, since Qi is a good proof tree for C vn Di and (AndR) is used to derive
C vn D1 uD2, then the obtained proof tree is good.

• s is of the form C vn+1 X where C is a concept description and X ∈ Ndef .
Application of Lemma 3.1.2 (2) from [15] yields that there exists a proof
tree P ′ for C vn DX where X ≡ DX ∈ T . In addition, since n < n+ 1 one
can see that m(P ′) is of the form (m1′ ,_,_,_) with m1′ < m1. Therefore,
m(P) � m(P ′), P � P ′ and thus, induction can be applied to P ′ to obtain
a good proof tree Q in HC(O, T ,∆) for C vn DX .

Then, we can obtain a new proof tree for C vn+1 X in the following way:

Q
C vn DX (DefR) with X ≡ DX ∈ T
C vn+1 X

and, since Q is a good proof tree for C vn DX and (DefR) is the last rule
used to derive C vn+1 X, then the obtained proof tree is good.

• s is of the form C vn D where C is a concept description and D is a
non-variable atom. We do a case distinction on the last rule used to derive
C vn D in P :

– Last rule used: (Ex). Then, s is of the form ∃r.C ′ vn ∃r.D′ and P :

...
C ′ vn D′ (Ex)

∃r.C ′ vn ∃r.D′

It is clear that the proof tree rooted at C ′ vn D′ is smaller than P
since | D′ |<| ∃r.D′ |. Then, application of induction yields a good
proof tree for C ′ vn D′ and a further application of the (Ex) rule gives
a good proof tree for ∃r.C ′ vn ∃r.D′.

– Last rule used: (DefL). Then, s is of the form X vn D and P :

...
DX vn D (DefL) with X ≡ DX ∈ T
X vn D

Since the size of the proof tree rooted at DX vn D is smaller than the
size of P , a similar argument as for the (Ex) rule yields a good proof
tree for X vn D.

40

– Last rule used: (GCI). Then, P is of the form:

...
C vn E

...
F vn D (GCI) with E v F ∈ O

C vn D
Obviously the proof trees rooted at C vn E and F vn D contain
strictly less number of (GCI) rule applications than P and hence, they
are smaller than P . The application of induction to them and a further
(GCI) rule application give a good proof tree for C vn D.

– Last rule used: (AndLi). Then, P is of the form:

...
Ci vn D (AndLi)

C1 u C2 vn D
In this case it is not possible to use the same argument as for the
previous cases. Note that, although the proof tree rooted at Ci vn D
is smaller than P and the application of induction yields a good proof
tree for Ci vn D, the last rule used in such a tree might be (GCI)
and then (AndLi) cannot be used to complete a good proof tree for
C1 uC2 vn D (see Definition 33 (3)). We look at the last rule used in
P that is not (AndLi), i.e.:

...
E vn F (R 6=AndLi)

Ci u . . . u Cj vn D
(AndLi)

... (AndLi)
C1 u . . . u Cm vn D

If R is (Refl) then P is already a good proof tree. The other three
possible rules are (Ex), (DefL) and (GCI). For the rules (Ex) and
(DefL), similar as before one can see that the proof tree rooted at the
sequent E vn F is smaller than P . The application of induction yields
a good proof tree for E vn F which can replace the one in P to obtain
a good proof tree for C1 u . . . u Cm vn D since R 6= AndLi. For the
remaining case, P has the following form:

...
Ci u . . . u Cj vn E

...
F vn D

(GCI) with E v F ∈ O
Ci u . . . u Cj vn D

(AndLi)
... (AndLi)

C1 u . . . u Cm vn D

41

We can transform that proof tree to obtain a new proof tree for C1 u
. . . u Cm vn D that has the following form:

...
Ci u . . . u Cj vn E

(AndLi)
... (AndLi)

C1 u . . . u Cm vn E

...
F vn D (GCI) with E v F ∈ O

C1 u . . . u Cm vn D
It is important to clarify that in this new proof tree the proof trees
rooted at Ciu. . .uCj vn E and F vn D are the same as in the previous
proof tree and therefore, one can see that they contain smaller number
of (GCI) rule applications than P . In addition, since C1u. . .uCm vn E
is derived by using only (AndLi) rule applications from the sequent
Ci u . . . u Cj vn E, then the proof tree rooted at it contains smaller
number of (GCI) rule applications than P as well.
Thus, the application of induction (to the proof trees rooted at C1 u
. . . u Cm vn E and F vn D) and a further application of the (GCI)
rule give a good proof tree for C1 u . . . u Cm vn D in HC(O, T ,∆).

The following corollary is an immediate consequence of the previous lemma.

Corollary 36. Each derivable sequent s in HC(O, T ,∆) has a good derivation
in HC(O, T ,∆).

Lemma 37. Let C,D be sub-descriptions of concept descriptions occurring in O,
T or Γ such that C v∞ D is derivable in HC(O, T ,∆).

Then, for all n ≥ 0 there exists a proof tree P for C vn D in HC(O, T ,∆) such
that it satisfies the following property:

for every sequent E vq F in P we have E v∞ F in HC(O, T ,∆) (Z)

Proof. From Section 2 we know that there exists a value m that depends on
HC(O, T ,∆) such that v0⊇v1⊇ . . . ⊇vm−1⊇vm = vm+1 = vm+2= Let
us consider an arbitrary number n ≥ 0 and a proof tree P of C vn+m D in
HC(O, T ,∆) (it exists because C v∞ D holds). As a consequence of the selection
of m, one can observe that for every sequent E vq F occurring in P with q ≥ m
holds that E vl F is derivable in HC(O, T ,∆) for all l ≥ 0. Therefore, E v∞ F
is derivable in HC(O, T ,∆).

Now, a proof tree for C vn D can be obtained by the application of trimming to
P . It can be seen (Definition 27) that each sequent occurring in the new proof

42

tree corresponds to a sequent E vq F from P such that q ≥ m. Then, the
trimmed tree is a proof tree for C vn D in HC(O, T ,∆) that satisfies property
Z. Thus, since n was arbitrarily selected the proposition holds for all n ≥ 0.

Corollary 38. If a sequent C v∞ D is derivable in HC(O, T ,∆), then for all
n ≥ 0 there exists a good proof tree for C vn D in HC(O, T ,∆) satisfying
Property Z.

Proof. From Corollary 36 we know that there is a good proof tree Q for the
sequent C vn+m D in HC(O, T ,∆). If P in Lemma 37, is selected as Q then
the application of trimming to P will give a good proof tree for C vn D in
HC(O, T ,∆) that satisfies property Z.

Now, we introduce a disambiguation criterion on proof trees.

Definition 39. A proof tree Q in HC(O, T ,∆) is unambiguous iff whenever there
exist two or more occurrences of a sequent E vq F in Q, the subtrees rooted at
those occurrences are identical.

In addition, we say that a set of proof trees Q is unambiguous iff for each pair of
proof trees Q1, Q2 ∈ Q, every occurrence of a sequent E vq F in Q1 or Q2 is the
root of the same subtree.

Next, we show that Property Z and goodness can be preserved under disambigua-
tion of a set of proof trees.

Lemma 40. Let Q = {Q1, . . . , Qn} be any unambiguous set of proof trees and Q
be a proof tree for a sequent C vn D in HC(O, T ,∆), such that Q1, . . . , Qn and
Q are good and satisfy the Property Z from Lemma 37.

Then, there exists a good proof tree Q′ for C vn D in HC(O, T ,∆) such that Z
is preserved in Q′ and the set Q′ = Q∪ {Q′} is unambiguous.

Proof. The proof is by induction on the structure of Q. By assumption C vn D
is the root of Q. If C vn D is the root of some subtree Qs of some Qi ∈ Q then
Q′ = Q ∪ {Qs} fulfills our claim, otherwise we can assume that C vn D does
not occur in any proof tree from Q. There are three possible cases for the rule
application that is used to obtain C vn D in Q:

• C vn D is obtained by applying one of the rules (Refl), (Top) or (Start).
Then, Q is unambiguous because it is a one-element proof tree, it satisfies
Z by assumption and it is good by definition. Hence, it can be safely added
to Q.

43

• C vn D is obtained using a rule of the form R
S
, then S = C vn D and

let Q1 be the proof tree for R. Obviously, since Q1 is a subtree of Q, it is
good and satisfies Z. The application of induction yields an unambiguous
set Q∪ {Q′1} satisfying Z, where Q′1 is a good proof tree for R.

Now, applying the same rule one can obtain from Q′1 a proof tree Q′ for
C vn D satisfying Z. If Q′ = Q ∪ {Q′} is still ambiguous, this is because
there is another sequent of the form C vn D in Q′, but such a sequent is
the root of a good proof tree Qs for C vn D in Q ∪ {Q′1} that satisfies
Z. Therefore, Qs represents the proof tree that we are looking for and
thus, Q′ = Q ∪ {Qs}. Otherwise, Q′ is unambiguous w.r.t. Q, it also
satisfies property Z, but it does not need to be good since Q′1 is obtained
by induction and it may be the case that the last rule used to derive R is
the (GCI) rule. In such a case, one can see that Q′ has the following form:

...
Ci vn E

...
F vn D (GCI) with E v F ∈ O

Ci vn D (AndLi)
C1 u C2 vn D

Figure 5: Proof tree Q′

We need to show that in such case a good proof tree actually exists. In
order to do that we prove the following claim:

Claim: Let Q = {Q1, . . . , Qn} be any unambiguous set of proof trees as
above and Q be a proof tree for a sequent C1 u C2 vn D in HC(O, T ,∆)
with the same form as in Figure 5, such that Q is unambiguous w.r.t. Q,
it satisfies property Z and all its sequents are good but the one at its root.

Then, there exists a proof tree Q′ for C1 u C2 vn D as required above.

Proof. We show the claim by induction on the number p of (GCI) rule
applications occurring in Q.

Induction Base. p = 1. We transform the proof tree Q into a new proof
tree Q′ for C1 u C2 vn D that has the following form:

...
Ci vn E (AndLi)

C1 u C2 vn E

...
F vn D (GCI) with E v F ∈ O

C1 u C2 vn D

First, note that the new tree contains only one (GCI) rule application and
it happens to derive the sequent at the root, hence it is a good proof tree.
Second, ambiguity of Q w.r.t. Q could only be caused if there is a sub-proof

44

tree Qs for C1 u C2 vn E occurring in some proof tree Qi ∈ Q, but then
the proof tree rooted at C1 u C2 vn E can be replaced by Qs to make Q′
unambiguous w.r.t. Q. Last, since Ci vn E occurs in Q then Ci v∞ E
is derivable in HC(O, T ,∆) and obviously C1 u C2 v∞ E as well. Then,
Q′ satisfies property Z and thus, it is a proof tree for C1 u C2 vn D that
satisfies the claim.

Induction Step. Assume that the claim holds for all natural numbers less
than p and we show that it holds also for p. Then, Q has the same form
as before but it contains p applications of the (GCI) rule. Doing the same
transformation as for the base case, one can do a two case distinction for
the proof tree rooted at the sequent C1 u C2 vn E:

– it is a good proof tree. Then, by the same reasons as for the base case
a proof tree Q′ exists satisfying the claim.

– it is not good. This can only happen when the sequent Ci vn E is
derived using an application of the (GCI) rule. However, since the
proof tree rooted at Ci vn E is a good proof tree, satisfies property
Z, is unambiguous w.r.t. Q and has less number of (GCI) rule appli-
cations than Q, then the proof tree rooted at C1 u C2 vn E satisifies
the induction hypothesis. Thus, the application of induction yields a
proof tree Qs for C1 u C2 vn E. Using Qs to replace the proof tree
rooted at C1 uC2 vn E in Q′ gives a proof tree for C1 uC2 vn D that
satisfies the claim.

This completes the proof for the claim and therefore, also the proof for the
general case of a rule application of the form R

S
.

• C vn D is obtained using a rule of the form R1 R2

S
, then S = C vn D

and let Q1 and Q2 be the proof trees for R1 and R2 respectively. As before,
Q1 and Q2 are good, satisfy property Z and applying induction twice we
obtain the set of unambiguous proof trees Q∪ {Q′1, Q′2}, where Q′1 and Q′2
are good proof trees for R1 and R2 respectively.

Now, applying the same rule one can obtain from Q′1 and Q′2 a proof tree Q′
for C vn D satisfying Z. Note that since the possible rules that can be used
are (GCI) and (AndR), the proof tree Q′ is good. Using the same reasoning
as before, there is good proof tree Qs for C vn D that is either Q′ or a
subtree occurring in Q′1 or Q′2. Therefore, Q′ = Q∪{Qs} is an unambiguous
set of proof trees satisfying property Z and the goodness condition.

Notice that since the empty set trivially satisfies the premises of Lemma 40, then
the following corollary is a particular case and follows immediately.

45

Corollary 41. Let Q be a good proof tree for the sequent C vn D, such that Q
satisfies the Property Z.

Then, there exists an unambiguous good proof tree Q′ for C vn D, whereas Z is
preserved in Q′.

6.3 Completeness

Assume that Γ is hybrid-unifiable w.r.t. O and let T be a hybrid-unifier of Γ
w.r.t. O. Like in [2], we can use this unifier to guide the application of the
nondeterministic rules such that Algorithm 24 does not fail. More precisely, we
use a certain set of proof trees in HC(O, T ,Γ) for the subsumptions in Γ to guide
a non-failing run of the algorithm. To that purpose, we use the definitions and the
properties shown in Section 6.2. One important issue that has to be guaranteed
while guiding a non-failing run of the algorithm, is that whenever it is needed
blocking will not fail. To help us in that matter we use the disambiguation
criterion introduced in Definition 39.

Let ∆ be the set of all sequents C vn D such that: 0 ≤ n ≤ `3, C is a sub-
description of a concept description occurring in O, T or Γ, D ∈ At and C v∞ D
is derivable in HC(O, T ,Γ). Since C v∞ D is derivable in HC(O, T ,Γ) then, by
Corollaries 38 and 41 and Lemma 40 we can assume without loss of generality that
there is an unambiguous set of proof trees Q such that: each sequent C vn D ∈ ∆
has a good proof tree in Q that satisfies Property Z. Note, that since T is a
hybrid-unifier of Γ w.r.t. O we know that Ci v∞ Di is derivable in HC(O, T ,Γ)
for each subsumption Ci v Di ∈ Γ. Obviously, Ci is a sub-description of a
concept description occurring in Γ and Di ∈ At because Γ is flat, then we know
that there is a proof tree in Q for Ci v` Di.

Now, we are ready to show how to guide a non-failing run of Algorithm 24. The
following invariants for the current set of p-sequents Γp and the current assignment
ζ will be maintained w.r.t. Q:

(i) for each p-sequent (s, P) in Γp, s occurs in some Qi from Q.

(ii) For all D ∈ ζX we have X v∞ D derivable in HC(O, T ,Γ).

(iii) for each p-sequent (s, P) in Γp, if E vn F ∈ P then, s occurs in any proof
tree for E vn F that is a sub-tree in Q.

Since ζX is initialized to ∅ for all variables X ∈ Nv, there is a proof tree for
each Ci v` Di in Q as described above and Γp is initialized to Γ

(0)
p , then these

invariants are satisfied after the initialization of the algorithm.
3l is the value computed during the initialization of Algorithm 24.

46

We first show that after applying expansion to Γp, the invariants are mantained.

Lemma 42. The invariants are mantained by the operation of expanding Γp.

Proof. The application of expansion is performed w.r.t. a defined concept X. For
every p-sequent of the form (C vn X,_) ∈ Γp blocking is applied to (C vn−1 D, ∅)
and Γp for every D ∈ ζX .

As explained before, since the second components of the p-sequents provided as
inputs for blocking are empty, blocking cannot fail during expansion. Due to
the same reason, if the rule B2 from blocking is applicable, it does not change
the second component of any p-sequent in Γp and therefore invariant (iii) is satis-
fied.One can also see than since expansion does not change the current assignment
ζ, invariant (ii) is trivially maintained. We show that invariant (i) is also satisfied.

If a p-sequent (C vn−1 D, ∅) is added to Γp by expansion then, we know that
D ∈ ζX and invariant (ii) yields that X v∞ D is derivable in HC(O, T ,Γ). Since,
(C vn X,_) ∈ Γp then by invariant (i) it occurs in some proof tree Qi ∈ Q
and consequently by Property Z, C v∞ X is derivable in HC(O, T ,Γ). Hence,
transitivity of v∞ yields derivability of C v∞ D in HC(O, T ,Γ).

In addition, one can see that C is a sub-description of a concept description
occurring in O, T or Γ and since D ∈ ζX implies D ∈ Atnv then, by construction
of Q there is a proof tree Qi ∈ Q containing C vn−1 D. Therefore, invariant (i)
is satisfied.

There is only one eager rule that could produce failures, the following lemma
shows that this will never be the case.

Lemma 43. The application of an eager rule never fails and mantains the in-
variants.

Proof. We do not need to consider applications of Eager Axiom Solving and Eager
Solving, since they cannot fail nor do they add new p-sequents to Γp.

Consider an application of Eager Ground Solving to an unsolved p-sequent p =
(C vn D,_) with C vn D ground. By invariant (i), C vn D occurs on a
proof tree Qi that satisfies the Property Z and thus, C v∞ D is derivable in
HC(O, T ,Γ). Applying Theorem 5 we obtain that C vgfp,O,T D holds, and this
implies that the rule application does not fail. The invariants are mantained since
neither Γp nor ζ are modified.

Now, we need to show that if no eager rule is applicable to p-sequents in Γp and
there is still an unsolved p-sequent in Γp then, there is a nondeterministic rule
that can be applied while keeping the invariants.

47

Lemma 44. Let p = (s, P) be an unsolved p-sequent in Γp to which no eager
rule applies. Then, there is a nondeterministic rule that can be applied to p while
maintaining the invariants.

Proof. First, s must be of the form C1 u . . . u Cm vn D where D ∈ Atnv and
n > 0. Note that, D must be a non-variable atom since the input unification
problem is flat and every p-sequent added to Γp during a run of Algorithm 24
has a first component which right-hand side is either a defined concept (marked
as solved and no rule applies to it) or a non-variable atom.

By invariant (i), there exists a set of unambiguous proof treesQ such that s occurs
in some Qi ∈ Q, Qi is good and satisfies Property Z. Let Ps be the subtree rooted
at s and let Ci u . . . u Cj vn D be the leaf of its maximal sub-proof tree w.r.t.
{AndL1, AndL2}. We distinguish between the possible rules from HC(O, T ,Γ)
that could have been used to obtain Ci u . . . u Cj vn D in Ps.

• One of the rules (Refl), (Top) or (Start) is used. In this case, either Eager
Axiom Solving or Eager Solving would have been used successfully.

• The rule (DefL) is used. Then, i = j and Ci = X for some defined concept
X. Since Qi satisfies Property Z and X vn D occurs in Qi then, X v∞ D
is derivable in HC(O, T ,Γ) and since D ∈ Atnv the addition of D to ζX does
not affect invariant (ii). Invariants (i) and (iii) are trivially satisfied since Γp
is not modified. Thus, we can apply the rule Extension while maintaining
the invariants.

• The rule (Ex) is used. Then, i = j, Ci is of the form ∃s.C ′ and D is of the
form ∃s.D′. The sequent C ′ vn D′ occurs in Qi and this means that, if the
p-sequent p = (C ′ vn D′, P ∪ {s}) is added to Γp, the invariant (i) is main-
tained. In addition, invariant (ii) is trivially satisfied since the assignment
ζ is not modified. It will be shown below why invariant (iii) is preserved
and also why blocking does not fail for p. Thus, the rule Decomposition can
be successfully applied while maintaining the invariants.

• The rule (GCI) is used. Then, there exists a GCI E1 u . . . u Ek v F ∈ O
such that Ciu . . .uCj vn E1u . . .uEk and F vn D are sequents occurring
in Qi. Since we know that Qi is a good proof tree, then the derivation of s
in Qi has the following form:

...
C1 u . . . u Cm vn E1 u . . . u Ek

...
F vn D (GCI) with E1 u . . . u Ek v F ∈ O

C1 u . . . u Cm vn D

In addition, the same goodness property in Qi implies that the derivation
of C1 u . . . u Cm vn E1 u . . . u Ek in Qi must be of the following form:

48

QE1

C1 u . . . u Cm vn E1

QE2

C1 u . . . u Cm vn E2 (AndR)
C1 u . . . u Cm vn E1 u E2

. . .
(AndR)

C1 u . . . u Cmvn E1 u · · · u Ek−1

. . .

QEk

C1 u . . . u Cm vn Ek
(AndR)

C1 u . . . u Cm vn E1 u · · · u Ek

Summing up, the sequents C1 u . . . u Cm vn Ei, . . . , C1 u . . . u Cm vn Ek,
and F vn D occur in Qi. Thus, the addition of the p-sequents p1 = (C1 u
. . .uCm vn E1, P ∪{s}), . . . , pk = (C1u . . .uCm vn Ek, P ∪{s}), q = (F vn
D,P∪{s}) to Γp will maintain invariant (i). As in the case of Decomposition
rule, invariant (ii) is satisfied and it will be shown below why invariant (iii)
is satisfied and blocking does not fail for p1, . . . , pk and q. Thus, Mutation
can be successfully applied while maintaining the invariants.

Now let us see why blocking does not fail in the above cases of Decomposition
and Mutation applications. Recall that p = (s, P) and let p′ = (s′, P ∪ {s}) be
one of the p-sequents that blocking is applied to during an application of rules
Decomposition or Mutation. Assume that blocking fails meaning that s′ ∈ P .

By invariant (iii), we have that there is a proof tree Q′ ∈ Q such that s′ occurs in
Q′ and s occurs in the subtree rooted at s′. In addition, s′ occurs in the subtree
rooted at s in Qi. Since Qi and Q′ are mutually unambiguous then, the subtrees
rooted at s in Qi and Q′ must be identical. This implies that the subtree rooted
at s′ in Q′ contains an additional occurrence of s and this, obviously contradicts
the assumption that Q′ is unambiguous. Thus, s′ cannot be in P and blocking
does not fail.

Finally, we have to show that invariant (iii) is maintained afterwards. Consider
again the p-sequent (s′, P ∪ {s}). Since blocking does not fail, two cases are
possible:

• Rule B3 was applied while doing blocking. Then, (s′, P ∪ {s}) is added to
Γp. Since (s, P) is in Γp then, invariant (iii) implies that s occurs in any
proof tree for E vn F ∈ P that is a subtree in Q. Now, s′ occurs in the
subtree rooted at s in Qi and thus, the unambiguous condition of Q yields
that s′ occurs in any proof tree for E vn F ∈ P ∪ {s}.

• Rule B2 was applied. Then, there is a p-sequent of the form (s′, P ′) in
Γp. From the previous case we know that s′ occurs in any proof tree for
E vn F ∈ P ∪ {s}. Therefore, updating P ′ as P ′ ∪ P ∪ {s} preserves
invariant (iii). In addition, for each p-sequent (s′′, P ′′) in Γp such that
s′ ∈ P ′′ invariant (iii) also yields that s′′ occurs in any proof tree for s′ in
Q. Hence, the unambiguity of the set Q guarantees that invariant (iii) is
satisfied after the update of P ′′ as P ′′ ∪ P ∪ {s}.

49

Finally, we can conclude that there is a nondeterministic rule that can be applied
to p while maintaining the invariants.

These lemmas imply that for any hybrid-unifiable input problem Γ there is a non-
failing run of Algorithm 24 during which invariants (i), (ii) and (iii) are satisfied.
Assuming that any run of the algorithm terminates (see next section), this shows
completeness, i.e., whenever Γ has a hybrid-unifier S w.r.t. T , the algorithm
computes one.

6.4 Termination and complexity

Consider a run of Algorithm 24. We will show that at any time any p-sequent
(C vn D,P) encountered during this run satisfies the following three conditions:

1. if (C vn D,P) ∈ Γp there is no p-sequent (C vn D,P ′) ∈ Γp with P 6= P ′

2. C is either conjunction on the left hand side of a subsumption from Γ
(0)
p or

an atom in At and D belongs to At

3. n ≤ l, where l is the value computed during the initialization of the algo-
rithm.

Lemma 45. If the p-sequents in Γp satisfy conditions 1, 2 and 3, then these
conditions are satisfied after one rule application.

Proof. First, since Γp is initialized as Γ
(0)
p then, the conditions are obviously

satisfied after the initialization of the algorithm. Now, let us consider the cases
when a new p-sequent is added into Γp.

• A p-sequent is created by expansion of Γp. This is of the form (C1 u . . . u
Cm vn−1 D, ∅) for a p-sequent (C1u . . .uCm vn X,P) ∈ Γp with D ∈ Atnv.
Due to blocking condition 1 is satisfied. Since n ≤ l, condition 3 is satisfied.
In addition, the set Atnv only contains non-variable atoms from Γ ∪ T ,
therefore condition 2 is satisfied as well.

• A p-sequent is created by a rule application. These are the rules Decom-
position and Mutation. In both cases blocking ensures condition 1. In the
case of Decomposition, from a p-sequent (C vn D,P) ∈ Γp a new p-sequent
is created of the form (C ′ vn D′, P ′), where C ′ and D′ are atoms in At. In
the case of Mutation, new p-sequents have the form (C vn D′, P ′), where
C is of the required form by assumption and D′ is an atom in At. Hence
condition 2 is satisfied. Condition 3 is satisfied by assumption.

50

All the other rules from Algorithm 24 maintain conditions 1, 2 and 3 since Γp is
not modified.

Based on this lemma, we conclude with the following.

Lemma 46. Every run of the Algorithm 24 on input Γ terminates in time poly-
nomial in the size of Γ ∪ O.

Proof. Since every p-sequent has the form (C vn D,P), due to condition 2, there
are only at most #Γ + |At| concept descriptions that can be C, where #Γ is the
number of subsumptions in Γ, and only at most |At| concept descriptions that can
be D. In addition, due to condition 3, there are only at most `×(#Γ+|At|)×|At|
subsumptions of the form C vn D used in the p-sequents during a run of the
algorithm. Since ` is a polynomial in the size of Γ and O, there are only at most
polynomially many first components for p-sequents produced in one run of the
algorithm.

Due to condition 1, there cannot be two p-sequents (C vn D,P) and (C vn D,P ′)
with P 6= P ′ in Γp at the same time. Since, in addition, once a p-sequent is marked
as solved by the algorithm it will never become unsolved again, then a run of the
algorithm never solves two p-sequents with the same left-hand side and different
right-hand side. Therefore, since every rule application solves one p-sequent, then
the algorithm can apply at most polynomially many rules.

Now, verifying whether a rule is applicable is done polynomially often and exe-
cuting some of the following operations:

• Checking a subsumption between ground sub-descriptions of Γ ∪ O.

• Checking whether s in (s, P) is of a specific form, e.g., ground, the right-hand
side of s does not consist of a single top-level atom or s is the consequence
of an axiom rule from HC.

• Guessing a GCI from O or guessing a conjunct Ci in Eager Solving, De-
composition or Extension.

• Execute rule B1 from blocking on candidates p-sequents to be added into
Γp.

The last operation has to check whether a sequent C vn D is contained in the
set P . Since P contains only sequents s such that (s,_) ∈ Γp and the size of Γp
is polynomial on the size of Γ ∪ O, then rule B1 executes in time polynomial in
the size of Γ ∪ O.

If a rule is applicable, its application can execute the following polynomial oper-
ations:

51

• Adding polynomially many p-sequents to Γp.

• Adding polynomially many atoms to the current assignment.

• Execute one of the rules B2 or B3 from blocking.

Again, we clarify the case concerning the application of rules from blocking. The
case for B3 is clear since its application only adds one p-sequent to Γp. The
application of rule B2 searches for each (s, P) ∈ Γp the elements in P . As
explained before, Γp and P are of size polynomial on the size of Γ ∪ T which
implies that B2 can be applied in time polynomial.

This lemma with the soundness and completeness shown before (29, 42, 43 and
44), yield the main result of this section.

Theorem 47. Algorithm 24 is an NP-decision procedure for hybrid EL-unifi-
ability w.r.t. arbitrary EL-ontologies.

7 Conclusions

In this paper, we have first proved that hybrid EL-unification w.r.t. arbitrary EL-
ontologies is NP-complete, and then developed a goal-oriented NP-algorithm for
hybrid EL-unification that is better than the brute-force “guess and then test” al-
gorithm used to show the “in NP” result. As illustrated by Example 7, computing
hybrid unifiers rather than classical ones may be appropriate in some situations.
Nevertheless, the decidability and complexity of classical EL-unification w.r.t.
arbitrary EL-ontologies is an important topic for future research. We hope that
hybrid unification may also be helpful in this context. Basically, given a hybrid
unifier T of Γ w.r.t. O, we can obtain a classical unifier of Γ w.r.t. O by finding
an acyclic TBox S such that O∪S entails all the GCIs that (O, T) entails w.r.t.
hybrid semantics, i.e. C vgfp,O,T D implies C vO∪S D for all (relevant) concept
descriptions C,D.

References

[1] Baader, F.: Terminological cycles in a description logic with existential re-
strictions. In: Gottlob, G., Walsh, T. (eds.) Proc. of the 18th Int. Joint Conf.
on Artificial Intelligence (IJCAI 2003). pp. 325–330. Morgan Kaufmann, Los
Altos, Acapulco, Mexico (2003)

[2] Baader, F., Borgwardt, S., Morawska, B.: Unification in the descrip-
tion logic EL w.r.t. cycle-restricted TBoxes. LTCS-Report 11-05, Chair for

52

Automata Theory, Institute for Theoretical Computer Science, Technis-
che Universität Dresden, Dresden, Germany (2011), see http://lat.inf.tu-
dresden.de/research/reports.html.

[3] Baader, F., Borgwardt, S., Morawska, B.: Extending unification in EL to-
wards general TBoxes. In: Proc. of the 13th Int. Conf. on Principles of
Knowledge Representation and Reasoning (KR 2012). pp. 568–572. AAAI
Press/The MIT Press (2012)

[4] Baader, F., Borgwardt, S., Morawska, B.: A goal-oriented algorithm for
unification in ELHR+ w.r.t. cycle-restricted ontologies. In: Thielscher, M.,
Zhang, D. (eds.) Pro. of 25th Australasian Joint Conf. on Artificial Intelli-
gence (AI’12). Lecture Notes in Artificial Intelligence, vol. 7691, pp. 493–504.
Springer-Verlag (2012)

[5] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Ap-
plications. Cambridge University Press (2003)

[6] Baader, F., Morawska, B.: Unification in the description logic EL. In:
Treinen, R. (ed.) Proc. of the 20th Int. Conf. on Rewriting Techniques and
Applications (RTA 2009). Lecture Notes in Computer Science, vol. 5595, pp.
350–364. Springer-Verlag (2009)

[7] Baader, F., Morawska, B.: Unification in the description logic EL. Logical
Methods in Computer Science 6(3) (2010)

[8] Baader, F., Narendran, P.: Unification of concept terms in description logics.
J. of Symbolic Computation 31(3), 277–305 (2001)

[9] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, United Kingdom, 1998.

[10] Brandt, S.: Subsumption and Instance Problem in ELH w.r.t. General
TBoxes. LTCS-Report 04-04, Chair for Automata Theory, Institute for The-
oretical Computer Science, Technische Universität Dresden, Dresden, Ger-
many (2004), see http://lat.inf.tu-dresden.de/research/reports.html.

[11] Brandt, S.: Polynomial time reasoning in a description logic with existential
restrictions, GCI axioms, and—what else? In: de Mántaras, R.L., Saitta, L.
(eds.) Proc. of the 16th Eur. Conf. on Artificial Intelligence (ECAI 2004).
pp. 298–302 (2004)

[12] Brandt, S., Model, J.: Subsumption in EL w.r.t. hybrid tboxes. In: Proc. of
the 28th German Annual Conf. on Artificial Intelligence (KI’05). pp. 34–48.
Lecture Notes in Artificial Intelligence, Springer-Verlag (2005)

53

[13] Küsters, R.: Non-standard Inferences in Description Logics, Lecture Notes
in Artificial Intelligence, vol. 2100. Springer-Verlag (2001)

[14] B. Nebel. Terminological cycles: Semantics and computational properties.
In J. F. Sowa, editor, Principles of Semantic Networks: Explorations in the
Representation of Knowledge, pages 331-361. Morgan Kaufmann Publishers,
San Mateo (CA), USA, 1991.

[15] Novakovic, N.: A proof-theoretic approach to deciding subsumption and
computing least common subsumer in EL w.r.t. hybrid TBoxes. Master The-
sis. Chair of Automata Theory, Institute for Theoretical Computer Science,
TU-Dresden, 2007, see http://lat.inf.tu-dresden.de/research/mas/#Nov-
Mas-07.

[16] Novakovic, N.: A proof-theoretic approach to deciding subsumption and
computing least common subsumer in EL w.r.t. hybrid TBoxes. In: Höll-
dobler, S., Lutz, C., Wansing, H. (eds.) Proc. of the 11th Eur. Conf. on
Logics in Artificial Intelligence (JELIA’2004). Lecture Notes in Computer
Science, vol. 5293, pp. 311–323. Springer-Verlag (2008)

54

	Introduction
	The Description Logic EL
	The concept description language
	Classical ontologies and subsumption
	Hybrid ontologies
	Subsumption w.r.t. hybrid EL-ontologies

	Hybrid unification in EL
	Flat unification problems
	Local unifiers

	Some properties of proof trees I
	Hybrid EL-unification is NP-complete
	A goal-oriented algorithm for hybrid EL-unification
	Soundness
	Some properties of proof trees II
	Completeness
	Termination and complexity

	Conclusions

