
Technische Universität Dresden
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

Temporal Query Answering w.r.t.
DL-Lite-Ontologies

Stefan Borgwardt Marcel Lippmann Veronika Thost

LTCS-Report 13-05

This revised version proves that the presented
algorithm achieves a bounded history encoding.

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nöthnitzer Str. 46

Dresden

Temporal Query Answering w.r.t.
DL-Lite-Ontologies

Stefan Borgwardt Marcel Lippmann
Veronika Thost

Institute of Theoretical Computer Science
Technische Universität Dresden, Germany

{stefborg,lippmann,thost}@tcs.inf.tu-dresden.de

Abstract

Ontology-based data access (OBDA) generalizes query answering in
relational databases. It allows to query a database by using the language
of an ontology, abstracting from the actual relations of the database. For
ontologies formulated in Description Logics of the DL-Lite family, OBDA
can be realized by rewriting the query into a classical first-order query, e.g.
an SQL query, by compiling the information of the ontology into the query.
The query is then answered using classical database techniques.

In this report, we consider a temporal version of OBDA. We propose a
temporal query language that combines a linear temporal logic with queries
over DL-Litecore-ontologies. This language is well-suited for expressing
temporal properties of dynamical systems and is useful in context-aware
applications that need to detect specific situations. Using a first-order
rewriting approach, we transform our temporal queries into queries over
a temporal database. We then present three approaches to answering the
resulting queries, all having different advantages and drawbacks.

{stefborg,lippmann,thost}@tcs.inf.tu-dresden.de

Contents

1 Introduction 3

2 Preliminaries 5

2.1 The DL-Lite Family . 5

2.2 Temporal Conjunctive Queries . 6

3 Answering Temporal Conjunctive Queries 9

3.1 Computing the Answers . 11

4 Eliminating Future Operators 12

5 A New Algorithm 17

5.1 The Initial Answer Formula . 19

5.2 The Next Answer Formula . 20

5.3 The Algorithm . 22

6 Rigid Names 28

7 Conclusions 33

2

1 Introduction

Context-aware applications try to detect specific situations within a changing
environment (e.g. a computer system or air traffic observed by radar) to be able
to react accordingly. To gain information, the environment is observed by sensors
(for a computer system, data about its resources is gathered by the operating
system), and the results of sensing are stored in a database. A context-aware
application then detects specific predefined situations based on this data (e.g. a
high system load) and reacts accordingly (e.g. by increasing the CPU frequency).

In a simple setting, such an application can be realized by using standard database
techniques: the sensor information is stored in a database, and the situations to
be recognized are specified as database queries [AHV95]. However, we cannot
assume that the sensors provide a complete description of the current state of the
environment. Thus, the closed world assumption employed by database systems
(i.e. facts not present in the database are assumed to be false) is not appropriate
since there may be facts of which the truth is not known. For example, a sensor
for certain information might not be available for a moment or not even exist.

In addition, though a complete specification of the environment usually does not
exist, often some knowledge about its behavior is available. This knowledge can
be used to formulate constraints on the interpretation of the predicates used in
the queries, to detect more complex situations. In ontology-based data access
(OBDA) [CDL+09], domain knowledge is encoded in ontologies using a descrip-
tion logic (DL). In this report, we consider logics of the DL-Lite family, which are
light-weight DLs with a low complexity for many reasoning problems [CDL+09].

In order to recognize situations that evolve over time, we propose to add a tempo-
ral logical component to the queries. We use the operators of the temporal logic
LTL, which allows to reason about a linear and discrete flow of time [Pnu77].
Usual temporal operators include next (#φ), which asserts that a property φ is
true at the next point in time, eventually (3φ), which asks for φ to be satisfied
at some point in the future, and always (2φ), which forces φ to be true at all
time points in the future. We also use the corresponding past operators #−, 3−,
and 2−.

Consider, for example, a collection of servers providing several services. An im-
portant task is to migrate services between servers to balance the load. To decide
when to migrate, we want to detect certain critical situations. We consider a
process to be critical if it has an increasing workload, and at the same time the
server it is running on is almost overloaded. We want to detect those processes
and servers that were in a critical situation at least twice within the past ten time
units, expressed by the query #−10(3(Critical(x, y) ∧#3Critical(x, y))), where

Critical(x, y) := Server(x) ∧ Process(y) ∧ executes(x, y) ∧ Running(y) ∧
IncreasingWorkload(y) ∧ AlmostOverloaded(x).

3

In this example, it is essential that future and past operators can be nested
arbitrarily. One might argue that, as we are looking at the time line from the
point of view of the current time point, and nothing is known about the future, it
is sufficient to have only past operators. We will even show that in our setting it is
indeed always possible to construct an equivalent query using only past operators.
However, the resulting query is not very concise and it is not easy to see the
situation that is to be recognized. Indeed, for propositional LTL eliminating the
past operators from a query results in a blowup that is at least exponential and
no constructions of size less than triply exponential are known [LMS02].

Temporal extensions of DL-Lite [CGL+05] have been considered in the context
of conceptual modeling [AKRZ09, AKRZ10, AKRZ12], where the focus lies on
checking concept satisfiability instead of query answering. OBDA, the second ma-
jor use case of DL-Lite, with query answering as the most important reasoning
problem [CDL+09], has not yet been studied in a temporal setting. Investigations
of temporal query languages based on a combination of DL queries such as con-
junctive queries (CQs) and temporal logics such as LTL have started only quite
recently. In [GK12], a framework is developed that combines the two without
much interference. The algorithm for query answering in this setting is an LTL-
satisfiability test using a sub-procedure to answer (atemporal) CQs. In [BBL13],
a similar query language, a combination of LTL and CQs over the DL ALC,
is proposed. Its temporal component, however, is allowed to influence the DL
queries via the notion of rigid names, which are names whose interpretation does
not change over time. The complexity increases depending on whether only rigid
concept names or also rigid role names are allowed. Additionally, the latter paper
also studies the so-called data complexity, where the complexity is measured only
w.r.t. the size of the sensor data, i.e. the observations, but not w.r.t. the size of
the query or the ontology.

In this report, we follow an approach suggested in [GK12] to combine the first-
order rewriting techniques for atemporal query answering in logics of the DL-Lite
family with a temporal component. The main idea is to use optimized database
techniques to answer the actual queries. However, the existing techniques for an-
swering temporal queries over temporal databases do not perfectly suit our pur-
poses. In [CTB01], the authors describe a temporal extension of the SQL query
language that can answer temporal queries over a complete temporal database.
However, in our setting the database containing all previous observations may
grow huge very fast, but not all past observations are relevant for a particular
query. In [Cho95], an approach is described that reduces the amount of space
needed; but the query language considered there allows only for past operators.
In addition to describing how these approaches can be applied to our problem,
we propose a new algorithm that extends the one from [Cho95] and can also
deal with future operators. All three approaches have different advantages and
drawbacks.

4

Additionally, we show how the new algorithm can be extended to deal with rigid
concept names for a specific subclass of queries. Unfortunately, there seems to
be no simple way to adapt the algorithm to deal with rigid role names.

2 Preliminaries

In this report, we will consider temporal queries that are based on inexpressive
DLs of the DL-Lite family [CDL+09]. We will first describe the DL component,
and then the temporal component of this combination of logics.

2.1 The DL-Lite Family

The DL-Lite family consists of various DLs that are tailored towards conceptual
modeling and allow to realize query answering using classical database techniques.
We only consider DL-Litecore as a prototypical example.

Definition 2.1 (syntax of DL-Litecore). Let NC, NR, and NI be non-empty, pair-
wise disjoint sets of concept, role, and individual names, respectively. A role
expression is either a role name P1 ∈ NR or an inverse role P−2 with P2 ∈ NR. A
basic concept is of the form A or ∃R, where A ∈ NC and R is a role expression.
A general concept is of the form B or ¬B, where B is a basic concept.

A concept inclusion is of the form B v C, where B is a basic concept and C is
a general concept. An assertion is of the form A(a) or P (a, b), where A ∈ NC,
P ∈ NR, and a, b ∈ NI. We call both concept inclusions and assertions axioms.

A TBox (or ontology) is a finite set of concept inclusions, and an ABox is finite
set of assertions.

The semantics of DL-Litecore is defined through the notion of an interpretation.

Definition 2.2 (semantics of DL-Litecore). An interpretation is a pair I =
(∆I , ·I), where ∆I is a non-empty set (called domain) and ·I is a function that
assigns to every A ∈ NC a set AI ⊆ ∆I, to every P ∈ NR a binary relation
P I ⊆ ∆I ×∆I, and to every a ∈ NI an element aI ∈ ∆I.

This function is extended to role expressions, basic concepts, and general concepts
as follows:

• (P−)I := {(e, d) | (d, e) ∈ P I}

• (∃R)I := {d | there is an e ∈ ∆I such that (d, e) ∈ RI}

• (¬C)I := ∆I \ CI

5

The interpretation I is a model of the axiom α if:

• BI ⊆ CI if α = B v C;

• aI ∈ AI if α = A(a); and

• (aI , bI) ∈ P I if α = P (a, b).

We write I |= α if I is a model of the axiom α, and I |= T (I |= A) if I is a
model of all concept inclusions in the TBox T (all assertions in the ABox A).
An ABox A is consistent (w.r.t. a TBox T) if there is an interpretation I with
I |= A and I |= T .

We assume that all interpretations I satisfy the unique name assumption (UNA),
i.e. for all a, b ∈ NI with a 6= b, we have aI 6= bI .

2.2 Temporal Conjunctive Queries

Before we introduce our temporal query language, we introduce the notion of
temporal knowledge bases. Intuitively, they contain sensor data (ABoxes) for all
previous time points, and a global TBox.

Definition 2.3. A temporal knowledge base (TKB) K = 〈(Ai)0≤i≤n, T 〉 consists
of a finite sequence of ABoxes Ai and a TBox T , where the ABoxes Ai can only
contain concept names that also occur in T . Let I = (Ii)0≤i≤n be a sequence of
interpretations Ii = (∆, ·Ii) over a fixed non-empty domain ∆ (constant domain
assumption). Then I is a model of K (written I |= K) if Ii |= Ai and Ii |= T
for all i, 0 ≤ i ≤ n.

Similar to what was done in [BBL13, GK12], our temporal query language is
based on conjunctive queries [AHV95, CM77]. The main difference is that we
do not allow negation, as also in DL-Lite arbitrary negation is not allowed. The
reason is that the reductions in Section 3 do not work in the presence of negation.

Definition 2.4. Let NV be a set of variables. A conjunctive query (CQ) is of the
form φ = ∃y1, . . . , ym.ψ, where y1, . . . , ym ∈ NV and ψ is a (possibly empty) finite
conjunction of atoms of the form

• A(z) for A ∈ NC and z ∈ NV ∪ NI (concept atom); or

• r(z1, z2) for r ∈ NR and z1, z2 ∈ NV ∪ NI (role atom).

The empty conjunction is denoted by true.

Temporal conjunctive queries (TCQs) are built from CQs as follows:

6

• each CQ is a TCQ; and

• if φ1 and φ2 are TCQs, then so are:

– φ1 ∧ φ2 (conjunction), φ1 ∨ φ2 (disjunction),
– #φ1 (strong next), •φ1 (weak next),
– #−φ1 (strong previous), •−φ1 (weak previous),
– 2φ1 (always), 2−φ1 (always in the past),
– 3φ1 (eventually), 3−φ1 (history),
– φ1 Uφ2 (until), and φ1 Sφ2 (since).

The symbols #−, •−, 2−, 3−, and S are called past operators, the symbols #,
• , 2, 3, and U are future operators.

We denote the set of individuals occurring in a TCQ φ by Ind(φ), the set of
variables occurring in φ by Var(φ), the set of free variables in φ by FVar(φ), and the
set of atoms occurring in φ by At(φ). A TCQ φ is called Boolean if FVar(φ) = ∅.
We further denote by Sub(φ) the set of all TCQs occurring as subqueries in φ
(including φ itself). A union of conjunctive queries (UCQ) is a disjunction of
CQs. For our purposes, it is sufficient to define the semantics for Boolean CQs
and TCQs. As usual, it is given using the notion of a homomorphism [CM77].

Definition 2.5. Let I = (∆, ·I) be an interpretation and ψ be a Boolean CQ. A
mapping π : Var(ψ) ∪ NI → ∆ is a homomorphism of ψ into I if

• π(a) = aI for all a ∈ NI,

• π(z) ∈ AI for all concept atoms A(z) in ψ, and

• (π(z1), π(z2)) ∈ rI for all role atoms r(z1, z2) in ψ.

We say that I is a model of ψ (written I |= ψ) if there is such a homomorphism.

Let now φ be a Boolean TCQ. For a sequence of interpretations I = (Ii)0≤i≤n

7

and i with 0 ≤ i ≤ n, we define I, i |= φ by induction on the structure of φ:

I, i |= ∃y1, . . . , ym.ψ iff Ii |= ∃y1, . . . , ym.ψ
I, i |= φ1 ∧ φ2 iff I, i |= φ1 and I, i |= φ2
I, i |= φ1 ∨ φ2 iff I, i |= φ1 or I, i |= φ2
I, i |= #φ1 iff i < n and I, i+ 1 |= φ1
I, i |= •φ1 iff i < n implies I, i+ 1 |= φ1
I, i |= #−φ1 iff i > 0 and I, i− 1 |= φ1
I, i |= •−φ1 iff i > 0 implies I, i− 1 |= φ1
I, i |= 2φ1 iff for all k, i ≤ k ≤ n, we have I, k |= φ1
I, i |= 2−φ1 iff for all k, 0 ≤ k ≤ i, we have I, k |= φ1
I, i |= 3φ1 iff there is some k, i ≤ k ≤ n, such that I, k |= φ1
I, i |= 3−φ1 iff there is some k, 0 ≤ k ≤ i, such that I, k |= φ1
I, i |= φ1 Uφ2 iff there is some k, i ≤ k ≤ n such that I, k |= φ2

and I, j |= φ1 for all j, i ≤ j < k
I, i |= φ1 Sφ2 iff there is some k, 0 ≤ k ≤ i such that I, k |= φ2

and I, j |= φ1 for all j, k < j ≤ i.

Given a TKB K = 〈(Ai)0≤i≤n, T 〉, we say that I is a model of φ w.r.t. K if I |= K
and I, n |= φ. We call φ satisfiable w.r.t. K if it has a model w.r.t. K.

Here we assume that there is no time point before 0 or after n, similar to the
temporal semantics used for LTL in [Wil99] or for temporal query languages for
databases [Cho95, HS91, SL89]. As in classical LTL, one can show that φ1 Sφ2
is equivalent to φ2 ∨ (φ1 ∧ #−(φ1 Sφ2)), and similar equivalences hold for U, 2,
2−, 3, and 3−.

Proposition 2.6. For i > 0, we have I, i |= φ1 Sφ2 iff

• I, i |= φ2 or

• I, i |= φ1 and I, i− 1 |= φ1 Sφ2.

Furthermore, I, 0 |= φ1 Sφ2 iff I, 0 |= φ2.

We are now ready to introduce the central reasoning problem of this report,
namely to find certain answers to TCQs.

Definition 2.7. Let φ be a TCQ, I = (Ii)0≤i≤n a sequence of interpretations,
and i ≥ 0. The mapping a : FVar(φ) → NI is an answer to φ w.r.t. I at time
point i if I, i |= a(φ), where a(φ) denotes the Boolean TCQ that is obtained from
φ by replacing the free variables according to a. Let further K = 〈(Ai)0≤i≤n, T 〉
be a TKB. A mapping a : FVar(φ)→ NI is a certain answer to φ w.r.t. K at time
point i if for every J |= K, we have J, i |= a(φ).

8

The set of all answers to φ w.r.t. I at time point i is denoted by Ans(φ, I, i),
and the set of all certain answers to φ w.r.t. K is denoted by Cert(φ,K, i). Recall
that our main interest lies in finding answers to queries at the last time point,
i.e. computing the sets Ans(φ, I) := Ans(φ, I, n) or Cert(φ,K) := Cert(φ,K, n). If
φ is a Boolean TCQ, then we have either Cert(φ,K, i) = ∅ or Cert(φ,K, i) = {e},
where e denotes the empty function.

We will sometimes use the abbreviation false := A(x) ∧ A′(x), where A,A′ are
new concept names for which we assume that the concept inclusion A v ¬A′ is
contained in the global TBox T .

3 Answering Temporal Conjunctive Queries

For computing the set of certain answers for a conjunctive query, the rewriting
approach [CDL+09] can be employed. It compiles the information contained in
the TBox into the query and evaluates the query w.r.t. the ABox (viewed as
database) using classical database techniques. A similar approach is possible for
TCQs.

Definition 3.1. For an ABox A, the interpretation DB(A) := (NI, ·DB(A)) is
defined as follows:

• aDB(A) := a for all a ∈ NI;

• ADB(A) := {a | A(a) ∈ A} for all A ∈ NC; and

• PDB(A) := {(a, b) | P (a, b) ∈ A} for all P ∈ NR.

As shown in [CDL+09], this interpretation is the smallest model of A. In order
to employ database techniques, we must assume NI and DB(A) to be finite.

Proposition 3.2 ([CDL+09]). Let ψ be a CQ, A be an ABox, and T be a TBox.
There is a canonical model IA,T of A and T and a UCQ ψT such that

Cert(ψ, 〈A, T 〉) = Ans(ψ, IA,T) = Ans(ψT ,DB(A)).

Note that the size of ψT is polynomial in the sizes of ψ and T . We now use
this proposition to show a similar result for TCQs. Let φ be a TCQ and K =
〈(Ai)0≤i≤n, T 〉 be a TKB. The TCQ φT is obtained by replacing each CQ ψ
occurring in φ by ψT . Note that φT is again a TCQ since ψT is always a UCQ.
Let furthermore IK := (IAi,T)0≤i≤n and DB(K) := (DB(Ai))0≤i≤n. The following
theorem can be shown by a straightforward induction on the structure of φ.

Theorem 3.3. For every TCQ φ, TKB K = 〈(Ai)0≤i≤n, T 〉, and i ≥ 0, we have
Cert(φ,K, i) = Ans(φ, IK, i) = Ans(φT ,DB(K), i).

9

Proof. We prove first Cert(φ,K, i) ⊆ Ans(φ, IK, i). Take a ∈ Cert(φ,K, i). Then
we have for every I = (Ii)0≤i≤n with I |= K, we have I, i |= a(φ). Note that
the canonical models IAi,T , as constructed in [CDL+09], are all countable, and
thus we can assume without loss of generality that they are defined over the same
domain. Thus, we have in particular that IK, i |= a(φ), which is equivalent to
a ∈ Ans(φ, IK, i).

It is left to prove the following two claims:

(1) Ans(φ, IK, i) ⊆ Ans(φT ,DB(K), i), and

(2) Ans(φT ,DB(K), i) ⊆ Cert(φ,K, i).

We show this by induction on the structure of φ.

For the base case, consider a φ of the form ∃y1, . . . , ym.ψ. For (1), take an
a ∈ Ans(φ, IK, i). Then, we have IK, i |= a(φ). Since φ is a CQ, the semantics
yields IAi,T |= a(φ), which is equivalent to a ∈ Ans(φ, IAi,T). By Proposition 3.2,
this yields a ∈ Ans(φT ,DB(Ai)). Again since φ is a CQ, we have that φT is a
UCQ, and thus the definition of Ans yields that a ∈ Ans(φT ,DB(K), i).

For (2), take a ∈ Ans(φT ,DB(K), i). Since φ is a CQ, the definitions of φT
and Ans yield that a ∈ Ans(φT ,DB(Ai)). By Proposition 3.2, we have that
a ∈ Cert(φ, 〈Ai, T 〉). This means that for every I with I |= Ai and I |= T ,
we have that I |= a(φ). Hence, we have also that for every I = (Ii)0≤i≤n with
I |= K, we have Ii |= a(φ). Since φ is a CQ, this yields for every I = (Ii)0≤i≤n
with I |= K, we have I, i |= a(φ), and thus that a ∈ Cert(φ,K, i).

Let now, for the first inductive case, φ be of the form φ1 ∧ φ2. For (1), assume
that IK, i |= a(φ) = a(φ1) ∧ a(φ2) holds. This yields that IK, i |= a(φ1) and
IK, i |= a(φ2). By the induction hypothesis, we have DB(K), i |= a(φT1) and
DB(K), i |= a(φT2). Hence DB(K), i |= a(φT1 ∧ φT2), and thus by definition of φT
we get DB(K), i |= a(φT).

For (2), assume that DB(K), i |= a(φT) holds. The definition of φT yields that
DB(K), i |= a(φT1)∧a(φT2). Hence, we have a ∈ Cert(φ1,K, i) and a ∈ Cert(φ2,K, i)
by the induction hypothesis. Thus, for every I |= K it holds that I, i |= a(φ1)
and I, i |= a(φ2). This is equivalent to a ∈ Cert(φ1 ∧ φ2,K, i).

Let now φ be of the form #φ1. For (1), take IK, i |= a(#φ1) = #a(φ1). Thus,
we have i < n and IK, i + 1 |= a(φ1). By the induction hypothesis, we get
DB(K), i + 1 |= a(φT1). Since i < n, this implies that DB(K), i |= #a(φT1), which
is equivalent to DB(K), i |= a(φT) by definition of φT .

For (2), let DB(K), i |= a(φT). The definition of φT yields that DB(K), i |=
#a(φT1). Hence, we have i < n and DB(K), i + 1 |= a(φT1), which implies a ∈
Cert(φ1,K, i + 1) by the induction hypothesis. Since i < n, this means that for
every I |= K we have I, i |= #a(φ1), which shows that a ∈ Cert(#φ1,K, i).

10

For the next inductive case, let φ be of the form φ1 Uφ2. For (1), assume that
IK, i |= a(φ1 Uφ2) = a(φ1) U a(φ2), and thus there is a k, i ≤ k ≤ n, such that
IK, k |= a(φ2) and IK, j |= a(φ1) for all j, i ≤ j < k. By the induction hypothesis,
we have DB(K), k |= a(φT2) and DB(K), j |= a(φT1) for all j, i ≤ j < k. The
definitions of |= and φT yield that DB(K), i |= a(φT).

For (2), assume that DB(K), i |= a(φT). The definition of φT yields DB(K), i |=
a(φT1) U a(φT2). Hence, there is a k, i ≤ k ≤ n, such that IK, k |= a(φ2) and
IK, j |= a(φ1) for all j, i ≤ j < k. The induction hypothesis yields that a ∈
Cert(φ2,K, k) and a ∈ Cert(φ1,K, j) for all j, i ≤ j < k. Thus, we have for every
I |= K that I, i |= a(φ1) U a(φ2) = a(φ1 Uφ2).

The remaining cases can be proven in a similar way. For example, the case
of •φ1 differs from #φ1 only in the fact that if i ≥ n, then the expressions
IK, i |= a(φ) and DB(K), i |= a(φT) are trivially satisfied, instead of trivially
false. The arguments for #−φ1 and •−φ1 can be obtained from those of #φ1 and
•φ1 by replacing i < n by i > 0 and i+ 1 by i− 1, and similarly for φ1 Sφ2 and
φ1 Uφ2.

We immediately get the following corollary.

Corollary 3.4. For every TCQ φ and TKB K = 〈(Ai)0≤i≤n, T 〉, we have

Cert(φ,K) = Ans(φT ,DB(K)).

3.1 Computing the Answers

It now remains to show how to compute the set Ans(φ, I) for a TCQ φ and a
sequence I = (Ii)0≤i≤n of interpretations over a finite domain. A first possibility
is to view I as a temporal database and rewrite φ into an ATSQL query [CTB01].
However, since our goal is to monitor processes that produce new data in very
short time intervals, storing all the data for all previous time points is not feasible.
Therefore, we describe two different approaches that reduce the amount of space
necessary to compute Ans(φ, I). Since we are interested in the answers at the last
time point, the idea is to keep only the past information necessary to answer the
query φ.

In the first approach (Section 4), we rewrite φ into a TCQ φ′ without future
operators, employing a construction described in [Gab89]. We then compute
Ans(φ′, I) using an algorithm described in [Cho95, Tom04] that uses a so-called
bounded history encoding, which means that the space required by the algorithm
is constant w.r.t. the number n of previous time points. Only the current state
of the database and some auxiliary relations have to be stored.

In Section 5, we generalize the algorithm from [Cho95] to directly deal with the
future operators. The main difference is that we do not consider negation or

11

arbitrary first-order queries. We show that the space required by this algorithm
is constant w.r.t. n and thus constitutes a bounded history encoding in the sense
of [Cho95, Tom04]. This algorithm allows us to circumvent the non-elementary
blow-up of the formula resulting from the reduction in [Gab89].

4 Eliminating Future Operators

In this section, we rewrite a TCQ φ into an equivalent TCQ φ′ that does not con-
tain future operators, but may contain negation as in [Cho95]. We then apply the
algorithm described in [Cho95] to iteratively compute the sets Ans(φ′, I, i). The
reduction uses the separation theorem for propositional LTL [Gab89]. However,
this theorem cannot be applied directly since our temporal semantics differs from
that in [Gab89]. The only temporal operators in [Gab89] are strict versions of U
and S. It is well-known that those operators can simulate # and #−. Moreover,
the semantics is defined w.r.t. bounded past and unbounded future.

Definition 4.1. Let P be a set of propositional variables. LTL-formulae are
built from P using the constructors φ1 ∧ φ2, φ1 ∨ φ2, ¬φ1, φ1 U< φ2 (strict until),
and φ1 S< φ2 (strict since). An LTL-structure is an infinite sequence J = (wi)i≥0
of worlds wi ⊆ P , i ≥ 0, and it satisfies an LTL-formula φ at i ≥ 0 (written
J, i |= φ) if

J, i |= p for p ∈ P iff p ∈ wi
J, i |= φ1 ∧ φ2 iff J, i |= φ1 and J, i |= φ2
J, i |= φ1 ∨ φ2 iff J, i |= φ1 or J, i |= φ2
J, i |= ¬φ1 iff not J, i |= φ1
J, i |= φ1 U< φ2 iff there is some k > i such that J, k |= φ2

and J, j |= φ1 for all j, i < j < k
J, i |= φ1 S< φ2 iff there is some k, 0 ≤ k < i, such that J, k |= φ2

and J, j |= φ1 for all j, k < j < i.

As usual, we define the constants true and false by p∨¬p and p∧¬p, respectively,
for an arbitrary p ∈ P . We also define first := ¬(true S< true) with the semantics
that J, i |= first iff i = 0, i.e. this formula is satisfied exactly at the first time
point.

Let from now on φ be an arbitrary but fixed TCQ containing only the CQs
α1, . . . , αm. Let furthermore {p1, . . . , pm, p} be the set of propositional variables.
For a finite sequence I = (Ii)0≤i≤n of interpretations, its propositional abstraction
is the LTL-structure Î := (wi)i≥0, where

wi :=


{pj | Ii |= αj} ∪ {p} if 0 ≤ i ≤ n, and

∅ otherwise.

12

We first transform φ into an LTL-formula fφ that behaves similarly to φ w.r.t.
the propositional abstractions of sequences of interpretations I. It is defined
inductively on the structure of φ:

• fαj := pj for a CQ αj;

• fφ1∧φ2 := fφ1 ∧ fφ2 ; fφ1∨φ2 := fφ1 ∨ fφ2 ;

• f#φ1 := false U<(fφ1 ∧ p); f#−φ1 := false S< fφ1 ;

• f•φ1 := false U<(fφ1 ∨ ¬p); f•−φ1 := first ∨ false S< fφ1 ;

• f2φ1 := fφ1 ∧ fφ1 U< ¬p; f2−φ1 := fφ1 ∧ fφ1 S<(first ∧ fφ1);

• f3φ1 := fφ1 ∨ true U<(fφ1 ∧ p); f3−φ1 := fφ1 ∨ true S< fφ1 ;

• fφ1 Uφ2 := fφ2 ∨ (fφ1 ∧ fφ1 U<(fφ2 ∧ p)); and

• fφ1 Sφ2 := fφ2 ∨ (fφ1 ∧ fφ1 S< fφ2).

We can now prove the following lemma, which implies the above claim.

Lemma 4.2. For all I = (Ii)0≤i≤n and all i, 0 ≤ i ≤ n, we have I, i |= φ iff
Î, i |= fφ.

Proof. We prove this lemma by induction on the structure of φ.

For the base case of a CQ φ = αj, we have I, i |= αj iff Ii |= αj iff pj ∈ wi iff
Î, i |= fαj .

For the case φ = φ1 ∧ φ2, we have I, i |= φ1 ∧ φ2 iff I, i |= φ1 and I, i |= φ2 iff
Î, i |= fφ1 and Î, i |= fφ2 iff Î, i |= fφ1 ∧ fφ2 .

For the case φ = #φ1, we have I, i |= #φ1 iff i < n and I, i+1 |= φ1 iff Î, i+1 |= p
and Î, i+ 1 |= fφ1 iff Î, i+ 1 |= fφ1 ∧ p iff Î, i |= false U<(fφ1 ∧ p).

For the case φ = •−φ1, we have I, i |= •−φ1 iff i > 0 implies I, i − 1 |= φ1 iff
i = 0 or i > 0 and I, i − 1 |= φ1 iff Î, i |= first or i > 0 and Î, i − 1 |= fφ1 iff
Î, i |= first ∨ false S< fφ1 .

For the case φ = φ1 Uφ2, we have:

I, i |= φ1 Uφ2

iff there is some k, i ≤ k ≤ n, such that I, k |= φ2 and I, j |= φ1 for all j,
i ≤ j < k

iff there is some k, i ≤ k ≤ n, such that Î, k |= fφ2 and Î, j |= fφ1 for all j,
i ≤ j < k

13

iff there is some k ≥ i, such that Î, k |= p and Î, k |= fφ2 and Î, j |= fφ1 for
all j, i ≤ j < k

iff Î, i |= fφ2 or there is some k > i, such that Î, k |= p and Î, k |= fφ2 and
Î, j |= fφ1 for all j, i ≤ j < k

iff Î, i |= fφ2 or there is some k > i, such that Î, k |= fφ2 ∧ p and Î, j |= fφ1

for all j, i ≤ j < k

iff Î, i |= fφ2 or Î, i |= fφ1 and there is some k > i, such that Î, k |= fφ2 ∧ p
and Î, j |= fφ1 for all j, i < j < k

iff Î, i |= fφ2 ∨ (fφ1 ∧ fφ1 U<(fφ2 ∧ p)).

All the other cases can be proved analogously.

We now use the separation theorem from [Gab89] to transform fφ into an equiv-
alent LTL-formula f ′φ which is a Boolean combination of temporal subformulae
that either contain only S< operators or only U< operators. In the proof of this
theorem, subformulae of fφ are copied and rearranged, but no additional propo-
sitional variables are introduced.

Proposition 4.3 ([Gab89]). There is an LTL-formula f ′φ in which no S< occurs
in the scope of an U< and no U< occurs in the scope of an S< such that for every
LTL-structure J and every i ≥ 0, we have J, i |= fφ iff J, i |= f ′φ.

Since we are interested in evaluating φ (and thus fφ and f ′φ) at time point n, we
can now reduce f ′φ as follows: First, we replace all variables that are in the scope
of a U< by false. The reason for this is that such variables are only evaluated at
time points after n, where all variables are false in all propositional abstractions.
The resulting formula is then simplified using the following equivalences:

true ∧ ψ ≡ ψ ¬true ≡ false
true ∨ ψ ≡ true ψ U< false ≡ false
false ∧ ψ ≡ false true U< true ≡ true
false ∨ ψ ≡ ψ false U< true ≡ true
¬false ≡ true

This yields a formula f ′′φ that does not contain any U< operators and is equivalent
to f ′φ at time point n in the LTL-structure of the Î.

Lemma 4.4. For all I = (Ii)0≤i≤n, we have Î, n |= f ′φ iff Î, n |= f ′′φ .

14

Proof. According to the semantics of U<, every propositional variable pj occurring
in the scope of any number of nested U< operators in f ′φ is evaluated w.r.t. Î only
at time points n′ > n. Thus, all of these occurrences can be replaced by false
without affecting the value of f ′φ under Î at time point n. Furthermore, the
equivalences listed above are clearly valid at any time point, and thus also do not
affect this value.

We now translate the LTL-formula f ′′φ without U< back into a Boolean TCQ
φf ′′

φ
. Recall that the goal is to use the algorithm presented in [Cho95], where

negation is allowed in the query language. Furthermore, in that paper a slightly
different operator S∗ is used instead of S. The semantics of ¬ and S∗, as employed
in [Cho95], is as follows:

I, i |= ¬φ1 iff not I, i |= φ1
I, i |= φ1 S∗ φ2 iff there is some k, 0 ≤ k < i such that I, k |= φ2

and I, j |= φ1 for all j, k < j ≤ i.

In the following, we call any TCQ built using the operators ∧, ∨, ¬, #−, and S∗
a Past-TCQ, which is in particular a temporal query in the sense of [Cho95]. We
can now define the final translation recursively as follows:

• φpj := αj for j, 1 ≤ j ≤ m; φp := true;

• φf1∧f2 := φf1 ∧ φf2 ; φf1∨f2 := φf1 ∨ φf2 ; φ¬f1 := ¬φf1 ;

• φf1 S< f2 := #−(φf2 ∨ φf1 S∗ φf2).

As before, we have to show that the Boolean Past-TCQ φf ′′
φ
is satisfied by I at

time point i, 0 ≤ i ≤ n, if and only if f ′′φ is satisfied by Î at i.

Lemma 4.5. For all I = (Ii)0≤i≤n and all i, 0 ≤ i ≤ n, we have Î, i |= f ′′φ iff
I, i |= φf ′′

φ
.

Proof. We prove this by induction on the structure of f ′′φ .

For a propositional variable pj, 1 ≤ j ≤ m, we have Î, i |= pj iff I, i |= αj as in
the proof of Lemma 4.2. For p, we have Î, i |= p iff I, i |= true since p ∈ wi holds
for all i, 0 ≤ i ≤ n.

For the Boolean operators ∧, ∨, ¬, the claim follows similarly as in the proof
of Lemma 4.2. It thus remains to show the claim for subformulae of the form
f1 S< f2. We have

Î, i |= f1 S< f2

15

iff there is some k, 0 ≤ k < i, such that Î, k |= f2 and Î, j |= f1 for all j,
k < j < i

iff there is some k, 0 ≤ k < i, such that I, k |= φf2 and I, j |= φf1 for all j,
k < j < i

iff i > 0 and I, i − 1 |= φf2 or there is some k, 0 ≤ k < i − 1 such that
I, k |= φf2 and I, j |= φf1 for all j, k < j ≤ i− 1.

iff i > 0 and I, i− 1 |= φf2 or I, i− 1 |= φf1 S∗ φf2

iff I, i |= #−(φf2 ∨ φf1 S∗ φf2)

From the previous lemmata and the separation theorem, we get the following
result.

Theorem 4.6. For every Boolean TCQ φ there is a Boolean Past-TCQ ψ such
that for all I = (Ii)0≤i≤n, we have I, n |= φ iff I, n |= ψ.

Recall that in the above construction the Boolean CQs αj were only copied and
rearranged inside the structure of φ. Thus, it is easy to see from Definition 2.7
that this result also holds for computing the sets of answers of non-Boolean TCQs.

Corollary 4.7. For every TCQ φ there is a Past-TCQ ψ such that FVar(ψ) =
FVar(φ) and for all I = (Ii)0≤i≤n, we have Ans(φ, I) = Ans(ψ, I).

This shows that we can compute Ans(φ, I) using the algorithm from [Cho95] as
follows. The main advantage of this approach is that we can compute this set
iteratively and such that the required memory is independent of the length of the
sequence I. More formally, let I = (Ii)i≥0 be an infinite sequence of interpre-
tations representing the observations over all time points. In our setting, these
interpretations are generated from an infinite sequence of ABoxes that represent
the observed sensor data using the construction of Section 3. At each time point
i ≥ 0, we only have access to the finite prefix I(i) := (Ij)0≤j≤i of I of length i+ 1.
Let ∆ be the shared domain of the interpretations in I.

The algorithm from [Cho95] works as follows on the TCQ ψ constructed in Corol-
lary 4.7. On input I0, it computes a first-order interpretation I ′0 of several aux-
iliary predicates. Intuitively, for each subformula ψ′ of ψ beginning with a past
operator, the algorithm stores the answers Ans(ψ′, I(0)) ⊆ ∆FVar(ψ′) for ψ′ in a
new relation A

I′0
ψ′ ⊆ ∆k of arity k := |FVar(ψ′)|. The set Ans(ψ, I(0)) can then

easily be computed from I0 and I ′0. Afterwards, the algorithm disregards I0 and
keeps only the information computed in I ′0. On input I1, it then updates I ′0 to a
new interpretation I ′1, which allows it to compute Ans(ψ, I(1)), and so on.

The memory requirements of this algorithm are bounded by the maximal size of
one pair (Ii, I ′i), which is polynomial in the size of ∆, in the number of concept

16

and role names, and in the number of past operators occurring in ψ, and expo-
nential in the number of free variables occurring below past operators. However,
the memory requirements do not depend on the length of the sequence of inter-
pretations I(i) seen so far. This is called a bounded history encoding in [Cho95].

Note that a formal requirement for the correctness of the algorithm in [Cho95]
is that ψ is domain-independent, which means that the answers to ψ at previous
time points do not change if the domain is increased from the current time point
to the next, e.g. by introducing new individuals. Otherwise, the answers to the
past formulae at the current time point could not be so easily compiled into a
single interpretation Ii, but would have to be recomputed at each time point, and
thus the algorithm would have to store the whole sequence I(i). However, since
we are here only dealing with the constant, finite domain ∆ := NI (see Section 3),
we do not need to assume domain-independence of ψ.

The construction presented in this section has several drawbacks. First, the
translations from φ to fφ and from f ′′φ to φf ′′

φ
= ψ may duplicate subformulae,

which can cause exponential blowups in the size of φ. This could be avoided by
applying a reduction similar to the one for propositional LTL in [Gab89] directly
to the TCQ φ. However, since the reduction in [Gab89] is already non-elementary
in the size of the formula (basically one exponential for each U< nested inside
a S<, and vice versa), this is not much more efficient. The approach presented
in this section is of non-elementary complexity in the size of the query, but does
not depend on the number of previous time points. It is thus best suited for
answering simple, small queries φ over large data sets I.

5 A New Algorithm

In this section, we present an algorithm that computes the set Ans(φ, I) without
the need to eliminate the future operators beforehand, thereby avoiding the non-
elementary blowup of the construction described in the previous section. As the
algorithm from [Cho95], it retains a data structure that can be used to compute
the certain answers at the next time point once a new interpretation In+1 becomes
available. We can even show that the memory requirements of this new algorithm
are independent of the number of previous time points. From now on, let φ be a
fixed TCQ and I = (Ii)i≥0 be a fixed infinite sequence of interpretations over the
same finite domain ∆. For i ≥ 0, we denote by I(i) := (Ij)0≤j≤i the finite prefix
of I of length i + 1. In the following, we describe an algorithm that iteratively
computes the sets Ans(φ, I(i)). For ease of presentation, in this section we do
not consider the temporal operators 2, 3, 2−, and 3−. The constructions and
arguments for these operators are similar to those for U and S.

The algorithm uses as data structure so-called answer formulae, which represents
TCQs in which some parts have already been evaluated. In particular, they

17

contain no more CQs, but rather sets of already computed answers to subqueries.
Additionally, they may contain variables (different from those in NV) that serve
as place-holders for subqueries that have to be evaluated at the next time point.

For ease of presentation, we assume in the following that NV is finite and that
answers are of the form a : NV → ∆ instead of a : FVar(φ)→ ∆. After computing
such a mapping, it can be restricted to FVar(φ) to get the actual answer. In an
implementation, one would of course already restrict the intermediate computa-
tions of answers for subqueries ψ ∈ Sub(φ) to FVar(ψ). But then one has to be
more careful when combining answers to different subqueries. Thus, when we
talk about answers, we mean mappings a : NV → ∆, and in particular Ans(. . .)
refers to a set of such mappings, i.e. a subset of ∆NV .

Definition 5.1. Let FSub(φ) denote the set of all subqueries of φ of the form
#ψ1, •ψ1, or ψ1 Uψ2. For j ≥ 0, we denote by Varφj the set of all variables of
the form xψj for ψ ∈ FSub(φ). The set AFiφ of all answer formulae for φ at i ≥ 0
is the smallest set satisfying the following conditions:

• Every set A ⊆ ∆NV is an answer formula for φ at i.

• Every xψj ∈ Varφj with j ≤ i is an answer formula for φ at i.

• If α1 and α2 are answer formulae for φ at i, then so are α1∩α2 and α1∪α2.

Note that every answer formula at i is also an answer formula at i + 1, i.e. we
have AFiφ ⊆ AFi+1

φ . In order to evaluate these answer formulae, we introduce the
notion of correctness. Intuitively, an answer formula α for φ at i is correct for i
if we obtain the set Ans(φ, I(i)) by replacing the variables xψj in α by appropriate
sets of answers and evaluating ∩ and ∪ as set intersection and union, respectively.

Definition 5.2. We define the function evaln : AFnφ → 2∆NV , n ≥ 0, as follows:

• evaln(A) := A if A ⊆ ∆NV;

• evaln(xψj) :=


Ans(ψ1, I

(n), j + 1) if j < n and ψ = #ψ1 or ψ = •ψ1;
Ans(ψ, I(n), j + 1) if j < n and ψ = ψ1 Uψ2;
∅ if j = n and ψ = #ψ1 or ψ = ψ1 Uψ2;
∆NV if j = n and ψ = •ψ1;

• evaln(α1 ∩ α2) := evaln(α1) ∩ evaln(α2); and

• evaln(α1 ∪ α2) := evaln(α1) ∪ evaln(α2).

We say that a mapping Φ : Sub(φ)→ AFiφ is correct for i ≥ 0 if for all n ≥ i and
for all ψ ∈ Sub(φ), we have evaln(Φ(ψ)) = Ans(ψ, I(n), i).

18

In particular, if Φ : Sub(φ)→ AFiφ is correct for i, then evali(Φ(φ)) = Ans(φ, I(i)),
which is the set we want to compute. The algorithm works as follows. It first
computes a mapping Φ0 that is correct for 0, which is used to compute the
next mapping Φ1 when the interpretation I1 becomes available. This mapping is
correct for 1 and can be used to compute the next mapping Φ2, and so on. In
each step, to compute Φi+1, we only need Φi and the interpretation Ii+1.

5.1 The Initial Answer Formula

We now construct Φ0 and show that it is correct for 0.

Definition 5.3. We recursively define the mapping Φ0 : Sub(φ)→ AF0
φ:

• Φ0(ψ1) := Ans(ψ1, I
(0)) if ψ1 is a CQ;

• Φ0(ψ1 ∧ ψ2) := Φ0(ψ1) ∩ Φ0(ψ2); Φ0(ψ1 ∨ ψ2) := Φ0(ψ1) ∪ Φ0(ψ2);

• Φ0(#ψ1) := x#ψ1
0 ; Φ0(#−ψ1) := ∅;

• Φ0(•ψ1) := x•ψ1
0 ; Φ0(•−ψ1) := ∆NV;

• Φ0(ψ1 Uψ2) := Φ0(ψ2) ∪
(
Φ0(ψ1) ∩ xψ1 Uψ2

0

)
; Φ0(ψ1 Sψ2) := Φ0(ψ2).

We assume for this definition that CQs ψ1 are answered using a different mecha-
nism, e.g. by evaluating the first-order query ψ1 over the “database” I0 [AHV95].

Lemma 5.4. The function Φ0 is correct for 0.

Proof. We prove by induction on the structure of ψ ∈ Sub(φ) that evaln(Φ0(ψ))
is equal to Ans(ψ, I(n), 0) for all n ≥ 0.

• If ψ is a CQ, then evaln(Φ0(ψ)) = Ans(ψ, I(0)) = Ans(ψ, I(n), 0).

• If ψ = ψ1 ∧ ψ2, then

evaln(Φ0(ψ)) = evaln(Φ0(ψ1)) ∩ evaln(Φ0(ψ2))
= Ans(ψ1, I

(n), 0) ∩ Ans(ψ2, I
(n), 0) = Ans(ψ, I(n), 0),

and similarly for ψ = ψ1 ∨ ψ2.

• If ψ = #−ψ1, then evaln(Φ0(ψ)) = ∅ = Ans(ψ, I(n), 0).

• If ψ = •−ψ1, then evaln(Φ0(ψ)) = ∆NV = Ans(ψ, I(n), 0).

• If ψ = ψ1 Sψ2, then Proposition 2.6 yields that

evaln(Φ0(ψ)) = evaln(Φ0(ψ2)) = Ans(ψ2, I
(n), 0) = Ans(ψ, I(n), 0).

19

• If ψ = #ψ1, then

evaln(Φ0(ψ)) = evaln(xψ0)

=
{

Ans(ψ1, I
(n), 1) if n > 0

∅ if n = 0

}
= Ans(ψ, I(n), 0).

• If ψ = •ψ1, then

evaln(Φ0(ψ)) = evaln(xψ0)

=
{

Ans(ψ1, I
(n), 1) if n > 0

∆NV if n = 0

}
= Ans(ψ, I(n), 0).

• If ψ = ψ1 Uψ2, then Proposition 2.6 yields that for n > 0 we have

evaln(Φ0(ψ)) = evaln(Φ0(ψ2)) ∪
(

evaln(Φ0(ψ1)) ∩ evaln(xψ0)
)

= Ans(ψ2, I
(n), 0) ∪

(
Ans(ψ1, I

(n), 0) ∩ Ans(ψ, I(n), 1)
)

= Ans(ψ, I(n), 0),

and for n = 0 we get

evaln(Φ0(ψ)) = evaln(Φ0(ψ2)) ∪
(

evaln(Φ0(ψ1)) ∩ evaln(xψ0)
)

= Ans(ψ2, I
(n), 0) ∪

(
Ans(ψ1, I

(n), 0) ∩ ∅
)

= Ans(ψ, I(n), 0).

5.2 The Next Answer Formula

Assume now that i > 0 and we have computed a function Φi−1 : Sub(φ)→ AFi−1
φ

that is correct for i−1 and contains only variables from Varφi−1 (this in particular
holds for i = 1 as demonstrated in Section 5.1). We proceed as follows to construct
a new function that is correct for i and contains only variables from Varφi . We
first define a function Φ0

i : Sub(φ)→ AFiφ similarly to Definition 5.3 that is correct
for i, but may still contain variables with index i− 1. We then iteratively replace
these variables, starting with the ones for the smallest subformulae, until only
variables with index i are left. In this process, we will ensure that correctness for
i is preserved.

Definition 5.5. Let i > 0 and Φi−1 : Sub(φ)→ AFi−1
φ . We recursively define the

mapping Φ0
i : Sub(φ)→ AFiφ as follows:

• Φ0
i (ψ1) := Ans(ψ1, I

(i)) if ψ1 is a CQ;

• Φ0
i (ψ1 ∧ ψ2) := Φ0

i (ψ1) ∩ Φ0
i (ψ2); Φ0

i (ψ1 ∨ ψ2) := Φ0
i (ψ1) ∪ Φ0

i (ψ2)

20

• Φ0
i (#ψ1) := x#ψ1

i ; Φ0
i (#−ψ1) := Φi−1(ψ1);

• Φ0
i (•ψ1) := x•ψ1

i ; Φ0
i (•−ψ1) := Φi−1(ψ1);

• Φ0
i (ψ1 Uψ2) := Φ0

i (ψ2) ∪
(
Φ0
i (ψ1) ∩ xψ1 Uψ2

i

)
; and

• Φ0
i (ψ1 Sψ2) := Φ0

i (ψ2) ∪
(
Φ0
i (ψ1) ∩ Φi−1(ψ1 Sψ2)

)
.

The difference to Definition 5.3 is that the answer formulae for past operators are
computed using the answer formulae for the previous time point.

Lemma 5.6. If Φi−1 is correct for i− 1, then Φ0
i is correct for i.

Proof. We prove by induction on the structure of ψ ∈ Sub(φ) that evaln(Φ0
i (ψ))

is equal to Ans(ψ, I(n), i) for all n ≥ i. The proof for most of the cases can easily
be obtained from that of the corresponding cases in Lemma 5.4 by replacing 0
by i, 1 by i + 1, and Φ0 by Φ0

i . We need to argue differently only for the past
operators:

• If ψ = #−ψ1 or ψ = •−ψ1, then

evaln(Φ0
i (ψ)) = evaln(Φi−1(ψ1)) = Ans(ψ1, I

(n), i− 1) = Ans(ψ, I(n), i)

since Φi−1 is correct for i− 1 < i ≤ n.

• If ψ = ψ1 Sψ2, then Proposition 2.6 yields that

evaln(Φ0
i (ψ)) = evaln(Φ0

i (ψ2)) ∪
(

evaln(Φ0
i (ψ1)) ∩ evaln(Φi−1(ψ))

)
= Ans(ψ2, I

(n), i) ∪
(

Ans(ψ1, I
(n), i) ∩ Ans(ψ, I(n), i− 1)

)
= Ans(ψ, I(n), i).

In order to remove the “old” variables with index i − 1 from Φ0
i , we can now

substitute them by the values that we have just computed. For example, since
x#ψ
i−1 is a place-holder for the answers to ψ w.r.t. I(n) at i, we can now replace it

by Φ0
i (ψ). However, since this formula may itself contain another variable from

Varφi−1, we have to be careful about the order in which we do these substitutions.
Since each Φ0

i (ψ) can contain only variables that refer to subqueries of ψ, by
replacing the variables for “smaller” subqueries first, we ensure that all variables
are eliminated. To formalize this intuition, we fix a total order ψ1 ≺ · · · ≺ ψk

on the set FSub(φ) = {ψ1, . . . , ψk} such that whenever ψj ∈ Sub(ψj′) for j, j′ ∈
{1, . . . , k}, then we have j ≤ j′, i.e. ψj = ψj

′ or ψj ≺ ψj
′ . We can now define the

substitutions for the variables xψ
1

i−1, . . . , x
ψk

i−1 that constitute Varφi−1.

21

Definition 5.7. For 1 ≤ j ≤ k and ψ ∈ Sub(φ), the answer formula Φj
i (ψ) is

obtained by replacing every occurrence of xψ
j

i−1 in Φj−1
i (ψ) by

update
(
xψ

j

i−1

)
:=

Φj−1
i (ψ1) if ψj = #ψ1 or ψj = •ψ1;

Φj−1
i (ψj) if ψj = ψ1 Uψ2.

Finally, we set Φi := Φk
i .

It is easy to verify that each Φj
i as defined above is indeed a mapping from Sub(φ)

to AFiφ. The following lemma shows that these substitutions do not affect the
correctness for i.

Lemma 5.8. If Φj−1
i with 1 ≤ j ≤ k is correct for i, then Φj

i is also correct for i.

Proof. Since evaln is defined inductively on the structure of answer formulae, it
suffices to show that evaln(xψ

j

i−1) = evaln(update(xψ
j

i−1)) for all n ≥ i. We make a
case distinction on the form of ψj.

If ψj = #ψ1 or ψj = •ψ1, then we have evaln(xψ
j

i−1) = Ans(ψ1, I
(n), i). Since Φj−1

i

is correct for i, this is the same as evaln(Φj−1
i (ψ1)) = evaln(update(xψ

j

i−1)).

If ψj = ψ1 Uψ2, then we have evaln(xψ
j

i−1) = Ans(ψj, I(n), i). Again, since Φj−1
i is

correct for i, this is the same as evaln(Φj−1
i (ψj)) = evaln(update(xψ

j

i−1)).

5.3 The Algorithm

We are now ready to define our algorithm, which, on input φ and I, computes
the mappings Φi as described above, and outputs evali(Φi(φ) for each i ≥ 0. For
this, consider the procedure described in Algorithm 1. This algorithm computes
the functions Φj

i as described in the previous sections (see Figure 1).

Theorem 5.9. Given a TCQ φ and an infinite sequence I = (Ii)i≥0 of interpre-
tations, Algorithm 1 outputs Ans(φ, I(i)) for each i ≥ 0.

Proof. For i = 0, the algorithm outputs eval0(Φ0(φ)). Since Φ0 is correct for 0 by
Lemma 5.4, we have eval0(Φ0(φ)) = Ans(φ, I(0)) by Definition 5.2. For i > 0, it
outputs evali(Φi(φ)). Since Φi−1 is correct for i − 1, by Lemmas 5.6 and 5.8 we
know that Φi is correct for i, and thus evali(Φi(φ)) = Ans(φ, I(i)).

If the formula φ contains no future operators, then the answer formulae contain
no variables and can always be fully evaluated to a subset of ∆NV . In this case,
it is easy to see that our algorithm achieves a bounded history encoding and can
be seen as a variant of the one from [Cho95] for less expressive queries.

22

Algorithm 1: The algorithm for computing the certain answers to a TCQ

Input : A TCQ φ and an infinite sequence I = (Ii)i≥0 of interpretations
Output : Ans(φ, I(i)) for each i ≥ 0
for i← 0, 1, . . . do

if i = 0 then
compute Φ0; // according to Definition 5.3

else
compute Φ0

i from Φi−1; // according to Definition 5.5
compute Φ1

i , . . . ,Φk
i = Φi; // according to Definition 5.7

end
output evali(Φi(φ)); // according to Definition 5.2

end

If φ contains future operators, we still have to show that the space required to
store (a representation of) Φi does not depend on i. For this, we first show that
the image of Φi contains only variables from Varφi , but no variables with smaller
indices. This should be clear from the construction presented in the previous
section, especially since we replace the variables xψi−1 starting from those for the
smallest subformulae. More formally, we show that all Φi are monotone, i.e. for
all ψ ∈ Sub(φ), the formula Φi(ψ) contains only variables from Varψi .

Lemma 5.10. For all i ≥ 0, the mapping Φi is monotone.

Proof. The claim for i = 0 is easy to see from Definition 5.3. Assume now that
Φi−1 is monotone for some i > 0. We show that then Φi is also monotone by
proving the following claim by induction on j, 0 ≤ j ≤ k.
Claim. For every ψ ∈ Sub(φ), the answer formula Φj

i (ψ) contains only variables
from Varψi and Varψi−1 ∩ {x

ψj+1

i−1 , . . . , x
ψk

i−1}.

For j = 0, we know from Definition 5.5 that for every ψ ∈ Sub(φ) the answer
formula Φ0

i (ψ) contains only variables from Varψi and those occurring in Φi−1(ψ).
Since Φi−1 is monotone, it contains only variables from Varψi−1 ⊆ {x

ψ1

i−1, . . . , x
ψk

i−1},
and thus the claim is satisfied for j = 0.

Let now 0 < j ≤ k and assume that the claim holds for j − 1. According to
Definition 5.7, the answer formula Φj

i is obtained from Φj−1
i by replacing every

occurrence of xψ
j

i−1 by update(xψ
j

i−1). Since Φj−1
i satisfies the claim, it suffices to

consider what happens to the variable xψ
j

i−1 in the image of Φj−1
i . By assumption,

this variable can only occur in Φj−1
i (ψ) if ψj ∈ FSub(ψ). Thus, it is enough to

show that update(xψ
j

i−1) contains only variables from Varψ
j

i . We prove this by a
case distinction on the form of ψj.

23

Φ0 Φ1

Φk
1

...

Φ2
1

Φ1
1

Φ0
1 Φ0

2

Φ1
2

Φ2
2

...

Φk
2

Φ2

Φ0
3

Φ1
3

Φ2
3

...

Φk
3

Φ3

. . .

Figure 1: The order in which the mappings Φj
i are computed

• If ψj = #ψ1 or ψj = •ψ1, then update(xψ
j

i−1) = Φj−1
i (ψ1) by Definition 5.7.

By the induction hypothesis, we have that Φj−1
i (ψ1) contains only variables

from Varψ1
i = Varψ

j

i \ {x
ψj

i } and Varψ1
i−1 ∩ {x

ψj

i−1, . . . , x
ψk

i−1}. Note that the
second set is empty since every variable xψ

′

i−1 ∈ Varψ1
i−1 must satisfy ψ′ ∈

FSub(ψ1) = FSub(ψj) \ {ψj}, and thus ψ′ ≺ ψj.

• If ψj = ψ1 Uψ2, then update(xψ
j

i−1) = Φj−1
i (ψj) by Definition 5.7. We have

Φj−1
i (ψj) = Φj−1

i (ψ2)∪ (Φj−1
i (ψ1)∩ xψ

j

i) by Definition 5.5 and the fact that
Φj−1
i differs from Φ0

i only in the replacement of some of the variables with
index i−1. By the induction hypothesis, each Φj−1

i (ψm), m = 1, 2, contains
only variables from Varψmi = Varψ

j

i \{x
ψj

i } and Varψmi−1∩{x
ψj

i−1, . . . , x
ψk

i−1}. By
similar arguments as above, we can show that the second set is actually
empty.

This finishes the proof of the claim and implies that for every ψ ∈ Sub(φ), the
answer formula Φk

i (ψ) contains only variables from Varψi and Varψi−1 ∩ ∅, which
concludes the proof of the lemma.

This shows that it is easy to compute the sets evali(Φi(φ)) = Ans(φ, I(i)) since
each of the variables xψi simply has to be replaced by either ∅ or ∆NV (see Defi-
nition 5.2). However, the variables in Varφi may still occur several times in Φi(φ).
For example, the answer formula Φ0

1(φ) for φ = C(x) S(A(x) UB(x)) is

Φ0
1(ψ) ∪ (C1 ∩ (B0 ∪ (A0 ∩ xψ0))),

where ψ := A(x) UB(x), Φ0
1(ψ) = B1 ∪ (A1 ∩ xψ1), A0 := Ans(A(x), I(0)), and

similarly for the other CQs and time points. After replacing xψ0 by Φ0
1(ψ) (see

24

Definition 5.7), the variable xψ1 occurs twice in Φ1
1(φ) = Φ1(φ). In general, Φi(φ)

will contain 2i occurrences of the variable xψi . However, applying equivalences like
the associativity, commutativity, distributivity, and absorption laws for ∩ and ∪
does not affect the semantics of an answer formula, which is given by eval (see
Definition 5.2). Thus, the answer formula Φ1(φ) can be rewritten as follows:

Φ1(φ) ≡ Φ0
1(ψ) ∪ (C1 ∩ (B0 ∪ (A0 ∩ Φ0

1(ψ))))
≡ Φ0

1(ψ) ∪ (C1 ∩ B0) ∪ (C1 ∩ A0 ∩ Φ0
1(ψ))

≡ Φ0
1(ψ) ∪ (C1 ∩ B0)

≡ ((C1 ∩ B0) ∪ B1) ∪ (A1 ∩ xψ1)

The resulting formula contains xψ1 only once. In general, the formula Φi(φ) is
equivalent to Di ∪ (Ai ∩ xψi), where D0 := B0 and Di := (Ci ∩ Di−1) ∪ Bi for
all i > 0. The expressions Di can be fully evaluated by computing the specified
unions and intersections of sets. Thus, the algorithm only has to store the two
sets Ai, Di ⊆ ∆NV at each time point, i.e. we achieve a bounded history encoding,
as in [Cho95].

The example demonstrates that it is important that the computed answer formu-
lae are simplified at each step, while preserving their semantics under eval. We
now show that a similar simplification can be achieved for every answer formula.
For this, we first need to define what it means for two answer formulae to be
equivalent.

Definition 5.11. Two answer formulae α1, α2 ∈ AFiφ are equivalent at i if for
all n ≥ i it holds that evaln(α1) = evaln(α2).

Since i is usually clear from the context, we write α1 ≡ α2 if α1 and α2 are
equivalent at i.

Lemma 5.12. Every answer formula α ∈ AFiφ that contains only variables from
Varφi is equivalent to an answer formula of the form ⋃

X⊆Varφi
(AX ∩

⋂
x∈X x), where

AX ⊆ ∆NV for each X ⊆ Varφi .1

Proof. We prove this by induction on the structure of α.

• If α is a set A ⊆ ∆NV , we define

AX :=

A if X = ∅,
∅ otherwise.

1Corresponding to eval, we consider the empty intersection to be ∆NV .

25

Hence we have

evaln
 ⋃
X⊆Varφi

(
AX ∩

⋂
x∈X

x

) = (evaln(A) ∩∆NV) ∪
⋃

X⊆Varφi
X 6=∅

(
∅ ∩

⋂
x∈X

evaln(x)
)

= (evaln(A) ∩∆NV) ∪ ∅
= evaln(α).

• If α is a variable xψi ∈ Varφi , let

AX :=

∆NV if X = {xψj },
∅ otherwise.

Similar to the previous case, we obtain

evaln
 ⋃
X⊆Varφi

(
AX ∩

⋂
x∈X

x

) = (∆NV ∩ evaln(xψi)) ∪ ∅

= evaln(α).

• If α = α1 ∪ α2, we have by the induction hypothesis:

α1 ≡
⋃

X⊆Varφi

(
BX ∩

⋂
x∈X

x

)
and α2 ≡

⋃
X⊆Varφi

(
CX ∩

⋂
x∈X

x

)

for some sets BX , CX ⊆ ∆NV for each X ⊆ Varφi . In this case, we can define
AX := BX ∪ CX to get

evaln
 ⋃
X⊆Varφi

(
AX ∩

⋂
x∈X

x

)
=

⋃
X⊆Varφi

(
(BX ∪ CX) ∩

⋂
x∈X

evaln(x)
)

=
⋃

X⊆Varφi

(
evaln

(
BX ∩

⋂
x∈X

x

)
∪ evaln

(
CX ∩

⋂
x∈X

x

))

= evaln(α1) ∪ evaln(α2)
= evaln(α).

• If α = α1 ∩ α2, we again have

α1 ≡
⋃

Y⊆Varφi

(
BY ∩

⋂
x∈Y

x

)
and α2 ≡

⋃
Z⊆Varφi

(
CZ ∩

⋂
x∈Z

x

)

26

for suitable sets BY , CZ . We now define

AX :=
⋃

Y,Z⊆Varφi
Y ∪Z=X

(BY ∩ CZ)

and obtain

evaln
 ⋃
X⊆Varφi

(
AX ∩

⋂
x∈X

x

)

=
⋃

X⊆Varφi


 ⋃
Y,Z⊆Varφi
Y ∪Z=X

(BY ∩ CZ)

 ∩ ⋂
x∈X

evaln(x)


=

⋃
X⊆Varφi

⋃
Y,Z⊆Varφi
Y ∪Z=X

(
BY ∩ CZ ∩

⋂
x∈X

evaln(x)
)

=
⋃

X⊆Varφi

⋃
Y,Z⊆Varφi
Y ∪Z=X

((
BY ∩

⋂
x∈Y

evaln(x)
)
∩
(
CZ ∩

⋂
x∈Z

evaln(x)
))

=
⋃

Y⊆Varφi

⋃
Z⊆Varφi

((
BY ∩

⋂
x∈Y

evaln(x)
)
∩
(
CZ ∩

⋂
x∈Z

evaln(x)
))

=
⋃

Y⊆Varφi

evaln
(
BY ∩

⋂
x∈Y

x

)
∩

⋃
Z⊆Varφi

evaln
(
CZ ∩

⋂
x∈Z

x

)

= evaln(α1) ∩ evaln(α2)
= evaln(α).

Consider now the answer formulae Φi(ψ) for ψ ∈ Sub(φ). By Lemmata 5.4, 5.6,
and 5.8, we have evaln(Φi(ψ)) = Ans(ψ, I(n), i) for every n ≥ i. By Lemma 5.10,
Φi(ψ) contains only variables from Varψi . Thus, by Lemma 5.12 there are sets
AX ⊆ ∆NV for each X ⊆ Varψi such that Φi(ψ) is equivalent to

αi(ψ) :=
⋃

X⊆Varψi

(
AX ∩

⋂
x∈X

x

)

at i. By Definition 5.11, this implies that

evaln(αi(ψ)) = evaln(Φi(ψ)) = Ans(ψ, I(n), i)

holds for all n ≥ i, i.e. αi(ψ) is correct for i.

Thus, for the purposes of Algorithm 1, we can use αi(ψ) in place of Φi(ψ), without
changing its correctness. Observe that the size of αi(φ) is exponential in the size

27

of φ and NV, and polynomial in ∆, but independent of i. This shows that we
have achieved a bounded history encoding, as in [Cho95].

In principle, our algorithm can be extended to deal with domain-independent
queries with negation and first-order queries as atoms, as in [Cho95]. However,
since we are interested in temporal OBDA over DL-Lite-TKBs and the reduction
of Theorem 3.3 does not work with negation, we cannot allow negation in our
query language.

6 Rigid Names

We now extend our temporal query language by designating certain concept
names as being rigid, which means that their interpretation is not allowed to
change over time. This especially makes sense regarding our application. For
example, if the concept name Server describes the set of all severs, then it should
be rigid since an application scenario with a server that stops being a server at
some point in time would make no sense. The notion of rigidity has been explored
for other temporal formalisms before [BGL12, BBL13].

For this purpose, we assume in this section that there is a set NRC ⊆ NC of rigid
concept names. In this setting, a finite sequence I = (Ii)0≤i≤n can only be a
model of a TKB K if it fulfills the conditions of Definition 2.3 and additionally
respects the rigid concept names, i.e. it satisfies AIi = AIj for every rigid concept
name A and all indices i, j between 0 and n.

For the remainder of this section, we restrict the query language to only allow
so-called rooted CQs [Lut08]. Intuitively, these are CQs that refer to at least one
named individual.

Definition 6.1. A CQ φ is called rooted if

(i) it contains at least one free variable or individual name, and

(ii) it is connected, i.e. for all x, y ∈ Var(φ) ∪ Ind(φ) there is a sequence
x1, . . . , xn ∈ Var(φ) ∪ Ind(φ) such that x1 = x, xn = y, and for all i,
1 ≤ i ≤ n, there is an r ∈ NR such that either r(xi, xi+1) ∈ At(φ) or
r(xi+1, xi) ∈ At(φ).

This makes sense from an application point of view since one usually does not
ask if there is some object with certain properties, but actually wants to know
the names of all objects with these properties.

If we take the approach mentioned in Section 3.1 of viewing the input ABoxes as
a temporal database and rewriting the TCQ into an ATSQL-query as in [CTB01],
then the additional rigidity constraints can simply be enforced by triggers that

28

ensure that new knowledge about rigid names is added to the database at all
previous time points.

However, the presence of rigid names poses a bigger problem for the incremen-
tal algorithms described in [Cho95] and Section 5. For example, if the ABox
at the next time point includes the assertion A(a), where A is rigid, then this
retroactively also changes the answers to the query A(x) at previous time points.
However, the algorithms assume that the answers at previous time points do not
change, and hence do not retain the whole history.

Before we consider how to modify the algorithms for temporal query answering
over databases, we have to show that we can still employ the rewriting approach
and answer atemporal queries over a TKB K by directly querying the database
DB(K). This means that we have to reconsider the proof of Theorem 3.3 regarding
the interpretation of rigid names. The main problem we have to solve is that the
sequence IK of canonical models does not necessarily respect the rigid concept
names. In the following, let K = 〈(Ai)i≥0, T 〉 be an infinite TKB. Similar to
Section 5, we denote by K(n) := 〈(Ai)0≤i≤n, T 〉 the finite prefix of K of length
n + 1. We show how to construct modified sequences of interpretations (similar
to IK(n) from Theorem 3.3) that respect rigid names.

The first step is to find a set R ⊆ {A(a) | A ∈ NRC, a ∈ NI} that specifies the
rigid concept names that the individual names are allowed to satisfy. Of course,
we have to ensure that the assertions in R are not contradicted by any of the
ABoxes Ai, i ≥ 0. We construct R iteratively, starting from R0 := ∅, as follows.
In each step, we add to Rj, j ≥ 0, all assertions A(a) with A ∈ NRC and a ∈ NI
that are implied by Ai ∪ Rj w.r.t. T for some i ≥ 0, by which we mean that all
models of Ai ∪ Rj and T are also models of A(a). This reasoning task is called
instance checking and can be done in polynomial time in DL-Litecore [CDL+09].
This results in a new set Rj+1. We iterate this process until no new assertions
are added. Since there are only polynomially many assertions of the form A(a) as
above, this is possible in polynomial time. We denote by R the final set computed
by this procedure. We now show that, in order to answer TCQs over K(n), we
can equivalently consider the TKB K(n)

R := 〈(Ai ∪R)0≤i≤n, T 〉.

Lemma 6.2. Let φ be a TCQ and K = 〈(Ai)i≥0, T 〉 be an infinite TKB. Then
there is a set R as above such that, for all i and n with 0 ≤ i ≤ n, we have

Cert(φ,K(n), i) = Cert(φ,K(n)
R , i).

Proof. Let R be the set constructed above and n ≥ 0. Obviously, every certain
answer to φ w.r.t. K(n) at some i ≥ 0 is also a certain answer to φ w.r.t. K(n)

R at i.
We show that all models of K(n) must also satisfy R at each time point i, which
proves the converse direction.

Let I = (Ii)0≤i≤n be such that I |= K(n) and assume that there is i, 0 ≤ i ≤ n,
with Ii 6|= R. Thus, there is j > 0 and A(a) ∈ Rj such that Ii 6|= A(a). Since

29

Ii |= Ai and Ii |= T , by construction of R this means that there must be an
assertion B(b) ∈ Rj−1 such that Ii 6|= B(b). We can iterate this argument until
we arrive at the fact that there is an assertion C(c) ∈ R0 such that Ii 6|= C(c).
Since R0 = ∅, this is obviously a contradiction.

Note that, if R is not consistent w.r.t. T , this means that the TKB K is not
consistent, i.e. there is no model of K that respects the rigid concept names.

Once we have computed R, we can construct the desired sequence of canonical
models that respects the rigid concept names. We start with the original sequence
IK(n)
R

= (IAi∪R,T)0≤i≤n that was used in Theorem 3.3 (but now with K(n)
R instead

of K(n)). It is important to note that these canonical models, as constructed
in [CDL+09], are all countable. We define the set D ⊆ 2NRC of subsets of NRC that
contains exactly the sets

ρ(IAi∪R,T , x) := {A ∈ NRC | x ∈ AIAi∪R,T }

for all i, 0 ≤ i ≤ n, and x ∈ ∆IAi∪R,T . We will now modify each IAi∪R,T into
a new interpretation Ii such that for each Y ∈ D there are countably infinitely
many individuals x ∈ ∆Ii with Y = ρ(Ii, x).

To this end, consider i, n, 0 ≤ i ≤ n, and Y ∈ D. If IAi∪R,T does not contain any
such individual, then we first have to add one. Fortunately, from the definition
of D we know that there must be a j, 0 ≤ j ≤ n, and x ∈ ∆IAj∪R,T such that
Y = ρ(IAj∪R,T , x). To be on the safe side, we therefore construct the disjoint
union I ′i of all interpretations in IK(n)

R
, which means that we take the disjoint

union of their domains, interpret the concept and role names by the union of the
component interpretation of these names, and interpret the individual names as
in IAi∪R,T .

To ensure that there are even countably infinitely many such individuals, we make
a similar construction as above by defining I ′′i as the countably infinite disjoint
union of I ′i with itself, where again the interpretation of the individual names
remains unchanged. Finally, we ensure that all models have the same domain
∆ := NI ∪ (D × N) and interpret the individual names by the same domain
elements by applying a simple bijection between the domain of each I ′′i and ∆.
In particular, each aI′′i for a ∈ NI is simply mapped to a, and every other element
x ∈ ∆I′′i is mapped to some (ρ(I ′′i , x), `) with ` ∈ N. We denote the resulting
interpretation by Ii and define IK(n),R := (Ii)0≤i≤n.

Lemma 6.3. The sequence IK(n),R is a model of K(n)
R . Furthermore, for all rooted

CQs φ and every i, 0 ≤ i ≤ n, we have

Ans(φ, IK(n),R, i) = Ans(φ, IK(n)
R
, i).

Proof. The interpretations Ii are still models of T since they are simply (renamed
versions of) unions of models of T . They are also still models of Ai ∪ R since

30

the interpretation of concept and role names on the individual names were never
changed. Furthermore, the sequence IK(n),R respects the rigid concept names
since the elements of D×N always satisfy exactly the rigid names given by their
first component, and every a ∈ NI satisfies at least the rigid concept names A
where A(a) ∈ R. Assume now that we have aIi ∈ AIi for some A ∈ NRC and
a ∈ NI, but A(a) /∈ R. By construction of Ii, we thus also have IAi∪R,T |= A(a).
Since A(a) is a CQ, by Proposition 3.2 all models of 〈Ai∪R, T 〉 are also models of
A(a). But then we must have A(a) ∈ R by construction of R, which contradicts
the assumption that A(a) /∈ R. This shows that every a ∈ NI satisfies exactly
the rigid concept names A with A(a) ∈ R in each Ii. Thus, IK(n),R respects rigid
names on the whole domain NI ∪ (D × N).

For the last part, we first show the inclusion from left to right. By definition
of Ans it suffices to show that IAi∪R,T is a model of a rooted Boolean CQ φ
whenever Ii is a model of φ. Let π be a homomorphism of φ into Ii. This can be
used to define a homomorphism π′ of φ into I ′′i by simple composition with the
bijection between ∆I′′i and NI ∪ (D × N). Similarly, we obtain a homomorphism
π′′ of φ into I ′i by taking for each z ∈ Var(ψ) ∪ NI as π′′(z) the original element
of ∆I′i that gave rise to the copy π′(z) ∈ ∆I′′i . Finally, since φ is rooted, the
image of π′′ must be contained in the original domain of IAi∪R,T ,2 and thus π′′
is also a homomorphism of φ into IAi∪R,T . The converse inclusion can be shown
by similar, but easier, arguments.

We can now finally show the variant of Theorem 3.3 that can deal with rigid
concept names.

Theorem 6.4. Let φ be a rooted TCQ and K = 〈(Ai)i≥0, T 〉 be an infinite TKB.
Then there is a set R as above such that, for all i and n with 0 ≤ i ≤ n, we have

Cert(φ,K(n)
R , i) = Ans(φ, IK(n),R, i) = Ans(φT ,DB(K(n)

R), i).

Proof. Let R be the set constructed above. The inclusion Cert(φ,K(n)
R , i) ⊆

Ans(φ, IK(n),R, i) can be shown as in the proof of Theorem 3.3 since we know by
Lemma 6.3 that IK(n),R is a model of K(n)

R . The inclusion Ans(φT ,DB(K(n)
R), i) ⊆

Cert(φ,K(n)
R , i) directly follows.

It remains to show the inclusion Ans(φ, IK(n),R, i) ⊆ Ans(φT ,DB(K(n)
R), i), for

which we again employ induction on the structure of φ. The only difference to
the corresponding induction proof for Theorem 3.3 is the base case where φ is
a CQ; all the other cases can be shown as before. But for every rooted CQ φ,
Lemma 6.3 and Proposition 3.2 imply that Ans(φ, IK(n),R, i) = Ans(φ, IK(n)

R
, i) =

Ans(φ, IAi∪R,T) = Ans(φT ,DB(Ai ∪R)) = Ans(φT ,DB(K(n)
R), i).

2In the disjoint union, there are no role connections between the components.

31

Algorithm 2: The algorithm for computing the certain answers to a rooted
TCQ in the presence of rigid names

Input : A rooted TCQ φ and an infinite TKB K = 〈(Ai)i≥0, T 〉
Output : Cert(φ,K(i)) for each i ≥ 0
Active← ∅
for R ∈ R do

if R is consistent w.r.t. T then
initialize an instance AR of Algorithm 1 on input φT
Active← Active ∪ {R}

end
end
for i← 0, 1, . . . do

for R ∈ Active do
if Ai ∪R is consistent w.r.t. T then

run AR on input DB(Ai ∪R) to compute Cert(φ,K(i)
R)

else
terminate AR
Active← Active \ {R}

end
end
output

⋂
R∈Active

Cert(φ,K(i)
R)

end

Note that DB(K(n)
R) is independent of the construction of IK(n),R, and we can now

simply apply the algorithm of Section 5 to the modified sequence of interpretations
DB(K(n)

R) instead of DB(K(n)). More formally, let R denote the set of all sets R of
the form described above. Algorithm 2 describes the steps necessary to compute
the certain answers to a TCQ in the presence of rigid names.

For each R ∈ R that is consistent w.r.t. T , we start an instance AR of Algo-
rithm 1. All these instances are run in parallel, with the only difference between
them being that each instance has a fixed set R of assumptions about the rigid
names. If we discover one of these assumptions to be inconsistent w.r.t. one of
the ABoxes Ai, the corresponding instance is stopped. All remaining instances
AR compute the certain answers to φ relative to R, and the actual set of certain
answers to φ is computed by taking the intersection over all these sets.

Theorem 6.5. Given a rooted TCQ φ and an infinite TKB K = 〈(Ai)i≥0, T 〉,
Algorithm 2 outputs Cert(φ,K(i)) for each i ≥ 0.

Proof. Observe first that from a theoretical point of view, the consistency tests
in Algorithm 2 are not necessary since if R or any Ai∪R is inconsistent w.r.t. T ,

32

then K(i)
R has no models, and thus Cert(φ,K(i)

R) = ∆NV does not contribute to
the computation of the intersection in Algorithm 2.3 We thus consider here the
variant of Algorithm 2 without consistency tests, which means that Active is
always equal to R.

By Theorems 5.9 and 6.4, we know that the instances AR for R ∈ R compute the
set Cert(φ,K(i)

R) at each time point i ≥ 0. In particular, this set always contains
the set Cert(φ,K(i)). Furthermore, by Lemma 6.2, we know that there must be
at least one R ∈ R such that Cert(φ,K(i)

R) is even equal to Cert(φ,K(i)). By
construction, this particular R passes all consistency tests of Algorithm 2 (if K
is consistent at all). This shows that the intersection at the end of each loop of
Algorithm 2 yields the set Cert(φ,K(i)).

We have thus extended Algorithm 1—and by extension also the algorithm de-
scribed in [Cho95]—to deal with rigid concept names in rooted TCQs.

7 Conclusions

We have introduced the reasoning task of temporal OBDA over DL-Lite knowledge
bases and shown how to reduce this task to answering queries over temporal
databases, similar to what was done for the atemporal case [CDL+09]. We then
presented three approaches to solve the latter problem. The first involves storing
the whole history of the database and re-evaluating the query at each time point
using a temporal database query language like ATSQL [CTB01].

The second approach works by eliminating the future operators and evaluating the
resulting query using the algorithm of [Cho95], which achieves a bounded history
encoding. Although independent of the length of the history, this involves a non-
elementary blow-up in the size of the query. Then, we presented an algorithm that
works directly with the future operators. We showed that the algorithm computes
exactly the desired answers and also achieves a bounded history encoding.

Finally, we also described an approach to extend the proposed algorithm to deal
with rigid concept names if only rooted CQs are allowed. In future work, we will
investigate how to adapt the algorithm to deal also with rigid role names and com-
pare the performance of all three described approaches on temporal databases.

3We again consider answers to be mappings a : NV → ∆ (here we have ∆ = NI) instead of
a : FVar(φ)→ ∆ to simplify the presentation.

33

References

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[AKRZ09] Alessandro Artale, Roman Kontchakov, Vladislav Ryzhikov, and
Michael Zakharyaschev. DL-Lite with temporalised concepts, rigid
axioms and roles. In Silvio Ghilardi and Roberto Sebastiani, editors,
Proc. of the 6th Int. Symp. on Frontiers of Combining Systems (Fro-
CoS’09), volume 5749 of Lecture Notes in Computer Science, pages
133–148. Springer-Verlag, 2009.

[AKRZ10] Alessandro Artale, Roman Kontchakov, Vladislav Ryzhikov, and
Michael Zakharyaschev. Temporal conceptual modelling with DL-Lite.
In Proc. of the 2010 Int. Workshop on Description Logics (DL’10),
volume 573 of CEUR-WS, 2010.

[AKRZ12] Alessandro Artale, Roman Kontchakov, Vladislav Ryzhikov, and
Michael Zakharyaschev. A cookbook for temporal conceptual data
modelling with description logics. CoRR, abs/1209.5571, 2012.

[BBL13] Franz Baader, Stefan Borgwardt, and Marcel Lippmann. Temporal-
izing ontology-based data access. In Maria Paola Bonacina, editor,
Proc. of the 24th Int. Conf. on Automated Deduction (CADE’13), vol-
ume 7898 of Lecture Notes in Artificial Intelligence, pages 330–344.
Springer-Verlag, 2013.

[BGL12] Franz Baader, Silvio Ghilardi, and Carsten Lutz. LTL over description
logic axioms. ACM Transactions on Computational Logic, 13(3):21:1–
21:32, 2012.

[CDL+09] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, Antonella Poggi, Mariano Rodriguez-Muro, and Riccardo
Rosati. Ontologies and databases: The DL-Lite approach. In Sergio
Tessaris, Enrico Franconi, Thomas Eiter, Claudio Gutierrez, Siegfried
Handschuh, Marie-Christine Rousset, and Renate A. Schmidt, edi-
tors, Reasoning Web, 5th Int. Summer School 2009, Tutorial Lectures,
volume 5689 of Lecture Notes in Computer Science, pages 255–356.
Springer-Verlag, 2009.

[CGL+05] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, and Riccardo Rosati. DL-Lite: Tractable description logics
for ontologies. In Proc. of the 20th Nat. Conf. on Artificial Intelligence
(AAAI’05), pages 602–607. AAAI Press, 2005.

34

[Cho95] Jan Chomicki. Efficient checking of temporal integrity constraints
using bounded history encoding. ACM Transactions on Database Sys-
tems, 20(2):148–186, 1995.

[CM77] Ashok K. Chandra and Philip M. Merlin. Optimal implementation
of conjunctive queries in relational data bases. In John E. Hopcroft,
Emily P. Friedman, and Michael A. Harrison, editors, Proc. of the
9th Annual ACM Symp. on Theory of Computing (STOC’77), pages
77–90. ACM Press, 1977.

[CTB01] Jan Chomicki, David Toman, and Michael H. Böhlen. Querying AT-
SQL databases with temporal logic. ACM Transactions on Database
Systems, 26(2):145–178, 2001.

[Gab89] Dov Gabbay. Declarative past and imperative future. In Behnam
Banieqbal, Howard Barringer, and Amir Pnueli, editors, Proc. of the
1987 Coll. on Temporal Logic in Specification, volume 398 of Lecture
Notes in Computer Science, pages 409–448. Springer-Verlag, 1989.

[GK12] Víctor Gutiérrez-Basulto and Szymon Klarman. Towards a unifying
approach to representing and querying temporal data in description
logics. In Markus Krötzsch and Umberto Straccia, editors, Proc. of the
6th Int. Conf. on Web Reasoning and Rule Systems (RR’12), volume
7497 of Lecture Notes in Computer Science, pages 90–105. Springer-
Verlag, 2012.

[HS91] Klaus Hülsmann and Gunter Saake. Theoretical foundations of han-
dling large substitution sets in temporal integrity monitoring. Acta
Informatica, 28(4):365–407, 1991.

[LMS02] François Laroussinie, Nicolas Markey, and Philippe Schnoebelen. Tem-
poral logic with forgettable past. In Proc. of the 17th Annual IEEE
Symp. on Logic in Computer Science (LICS’02), pages 383–392. IEEE
Press, 2002.

[Lut08] Carsten Lutz. The complexity of conjunctive query answering in ex-
pressive description logics. In Proc. of the 4th Int. Joint Conf. on
Automated Reasoning (IJCAR’08), volume 5195 of Lecture Notes in
Artificial Intelligence, pages 179–193. Springer-Verlag, 2008.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proc. of the 18th
Annual Symp. on Foundations of Computer Science (SFCS’77), pages
46–57, 1977.

[SL89] Gunter Saake and Udo W. Lipeck. Using finite-linear temporal logic
for specifying database dynamics. In Egon Börger, Hans Kleine Bün-
ing, and Michael M. Richter, editors, Proc. of the 2nd Workshop on

35

Computer Science Logic (CSL’88), volume 385 of Lecture Notes in
Computer Science, pages 288–300. Springer-Verlag, 1989.

[Tom04] David Toman. Logical data expiration. In Jan Chomicki, Ron van der
Meyden, and Gunter Saake, editors, Logics for Emerging Applications
of Databases, chapter 6, pages 203–238. Springer-Verlag, 2004.

[Wil99] Thomas Wilke. Classifying discrete temporal properties. In Proc.
of the 16th Annual Symp. on Theoretical Aspects of Computer Sci-
ence (STACS’99), volume 1563 of Lecture Notes in Computer Science,
pages 32–46. Springer-Verlag, 1999.

36

	Introduction
	Preliminaries
	The DL-Lite Family
	Temporal Conjunctive Queries

	Answering Temporal Conjunctive Queries
	Computing the Answers

	Eliminating Future Operators
	A New Algorithm
	The Initial Answer Formula
	The Next Answer Formula
	The Algorithm

	Rigid Names
	Conclusions

