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Abstract

Unification in Description Logics (DLs) has been proposed as an in-
ference service that can, for example, be used to detect redundancies in
ontologies. The inexpressive Description Logic EL is of particular interest
in this context since, on the one hand, several large biomedical ontologies
are defined using EL. On the other hand, unification in EL has recently
been shown to be NP-complete, and thus of significantly lower complexity
than unification in other DLs of similarly restricted expressive power. How-
ever, the unification algorithms for EL developed so far cannot deal with
general concept inclusion axioms (GCIs). This paper makes a considerable
step towards addressing this problem, but the GCIs our new unification
algorithm can deal with still need to satisfy a certain cycle restriction.

1 Introduction

The DL EL, which offers the constructors conjunction (u), existential restriction
(∃r.C), and the top concept (>), has recently drawn considerable attention since,
on the one hand, important inference problems such as the subsumption problem
are polynomial in EL, even in the presence of GCIs [11, 4]. On the other hand,
though quite inexpressive, EL can be used to define biomedical ontologies, such
as the large medical ontology SNOMEDCT.1

Unification in DLs has been proposed in [8] as a novel inference service that can,
for instance, be used to detect redundancies in ontologies. For example, assume
that one developer of a medical ontology defines the concept of a patient with
severe head injury as

∃finding.(Head_injury u ∃severity.Severe), (1)

whereas another one represents it as

∃finding.(Severe_injury u ∃finding_site.Head). (2)

These two concept descriptions are not equivalent, but they are nevertheless
meant to represent the same concept. They can obviously be made equivalent
by treating the concept names Head_injury and Severe_injury as variables, and
substituting the first one by Injury u ∃finding_site.Head and the second one by
Injury u ∃severity.Severe. In this case, we say that the descriptions are unifiable,
and call the substitution that makes them equivalent a unifier. Intuitively, such
a unifier proposes definitions for the concept names that are used as variables: in
our example, we know that, if we define Head_injury as Injuryu∃finding_site.Head
and Severe_injury as Injury u ∃severity.Severe, then the two concept descriptions

1see http://www.ihtsdo.org/snomed-ct/
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(1) and (2) are equivalent w.r.t. these definitions. Here equivalence holds without
any additional definitions or GCIs.

To motivate our interest in unification w.r.t. GCIs, assume that the second de-
veloper uses the description

∃status.Emergency u ∃finding.(Severe_injury u ∃finding_site.Head) (3)

instead of (2). The descriptions (1) and (3) are not unifiable without additional
GCIs, but they are unifiable, with the same unifier as above, if the GCI

∃finding.∃severity.Severe v ∃status.Emergency

is present in a background ontology.

All previous results on unification in DLs did not consider background GCIs. In
[8] it was shown that, for the DL FL0, which differs from EL by offering value
restrictions (∀r.C) in place of existential restrictions, deciding unifiability is an
ExpTime-complete problem. In [5], we were able to show that unification in EL
is of considerably lower complexity: the decision problem is “only” NP-complete.
The original unification algorithm for EL introduced in [5] was a brutal “guess
and then test” NP-algorithm, but we have since then also developed more prac-
tical algorithms. On the one hand, in [7] we describe a goal-oriented unification
algorithm for EL, in which nondeterministic decisions are only made if they are
triggered by “unsolved parts” of the unification problem. On the other hand,
in [6], we present an algorithm that is based on a reduction to satisfiability in
propositional logic (SAT). In [7] it was also shown that the approaches for unifi-
cation of EL-concept descriptions (without any background ontology) can easily
be extended to the case of an acyclic TBox as background ontology without re-
ally changing the algorithms or increasing their complexity. Basically, by viewing
defined concepts as variables, an acyclic TBox can be turned into a unification
problem that has as its unique unifier the substitution that replaces the defined
concepts by unfolded versions of their definitions.

For GCIs, this simple trick is not possible, and thus handling them requires the
development of new algorithms. In this report, we describe two such new algo-
rithms: one that extends the brute-force “guess and then test” NP-algorithm from
[5] and a more practical one that extends the goal-oriented algorithm from [7].
Both algorithms are based on a new characterization of subsumption w.r.t. GCIs
in EL. Unfortunately, these algorithms are complete only for general TBoxes (i.e.,
finite sets of GCIs) that satisfy a certain restriction on cycles, which, however,
does not prevent all cycles. For example, the cyclic GCI ∃child.Human v Human
satisfies this restriction, whereas the cyclic GCI Human v ∃parent.Human does
not.
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2 The Description Logic EL

We first define the basic syntax and semantics of the description logic EL and
then proceed to more advanced notions.

Let NC be a set of concept names and NR a set of role names. (EL)-concept
descriptions are built from concept names by the constructors conjunction (C u
D), existential restriction (∃r.C for a role name r), and top (>). We say that a
concept description C is built over a signature Σ ⊆ NC ∪NR if only concept and
role names from Σ occur in it.

An interpretation I = (∆I , ·I) consists of a non-empty domain ∆I and an in-
terpretation function that maps concept names to subsets of ∆I and role names
to binary relations over ∆I . This function is extended to concept descriptions
as follows: (C u D)I := CI ∩ DI , (∃r.C)I := {x ∈ ∆I | ∃y ∈ ∆I : rI(x, y)},
>I := ∆I .

The role depth rd(C) of a concept description C is inductively defined as follows:
rd(A) = rd(>) = 0, rd(C uD) = max{rd(C), rd(D)}, rd(∃r.C) = 1 + rd(C).

2.1 Terminological Axioms

A concept definition is of the form A ≡ C for a concept name A and a concept
description C. An interpretation I satisfies this concept definition if AI = CI .
A general concept inclusion (GCI) is of the form C v D for concept descriptions
C and D and is satisfied by I if CI ⊆ DI . An axiom is a concept definition or a
general concept inclusion and a TBox is a finite set of axioms.

A cyclic TBox contains only concept definitions and may contain at most one
concept definition for each concept name. An acyclic TBox is a cyclic TBox
without cyclic dependencies between concept names.2 A general TBox contains
only GCIs. An interpretation is a model of a TBox if it satisfies all its axioms.

A concept description C is subsumed by a concept description D w.r.t. a TBox
T (C vT D) if every model of T satisfies the GCI C v D. We say that C is
equivalent to D w.r.t. T (C ≡T D) if C vT D and D vT C. For the empty
TBox, we write C v D and C ≡ D instead of C v∅ D and C ≡∅ D.

Since conjunction is interpreted as intersection, the concept descriptions (C u
D)uE and C u (D uE) are equivalent. Thus, we dispense with parentheses and
write nested conjunctions in flat form C1u· · ·uCn. Nested existential restrictions
∃r1.∃r2. . . . ∃rn.C will sometimes also be written as ∃r1r2 . . . rn.C, where r1r2 . . . rn
is viewed as a word over the alphabet of role names, i.e., an element of N∗R.

An atom is a concept name or an existential restriction. Thus, every concept de-
2A depends on B if B occurs in the definition of A.
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scription C is a conjunction of atoms or >. We call the atoms in this conjunction
the top-level atoms of C. An atom is called flat if it is a concept name or an
existential restriction of the form ∃r.A for a concept name A.

Given a concept description C and an acyclic TBox T , the description C can be
expanded w.r.t. T by replacing defined concepts by their definitions until no more
defined concepts occur. This yields a concept description CT that is equivalent
to C w.r.t. T and does not contain defined concepts. Expansion can be used
to reduce subsumption w.r.t. an acyclic TBox to subsumption w.r.t. the empty
TBox, but the expanded description can be exponential in the size of C and T .

2.2 Inseparability

The following definition is useful to compare the expressiveness of different classes
of TBoxes, i.e., whether certain kind of TBox can express all restrictions on
interpretations expressible in another class.

Definition 1. Let Σ ⊆ NC ∪ NR be a signature. Two TBoxes T1, T2 are Σ-
inseparable if for all concept descriptions C, D built over the signature Σ we have
C vT1 D iff C vT2 D.

For a TBox T , let sig(T ) ⊆ NC ∪ NR denote the set of concept and role names
occurring in T .

A class T2 of TBoxes is at least as expressive as another class T1 of TBoxes if
for every T1 ∈ T1 there is a T2 ∈ T2 such that T1 and T2 are sig(T1)-inseparable.
T1 and T2 are equally expressive if T1 is at least as expressive as T2 and T2 is at
least as expressive as T1.

Intuitively, two TBoxes are inseparable if they give the same answers to ques-
tions of the form “Does C vT D hold?”. In this case, a user can use them
interchangeably when reasoning about a domain. This notion was introduced in
[21] to detect whether changes to a TBox change its behavior w.r.t. subsumption
reasoning. Such changes include, e.g., importing of other TBoxes or adding new
axioms. Inseparability generalizes the notion of conservative extensions, where
one TBox is included in the other [1].

The expressiveness of two classes of TBoxes can be compared using the notion
of inseparability. A class T2 is at least as expressive as T1 if every TBox in T1
can be replaced by a TBox of T2 without changing any consequences. In the
process, the introduction of auxiliary concept names is allowed, i.e., we consider
inseparability only w.r.t. the original signature.

We now consider the classes of TBoxes introduced earlier. Every acyclic TBox
is obviously a cyclic one, and for every cyclic TBox we obtain an inseparable
general TBox by rewriting every concept definition A ≡ C into the GCIs A v C
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and C v A. However, these relations do not hold in the other direction, as we
will demonstrate in Section 4.

2.3 Flat General TBoxes

To simplify a given general TBox, we will often transform it into a normal form:
A general TBox T is called flat if it contains only axioms of the form AuB v C,
where A,B are flat atoms or > and C is a flat atom.

To flatten T , we employ the procedure described in [12]. This procedure uses
rules to transform all axioms of T into one of the forms A v B, A1 u A2 v B,
A v ∃r.B, or ∃r.A v B, where A,A1, A2, B are concept names or >. All of these
axioms are of the desired form.3

The transformation rules employed by this procedure are the following:

• Ĉ uD ρ E −→ {A ≡ Ĉ, A uD ρ E}

• C ρ D u Ê −→ {C ρ D u A,A ≡ Ê}

• ∃r.Ĉ ρ D −→ {A ≡ Ĉ, ∃r.A ρ D}

• C ρ ∃r.D̂ −→ {C ρ ∃r.A,A ≡ D̂}

In these rules, C, D, E stand for arbitrary concept descriptions, Ĉ, D̂, Ê are
concept descriptions that are not concept names, r ∈ NR, and ρ ∈ {v,≡}. The
concept name A is always a new concept name not occurring in T . Applying a
rule G −→ S to a TBox T changes it to (T \ {G}) ∪ S.

After exhaustively applying these four rules, the TBox consists of flat GCIs of
the required form and additional flat concept definitions. The fact that for each
definition a new concept name is used ensures that these definitions form an
acyclic TBox. In particular, for each newly introduced concept name A we can
find a unique concept description CA occurring in the original TBox such that
A ≡ CA holds in the new TBox. It remains to transform these definitions into
GCIs: A definition A ≡ A1uA2 is replaced by A v A1, A v A2, and A1uA2 v A,
while any definition of the form A ≡ ∃r.A′ is replaced by A v ∃r.A′ and ∃r.A′ v
A.

The resulting TBox T ′ proves the same subsumptions between concepts built
over sig(T ) as T , i.e., it is sig(T )-inseparable from T .

3Axioms with > on the right-hand side are true in all interpretations and can therefore
simply be removed. We can further replace > inside existential restrictions by a new concept
name A> and introduce the GCI > v A>.
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3 Subsumption with General TBoxes

Subsumption w.r.t. a general TBox can be decided in polynomial time [11]. For
the purposes of deciding unification, however, we do not simply want a deci-
sion procedure for subsumption, but are more interested in a characterization of
subsumption that helps us to find unifiers. The following characterization of sub-
sumption w.r.t. the empty TBox has proven useful for EL-unification algorithms
before.

Lemma 2 ([7]). Let A1, . . . , Ak, B1, . . . , Bl be concept names and C = A1 u . . .u
Ak u ∃r1.C1 u . . . u ∃rm.Cm and D = B1 u . . . u Bl u ∃s1.D1 u . . . u ∃sn.Dn

concept descriptions. Then C v D iff {B1, . . . , Bl} ⊆ {A1, . . . , Ak} and for every
j ∈ {1, . . . , n} there exists an i ∈ {1, . . . ,m} such that ri = sj and Ci v Dj.

Thus, an atom C is subsumed by an atom D (w.r.t. ∅) iff C = D is a concept
name or C = ∃r.C ′ and D = ∃r.D′ for a role name r and C ′ v D′.

Lemma 3. Let C and D be two concept descriptions. Then C v D iff every
top-level atom of D subsumes a top-level atom of C.

The aim of this section is to provide a characterization of subsumption similar to
that of Lemma 2 in the presence of general TBoxes. In the following, let T be a
general TBox. First, we introduce the notion of structural subsumption between
atoms.

Definition 4. Let C,D be atoms. C is structurally subsumed by D w.r.t. T
(C vs

T D) iff either

• C = D is a concept name or

• C = ∃r.C ′, D = ∃r.D′, and C ′ vT D′.

Structural subsumption of C by D is a stronger property than C vT D since it
additionally requires that C and D have a compatible top-level structure. On
the other hand, it is weaker than subsumption v w.r.t. ∅, i.e., whenever C v D
holds for two atoms C and D, then C vs

T D, but not vice versa. Furthermore,
it is only defined on atoms. As shown by Lemma 2, if T = ∅, then the three
relations v, vT , vs

T coincide. Like v and vT , vs
T is reflexive, transitive, and

closed under existential restrictions.

Proposition 5. Let C,D,E be atoms and r a role name.

1. If C v D, then C vs
T D.

2. If C vs
T D, then C vT D.
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3. C vs
T C.

4. If C vs
T D and D vs

T E, then C vs
T E.

5. If C vT D, then ∃r.C vs
T ∃r.D.

Our aim is to prove the following lemma that characterizes subsumption in the
presence of GCIs.

Lemma 6. Let T be a general TBox and C1, . . . , Cn, D1, . . . , Dm atoms. Then
C1 u · · · u Cn vT D1 u · · · uDm iff for every j ∈ {1, . . . ,m}

1. there is an index i ∈ {1, . . . , n} such that Ci vs
T Dj, or

2. there are atoms A1, . . . , Ak, B of T (k ≥ 0) such that

a) A1 u · · · u Ak vT B,
b) for every η ∈ {1, . . . , k} there is i ∈ {1, . . . , n} with Ci vs

T Aη, and
c) B vs

T Dj.

If T = ∅, this lemma reduces to Lemma 2 since the second condition can never
be satisfied.

Note that this lemma does not immediately give rise to an algorithm for checking
subsumption in EL w.r.t. T since it depends on being able to check subsumptions
between conjunctions of atoms of T in the first place. Since a naive algorithm
would have to guess these atoms anyway, such a procedure would not come close
to the efficiency of the established subsumption check algorithms [3, 11]. The
aim of this characterization is not to provide a fast way to check subsumption,
but to help in the design and proof of correctness of the unification algorithm in
Section 7.

The following section will provide the proof of Lemma 6.

3.1 Proving Subsumptions by Inference Rules

We will first characterize subsumption w.r.t. T using a Gentzen-style proof cal-
culus. In [19] a similar calculus was presented and used for a decision procedure
for subsumption in EL with general TBoxes. As said before, the emphasis of
the following section is not to prove subsumptions, but to provide a structural
characterization of subsumption. Both calculi are sound and complete for sub-
sumption, but are useful in different ways. For now, we assume that T is a flat
general TBox.

Definition 7. We inductively define proof trees using the following rules.

8



(R1) Introduction of GCIs: For every A1 u A2 v B in T ,

A1 u A2 `T B

(R2) Introduction of >: For every EL-concept description C,

C `T >

(R3) Reflexive closure: For every EL-concept description C,

C `T C

(R4) Idempotency: For all EL-concept descriptions C,D,

C u C `T D
C `T D

(R5) Unit on the right: For all EL-concept descriptions C,D,

C `T D u >
C `T D

(R6) Unit on the left: For all EL-concept descriptions C,D,

C `T > uD
C `T D

(R7) Closure under conjunction: For all EL-concept descriptions C,D,E, F ,

C `T D E `T F
C u E `T D u F

(R8) Closure under existential restriction: For all EL-concept descriptions C,D
and each r ∈ NR,

C `T D
∃r.C `T ∃r.D

(R9) Transitive closure: For all EL-concept descriptions C,D,E,

C `T D D `T E
C `T E

9



In each rule, the statements above the line are called premises and that below is
called its conclusion. The rules without premises ((R1)–(R3)) are proof trees for
their conclusions. If we are given proof trees T1, . . . ,Tn for each of the premises
of an instance of a rule (Rx)

C1 `T D1 · · · Cn `T Cn
C `T D

then the following is a proof tree for C `T D:

T1 · · · Tn (Rx)
C `T D

If we want to explicitly mark the premises of (Rx), then we will use the trees Ti

as lemmata and write

(T1)
C1 `T D1 · · ·

(Tn)
Cn `T Dn (Rx)

C `T D

In the following, we denote by C `T D the fact that there is a proof tree for
C `T D. The height h(T) of a proof tree T is recursively defined as follows. If
T1, . . . ,Tn are the proof trees immediately above the root, then

h(T) := 1 + max{h(T1), . . . , h(Tn)}.

If the root has no premises, then h(T) := 1.

Using proof trees, we can prove subsumption relationships between EL-concept
descriptions w.r.t. T .

Example 8. The following is a proof tree of height 3 for A1 uA2 `T ∃r.C, given
the two GCIs A1 u A2 v ∃r.B and B v C:

(R1)
A1 u A2 `T ∃r.B

(R1)
B `T C (R8)

∃r.B `T ∃r.C (R9)
A1 u A2 `T ∃r.C

As claimed before, we now show that this proof system is sound and complete for
subsumption in EL w.r.t. T . The proof employs the construction of a canonical
model for T , which is very similar to the proof of correctness of the classification4

algorithm in [4]. The algorithm presented there also uses rules that are special
instances of our proof trees. They are not as general since the classification
algorithm only needs to deal with subsumptions between flat atoms.

4Classification is the task of deciding all subsumptions A vT B between concept names
A, B ∈ sig(T ).
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Lemma 9. Let T be a flat general TBox and C,D be two EL-concept descriptions.
Then C `T D iff C vT D.

Proof. It is easy to verify that the rules (R1)–(R9) are sound, i.e., we have C vT
D whenever there is a proof tree for C `T D.

If C `T D does not hold, we can show that CI * DI holds in the following canon-
ical model I of T . The domain of I is the set C of all EL-concept descriptions built
over NC and NR. For every concept name A, we define AI := {E ∈ C | E `T A}
and for every role name r, we set rI := {(E,F ) ∈ C2 | E `T ∃r.F}. We
show by induction on the structure of concept descriptions that the equality
C ′I = {E ∈ C | E `T C ′} holds for each concept description C ′.

• If C ′ = >, then C ′I = C = {E ∈ C | E `T >} since E `T > holds for all
concept descriptions E by rule (R2).

• If C ′ is a concept name, the claim holds by definition of I.

• Let now C ′ = C1uC2 for two concept descriptions C1 and C2 that satisfy the
claim. We thus have C ′I = CI1 ∩ CI2 = {E ∈ C | E `T C1 and E `T C2}.
If E is a concept description and Ti is a proof tree for E `T Ci (i = 1, 2),
then the following is a proof tree for E `T C1 u C2:

(T1)
E `T C1

(T2)
E `T C2 (R7)

E u E `T C1 u C2 (R4)
E `T C1 u C2

If, on the other hand, we have a proof tree T for E `T C1 u C2, then the
following is a proof tree for E `T C1:

(T)
E `T C1 u C2

(R3)
C1 `T C1

(R2)
C2 `T > (R7)

C1 u C2 `T C1 u > (R5)
C1 u C2 `T C1 (R9)

E `T C1

Similarly, we can construct a proof tree for E `T C2, using (R6) instead of
(R5).
Thus, (C1 u C2)I = {E ∈ C | E `T C1 u C2}.

• The last remaining case is that C ′ is of the form ∃r.C ′′, where C ′′ satisfies
the claim. By the definition of rI , we have C ′I = (∃r.C ′′)I = {E ∈ C |
∃F ∈ C : E `T ∃r.F and F `T C ′′}. If T1 is a proof tree for E `T ∃r.F
and T2 is a proof tree for F `T C ′′, then the following is a proof tree for
E `T ∃r.C ′′:
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(T1)
E `T ∃r.F

(T2)
F `T C ′′ (R8)

∃r.F `T ∃r.C ′′ (R9)
E `T ∃r.C ′′

If, on the other hand, E `T ∃r.C ′′ holds, we have E ∈ (∃r.C ′′)I since
C ′′ `T C ′′ by rule (R3).

To show that I is a model of T , consider a GCI A1 u A2 v B in T , E ∈ C, and
a proof tree T for E `T A1 u A2. Then the following is a proof tree for E `T B:

(T)
E `T A1 u A2

(R1)
A1 u A2 `T B (R9)

E `T B

Thus, (A1 u A2)I ⊆ BI , i.e., I is a model of A1 u A2 v B.

To conclude the proof, we notice that C ∈ CI , since C `T C holds by rule
(R3). On the other hand, we assumed that C `T D does not hold, which implies
C /∈ DI , and thus CI * DI .

We want to emphasize again that this characterization of subsumption does not
immediately yield a decision procedure for subsumption in EL w.r.t. T . The prob-
lem is the transitivity rule (R9), which makes an efficient proof search infeasible.
Contrary to [19], where this rule is unnecessary and the calculus yields a polyno-
mial time decision procedure for subsumption, the aim of our approach does not
lie in devising a new subsumption algorithm, but in proving Lemma 6, which is
crucial for the unification algorithms and the accompanying proofs presented in
Sections 6 and 7.

We can now prove the desired structural characterization of subsumption using
the relation vs

T .

3.2 Proof of Lemma 6

Let T be a general TBox and C1, . . . , Cn, D1, . . . , Dm be atoms. Observe that if
one of the alternatives of the lemma holds for Dj, then clearly Dj subsumes the
conjunction C1 u · · · u Cn w.r.t. T .

For the other direction, assume that C1u· · ·uCn vT D1u· · ·uDm holds. We first
reduce the claim to the case of a flat general TBox. We flatten T , which yields a
flat TBox T ′ that is sig(T )-inseparable from T . We additionally take care that
the concept names introduced by this process did not already occur in the atoms
C1, . . . , Cn, D1, . . . , Dm. In particular, we have that C1u· · ·uCn vT ′ D1u· · ·uDm.
Assuming that the claim holds for flat TBoxes, we thus have one of the following
cases for each atom Dj:
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• There is an index i ∈ {1, . . . , n} such that either Ci = Dj is a concept name
or Ci = ∃r.C ′, Dj = ∃r.D′, and C ′ vT ′ D′ hold. Since C ′ and D′ do not
contain any of the new concept names in T ′, both of these cases also hold
with T instead of T ′.

• There are atoms A1, . . . , Ak, B of T ′ such that A1u· · ·uAk vT ′ B, B vs
T ′ D,

and for every η ∈ {1, . . . , k} there is i ∈ {1, . . . , n} with Ci vs
T ′ Aη. Since

every atom A1, . . . , Ak, B is in a structural subsumption relationship with
an atom that does not contain any of the new concept names, these atoms
are either already concept names of sig(T ) or of the form ∃r.A for some
(old or new) concept name A.
If A is an old concept name, ∃r.A is already an atom of T . Otherwise, by
construction of T ′, there is a concept description CA occurring in T such
that A ≡T ′ CA. Replacing ∃r.A by the equivalent ∃r.CA does not invalidate
any of the subsumption relations that hold for this atom. For example, if
Ci vs

T ′ ∃r.A holds, then Ci vs
T ∃r.CA holds after the replacement.

The above arguments show that we can find atoms A′1, . . . , A′k, B′ of T in
place of A1, . . . , Ak, B for which all the above subsumptions and structural
subsumptions hold w.r.t. T instead of T ′.

It remains to prove Lemma 6 for the case of a flat general TBox T . For every
subsumption C1u · · ·uCn vT D1u · · ·uDm, by Lemma 9, there must be a proof
tree T for C1 u · · · u Cn `T D1 u · · · uDm. We prove by induction on the height
of T that for every atom Dj on the right-hand side one of the alternatives from
Lemma 6 holds. Consider the rule applied at the root of T.

• If (R1) has been applied, then n = 2, m = 1, and C1, C2 are atoms of T
or > and D1 is also an atom of T . D1 cannot be > since T is flat. Let
A1, . . . , Ak be the atoms in {C1, C2}, i.e., we have k ≤ 2. By Lemma 9, the
subsumption A1 u · · · u Ak vT D1 holds and for every η ∈ {1, . . . , k} we
have either C1 vs

T Aη or C2 vs
T Aη by reflexivity of vs

T . Similarly, we have
D1 vs

T D1, and thus the second alternative of Lemma 6 holds for D1.

• If (R2) has been applied, then m = 1 and D1 = > and there is nothing to
show since D1 is not an atom.

• If (R3) has been applied, then n = m and Ci = Di for every i ∈ {1, . . . , n}.
By reflexivity of vs

T , we have Cj vs
T Dj for every j with Dj 6= >, and thus

the first alternative holds for these atoms.

• If (R4) has been applied, then there is a proof tree T′ for C u C `T D
of height smaller than h(T). By induction, for every atom Dj one of the
alternatives of Lemma 6 holds w.r.t. the left-hand side C u C. Since the
top-level atoms of C u C are exactly the top-level atoms of C, the same
holds when considering C on the left-hand side.

13



• If (R5) or (R6) have been applied, then there is a proof tree T′ for C `T
D u> or C `T >uD of height smaller than h(T). By induction, for every
atom Dj one of the alternatives holds.

• If (R7) has been applied, then the two premises are of the form E `T F
and G `T H, where E u G = C1 u · · · u Cn and F u H = D1 u · · · u Dm.
Let j ∈ {1, . . . ,m} and consider the atom Dj 6= >. This atom must be a
top-level atom of F or H; assume w.l.o.g. that it occurs in F . By induction,
one of the alternatives holds for Dj w.r.t. the left-hand side E. Since every
top-level atom of E is of the form Ci for some i ∈ {1, . . . , n}, the same
holds when considering C on the left-hand side.

• If (R8) has been applied, then n = m = 1, C1 = ∃r.C ′ and D1 = ∃r.D′ for
some r ∈ NR, and C ′ `T D′. By Lemma 9, we have C ′ vT D′ and thus,
C1 vs

T D1, i.e., the first alternative holds for D1.

• If (R9) has been applied, then the premises are C1u· · ·uCn `T E1u· · ·uEk
and E1 u · · · uEk `T D1 u · · · uDm, where E1, . . . , Ek are atoms or >. By
induction, we can distinguish several cases for every atom Dj 6= >:

1. There is l ∈ {1, . . . , k} such that El vs
T Dj. By definition of vs

T , this
implies that El 6= >. We again distinguish the following cases for El:
1’. There is i ∈ {1, . . . , k} such that Ci vs

T El. By transitivity of vs
T ,

we have Ci vs
T Dj, i.e., the first alternative holds for Dj.

2’. There are atoms A1, . . . , Aα, B of T with A1 u · · · u Aα vT B,
B vs

T El, and for every η ∈ {1, . . . , α} there is i ∈ {1, . . . , n} such
that Ci vs

T Aη. By transitivity of vs
T , we have B vs

T Dj, and
thus the second alternative holds for Dj.

2. There are atoms F1, . . . , Fµ, G of T such that F1 u · · · u Fµ vT G,
G vs

T Dj, and for every ν ∈ {1, . . . , µ} there is lν ∈ {1, . . . , k} such
that Elν vs

T Fν . We will replace every Fν by a conjunction of atoms
Aν1, . . . , A

ν
αν of T such that Aν1 u · · · u Aναν vT Fν and for every η ∈

{1, . . . , αν} there is i ∈ {1, . . . , n} such that Ci vs
T Aνη. Since this

implies that the subsumption
dµ
ν=1 A

ν
1 u · · · u Aναν vT G holds, the

second alternative holds for Dj.
It remains to show how to replace Fν for each ν ∈ {1, . . . , µ}. Since
Elν vs

T Fν , we know that Elν 6= >. By induction, one of the following
cases must hold for Elν :
1’. There is i ∈ {1, . . . , n} such that Ci vs

T Elν vs
T Fν . In this case,

we do not need to replace Fν , since it already has the desired
property.

2’. There are atoms Aν1, . . . , Aναν , B of T with Aν1 u · · · u Aναν vT B,
B vs

T Elν , and for every η ∈ {1, . . . , αν} there is i ∈ {1, . . . , n}
such that Ci vs

T Aη. This implies Aν1 u · · · uAναν vT Fν and thus,
we can replace Fν by Aν1 u · · · u Aναν .
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4 Cycle-Restricted TBoxes

We now present a restricted form of general TBoxes, in which we do not allow
cyclic subsumptions of a certain form to occur. We will later show that, while
these TBoxes are more expressive than acyclic TBoxes, they cannot express some
cyclic TBoxes.

Definition 10. The general TBox T is called cycle-restricted iff there is no
nonempty word w ∈ N+

R and EL-concept description C such that C vT ∃w.C.

We first show that for flat general TBoxes it suffices to consider cycles involving
concept names and >.

Lemma 11. Let T be a flat general TBox. Then T is cycle-restricted iff there is
no nonempty word w ∈ N+

R such that > vT ∃w.> or A vT ∃w.A for a concept
name A ∈ sig(T ).

Proof. The ‘only if’-direction is trivial. We prove the other direction by induction
on the structure of C, which can be >, a concept name, an existential restriction,
or a conjunction of several atoms and >. If C is > or a concept name, the claim
follows from the assumption.

If C = ∃r.D for a role name r and a concept description D, assume that ∃r.D vT
∃w.∃r.D holds for some w ∈ N+

R . By Lemma 6, we either have w = rw′ and
D vT ∃w′r.D, which immediately contradicts the induction hypothesis, or there
are atoms ∃r.A1, . . . ,∃r.Ak, ∃s.B of T such that for every η ∈ {1, . . . , k} we have
D vT Aη, ∃r.A1 u · · · u ∃r.Ak vT ∃s.B, and w = sw′ and B vT ∃w′r.D. This
implies that B vT ∃w′r.D vT ∃w′.(∃r.A1 u · · · u ∃r.Ak) vT ∃w′s.B holds. Since
T is flat, B is a concept name or >, and thus this subsumption contradicts the
assumption.

If C = C1u· · ·uCn, where C1, . . . , Cn are atoms or >, assume that C1u· · ·uCn vT
∃w.(C1u· · ·uCn) holds for some w ∈ N+

R . By Lemma 6, there are two possibilities:

1. We have Ci vT ∃w.(C1 u · · · u Cn) vT ∃w.Ci for some i ∈ {1, . . . , n}, which
contradicts the induction hypothesis.

2. There are atoms A1, . . . , Ak, ∃s.B of T such that for every η ∈ {1, . . . , k} there
is i ∈ {1, . . . , n} with Ci vs

T Aη, A1 u · · · u Ak vT ∃s.B, and w = sw′ and
B vT ∃w′.(C1 u · · · u Cn). This implies that B vT ∃w′.(A1 u · · · u Ak) vT
∃w′s.B, which again contradicts the assumption.

The condition in Definition 10 can be tested by the following procedure, which is
based on Lemma 6.

Lemma 12. Let T be a general TBox. It can be decided in time polynomial in
the size of T whether T is cycle-restricted or not.
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Proof. We first flatten T as described in Section 2.3. The resulting TBox T ′ has a
larger signature than T , but each new concept name A is equivalent to a concept
description CA over the signature of the original TBox. Furthermore, we can show
that T ′ is cycle-restricted iff T is. Assume first that T is not cycle-restricted, i.e.,
there is a concept description C over sig(T ) and w ∈ N+

R such that C vT ∃w.C.
Since T ′ is sig(T )-inseparable from T , the same holds w.r.t. T ′, which shows
that T ′ is not cycle-restricted. On the other hand, if C vT ′ ∃w.C for w ∈ N+

R

and a concept description C over sig(T ′), then we can replace each new concept
name A by the equivalent CA. The resulting concept description C ′ is built over
sig(T ), and thus C ′ vT ∃w.C ′, i.e., T is not cycle-restricted.

Thus, we can assume in the following that T is flat. By Lemma 11, we only have
to test for cycles involving concept names and >. We first characterize such cycles
in a convenient way. Let A be a concept name or >. By Lemma 6, A vT ∃rw′.A
holds for w′ ∈ N∗R iff one of the two alternatives of this lemma holds. The
first alternative cannot hold since ∃rw′.A and A have an incompatible top-level
structure – one is an existential restriction, the other is a concept name. Thus,
we have A vT ∃rw′.A iff there atoms A′1, . . . , A′k, ∃r.B of T such that A vs

T A
′
η

holds for all η ∈ {1, . . . , k}, A′1 u · · · u A′k vT ∃r.B, and B vT ∃w′.A.

If A = >, then k must be 0 since > vs
T A

′
η cannot hold. This implies A = > vT

∃r.B. If A is a concept name, then all A′η must be equal to A, and again we
have A vT ∃r.B. If w′ is not empty, we can apply the same argument to the
subsumption B vT ∃w′.A since B is either a concept name or > since T is flat.
We can iterate this argument until only the empty word remains, which yields a
sequence of subsumptions A vT ∃r.B,B vT ∃r2.B2, . . . , Bn−1 vT ∃rn.Bn, Bn vT
A that hold between atoms of T (or >).

Since subsumption w.r.t. T can be checked in polynomial time, we can construct
the following graph in polynomial time: The nodes are the concept names of T
and >. There is an edge labeled by r from A to B iff A vT ∃r.B and an edge
labeled by ε from A to B iff A vT B. The size of this graph is polynomial in the
size of T .

To check whether T contains cycles it suffices to check for cycles in this graph
that contain at least one edge labeled by a role name. This can be checked in
polynomial time in the size of this graph.

Example 13. Consider the general TBox {∃r.A v A,A v ∃s.B}. The graph
constructed in Lemma 12 has the tree nodes A, B, and >. It contains s-edges
from A to B and from A to > and ε-edges from A to > and from B to >. Since
these edges form no cycles, the TBox is a cycle-restricted TBox.
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4.1 Relationship to Other Classes

We now analyze the expressiveness of cycle-restricted TBoxes in relation to the
previously mentioned classes of TBoxes. Of course, every cycle-restricted TBox
is also a general TBox.

Lemma 14. For every acyclic TBox T ′ there is a cycle-restricted TBox T that
is sig(T ′)-inseparable from T ′.

Proof. By replacing all definitions A ≡ C of T ′ by the two equivalent sub-
sumptions A v C and C v A, we obtain a general TBox T that is sig(T ′)-
inseparable from T ′. To show that this is even a cycle-restricted TBox, assume
that A vT ′ ∃w.A holds for some concept name A of sig(T ) = sig(T ′) and
w ∈ N+

R .

We can expand A by exhaustively replacing defined concept names by their def-
initions in T ′. Since this TBox is acyclic, this process terminates in a concept
description CA ≡T A that contains only concept names without definition. Thus,
the subsumption CA v ∃w.CA must hold w.r.t. the empty TBox. However, it is
a consequence of Lemma 2 that whenever C v D, then the role depth of C must
be greater than or equal to the role depth of D. This contradicts CA v ∃w.CA
and the assumption that w ∈ N+

R .

Thus, every acyclic TBox can be expressed by a cycle-restricted TBox. On the
other hand, it turns out that there are some cycle-restricted TBoxes whose re-
strictions cannot even expressed by a cyclic TBox.

To show this, we use a characterization of subsumption w.r.t. cyclic TBoxes from
[3]. First, we have to introduce some preliminary notions. A cyclic TBox T
is said to be normalized if all its definitions are of the form A ≡ P1 u . . . Pn u
∃r1.B1 u · · · u ∃rm.Bm, where P1, . . . , Pn are primitive concepts, i.e., have no
definitions, r1, . . . , rm are role names, and B1, . . . , Bm are defined concepts. Every
cyclic TBox can be transformed into a normalized TBox that is inseparable from
the original one w.r.t. the original signature. This is due to the fact that the
normalization procedure described in [2] only employs the following operations,
none of which affect the subsumption relationships between concepts built over
the original signature:

• Introduction of auxiliary definitions of the form B ≡ ∃r.A for a new concept
name B.

• Merging of equivalent concept names.

• Introduction of new concept names to transform subsumptions like A v
∃r.B into definitions A ≡ A′ u ∃r.B.
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The description graph GT of a cyclic TBox T consists of a node for each defined
concept and an edge from A to B labeled by r whenever ∃r.B is a conjunct in
the definition of A.5 A simulation from GT to GT is a binary relation S on the set
of all defined concepts that satisfies the following condition: If (A,B) ∈ S and
there is an edge from A to A′ in GT labeled by r, then there has to be a defined
concept B′ such that (A′, B′) ∈ S and there is an edge from B to B′ labeled by r.
A useful consequence of one of the main results of [3] is the following: Whenever
A vT B holds between two defined concepts, then there is a simulation S from
GT to GT with (B,A) ∈ S.

Lemma 15. There is no cyclic TBox T that is {r, s, A,B}-inseparable from the
set {∃r.A v A,A v ∃s.B}, which is a cycle-restricted TBox (see Example 13).

Proof. Assume that T is a cyclic TBox that is {r, s, A,B}-inseparable from
{∃r.A v A,A v ∃s.B}. As described before, we can assume that T is nor-
malized in the sense of [3]. We introduce two new concept names A′ and B′

with new definitions A′ ≡ ∃r.A and B′ ≡ ∃s.B. The resulting description graph
has two additional nodes for A′ and B′ and two additional edges: one from A′

to A labeled by r and one from B′ to B labeled by s. Since A′ and B′ are
new concept names, they have no influence on the subsumptions holding between
concepts built over the signature {r, s, A,B}, and thus the resulting TBox T ′ is
still {r, s, A,B}-inseparable from {∃r.A v A,A v ∃s.B}. In particular, we have
A′ ≡T ′ ∃r.A vT ′ A and A vT ′ ∃s.B ≡T ′ B′.

From the first subsumption we can deduce that there is a simulation S from GT ′

to GT ′ with (A,A′) ∈ S. Thus, any edge starting from A must be simulated by
an edge starting from A′. Since the only edge starting in A′ is labeled by r, every
edge starting in A must also be labeled by r. From the second subsumption it
follows that there is a simulation S ′ with (B′, A) ∈ S ′. Thus, the edge from B′

to B must be simulated by an edge starting in A, i.e., there must be an edge
starting in A that is labeled by s. Together, the two subsumptions A′ vT ′ A and
A vT ′ B′ thus lead to a contradiction.

But cycle-restricted TBoxes cannot express all cyclic TBoxes–there is a simple
example of a cyclic TBox that cannot be expressed by a cycle-restricted TBox.

Lemma 16. There is no cycle-restricted TBox T that is {r, A}-inseparable from
{A ≡ ∃r.A}, which is a cyclic TBox.

Proof. For any such TBox T we would have A vT ∃r.A, which directly contra-
dicts Definition 10.

Thus, we can summarize the relationships between the four discussed classes of
TBoxes as depicted in Figure 1. By considering cycle-restricted TBoxes we are

5We ignore the node labels from [3] since they are not important for our arguments.
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Acyclic TBoxes

Cycle-restricted TBoxes

General TBoxes

Cyclic TBoxes

Figure 1: The relations between the expressiveness of the four classes of TBoxes
discussed here. An arrow depicts a strict increase in expressiveness.

more expressive than acyclic TBoxes, but do not reach the full expressivity of
general TBoxes or even cyclic TBoxes.

This concludes the first part of this report. We now present unification in EL
and two algorithms to solve EL-unification w.r.t. cycle-restricted TBoxes.

5 Unification

From now on, we assume that the set NC is partitioned into concept variables (Nv)
and concept constants (Nc). A substitution σ maps every variable to a concept
description and can be extended to concept descriptions in the usual way. A
concept description C is ground if it contains no variables and a substitution is
ground if all concept descriptions in its range are ground. Similarly, a TBox is
ground if it contains no variables.

Definition 17. Let T be a general TBox that is ground. An EL-unification
problem w.r.t. T is a finite set Γ = {C1 v? D1, . . . , Cn v? Dn} of subsumptions.
A substitution σ is a unifier of Γ w.r.t. T if σ solves all the subsumptions in Γ,
i.e., if σ(C1) vT σ(D1), . . . , σ(Cn) vT σ(Dn). We say that Γ is unifiable w.r.t. T
if it has a unifier.

Three remarks regarding this definition are in order. First, note that the previous
papers on unification in DLs used equivalences C ≡? D instead of subsumptions
C v? D. This difference is, however, irrelevant since C ≡? D can be seen as a
shorthand for the two subsumptions C v? D and D v? C, and C v? D has the
same unifiers as C uD ≡? C.

Second, note that we have restricted the background general TBox T to be
ground. This is not without loss of generality. In fact, if T contained variables,
then we would need to apply the substitution also to its axioms, and instead of re-
quiring σ(Ci) vT σ(Di) we would thus need to require σ(Ci) vσ(T ) σ(Di), which
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would change the nature of the problem considerably. The treatment of unifica-
tion w.r.t. acyclic TBoxes in [7] actually considers a more general setting, where
some of the primitive concepts occurring in the TBox may be variables. The
restriction to ground general TBoxes is, however, appropriate for the application
scenario sketched in the introduction. In this scenario, there is a fixed background
ontology, given by a general TBox, which is extended with definitions of new con-
cepts by several knowledge engineers. Unification w.r.t. the background ontology
is used to check whether some of these new definitions actually are redundant,
i.e., define the same intuitive concept. Here, some of the primitive concepts newly
introduced by one knowledge engineer may be further defined by another one, but
we assume that the knowledge engineers use the vocabulary from the background
ontology unchanged, i.e., they define new concepts rather than adding definitions
for concepts that already occur in the background ontology. An instance of this
scenario can, e.g., be found in [13], where different extensions of SNOMEDCT
are checked for overlaps, albeit not by using unification, but by simply testing for
equivalence.

Third, though we allow for arbitrary substitutions σ in the definition of a unifier,
it is actually sufficient to consider ground substitutions such that all concept
descriptions σ(X) in the range of σ contain only concept and role names occurring
in Γ or T . It is an easy consequence of well-known results from unification theory
[10] that Γ has a unifier w.r.t. T iff it has such a ground unifier.

Given a general TBox T and a unification problem Γ, we will first flatten T
as described in Section 2.3. Since the signature of the TBox is changed by this
process, this has consequences for the unifiers: when looking for a unifier w.r.t.
a given TBox one does not want this unifier to use auxiliary concept names
introduced in a preprocessing step of the unification algorithm. The next lemma
shows, however, that unifiability of a unification problem is not influenced by
flattening the TBox. The proof of this lemma also shows how to remove unwanted
auxiliary concept names from a unifier.
Lemma 18. Let Γ be a unification problem, T be a general TBox, and T ′ be the
result of applying the normalization procedure from [12] to T . Then Γ is unifiable
w.r.t. T iff it is unifiable w.r.t. T ′.

Proof. Any unifier σ of Γ w.r.t. T is also a unifier of Γ w.r.t. T ′ since the equiva-
lences holding over sig(T ) w.r.t. T also hold w.r.t. T ′. If, on the other hand, σ′ is
a unifier of Γ w.r.t. T ′, then its range may contain some of the newly introduced
concept names. However, each of these new concept names A is equivalent to a
concept description CA from T . We now define the substitution σ by replacing all
occurrences of the new concept names A by the concept descriptions CA. Since
equivalences are preserved under replacing subdescriptions by equivalent concept
descriptions, σ is still a unifier of Γ w.r.t. T ′. Since it does not contain any con-
cept names introduced by the flattening procedure, it is also a unifier of Γ w.r.t.
T over the original signature.
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Without loss of generality, we can also assume that the unification problem Γ is
flat in the sense that it contains only subsumptions of the form C1u· · ·uCn v? D,
where C1, . . . , Cn, and D are flat atoms.6 This normal form can be achieved by
introducing auxiliary variables and splitting any subsumption with a conjunction
on the right-hand side into several smaller subsumptions.

5.1 Unifiers versus Acyclic TBoxes

There is a close relationship between ground substitutions and acyclic TBoxes.
Given a ground substitution σ, we can build the TBox Tσ := {X ≡ σ(X) |
X ∈ Nv}. Since σ is ground, this is indeed an acyclic TBox, and expansion
w.r.t. Tσ corresponds to applying σ, i.e., for every concept description C we have
σ(C) = CTσ . As an easy consequence of this observation we have for any ground
general TBox T :

σ(C) vT σ(D) iff CTσ vT DTσ iff C vT ∪Tσ D.

Conversely, any acyclic TBox S whose defined concepts are the variables in Nv

yields a ground substitution σS , which is defined by setting σS(X) = XS for all
variables X. Again, expansion w.r.t. the acyclic TBox corresponds to applying
the substitution, i.e., CS = σS(C), and thus

C vT ∪S D iff CS vT DS iff σS(C) vT σS(D).

This yields another view on what unification is trying to compute, and thus
another potential application scenario: the extraction of concept definitions that
imply a given set of GCIs w.r.t. a background ontology.

Proposition 19. Let T be a ground general TBox and T ′ an arbitrary general
TBox. Then Γ′ := {C v? D | C v D ∈ T ′} has a unifier w.r.t. T iff there is an
acyclic TBox S whose defined concepts are the variables in Nv such that every
GCI in T ′ follows from T ∪ S.

5.2 Relationship to Equational Unification

Unification was originally not introduced for Description Logics, but for equa-
tional theories [10]. In [23, 7] it was shown that equivalence and unification in
EL are the same as the word problem and unification, respectively, in the equa-
tional theory SLmO of semilattices with monotone operators. The signature
ΣSLmO of this theory consists of a binary function symbol ∧, a constant symbol
1, and finitely many unary function symbols f1, . . . , fn. Terms can be built using
these symbols and additional variable symbols and free constant symbols.

6If n = 0, then we have an empty conjunction on the left-hand side, which as usual stands
for >.
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Definition 20. The equational theory of semilattices with monotone operators
is defined by the following identities:

SLmO := {x ∧ (y ∧ z) = (x ∧ y) ∧ z, x ∧ y = y ∧ x, x ∧ x = x, x ∧ 1 = x}
∪ {fi(x ∧ y) ∧ fi(y) = fi(x ∧ y) | 1 ≤ i ≤ n}

Any EL-concept description C using only the roles r1, . . . , rn can be translated
into a term tC over the signature ΣSLmO by replacing each concept constant A by
a free constant a, each concept variable X by a variable x, > by 1, u by ∧, and
∃ri by fi. For example, the EL-concept description C = Au∃r1.>u∃r3(XuB) is
translated into tC = a∧f1(1)∧f3(x∧b). Conversely, any term t over the signature
ΣSLmO can be translated back into an EL-concept description Ct. As shown
in [23], the word problem in the theory SLmO is the same as the equivalence
problem for EL-concept descriptions.

Lemma 21. Let C,D be EL-concept descriptions using only roles r1, . . . , rn.
Then C ≡ D iff tC =SLmO tD.

As an immediate consequence of this lemma, every EL-unification problem can
be translated into an SLmO-unification problem that, modulo the translation
between concept descriptions and terms, has the same unifiers.

Using this translation, any ground general TBox T can be translated into a
finite set GT of ground identities by replacing each GCI C v D by the equation
tC ∧ tD = tC . Conversely, a set G of ground identities can be translated back
into a ground general TBox TG by replacing every ground identity s = t by the
GCIs Cs v Ct and Ct v Cs. Lemma 21 can easily be extended to account for an
additional ground general TBox.

Proposition 22. Let T be a ground general TBox and C,D be EL-concept de-
scriptions using only roles r1, . . . , rn. Then C ≡T D iff tC =SLmO∪GT tD.

Unification in EL w.r.t. a ground general TBox, as introduced in Definition 17,
thus corresponds to unification in SLmO extended with a finite set of ground
identities. From a unification theory point of view, we are thus dealing with an
instance of the following general question:
Problem. For which equational theories E does decidability and/or complexity
transfer from E to all extensions of E by finite sets of ground identities?

The connection to equational unification also sheds some light on our decision to
restrict unification to the case of general TBoxes that are ground. If we would lift
this restriction, the background general TBox T would contain variables, which
are subject to substitution. For a substitution σ, we define σ(T ) to be the set
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of all GCIs σ(C) v σ(D) for all GCIs C v D in T . Consider now the following
generalization of Definition 17:7

Problem (EL-unification w.r.t. a non-ground general TBox). Given a general
TBox T and an EL-unification problem Γ = {C1 ≡? D1, . . . , Cn ≡? Dn}, is
there a substitution σ that satisfies σ(Ci) ≡σ(T ) σ(Di) for all i ∈ {1, . . . , n}?

According to the above translations, this is equivalent to finding a substitution
σ with σ(tCi) =SLmO∪σ(GT ) σ(tDi) for all i ∈ {1, . . . , n}, where the variables in
σ(GT ) are viewed as free constant symbols instead of proper (i.e., universally
quantified) variables. This problem is related to the following problem [16, 15]:
Problem (Simultaneous rigid E-unification). Given finitely many equational the-
ories E1, . . . , En and terms s1, . . . , sn, t1, . . . , tn, is there a substitution σ that
satisfies σ(si) =σ(Ei) σ(ti) for all i ∈ {1, . . . , n}, where the variables in σ(Ei) are
treated as free constant symbols?

Rigid E-unification is the special case where n = 1. In general, simultaneous rigid
E-unification is undecidable [15], even in the case n = 3 with only 2 variables
and ground terms s1, s2, s3 [24]. For the case of only monadic function symbols,
the problem is known to be PSpace-hard [17], and in PSpace if there is only
one variable [18]. If there is only one variable, but arbitrary function symbols,
then the problem is ExpTime-complete [14]. The restricted problem of (non-
simultaneous) rigid E-unification is decidable (more precisely, NP-complete) [16].
If there is only one variable, then the problem is P-complete [14].

Our problem is a generalization of rigid E-unification rather than simultaneous
rigid E-unification since we use only one general TBox T rather than a different
one for every equivalence. The main generalization is that we have SLmO as
additional non-ground background theory. Whether the fact that we have several
equivalences rather than a single one is relevant or not is not so clear. In fact, if T
is ground, then several equivalences can be encoded into a single one if sufficiently
many free role names are available, i.e., role names that do not occur in T . The
following is an easy consequence of Lemma 6: if r1, . . . , rn are distinct free role
names, then σ is a unifier of {C1 ≡? D1, . . . , Cn ≡? Dn} w.r.t. T iff it is a unifier
of {∃r1.C1 u · · · u ∃rn.Cn ≡? ∃r1.D1 u · · · u ∃rn.Dn} w.r.t. T . If T is not ground,
this trick does not necessarily work since, even if r1, . . . , rn are free w.r.t. T , they
may no longer be free w.r.t. σ(T ).

To sum up, EL-unification w.r.t. non-ground general TBoxes is an instance of the
following generalization of simultaneous rigid E-unification:
Problem (Simultaneous rigid E-unification with background theory E ′). Given
finitely many equational theories E1, . . . , En, E

′ and terms s1, . . . , sn, t1, . . . , tn,
7We use equivalences rather than subsumptions in this definition to have a more direct

connection to equational unification problems. As noted above, equivalences can be translated
into subsumptions and vice versa.
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is there a substitution σ that satisfies σ(si) =E′ ∪σ(Ei) σ(ti) for all i ∈ {1, . . . , n},
where the variables in σ(Ei) are treated as free constant symbols?

The non-simultaneous version of this problem considers the case where n = 1.
To the best of our knowledge, the problem of simultaneous or non-simultaneous
rigid E-unification with background theory has not yet been considered in the
literature, and it is probably quite hard to solve even in the non-simultaneous
case. This is one of our reasons for restricting our attention to the case of a single
ground general TBox.

6 A Brute-Force NP-Algorithm

Since deciding unifiability of EL-unification problems is NP-complete w.r.t. the
empty TBox [5], NP-hardness also holds in our more general setting. In this
section, we provide a short proof for the fact that unifiability is still in NP w.r.t.
cycle-restricted TBoxes.

As we have already shown, we can assume without loss of generality that the
unification problem Γ and the cycle-restricted TBox T are flat. We denote by At
the set of atoms occurring as subdescriptions in subsumptions in Γ or axioms in
T . Furthermore, we define the set of non-variable atoms by Atnv := At \Nv.

6.1 Local unifiers

The main idea underlying the “in NP” result in [5] is to show that any EL-
unification problem that is unifiable w.r.t. the empty TBox has a so-called local
unifier. Here, we generalize the notion of a local unifier to the case of unification
w.r.t. cycle-restricted TBoxes, and show that a similar locality result holds in this
case.

Every assignment S of subsets SX of Atnv to the variables X in Nv induces a
unique TBox

TS := {X ≡
l

D∈SX

D | X ∈ Nv}.

We call the assignment S acyclic if TS is acyclic. Thus, if S is acyclic, the TBox
TS induces a unique substitution σTS . To simplify the notation, we write this
substitution as σS. It is easy to see that this substitution satisfies

σS(X) =
l

D∈SX

σS(D)

for all X ∈ Nv. We call a substitution σ local if it is of this form, i.e., if there is
an acyclic assignment S such that σ = σS.

24



Theorem 23. Let T be a flat cycle-restricted TBox and Γ a flat unification
problem. If Γ has a unifier w.r.t. T , then it also has a local unifier w.r.t. T .

This theorem immediately implies that unification in EL w.r.t. cycle-restricted
TBoxes is decidable within NP. In fact, one can guess an acyclic assignment S in
polynomial time. To check whether the induced local substitution σS is a unifier
of Γ w.r.t. T , one builds the TBox TS and then checks in polynomial time whether
C vT ∪TS D holds for all subsumptions C v? D in Γ.

Corollary 24. Unification in EL w.r.t. cycle-restricted TBoxes is in NP.

6.2 Proof of Theorem 23

Assume that γ is a unifier of Γ w.r.t. T . We define the assignment Sγ induced
by γ as

SγX := {D ∈ Atnv | γ(X) vT γ(D)}.
The following lemma is the only place in the proof of Theorem 23 where cycle-
restrictedness of T is needed. Later we will give an example that demonstrates
that the theorem actually does not hold if this restriction is removed.

Lemma 25. The assignment Sγ is acyclic.

Proof. Assume that Sγ is cyclic. Then there are variables X1, . . . , Xn and role
names r1, . . . , rn−1 (n ≥ 2) such that X1 = Xn and ∃ri.Xi+1 ∈ Sγ(Xi) (i =
1, . . . , n− 1). But then we have γ(Xi) vT ∃ri.γ(Xi+1) for i = 1, . . . , n− 1, which
yields γ(X1) vT ∃r1.γ(X2) vT ∃r1.∃r2.γ(X3) vT · · · vT ∃r1. · · · ∃rn−1.γ(Xn).
Since X1 = Xn and n ≥ 2, this contradicts our assumption that T is cycle-
restricted. Thus, Sγ must be acyclic.

Since Sγ is acyclic, it induces a substitution σSγ . To simplify the notation, we
call this substitution in the following σγ. The following lemma implies that σγ is
a unifier of Γ w.r.t. T , and thus proves Theorem 23.

Lemma 26. Let C1, . . . , Cn, D ∈ At. Then γ(C1)u . . .u γ(Cn) vT γ(D) implies
σγ(C1) u . . . u σγ(Cn) vT σγ(D).

Proof. We prove the lemma by induction over

max{rd(σγ(E)) | E ∈ {C1, . . . , Cn, D} ∧ E not ground}.

First, assume that D = Y ∈ Nv, and let SγY = {D1, . . . , Dm}. By the definition
of Sγ, this implies γ(Y ) vT γ(D1) u . . . u γ(Dm), and thus

γ(C1) u . . . u γ(Cn) vT γ(D1) u . . . u γ(Dm).
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We apply Lemma 6 to this subsumption. Consider γ(Dj) for some j, 1 ≤ j ≤ m.
Since Dj is a non-variable atom, γ(Dj) is an atom, and thus the first or the second
case of the lemma holds.

1. In the first case, there is an i, 1 ≤ i ≤ n, such that one of the following two
cases holds:

(i) Ci is a non-variable atom and γ(Ci) vsT γ(Dj).
By the definition of vsT , there are two possible cases. Either both con-
cept descriptions are the same concept name A, or both are existential
restrictions for the same role name r. In the first case, Ci = A = Dj,
and thus σγ(Ci) = A = σγ(Dj). In the second case, Ci = ∃r.C ′i,
Dj = ∃r.D′j, and γ(C ′i) vT γ(D′j). Both C ′i and D′j are elements of At.
The role depth of σγ(C ′i) is obviously smaller than the role depth of
σγ(Ci). For the same reason, the role depth of σγ(D′j) is smaller that
the one of σγ(Dj). Since σγ(Dj) is a top-level conjunct in σγ(D), the
role depth of σγ(D′j) is also smaller than the ones of σγ(D). Conse-
quently, if Ci or Dj is non-ground, induction yields σγ(C ′i) vT σγ(D′j),
and thus also σγ(Ci) = ∃r.σγ(C ′i) vT ∃r.σγ(D′j) = σγ(Dj). If Ci, Dj

are both ground, then σγ(Ci) = Ci = γ(Ci) vT γ(Dj) = Dj = σγ(Dj).
(ii) Ci = X is a variable and the top-level conjunction of γ(X) contains

an atom E such that E vsT γ(Dj).
Then we have γ(X) vT E vT γ(Dj), and thus Dj ∈ SγX . By the
definition of σγ, this implies σγ(Ci) = σγ(X) vT σγ(Dj).

Both (i) and (ii) yield σγ(C1) u . . . u σγ(Cn) vT σγ(Dj).

2. In the second case, there are atoms A1, . . . , Ak, B of T such that

a) A1 u . . . u Ak vT B,
b) for every η, 1 ≤ η ≤ k, there is i, 1 ≤ i ≤ n, such that one of the

following two cases holds:
(i) Ci is a non-variable atom and γ(Ci) vsT Aη,
(ii) Ci = X is a variable and the top-level conjunction of γ(X) contains

an atom E such that E vsT Aη;
c) B vsT γ(Dj).

In case (i) we have that either Ci = A = Aη is a concept name, or both
concept descriptions are existential restrictions Ci = ∃r.C ′i and Aη = ∃r.A′η
with γ(C ′i) vT A′η. In the first case, we have σγ(Ci) = A = Aη. In the
second case, the case where Ci is ground is again trivial. Otherwise, we
can apply induction since C ′i, A′η ∈ At, the role depth of σγ(C ′i) is smaller
than the one of σγ(Ci), and the role depth of A′η is not counted since it is
ground. Thus, we have σγ(C ′i) vT A′η, which yields σγ(Ci) vT Aη.
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In case (ii), we again have γ(X) vT E vT Aη, and thus Aη ∈ SγX . This
yields σγ(Ci) = σγ(X) vT Aη.
For similar reasons as before, we can again show that B vsT γ(Dj) implies
B vT σγ(Dj).
To sum up, we thus have also in this case σγ(C1) u . . . u σγ(Cn) vT A1 u
. . . u Ak vT B vT σγ(Dj).

Hence, we have shown that, for all j, 1 ≤ j ≤ m, we have σγ(C1)u. . .uσγ(Cn) vT
σγ(Dj), which yields σγ(C1) u . . . u σγ(Cn) vT σγ(D1) u . . . u σγ(Dm) = σ(D).
The last identity holds since D = Y and SγY = {D1, . . . , Dm}.

It remains to consider the case where D is a non-variable atom. But then we
have

γ(C1) u . . . u γ(Cn) vT γ(D),
and γ(D) is an atom. As for γ(Dj) above, we can use Lemma 6 to show that this
implies σγ(C1) u . . . u σγ(Cn) vT σγ(D).

6.3 Cycle-Restrictedness is Needed

We show that Theorem 23 does not hold for arbitrary general TBoxes. To this
purpose, consider the general TBox T = {B v ∃s.D, D v B}, which is not
cycle-restricted, and the unification problem

Γ = {A1 uB ≡? Y1, A2 uB ≡? Y2, ∃s.Y1 v? X, ∃s.Y2 v? X, X v? ∃s.X}.

This problem has the unifier γ := {Y1 7→ A1 u B, Y2 7→ A2 u B,X 7→ ∃s.B}.
However, the induced assignment Sγ is cyclic since γ(X) = ∃s.B vT ∃s.∃s.B =
γ(∃s.X) yields ∃s.X ∈ SγX . Thus, γ does not induce a local unifier.

We claim that Γ actually does not have any local unifier w.r.t. T . Assume to the
contrary that σ is a local unifier of Γ w.r.t. T . Then σ(X) cannot be > since
> 6vT ∃s.>. Thus, σ(X) must contain a top-level atom of the form σ(E) for
E ∈ Atnv. This atom cannot be σ(∃s.Yi) ≡T ∃s.(Ai u B) for i ∈ {1, 2} since
then σ(∃s.Yj) vT σ(E) for j ∈ {1, 2} \ {i} would not hold, contradicting the
assumption that σ solves ∃s.Yj v? X w.r.t. T . Since local unifiers are induced
by acyclic assignments, E cannot be σ(∃s.X), and thus E must be an atom of
T . However, none of the atoms B,D, ∃s.D subsume ∃s.(Aj u B) w.r.t. T , again
contradicting the assumption that σ solves ∃s.Yj v? X w.r.t. T .

7 A Goal-Oriented Unification Algorithm

The algorithm presented in the previous section is not practical since it blindly
guesses an acyclic assignment and only afterwards checks whether the guessed
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assignment induces a unifier. In this section, we introduce a more goal-oriented
unification algorithm, in which nondeterministic decisions are only made if they
are triggered by “unsolved parts” of the unification problem. In addition, failure
due to wrong guesses can be detected early. Any non-failing run of the algorithm
produces a unifier, i.e., there is no need for checking whether the assignment
computed by this run really produces a unifier. This goal-oriented algorithm in
principle generalizes the goal-oriented algorithm for unification in EL w.r.t. the
empty TBox introduced in [7], though the rules look quite different because here
we consider unification problems that consist of subsumptions whereas in [7] we
considered equivalences.

As in the previous section, we assume without loss of generality that the TBox
T and the input unification problem Γ0 are flat. Given T and Γ0, the sets At of
atoms of Γ0 and T and Atnv of non-variable atoms of Γ0 and T are defined as
above.

We will first consider unification w.r.t. the empty TBox and present a modified
version of the algorithm in [7] to explain the basic principles at work. Afterwards,
we will add rules to enable the algorithm to deal with a cycle-restricted TBox.

7.1 Unification with the Empty TBox Once More

Starting with Γ0, the algorithm maintains a current unification problem Γ and a
current acyclic assignment S, which initially assigns the empty set to all variables.
In addition, for each subsumption in Γ it maintains the information on whether it
is solved or not. Initially, all subsumptions of Γ0 are unsolved, except those with a
variable on the right-hand side. Rules are applied only to unsolved subsumptions.
A (non-failing) application of a rule of our algorithm does the following:

• it solves exactly one unsolved subsumption,

• it may extend the current assignment S by adding elements of Atnv to SX
for some variable X, and

• it may introduce new flat subsumptions built from elements of At.

Each rule application that extends S additionally expands Γ w.r.t. X as follows:
every subsumption s ∈ Γ of the form C1 u · · · u Cn v? X is expanded by adding
the subsumption C1 u · · · u Cn v? A to Γ for every A ∈ SX .

Subsumptions are only added by a rule application or by expansion if they are
not already present in Γ. If a new subsumption is added to Γ, either by a rule
application or by expansion of Γ, then it is initially designated unsolved, except
if it has a variable on the right-hand side. Once a subsumption is in Γ, it will not
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be removed. Likewise, if a subsumption in Γ is marked as solved, then it will not
become unsolved later.

If a subsumption is marked as solved, this does not necessarily mean that it is
indeed already solved by the substitution induced by the current assignment. In-
stead, it may be the case that the task of satisfying the subsumption was deferred
to solving other subsumptions, which are “smaller” than the given subsumption
in a certain well-defined sense. A subsumption whose right-hand side is a variable
is always marked as solved since the task of solving it is deferred to solving the
subsumptions introduced by expansion.

The rules of the algorithm consist of the three eager rules Eager Ground Solving,
Eager Solving, and Eager Extension (see Figure 2), and several nondeterministic
rules (see Figure 3). Eager rules are applied with higher priority than nondeter-
ministic rules, and among the eager rules, Eager Ground Solving has the highest
priority, then comes Eager Solving, and then Eager Extension.

The eager rules are mainly there for optimization purposes, i.e., to avoid non-
deterministic choices if a deterministic decision can be made. For example, a
ground subsumption, as considered by Eager Ground Solving, either holds, in
which case any substitution solves it, or it does not, in which case it does not
have a solution. In the case considered by Eager Solving, the substitution in-
duced by the current assignment already solves the subsumption. The Eager
Extension rule solves a subsumption that contains only a variable X and some
elements of SX on the left-hand side. The rule is motivated by the following ob-
servation: for any assignment S ′ extending the current assignment, the induced
substitution σ′ satisfies σ′(X) ≡ σ′(C1) u · · · u σ′(Cn). Thus, if S ′X contains D,
then σ′(X) v σ′(D), and σ′ solves the subsumption. Conversely, if σ′ solves the
subsumption, then σ′(X) v σ′(D), and thus adding D to S ′X yields an equivalent
induced substitution.

The nondeterministic rules only come into play if no eager rules can be applied.
In order to solve an unsolved subsumption s = C1 u · · · u Cn v? D, we consider
Lemma 2. Assume that γ is induced by an acyclic assignment S. To satisfy the
lemma, the atom γ(D) must subsume a top-level atom in γ(C1)u· · ·uγ(Cn). This
atom can either be of the form γ(Ci) for a non-variable atom Ci, or of the form
γ(C) for C ∈ SCi and a variable Ci. In the first case, either γ(Ci) = A = γ(D) is
a concept constant, in which case the subsumption is solved by one of the Solving
rules, or γ(Ci) = ∃r.C ′, γ(D) = ∃r.D′ and C ′ v D′, which is covered by the
Decomposition rule. In the second case, the atom C is either already in SCi or it
can be put into SCi by an application of the Extension rule.

To sum up, the unification algorithm works as follows.

Algorithm 27. Let Γ0 be a flat EL-unification problem. We initialize Γ := Γ0
and SX := ∅ for all variables X ∈ Nv. While Γ contains an unsolved subsumption,
do the following:
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Eager Ground Solving:

Condition: This rule applies to s = C1 u · · · u Cn v? D if it is ground.
Action: If D does not occur on the left-hand side of s, the rule application
fails. Otherwise, s is marked as solved.

Eager Solving:

Condition: This rule applies to s = C1 u · · · uCn v? D if there is an index
i ∈ {1, . . . , n} such that Ci = D or Ci = X ∈ Nv and D ∈ SX .
Action: Its application marks s as solved.

Eager Extension:

Condition: This rule applies to s = C1 u · · · uCn v? D if there is an index
i ∈ {1, . . . , n} with Ci = X ∈ Nv and {C1, . . . , Cn} \ {X} ⊆ SX .
Action: Its application adds D to SX . If this makes S cyclic, the rule
application fails.
Otherwise, Γ is expanded w.r.t. X and s is marked as solved.

Figure 2: The eager rules for Algorithm 27 w.r.t. the empty TBox.

Decomposition:

Condition: This rule applies to s = C1 u · · · u Cn v? ∃s.D′ if there is at
least one index i ∈ {1, . . . , n} with Ci = ∃s.C ′.
Action: Its application chooses such an index i, adds the subsumption
C ′ v? D′ to Γ, expands it w.r.t. D′ if D′ is a variable, and marks s as solved.

Extension:
Condition: This rule applies to s = C1 u · · · u Cn v? D if there is at least
one index i ∈ {1, . . . , n} with Ci ∈ Nv.
Action: Its application chooses such an index i and adds D to SCi . If this
makes S cyclic, the rule application fails. Otherwise, Γ is expanded w.r.t.
Ci and s is marked as solved.

Figure 3: The nondeterministic rules for Algorithm 27 w.r.t. the empty TBox.
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(1) Eager rule application: If some eager rules apply to an unsolved subsump-
tion s in Γ, apply the one with the highest priority and mark s as solved. If
the rule application fails, return “not unifiable”.

(2) Nondeterministic rule application: If no eager rule is applicable, let s be
an unsolved subsumption in Γ. If one of the nondeterministic rules applies to
s, choose one of these rules, apply it, and mark s as solved. If none of these
rules apply to s or the rule application fails, then return “not unifiable”.

Once all subsumptions in Γ are solved, return the substitution σ that is induced
by the current assignment.

In step (2), the choice which unsolved subsumption to consider next is don’t
care nondeterministic. However, choosing which rule to apply to the chosen sub-
sumption is don’t know nondeterministic. Additionally, the application of nonde-
terministic rules requires don’t know nondeterministic guessing of polynomially
many data.

The algorithm presented so far is sound and complete for unification w.r.t. the
empty TBox and always terminates [7]. We will now modify it to be able to deal
with a cycle-restricted TBox.

7.2 Unification with a Cycle-restricted TBox

Let now T be a non-empty flat cycle-restricted TBox. The subsumptions in Γ
can now be composed not only of non-variable atoms of Γ0, but also of atoms of
T . Other than that, the only changes to Algorithm 27 are the modification of
the Solving rules (see Figure 4) and the addition of the nondeterministic rules
Mutation 1–4 (see Figure 5). The name “Mutation” is due to approaches to
unification w.r.t. equational theories that use similar rules [20].

The modified Solving rules generalize the rules from Figure 2 to allow for ground
subsumptions that hold because of T . Such subsumptions can be checked in poly-
nomial time [11]. For example, the new Eager Solving rule additionally considers
the case that the current “ground part” of the subsumption already suffices to
solve it.

The new Mutation rules allow the algorithm to solve a given subsumption accord-
ing to the second case of Lemma 6. Each rule covers a different case: For example,
Mutation 1 is applicable only to subsumptions with more that one conjunct on
the left-hand side. It solves the subsumption by making sure that all conditions of
the second alternative of Lemma 6 are satisfied. Whenever a structural subsump-
tion γ(E) vs

T γ(F ) is required to hold for a (hypothetical) unifier γ of Γ, the rule
creates the new subsumption E v? F , which has to be solved later on. This way,
the rule ensures that the substitution built by the algorithm actually satisfies the
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Eager Ground Solving:

Condition: This rule applies to s = C1 u · · · u Cn v? D if it is ground.
Action: If C1 u · · · u Cn vT D does not hold, the rule application fails.
Otherwise, s is marked as solved.

Eager Solving:

Condition: This rule applies to s = C1 u · · · u Cn v? D if either

• there is an index i ∈ {1, . . . , n} such that Ci = D or Ci = X ∈ Nv

and D ∈ SX , or

• D is ground and
d
G vT D holds, where G is the set of all ground

atoms in {C1, . . . , Cn} ∪
⋃
X∈{C1,...,Cn}∩Nv SX .

Action: Its application marks s as solved.

Eager Extension:

Condition: This rule applies to s = C1 u · · · uCn v? D if there is an index
i ∈ {1, . . . , n} with Ci = X ∈ Nv and {C1, . . . , Cn} \ {X} ⊆ SX .
Action: Its application adds D to SX . If this makes S cyclic, the rule
application fails.
Otherwise, Γ is expanded w.r.t. X and s is marked as solved.

Figure 4: The Eager rules of Algorithm 27 w.r.t. a cycle-restricted TBox T .

conditions of the lemma.8 To check the subsumption A1 u · · · u Ak vT B, the
rule again employs a polynomial-time subsumption check algorithm.

The other Mutation rules follow the same idea, but they implicitly apply one or
more Decomposition or Eager Extension rules after mutation. This ensures that
the newly generated subsumptions are “smaller” than the subsumption that trig-
gers their introduction. One could also combine these rules into a single Mutation
rule that covers all the cases. However, this rule would be very complicated and
essentially do the same as Mutation 1–4.

Example 28. Consider the cycle-restricted TBox T = {∃r.A v A, A v ∃s.B}
and the subsumptions

s1 = ∃r.Y v? X, s2 = ∃s.Y u ∃r.X v? A,

s3 = Z v? ∃r.X, s4 = X u Y v? ∃s.Z.

Unification w.r.t. the empty TBox would fail since, e.g., the subsumption s3

8Note that, for this direction of the lemma it is not important that this is a structural
subsumption.
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Mutation 1:
Condition: This rule applies to s = C1 u · · · uCn v? D if n > 1 and there
are atoms A1, . . . , Ak, B of T such that A1 u · · · u Ak vT B holds.
Action: Its application chooses such atoms, marks s as solved, and gener-
ates the following subsumptions:

• it chooses for each η ∈ {1, . . . , k} an i ∈ {1, . . . , n} and adds the new
subsumption Ci v? Aη to Γ,

• it adds the subsumption B v? D to Γ.
Mutation 2:

Condition: This rule applies to s = ∃r.X v? D if X is a variable, D is
ground, and there are atoms ∃r.A1, . . . ,∃r.Ak of T such that ∃r.A1 u · · · u
∃r.Ak vT D holds.
Action: Its application chooses such atoms, adds A1, . . . , Ak to SX , expands
Γ w.r.t. X, and marks s as solved.

Mutation 3:
Condition: This rule applies to s = ∃r.X v? ∃s.Y ifX and Y are variables,
and there are atoms ∃r.A1, . . . ,∃r.Ak, ∃s.B of T such that ∃r.A1 u · · · u
∃r.Ak vT ∃s.B holds.
Action: Its application chooses such atoms, marks s as solved, and gener-
ates the following subsumptions:

• it adds A1, . . . , Ak to SX and expands Γ w.r.t. X,

• it adds the subsumption B v? Y to Γ and expands it w.r.t. Y .

Mutation 4:
Condition: This rule applies to s = C v? ∃s.Y if C is a ground atom or
>, Y is a variable, and there is an atom ∃s.B of T such that C vT ∃s.B
holds.
Action: Its application chooses such an atom, adds the new subsumption
B v? Y to Γ, expands it w.r.t. Y , and marks s as solved.

Figure 5: The nondeterministic rules of Algorithm 27 w.r.t. a cycle-restricted
TBox T .
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cannot be solved by any of the original rules. However, we will demonstrate that
the additional rules that are aware of the TBox help to solve the subsumptions.

Initially, the sets SX , SY , and SZ are empty. First, the algorithm solves s3 by
Eager Extension, resulting in the set SZ = {∃r.X}. No eager rules are applicable
at this point, so we have to choose a nondeterministic rule to solve a subsumption.
For example, s2 can be solved by Mutation 1 since ∃r.A vT A. This results in
the new subsumptions s5 = ∃r.X v? ∃r.A and s6 = A v? A. The latter is
immediately solved by Eager Ground Solving, while the former can be solved
by Decomposition, resulting in s7 = X v? A. Eager Extension then yields the
new assignment SX = {A}. By expansion of s1, this yields the new subsumption
s8 = ∃r.Y v? A. s8 can be solved by Mutation 2 since ∃r.A vT A holds, resulting
in SY = {A}. For the remaining subsumption s4, there are several possibilities:

• Applying Extension to add ∃s.Z to X would fail since this would make
S cyclic. The resulting substitution σ would have to satisfy σ(X) vT
∃sr.σ(X), which is impossible by Lemma 11.

• Applying Extension to add ∃s.Z to Y succeeds, resulting in SY = {A, ∃s.Z}.
The final substitution σ then maps X to A, Z to ∃r.A, and Y to Au∃sr.A.

• One way of applying Mutation 1 to s4 would use ∃r.A vT ∃s.B to create the
new subsumptions s9 = ∃s.B v? ∃s.Z and s10 = X v? ∃r.A. The second
subsumption is solved by Eager Extension and then we have SX = {A, ∃r.A}
and s11 = ∃r.Y v? ∃r.A by expansion of s1. The remaining subsumptions
s9 and s11 can easily be solved by Decomposition and Eager Solving. The
final substitution σ maps X to A u ∃r.A ≡T ∃r.A, Y to A, and Z to
∃r.(A u ∃r.A) ≡T ∃rr.A.

• There are other ways of applying Mutation 1 to s4, which result in different
substitutions.

It is easy to verify that all substitutions computed in this way are actually unifiers
of the subsumptions s1–s4 w.r.t. T .

We will now formally show that the algorithm is an NP-decision procedure that
is sound and complete for EL-unification w.r.t. cycle-restricted TBoxes.

7.3 Soundness

We will show that, if Algorithm 27 returns a substitution σ on input Γ0, then
σ is a unifier of Γ0 w.r.t. T . In the following, let S be the final assignment
computed by Algorithm 27 on input Γ0 and σ be the substitution induced by
S. With Γ̂ we denote the final set of subsumptions computed by this run, i.e.,
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the original subsumptions of Γ0 together with the new ones generated by rule
applications. To show that σ solves Γ̂, we use well-founded induction [9] on the
following well-founded order � on Γ̂.

Definition 29. Let s = C1 u · · · u Cn v? Cn+1 ∈ Γ̂.

• s is small if n = 1 and C1 is ground or Cn+1 is ground.

• We define m(s) := (m1(s),m2(s),m3(s)), where

– m1(s) := 0 if s is small, and m1(s) := 1 otherwise.
– m2(s) := X if Cn+1 = X or Cn+1 = ∃r.X for a variable X and some
r ∈ NR, and m2(s) := ⊥ otherwise.

– m3(s) := max{rd(σ(Ci)) | i ∈ {1, . . . , n+ 1}}.

• The strict partial order � on such triples is the lexicographic order, where
the first and the third component are compared w.r.t. the normal order >
on natural numbers. The variables in the second component are compared
w.r.t. the depends on relation induced by TS, i.e., X is larger than all
variables it depends on, and ⊥ is smaller than any variable.

• We extend � to Γ̂ by setting s1 � s2 iff m(s1) � m(s2).

As the lexicographic product of well-founded strict partial orders is again well-
founded [9], � is a well-founded strict partial order on Γ̂.

Lemma 30. σ is an EL-unifier of Γ̂ w.r.t. T , and thus also of its subset Γ0.

Proof. Let s ∈ Γ̂ and assume that σ solves all subsumptions s′ ∈ Γ̂ with s′ ≺ s.
Consider the following cases for s.

• If s has a non-variable atom on the right-hand side, then it was initially
marked as unsolved and must have been solved by a successful rule appli-
cation. We consider the rule that was applied.

– Eager Ground Solving: Then s is ground and holds under any substi-
tution w.r.t. T .

– Eager Solving: Then s is of the form C1 u · · · u Cn v? D and either
σ(D) occurs on the top-level of σ(C1) u · · · u σ(Cn) or D is ground
and subsumes the conjunction of all ground atoms on the top-level of
σ(C1) u · · · u σ(Cn) w.r.t. T . In both cases, σ solves the subsumption
by monotonicity of vT .

– (Eager) Extension: Then s is of the form X u C1 u · · · u Cn v? D for
a variable X and D ∈ SX . By definition of σ, we have σ(X) v σ(D),
and thus σ solves s.
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– Decomposition: Then s is of the form C1 u · · · u Cn v? ∃s.D′ with
Ci = ∃s.C ′ for some i ∈ {1, . . . , n} and we have s′ = C ′ v? D′ ∈ Γ̂.
We will show that s � s′ holds. By induction, this implies that σ
solves s′, and by Lemma 6 thus also s.
To compare m(s) and m(s′), observe first that m2(s) = m2(s′) since
either ∃s.D′ and D′ contain the same variable or both are ground. We
now make a case distinction based on m1(s′).
If s′ is small, then s is either non-small, i.e., m1(s) > m1(s′), or small
and of the form ∃s.C ′ v? ∃s.D′. In the second case, we have m1(s) =
m1(s′) and m3(s) > m3(s′).
If s′ is non-small, then both C ′ and D′ are variables, and thus s is also
non-small, which yields m1(s) = m1(s′). Furthermore,

m3(s) ≥ max{rd(σ(∃s.C ′)), rd(σ(∃s.D′))}
= max{rd(σ(C ′)), rd(σ(D′))}+ 1
> max{rd(σ(C ′)), rd(σ(D′))}
= m3(s′).

In all cases we have shown m(s) � m(s′), i.e., s � s′.
– Mutation 1: Then s is of the form C1 u · · · u Cn v? D with n > 1

and there are atoms A1, . . . , Ak, B of T with A1 u · · · u Ak vT B.
Furthermore, for every η ∈ {1, . . . , k} there is a subsumption sη =
Ci v? Aη ∈ Γ̂ for some i ∈ {1, . . . , n} and the subsumption s′ = B v?

D is also in Γ̂.
Since s is not small and all the subsumptions s1, . . . , sk, s′ are small,
they are smaller than s w.r.t. �. By induction, σ solves those small
subsumptions and we have σ(C1) u · · · u σ(Cn) vT A1 u · · · u Ak vT
B vT σ(D), i.e., σ solves s.

– Mutation 2: Then s is of the form ∃r.X v? D, D is ground, and
∃r.A1u· · ·u∃r.Ak vT D holds for atoms ∃r.A1, . . . ,∃r.Ak of T . Since
A1, . . . , Ak ∈ SX , we have σ(∃r.X) vT ∃r.A1 u · · · u ∃r.Ak vT D.

– Mutation 3: Then s is of the form ∃r.X v? ∃s.Y and the subsumption
∃r.A1 u · · · u ∃r.Ak vT ∃s.B holds between atoms of T . Furthermore,
the subsumption s′ = B v? Y is in Γ̂. Since s is non-small and s′

is small, by induction we have B vT σ(Y ). Since A1, . . . , Ak ∈ SX ,
we can conclude that σ(∃r.X) vT ∃r.A1 u · · · u ∃r.Ak vT ∃s.B vT
σ(∃s.Y ).

– Mutation 4: Then s is of the form C v? ∃s.Y , C is ground, and C vT
∃s.B holds for an atom ∃s.B of T . Furthermore, the subsumption
s′ = B v? Y is in Γ̂. Both s and s′ are small and m2(s) = Y = m2(s′).
Since B is a constant, i.e., has depth 0, and C has at most depth 1,
we have m3(s) = rd(σ(∃s.Y )) > rd(σ(Y )) = m3(s′), and thus s � s′.
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By induction, B vT σ(Y ) holds, which implies that C vT ∃s.B vT
σ(∃s.Y ).

• If s has a variable as its right-hand side, then it is of the form C1u· · ·uCn v?

X and for every A ∈ SX there is a subsumption sA = C1 u · · · uCn v? A in
Γ̂.
If s is small, then n = 1 and C1 is ground, and thus the subsumptions
sA are also small. Thus, we have m1(s) ≥ m1(sA) for every A ∈ SX .
Furthermore, we have m2(s) > m2(sA) since either A is ground or contains
a variable on which X depends. This yields s � sA, and thus by induction
all subsumptions sA are solved by σ. Hence, σ(C1) u · · · u σ(Cn) vT σ(A)
for every A ∈ SX , which implies that σ(C1) u · · · u σ(Cn) vT σ(X) by the
definition of σ. This shows that σ solves s.

7.4 Completeness

Assume that Γ0 is unifiable w.r.t. T and let γ be a ground unifier of Γ0 w.r.t.
T . We can use this unifier to guide the application of the nondeterministic rules
such that Algorithm 27 does not fail. The following invariants for the current set
of subsumptions Γ and the current assignment S will be maintained:

(I) γ is a unifier of Γ.

(II) For all B ∈ SX we have γ(X) vT γ(B).

Since SX is initialized to ∅ for all variables X ∈ Nv and Γ is initialized to Γ0,
these invariants are satisfied after the initialization of the algorithm.

The second invariant immediately rules out one possible cause of failure for the
algorithm, namely that the current assignment may become cyclic.

Lemma 31. If invariant (II) is satisfied, then the current assignment S is acyclic.

Proof. Assume that S is cyclic. Then there are variables X1, . . . , Xn such that
Xn = X1 and for every i ∈ {1, . . . , n− 1} we have Xi > Xi+1, i.e., there is a non-
variable atom ∃ri.Xi+1 ∈ SXi . By invariant (II), we have γ(Xi) vT γ(∃ri.Xi+1)
for every such i, and thus γ(X1) vT ∃r1 . . . rn−1.γ(X1), which is impossible by
Lemma 11.

To prove completeness, we first show that expansion of Γ does not violate the
invariants.

Lemma 32. The invariants are maintained by the operation of expanding Γ.
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Proof. Since expansion does not change the current assignment S, we only have
to show that invariant (I) still holds afterwards.

Consider a subsumption s = C1 u · · · u Cn v? X for which a new subsumption
s′ = C1 u · · · u Cn v? A is created with A ∈ SX . By the invariants, s is solved
by γ and we have γ(X) vT γ(A). By transitivity of vT , this implies that γ also
solves s′.

Another reason why Algorithm 27 might fail is that the application of an eager
rule fails. This is ruled out by the following lemma.

Lemma 33. The application of an eager rule never fails and maintains the in-
variants.

Proof. Consider the application of Eager Ground Solving to an unsolved ground
subsumption s = C1 u · · · u Cn v? D ∈ Γ. By invariant (I), s is solved by γ, and
thus the rule application does not fail. The invariants are not affected by this
rule since neither Γ nor S are changed.

The application of Eager Solving cannot fail and does not affect the invariants.

Finally, consider the case that the Eager Extension rule is applied to an unsolved
subsumption of the form C1u · · ·uCn v? D ∈ Γ with Ci = X and {C1, . . . , Cn}\
{Ci} ⊆ SX for some i ∈ {1, . . . , n}. By invariant (II), we know that γ(C1)u · · · u
γ(Cn) ≡T γ(X) holds. By invariant (I), γ solves s, which implies γ(X) vT γ(D).
Thus, invariant (II) still holds after adding D to SX . By Lemma 31, S is acyclic
and the rule application does not fail. Invariant (I) is not affected by this rule.

So far, we have ruled out all causes of failure except for one: If no eager rules are
applicable to subsumptions in Γ and there is still an unsolved subsumption left,
then the algorithm has to find an applicable nondeterministic rule that does not
fail.

Lemma 34. Let s be an unsolved subsumption of Γ to which no eager rule applies.
Then there is a nondeterministic rule that can be successfully applied to s while
maintaining the invariants.

Proof. s must be of the form C1u · · · uCn v? D, where C1, . . . , Cn are flat atoms
or > and D is a flat non-variable atom of Γ0 ∪ T .

By invariant (I), γ solves s, i.e., we have γ(C1) u · · · u γ(Cn) vT γ(D). By
Lemma 6, one of the following alternatives holds:

1. There is an index i ∈ {1, . . . , n} such that E vs
T γ(D) for a top-level atom E

of γ(Ci). We consider the following cases for Ci, which can obviously not be
>.
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• If Ci is a concept name, then Ci = E = D and Eager Solving is applicable
to s, which contradicts the assumption.
• If Ci = ∃r.C ′, then γ(Ci) = ∃r.γ(C ′) = E, and thus D = ∃r.D′ and
γ(C ′) vT γ(D′). This shows that the Decomposition rule can be suc-
cessfully applied to s and results in a new subsumption C ′ v? D′ that is
solved by γ.
• If Ci = X is a variable, then invariant (II) is preserved by adding D to
SX since γ(X) v E vT γ(D). By Lemma 31, S stays acyclic, and thus
we can successfully apply Extension to s.

2. There are atoms A1, . . . , Ak, B of T such that for all η ∈ {1, . . . , k} there
is i ∈ {1, . . . , n} with γ(Ci) vT E vs

T Aη for a top-level atom E of γ(Ci),
A1 u · · · u Ak vT B, and B vs

T γ(D). If n > 1, we can apply Mutation 1 in
such a way that all created subsumptions are solved by γ.
If n = 1, we distinguish several cases for C1 and D:

• If both C1 and D are ground, then the Eager Ground Solving rule is
applicable to s, which contradicts our assumption.
• If C1 = X is a variable, then the Eager Extension rule is applicable to s,

which again contradicts our assumption.
• If C1 = ∃r.X for a variable X, then we have Aη = ∃r.A′η and γ(X) vT A′η

for every η ∈ {1, . . . , k}. Thus, we can add A′1, . . . , A
′
k to SX without

violating invariant (II). If D is ground, we have A1u· · ·uAk vT B vT D,
and thus we can successfully apply Mutation 2 to s. Otherwise, D = ∃s.Y
for a variable Y , which implies that B = ∃s.B′ and B′ vT γ(Y ). In this
case, we can apply Mutation 3 to s while preserving the invariants.
• If C is ground and D = ∃s.Y for a variable Y , then we have C vT
A1 u · · · u Ak vT B = ∃s.B′ and B′ vT γ(Y ). Thus, we can successfully
apply Mutation 4 to s.

As an immediate consequence of these lemmata we obtain that for any unifiable
input problem Γ0 there is a non-failing run of Algorithm 27 on Γ0 during which
the invariants (I) and (II) are satisfied. Together with the fact that any run of
the algorithm terminates (see below), this shows completeness, i.e., whenever Γ0
has a unifier w.r.t. T , the algorithm computes one.

7.5 Termination and Complexity

Consider a run of Algorithm 27. We will show that any subsumption encountered
during this run falls into one of the following categories:

1) subsumptions from Γ0;
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2) subsumptions created by expansion of Γ0: these are of the form C1u· · ·uCn v?

A for a subsumption C1 u · · · u Cn v? X ∈ Γ0 and A ∈ Atnv;

3) subsumptions of the form C v? D for C,D ∈ At.

Of course, initially all subsumptions are of the form 1).

Lemma 35. If the subsumptions in Γ are of the forms 1)–3), then this is still
the case after one rule application.

Proof. If a rule directly creates a subsumption, then it is of the form 3) (Decom-
position rule and Mutation rules 1, 3, and 4).

If the current assignment S is extended by a rule, then a subsumption s ∈ Γ may
be expanded w.r.t. S. If s is of the form 1), then the resulting subsumptions will
be of the form 2). If it is of the form 3), then the resulting subsumptions will
also be of this form.

Other operations executed by a rule application do not affect the invariant.

This leads us to the following conclusion.

Lemma 36. Every run of Algorithm 27 on input Γ0 terminates in time polyno-
mial in the size of Γ0 ∪ T .

Proof. There are only polynomially many subsumptions of the forms 1)–3). Since
every rule application solves at least one subsumption, by Lemma 35 the algo-
rithm can apply at most polynomially many rules.

Checking applicability of the rules is thus done only polynomially often and only
executes a subset of the following operations, all of which can be done in time
polynomial in the size of Γ0 ∪ T :

• Guessing a set of atoms of T .

• Checking a subsumption between ground atoms of Γ0 ∪ T (see [11]).

• Checking whether the atoms of the subsumption are of a specific form, e.g.,
ground or existential restrictions.

• Looking up whether an atom is in the current assignment SX of a variable
X that occurs on the left-hand side of the subsumption.

Additionally, the application of a rule can execute the following polynomial op-
erations:

• Guessing polynomially many atoms from the left-hand side of a subsump-
tion.
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• Adding polynomially many subsumptions to Γ.

• Adding polynomially many atoms to the current assignment.

• Checking whether the current assignment is cyclic: It has to be checked
whether there is a sequence X1, . . . , Xn of variables such that X1 = Xn and
Xi directly depends on Xi+1 for each i ∈ {1, . . . , n − 1} w.r.t. the current
assignment S. This can be expressed as a reachability problem in a graph
of polynomial size, and thus can be solved in polynomial time.

This concludes the analysis of Algorithm 27 and the proof of our main result.

Theorem 37. Algorithm 27 is an NP-decision procedure for unifiability in EL
w.r.t. cycle-restricted TBoxes.

This again shows that EL-unification w.r.t. cycle-restricted TBoxes is in NP.
Furthermore, it also yields a different proof of the locality result of Theorem 23:
If Γ is unifiable w.r.t. T , by Section 7.4, Algorithm 27 has a successful run on
input Γ. By Section 7.3, there is a unifier of Γ w.r.t. T that is induced by an
acyclic assignment.

8 Conclusions

We have shown that unification in EL stays in NP in the presence of a cycle-
restricted TBox, by giving a brute-force NP-algorithm that tries to guess a local
unifier. On the one hand, this algorithm is interesting since it provides a quite
simple, self-contained proof for the complexity upper-bound. On the other hand,
it can be seen as a first step towards a polytime reduction of the unification
problem to a propositional satisfiability problem (SAT), similar to the reduc-
tion in [6]. However, we would also need to encode subsumption w.r.t. a cycle-
restricted TBox into the SAT problem in order to avoid generating solutions of
the SAT problem that do not correspond to solutions of the unification problem.
While Lemma 6 can probably be used to obtain such an encoding it is not clear
how to do this in polynomial time. In fact, there may exist exponentially many
subsumptions A1u· · ·uAk vT B for atoms A1, . . . , Ak, B of T . The goal-oriented
algorithm already has the property that it only generates substitutions that are
unifiers, but a practical implementation still needs to be optimized by including
some of the ideas underlying modern SAT solvers.

On the theoretical side, the main topic for future research is to consider unifi-
cation w.r.t. unrestricted general TBoxes. In order to generalize the brute-force
algorithm in this direction, we need to find a more general notion of locality.
Starting with the goal-oriented algorithm, the idea would be not to fail when a
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cyclic assignment is generated, but rather to add rules that can break such cycles,
similar to what is done in procedures for general E-unification [22].

Another idea could be to use just the rules of our goal-oriented algorithm, and
not fail when a cyclic assignment S is generated. Our conjecture is that then
the background TBox T together with the cyclic TBox TS induced by S satisfies
C vT ∪TS D for all subsumptions C v? D in Γ0.
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