
Dresden University of Technology
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

Unification in the Description Logic EL Without

Top Constructor

Franz Baader Nguyen Thanh Binh Stefan Borgwardt
Barbara Morawska

LTCS-Report 11-01

This is an updated version of the original report that includes
Appendix A on locality of unifiers.

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nöthnitzer Str. 46

Dresden

Unification in the Description Logic EL Without
Top Constructor

Franz Baader Nguyen Thanh Binh Stefan Borgwardt
Barbara Morawska

Abstract

Unification in Description Logics has been proposed as a novel inference
service that can, for example, be used to detect redundancies in ontologies.
The inexpressive Description Logic EL is of particular interest in this con-
text since, on the one hand, several large biomedical ontologies are defined
using EL. On the other hand, unification in EL has recently been shown
to be NP-complete, and thus of considerably lower complexity than unifi-
cation in other DLs of similarly restricted expressive power. However, EL
allows the use of the top concept (>), which represents the whole interpre-
tation domain, whereas the large medical ontology SNOMED CT makes no
use of this feature. Surprisingly, removing the top concept from EL makes
the unification problem considerably harder. More precisely, we will show
that unification in EL without the top concept is PSpace-complete.

1 Introduction

Description logics (DLs) [3] are a well-investigated family of logic-based knowledge
representation formalisms. They can be used to represent the relevant concepts of
an application domain using concept terms, which are built from concept names
and role names using certain concept constructors. The DL EL offers the con-
structors conjunction (u), existential restriction (∃r.C), and the top concept (>).
From a semantic point of view, concept names and concept terms represent sets
of individuals, whereas roles represent binary relations between individuals. The
top concept is interpreted as the set of all individuals. For example, using the
concept names Male, Female, Person and the role names child, job, the concept of
persons having a son, a daughter, and a job can be represented by the EL-concept
term Person u ∃child.Male u ∃child.Female u ∃job.>.

In this example, the availability of the top concept in EL allows us to state that
the person has some job, without specifying any further to which concept this
job belongs. Knowledge representation systems based on DLs provide their users

1

with various inference services that allow them to deduce implicit knowledge from
the explicitly represented knowledge. For instance, the subsumption algorithm
allows one to determine subconcept-superconcept relationships. For example,
the concept term ∃job.> subsumes (i.e., is a superconcept of) the concept term
∃job.Boring since anyone that has a boring job at least has some job. Two concept
terms are called equivalent if they subsume each other, i.e., if they are always
interpreted as the same set of individuals.

The DL EL has recently drawn considerable attention since, on the one hand,
important inference problems such as the subsumption problem are polynomial in
EL [1, 2]. On the other hand, though quite inexpressive, EL can be used to define
biomedical ontologies. For example, the large medical ontology SNOMED CT1

can be expressed in EL. Actually, if one takes a closer look at the concept defi-
nitions in SNOMED CT, then one sees that they do not contain the top concept.

Unification in DLs has been proposed in [7] as a novel inference service that can,
for example, be used to detect redundancies in ontologies. For example, assume
that one knowledge engineer defines the concept of female professors as

Person u Female u ∃job.Professor,

whereas another knowledge engineer represent this notion in a somewhat different
way, e.g., by using the concept term

Woman u ∃job.(Teacher u Researcher).

These two concept terms are not equivalent, but they are nevertheless meant
to represent the same concept. They can obviously be made equivalent by
substituting the concept name Professor in the first term by the concept term
Teacher u Researcher and the concept name Woman in the second term by the
concept term Person u Female. We call a substitution that makes two concept
terms equivalent a unifier of the two terms. Such a unifier proposes definitions
for the concept names that are used as variables. In our example, we know that,
if we define Woman as PersonuFemale and Professor as TeacheruResearcher, then
the two concept terms from above are equivalent w.r.t. these definitions.

In [7] it was shown that, for the DL FL0, which differs from EL by offering
value restrictions (∀r.C) in place of existential restrictions, deciding unifiability
is an ExpTime-complete problem. In [4], we were able to show that unification
in EL is of considerably lower complexity: the decision problem is “only” NP-
complete. The original unification algorithm for EL introduced in [4] was a
brutal “guess and then test” NP-algorithm, but we have since then also developed
more practical algorithms. On the one hand, in [6] we describe a goal-oriented
unification algorithm for EL, in which nondeterministic decisions are only made
if they are triggered by “unsolved parts” of the unification problem. On the other

1see http://www.ihtsdo.org/snomed-ct/

2

hand, in [5], we present an algorithm that is based on a reduction to satisfiability
in propositional logic (SAT), and thus allows us to employ highly optimized state-
of-the-art SAT solvers for implementing an EL-unification algorithm.

As mentioned above, however, SNOMED CT is not formulated in EL, but rather
in its sub-logic EL−>, which differs from EL in that the use of the top concept is
disallowed. If we employ EL-unification to detect redundancies in (extensions of)
SNOMED CT, then a unifier may introduce concept terms that contain the top
concept, and thus propose definitions for concept names that are of a form that is
not used in SNOMED CT. Apart from this practical motivation for investigating
unification in EL−>, we also found it interesting to see how such a small change
in the logic influences the unification problem. Surprisingly, it turned out that
the complexity of the problem increases considerably (from NP to PSpace). In
addition, compared to EL-unification, quite different methods had to be devel-
oped to actually solve EL−>-unification problems. In particular, we will show
that—similar to the case of FL0-unification—EL−>-unification can be reduced
to solving certain language equations. In contrast to the case of FL0-unification,
these language equations can be solved in PSpace rather than ExpTime, which
we show by a reduction to the emptiness problem for alternating automata on
finite words.

2 The Description Logics EL and EL−>

The syntax of the following DLs is based on a set NC of concept names and a
set NR of role names. EL-concept terms are built from concept names using the
constructors conjunction C uD, existential restriction ∃r.C and top concept >.
The syntax of the DL EL−> is defined as for EL, with the exception that the
concept constructor > is not allowed.

The semantics of these concept terms is defined as usual, using interpretations
I = (DI , ·I), which consist of a nonempty domain DI and an interpretation
function ·I that assigns subsets of DI to every concept name and binary relations
over DI to every role name (see Table 1).

The concept term C is subsumed by the concept term D (written C v D) iff
CI ⊆ DI holds for all interpretations I. C is equivalent to D (C ≡ D) iff
CI = DI for every interpretation I.

It is useful to know the following characterization of subsumption in EL [6]. As
a special case, this result also holds for EL−>-concept terms.

Lemma 1. Let C = A1 u . . . u Ak u ∃r1.C1 u . . . u ∃rm.Cm and D = B1 u . . . u
Bl u∃s1.D1u . . .u∃sn.Dn be two EL-concept terms, where A1, . . . , Ak, B1, . . . , Bl

are concept names. Then C v D iff {B1, . . . , Bl} ⊆ {A1, . . . , Ak} and for every
j ∈ {1, . . . , n} there exists an i ∈ {1, . . . ,m} such that ri = sj and Ci v Dj.

3

Name Syntax Semantics

concept name A AI ⊆ DI
role name r rI ⊆ DI ×DI
top concept > >I = DI
conjunction C uD (C uD)I = CI ∩DI
existential restriction ∃r.C (∃r.C)I = {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
subsumption C v D CI ⊆ DI

equivalence C ≡ D CI = DI

Table 1: Syntax and semantics of EL.

A concept term is called an atom iff it is a concept name or an existential restric-
tion. The set At(C) of all atoms of any concept term C is defined as follows:

• If C = >, then At(C) = ∅.

• If C is a concept name, then At(C) := {C}.

• If C = ∃r.D, then At(C) := {C} ∪ At(D).

• If C = C1 u C2, then At(C) := At(C1) ∪ At(C2).

Every concept term C is a conjunction of atoms C1, . . . , Cn; these are called the
top-level atoms of C. As a special case, the concept term > can be viewed as
the empty conjunction (n = 0). Using these conventions, the following is an easy
consequence of Lemma 1.

Lemma 2. Let C, D be concept terms. Then C v D iff for every top-level atom
D′ of D there is a top-level atom C ′ of C with C ′ v D′.

Concept names and existential restrictions ∃r.D, where D is a concept name or
>, are called flat atoms. A concept term is flat iff it is a conjunction of flat atoms.

2.1 Particles

Modulo equivalence, the subsumption relation is a partial order on concept terms.
In EL, the top concept > is the greatest element w.r.t. this order. In EL−>,
however, there are many incomparable maximal concept terms. We will see below
that these are exactly the concept terms of the form ∃r1.∃r2. . . . ∃rn.A for role
names r1, . . . , rn and a concept name A. We call such concept terms particles and
often abbreviate them by ∃r1 . . . rn.A. Thus, particles ∃w.A are characterized by
a word w ∈ N∗R and a concept name A ∈ NC . In the case that w = ε, we have
∃w.A = A.

4

The set Part(C) of all particles of an EL−>-concept term C is defined as follows.

• If C is a concept name, Part(C) := {C}.

• If C = ∃r.D, then Part(C) := {∃r.M |M ∈ Part(D)}.

• If C = C1 u C2, then Part(C) := Part(C1) ∪ Part(C2).

For example, the particles of the concept A u ∃r.(A u ∃r.B), where A,B ∈ NC

and r ∈ NR, are A, ∃r.A and ∃rr.B. The next lemma states that particles are
indeed the maximal concept terms w.r.t. subsumption in EL−> and characterizes
the particles in Part(C) for an EL−>-concept term C.

Lemma 3. Let C be an EL−>-concept term and B a particle.

1. If B v C, then B ≡ C.

2. B ∈ Part(C) iff C v B.

Proof. We show both claims by induction on the length of B, i.e., the number of
existential restrictions it contains.

1. If B is a concept name and B v C, then Lemma 1 yields that B is the only
possible top-level atom of C, which implies that B ≡ C.

Otherwise, B = ∃r.B′ for a particle B′. Then every top-level atom of C
must be of the form ∃r.C ′ with B′ v C ′. Since the particle B′ is shorter
than B, induction yields B′ ≡ C ′ for every top-level atom ∃r.C ′ of C, which
implies B ≡ C.

2. If B is a concept name, then B ∈ Part(C) is equivalent to the fact that B
is a top-level atom of C, which in turn is equivalent to C v B by Lemma 2.

Otherwise, B = ∃r.B′ for a particle B′. By definition, B ∈ Part(C) is equiv-
alent to the existence of a top-level atom ∃r.C ′ of C with B′ ∈ Part(C ′).
By induction, this is equivalent to the existence of a top-level atom ∃r.C ′
of C with C ′ v B′. By Lemma 1, this is again equivalent to C v B.

3 Unification in EL and EL−>

In the following, let L denote one of the DLs EL or EL−>.

We partition the set of concept names into a set Nc of concept constants and a
set Nv of concept variables. An L-substitution is a mapping σ from the variables
to L-concept terms. A substitution can be extended from variables to L-concept

5

terms in the usual way. An L-concept term is called ground if it contains no
variables and a substitution σ is called ground if the concept terms in the image
of σ are ground.

Definition 4. An L-unification problem is of the form Γ = {C1 ≡? D1, . . . ,
Cn ≡? Dn}, where C1, D1, . . . Cn, Dn are L-concept terms. The L-substitution σ is
an L-unifier of Γ iff it solves all the equations Ci ≡? Di in Γ, i.e., iff σ(Ci) ≡ σ(Di)
for i = 1, . . . , n. In this case, Γ is called L-unifiable.

We will use the subsumption C v? D as abbrevation for the equation CuD ≡? C.
Obviously, σ solves this equation iff σ(C) v σ(D).

The problem of L-unification is to decide whether a given L-unification problem
is L-unifiable. EL-unification was shown to be NP-complete in [6]. We will show
that this decision problem is harder in the less expressive DL EL−>; to be precise,
it is PSpace-complete.

Clearly, every EL−>-unification problem Γ is also an EL-unification problem.
Whether Γ is L-unifiable or not may depend, however, on whether L = EL or
L = EL−>. As an example, consider the problem Γ := {A v? X,B v? X}, where
A,B are distinct concept constants and X is a concept variable. Obviously, the
substitution that replaces X by > is an EL-unifier of Γ. However, Γ does not
have an EL−>-unifier. In fact, for such a unifier σ, the EL−>-concept term σ(X)
would need to satisfy A v σ(X) and B v σ(X). Since A and B are particles,
Lemma 3 would imply A ≡ σ(X) ≡ B and thus A ≡ B, which is not the case.

In the following, we will assume that unification problems are flat, i.e., they consist
of equations between flat concept terms. By introducing new concept variables
and eliminating >, every EL−>-unification problem Γ can be transformed in
polynomial time into a flat EL−>-unification problem Γ′ such that Γ is solvable
iff Γ′ is solvable [6].

Given a flat unification problem Γ, we denote by At(Γ) the set of all atoms of Γ,
i.e., the union of all sets of atoms of the occurring concept terms. By Var(Γ) we
denote the variables that occur in Γ and by NV(Γ) := At(Γ) \ Var(Γ) the set of
all non-variable atoms of Γ.

We now show that when searching for unifiers, we may restrict ourselves to ground
unifiers that only contain the role names and constants that occur in the consid-
ered unification problem.

Lemma 5. Let Γ be a flat unification problem with EL−>-unifier γ. Then there
is a ground EL−>-unifier γ′ of Γ such that, for every variable X, the concept term
γ′(X) contains only constants and role names that occur in Γ.2

2To be exact, we have to assume that Γ contains at least one constant and at least one role
name, which can always be satisfied by adding a trivial equation like ∃r.A ≡? ∃r.A to Γ.

6

Proof. Let r be a role name and A a constant that both occur in Γ. We define
the renaming function f that maps each concept term C to the concept term
f(C), where every occurence of a role name that is not in Γ is replaced by r and
every occurrence of a constant that is not in Γ and every occurrence of a variable
is replaced by A.

It is easy to show that f preserves subsumptions, i.e., C v D implies f(C) v f(D)
for all concept terms C,D. This can be shown using well-founded induction on
the lexicographic order on pairs (C,D), where the components are ordered by ≤
as follows: C1 ≤ C2 iff C1 is a subterm of C2.

Thus, if C ≡? D is an equation in Γ, γ(C) ≡ γ(D) implies f(γ(C)) ≡ f(γ(D)).
The definition γ′(X) := f(γ(X)) for all variables X clearly yields a ground unifier
γ′ of Γ that has the claimed property.

In the following, we will assume that NR is the set of role names occuring in Γ
and Nc is the set of constants occuring in Γ. Since we are only interested in the
substitution of variables occurring in Γ, we will also restrict the set Nv to Var(Γ).

3.1 EL-unification by guessing acyclic assignments

The NP-algorithm for EL-unification introduced in [4] guesses, for every vari-
able X occurring in Γ, a set S(X) of non-variable atoms of Γ. Given such an
assignment of sets of non-variable atoms to the variables in Γ, we say that the
variable X directly depends on the variable Y if Y occurs in an atom of S(X).
Let depends on be the transitive closure of directly depends on. If there is no
variable that depends on itself, then we call this assignment acyclic. In case the
guessed assignment is not acyclic, this run of the NP-algorithm returns “fail.”
Otherwise, there exists a strict linear order > on the variables occurring in Γ
such that X > Y if X depends on Y . One can then define the substitution γS

induced by the assignment S along this linear order:

• If X is the least variable w.r.t. >, then γS(X) is the conjunction of the
elements of S(X), where the empty conjunction is >.

• Assume γS(Y) is defined for all variables Y < X. If S(X) = {D1, . . . , Dn},
then γS(X) := γS(D1) u . . . u γS(Dn).

The algorithm then tests whether the substitution γS computed this way is a
unifier of Γ. If this is the case, then this run returns γS; otherwise, it returns
“fail.” In [4] it is shown that Γ is unifiable iff there is a run of this algorithm on
input Γ that returns a substitution (which is then an EL-unifier of Γ).

7

3.2 Why this does not work for EL−>

The EL-unifiers returned by the EL-unification algorithm sketched above need
not be EL−>-unifiers since some of the sets S(X) in the guessed assignment may
be empty, in which case γS(X) = >. This suggests the following simple mod-
ification of the above algorithm: require that the guessed assignment is such
that all sets S(X) are nonempty. If such an assignment S is acyclic, then the
induced substitution γS is actually an EL−>-substitution, and thus the substitu-
tions returned by the modified algorithm are indeed EL−>-unifiers. However, this
modified algorithm does not always detect EL−>-unifiability, i.e., it may return
no substitution although the input problem is EL−>-unifiable.

As an example, consider the EL−>-unification problem

Γ := {A uB ≡? Y, B u C ≡? Z, ∃r.Y v? X, ∃r.Z v? X},

where X, Y, Z are concept variables and A,B,C are distinct concept constants.
We claim that, up to equivalence, the substitution that maps X to ∃r.B, Y to
AuB, and Z to B uC is the only EL−>-unifier of Γ. In fact, any EL−>-unifier γ
of Γ must map Y to AuB and Z to B uC, and thus satisfy ∃r.(AuB) v γ(X)
and ∃r.(B u C) v γ(X). Lemma 2 then yields that the only possible top-level
atom of γ(X) is ∃r.B. However, there is no non-variable atom D ∈ NV(Γ) such
that γ(D) is equivalent to ∃r.B. This shows that Γ has an EL−>-unifier, but this
unifier cannot be computed by the modified algorithm sketched above.

The main idea underlying the EL−>-unification algorithm introduced in the next
section is that one starts with an EL-unifier, and then conjoins “appropriate”
particles to the images of the variables that are replaced by > by this unifier. It
is, however, not so easy to decide which particles can be added this way with-
out turning the EL-unifier into an EL−>-substitution that no longer solves the
unification problem.

4 An EL−>-unification algorithm

We will now present a series of reductions that enable us to show that the unifica-
tion problem for EL−> is in PSpace. For the remainder of this section, let Γ be
a flat EL−>-unification problem. We assume that Γ is a set of flat subsumptions
of the form C1 u . . . u Cn v? D. Every equation C1 u . . . u Cn ≡? D1 u . . . uDm

in Γ can equivalently be expressed by n+m such subsumptions.

4.1 Modifying the Subsumptions

The first reduction modifies Γ in such a way that only subsumptions of the form
C1 u . . .uCn v? X remain, where C1, . . . , Cn are atoms of Γ and X is a variable.

8

We will remove all other subsumptions from Γ, but introduce new subsumptions
of the form C v? X, where C is an atom and X a variable.

To this purpose, we guess a function τ : At(Γ)2 → {0, 1}, which specifies which
subsumptions between atoms of Γ should hold for the EL−>-unifier we are looking
for. The assignment τ(D1, D2) = 1 for D1, D2 ∈ At(Γ) means that we restrict
our search to substitutions σ satisfying σ(D1) v σ(D2). Obviously, any such
mapping τ also yields an assignment

Sτ (X) := {D ∈ NV(Γ) | τ(X,D) = 1},

and we require that this assignment is acyclic and induces an EL-unifier of Γ.

Definition 6. The mapping τ : At(Γ)2 → {0, 1} is called a subsumption mapping
for Γ if it satisfies the following three conditions:

1. It respects the properties of subsumption in EL:

(a) τ(D,D) = 1 for each D ∈ At(Γ).

(b) τ(A1, A2) = 0 for different constants A1, A2 ∈ At(Γ).

(c) τ(∃r.C1, ∃s.C2) = 0 for different role names r, s with ∃r.C1, ∃s.C2 ∈ At(Γ).

(d) τ(A, ∃r.C) = τ(∃r.C,A) = 0 for each constant A ∈ At(Γ), role name r
and variable or constant C with ∃r.C ∈ At(Γ).

(e) If ∃r.C1, ∃r.C2 ∈ At(Γ), then τ(∃r.C1, ∃r.C2) = τ(C1, C2).

(f) For all atoms D1, D2, D3 ∈ At(Γ), if τ(D1, D2) = τ(D2, D3) = 1, then
τ(D1, D3) = 1.

2. It induces an EL-substitution, i.e., the assignment Sτ is acyclic and thus in-
duces a substitution γS

τ
, which we will simply denote by γτ .

3. It represents a unifier of Γ, i.e., it satisfies the following conditions for each
subsumption C1 u . . . u Cn v? D in Γ:

(a) If D is a non-variable atom, then there is at least one Ci such that
τ(Ci, D) = 1.

(b) If D is a variable and τ(D,C) = 1 for a non-variable atom C ∈ NV(Γ),
then there is at least one Ci with τ(Ci, C) = 1.

Note that these conditions express the nearly same restrictions on τ as the propo-
sitional clauses that were constructed in [5] to show that EL-unifiability is in NP.
There it was shown in Proposition 3.7 that γτ is actually an EL-unifier of Γ.
From this fact it follows that if Γ has no EL-unifier, then it is impossible to guess
τ with the restrictions above.

It is important to note that γτ need not agree with τ on every subsumption be-
tween atoms of Γ. The reason for this is that τ specifies subsumptions which

9

should hold in the EL−>-unifier of Γ to be constructed. We will later construct
such EL−>-unifiers of Γ by adding particles to the sets Part(γτ (X)). In the pro-
cess some subsumptions that are satisfied by γτ will become unsatisfied. However,
if τ(C1, C2) = 1 holds, then the subsumption C1 v? C2 will never be violated.
Since we have no way of knowing beforehand which of these subsumptions will
still hold, we guess them nondeterministically by guessing τ . It is clear that
guessing τ and checking the above conditions can be done in NP.

We now specify the new unification problem ∆Γ,τ that contains only simple sub-
sumptions that have a single variable on the right-hand side. It consists of the
two parts ∆Γ and ∆τ , which are defined as follows:

∆Γ := {C1 u . . . u Cn v? X ∈ Γ | X is a variable of Γ} ,
∆τ := {C v? X | X is a variable and C an atom of Γ with τ(C,X) = 1} .

Finally, we set ∆Γ,τ := ∆Γ ∪∆τ .

For an arbitrary EL−>-substitution σ we will in the following write Sτ ≤ Sσ if

Sτ (X) ⊆ Sσ(X) := {D ∈ NV(Γ) | σ(X) v σ(D)}

holds for every variable X. Before we can show a connection between the unifica-
tion problems Γ and ∆Γ,τ , we need the following auxiliary lemma. We show that
under some conditions on an EL−>-substitution σ (most importantly Sτ ≤ Sσ),
we can infer σ(C) v σ(D) from τ(C,D) = 1 for C ∈ At(Γ) and D ∈ NV(Γ).

Lemma 7. Let Γ be a flat EL−>-unification problem, τ a subsumption mapping
for Γ, and σ an EL−>-substitution with Sτ ≤ Sσ. For all atoms C ∈ At(Γ) and
D ∈ NV(Γ), the following holds:

• If D is ground, then τ(C,D) = 1 implies σ(C) v σ(D).

• If D = ∃r.Y and σ satisfies all subsumptions of the form C ′ v? Y in ∆τ ,
then τ(C,D) = 1 implies σ(C) v σ(D).

Proof. If C is a variable, then τ(C,D) = 1 implies D ∈ Sτ (C) ⊆ Sσ(C), and
thus σ(C) v σ(D) by the definition of Sσ. Otherwise, we consider the structure
of D. If D is a constant, then the Conditions 1(b) and 1(d) of Definition 6 yield
C = D, and the subsumption is clearly satisfied.

If D is not a constant, then it is of the form ∃r.D′. By the Conditions 1(c)–(e) of
Definition 6, C must be of the form ∃r.C ′ and τ(C ′, D′) = 1. It remains to show
that σ(C ′) v σ(D′) holds.

If D′ is a constant, then either C ′ = D′, in which case we immediately have
σ(C ′) v σ(D′), or C ′ is a variable and D′ ∈ Sτ (C ′) ⊆ Sσ(C ′). In the latter case,
the claim follows from the definition of Sσ.

10

It only remains to consider the case that D′ is a variable. Then, C ′ v D′ is a
subsumption in ∆τ and we have σ(C ′) v σ(D′) by assumption.

We can now show the following characterization regarding the two unification
problems Γ and ∆Γ,τ .

Lemma 8. Let Γ be a flat EL−>-unification problem. Then the following state-
ments are equivalent:

• Γ is EL−>-unifiable.

• There is a subsumption mapping τ : At(Γ)2 → {0, 1} for Γ such that ∆Γ,τ

has an EL−>-unifier σ with Sτ ≤ Sσ.

Proof. If Γ has a ground EL−>-unifier σ, we can define τ as τ(D1, D2) = 1 iff
σ(D1) v σ(D2) holds for D1, D2 ∈ At(Γ). It is easy to see that σ satisfies all the
subsumptions in ∆Γ,τ , and Sτ ≤ Sσ. Additionally, τ is a solution mapping:

• Conditions 1(a)–(f) of Definition 6 are satisfied by the subsumption relation.

• Conditions 3(a) and 3(b) of Definition 6 are satisfied, since σ is a unifier
of Γ and Lemma 2 holds.

• Assume that there is a sequence X1, . . . , Xn (n > 1) of variables such that
X1 = Xn and σ(Xi) v σ(∃ri.Xi+1) for each i ∈ {1, . . . , n − 1}. By the
properties of subsumption, this would imply σ(X1) v σ(∃r1 . . . rn−1.X1),
which is impossible. Thus, Condition 2 of Definition 6 is also satisfied.

Conversely, let τ : At(Γ)2 → {0, 1} be a subsumption mapping for Γ and σ be
an EL−>-unifier of ∆Γ,τ with Sτ ≤ Sσ. We will show that σ also satisfies all
discarded subsumptions of the form C1 u . . . u Cn v? D ∈ Γ, where D is a
non-variable atom of Γ.

By Condition 3(a) of Definition 6, there is an index i ∈ {1, . . . , n} with τ(Ci, D) =
1. Since σ satisfies all the subsumptions in ∆τ , we can apply Lemma 7 and get
σ(Ci) v σ(D). Thus, σ satisfies all subsumptions of Γ.

4.2 Linear Language Inclusions

For the next section, we fix a subsumption mapping τ : At(Γ)2 → {0, 1} for
Γ. We will show that unifiability of ∆Γ,τ (with an EL−>-unifier σ satisfying
Sτ ≤ Sσ) can be characterized by the existence of a certain solution to a finite
system of linear language inclusion over the alphabet NR and the indeterminates
X1, . . . , Xn. These inclusions are of the form

X ⊆ L0 ∪ L1X1 ∪ . . . ∪ LnXn , (1)

11

where X ∈ {X1, . . . , Xn} and each Li (i ∈ {0, . . . , n}) is a subset of NR ∪ {ε}.

A solution θ of a set of such inclusions assigns sets of words θ(Xi) ⊆ N∗R to the
indeterminates Xi such that the specified inclusions hold. The operation ∪ is the
union of sets and LiXi stands for the element-wise concatenation of the languages
Li and θ(Xi). We additionally define θ(LiXi) := Liθ(Xi) and θ(L0) := L0.

We will now build the finite set IΓ,τ of inclusions corresponding to ∆Γ,τ . The
indeterminates of IΓ,τ are of the form XA, where X ∈ Nv and A ∈ Nc. For each
constant A ∈ Nc and each subsumption s of the form C1u . . .uCn v? X in ∆Γ,τ ,
we add the following linear inclusion IA(s) to IΓ,τ :

XA ⊆ fA(C1) ∪ . . . ∪ fA(Cn) , where

fA(C) :=


{r}fA(C ′) if C = ∃r.C ′
YA if C = Y is a variable
{ε} if C = A
∅ if C ∈ Nc \ {A}

One can see that all the inclusions IA(s) for s ∈ ∆Γ,τ are of the form (1) since
∆Γ,τ only contains flat atoms. For example, the subsumption

∃s.A u B u ∃r.X u Y u A v? X

for constants A,B, role names r, s and variables X, Y would be translated into
the two inclusions

XA ⊆ {ε, s} ∪ {r}XA ∪ YA ,

XB ⊆ {ε} ∪ {r}XB ∪ YB ,

if we assume that A,B are the only constants that occur in Γ.

Intuitively, the solutions of these inclusions represent sets of particles that can be
added to the corresponding variables. If θ is a solution of IΓ,τ , X is a variable,
A a constant and w ∈ θ(XA), then the particle ∃w.A is a candidate for the set
Part(σ(X)) for some unifier σ of ∆Γ,τ . We will formalize this connection in the
proof of Lemma 9.

In the following, we are only interested in solutions to IΓ,τ that have the following
properties. A solution θ of IΓ,τ is called admissible if, for every variable X ∈ Nv,
there is a constant A ∈ Nc such that θ(XA) is nonempty. The solution θ is called
finite if all the sets θ(XA) are finite.

Lemma 9. Let Γ be a flat EL−>-unification problem and τ a subsumption map-
ping for Γ. Then ∆Γ,τ has an EL−>-unifier σ with Sτ ≤ Sσ iff IΓ,τ has a finite,
admissible solution.

Proof. Let σ be a ground EL−>-unifier of ∆Γ,τ with Sτ ≤ Sσ. We define a
solution θ of IΓ,τ as follows: for each variable X and constant A, we set

θ(XA) := {w ∈ N∗R | ∃w.A ∈ Part(σ(X))} .

12

To check that θ is a solution of IΓ,τ , consider the inclusion IA(s) for some s of
the form C1 u . . . u Cn v? X in ∆Γ,τ and a word w ∈ θ(XA). By Lemma 3,
we have σ(X) v ∃w.A, and thus, Lemma 2 implies that there is a Ci such that
σ(Ci) v ∃w.A. Hence, ∃w.A is a particle of σ(Ci). We show that this implies
that w ∈ θ(fA(Ci)) by considering the structure of Ci.

(i) If Ci is a constant, then it must be A, since ∃w.A is one of its particles.
Then w = ε and thus, w ∈ fA(Ci) = θ(fA(Ci)).

(ii) If Ci = Y is a variable, then w ∈ θ(YA) = θ(fA(Ci)) by definition.

(iii) If Ci is of the form ∃r.C ′ for a role name r and a constant or variable C ′,
then w must be of the form rw′ for w′ ∈ N∗R and ∃w′.A must be a particle
of σ(C ′). Applying the considerations from cases (i) and (ii) to C ′ and w′

yields w′ ∈ θ(fA(C ′)) and thus, w = rw′ ∈ {r}θ(fA(C ′)) = θ(fA(Ci)).

In all of the above cases, we have w ∈ θ(fA(Ci)), which implies that θ satisfies
IA(s). Furthermore, θ is finite, since σ(X) can have only finitely many particles.
Additionally, since σ is a ground EL−>-substitution, for every variable X there
is at least one word wX ∈ N∗R and constant AX ∈ Nc such that ∃wX .AX ∈
Part(σ(X)). This implies that θ is also admissible.

Conversely, let θ be a finite, admissible solution of IΓ,τ . We define the EL−>-
substitution σ by induction on the dependency order > induced by Sτ as follows.
Let X be a variable and assume that σ(Y) has already been defined for all vari-
ables Y with X > Y . We set

σ(X) :=
l

D∈Sτ (X)

σ(D) u
l

A∈Nc

l

w∈θ(XA)

∃w.A .

Since θ is finite and admissible, σ is actually an EL−>-substitution. The property
Sτ ≤ Sσ follows from the fact that, for each D ∈ Sτ (X), the atom σ(D) is a top-
level atom of σ(X) and thus, σ(X) v σ(D) holds. It remains to show that σ is a
unifier of ∆Γ,τ .

We will show that σ satisfies all subsumptions in ∆Γ,τ using induction on the total
order > on the variables. Let X be a variable and let σ satisfy all subsumptions
D1 u . . . uDm v? Y in ∆Γ,τ for all variables Y with X > Y . We consider a

subsumption s of the form C1 u . . . u Cn v? X in ∆Γ,τ

and have to show that every top-level atom of σ(X) subsumes some σ(Ci). There
are two kinds of top-level atoms of σ(X).

If D ∈ Sτ (X), then τ(X,D) = 1 and σ(D) is a top-level atom of σ(X). If s ∈ ∆Γ,
then Condition 3(b) of Definition 6 implies that there is a Ci with τ(Ci, D) = 1.

13

But also in the case that s ∈ ∆τ , we know that s is of the form C1 v X and
τ(C1, X) = 1 holds. By condition I.6, we deduce that τ(Ci, D) = 1 holds for
i = 1.

By definition of the order >, the non-variable atom D can only contain a variable
Y with X > Y . By the induction hypothesis, σ satisfies all subsumptions from
∆τ having variables smaller than X w.r.t. > on the right-hand side. Thus, we
can apply Lemma 7 to conclude that σ(Ci) v σ(D) holds.

The other top-level atoms of σ(X) that we have to consider are of the form ∃w.A
for A ∈ Nc and w ∈ θ(XA). Since θ is a solution of IΓ,τ , it satisfies the inclusion
IA(s), which implies that there is a Ci such that w ∈ θ(fA(Ci)). We consider the
following cases:

(i) If Ci = A, then w ∈ θ({ε}) = {ε} implies w = ε and thus, σ(Ci) =
A = ∃w.A. Ci cannot be a constant other than A, since this would imply
w ∈ θ(∅) = ∅.

(ii) In the case that Ci = Y is a variable, we have w ∈ θ(YA). Thus, ∃w.A is a
top-level atom of σ(Y) = σ(Ci), which implies σ(Ci) v ∃w.A.

(iii) In the remaining case that Ci = ∃r.C ′ for a role name r and a variable
or constant C ′, we have w ∈ θ({r}fA(C ′)). Thus, w is of the form rw′

for w′ ∈ θ(fA(C ′)). Applying the considerations from cases (i) and (ii) to
C ′ and w′ yields the subsumption σ(C ′) v ∃w′.A, which implies σ(Ci) =
∃r.σ(C ′) v ∃r.∃w′.A = ∃w.A.

4.3 Maximal Solutions

To obtain a PSpace-decision procedure for the unification problem in EL−>, we
need to check for finite, admissible solutions of finite sets of inclusions of the
form (1). Later, we will construct automata that recognize exactly the maximal
solutions of such problems. In this section, we bridge the gap between finite and
maximal admissible solutions.

In the following, let I be a finite set of inclusions of the form (1), Σ be the
underlying alphabet, and Ind(I) denote the set of indeterminates occurring in I.

First, we establish the existence of a maximal solution for such problems w.r.t.
to the following order on solutions. If θ1 and θ2 are two solutions of I, then
we write θ1 ⊆ θ2 if θ1(X) ⊆ θ2(X) holds for all X ∈ Ind(I). Furthermore,
if (θi)i∈I is a family of solutions, then their union is defined as the mapping(⋃

i∈I θi
)

(X) :=
⋃
i∈I θi(X) for all X ∈ Ind(I).

Lemma 10. The set of all solutions of I is closed under arbitrary unions and
has a maximal element w.r.t. ⊆.

14

Proof. Let (θi)i∈I be a nonempty family of solutions of I and consider an inclusion

X ⊆ L0 ∪ L1X1 ∪ . . . ∪ LnXn

of I. We have⋃
i∈I

θi(X) ⊆
⋃
i∈I

(
L0 ∪ L1θi(X1) ∪ . . . ∪ Lnθi(Xn)

)
= L0 ∪ L1

(⋃
i∈I

θi(X1)

)
∪ . . . ∪ Ln

(⋃
i∈I

θi(Xn)

)

by monotonicity of ∪ w.r.t. ⊆ and idempotency, associativity, and commutativity
of ∪. Thus,

⋃
i∈I θi is also a solution of I.

The empty union θ∅, for which θ∅(X) = ∅ holds for all indeterminates X, is always
a trivial solution of I. These facts imply the existence of a maximal solution of
I w.r.t. ⊆.

Now we establish a connection between finite and maximal solutions that map
some variables to a nonempty set.

Lemma 11. Let X be an indeterminate in I and θ∗ the maximal solution of I.
If θ∗(X) is nonempty, then there is a finite solution θ of I such that θ(X) is
nonempty.

Proof. Let w ∈ θ∗(X). We construct the finite solution θ of I by keeping only
the words of length |w|: for all indeterminates Y occurring in I we define

θ(Y) := {u ∈ θ∗(Y) | |u| ≤ |w|}.

By definition, we have w ∈ θ(X). To show that θ is indeed a solution of I,
consider an arbitrary inclusion Y ⊆ L0 ∪ L1X1 ∪ . . . ∪ LnXn in I, and assume
that u ∈ θ(Y). We must show that u ∈ L0 ∪ L1θ(X1) ∪ . . . ∪ Lnθ(Xn). Since
u ∈ θ∗(Y) and θ∗ is a solution of I, we have (i) u ∈ L0 or (ii) u ∈ Liθ∗(Xi) for
some i, 1 ≤ i ≤ n. In the first case, we are done. In the second case, u = αu′

for some α ∈ Li ⊆ NR ∪ {ε} and u′ ∈ θ∗(Xi). Since |u′| ≤ |u| ≤ |w|, we have
u′ ∈ θ(Xi), and thus u ∈ Liθ(Xi).

Thus, in order to check whether Γ is unifiable in EL−>, we only have to check for
admissibility of the maximal solution of IΓ,τ .

Lemma 12. There is a finite, admissible solution of IΓ,τ iff the maximal solution
θ∗ of IΓ,τ is admissible.

15

Proof. If IΓ,τ has a finite, admissible solution θ, then the maximal solution of
IΓ,τ contains this solution, and is thus also admissible.

Conversely, if θ∗ is admissible, then (by Lemma 11) for each X ∈ Var(Γ) there
is a constant A(X) and a finite solution θX of IΓ,τ such that θX(XA(X)) 6= ∅.
The union of these solutions θX for X ∈ Var(Γ) is the desired finite, admissible
solution.

4.4 Recognizing the Maximal Solution

We will now construct several finite automata AX , one for each indeterminate,
that compute the sets θ∗(X) of the maximal solution θ∗ of I. The automata model
we will use is that of alternating finite automata, which can make two kinds of
transitions: traditional, nondeterministic transitions that “guess” the next state
of the automaton; and “universal” transitions that force the automaton to explore
every possible successor state. One can imagine these universal transitions as the
splitting of the automaton into several copies, each of which goes into one possible
successor state and continues the computation independently.

Definition 13. An alternating finite automaton with ε-transitions (ε-AFA) A =
(Q∃, Q∀,Σ, q0, δ, F) consists of

• two finite, disjoint sets Q∃, Q∀ of (existential/universal) states (we will write
Q for Q∃ ∪Q∀),

• a finite alphabet Σ of input symbols,

• an initial state q0 ∈ Q,

• a transition function δ : Q× (Σ ∪ {ε})→ P(Q) and

• a set F ⊆ Q of final states.

A configuration of A is a pair (q, w), where q ∈ Q and w ∈ Σ∗. The transi-
tion function δ induces the following binary relation `A between configurations:
(q, w) `A (q′, w′) iff either

• w = w′ and q′ ∈ δ(q, ε) (ε-transition) or

• w = αw′ and q′ ∈ δ(q, α) for some α ∈ Σ (α-transition).

Note that the second kind of transition is only possible if w 6= ε, i.e., there is still
a part of the input word left to read.

A run of A is a finite, nonempty tree labeled by configurations of A that satisfies
the following conditions. If (q, w) is the label of some node and q ∈ Q∃, then the

16

node has exactly one successor labeled by a configuration (q′, w′) with (q, w) `A
(q′, w′). If (q, w) is the label of some node and q ∈ Q∀, then for all configurations
(q′, w′) with (q, w) `A (q′, w′) there is exactly one successor of the node labeled
by (q′, w′).

An ε-path is a path in this tree that consists only of ε-transitions. A run is
called successful iff for every leaf one of the following conditions holds. If (q, w)
is the label of the leaf, then either q ∈ F and w = ε or q ∈ Q∀ and there is no
configuration (q′, w′) with (q, w) ` (q′, w′).

An input word w ∈ Σ∗ is accepted by A iff there is a successful run of A the root
of which is labeled by (q0, w). The language recognized by A is L(A) := {w ∈
Σ∗ | w is accepted by A}.

Our goal is to define an ε-AFA AX that recognizes exactly θ∗(X) for one indeter-
minate X of I. The automaton checks whether the word w can be part of θ∗(X)
using the following ideas. Starting from the indeterminate X, the automaton
splits into several copies, each of which checks the restrictions imposed by one
inclusion of the form X ⊆ L0 ∪ L1X1 ∪ . . . ∪ LnXn. Each of these copies guesses
nondeterministically which of the sets L0, L1θ

∗(X1), . . . , Lnθ
∗(Xn) contains w.

Definition 14. Let X ∈ Ind(I). The ε-AFA AX = (Q∃, Q∀,Σ, q0, δ, F) is defined
as follows:

• Q∃ :=
(
I × {0, . . . , |Ind(I)|}

)
∪ {f0},

• Q∀ :=
(
Ind(I)× {0, . . . , |Ind(I)|}

)
∪ {f1},

• q0 := (X, 0),

• F := {f0},

• δ(fi, α) := ∅ for every i ∈ {0, 1} and α ∈ Σ ∪ {ε},

• δ((Y, λ), ε) := {(i, λ) | i : Y ⊆ . . . ∈ I} and δ((Y, λ), α) := ∅ for all
Y ∈ Ind(I), λ ∈ {0, . . . , |Ind(I)|}, and α ∈ Σ,

• For all inclusions i of the form Y ⊆ L0 ∪ L1X1 ∪ . . . ∪ LnXn in I, λ ∈
{0, . . . , |Ind(I)|} and α ∈ Σ,

δ((i, λ), ε) := {f0 | ε ∈ L0} ∪ {g(Xi, λ) | i ∈ {1, . . . , n}, ε ∈ Li} ,
δ((i, λ), α) := {f0 | α ∈ L0} ∪ {(Xi, 0) | i ∈ {1, . . . , n}, α ∈ Li} .

The auxiliary function g is defined as g(Xi, λ) := (Xi, λ+ 1) if λ < |Ind(I)|
and g(Xi, λ) := f1, otherwise.

17

In the case where there is one inclusion i of the form X ⊆ L0∪L1X1∪. . .∪LnXn in
I for which there is a symbol α ∈ Σ with ε /∈ Li and α /∈ Li for all i ∈ {0, . . . , n},
there is no valid α- or ε-transition from the (existential) state (i, λ). Thus, AX will
accept no word starting with α. This is consistent with the restriction imposed
by i on θ∗(X), since θ∗(X) can never contain a word starting with α.

The second component of the states is used to detect ε-cycles. Every time the
automaton makes an ε-transition it increases the counter λ in the second com-
ponent of its state. This counts the number of consecutive states of the form
(X, λ) connected only by ε-transitions. If λ grows larger than |Ind(I)|, some in-
determinate must have occured twice, i.e., there must have been an ε-cycle. The
automaton then goes to f1, i.e., it accepts everything that follows. The use of
this cycle detection mechanism is illustrated in the following example.

Example 15. Let I consist of the three inclusions

i1 : X ⊆ {r} ∪ {ε}Y, i2 : Y ⊆ {ε}X, and i3 : Y ⊆ {s}.

Consider Figure 1, which shows the only successful run ofAY accepting s ∈ θ∗(Y).

Intuitively, the automaton starts by asking whether s can be an element of θ∗(Y).
From i3 it can derive no contradiction, while from i2 it derives the information
that this is possible only if s is also an element of θ∗(X). It then proceeds to
the inclusion i1, which again redirects it to Y . In essence, at this point it has
the following information: s can be an element of θ∗(Y) only if s is an element
of θ∗(Y). Thus, the automaton can affirm the question, since θ∗ is the maximal
solution and will certainly contain a word if there is no reason against it.

One can see that in order to accept anything at all, the restriction on the length
of ε-paths is necessary. Otherwise, there would be no successful run starting in
the configuration ((Y, 0), s).

Intuitively, if the automaton has already checked the restrictions imposed on a
particular indeterminate, then it does not need to check them again. Thus, in a
successful run everything that lies below the second occurrence of an indetermi-
nate on the same ε-path can be ignored.

We want to construct an automaton that is of polynomial size in the size of I.
Thus, in order to detect these cycles, the automaton cannot simply remember
every indeterminate that has already been visited on the current ε-path. Instead,
we use the indirect approach to detect cycles via the length of ε-paths.

Lemma 16. Let X ∈ Ind(I) and θ∗ be the maximal solution of I. Then L(AX) =
θ∗(X).

Proof. If w ∈ L(AX), then there is a successful run R of AX on w. Let V denote
the set of nodes of R and l(v) the label of the node v ∈ V . We restrict the set of

18

((Y, 0), s)

((i3, 0), s)

(f0, ε)

s

ε

((i2, 0), s)

((X, 1), s)

((i1, 1), s)

((Y, 2), s)

((i3, 2), s)

(f0, ε)

s

ε

((i2, 2), s)

(f1, s)

ε

ε

ε

ε

ε

ε

Figure 1: A successful run of the automaton AY .

nodes to a subset V ′ ⊆ V as follows. Intuitively, since we used the restriction on
the length of ε-paths only to detect if one indeterminate has occurred twice, we
now remove the unnecessary parts from R, i.e., the parts of R below the second
occurrence of an indeterminate on an ε-path.

Formally, for every leaf of R labeled by (f1, u) for some word u ∈ Σ∗, there must
be an ε-path with nodes labeled by

((X1, 0), u), ((X2, 1), u), . . . , ((X|Ind(I)|+1, |Ind(I)|), u), (f1, u)

that ends in this leaf. We consider the smallest j ∈ {1, . . . , |Ind(I)| + 1} that
marks the second occurrence of an indeterminate on this path. We remove the
node labeled by ((Xj, j−1), u) and all nodes below it from V . After we have done
this for every leaf labeled by f1, V ′ no longer contains a node with an outgoing
edge to f1.

We now define the solution θR by

θR(Y) := {u ∈ Σ∗ | ∃v ∈ V ′ : l(v) = ((Y, . . .), u)}

for all Y ∈ Ind(I).

To show that this actually defines a solution of I, we consider an inclusion

i : Y ⊆ L0 ∪ L1X1 ∪ . . . ∪ LnXn

19

from I and a word u ∈ θR(Y). Then there is a node v ∈ V ′ labeled by ((Y, λ), u)
for some λ ∈ {0, . . . , |Ind(I)|}. This node must have a successor v′ ∈ V ′ labeled
by ((i, λ), u), which in turn has a single successor v′′ ∈ V . We make a case
distinction on the label l(v′′) = (q, u′).

• If u = u′, then q ∈ δ((i, λ), ε). Then either q = f0, which implies u = ε ∈ L0,
since R is successful, or q = g(Xi, λ) for some i ∈ {1, . . . , n} with ε ∈ Li.
In the second case, λ must be smaller than |Ind(I)| by construction of V ′.
If v′′ ∈ V ′, then q = (Xi, λ + 1) implies that u ∈ θR(Xi) = {ε}θR(Xi) ⊆
LiθR(Xi). If v′′ /∈ V ′, there is an ancestor ṽ ∈ V ′ of v′′ with l(ṽ) =
((Xi, λ

′), u) and λ′ ≤ λ, since v′′ marks the second occurrence of an inde-
terminate on an ε-path. In this case, we also have u ∈ θR(Xi) ⊆ LiθR(Xi).

• If u = αu′ for α ∈ Σ, then q ∈ δ((i, λ), α). Either q = f0 and α ∈ L0, which
implies u′ = ε, since R is successful. In this case, we have u = α ∈ L0. The
other possibility is that q = (Xi, 0) for some i ∈ {1, . . . , n} with α ∈ Li. In
this case, v′′ must be an element of V ′ and thus, u′ ∈ θR(Xi), which implies
u = αu′ ∈ {α}θR(Xi) ⊆ LiθR(Xi).

In every case, u is also contained in the substitution of the right-hand side of
i under θR. Thus, θR is a solution of I. Furthermore, w ∈ θR(X), since the
root of R is contained in V ′ and labeled by ((X, 0), w). Concluding, we have
w ∈ θR(X) ⊆ θ∗(X), since θ∗ is the maximal solution of I.

For the other direction, let w ∈ θ∗(X). We construct a run of AX on w as follows.
For every node v, we maintain the invariant P (v) that u ∈ θ∗(Y) holds if the node
is labeled by ((Y, . . .), u) or ((i, . . .), u) for some inclusion i ∈ I with Y on the
left-hand side.

The root v0 is labeled by ((X, 0), w) and satisfies P (v0) by assumption. Let now
v be a node of the run that already satisfies P (v).

• If l(v) = ((Y, λ), u), then P (v) implies u ∈ θ∗(Y). For every i ∈ I having Y
on the right hand side, we introduce a successor vi of v that is labeled by
((i, λ), u). P (vi) follows directly from P (v).

• If l(v) = ((i, λ), u) for an inclusion

i : Y ⊆ L0 ∪ L1X1 ∪ . . . ∪ LnXn

in I, then u ∈ θ∗(Y). Since θ∗ is a solution of I, either u ∈ L0 or u ∈
Liθ

∗(Xi) for some i ∈ {1, . . . , n}. In the first case, we introduce a successor
v′ of v that is labeled by (f0, ε). Otherwise, there is α ∈ Li such that
u = αu′ with u′ ∈ θ∗(Xi). We introduce a single successor v′ of v that is
labeled as follows.

20

– If α = ε and λ < |Ind(I)|, then we label v′ by ((Xi, λ + 1), u′). P (v′)
is satisfied, since u′ ∈ θ∗(Xi).

– If α = ε and λ = |Ind(I)|, then we label v′ by (f1, u
′).

– If α ∈ Σ, then we label v′ by ((Xi, 0), u). P (v′) is again satisfied by
the same reason as above.

It is easily verified that all introduced transitions are valid w.r.t. `AX . Further-
more, the label of any leaf is either (f0, ε) or contains an universal state without
possible successors w.r.t. `AX , i.e., either f1 or a state containing an indetermi-
nate Y that does not occur on the left-hand side of any inclusion from I.

The constructed tree is finite, since every ε-path is terminated by f1 after finitely
many steps. Thus, we have constructed a successful run of AX , which implies
w ∈ L(AX).

By applying this lemma to the problem IΓ,τ , we see that we can construct poly-
nomially many ε-AFA of polynomial size that we can use to test admissibility of
the maximal solution θ∗ of IΓ,τ .

Lemma 17. For each indeterminate XA in IΓ,τ , we can construct in polynomial
time in the size of IΓ,τ an ε-AFA A(X,A) such that the language L(A(X,A))
accepted by A(X,A) is equal to θ∗(XA), where θ∗ denotes the maximal solution
of IΓ,τ .

Proof. If we define A(X,A) := AXA , then it is easy to see that this automaton
can be constructed in polynomial time in the size of IΓ,τ . Lemma 16 shows that
it recognizes exactly the language θ∗(XA).

This finishes the description of our EL−>-unification algorithm. It remains to
argue why it is a PSpace decision procedure for EL−>-unifiability.

Theorem 18. The problem of deciding unifiability in EL−> is in PSpace.

Proof. We show that the problem is in NPSpace, which is equal to PSpace by
Savitch’s theorem [16].

Let Γ be a flat EL−>-unification problem. By Lemma 8, Lemma 9, and Lemma 12,
we know that Γ is EL−>-unifiable iff there is a subsumption mapping τ for Γ such
that the maximal solution θ∗ of IΓ,τ is admissible.

Thus, we first guess a mapping τ : At(Γ)2 → {0, 1} and test whether τ is a
subsumption mapping for Γ. Guessing τ can clearly be done in NPSpace. For
a given mapping τ , the test whether it is a subsumption mapping for Γ can be
done in polynomial time.

21

From τ we can first construct ∆Γ,τ and then IΓ,τ in polynomial time. Given
IΓ,τ , we then construct the (polynomially many) ε-AFA A(X,A), and test them
for emptiness. Since emptiness of two-way alternating finite automata (where in
addition to normal and ε-transitions also backwards transitions are allowed) can
be tested in PSpace [13], this can be achieved within PSpace.

Given the results of these emptiness tests, we can then check in polynomial time
whether, for each concept variable X of Γ there is a concept constant A of Γ such
that θ∗(XA) = L(A(X,A)) 6= ∅. If this is the case, then θ∗ is admissible, and
thus Γ is EL−>-unifiable.

5 PSpace-hardness of EL−>-unification

In this section, we reduce the intersection emptiness problem for deterministic
finite automata (DFA) to a unification problem in EL−>. These DFA are a
special case of nondeterministic finite automata, which in turn are special AFA.

An alternating finite automaton (AFA) A = (Q∃, Q∀,Σ, q0, δ, F) is an ε-AFA
with a restricted transition function δ : Q × Σ → P(Q) that does not allow
ε-transitions. The semantics of these automata is the same as for ε-AFA, ex-
cept that the relation `A is restricted to non-ε-transitions. The automaton is
called nondeterministic finite automaton (NFA) if Q∀ = ∅ and is then written
as (Q,Σ, q0, δ, F). It is called deterministic finite automaton (DFA) if it is an
NFA and for each q ∈ Q and α ∈ Σ, the set δ(q, α) has the cardinality 0 or
1. The transition function is then equivalently expressed as the partial function
δ′ : Q×Σ→ Q where δ′(q, α) = q′ iff δ(q, α) = {q′}. This definition implies that
any DFA has at most one run on any given word.

First, we define a translation from a given DFA A = (Q,Σ, q0, δ, F) to a set of
subsumptions ΓA. In the following, we only consider automata that accept a
nonempty language. For such DFAs we can assume without loss of generality
that there is no state q ∈ Q that cannot be reached from q0 or from which F
cannot be reached. In fact, such states can be removed from A without changing
the accepted language.

For every state q ∈ Q, we introduce a variable Xq. There is only one constant,
A, and we define NR := Σ. The set ΓA is defined as follows:

ΓA := {Lq v? Xq | q ∈ Q \ F} ∪ {A u Lq v? Xq | q ∈ F}, where

Lq :=
l

α∈Σ
δ(q,α) is defined

∃α.Xδ(q,α).

Note that the left-hand sides of the subsumptions in ΓA are indeed EL−>-concept
terms, i.e., the conjunctions on the left-hand sides are nonempty. In fact, every

22

state q ∈ Q is either a final state or a final state is reachable by a nonempty path
from q. In the first case, A occurs in the conjunction, and in the second, there
must be an α ∈ Σ such that δ(q, α) is defined, in which case ∃α.Xδ(q,α) occurs in
the conjunction.

Lemma 19. Let q ∈ Q, w ∈ Σ∗ and γ be a ground EL−>-unifier of ΓA with
γ(Xq) v ∃w.A. Then w ∈ L(Aq), where Aq := (Q,Σ, q, δ, F) is obtained from A
by making q the initial state.

Proof. We prove this by induction on the length of w. If |w| = 0, then γ(Xq) v A.
Thus, A must be a top-level conjunct of γ(Xq). Since γ is a unifier of ΓA, this
can only be the case if q ∈ F . Thus, w = ε is accepted by Aq.

Let now w = α′w′ with α′ ∈ Σ, w′ ∈ Σ∗. Since γ is a unifier of ΓA,

l

α∈Σ
δ(q,α) is defined

∃α.γ(Xδ(q,α)) v ∃α′w′.A .

Thus, we must have γ(Xδ(q,α′)) v ∃w′.A by Lemma 1. By induction, we know
that w′ is accepted by Aδ(q,α′). Thus, w = α′w′ is accepted by Aq.

Together with Lemma 3, this lemma implies that, for every ground EL−>-unifier
γ of ΓA, the language {w ∈ Σ∗ | ∃w.A ∈ Part(γ(Xq0))} is contained in L(A).
Conversely, we will show that for every word w accepted by A we can construct
a unifier γw with ∃w.A ∈ Part(γw(Xq0)).

For the construction of γw, we consider every q ∈ Q and try to find a word uq of
minimal length that is accepted by Aq. Such a word always exists since we have
assumed that we can reach F from every state. Taking arbitrary such words is
not sufficient, however. They need to be related in the following sense.

Lemma 20. There exists a mapping from the states q ∈ Q to words uq ∈ L(Aq)
such that that either q ∈ F and uq = ε or there is a symbol α ∈ Σ such that
δ(q, α) is defined and uq = αuδ(q,α).

Proof. We construct the words uq using induction on the length n of a shortest
word accepted by Aq.

If n = 0, then q must be a final state. In this case, we set uq := ε.

Now, let q be a state such that a shortest word wq accepted by Aq has length
n > 0. Then wq = αw′ for α ∈ Σ and w′ ∈ Σ∗ and the transition δ(q, α) = q′ is
defined. The length of a shortest word accepted by Aq′ must be smaller than n,
since w′ is accepted by Aq′ . By induction, uq′ ∈ L(Aq′) has already been defined
and we have αuq′ ∈ L(Aq). Since αuq′ cannot be shorter than wq = αw′, it must
also be of length n. We now define uq := αuq′ .

23

We can now proceed with the definition of γw for a word w ∈ Σ∗ that is accepted
by A. The unique successful run of A on w = w1 . . . wn yields a sequence of states
q0, q1, . . . , qn with qn ∈ F and δ(qi, wi+1) = qi+1 for every i ∈ {0, . . . , n− 1}. We
define the substitution γw as follows:

γw(Xq) := ∃uq.A u
l

i∈Iq

∃wi+1 . . . wn.A ,

where Iq := {i ∈ {0, . . . , n − 1} | qi = q}. For every q ∈ Q, we include at least
the conjunct ∃uq.A in γw(Xq) and thus, γw is in fact an EL−>-substitution.

Lemma 21. If w ∈ L(A), then γw is an EL−>-unifier of ΓA and γw(Xq0) v
∃w.A.

Proof. Let the unique successful run of A on w = w1 . . . wn be given by the
sequence q0q1 . . . qn of states with qn ∈ F and δ(qi, wi+1) = qi+1 for every i ∈
{0, . . . , n− 1}, and let γw be defined as above.

We have to show that γw satisfies the subsumption constraint introduced for every
state q ∈ Q, i.e.,

Fq u
l

α∈Σ
δ(q,α) is defined

∃α.γw(Xδ(q,α)) v γw(Xq) .

To do this, we consider every top-level atom of γw(Xq) and show that it subsumes
the left-hand side of the above subsumption.

• Consider the conjunct ∃uq.A. If uq = ε, then q ∈ F and Fq = A. In this
case, the subsumption is satisfied. Otherwise, by construction there is a
transition δ(q, α) = q′ with uq = αuq′ . Since ∃u′q.A is a top-level conjunct
of γw(Xq′), we have γ(Xq′) v ∃uq′ .A and thus, ∃α.γw(Xq′) v ∃uq.A.

• Let i ∈ Iq, i.e., qi = q, and consider the conjunct ∃wi+1 . . . wn.A. Since we
have δ(qi, wi+1) = qi+1 and ∃wi+2 . . . wn.A is a conjunct of γw(Xqi+1

),3 we
know ∃wi+1.γw(Xqi+1

) v ∃wi+1 . . . wn.A.

This shows that γw is a ground EL−>-unifier of ΓA. Furthermore, since 0 ∈
Iq0 , the particle ∃w1 . . . wn.A = ∃w.A is a top-level conjunct of γw(Xq0), i.e.,
γw(Xq0) v ∃w.A.

The intersection emptiness problem considers finitely many DFAs A1, . . . ,Ak,
and asks whether L(A1)∩ . . .∩L(Ak) 6= ∅. Since this problem is trivially solvable
in polynomial time in case L(Ai) = ∅ for some i, 1 ≤ i ≤ k, we can assume that
the languages L(Ai) are all nonempty. Thus, we can also assume without loss of

3If i = n− 1, then ∃wi+2 . . . wn.A = A.

24

generality that the automata Ai = (Qi,Σ, q0,i, δi, Fi) have pairwise disjoint sets
of states Qi and are reduced in the sense introduced above, i.e., there is no state
that cannot be reached from the initial state or from which no final state can be
reached.

The flat EL−>-unification problem Γ is now defined as follows:

Γ :=
⋃

i∈{1,...,k}

(
ΓAi ∪ {Xq0,i v? Y }

)
,

where Y is a new variable not contained in ΓAi for i = 1, . . . , k.

Lemma 22. Γ is unifiable in EL−> iff L(A1) ∩ . . . ∩ L(Ak) 6= ∅.

Proof. If Γ is unifiable in EL−>, then it has a ground EL−>-unifier γ and there
must be a particle ∃w.A with w ∈ Σ∗ and γ(Y) v ∃w.A. Since γ(Xq0,i) v γ(Y) v
∃w.A, Lemma 19 yields w ∈ L(Ai,q0,i) = L(Ai) for each i ∈ {1, . . . , k}. Thus, the
intersection of the languages L(Ai) is nonempty.

Conversely, let w ∈ Σ∗ be a word with w ∈ L(A1) ∩ . . . ∩ L(Ak). By Lemma 21,
we have for each of the unification problems ΓAi an EL−>-unifier γw,i such that
γw,i(Xq0,i) v ∃w.A. Since the automata have disjoint state sets, the unification
problems ΓAi do not share variables. Thus, we can combine the unifiers γw,i into
an EL−>-substitution γ by defining γ(Y) := ∃w.A and γ(Xq) := γw,i(Xq) for
each i ∈ {1, . . . , k} and q ∈ Qi. Obviously, this is an EL−>-unifier of Γ since it
satisfies the additional subsumptions Xq0,i v? Y .

Since the intersection emptiness problem for DFAs is PSpace-hard [14, 11], this
lemma immediately yields our final theorem:

Theorem 23. The problem of deciding unifiability in EL−> is PSpace-hard.

6 Conclusion

Unification in EL was introduced in [4] as an inference service that can sup-
port the detection of redundancies in large biomedical ontologies, which are fre-
quently written in this DL. Motivated by the fact that the large medical ontology
SNOMED CT actually does not use the top concept available in EL, we have in
this paper investigated unification in EL−>, which is obtained from EL by remov-
ing the top concept. More precisely, SNOMED CT is a so-called acyclic EL−>-
TBox,4 rather than a collection of EL−>-concept terms. However, as shown in

4Note that the right-identity rules in SNOMED CT [18] are actually not expressed using
complex role inclusion axioms, but through the SEP-triplet encoding [19]. Thus, complex role
inclusion axioms are not relevant here.

25

[6], acyclic TBoxes can be easily handled by a unification algorithm for concept
terms.

Surprisingly, it turned out that the complexity of unification in EL−> (PSpace)
is considerably higher than of unification in EL (NP). From a theoretical point
of view, this result is interesting since it provides us with a natural example
where reducing the expressiveness of a given DL (in a rather minor way) results
in a drastic increase of the complexity of the unifiability problem. Regarding the
complexity of unification in more expressive DLs, not much is known. If we add
negation to EL, then we obtain the well-known DLALC, which corresponds to the
basic (multi-)modal logic K [17]. Decidability of unification in K is a long-standing
open problem. Recently, undecidability of unification in some extensions of K
(for example, by the universal modality) was shown in [20]. These undecidability
results also imply undecidability of unification in some expressive DLs (e.g., in
SHIQ [12]).

Apart from its theoretical interest, the result of this paper also has practical
implications. Whereas practically rather efficient unification algorithm for EL
can readily be obtained by a translation into SAT [5], it is not so clear how to
turn the PSpace algorithm for EL−>-unification introduced in this paper into
a practically useful algorithm. One possibility could be to use a SAT modulo
theories (SMT) approach [15]. The idea is that the SAT solver is used to generate
all possible subsumption mappings for Γ, and that the theory solver tests the
system IΓ,τ induced by τ for the existence of a finite, admissible solution. How
well this works will mainly depend on whether we can develop such a theory
solver that satisfies well all the requirements imposed by the SMT approach.

Another topic for future research is how to actually compute EL−>-unifiers for
a unifiable EL−>-unification problem. In principle, our decision procedure is
constructive in the sense that, from appropriate successful runs of the ε-AFA
A(X,A), one can construct a finite, admissible solution of IΓ,τ , and from this an
EL−>-unifier of Γ. However, this needs to be made more explicit, and we need
to investigate what kind of EL−>-unifiers can be computed this way.

Appendices

A Locality

In EL, we have the interesting property that for every solvable unification problem
there exists a local unifier γ, where γ(X) is a conjunction of atoms of the form
γ(D) for D ∈ NV(Γ). However, simply extending this notion to EL−>-unifiers
does not give a similar result for EL−>.

26

Example 24. Consider the flat EL-unification problem Γ that contains the three
equations

X ≡? Y u A, Y u ∃r.X ≡? ∃r.X, Z u ∃r.X ≡? ∃r.X.

Then the substitutions σ0 := {X 7→ A, Y 7→ >, Z 7→ >} and σ1 := {X 7→
A, Y 7→ >, Z 7→ ∃r.A} are the only local EL-unifiers of Γ. In fact, we have
NV(Γ) = {A, ∃r.X}, and thus the only possible image for X in a local unifier σ is
A (since σ(∃r.X) = ∃r.σ(X) obviously cannot be a conjunct of σ(X)). Since the
first equation implies that A = σ(X) v σ(Y), we know that σ(Y) can only be >
or A. However, the second equation prevents the second possibility. Finally, the
third equation ensures that σ(Z) is > or ∃r.A.

Note that σ0 and σ1 both contain >, and thus are not EL−>-unifiers. This shows
that Γ does not have an EL−>-unifier that is local in the sense defined above.
Nevertheless, Γ has EL−>-unifiers. For example, the substitution γ1 := {X 7→
A u ∃r.A, Y 7→ ∃r.A, Z 7→ ∃r.∃r.A} is such a unifier.

In this example, the top-level atoms of γ1(X), γ1(Y), γ1(Z) that are not of the
form γ(D) for some D ∈ NV(Γ) are all particles of γ(D) for some D ∈ NV(Γ).
This motivates the following definition.

Definition 25. The EL−>-unifier γ of Γ is a local EL−>-unifier of Γ if, for every
variable X, each top-level atom of γ(X) is

• of the form γ(D) for some D ∈ NV(Γ) or

• a particle of γ(D) for some D ∈ NV(Γ).

There are always only finitely many local EL-unifiers for a given unification prob-
lem [4]. In EL−>, however, it is possible that there exist infinitely many local
unifiers, as the next example demonstrates.

Example 26. Consider the unification problem Γ from Example 24 and the
following EL−>-substitutions γn:

γn(X) := A u ∃r.A u · · · u ∃rn.A
γn(Y) := ∃r.A u · · · u ∃rn.A
γn(Z) := ∃rn+1.A

It is easy to verify that each γn is an EL−>-unifier of Γ. Furthermore, every
top-level atom of γn(X), γn(Y), and γn(Z) is either A or a particle of γn(∃r.X).
Note that both A and ∃r.X are non-variable atoms of Γ. Thus, Γ has infinitely
many local EL−>-unifiers.

27

Additionally, these unifiers are even incomparable w.r.t. the subsumption order
on unifiers, i.e., for no two n,m ∈ N with n 6= m it holds that γn(X) v γm(X)
for all variables X. This is the case since the concept terms γn(Z) = ∃rn+1.A are
incomparable in this sense.

We will show that checking for local unifiers suffices to decide unifiability in EL−>
by demonstrating that the decision procedure described in Section 4 can be used
to construct local EL−>-unifiers. To be able to use the reductions to the problems
of solvability of sets of language inclusions and emptiness of ε-AFA, we first define
appropriate notions of locality for these formalisms.

Definition 27. Let I be a finite set of inclusions of the form

X ⊆ L0 ∪ L1X1 ∪ . . . ∪ LnXn, (1)

as described in Section 4.2. A solution θ of I is called local if all words w ∈
θ(X) \ {ε} for X ∈ Var(I) occur on the right-hand side of some inclusion Y ⊆
L0 ∪ L1X1 ∪ . . . ∪ LnXn of I under θ, i.e., either w ∈ L0 or w ∈ (Li \ {ε})θ(Xi)
for some i ∈ {1, . . . , n}.

The final definition is concerned with locality in alternating automata.

Definition 28. Let A be an ε-AFA. A successful run of A is called local if there is
at least one leaf labeled by (q, ε) for some state q of A. Since the run is successful,
q is then either a final state or a universal state without possible successors. We
denote by Ll(A) the set of all words accepted by A via local, successful runs.

In a successful run R of A that is not local, all leafs are labeled by configurations
(q, w) with w 6= ε. In this case, q has to be a universal state without successors.
However, since such states accept any word, it is easy to change R into a local
run. We simply identify the shortest word w that occurs in the label of a leaf.
Since R is a run, w is the shortest word occuring in it and all other words in
R must have the suffix w. Thus, we can simply remove the suffix w from all
configurations in R and obtain a successful run that accepts a shorter word. This
new run is local since it must contain at least one leaf labeled by (q, ε) for some
state q.

This construction also shows that runs accepting minimal words, i.e., words for
which no prefix is accepted by A, are always local. This is an important property
of locality in ε-AFA which will prove to be useful.

The following lemma proves a connection between local runs and local solutions
by analyzing one direction of Lemma 16 in more detail.

Lemma 29. Let I be a finite set of inclusions of the form (1) and let the ε-AFA
AX for a variable X ∈ Var(I) be constructed as in Definition 14. If w ∈ Ll(AX),
then there is a finite, local solution θ of I such that w ∈ θ(X) and every w′ ∈ θ(Y)
for some Y ∈ Var(I) is a suffix of w.

28

Proof. Let R be a local, successful run of AX starting in ((X, 0), w) and consider
the solution θR that was constructed in the proof of Lemma 16:

θR(Y) := {u ∈ Σ∗ | ∃v ∈ V ′ : l(v) = ((Y, . . .), u)}

for all variables Y ∈ Var(I). Since V ′ is a subset of the finite set of nodes of R,
θR is finite. By definition of the transition relation of AX , the run R, and thus
also θR, contains only suffixes of w. Furthermore, w ∈ θR(X) since the root node
of R is labeled by ((X, 0), w) and contained in V ′. It remains to show that θR is
local.

Since R is local, there is a leaf of R that is labeled by (q, ε) for some state q of
AX . We now consider the path p leading from the root of R to this leaf. Its root
is labeled by ((X, 0), w), while its leaf is labeled by (q, ε). Thus, every suffix of w
must occur along this path. To show locality, it thus suffices to show that every
word occuring along p satisfies the conditions on locality. We will show this by
backwards induction along p.

We begin the induction at the leaf of p, which is labeled by (q, ε). The word ε
trivially fulfills the conditions for locality of θR. Let now v′ be a node of p labeled
by (q′, u′) for a state q′ and a suffix u′ of w that fulfills the conditions for locality
of θR. If v′ is the root node, we are done. Otherwise, we show the same for the
predecessor v of v′, which also lies on the path p. Let (q, u) be the label of v and
consider the following cases:

• If u = u′, then u fulfills the condition for locality of θR, since u′ does.

• Otherwise, u = αu′ for some α ∈ Σ and q must be of the form (i, λ) for
some inequation i : Y ⊆ L0 ∪ L1X1 ∪ . . . LnXn in I. Then the label (q′, u′)
of v′ can only have one of the following forms:

– If q′ = f0, then α ∈ L0. Since R is successful, we then have u′ = ε and
u = α ∈ L0.

– Otherwise, q′ = (Xi, 0) for some i ∈ {1, . . . , n} and α ∈ Li. But then
u′ ∈ θR(Xi) by definition of θR and thus, u = αu′ ∈ {α}θR(Xi) ⊆
(Li \ {ε})θR(Xi).

Thus, the word u fulfills the condition of locality since it is contained in the
right-hand side of i under θR.

In the following, let Γ be a flat EL−>-unification problem, τ a subsumption
mapping for Γ, and γτ , ∆Γ,τ , IΓ,τ , and A(X,A) be defined as in Section 4.
Using the previous lemma, under some conditions we can construct a finite, local,
admissible solution of IΓ,τ .

Lemma 30. If for every X ∈ Var(I) there is a constant A(X) such that the
automaton A(X,A(X)) accepts a word wX , then there is a finite, local, admissible
solution of IΓ,τ that contains only suffixes of the words wX .

29

Proof. By Lemma 29, we find for every X a finite, local solution θX of IΓ,τ that
contains only suffixes of wX and satisfies wX ∈ θX(XA(X)). By Lemma 10, the
union θ of all θX is still a solution of IΓ,τ . It is finite since it is a finite union
of finite solutions. It is also admissible since for every X the set θ(XA(X)) is
non-empty. Finally, it is local since all contained words satisfy the conditions on
locality by locality of the component solutions θX .

The following lemma proves a connection between finite, local, admissible solu-
tions of IΓ,τ and local unifiers of Γ by analyzing one direction of Lemma 9 in
more detail.

Lemma 31. Let θ be a finite, local, admissible solution of IΓ,τ . Then there is a
local EL−>-unifier σ of Γ.

Proof. Consider the EL−>-unifier σ of ∆Γ,τ constructed in the proof of Lemma 9
which has the property that Sτ ≤ Sσ. It was defined by induction on the order
> on the variables as follows:

σ(X) :=
l

D∈Sτ (X)

σ(D) u
l

A∈Nc

l

w∈θ(XA)

∃w.A

for every variable X, where σ(Y) has already been defined for each variable Y
with X > Y . In the proof of Lemma 8, it was shown that σ is also a unifier of Γ.

To show that σ is local, we consider all top-level atoms of σ(X) for each X ∈
Var(Γ). For those top-level atoms of the form σ(D) for D ∈ Sτ (X), this follows
immediately from the fact that Sτ (X) ⊆ NV(Γ). Now consider a top-level particle
∃w.A of σ(X). If w = ε, then A is a non-variable atom of Γ since we assumed
that all elements of NC occur in Γ. Otherwise, w ∈ θ(XA)\{ε} and, by locality of
θ, there is an inclusion in IΓ,τ that contains w in the substitution of its right-hand
side under θ.

This inclusion must be of the form IA(s), i.e., XA ⊆ fA(C1) ∪ . . . ∪ fA(Cn), for
some subsumption s of the form C1 u . . . uCn v? X in ∆Γ,τ . Locality of θ yields
an index i ∈ {1, . . . , n} with w ∈ θ(fA(Ci)), where Ci is neither a variable nor a
constant.5

Thus, Ci is of the form ∃r.C ′, where C ′ is either a variable or the constant
A. Consequently, either w ∈ {r} or w ∈ {r}θ(C ′A). In the former case, ∃w.A =
∃r.A = Ci is a ground atom of Γ. In the latter case, w = rw′ for some w′ ∈ θ(C ′A).
This implies σ(C ′) v ∃w′.A, which yields σ(Ci) v ∃w.A. By Lemma 3, ∃w.A is
a particle of σ(Ci). Since Ci ∈ NV(Γ), the particle ∃w.A fulfills the condition for
locality of σ.

5Recall the definition of fA(C) from Section 4.2.

30

Since we want to obtain a complexity result, we also have to consider the size of
σ. In the following, size always means the number of symbols it takes to write
something down and is denoted by | · |. For example, for a solution θ of IΓ,τ ,
|θ| denotes the number of symbols it takes to write down all the sets θ(XA) for
X ∈ Var(Γ) and A ∈ NC .

Lemma 32. If θ is a finite, local, admissible solution of IΓ,τ , then the size of the
local EL−>-unifier σ constructed in Lemma 31 is at most exponential in the size
of Γ and polynomial in the size of θ.

Proof. For a variable X ∈ Var(Γ), we consider all sequences X1 < · · · < Xn = X
where X1 is a minimal variable w.r.t. <. The length of such a sequence is the
number of variables it contains, i.e., n. The height of X is defined as the maximal
length of all such sequences. This means that the height of a minimal variable is
1 and the height is bounded by |Var(Γ)| since < is acyclic.

We prove the following claim by induction on the height n of the variables X ∈
Var(Γ): For every X ∈ Var(Γ),

|σ(X)| ≤ 5n

(
|Γ|n + |θ|

(
n−1∑
i=0

|Γ|i
))

.6

Let n = 1, i.e., X be a minimal variable w.r.t. <. Then all non-variable atoms
in Sτ (X) are ground and the size of σ(X) is bounded by 5(|Sτ (X)| + |θ|) ≤
5(|Γ|+ |θ|).

If n > 1, then we know that the height of all variables Y < X must be smaller
than n. Since all the non-variable atoms D ∈ Sτ (X) contain only variables
smaller than X, by induction we can bound the size of each σ(D) for D ∈ Sτ (X)
by

5n−1

(
|Γ|n−1 + |θ|

(
n−2∑
i=0

|Γ|i
))

.

Since Sτ (X) ⊆ NV(Γ), there are at most |Γ| elements in Sτ (X) and the size of
σ(X) is thus bounded by

5

(
|Γ|5n−1

(
|Γ|n−1 + |θ|

(
n−2∑
i=0

|Γ|i
))

+ |θ|

)
≤ 5n

(
|Γ|n + |θ|

(
n−1∑
i=0

|Γ|i
))

.

Since the height of any variable is bounded by the number of variables, and thus
by |Γ|, this means that the overall size of σ is bounded by

|Γ|5|Γ|
|Γ||Γ| + |θ|

|Γ|−1∑
i=0

|Γ|i
 ,

6The constant 5 accounts for additional symbols like u or ∃ that are added in the definition
of σ.

31

i.e., an expression that is exponential in |Γ| and polynomial in |θ|.

We can now modify the decision procedure from Theorem 18 such that it outputs
a local EL−>-unifier for any solvable unification problem. However, since we
actually have to output the unifier, the complexity of the algorithm is higher than
for just deciding the existence of a unifier, i.e., ExpTime instead of PSpace.

The algorithm uses the well-known reduction from any alternating automaton to
an equivalent nondeterministic automaton of exponential size [9, 8]. Additionally,
it employs a polynomial-time algorithm to find shortest paths in a directed graph,
e.g., Dijkstra’s algorithm [10]. This will be used to find a successful run of the
nondeterministic automaton.

Theorem 33. Given a solvable EL−>-unification problem Γ, we can construct a
local EL−>-unifier of Γ of at most exponential size in time exponential in the size
of Γ.

Proof. Recall that in Theorem 18 we have guessed the subsumption mapping τ
and constructed ∆Γ,τ , IΓ,τ and the automata A(X,A) for every variable X and
constant A. Then we tested these automata for emptiness and checked whether
for every variable there was a constant such that the corresponding automaton
accepted a non-empty language. If this was the case, then Γ was unifiable in
EL−>.

To show that we can actually construct a local EL−>-unifier in exponential time,
we start by enumerating all possible subsumption mappings τ . This can be done
in exponential time since the size of τ is polynomial in the size of Γ. Since Γ
is unifiable in EL−>, we will find one τ such that for each variable X there is a
constant AX for which the automaton A(X,AX) accepts a non-empty language.

For each X, we now construct a nondeterministic automaton BX that is equivalent
to A(X,AX) [8]. This automaton has as state set the powerset of the original
state set. A set can be reached from another if these sets are compatible with the
reachability in the alternating automaton. This means that for every universal
state, all successor states must be in the successor state set; for an existential
state, there must be one successor in the set. The size of BX is exponential in
the size of A(X,AX), and thus exponential in the size of Γ.

We now search for a successful run r of BX of minimal length, i.e., a shortest path
in the transition graph of BX that starts in the initial state {(X, 0)} and leads to
a final state. Such a path can be found in exponential time using, e.g., Dijkstra’s
algorithm [10]. It is clear that r is of size exponential in Γ and it accepts a word
wX that is of length exponential in Γ.

From the state sets occurring in r the tree shape of the underlying run R of
A(X,AX) can be extracted by the following procedure. We start with a single
root node that is labeled by ((X, 0), wX) and iteratively construct the layers

32

of R of increasing depth. For each existential state in a state set of r, there
must be a successor in the next state set. Similarly, for every universal state all
its successors can be found in the next state set. Thus, for each configuration
occuring in the current tree, we can find a valid transition of A(X,AX) and can
add the corresponding child nodes to the tree. Since r is finite, this construction
terminates. The result is a successful run R of A(X,AX) because r ends in a
state set containing only final states or universal states without successors. Since
the accepted word is of minimal length, R is local.

Thus, for every variable X we can find a word wX ∈ Ll(A(X,AX)) which is of
length at most exponential in the size of Γ. By Lemma 29, we can construct a
finite, local solution θX of IΓ,τ with wX ∈ θX(X) that contains only suffixes of
wX . Thus, θX is of size exponential in the size of Γ since it contains at most
exponentially many words of size at most exponential in the size of Γ. Lemma 30
yields a finite, local, admissible solution of IΓ,τ of exponential size. Finally, using
Lemmata 31 and 32 we find a local EL−>-unifier of Γ of size exponential in the
size of Γ.

This provides an upper bound on the size of the smallest EL−>-unifier of a given
flat EL−>-unification problem. We will now present a flat EL−>-unification prob-
lem such that size of any EL−>-unifier is at least exponential in the size of the
problem.

Example 34. We will construct solvable EL−>-unification problems Γn (n ∈ N)
such that the size of any EL−>-unifier of Γn is exponential in the size of Γn. For
this, we consider the proof of PSpace-completeness of the intersection emptiness
problem for DFA [14].

For any deterministic Turing machineM with polynomial space bound, the proof
constructs several DFA Ai (i = 1, . . . , n) of size polynomial in the size ofM. The
number n of these automata is also polynomial in the size ofM. These automata
have the property that any input word u is accepted byM iff there is a successful
run r ofM on u such that wr ∈

⋂n
i=1 L(Ai). Here, the word wr is a representation

of the run r that is constructed by concatenating the content of the tape of M
for each step of the run, i.e., it may be exponentially long. This means that the
intersection

⋂n
i=1 L(Ai) contains exactly the representations of all successful runs

of M.

For each n ∈ N, consider the following n-space bounded deterministic Turing
machineMn with input alphabet {0, 1}. First, the machine Mn checks whether
the input is equal to 0n. If it is not, Mn rejects the word. Otherwise, it views
0n as the binary representation of the number 0 and then iteratively increases
this number by 1 until it reaches 1n. Mn can be defined in such a way that it
never leaves the tape section defined by the input and is of size polynomial in
n. It accepts only the word u = 0n and has only one successful run rn on this
word. The length of the representation wrn of rn is exponential in n since Mn

33

enumerates exponentially many numbers.

For this deterministic Turing machine Mn, we can now construct k DFA Ai
(i = 1, . . . , k) with {wrn} =

⋂k
i=1 L(Ai), where k and the size of the automata are

bounded by a polynomial in n [14]. The equality {wrn} =
⋂k
i=1 L(Ai) holds since

by construction
⋂k
i=1 L(Ai) contains exactly the representations of all successful

runs of Mn.

Following the proof of Lemma 22, we can construct a flat unification problem Γn
of size polynomial in n that is unifiable in EL−> iff the intersection

⋂k
i=1 L(Ai)

is non-empty. We now consider any local EL−>-unifier γ of Γn, which must exist
since this intersection contains the word wrn . By Lemmata 19 and 21, wrn is
the only word such that γ(Xq0,i) v ∃wrn .A holds for all i = 1, . . . , k. Since γ
must satisfy Xq0,i v? Y for each i = 1, . . . , n and γ(Y) must contain at least one
particle, this particle can only be ∃wrn .A. This particle is of size exponential in
n, which shows that every local EL−>-unifier of Γn is of size exponential in the
size of Γn.

We thus have the following completeness result for the problem of constructing a
local EL−>-unifier for a flat EL−>-unification problem.

Corollary 35. The size of the local EL−>-unifiers of an EL−>-unification prob-
lem may grow exponentially in the size of the problem. On the other hand, given
a solvable EL−>-unification problem, we can always compute a local EL−>-unifier
in exponential time.

References

[1] Franz Baader. Terminological cycles in a description logic with existential
restrictions. In Georg Gottlob and Toby Walsh, editors, Proc. of the 18th
Int. Joint Conf. on Artificial Intelligence (IJCAI 2003), pages 325–330, Aca-
pulco, Mexico, 2003. Morgan Kaufmann, Los Altos.

[2] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL enve-
lope. In Leslie Pack Kaelbling and Alessandro Saffiotti, editors, Proc. of the
19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), pages 364–369,
Edinburgh (UK), 2005. Morgan Kaufmann, Los Altos.

[3] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press, 2003.

[4] Franz Baader and Barbara Morawska. Unification in the description logic EL.
In Ralf Treinen, editor, Proc. of the 20th Int. Conf. on Rewriting Techniques

34

and Applications (RTA 2009), volume 5595 of Lecture Notes in Computer
Science, pages 350–364. Springer-Verlag, 2009.

[5] Franz Baader and Barbara Morawska. SAT encoding of unification in EL.
In Christian G. Fermüller and Andrei Voronkov, editors, Proc. of the 17th
Int. Conf. on Logic for Programming, Artifical Intelligence, and Reasoning
(LPAR-17), volume 6397 of Lecture Notes in Computer Science, pages 97–
111, Yogyakarta, Indonesia, 2010. Springer-Verlag.

[6] Franz Baader and Barbara Morawska. Unification in the description logic
EL. Logical Methods in Computer Science, 6(3), 2010.

[7] Franz Baader and Paliath Narendran. Unification of concepts terms in de-
scription logics. J. of Symbolic Computation, 31(3):277–305, 2001.

[8] Jean-Camille Birget. State-complexity of finite-state devices, state compress-
ibility and incompressibility. Mathematical Systems Theory, 26(3):237–269,
1993.

[9] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation.
J. of the ACM, 28(1):114–133, 1981.

[10] Edsger W. Dijkstra. A note on two problems in connexion with graphs.
1:269–271, 1959.

[11] Michael R. Garey and David S. Johnson. Computers and Intractability —
A guide to NP-completeness. W. H. Freeman and Company, San Francisco
(CA, USA), 1979.

[12] Ian Horrocks, Ulrike Sattler, and Stefan Tobies. Practical reasoning for very
expressive description logics. J. of the Interest Group in Pure and Applied
Logic, 8(3):239–264, 2000.

[13] Tao Jiang and B. Ravikumar. A note on the space complexity of some
decision problems for finite automata. Information Processing Letters, 40:25–
31, October 1991.

[14] Dexter Kozen. Lower bounds for natural proof systems. Annual IEEE Sym-
posium on Foundations of Computer Science, 0:254–266, 1977.

[15] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and
SAT modulo theories: From an abstract Davis-Putnam-Logemann-Loveland
procedure to DPLL(T). J. ACM, 53(6):937–977, 2006.

[16] Walter J. Savitch. Relationships between nondeterministic and deterministic
tape complexities. Journal of Computer and System Sciences, 4(2):177–192,
1970.

35

[17] Klaus Schild. A correspondence theory for terminological logics: Prelimi-
nary report. In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence
(IJCAI’91), pages 466–471, 1991.

[18] Kent A. Spackman. Managing clinical terminology hierarchies using algorith-
mic calculation of subsumption: Experience with SNOMED-RT. J. of the
American Medical Informatics Association, 2000. Fall Symposium Special
Issue.

[19] Boontawee Suntisrivaraporn, Franz Baader, Stefan Schulz, and Kent Spack-
man. Replacing SEP-triplets in SNOMED CT using tractable descrip-
tion logic operators. In Riccardo Bellazzi, Ameen Abu-Hanna, and Jim
Hunter, editors, Proceedings of the 11th Conference on Artificial Intelligence
in Medicine (AIME’07), volume 4594 of Lecture Notes in Computer Science,
pages 287–291. Springer-Verlag, 2007.

[20] Frank Wolter and Michael Zakharyaschev. Undecidability of the unification
and admissibility problems for modal and description logics. ACM Trans.
Comput. Log., 9(4), 2008.

36

