
Dresden University of Technology
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

SAT Encoding of Unification in ELHR+ w.r.t.

Cycle-Restricted Ontologies

Franz Baader Stefan Borgwardt Barbara Morawska

LTCS-Report 12-02

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nöthnitzer Str. 46

Dresden

SAT Encoding of Unification in ELHR+ w.r.t.
Cycle-Restricted Ontologies

Franz Baader Stefan Borgwardt Barbara Morawska

Abstract

Unification in Description Logics has been proposed as an inference ser-
vice that can, for example, be used to detect redundancies in ontologies.
For the Description Logic EL, which is used to define several large biomed-
ical ontologies, unification is NP-complete. An NP unification algorithm
for EL based on a translation into propositional satisfiability (SAT) has
recently been presented. In this report, we extend this SAT encoding in
two directions: on the one hand, we add general concept inclusion axioms,
and on the other hand, we add role hierarchies (H) and transitive roles
(R+). For the translation to be complete, however, the ontology needs to
satisfy a certain cycle restriction. The SAT translation depends on a new
rewriting-based characterization of subsumption w.r.t. ELHR+-ontologies.

1 Introduction

The Description Logic (DL) EL, which offers the constructors conjunction (u),
existential restriction (∃r.C), and the top concept (>), has recently drawn con-
siderable attention since, on the one hand, important inference problems such
as the subsumption problem are polynomial in EL, even in the presence of gen-
eral concept inclusion axioms (GCIs) [12, 3]. On the other hand, though quite
inexpressive, EL can be used to define biomedical ontologies, such as the large
medical ontology SNOMED CT.1

Unification in DLs has been proposed in [8] as a novel inference service that can,
for instance, be used to detect redundancies in ontologies. For example, assume
that one developer of a medical ontology defines the concept of a patient with
severe injury of the frontal lobe as

∃finding.(Frontal lobe injury u ∃severity.Severe), (1)

1see http://www.ihtsdo.org/snomed-ct/

1

whereas another one represents it as

∃finding.(Severe injury u ∃finding site.∃part of.Frontal lobe). (2)

These two concept descriptions are not equivalent, but they are nevertheless
meant to represent the same concept. They can obviously be made equivalent
by treating the concept names Frontal lobe injury and Severe injury as variables,
and substituting the first one by Injuryu∃finding site.∃part of.Frontal lobe and the
second one by Injury u ∃severity.Severe. In this case, we say that the descriptions
are unifiable, and call the substitution that makes them equivalent a unifier.

To motivate our interest in unification w.r.t. GCIs, role hierarchies, and transitive
roles, assume that the developers use the descriptions (3) and (4) instead of (1)
and (2):

∃finding.∃finding site.∃part of.Brain u
∃finding.(Frontal lobe injury u ∃severity.Severe) (3)

∃status.Emergency u
∃finding.(Severe injury u ∃finding site.∃part of.Frontal lobe) (4)

The descriptions (3) and (4) are not unifiable without additional background
knowledge, but they are unifiable, with the same unifier as above, if the GCIs

∃finding.∃severity.Severe v ∃status.Emergency,

Frontal lobe v ∃proper part of.Brain

are present in a background ontology and this ontology additionally states that
part of is transitive and proper part of is a subrole of part of.

Most of the previous results on unification in DLs did not consider such additional
background knowledge. In [8] it was shown that, for the DL FL0, which differs
from EL by offering value restrictions (∀r.C) in place of existential restrictions,
deciding unifiability is an ExpTime-complete problem. In [5], we were able to
show that unification in EL is of considerably lower complexity: the decision
problem is NP-complete. The original unification algorithm for EL introduced
in [5] was a brutal “guess and then test” NP-algorithm, but we have since then
also developed more practical algorithms. On the one hand, in [7] we describe
a goal-oriented unification algorithm for EL, in which nondeterministic decisions
are only made if they are triggered by “unsolved parts” of the unification problem.
On the other hand, in [6], we present an algorithm that is based on a reduction
to satisfiability in propositional logic (SAT). In [7] it was also shown that the
approaches for unification of EL-concept descriptions (without any background
ontology) can easily be extended to the case of an acyclic TBox as background
ontology without really changing the algorithms or increasing their complexity.
Basically, by viewing defined concepts as variables, an acyclic TBox can be turned

2

into a unification problem that has as its unique unifier the substitution that
replaces the defined concepts by unfolded versions of their definitions.

For GCIs, this simple trick is not possible, and thus handling them requires the
development of new algorithms. In [1, 2] we describe two such new algorithms:
one that extends the brute-force “guess and then test” NP-algorithm from [5]
and a more practical one that extends the goal-oriented algorithm from [7]. Both
algorithms are based on a new characterization of subsumption w.r.t. GCIs in
EL, which we prove using a Gentzen-style proof calculus for subsumption. Un-
fortunately, these algorithms are complete only for cycle-restricted TBoxes, i.e.,
finite sets of GCIs that satisfy a certain restriction on cycles, which, however,
does not prevent all cycles. For example, the cyclic GCI ∃child.Human v Human
satisfies this restriction, whereas the cyclic GCI Human v ∃parent.Human does
not.

In this report, we still cannot get rid of cycle-restrictedness of the ontology, but
extend the results of [2] in two other directions: (i) we add transitive roles (indi-
cated by the subscript R+ in the name of the DL) and role hierarchies (indicated
by adding the letter H to the name of the DL) to the language, which are impor-
tant for medical ontologies [22, 20]; (ii) we provide an algorithm that is based on
a translation into SAT, and thus allows us to employ highly optimized state-of-
the-art SAT solvers [11] for implementing the unification algorithm. In order to
obtain the SAT translation, using the characterization of subsumption from [2] is
not sufficient, however. We had to develop a new rewriting-based characterization
of subsumption.

In the next section, we introduce the DLs considered in this report and the
important inference problem subsumption. In Section 3 we then derive rewriting-
based characterizations of subsumption. In Section 4 we define unification for the
considered DLs and recall some of the existing results for unification in EL. In
particular, we introduce in this section the notion of cycle-restrictedness, which is
required for the results on unification w.r.t. GCIs to hold. Section 5 contains the
main result, which is a reduction of unification in ELHR+ w.r.t. cycle-restricted
ontologies to propositional satisfiability. The proof of correctness of this reduction
strongly depends on the characterization of subsumption shown before.

2 Preliminaries

The expressiveness of a DL is determined both by the formalism for describing
concepts (the concept description language) and the terminological formalism,
which can be used to state additional constraints on the interpretation of concepts
and roles in a so-called ontology.

3

Name Syntax Semantics

concept name A AI ⊆ ∆I

role name r rI ⊆ ∆I ×∆I

top > >I = ∆I

conjunction C uD (C uD)I = CI ∩DI
existential restr. ∃r.C (∃r.C)I = {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
concept def. A ≡ C AI = CI

GCI C v D CI ⊆ DI

role inclusion r1 ◦ · · · ◦ rn v s rI1 ◦ · · · ◦ rIn ⊆ sI

Table 1: Syntax and semantics of EL.

2.1 Syntax and Semantics of EL

The concept description language considered in this report is called EL. Starting
with a finite set NC of concept names and a finite set NR of role names, EL-
concept descriptions are built from concept names by the constructors conjunction
(CuD), existential restriction (∃r.C for every r ∈ NR), and top (>). We say that
a concept description C is built over a signature Σ ⊆ NC∪NR if only concept and
role names from Σ occur in it. Since we only consider EL-concept descriptions,
we will sometimes dispense with the prefix EL.

An interpretation I = (∆I , ·I) consists of a non-empty domain ∆I and an inter-
pretation function that maps concept names to subsets of ∆I and role names to
binary relations over ∆I . This function is extended to concept descriptions as
shown in the semantics column of Table 1.

2.2 Ontologies

A concept definition is of the form A ≡ C for a concept name A and a concept
description C, and a general concept inclusion (GCI) is of the form C v D for
concept descriptions C,D. A role inclusion is of the form r1 ◦ · · · ◦ rn v s for
role names r1, . . . , rn, s. All three are called axioms. Role inclusions of the form
r◦r v r are called transitivity axioms and of the form r v s role hierarchy axioms.
An interpretation I satisfies such an axiom if the corresponding condition in the
semantics column of Table 1 holds, where ◦ in this column stands for composition
of binary relations.

An EL+-ontology is a finite set of axioms. We will often write an ontology in the
form (T ,R), where the TBox T consists of finitely many concept definitions and
general concept inclusions and the RBox R contains finitely many role inclusions.
Such an ontology is an ELHR+-ontology if R contains only transitivity or role

4

hierarchy axioms, and an EL-ontology if R is empty. An interpretation is a model
of an ontology if it satisfies all its axioms.

A TBox T is an acyclic TBox if it contains only concept definitions such that no
concept name occurs more than once on the left-hand side of a definition in T
and there are no cyclic dependencies between its concept definitions. To be more
precise, we say that the concept name A directly depends on the concept name
B in a TBox T if T contains a concept definition A ≡ C and B occurs in C.
Let depends on be the transitive closure of the relation directly depends on. A
TBox T is an acyclic TBox if there is no concept name A that depends on itself
w.r.t. T . Given an acyclic TBox T , we call a concept name A a defined concept
if it occurs as the left-side of a concept definition A ≡ C in T . All other concept
names are called primitive concepts.

A general TBox is a TBox that contains only GCIs. Note that the notion of a
general TBox indeed subsumes the notion of an acyclic TBox since the concept
definition A ≡ C can be expressed using the two GCIs A v C and C v A.

2.3 Subsumption, Equivalence, and Role Hierarchy

A concept description C is subsumed by a concept description D w.r.t. an ontology
O (written C vO D) if every model of O satisfies the GCI C v D. We say that C
is equivalent to D w.r.t. O (C ≡O D) if C vO D and D vO C. If O is empty, we
also write C v D and C ≡ D instead of C vO D and C ≡O D, respectively. As
shown in [12, 3], subsumption w.r.t. EL+-ontologies (and thus also w.r.t. ELHR+-
and EL-ontologies) is decidable in polynomial time.

Since conjunction is interpreted as intersection, the concept descriptions (CuD)u
E and Cu(DuE) are always equivalent. Thus, we dispense with parentheses and
write nested conjunctions in flat form C1u· · ·uCn. Nested existential restrictions
∃r1.∃r2. . . . ∃rn.C will sometimes also be written as ∃r1r2 . . . rn.C, where r1r2 . . . rn
is viewed as a word over the alphabet of role names, i.e., an element of N∗R.

Given a concept description C and an acyclic TBox T , the description C can be
expanded w.r.t. T by replacing defined concepts by their definitions until no more
defined concepts occur. This yields a concept description CT that is equivalent
to C w.r.t. T and does not contain defined concepts. Expansion can be used
to reduce subsumption w.r.t. an acyclic TBox to subsumption w.r.t. the empty
TBox, but the expanded description can be exponential in the size of C and T .

The role hierarchy induced by an ontology O is a binary relation EO on NR, which
is defined as the reflexive-transitive closure of the relation {(r, s) | r v s ∈ O}.
Using elementary reachability algorithms, the role hierarchy can be computed in
polynomial time in the size of O. It is easy to see that rEO s implies that rI ⊆ sI

for all models I of O.

5

2.4 Conservative Extensions

The following definition is useful to compare the expressiveness of ontologies, i.e.,
whether a certain ontology expresses more restrictions on interpretations than
another one.

Definition 1. For an ontology O, we denote by sig(O) ⊆ NC ∪ NR the set of
concept and role names occurring in O. An ontology O2 is called a conservative
extension of another ontology O1 if for all concept descriptions C, D built over
the signature sig(O1) we have C vO1 D iff C vO2 D.

O2 is called a model-theoretic conservative extension of O1 if every model of O2

is a model of O1 and every model of O1 can be extended to a model of O2 by
defining interpretations of additional concept and role names not occurring in O1.

It is easy to prove that every model-theoretic conservative extension is also a
conservative extension.

Intuitively, an ontology is a conservative extension of another ontology if both
give the same answers to questions of the form “Does C vO D hold?”. In this
case, a user can use them interchangeably when reasoning about a domain. This
notion was introduced in [19] to detect whether changes to an ontology change
its behavior w.r.t. subsumption reasoning. Such changes include, e.g., importing
of other ontologies or adding new axioms.

For example, consider an ontology O = (T ,R), where T is an acyclic TBox. By
replacing every concept definition A ≡ C by the GCIs A v C and C v A, we
obtain a general TBox. The resulting ontology is a conservative extension of O.

2.5 Flat Ontologies

To simplify definitions and proofs, it is often convenient to normalize the ontology
appropriately. To introduce this normal form, we need the notion of an atom.

An atom is a concept name or an existential restriction. Thus, every concept de-
scription C is a conjunction of atoms or >. We call the atoms in this conjunction
the top-level atoms of C. An atom is called flat if it is a concept name or an
existential restriction of the form ∃r.A for a concept name A. A GCI is called flat
if it is of the form C1 u · · · u Cn v D for flat atoms C1, . . . , Cn, D with n ≥ 0. If
n = 0, then the left-hand side of the GCI is the empty conjunction, which is >.

A flat ontology O = (T ,R) is an ontology in which T contains only flat GCIs.
To flatten O, we first transform all concept definitions in T into GCIs and then
employ the procedure described in [4]. This procedure uses normalization rules to
transform all GCIs in T into one of the forms A v B, A1uA2 v B, A v ∃r.B, or
∃r.A v B, where A,A1, A2, B are concept names or >. These are either already

6

flat or can easily be transformed into flat GCIs: Axioms with > on the right-hand
side are true in all interpretations and can therefore simply be removed. We can
further replace > inside existential restrictions by a new concept name A> and
introduce the GCI > v A>.

The transformation rules are the following:

• Ĉ uD ρ E −→ {A ≡ Ĉ, A uD ρ E}

• C ρ D u Ê −→ {C ρ D u A,A ≡ Ê}

• ∃r.Ĉ ρ D −→ {A ≡ Ĉ, ∃r.A ρ D}

• C ρ ∃r.D̂ −→ {C ρ ∃r.A,A ≡ D̂}

In these rules, C, D, E stand for arbitrary concept descriptions, Ĉ, D̂, Ê are
concept descriptions that are not concept names, r ∈ NR, and ρ ∈ {v,≡}. The
concept name A is always a new concept name not occurring in O. Applying a
rule G −→ S to an ontology O changes it to (O \ {G}) ∪ S.

After exhaustively applying these four rules, the resulting TBox T ′ consists of
flat GCIs of the required form and additional flat concept definitions. The fact
that for each definition a new concept name is used ensures that these definitions
form an acyclic TBox. In particular, for each newly introduced concept name A
we can find a unique concept description CA occurring in the original TBox such
that A ≡T ′ CA holds. It remains to transform these definitions into GCIs: A
definition A ≡ A1 u A2 is replaced by A v A1, A v A2, and A1 u A2 v A, while
any definition of the form A ≡ ∃r.A′ is replaced by A v ∃r.A′ and ∃r.A′ v A.

Thus, we can transform every ontology O = (T ,R) into a flat ontology O′ =
(T ′,R) that is a conservative extension of O.

3 Subsumption w.r.t. EL+-Ontologies

Subsumption w.r.t. EL+-ontologies can be decided in polynomial time [4]. For
the purposes of deciding unification, however, we do not simply want a deci-
sion procedure for subsumption, but are more interested in a characterization
of subsumption that helps us to find unifiers. The following characterization
of subsumption w.r.t. the empty ontology has proven useful for EL-unification
algorithms before.

Lemma 2 ([7]). Let A1, . . . , Ak, B1, . . . , Bl be concept names and C = A1 u . . .u
Ak u ∃r1.C1 u . . . u ∃rm.Cm and D = B1 u . . . u Bl u ∃s1.D1 u . . . u ∃sn.Dn

concept descriptions. Then C v D iff {B1, . . . , Bl} ⊆ {A1, . . . , Ak} and for every
j ∈ {1, . . . , n} there exists an i ∈ {1, . . . ,m} such that ri = sj and Ci v Dj.

7

Thus, an atom C is subsumed by an atom D (w.r.t. ∅) iff C = D is a concept
name or C = ∃r.C ′ and D = ∃r.D′ for a role name r and C ′ v D′.

Lemma 3. Let C and D be two concept descriptions. Then C v D iff every
top-level atom of D subsumes a top-level atom of C.

In the presence of an EL+-ontology O = (T ,R), however, this characterization
does not hold anymore. The aim of this section is to provide a generalized char-
acterization of subsumption that takes into account the ontology O. It is based
on a rewrite relation that uses axioms as rewrite rules from right to left.

3.1 Proving Subsumptions by Rewriting

Intuitively, an axiom of the form C v D ∈ O is used to replace D by C and
an axiom of the form r1 ◦ . . . ◦ rn v s ∈ O to replace ∃s.C by ∃r1 . . . rn.C. In
order to deal with associativity, commutativity, and idempotency of conjunction,
it is convenient to represent concept descriptions as sets of atoms rather than as
conjunctions of atoms.

Given an EL-concept description C, the description set s(C) associated with C
is defined by induction:

• s(A) := {A} for A ∈ NC and s(>) := ∅;

• s(C uD) := s(C) ∪ s(D) and s(∃r.C) := {∃r.s(C)}.

For example, if C = Au∃r.(Au∃r.>), then s(C) = {A, ∃r.{A, ∃r.∅}}. Sometimes
we may also write {A, {B,C}} for the description set {A,B,C}. In this setting,
an atom is either a concept name or an existential restriction of the form ∃r.M
for a description set M .

To uniquely define positions, we fix an arbitrary bijection π from the set of all
atoms over the signature NC ∪NR to N. This mapping fixes the position of any
atom in a description set, i.e., it defines its index. We define the set Pos(M) ⊆ N∗
of (set) positions of the description set M as follows:

Pos(M) := {ε} ∪
⋃

∃r.M ′∈M

{π(∃r.M ′)}Pos(M).

Every position in p ∈ Pos(M) uniquely identifies a subdescription M |p of M as
follows:

• If p = ε, then M |p := M .

• If p = π(∃r.M ′)p′ for some ∃r.M ′ ∈M , then M |p := M ′|p′ .

8

In our example, we have three set positions, corresponding to the description sets
{A, ∃r.{A, ∃r.∅}}, {A, ∃r.∅}, and ∅. The set position ε that corresponds to the
whole set M is called the root position.

Our rewrite rules are of the form Q ← P , where Q,P are description sets.
For a description set M , p ∈ Pos(M), and description sets Q,P , we define the
description set M [Q← P]p as follows:

• If p = ε, then M [Q← P]p := (M \ P) ∪Q.

• If p = π(∃r.M ′)p′ for some ∃r.M ′ ∈M , then

M [Q← P]p := (M \ {∃r.M ′}) ∪ {∃r.(M ′[Q← P]p′)}.

Given an EL+-ontology O = (T ,R), the corresponding rewrite system R(O)
consists of the following rules:

• Concept inclusion (Rc): For every C v D ∈ T , R(O) contains the rule

s(C)← s(D).

• Role inclusion (Rr): For every r1 ◦ · · · ◦ rn v s ∈ R and every concept
description C, R(O) contains the rule

s(∃r1 . . . rn.C)← s(∃s.C).

• Monotonicity (Rm): For every atom D, R(O) contains the rule

s(D)← ∅.

Definition 4. Let N,M be description sets. We write N ←O M if there is a
rule Q ← P of the form (Rc), (Rr), or (Rm) and a position p ∈ Pos(M) such
that P ⊆M |p and N = M [Q← P]p.

We write N ←Q←P M instead of N ←O M to explicitly say which rule was

applied. The relation
∗←O is defined as the reflexive, transitive closure of ←O,

i.e., N
∗←O M iff there is a chain

N = Ml ←O Ml−1 ←O . . .←O M0 = M

of l ≥ 0 rule applications. We call such a chain a derivation of N from M w.r.t.
O. A rewriting step in such a derivation is called a root step if it applies a rule

of the form (Rc) at the root position. We write N
(n)←−O M to express that there

is a derivation of N from M w.r.t. O that uses at most n root steps.

9

For example, if O contains the axioms > v ∃r.B and s v r, then the following is
a derivation w.r.t. O:

{A, ∃s.{A}} ←O {A, ∃r.{A}} ←O {A, ∃r.{A, ∃r.{B}}} ←O {A, ∃r.{A, ∃r.∅}}

This is a derivation without a root step, which first applies a rule of the form
(Rm), then one of the form (Rc) (not at the root position), and finally one of the

form (Rr). This shows s(A u ∃s.A)
(0)←−O s(A u ∃r.(A u ∃r.>)).

The first step in the characterization of vO by
∗←O is to show that

∗←O has similar
properties as vO; in particular, that it is closed under existential restrictions and
conjunctions as follows.

Lemma 5. Let O be an EL+-ontology and n, n1, n2 ∈ N.

1. If N,M are two description sets with N
(n)←−O M and r is a role name, then

{∃r.N} (0)←−O {∃r.M}.

2. If N,M,S are description sets with N
(n)←−O M , then N ∪ S (n)←−O M ∪ S.

3. If N1, N2,M1,M2 are description sets with Ni
(ni)←−−O Mi for i ∈ {1, 2}, then

N1 ∪N2
(n1+n2)←−−−−O M1 ∪M2.

Proof.

1. We prove this by induction on the length of the derivation

N = Ml ←O . . .←O M0 = M.

If l = 0, then N = M and {∃r.N} (0)←−O {∃r.M} by reflexivity of
∗←O.

Assume now that the claim holds for all shorter derivations and consider
the first rule application M1 ←O M0. The rest of the derivation has length

l − 1 and induction yields that {∃r.N} (0)←−O {∃r.M1}.
Let p be the position used in the step M1 ←O M0. It is clear that we can
rewrite {∃r.M0} into {∃r.M1} by using the same rule at position π(∃r.M0)p,

which is not a root step. Thus, {∃r.M1}
(0)←−O {∃r.M0} = {∃r.M}, which

yields {∃r.N} (0)←−O {∃r.M}.

2. We again use induction on the length of the derivation

N = Ml ←O . . .←O M0 = M.

If l = 0, then N = M and N ∪S (0)←−O M ∪S by reflexivity of
∗←O. Assume

now that the claim holds for all shorter derivations and consider the first
rule application M1 ←Q←P M0 at position p.

10

• If p = ε, then M1 = (M0 \P)∪Q. If we apply the same rule to M0∪S
at position ε, we arrive at the concept description

((M0 ∪ S) \ P) ∪Q = (M0 \ P) ∪ (S \ P) ∪Q = M1 ∪ (S \ P).

Thus, we have the derivation

M1 ∪ (S \ P)
(i)←−O M0 ∪ S,

where i = 1 in the case that (Rc) was applied and i = 0 otherwise.

In order to arrive at M1 ∪S, for each atom A ∈ S ∩P we apply a rule
{A} ← ∅ of the form (Rm) at position ε, which yields

M1 ∪ S = M1 ∪ (S \ P) ∪ (S ∩ P)
(0)←−O M1 ∪ (S \ P)

(i)←−O M0 ∪ S.

Since N
(n−i)←−−−O M1, induction yields N ∪ S (n)←−O M ∪ S.

• If p = π(∃r.M ′)p′ for an atom ∃r.M ′ ∈M0, then

M1 = (M0 \ {∃r.M ′}) ∪ {∃r.M ′′},

where M ′′ := M ′[Q ← P]p′ . Applying the same rule at the same
position to M0 ∪ S yields the derivation

M1 ∪ (S \ {∃r.M ′})←O M0 ∪ S.

If ∃r.M ′ ∈ S, we can proceed as above to reintroduce ∃r.M ′ by apply-

ing the rule {∃r.M ′} ← ∅ at position ε. Thus, we have M1 ∪ S
(0)←−O

M0 ∪ S, and by induction N ∪ S (n)←−O M ∪ S.

3. We have N1 ∪N2
(n1)←−−O M1 ∪N2

(n2)←−−O M1 ∪M2 by 2. from above.

With the help of this lemma, we can now show that
∗←O characterizes vO as

follows.

Theorem 6. Let O be an EL+-ontology and C,D be two EL-concept descriptions.
Then C vO D iff s(C)

∗←O s(D).

Proof. In order to show that s(C)
∗←O s(D) implies C vO D, it suffices to

consider the case s(C)←O s(D) since the relation vO is reflexive and transitive.
Let N := s(C), M := s(D), Q← P be a rule of the form (Rc), (Rr), or (Rm), and
p ∈ Pos(M) such that P ⊆ M |p, and N = M [Q ← P]p. We show by induction
on the length of p that this implies C vO D.

11

• If p = ε, then N = (M \P)∪Q. Let E,F,G denote the concept descriptions
corresponding to Q,P,M \ P , respectively, i.e., Q = s(E), P = s(F), and
M \ P = s(G). Since the rules were chosen such that E vO F , we clearly
have

C ≡ G u E vO G u F ≡ D

by the definition of vO.

• If p = π(∃r.M ′)p′ for some ∃r.M ′ ∈M , then N = (M \{∃r.M ′})∪{∃r.M ′′}
and M ′′ ←O M ′, where the replacement is located at p′. By induction, we
have D′′ vO D′, where M ′′ = s(D′′) and M ′ = s(D′), which implies that
∃r.D′′ vO ∃r.D′. Thus, C vO D can be shown as above.

Conversely, assume that s(C)
∗←O s(D) does not hold. We construct a canonical

model I of O with CI * DI . The domain of I is the set S of all description sets
over the signature NC ∪NR. For every concept name A, we define

AI := {N ∈ S | N ∗←O s(A)},

and for every role name r, we set

rI := {(N,M) ∈ S2 | N ∗←O {∃r.M}}.

We show that the equality C ′I = {N ∈ S | N ∗←O s(C ′)} holds for all EL-concept
descriptions C ′ by induction on the structure of C ′.

If C ′ is a concept name, then the claim holds by definition of I. If C ′ = >,
then s(C ′) = ∅ and it is clear that any description set can be produced from ∅
by repeated application of rules of the form (Rm). Thus, C ′I = S = {N ∈ S |
N

∗←O s(C ′)}.

Let now C ′ = ∃r.C ′′ and assume that C ′′I = {N ∈ S | N ∗←O s(C ′′)} holds.

Thus, for every N ∈ C ′I , by definition of rI there is M ∈ S such that N
∗←O

{∃r.M} and M
∗←O s(C ′′). By Lemma 5, this implies that N

∗←O {∃r.M}
∗←O

{∃r.s(C ′′)} = s(C ′). On the other hand, if N
∗←O s(C ′) = {∃r.s(C ′′)}, then

(N, s(C ′′)) ∈ rI . Furthermore, we have s(C ′′) ∈ C ′′I by reflexivity of
∗←O, and

thus N ∈ (∃r.C ′′)I = C ′I .

Consider now the remaining case that C ′ = C1 u C2 and assume that CIi =

{N ∈ S | N ∗←O s(Ci)} for i = 1, 2. If N ∈ C ′I = CI1 ∩ CI2 , this implies that

N
∗←O s(C1) and N

∗←O s(C2) hold. Since s(C ′) = s(C1)∪ s(C2), Lemma 5 yields

N
∗←O s(C ′). On the other hand, if N

∗←O s(C ′) = s(C1) ∪ s(C2), then we can
derive N from both s(C1) and s(C2) by adding repeated applications of rules of
the form (Rm) at position ε to the right-hand side of this derivation. This implies
that N ∈ CI1 ∩ CI2 = C ′I .

We now use this to show that I is actually a model of T . For every GCI E v F
in T we have s(E) ←O s(F), and thus N

∗←O s(E) implies N
∗←O s(F) for

12

all N ∈ S. Similarly, I satisfies every role inclusion r1 ◦ · · · ◦ rn v s ∈ R
since whenever Ni−1

∗←O {∃ri.Ni} holds for description sets N0, . . . , Nn and all

i ∈ {1, . . . , n}, then we have N0
∗←O {∃r1.{. . . {∃rn.Nn} . . . }} ←O {∃s.Nn} by

Lemma 5.

Finally, we know that s(C) ∈ CI since
∗←O is reflexive, but s(C) /∈ DI by

assumption. Thus, C 6vO D.

We now show that we can restrict derivations to use at most |T | root steps, where
|T | denotes the cardinality of the TBox T of the EL+-ontology O = (T ,R). This
means that we need to apply each GCI of the ontology at most once at the root
position ε.

Lemma 7. Let O = (T ,R) be an EL+-ontology and N,M be two description

sets. Then N
∗←O M iff N

(|T |)←−−O M .

Proof. Obviously, N
(|T |)←−−O M implies N

∗←O M . Consider now a derivation

N = Ml ←Rl−1
Ml−1 ←Rl−2

. . .←R0 M0 = M

with the least number of root steps and assume that this number is greater than
|T |. Then there must be a GCI E v F in T that is applied twice at the root
position. More precisely, there are two indices j, j′ ∈ {0, . . . , l − 1} with j < j′

such that Rj and Rj′ are equal to s(E)← s(F) and are applied at position ε.

Let s(E) = {A1, . . . , Ak}. We replace the root step Mj+1 ←Rj Mj by the k rule
applications

M ′
j+1 ←{Ak}←∅ . . .←{A1}←∅ Mj

of the form (Rm) at position ε. We know that Mj+1 = (Mj \ s(F)) ∪ s(E) and
M ′

j+1 = Mj ∪ {A1, . . . , Ak} = Mj ∪ s(E). Since s(F) ⊆ Mj, this implies that
M ′

j+1 = Mj+1 ∪ s(F).

If m is the number of root steps in the derivation Mj′ ←Rj′−1
. . . ←Rj+1

Mj+1,

then by Lemma 5, we also have Mj′∪s(F)
(m)←−−O Mj+1∪s(F). Furthermore, since

Rj′ = s(E)← s(F), we have s(F) ⊆Mj′ , and thus Mj′ ∪ s(F) = Mj′ . To sum up,
there is a derivation

Ml ←Rl−1
. . .←Rj′

Mj′

= Mj′ ∪ s(F)
(m)←−−O Mj+1 ∪ s(F)

(0)←−O Mj ←Rj−1
. . .←R0 M0

of N = Ml from M = M0 that uses fewer root steps than the original derivation,
which contradicts the assumption.

Corollary 8. Let O = (T ,R) be an EL+-ontology and C,D be two EL-concept

descriptions. Then C vO D iff s(C)
(|T |)←−−O s(D).

13

3.2 A Structural Characterization of Subsumption in the
Description Logic ELHR+

Our translation of unification problems into propositional satisfiability problems
depends on a structural characterization of subsumption, which we can unfortu-
nately only show for ELHR+-ontologies. Throughout this subsection, we assume
that O is a flat ELHR+-ontology. We say that r is transitive if r ◦ r v r belongs
to O.

Definition 9. Let C,D be atoms. We say that C is structurally subsumed by D
w.r.t. O (C vs

O D) iff

• C = D is a concept name,

• C = ∃r.C ′, D = ∃s.D′, C ′ vO D′, and r v s, or

• C = ∃r.C ′, D = ∃s.D′, and C ′ vO ∃t.D′
for a transitive role t with r EO tEO s.

On the one hand, structural subsumption is a stronger property than C vO D
since it requires the atoms C and D to have “compatible” top-level structures.
On the other hand, it is weaker than subsumption v w.r.t. the empty ontology,
i.e., whenever C v D holds for two atoms C and D, then C vs

O D, but not
necessarily vice versa. If O = ∅, then the three relations v, vs

O, vO coincide.
Like v and vO, vs

O is reflexive, transitive, and closed under applying existential
restrictions.

Lemma 10. Let C,D,E be atoms and r, s role names.

1. If C v D, then C vs
O D.

2. If C vs
O D, then s(C)

(0)←−O s(D), and thus C vO D.

3. C vs
O C.

4. If C vs
O D and D vs

O E, then C vs
O E.

5. If C vs
O D and r EO s, then ∃r.C vs

O ∃s.D.

Proof.

1. This follows from Lemma 2 and the fact that EO is reflexive.

2. If C = D is a concept name, then obviously C
∗←O D can be shown without

any rewrite steps. Let now C = ∃r.C ′ and D = ∃s.D′. If C ′ vO D′

and r EO s, then s(C ′)
∗←O s(D′). By Lemma 5, we have the derivation

14

{∃r.s(C ′)} (0)←−O {∃s.s(C ′)}
(0)←−O {∃s.s(D′)}, which contains no root steps.

If C ′ vO ∃t.D′, t is transitive, and r EO tEO s, then s(C ′)
∗←O {∃t.s(D′)}.

Again, Lemma 5 yields the derivation {∃r.s(C ′)} (0)←−O {∃t.s(C ′)}
(0)←−O

{∃tt.s(D′)} ←O {∃t.s(D′)}
(0)←−O {∃s.s(D′)} without root steps.

3. This follows from claim 1. since C v C holds.

4. If C = D is a concept name, then by D vs
O E also E must be the same

concept name. Let now C = ∃r.C ′, D = ∃s.D′, and E = ∃t.E ′. If the
second condition holds for C ′ and D′ or for D′ and E ′, then the claim can
easily be shown using transitivity and closure under existential restrictions
of vO. If we have two transitive roles s′, t′ with r EO s′ EO s EO t′ EO t,
C ′ vO ∃s′.D′, and D′ vO ∃t′.E ′, then in particular r EO t′ EO t and

C ′ vO ∃s′.D′ vO ∃t′.D′ vO ∃t′t′.E ′ vO ∃t′.E ′.

5. If C vs
O D and r EO s, then C vO D by claim 2., and thus ∃r.C vs

O ∃s.D
since the second condition is satisfied.

Using the connection between subsumption and rewriting stated in Theorem 6,
we can now prove a characterization of subsumption in the presence of an ELHR+-
ontology O that expresses subsumption in terms of structural subsumptions and
derivations w.r.t. ←O. Recall that all EL-concept descriptions are conjunctions
of atoms and that C vO D1u · · · uDm iff for all j ∈ {1, . . . ,m} there is an l such

that s(C)
(l)←−O s(Dj).

Lemma 11. Let O = (T ,R) be a flat ELHR+-ontology, C1, . . . , Cn, D be atoms,

and l ≥ 0. Then s(C1 u · · · u Cn)
(l)←−O s(D) iff there is

1. an index i ∈ {1, . . . , n} such that Ci vs
O D; or

2. a GCI A1 u · · · u Ak v B in T such that

a) for every η ∈ {1, . . . , k} we have s(C1 u · · · u Cn)
(l−1)←−−−O s(Aη),

b) s(C1 u · · · u Cn)
(l)←−O s(B), and

c) B vs
O D.

Proof. If Ci vs
O D holds for some i ∈ {1, . . . , n}, then by Lemma 10 we can

construct a derivation

s(C1 u · · · u Cn)
(0)←−O s(Ci)

(0)←−O s(D)

15

by applying several rules of the form (Rm) to s(Ci). This derivation contains

0 ≤ l root steps. If s(C1 u · · · u Cn)
(l)←−O s(B) and B vs

O D for some atom B in
T , then by Lemma 10 we again have a derivation

s(C1 u · · · u Cn)
(l)←−O s(B)

(0)←−O s(D)

using at most l root steps.

For the other direction, we show a more general claim: If s(C1 u · · · u Cn)
(l)←−O

s(D1u· · ·uDm), where D1, . . . , Dm are atoms, then for every Dj, j ∈ {1, . . . ,m},
one of the conditions 1. or 2. is satisfied. Consider a derivation

s(C1 u · · · u Cn) = Mk ←O . . .←O M0 = s(D1 u · · · uDm)

using at most l root steps. We prove the claim by induction on the length k of
this derivation. For k = 0, we have C1 u · · · u Cn = D1 u · · · uDm, and thus the
first condition is satisfied for each of the atoms Dj by reflexivity of vs

O.

Let now k > 0 and consider the rule Q← P used to derive M1 from M0.

• If Q ← P was applied at a position p = π(Dj)p
′ for some j ∈ {1, . . . ,m},

then Dj = ∃r.E for some concept description E and M1 = (M0 \ s(Dj)) ∪
{∃r.s(E ′)} for some concept description E ′ with s(E ′) = s(E)[Q← P]p′ . By
Theorem 6, s(E ′)←O s(E) implies E ′ vO E, and thus we have ∃r.E ′ vs

O Dj

by definition of vs
O.

Consider now the remaining derivation Mk
∗←O (M0 \ s(Dj))∪{∃r.s(E ′)} of

length k − 1, which still uses at most l root steps. The claim for all atoms
except Dj directly follows by induction. Additionally, one of the following
cases must hold for ∃r.E ′:

1. If Ci vs
O ∃r.E ′ for some i ∈ {1, . . . , n}, then Ci vs

O Dj by transitivity
of vs

O, i.e., Condition 1. is satisfied by Dj.

2. If the second condition of the lemma applies, then Condition 2.c) for
Dj again follows from transitivity of vs

O. Conditions 2.a) and 2.b) are
the same, regardless of whether ∃r.E ′ or Dj = ∃r.E is considered.

• If Q← P was applied at ε and is of the form (Rm), then M1 = M0∪s(E) =
s(D1 u · · · u Dm u E) for some atom E. Thus, the claim for the atoms
D1, . . . , Dm directly follows by induction.

• If Q ← P was applied at ε and is of the form (Rr), then M1 = (M0 \
s(Dj)) ∪ s(E) for some Dj of the form ∃r.F with E = ∃s.F and s v r ∈ R
or E = ∃rr.F and r ◦ r v r ∈ R. In both cases, we have E vs

O Dj by
Definition 9. The claim now follows by induction, exactly as in the case for
p = π(Dj)p

′.

16

• Finally, if this step is a root step, then M1 = (M0\s(B))∪s(A1u· · ·uAk) for
some flat GCI A1 u · · · uAk v B in T . The claim for all atoms D1, . . . , Dm

except B follows by induction.

B itself obviously fulfills Condition 2.c) of the claim. We now show that

s(C1 u · · · u Cn)
(l−1)←−−−O s(Aη) holds for every η ∈ {1, . . . , k} by prepending

appropriate rule applications of the form (Rm). We obtain a derivation

s(C1 u · · · u Cn) = Mk ←O . . .←O M1
∗←(Rm) s(Aη),

in which the first root step of the original derivation was replaced by several
rule applications of the form (Rm). Since the original derivation used at
most l root steps, the constructed derivation uses at most l − 1 root steps.
The derivation required for 2.b) can be constructed similarly.

This proof crucially depends on the transitivity of vs
O. In fact, this is the main

reason why we cannot deal with general EL+-ontologies. While it is not hard to
extend the definition of structural subsumption to more general kinds of ontolo-
gies, it is currently not clear how to do this such that the resulting relation is
transitive; and without transitivity of structural subsumption, we cannot show a
characterization analogous to the one in Lemma 11.

4 Unification

From now on, we assume that the set NC is partitioned into concept variables (Nv)
and concept constants (Nc). A substitution σ maps every variable to a concept
description and can be extended to concept descriptions in the usual way. A
concept description C is ground if it contains no variables and a substitution is
ground if all concept descriptions in its range are ground. Similarly, an ontology
is ground if it contains no variables.

Definition 12. Let O be a ground ontology. A unification problem w.r.t. O is
a finite set Γ = {C1 v? D1, . . . , Cn v? Dn} of subsumptions between EL-concept
descriptions. A substitution σ is a unifier of Γ w.r.t. O if σ solves all the GCIs
in Γ w.r.t. O, i.e., if σ(C1) vO σ(D1), . . . , σ(Cn) vO σ(Dn). We say that Γ is
unifiable w.r.t. O if it has a unifier w.r.t. O.

We call Γ w.r.t. O an EL-, EL+-, or ELHR+-unification problem depending on
whether and what kind of role inclusions are contained in O.

Three remarks regarding this definition are in order. First, note that some of
the previous papers on unification in DLs used equivalences C ≡? D instead of
subsumptions C v? D. This difference is, however, irrelevant since C ≡? D can

17

be seen as a shorthand for the two subsumptions C v? D and D v? C, and
C v? D has the same unifiers as C uD ≡? C.

Second, note that–as in [2]–we have restricted the background ontology O to be
ground. This is not without loss of generality. In fact, if O contained variables,
then we would need to apply the substitution also to its axioms, and instead
of requiring σ(Ci) vO σ(Di) we would thus need to require σ(Ci) vσ(O) σ(Di),
which would change the nature of the problem considerably. The treatment of
unification w.r.t. acyclic TBoxes in [7] actually considers a more general setting,
where some of the primitive concepts occurring in the TBox may be variables.
The restriction to ground general TBoxes is, however, appropriate for the appli-
cation scenario sketched in the introduction. In this scenario, there is a fixed
background ontology, which is extended with definitions of new concepts by sev-
eral knowledge engineers. Unification w.r.t. the background ontology is used to
check whether some of these new definitions actually are redundant, i.e., define
the same intuitive concept. Here, some of the primitive concepts newly intro-
duced by one knowledge engineer may be further defined by another one, but we
assume that the knowledge engineers use the vocabulary from the background
ontology unchanged, i.e., they define new concepts rather than adding definitions
for concepts that already occur in the background ontology. An instance of this
scenario can, e.g., be found in [13], where different extensions of SNOMED CT
are checked for overlaps, albeit not by using unification, but by simply testing for
equivalence.

Third, though we allow for arbitrary substitutions σ in the definition of a unifier,
it is actually sufficient to consider ground substitutions such that all concept
descriptions σ(X) in the range of σ contain only concept and role names occurring
in Γ or O. It is an easy consequence of well-known results from unification
theory [10] that Γ has a unifier w.r.t. O iff it has such a ground unifier.

4.1 Unifiers versus Acyclic TBoxes

There is a close relationship between ground substitutions and acyclic TBoxes.
Given a ground substitution σ, we can build the TBox Tσ := {X ≡ σ(X) |
X ∈ Nv}. Since σ is ground, this is indeed an acyclic TBox, and expansion
w.r.t. Tσ corresponds to applying σ, i.e., for every concept description C we have
σ(C) = CTσ . As an easy consequence of this observation we have for any ground
ontology O = (T ,R):

σ(C) vO σ(D) iff CTσ vO DTσ iff C v(T ∪Tσ ,R) D.

Conversely, any acyclic TBox S whose defined concepts are the variables in Nv

yields a ground substitution σS , which is defined by setting σS(X) = XS for all
variables X. Again, expansion w.r.t. the acyclic TBox corresponds to applying

18

the substitution, i.e., CS = σS(C), and thus

C v(T ∪S,R) D iff CS vO DS iff σS(C) vO σS(D).

This yields another view on what unification is trying to compute, and thus
another potential application scenario: the extraction of concept definitions that
imply a given set of GCIs w.r.t. a background ontology.

Proposition 13. Let O = (T ,R) be a ground ontology and T ′ an arbitrary
general TBox. Then Γ′ := {C v? D | C v D ∈ T ′} has a unifier w.r.t. O iff
there is an acyclic TBox S whose defined concepts are the variables in Nv such
that every GCI in T ′ follows from (T ∪ S,R).

4.2 Relationship to Equational Unification

Unification was originally not introduced for Description Logics, but for equa-
tional theories [10]. In [7] it was shown that equivalence and unification in EL
are the same as the word problem and unification, respectively, in the equational
theory SLmO of semilattices with monotone operators [21]. As argued in [2], uni-
fication in EL w.r.t. a ground EL-ontology corresponds to unification in SLmO
extended with a finite set of ground identities. We will see that, in contrast to
GCIs, role inclusions add non-ground identities to SLmO .

The signature ΣSLmO of this theory consists of a binary function symbol ∧, a
constant symbol 1, and finitely many unary function symbols f1, . . . , fn. Terms
can be built using these symbols and additional variable symbols and free constant
symbols.

Definition 14. The equational theory of semilattices with monotone operators
is defined by the following identities:

SLmO := {x ∧ (y ∧ z) = (x ∧ y) ∧ z, x ∧ y = y ∧ x, x ∧ x = x, x ∧ 1 = x}
∪ {fi(x ∧ y) ∧ fi(y) = fi(x ∧ y) | 1 ≤ i ≤ n}

Any EL-concept description C using only the roles r1, . . . , rn can be translated
into a term tC over the signature ΣSLmO by replacing each concept constant A by
a free constant a, each concept variable X by a variable x, > by 1, u by ∧, and
∃ri by fi. For example, the EL-concept description C = Au∃r1.>u∃r3(XuB) is
translated into tC = a∧f1(1)∧f3(x∧b). Conversely, any term t over the signature
ΣSLmO can be translated back into an EL-concept description Ct. As shown in
[21], the word problem in the theory SLmO is the same as the equivalence problem
for EL-concept descriptions.

Lemma 15. Let C,D be EL-concept descriptions using only roles r1, . . . , rn.
Then C ≡ D iff tC =SLmO tD.

19

As an immediate consequence of this lemma, every EL-unification problem can
be translated into an SLmO-unification problem that, modulo the translation
between concept descriptions and terms, has the same unifiers.

Using this translation, any ground general TBox T can be translated into a
finite set GT of ground identities by replacing each GCI C v D by the equation
tC ∧ tD = tC . Conversely, a set G of ground identities can be translated back into
a ground general TBox TG by replacing every ground identity s = t by the GCIs
Cs v Ct and Ct v Cs. Furthermore, a role inclusion s1 ◦ · · · ◦ sm v sm+1 can
be expressed as a (non-ground) identity f1(. . . fm(x)) = f1(. . . fm(x)) ∧ fm+1(x).
Thus, an RBox R gives rise to a finite set ER of additional identities. Lemma 15
can now be extended to account for an additional ground ontology [21].

Proposition 16. Let O = (T ,R) be a ground ontology and C,D be EL-concept
descriptions using only roles r1, . . . , rn. Then C ≡O D iff tC =SLmO ∪ER ∪GT tD.

Unification in EL w.r.t. a ground ontology, as introduced in Definition 12, thus
corresponds to unification in SLmO extended with additional identities. From
a unification theory point of view, we are thus dealing with an instance of the
following general question:

Problem. For which equational theories E does decidability and/or complexity
transfer from E to all extensions of E by finite sets of identities (of a special
form)?

The connection to equational unification also sheds some light on our decision
to restrict unification to the case of ground ontologies. If we would lift this
restriction, the background general TBox T would contain variables, which are
subject to substitution. For a substitution σ, we define σ(T) to be the set of
all GCIs σ(C) v σ(D) for all GCIs C v D in T . Consider now the following
generalization of Definition 12:2

Problem (EL-unification w.r.t. a non-ground ontology). Given an ontology O =
(T ,R) and an EL-unification problem Γ = {C1 ≡? D1, . . . , Cn ≡? Dn}, is there
a substitution σ that satisfies σ(Ci) ≡(σ(T),R) σ(Di) for all i ∈ {1, . . . , n}?

According to the above translations, this is equivalent to finding a substitution
σ with σ(tCi) =SLmO ∪ER ∪σ(GT) σ(tDi) for all i ∈ {1, . . . , n}, where the variables
in σ(GT) are viewed as free constant symbols instead of proper (i.e., universally
quantified) variables. This problem is related to the following problem [16, 15]:

Problem (Simultaneous rigid E-unification). Given finitely many equational the-
ories E1, . . . , En and terms s1, . . . , sn, t1, . . . , tn, is there a substitution σ that
satisfies σ(si) =σ(Ei) σ(ti) for all i ∈ {1, . . . , n}, where the variables in σ(Ei) are
treated as free constant symbols?

2We use equivalences rather than subsumptions in this definition to have a more direct
connection to equational unification problems. As noted above, equivalences can be translated
into subsumptions and vice versa.

20

Rigid E-unification is the special case where n = 1. In general, simultaneous rigid
E-unification is undecidable [15], even in the case n = 3 with only 2 variables
and ground terms s1, s2, s3 [23]. For the case of only monadic function symbols,
the problem is known to be PSpace-hard [17], and in PSpace if there is only
one variable [18]. If there is only one variable, but arbitrary function symbols,
then the problem is ExpTime-complete [14]. The restricted problem of (non-
simultaneous) rigid E-unification is decidable (more precisely, NP-complete) [16].
If there is only one variable, then the problem is P-complete [14].

Our problem is a generalization of rigid E-unification rather than simultaneous
rigid E-unification since we use only one ontology O rather than a different one for
every equivalence. The main generalization is that we have SLmO as additional
background theory. Whether the fact that we have several equivalences rather
than a single one is relevant or not is not so clear. In fact, if O is ground, then
several equivalences can be encoded into a single one if sufficiently many free
role names are available, i.e., role names that do not occur in O. The following
is an easy consequence of Lemma 11: if r1, . . . , rn are distinct free role names,
then σ is a unifier of {C1 ≡? D1, . . . , Cn ≡? Dn} w.r.t. O iff it is a unifier of
{∃r1.C1 u · · · u ∃rn.Cn ≡? ∃r1.D1 u · · · u ∃rn.Dn} w.r.t. O. If O is not ground,
this trick does not necessarily work since, even if r1, . . . , rn are free w.r.t. (T ,R),
they may no longer be free w.r.t. (σ(T),R).

To sum up, EL-unification w.r.t. non-ground ontologies is an instance of the
following generalization of simultaneous rigid E-unification:

Problem (Simultaneous rigid E-unification with background theories). Consider
finitely many equational theories E1, . . . , En, E

′
1, . . . , E

′
n and terms s1, . . . , sn,

t1, . . . , tn. Is there a substitution σ that satisfies σ(si) =E′i ∪σ(Ei) σ(ti) for all
i ∈ {1, . . . , n}, where the variables in σ(Ei) are treated as free constant symbols?

The non-simultaneous version of this problem considers the case where n = 1.
To the best of our knowledge, the problem of simultaneous or non-simultaneous
rigid E-unification with background theory has not yet been considered in the
literature, and it is probably quite hard to solve even in the non-simultaneous
case. This is one of our reasons for restricting our attention to the case of a single
ground ontology.

4.3 Flat Ontologies and Unification Problems

To simplify the technical development, it is convenient to flatten the ontology
and the unification problem. Similar to flat ontologies, a unification problem Γ
is called flat if all subsumptions in Γ are flat, i.e., of the form C1 u · · · uCn v? D
for n ≥ 0 and flat atoms C1, . . . , Cn, D.

Given an ontology O and a unification problem Γ, we will first flatten O as de-
scribed in Section 2.5. Since the signature is changed by this process, this has

21

consequences for the unifiers: When looking for a unifier w.r.t. a given ontology
one does not want this unifier to use auxiliary concept names introduced in a
preprocessing step of the unification algorithm. The next lemma shows, however,
that unifiability of a unification problem is not influenced by flattening the on-
tology. The proof of this lemma also shows how to remove unwanted auxiliary
concept names from a unifier.

Lemma 17. Let Γ be a unification problem, O be an ontology, and O′ be the
result of applying the normalization procedure from [4] to O. Then Γ is unifiable
w.r.t. O iff it is unifiable w.r.t. O′.

Proof. Any unifier σ of Γ w.r.t. O is also a unifier of Γ w.r.t. O′ since it is a
conservative extension of O. If, on the other hand, σ′ is a unifier of Γ w.r.t.
O′, then its range may contain some of the newly introduced concept names.
However, for each of these new concept names A there is a concept description
CA from O such that A ≡O′ CA. We now define the substitution σ by replacing
all occurrences of the new concept names A by the concept descriptions CA. Since
equivalences are preserved under replacing subdescriptions by equivalent concept
descriptions, σ is still a unifier of Γ w.r.t. O′. Since it does not contain any
concept names introduced by the normalization procedure, it is also a unifier of
Γ w.r.t. O over the original signature.

Furthermore, we also flatten the unification problem Γ by introducing new vari-
ables and equivalences, similar to the flattening procedure described in Sec-
tion 2.5. This is not problematic, as any ground unifier w.r.t. of the flattened
unification problem Γ′ is immediately also a unifier of Γ and any ground unifier
of Γ can easily be extended to a unifier of Γ′ by defining the substitution of the
auxiliary variables appropriately.

For this reason, we will assume in the following that all ontologies and unification
problems are flat.

4.4 Cycle-Restricted Ontologies

The decidability and complexity results for unification w.r.t. EL-ontologies in [2],
and also the corresponding ones in the present report, only hold if the ontologies
satisfy a restriction that prohibits certain cyclic subsumptions.

Definition 18. The EL+-ontology O is called cycle-restricted iff there is no
nonempty word w ∈ N+

R and EL-concept description C such that C vO ∃w.C.

Note that, in contrast to acyclic TBoxes, cycle-restrictedness is not a syntactic
condition on the form of the axioms in O, but a semantic one on what follows from
O. In [1], cycle-restricted TBoxes were analyzed and it was shown that it can

22

be checked in polynomial time whether a given general TBox is cycle-restricted.
However, this does not suffice to check cycle-restrictedness in the presence of an
RBox since the role inclusions might introduce additional cycles, as the following
example shows.

Example 19. The ontology (T , ∅) with the general TBox

T = {A v ∃r.B, ∃s.B v ∃r.A}

is cycle-restricted. However, the ontology (T ,R) with R = {r v s} is not, since,
e.g., A is now subsumed by ∃r.A.

Although we cannot directly use the procedure from [1], we can use similar ar-
guments to show that cycle-restrictedness of an ELHR+-ontology can be checked
in polynomial time. These arguments use the characterization of subsumption in
Lemma 11. As a first step, we show that for flat ELHR+-ontologies it suffices to
consider cycles involving concept names and >.

Lemma 20. Let O = (T ,R) be a flat ELHR+-ontology. Then O is cycle-
restricted iff there is no nonempty word w ∈ N+

R such that > vO ∃w.> or
A vO ∃w.A for a concept name A ∈ sig(O).

Proof. The ‘only if’-direction is trivial. We prove the other direction by induction
on the structure of C, which can be >, a concept name, an existential restriction,
or a conjunction of several atoms. Assume that C vO ∃w.C holds for some
w ∈ N+

R . If C is > or a concept name in sig(O), this immediately contradicts
the assumption. By Lemma 11, one of the following cases must hold:

1. There is a top-level atom E of C such that E vs
O ∃w.C. Note that in this

case, C cannot be >. We consider the remaining cases for the structure of C:

• If C is a concept name that does not occur in O, then C = E vs
O ∃w.C

is impossible since w is not empty.

• If C = ∃r.D for a role name r and a concept description D, then we have
∃r.D = C = E vs

O ∃w.C = ∃wr.D, and thus w = sw′, rEO s, and either
D vO ∃w′r.D or D vO ∃tw′r.D for some transitive role name t with
r EO tEO s. This contradicts the induction hypothesis.

• If C = C1 u · · · u Cn, where C1, . . . , Cn are atoms, then we have Ci =
E vO ∃w.(C1 u · · · u Cn) vO ∃w.Ci for some i ∈ {1, . . . , n}, which again
contradicts the induction hypothesis.

2. There is a GCI A1 u · · · u Ak v ∃r.B in T such that C vO A1 u · · · u Ak,
w = sw′, r EO s, and either B vO ∃w′.C or B vO ∃tw′.C for a transitive role
name t with r EO tEO s. This implies that

B vO ∃w′.C vO ∃w′.(A1 u · · · u Ak) vO ∃w′r.B

23

or B vO ∃tw′r.B, respectively. Since T is flat, B must be a concept name in
sig(O), and thus both subsumptions contradict the assumption.

For ELHR+-ontologies, the condition in Definition 18 can now be tested by the
following procedure, which is again based on Lemma 11.

Lemma 21. Let O be an ELHR+-ontology. It can be decided in time polynomial
in the size of O whether O is cycle-restricted or not.

Proof. We first flatten O = (T ,R) as described in Section 2.5. The resulting
ontology O′ = (T ′,R) has a larger signature than O, but for each new con-
cept name A there is a concept description CA over the signature of the original
ontology such that A ≡O′ CA. It is clear that O′ is also an ELHR+-ontology.
Furthermore, we can show that O′ is cycle-restricted iff O is. Assume first that
O is not cycle-restricted, i.e., there is a concept description C over sig(O) and
w ∈ N+

R such that C vO ∃w.C. Since O′ is a conservative extension of O, the
same holds w.r.t. O′, which shows that O′ is not cycle-restricted. On the other
hand, if C vO′ ∃w.C for w ∈ N+

R and a concept description C over sig(O′), then
we can replace each new concept name A by the equivalent CA. The resulting
concept description C ′ is built over sig(O), and thus we have C ′ vO ∃w.C ′, i.e.,
O is not cycle-restricted.

Thus, we can assume in the following that O is flat. By Lemma 20, we only have
to test for cycles involving concept names and >. We first characterize such cycles
in a convenient way. Let A be a concept name in sig(O) or >. By Lemma 11,
A vO ∃rw′.A holds for some w′ ∈ N∗R iff one of the two alternatives of this lemma
holds. The first alternative cannot hold since ∃rw′.A and A have an incompatible
top-level structure – one is an existential restriction, the other is a concept name
or >. Thus, we have A vO ∃rw′.A iff there is a GCI A′1 u · · · u A′k v ∃s.B in T
such that A vO A′1u· · ·uA′k, sEO r, and either B vO ∃w′.A or B vO ∃tw′.A for
a transitive role name t with s EO t EO r. Since T is flat, B must be a concept
name in sig(O).

Thus, A vO ∃rw′.A implies A vO ∃s.B and B vO ∃w′.A or B vO ∃tw′.A for
some concept name B ∈ sig(O) and role names s, t. We can now apply the
same argument to B vO ∃w′.A or B vO ∃tw′.A to derive the new subsumptions
B vO ∃s2.B2 and B2 vO ∃t2w′.A or B2 vO ∃t2w′′.A or B2 vO ∃w′′.A for
w′ = r′w′′ and some concept name B2 ∈ sig(O) and role names s2, t2. We can
continue to apply this argument indefinitely unless there are no more existential
restrictions on the right-hand side of the subsumptions.

If this process stops, then we have constructed a sequence of subsumptions of
the form A vO ∃s.B,B vO ∃s2.B2, . . . , Bn−1 vO ∃sn.Bn, Bn vO A involving
only A and concept and role names of sig(O). If this process does not stop,
then there is an infinite sequence A vO ∃s.B,B vO ∃s2.B2, B2 vO ∃s3.B3, . . .
of such subsumptions. Since O is finite, we must have Bi = Bj for some j > i.

24

Thus, in both cases we can find a finite sequence of subsumptions of the form
Bk−1 vO ∃sk.Bk that starts and ends with the same concept name (or >) and
involves at least one role name.

Using the polynomial-time subsumption algorithm for EL+, we can build a graph
whose nodes are the elements for NC ∪ {>} and where there is an edge from A
to B iff A vO ∃r.B for some r ∈ NR. Then we can use standard reachability
algorithms to check whether this graph contains a cycle of the above form.

We illustrate the procedure described in this proof on a simple example.

Example 22. Consider the general TBox {∃r.A v A,A v ∃s.B} and the RBox
{s v r}. The graph constructed in Lemma 21 has the tree nodes A, B, and
>. It contains s- and r-edges from A to B and from A to > and ε-edges from
A to > and from B to >. Since these edges form no cycles, the ontology is
cycle-restricted.

The main reason why we need cycle-restrictedness of O is that it ensures that a
substitution always induces a strict partial order on the variables. To be more
precise, assume that γ is a substitution. For X, Y ∈ Nv we define

X >γ Y iff γ(X) vO ∃w.γ(Y) for some w ∈ N+
R .

Transitivity of >γ is an easy consequence of transitivity of subsumption, and
cycle-restrictedness of O yields irreflexivity of >γ.

Lemma 23. If O is a cycle-restricted EL+-ontology, then >γ is a strict partial
order on Nv.

5 Reduction to SAT

The main idea underlying the NP-membership results in [5] and [2] is to show
that any EL-unification problem that is unifiable w.r.t. the empty ontology and
w.r.t. a cycle-restricted EL-ontology, respectively, has a so-called local unifier.
Here, we generalize the notion of a local unifier to the case of unification w.r.t.
cycle-restricted ELHR+-ontologies, but then go a significant step further. Instead
of using an algorithm that “blindly” generates all local substitutions and then
checks whether they are unifiers, we reduce the search for a local unifier to a
propositional satisfiability problem.

5.1 Local Unifiers

Let Γ be a flat EL-unification problem and O = (T ,R) be a flat, cycle-restricted
ELHR+-ontology. We denote by At the set of atoms occurring as subdescriptions

25

in subsumptions in Γ or axioms in O and define

Attr := At ∪ {∃t.D′ | ∃s.D′ ∈ At, tEO s, t transitive}.

Furthermore, we define the set of non-variable atoms by Atnv := Attr\Nv. Though
the elements of Atnv cannot be variables, the may contain variables if they are of
the form ∃r.X for some role r and a variable X.

Let now S be an assignment function that maps every variable X ∈ Nv to a set
SX ⊆ Atnv. Every such assignment S induces a unique TBox

TS := {X ≡
l

D∈SX

D | X ∈ Nv}.

We call the assignment S acyclic if TS is acyclic. Thus, if S is acyclic, the TBox
TS induces a unique substitution σTS . To simplify the notation, we write this
substitution as σS. It is easy to see that this substitution satisfies

σS(X) =
l

D∈SX

σS(D)

for all X ∈ Nv. We call a substitution σ local if it is of this form, i.e., if there is
an acyclic assignment S such that σ = σS.

Thus, if we know that any solvable unification problem has a local unifier, then
we can enumerate (or guess, in a nondeterministic machine) all local substitu-
tions and then check whether any of them is a unifier. Thus, in general many
substitutions will be generated that only in the subsequent check turn out not
to be unifiers. In contrast, our SAT reduction will ensure that only unifiers are
generated.

5.2 The Reduction

Here, we reduce unification in EL w.r.t. cycle-restricted ELHR+-ontologies to
the satisfiability problem for propositional logic, which is NP-complete. This
shows that this unification problem is in NP. But more importantly, it immedi-
ately allows us to apply highly optimized SAT-solvers for solving such unification
problems.

As before, we assume that Γ is a flat EL-unification problem and O = (T ,R) is
a flat, cycle-restricted ELHR+-ontology. We define the set

Left := At ∪ {C1 u · · · u Cn | C1 u · · · u Cn v? D ∈ Γ for some D ∈ At}

that contains all atoms of Γ and O and all left-hand sides of subsumptions from
Γ. For L ∈ Left and C ∈ At, we write “C ∈ L” if C is a top-level atom of L.

26

The propositional variables we use for the reduction are of the form [L v D]i

for L ∈ Left, D ∈ Attr, and i ∈ {0, . . . , |T |}. The intuition behind these vari-
ables is that every satisfying valuation induces an acyclic assignment S such that
the following holds for the induced substitution γS: [L v D]i is evaluated to
true iff s(γS(L)) can be derived from s(γS(D)) using at most i root steps, i.e.,

s(γS(L))
(i)←−O s(γS(D)).

Additionally, we use the propositional variables [X > Y] for X, Y ∈ Nv to express
the depends on relation between variables induced by the acyclic TBox TS that
defines the desired local substitution.

The auxiliary function Dec is defined as follows for C ∈ At, D ∈ Attr:

Dec(C v D) =

1 if C = D

[C v D]|T | if C and D are ground

Trans(C v D) if C = ∃r.C ′, D = ∃s.D′, and r EO s

[C v D]|T | if C is a variable

0 otherwise

,

Trans(C v D) = [C ′ v D′]|T | ∨
∨

t transitive
rEOtEOs

[C ′ v ∃t.D′]|T |.

Note that C ′ ∈ At and D′, ∃t.D′ ∈ Attr by definition of Attr and since Γ and O are
flat. Here, 0 and 1 are Boolean constants representing the truth values 0 (false)
and 1 (true), respectively.

The unification problem will be reduced to satisfiability of the following set of
propositional formulae. For simplicity, we do not use only clauses here. However,
our formulae can be transformed into clausal form by introducing polynomially
many auxiliary propositional variables and clauses.

Definition 24. Let Γ be a flat unification problem and O = (T ,R) be a flat,
cycle-restricted ELHR+-ontology. The set C(Γ,O) contains the following propo-
sitional formulae:

(I) Translation of the subsumptions of Γ. For every L v? D in Γ, we introduce
a clause asserting that this subsumption must hold:

→ [L v D]|T |.

(II) Translation of the relevant properties of subsumption.

1) For all ground atoms C ∈ At, D ∈ Attr and i ∈ {0, . . . , |T |} such
that C vO D does not hold, we introduce a clause preventing this
subsumption:

[C v D]i → .

27

2) For every variable Y , B ∈ Atnv, i, j ∈ {0, . . . , |T |}, and L ∈ Left, we
introduce the clause

[L v Y]i ∧ [Y v B]j → [L v B]min{|T |,i+j}.

3) For every L ∈ Left \ Nv and D ∈ Attr, we introduce the following
formulae, depending on L and D:

a) If D is a ground atom and L is not a ground atom, we introduce

[L v D]i →
∨
C∈L

Dec(C v D) ∨∨
A1u···uAkvB∈T

BvOD

([L v A1]
i−1 ∧ · · · ∧ [L v Ak]

i−1)

for all i ∈ {1, . . . , |T |} and

[L v D]0 →
∨
C∈L

Dec(C v D).

b) If D is a non-variable, non-ground atom, we introduce

[L v D]i →
∨
C∈L

Dec(C v D) ∨
∨

A atom of T

([L v A]i ∧Dec(A v D))

for all i ∈ {1, . . . , |T |} and

[L v D]0 →
∨
C∈L

Dec(C v D).

(III) Translation of the relevant properties of >.

1) Transitivity and irreflexivity of > is expressed by the clauses

[X > X]→ and [X > Y] ∧ [Y > Z]→ [X > Z]

for all X, Y, Z ∈ Nv.

2) The connection between > and v is expressed using the clause

[X v ∃r.Y]i → [X > Y]

for every X, Y ∈ Nv, ∃r.Y ∈ Attr, and i ∈ {0, . . . , |T |}.

It is easy to see that the set C(Γ,O) can be constructed in polynomial time in
the size of Γ and O. In particular, subsumptions B vO D between ground atoms
B,D can be checked in polynomial time in the size of O [4].

28

There are several differences between C(Γ,O) and the clauses constructed in [6]
to solve unification in EL w.r.t. the empty ontology. First, the propositional
variables employed in [6] are of the form [C 6v D] for atoms C,D of Γ, i.e.,
they stand for non-subsumption rather than subsumption. The use of single
atoms C instead of whole right-hand sides L also leads to a different encoding
of the subsumptions from Γ in part (I). The clauses in (III) are identical up to
negation of the variable [X v ∃r.Y]i. But most importantly, in [6] the properties
of subsumption expressed in (II) need only deal with subsumption w.r.t. the
empty ontology (see Lemma 2), whereas here we have to take a cycle-restricted
ELHR+-ontology into account. We do this by expressing the characterization of
subsumption given in Lemma 11. This is also the reason why the propositional
variables [L v D]i have an additional index i: in Lemma 11 we refer to the
number of root steps in the derivation that shows the subsumption, and this
needs to be modeled in our SAT reduction.

We now show that Γ is solvable w.r.t. O iff C(Γ,O) is satisfiable. The proof is
divided into two parts that correspond to the following two subsections.

5.3 Soundness of the Reduction

Let τ be a valuation of the propositional variables that satisfies C(Γ,O). We
must show that then Γ has a unifier w.r.t. O. To this purpose, we use τ to define
an assignment S by

SX := {D ∈ Atnv | ∃i ∈ {0, . . . , |T |} : τ([X v D]i) = 1}.

We first show the following connection between the variables [X > Y] and the
depends on relation induced by TS. This is similar to Lemma 3.5 of [6].

Lemma 25. Let X, Y ∈ Nv.

1. If X depends on Y w.r.t. TS, then τ([X > Y]) = 1.

2. The depends on relation is irreflexive, i.e., X cannot depend on itself.

Proof.

1. If X directly depends on the variable Y , then Y appears in a non-variable
atom of SX . This atom must be of the form ∃r.Y . By the construction of SX ,
∃r.Y ∈ SX can only be the case if τ([X v ∃r.Y]i) = 1 for some i ∈ {0, . . . , |T |}.
Since τ satisfies the clause [X v ∃r.Y]i → [X > Y] in (III)2), this implies
τ([X > Y]) = 1.

Since the transitivity clauses introduced in (III)1) are satisfied by τ , we also
have that τ([X > Y]) = 1 whenever X depends on the variable Y .

29

2. If X depends on itself, then τ([X > X]) = 1 by the first part of this lemma.
This is, however, impossible since τ satisfies the clause [X > X]→.

The second part of this lemma shows that TS is acyclic. In the following, we
denote by >S be the depends on relation on Nv induced by TS and by σ be the
induced substitution. We will show that σ is a unifier of Γ w.r.t. O.

As described in Lemma 23, the substitution σ induces a strict partial order >σ on
the variables in Nv. We now extend this order to the set At by setting C >σ D iff
σ(C) vO ∃w.σ(D) for some w ∈ N+

R . This relation is still transitive and irreflexive
for the same reasons as before. Since At is finite, >σ is also well-founded.

For D ∈ Attr, we define

Var(D) :=

D if D ∈ Nv

Y if D = ∃r.Y for Y ∈ Nv and r ∈ NR

⊥ if D is ground

.

We extend >σ to the set At∪ {⊥} by defining ⊥ as the smallest element, i.e., we
have C >σ ⊥ for all C ∈ At.

Lemma 26. If τ([C v D]i) = 1 for C ∈ At, D ∈ Attr, and i ∈ {0, . . . , |T |}, then
σ(C) vO σ(D).

Proof. We prove the claim by induction on the lexicographic order on the tuples
(C,Var(D), i), where the first two components are compared using >σ and the
third uses the usual order > on natural numbers. The lexicographic product
of these three well-founded orders is also well-founded and can thus be used for
well-founded induction [9].

We make a case distinction depending on the form of D and consider first the case
thatD is a variable. Let σ(B) be any top-level atom of σ(D), i.e., τ([D v B]j) = 1
for some j ∈ {0, . . . , |T |}. By the formulae in (II)2), we have τ([C v B]k) = 1 for
k = min{|T |, i+j}. We also know that C = C and Var(D) = D >σ Var(B) since
σ(D) vO σ(B) and B ∈ Atnv by construction of σ. Thus, we can use induction
to infer that σ(C) vO σ(B) holds, which implies that σ(C) vO σ(D).

If D is a ground atom, then we distinguish cases for C:

• If C is a variable, then σ(C) v σ(D) holds by the construction of σ.

• If C is also ground, then C vO D must hold, since otherwise τ would violate
the clause [C v D]i → in (II)1).

• If C is neither ground nor a variable, then it cannot be equal to D, and thus
according to the formulae in (II)3)a), we have one of the following cases:

30

– If Dec(C v D) is evaluated to 1 under τ , then C = ∃r.C ′, D = ∃s.D′,
r v s, and either τ([C ′ v D′]|T |) = 1 or τ([C ′ v ∃t.D′]|T |) = 1 for a
transitive role name t with r EO t EO s. We also know that C >σ C

′

since σ(C) = ∃r.σ(C ′). By induction, we now have σ(C ′) vO D′ or
σ(C ′) vO ∃t.D′, and thus σ(C) vs

O D. Lemma 10 yields σ(C) vO D.

– If there is a GCI A1 u · · · u Ak v B in T such that we have B vO D
and τ([C v A1]

i−1) = · · · = τ([C v Ak]
i−1) = 1, then C = C,

Var(D) = Var(A1) = · · · = Var(Ak) = ⊥, and i > i− 1. By induction,
we have σ(C) vO A1, . . . , σ(C) vO Ak, and thus σ(C) vO A1 u · · · u
Ak vO B vO D.

If D is neither ground nor a variable, we again consider C:

• If C is a variable, we again have σ(C) v σ(D) by the construction of σ.

• If C is not a variable, then one of the following cases must hold since τ
satisfies the formulae in (II)3)b):

– If C = D, then obviously C vO D holds.

– If C = ∃r.C ′, D = ∃s.D′, r EO s, and either τ([C ′ v D′]|T |) = 1 or
τ([C ′ v ∃t.S ′]|T |) = 1 for a transitive role name t with r EO t EO s,
then C >σ C

′ since σ(C) = ∃r.σ(C ′). Induction yields σ(C) vs
O σ(D),

and thus σ(C) vO σ(D).

– If there is an atom A in T such that τ([C v A]i) and Dec(A v D)
are both true, then C = C and Var(D) >σ ⊥ = Var(A), and thus
σ(C) vO A by induction. Furthermore, we have A = ∃r.A′, D =
∃s.D′, r EO s, and either τ([A′ v D′]|T |) = 1 or τ([A′ v ∃t.D′]|T |) = 1
for a transitive role name t with rEO tEO s. Since σ(C) vO A = ∃r.A′,
we have C > A′, and thus we can apply induction to infer A vs

O σ(D),
and thus σ(C) vO A vO σ(D).

The next lemmata show that the same holds if the left-hand side of the subsump-
tion is a conjunction L ∈ Left \ At. We first prove an auxiliary result.

Lemma 27. If Dec(C v D) is evaluated to 1 under τ for C ∈ At, D ∈ Attr, then
σ(C) vO σ(D).

Proof. We consider the cases in the definition of Dec(C v D).

• If C = D, then obviously σ(C) vO σ(D).

• If C and D are ground and τ([C v D]|T |) = 1, then C vO D must hold
since otherwise τ would violate the clause [C v D]|T | → in (II)1).

31

• If C = ∃r.C ′, D = ∃s.D′, r EO s and either τ([C ′ v D′]|T |) = 1 or τ([C ′ v
∃t.D′]|T |) = 1 for a transitive role name t with rEO tEO s, then Lemma 26
yields σ(C ′) vO σ(D′) or σ(C ′) vO σ(∃t.D′), respectively. Thus, we have
σ(C) vs

O σ(D), which implies σ(C) vO σ(D).

• If C is a variable and τ([C v D]|T |) = 1, then by Lemma 26, we have
σ(C) vO σ(D).

Lemma 28. If τ([L v D]i) = 1 for L ∈ Left \At, D ∈ Attr, and i ∈ {0, . . . , |T |},
then σ(L) vO σ(D).

Proof. We use well-founded induction on the lexicographic order on the pairs
(Var(D), i), where the components are compared as in Lemma 26.

If D is a variable and σ(B) is a top-level atom of σ(D), then by construction of
σ we have τ([D v B]j) = 1 for some j ∈ {0, . . . , |T |}. By the formulae in (II)2),
this implies τ([L v B]min{|T |,i+j}) = 1. Since Var(D) >σ Var(B), by induction we
know that σ(L) vO σ(B). Since this holds for all top-level atoms σ(B) of σ(D),
we have σ(L) vO σ(D).

If D is a ground atom, then we know that τ satisfies the corresponding formulae
in (II)3)a). If Dec(C v D) is true for some C ∈ L, then σ(L) v σ(C) vO σ(D)
by Lemma 27. Otherwise, there must be a GCI A1 u · · · u Ak v B in T with
B vO D and τ([L v A1]

i−1) = · · · = τ([L v Ak]
i−1) = 1. In this case, we

have Var(D) = Var(A1) = · · · = Var(Ak) = ⊥ and i > i − 1, which implies that
σ(L) vO A1 u · · · u Ak vO B vO D by induction.

If D is neither ground nor a variable, then we consider the corresponding formulae
in (II)3)b). If Dec(C v D) is true for C ∈ L, then we again have σ(L) vO σ(D)
by Lemma 27. In the case that τ([L v A]i) = 1 for some atom A of T and
Dec(A v D) is true, then Var(D) >σ ⊥ = Var(A), and thus σ(L) vO A vO σ(D)
by induction and Lemma 27.

Finally, since τ must satisfy the clauses in (I), by Lemmata 26 and 28 we know
that σ solves Γ w.r.t. O.

5.4 Completeness of the Reduction

Given a ground unifier γ of Γ w.r.t. O, we can define a valuation τ that satisfies
C(Γ,O) as follows.

Let L ∈ Left and D ∈ Attr and i ∈ {0, . . . , |T |}. We set τ([L v D]i) := 1 iff

s(γ(L))
(i)←−O s(γ(D)). According to Corollary 8, we thus have τ([L v D]i) = 0

for all i ∈ {0, . . . , |T |} iff γ(L) 6vO γ(D). Otherwise, there is an i ∈ {0, . . . , |T |}
such that τ([L v D]j) = 1 for all j ≥ i, and τ([L v D]j) = 0 for all j < i.

32

To define the valuation of the remaining propositional variables [X > Y] with
X, Y ∈ Nv, we set τ([X > Y]) = 1 iff X >γ Y , where >γ is defined as before,
i.e., X >γ Y iff γ(X) vO ∃w.γ(Y) for some w ∈ N+

R .

Lemma 29. Let C ∈ At, D ∈ Atnv, and E be a top-level atom of γ(C) with
E vs

O γ(D). Then Dec(C v D) is evaluated to 1 under τ .

Proof. Consider the following cases:

• If C = D, then Dec(C v D) = >.

• If both C and D are ground, then Dec(C v D) = [C v D]|T | and γ(C) =

C = E vO D = γ(D). By Corollary 8, this implies γ(C)
(|T |)←−−O γ(D), i.e.,

τ([C v D]|T |) = 1.

• If C is a concept name, then we again have γ(C) vO E vO γ(D), and thus
τ([C v D]|T |) = 1.

• If C = ∃r.C ′, then γ(C) is an atom, and thus E = γ(C), D = ∃s.D′,
r EO s, and either γ(C ′) vO γ(D′) or γ(C ′) vO γ(∃t.D′) for a transitive
role name t with r EO t EO s. We obtain either τ([C ′ v D′]|T |) = 1 or
τ([C ′ v ∃t.D′]|T |) = 1, i.e., Trans(C v D) is evaluated to 1 under τ .

Lemma 30. The valuation τ satisfies C(Γ,O).

Proof. We consider the formulae introduced in Definition 24.

(I) Since γ is a unifier of Γ w.r.t. O, for every L v? D in Γ we have γ(L) vO
γ(D). By Corollary 8, this implies γ(L)

(|T |)←−−O γ(D), and thus τ([L v
D]|T |) = 1.

(II) 1) If C vO D does not hold for two ground atoms C ∈ At, D ∈ Attr,
then γ(C) vO γ(D) does not hold, and thus τ([C v D]i) = 0 for all
i ∈ {0, . . . , |T |}.

2) If Y ∈ Nv, B ∈ Atnv, L ∈ Left, and i, j ∈ {0, . . . , |T |} are such that

τ([L v Y]i) = τ([Y v B]j) = 1, then γ(L)
(i)←−O γ(Y)

(j)←−O γ(B), and

thus γ(L)
(i+j)←−−−O γ(B). By Lemma 7, there must be a derivation of

γ(L) from γ(B) that uses at most min{|T |, i + j} root steps, and thus
τ([L v B]min{|T |,i+j}) = 1.

3) Let L ∈ Left\Nv, D ∈ Attr, and i ∈ {0, . . . , |T |} satisfy τ([L v D]i) = 1,

i.e., γ(L)
(i)←−O γ(D).

a) If D is a ground atom and L is not a ground atom, then by Lemma 11
we have one of the following cases:

33

• If there is C ∈ L such that E vs
O D for some top-level atom E

of γ(C), then by Lemma 29 Dec(C v D) is evaluated to 1.

• Otherwise, there must be a GCI A1 u · · · u Ak v B in T with

γ(L)
(i−1)←−−−O A1, . . . , γ(L)

(i−1)←−−−O Ak, and B vs
O D. Note that

this is only possible with i > 0. We then have τ([L v A1]
i−1) =

· · · = τ([L v Ak]
i−1) = 1 and B vO D.

b) If D is a non-variable, non-ground atom, then by Lemma 11 we have
one of the following cases:

• If there is C ∈ L such that E vs
O γ(D) for some top-level atom

E of γ(C), then by Lemma 29 Dec(C v D) is evaluated to 1.

• If there is a GCI A1 u · · · u Ak v B ∈ T with γ(L)
(i)←−O B and

B vs
O γ(D), then τ([L v B]i) = 1 and Dec(B v D) is evaluated

to 1.

(III) 1) Assume that τ([X > X]) = 1 for some variable X ∈ Nv. By the
definition of >γ, this implies that γ(X) vO ∃w.γ(X) for some w ∈ N+

R .
This contradicts the assumption that O is cycle-restricted.

Moreover, if τ([X > Y]) = τ([Y > Z]) = 1, then γ(X) vO ∃ww′.γ(Z)
with w,w′ ∈ N+

R , and thus τ([X > Z]) = 1.

2) If τ([X v ∃r.Y]i) = 1, then γ(X)
(i)←−O ∃r.γ(Y), which implies γ(X) vO

∃r.γ(Y). By the definition of >γ, we thus have τ([X > Y]) = 1.

This completes the proof of correctness of the presented reduction.

Theorem 31. Unification w.r.t. cycle-restricted ELHR+-ontologies is an NP-
complete problem.

Proof. NP-hardness follows from NP-hardness of unification in EL w.r.t. the
empty ontology [5]. The other direction is provided by the presented reduction
to the NP-complete SAT problem.

This also shows locality of unification w.r.t. cycle-restricted ELHR+-ontologies,
i.e., in this setting a unification problem has a unifier iff it has a local unifier.

Lemma 32. If a flat unification problem Γ has a unifier w.r.t. a flat, cycle-
restricted ELHR+-ontology O, then it has a local unifier w.r.t. O.

Proof. If Γ has a unifier w.r.t. O, then C(Γ,O) is satisfiable by Lemma 30. Thus,
Section 5.3 shows that there is a local unifier of Γ w.r.t. O.

34

6 Conclusions

We have shown that unification w.r.t. cycle-restricted ELHR+-ontologies can be
reduced to propositional satisfiability. This improves on the results in [2] in two
respects. First, it allows us to deal also with ontologies that contain transitivity
and role hierarchy axioms, which are important for medical ontologies. Second,
the SAT reduction can easily be implemented and enables us to make use of highly
optimized SAT solvers, whereas the goal-oriented algorithm in [1], while having
the potential of becoming quite efficient, requires a high amount of additional
optimization work. The main topic for future research is to investigate whether
we can get rid of cycle-restrictedness.

References

[1] Franz Baader, Stefan Borgwardt, and Barbara Morawska. Unification
in the description logic EL w.r.t. cycle-restricted TBoxes. LTCS-Report
11-05, Chair for Automata Theory, Institute for Theoretical Computer
Science, Technische Universität Dresden, Dresden, Germany, 2011. See
http://lat.inf.tu-dresden.de/research/reports.html.

[2] Franz Baader, Stefan Borgwardt, and Barbara Morawska. Extending uni-
fication in EL towards general TBoxes. In Proc. of the 13th Int. Conf.
on Principles of Knowledge Representation and Reasoning (KR’12). AAAI
Press, 2012. Short paper.

[3] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL enve-
lope. In Leslie Pack Kaelbling and Alessandro Saffiotti, editors, Proc. of the
19th Int. Joint Conf. on Artificial Intelligence (IJCAI’05), pages 364–369.
Professional Book Center, 2005.

[4] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL enve-
lope. LTCS-Report 05-01, Chair for Automata Theory, Institute for Theoret-
ical Computer Science, Technische Universität Dresden, Dresden, Germany,
2005. See http://lat.inf.tu-dresden.de/research/reports.html.

[5] Franz Baader and Barbara Morawska. Unification in the description logic EL.
In Ralf Treinen, editor, Proc. of the 20th Int. Conf. on Rewriting Techniques
and Applications (RTA’09), volume 5595 of Lecture Notes in Computer Sci-
ence, pages 350–364. Springer-Verlag, 2009.

[6] Franz Baader and Barbara Morawska. SAT encoding of unification in EL.
In Christian G. Fermüller and Andrei Voronkov, editors, Proc. of the 17th
Int. Conf. on Logic for Programming and Automated Reasoning (LPAR’10),

35

volume 6397 of Lecture Notes in Computer Science, pages 97–111. Springer-
Verlag, 2010.

[7] Franz Baader and Barbara Morawska. Unification in the description logic
EL. Logical Methods in Computer Science, 6(3), 2010. Special Issue: 20th
Int. Conf. on Rewriting Techniques and Applications (RTA’09).

[8] Franz Baader and Paliath Narendran. Unification of concept terms in de-
scription logics. Journal of Symbolic Computation, 31(3):277–305, 2001.

[9] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, United Kingdom, 1998.

[10] Franz Baader and Wayne Snyder. Unification theory. In John Alan Robinson
and Andrei Voronkov, editors, Handbook of Automated Reasoning, pages
445–532. The MIT Press, 2001.

[11] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors.
Handbook of Satisfiability. IOS Press, 2009.

[12] Sebastian Brandt. Polynomial time reasoning in a description logic with
existential restrictions, GCI axioms, and - what else? In Ramon López
de Mántaras and Lorenza Saitta, editors, Proc. of the 16th Eur. Conf. on
Artificial Intelligence (ECAI’04), pages 298–302. IOS Press, 2004.

[13] James R. Campbell, Alejandro Lopez Osornio, Fernan de Quiros, Daniel
Luna, and Guillermo Reynoso. Semantic interoperability and SNOMED CT:
A case study in clinical problem lists. In K.A. Kuhn, J.R. Warren, and T.-
Y. Leong, editors, Proc. of the 12th World Congress on Health (Medical)
Informatics (MEDINFO 2007), pages 2401–2402. IOS Press, 2007.

[14] Anatoli Degtyarev, Yuri Gurevich, Paliath Narendran, Margus Veanes, and
Andrei Voronkov. Decidability and complexity of simultaneous rigid E-
unification with one variable and related results. Theoretical Computer Sci-
ence, 243(1-2):167–184, 2000.

[15] Anatoli Degtyarev and Andrei Voronkov. The undecidability of simultaneous
rigid E-unification. Theoretical Computer Science, 166(1–2):291–300, 1996.

[16] Jean Gallier, Paliath Narendran, David Plaisted, and Wayne Snyder. Rigid
E-unification: NP-completeness and applications to equational matings. In-
formation and Computation, 87(1/2):129–195, 1990.

[17] Jean Goubault. Rigid ~E-unifiability is DEXPTIME-complete. In Proc. of
the 9th Annual IEEE Symp. on Logic in Computer Science (LICS’94), pages
498–506. IEEE Computer Society Press, 1994.

36

[18] Yuri Gurevich and Andrei Voronkov. Monadic simultaneous rigid E-
unification. Theoretical Computer Science, 222(1-2):133–152, 1999.

[19] Carsten Lutz and Frank Wolter. Deciding inseparability and conservative
extensions in the description logic EL. Journal of Symbolic Computation,
45(2):194–228, 2010.

[20] Julian Seidenberg and Alan L. Rector. Representing transitive propagation
in OWL. In David W. Embley, Antoni Olivé, and Sudha Ram, editors,
Proc. of the 25th Int. Conf. on Conceptual Modeling (ER’06), volume 4215
of Lecture Notes in Computer Science, pages 255–266. Springer-Verlag, 2006.

[21] Viorica Sofronie-Stokkermans. Locality and subsumption testing in EL and
some of its extensions. In Carlos Areces and Robert Goldblatt, editors, Proc.
of the 7th Conf. on Advances in Modal Logic (AIML’08), pages 315–339.
College Publications, 2008.

[22] Boontawee Suntisrivaraporn, Franz Baader, Stefan Schulz, and Kent Spack-
man. Replacing SEP-triplets in SNOMED CT using tractable descrip-
tion logic operators. In Riccardo Bellazzi, Ameen Abu-Hanna, and Jim
Hunter, editors, Proc. of the 11th Conf. on Artificial Intelligence in Medicine
(AIME’07), volume 4594 of Lecture Notes in Computer Science, pages 287–
291. Springer-Verlag, 2007.

[23] Margus Veanes. On Simultaneous Rigid E-Unification. PhD thesis, Uppsala
University, 1997.

37

