
Dresden University of Technology
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

Complementation and Inclusion of Weighted
Automata on Infinite Trees

Stefan Borgwardt Rafael Peñaloza

LTCS-Report 10-05

Postal Address:
Lehrstuhl fr Automatentheorie
Institut fr Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nthnitzer Str. 46

Dresden

Complementation and Inclusion of Weighted
Automata on Infinite Trees

Stefan Borgwardt Rafael Peñaloza

Abstract

Weighted automata can be seen as a natural generalization of finite state
automata to more complex algebraic structures. The standard reasoning
tasks for unweighted automata can also be generalized to the weighted set-
ting. In this report we study the problems of intersection, complementation
and inclusion for weighted automata on infinite trees and show that they
are not harder than reasoning with unweighted automata. We also present
explicit methods for solving these problems optimally.

1 Introduction

One of the current areas of interest in the field of automata theory is the study of
weighted automata. These automata can be seen as a generalization of finite state
automata in which the input structures are not accepted or rejected, but rather
given a value called its weight. More formally, a weighted automaton defines a
formal power series over a suitable algebraic structure [7].

The natural question to ask at the presence of such a generalization is whether
the properties of the special case still hold. We can find several instances in
the literature, where this question is answered affirmatively. For example, the
relationship between automata and MSO logic, originally shown by Büchi [3], has
been proven to hold also for weighted automata over finite and infinite words and
trees [5, 8, 9, 16] and their corresponding weighted MSO logics. These results have
motivated the development of automata-based procedures for multi-valued model
checking [2]. For this purpose, standard reasoning tasks like deciding emptiness
or complementing automata over finite or infinite words have been generalized to
the weighted setting, and reasoning procedures solving these generalized problems
have been developed. One interesting result obtained is that the complexity of
these generalized reasoning tasks is not higher than in the unweighted case. For
instance, the so-called emptiness value problem of these automata is NLogSpace-
complete [11].

1

Despite reasoning with weighted automata on infinite words being well studied,
there is a significant lack of results for weighted automata over infinite trees. In
fact, to the best of our knowledge, the only explicit reasoning algorithm for these
automata was given in [1], where a polynomial-time algorithm for computing the
emptiness value of automata on infinite unlabeled trees, if the weights belong
to a distributive lattice, is described. For labeled trees, a method that reduces
the problem to several (unweighted) emptiness tests was described in [6]. The
execution time of this approach, however, depends on the structure of the lattice.

In this paper we cover this gap by looking at reasoning problems for weighted
automata on infinite trees that arise from generalizing standard problems for
unweighted automata. In particular, we show that (weighted) union, intersection
and emptiness of automata are computable in polynomial time, independently of
the lattice used. We also look at the inclusion and complementation problems,
and we show that their complexity remains equal to the unweighted case.

As for automata on infinite words, there are different kinds of automata on in-
finite trees (e.g., Büchi or co-Büchi automata; see Section 2.2). Since some of
these classes are not closed under complementation, we analyze several different
types of automata with their closure properties relative to each other. We also
present explicit constructions for the complement of some classes of weighted and
unweighted automata.

2 Automata on Infinite Trees

The main object of our study are weighted automata on infinite trees, whose
weights belong to a distributive lattice [10]. We give a brief introduction to
lattices before formally defining our automata models.

2.1 Lattices

A lattice is a partially ordered set (S,≤) where infima and suprema of arbitrary
finite subsets of S always exist. The lattice (S,≤) is finite if its carrier set S is
finite, it is distributive if the infimum and supremum operators distribute over
each other, and it is bounded if it has a smallest element 0S and a greatest element
1S. In the following, we will often use the carrier set S to denote the lattice (S,≤).
The infimum (supremum) of a finite subset T ⊆ S will be denoted by

⊗
a∈T a

(
⊕

a∈T a). We will also use the infix notation if the set contains only two elements;
i.e., a⊗ b denotes the infimum of {a, b}.

A Boolean lattice is a bounded distributive lattice such that for every a ∈ S there
exists an element a ∈ S where a ⊗ a = 0S and a ⊕ a = 1S. In this case, a is
called the complement of a and is uniquely determined by these properties. Every

2

Boolean lattice is isomorphic to a powerset lattice (P(X),⊆), for some set X.

An element p of a lattice S is called meet prime if for every a, b ∈ S, a ⊗ b ≤ p
implies that either a ≤ p or b ≤ p. The dual notion is that of a join prime
element which is defined dually. Every element of a distributive lattice S can
be computed as the infimum of all meet prime elements above it. In a Boolean
lattice S, the complement a of a meet prime element a ∈ S is join prime and vice
versa. If the Boolean lattice S is isomorphic to the powerset lattice over some set
X, then there are exactly |X| meet prime and |X| join prime elements in S.

In the following we will mainly deal with finite Boolean lattices. We now prove
a few useful facts about these structures.

Lemma 1. Let S be a finite Boolean lattice.

a) For all a, b ∈ S, a⊕ b = 1S iff a ≤ b.

b) For every index set I and families (fi), (gi) ∈ SI , the following holds:(⊕
i∈I

fi

)
⊗

(⊗
j∈I

gj

)
≤
⊕
i∈I

(fi ⊗ gi) .

Proof. If a ≤ b, then a⊕ b ≥ a⊕ a = 1S. Let now a⊕ b = 1S and assume a � b.
Then b � a and thus b 6= b⊗ a. But (b⊗ a)⊗ b = 0S and (b⊗ a)⊕ b = a⊕ b = 1S,
which means that b ⊗ a is another complement of b. This contradicts the fact
that the complement in S is unique.

For b), we have(⊕
i∈I

fi

)
⊗

(⊗
j∈I

gj

)
=
⊕
i∈I

(
fi ⊗

⊗
j∈I

gj

)
≤
⊕
i∈I

(fi ⊗ gi)

by distributivity of S.

2.2 Weighted Automata

We consider automata that receive as input infinite trees of a fixed arity k. For
a positive integer k, we define K := {1, . . . , k}. Our main object of study is
the full k-ary tree K∗, where the root is denoted by the empty word ε, and the
i-th successor of the node u is identified by ui. For a node u, we denote the full
subtree of K∗ with root u by u[K∗].

Sometimes we will also speak about (finite) subtrees, i.e., finite prefix-closed sub-
sets of u[K∗].1 A node in such a (finite) tree T is called inner node if all its

1Prefix-closed relative to u, i.e., up to and including u, but no prefix of u is considered.

3

successors are also elements of T . It is called leaf if it has no successors in T .
The set of all inner nodes of T is called interior of T and is denoted by int(T).
The set of all leaves of T is called frontier of T and is denoted by fr(T). T is
called closed if T = int(T) ∪ fr(T).

A path p is a prefix-closed set of nodes such that if u ∈ p, then there is at most
one i ∈ K with ui ∈ p. Path(u[K∗]) denotes the set of all infinite paths in u[K∗].
A labeled tree is a mapping t : u[K∗]→ Σ for some labeling alphabet Σ. As usual,
the set of all such mappings is denoted by Σu[K∗].

For an alphabet Σ and a lattice S, a formal tree series over Σ and S is a mapping
ΣK∗ → S; i.e., a function that maps each labeled tree to a value from S. For a
formal tree series f : ΣK∗ → S, the expression (f, t), called the coefficient of f at
t, denotes the image of a tree t under f .

Definition 2. A weighted generalized Büchi automaton (WGBA) is a tuple A =
(Q,Σ, S, in,wt, F1, . . . , Fn) where Q is a finite set of states, Σ is the input alphabet,
S is a distributive lattice, in : Q→ S is the initial distribution, wt : Q×Σ×Qk →
S is the transition weight function and F1, . . . , Fn ⊆ Q are the sets of final states.
A WGBA is called a weighted Büchi automaton (WBA) if n = 1 and weighted
looping automaton (WLA) if n = 0.

A run of the WGBA A is a labeled tree r ∈ QK∗ . This run is called successful
if for every path p ∈ Path(K∗) and every i, 1 ≤ i ≤ n there are infinitely many
nodes u ∈ p such that r(u) ∈ Fi. The set of all successful runs of A is denoted
by succ(A). We define the transition of r on t ∈ ΣK∗ at a node u ∈ K∗ as
−−−→
r(t, u) := (r(u), t(u), r(ui), . . . , r(uk)). The weight of r on t is the value

wt(t, r) := in(r(ε))⊗
⊗
u∈K∗

wt(
−−−→
r(t, u)) .

The behavior of A on an input tree t ∈ ΣK∗ is

(‖A‖, t) :=
⊕

r∈succ(A)

wt(t, r) .

Since the images of in and wt are finite, the infima and suprema in the above
definitions are restricted to a finitely generated (and thus finite) distributive sub-
lattice. Thus, even if S is an infinite lattice, the formal tree series ‖A‖ has a
finite image. In consequence, we can always assume w.l.o.g. that S is finite.

We will additionally consider weighted co-Büchi automata (WCA). A WCA is like
a WBA, except that a run is successful if every infinite path contains only finitely
many states from Q \ F1. Notice that WLA can be seen as special cases of both
WBA and WCA in which F1 = Q and hence every run is successful.

In some of our proofs we will make use of known results for more expressive
acceptance conditions that we now briefly describe. The parity condition is based

4

on a priority function Q → N. A run is accepted if on every path the minimal
priority occurring infinitely often is even. The Streett acceptance condition is
based on pairs (E1, F1), . . . , (En, Fn) of state sets. A run is accepted if for every
path p ∈ Path(K∗) there is a pair (Ei, Fi) such that p contains infinitely many
states from Ei or only finitely many states from Fi. The Rabin chain acceptance
condition is also based on pairs (E1, F1), . . . , (En, Fn) where the strict inclusions
E1 (F1 (E2 (. . . (En (Fn hold. A run is accepted if for every path
p ∈ Path(K∗) and every pair (Ei, Fi), p contains infinitely many states from Fi
and only finitely many states from Ei.

The corresponding classes of automata are denoted by WPA, WSA and WRCA.
For a given WBA or WCA it is easy to construct an equivalent WPA, WSA or
WRCA. Also, parity, Streett and Rabin chain conditions can be reduced to each
other by polynomial constructions. The class of tree series recognizable by WPA,
WSA or WRCA strictly includes those recognizable by WBA or WCA. These in
turn strictly include the tree series recognizable by WLA [18].

In the following we will often use expressions of the form WXA or XA as place-
holders for the different acceptance conditions; i.e., WXA stands for a weighted
automaton, and X is one of GB, B, C, L, P, S or RC. We will denote a generic
weighted tree automaton as a tuple (Q,Σ, S, in,wt,F), where F is the acceptance
condition, i.e., it stands for several sets of states, pairs of sets of states or a priority
function.

Standard (unweighted) automata can be seen as weighted automata over the
lattice B := ({0, 1},≤), with 0 < 1. The supremum and infimum in this lattice
are denoted as ∨ and ∧, respectively. The behaviour of such automata is the
characteristic function of the set L(A) := {t ∈ ΣK∗ | (‖A‖, t) = 1} of all trees
accepted by A. Likewise, the functions in and wt can be seen as a set I ⊆ Q and
a relation ∆ ⊆ Q× Σ×Qk, respectively. The abbreviations GBA, BA, CA, and
LA will be used when the underlying lattice of the automaton is B.

Definition 3. An alternating tree automaton is a tuple A = (Q,Σ, I, δ,F), where
Q, Σ, I, and F are defined as for (unweighted) tree automata. The transition
function δ : Q×Σ→ F(Q×K) maps each state and input symbol to a monotone
Boolean formula over Q×K.

Intuitively, an atomic formula (q, i) means that the automaton goes to state q at
the i-th successor of the current node. Conjunction ∧ means that the automaton
splits up into several copies which each pursues the directions given by the con-
juncts. Disjunction ∨ means that the automaton can make a non-deterministic
choice as to which disjunct to follow.

Starting from the root and an initial state, from one starting automaton many
copies can be generated, depending on the non-deterministic choices. Basically,
each of these copies consists of a path taken through K∗ and an associated se-
quence of states. An input tree is accepted if it is possible to make each of the

5

non-deterministic choices in such a way that the state sequences generated by the
resulting copies all satisfy the acceptance condition F.

Alternating tree automata are designated by the prefix A to the classification,
e.g., ABA stands for the class of all alternating automata with a Büchi acceptance
condition.

Example 4. A non-deterministic unweighted tree automaton (Q,Σ, I,∆,F) can
easily be transformed into an alternating one by replacing ∆ with the function

δ(q, α) :=
∨

(q,α,q1,...,qk)∈∆

∧
i∈K

(qi, i) ,

i.e., the automaton non-deterministically chooses a transition to take and then
sends one copy in every direction.

2.3 Basic Results

A result that will be useful later is that to compute the behavior of a weighted
automaton on a given input tree t it suffices to consider a finite subtree of K∗.
We prove a more general result.

Lemma 5. Let S be a finite lattice, Σ an input alphabet, t ∈ ΣK∗ an input tree,
Q a state set and P : K∗ × (Q × Σ × Qk) → S a function that assigns a lattice
element to each pair (u, y) consisting of a node and a transition. There is a
closed, finite subtree T ⊆ K∗ such that for every run r ∈ QK∗ we have⊗

u∈K∗
P (u,

−−−→
r(t, u)) =

⊗
u∈int(T)

P (u,
−−−→
r(t, u)) .

Proof. We first construct the infinite tree R of all finite subruns. The root of R is
labeled by the empty subrun r : ∅ → Q and its direct successors are labeled with
all subruns r : {ε} → Q of depth 0. For each node of R of depth n that is labeled
with a subrun r of depth n − 1, its successors are labeled with all extensions
of r to subruns r′ of depth n. Since r has kn−1 leaves, there are kn−1|Q|k such
extensions. Thus, R is finitely branching.

The tree R′ is now constructed from R by pruning it as follows. We traverse R
depth-first and check the label r ∈ QT of each node. If there is an extension of r
to a finite subrun r′ ∈ QT ′ with⊗

u∈int(T)

P (u,
−−−→
r(t, u)) >S

⊗
u∈int(T ′)

P (u,
−−−−→
r′(t, u)) ,

then we continue. Otherwise, we remove all nodes below the current node.

6

Since S is finite, for every run r ∈ QK∗ the expression P (u,
−−−→
r(t, u)) can only yield

finitely many different values. Thus, there must be a depth below which the value
of the infimum of all P (u,

−−−→
r(t, u)) is not changed anymore. Since every infinite

path in R uniquely corresponds to a run r ∈ QK∗ , this path must have been
pruned in the construction of R′, and thus R′ can have no infinite paths.

Since R′ is still finitely branching, by König’s Lemma, R′ must be finite and thus
have a maximal depth m. Now it is easily seen that the tree T :=

⋃m
n=0 K

n has
the desired property.

Note that this does not only hold for the infimum of the values P (u,
−−−→
r(t, u)). Using

the same arguments, an analogous result can be proven where
⊗

is substituted
by
⊕

.

Corollary 6. For every weighted tree automaton A = (Q,Σ, S, in,wt,F) with
finite S and every input tree t ∈ ΣK∗, there is a closed, finite subtree T ⊆ K∗

with the property that

(‖A‖, t) = (‖A‖T , t) :=
⊗

r∈succ(A)

in(r(ε))⊗
⊗

u∈int(T)

wt(
−−−→
r(t, u)) .

Proof. Apply Lemma 5 with P (u, y) := wt(y) for every u ∈ K∗ and y ∈ Q×Σ×
Qk.

This means that the computation of (‖A‖, t) for a given t can be carried out in
a finite amount of time, which is of course due to the finiteness of S. We now
reformulate the above results for unweighted automata.

Corollary 7. Let Σ be an input alphabet, t ∈ ΣK∗ an input tree, Q a state set
and P ⊆ K∗ × (Q×Σ×Qk) a predicate on pairs (u, y) of nodes and transitions.
There is a closed, finite subtree T ⊆ K∗ such that for every run r ∈ QK∗ we have

∀
u∈K∗

P (u,
−−−→
r(t, u)) ⇐⇒ ∀

u∈int(T)

P (u,
−−−→
r(t, u)) .

Corollary 8. For every unweighted tree automaton A = (Q,Σ, I,∆,F) and every
input tree t ∈ ΣK∗, there is a closed, finite subtree T ⊆ K∗ with the property that

t ∈ L(A) ⇐⇒ ∃
r∈succ(A)

r(ε) ∈ I ∧ ∀
u∈int(T)

−−−→
r(t, u) ∈ ∆ .

7

Since weighted automata are a generalization of unweighted automata, a natural
question is whether the standard results and constructions available for the latter
can be adapted to the former. In unweighted automata, one is often interested in
computing the union and intersection of the languages accepted by two automata.
These operations correspond to a supremum and an infimum computation, re-
spectively, from the lattice point of view. As the following lemma shows, these
problems can be solved in polynomial time.

Lemma 9. Let A and B be two WXA. Then one can construct automata C and C ′
of size polynomial on the sizes of A and B such that (‖C‖, t) = (‖A‖, t)⊗ (‖B‖, t)
and (‖C ′‖, t) = (‖A‖, t)⊕ (‖B‖, t) for all t ∈ ΣK∗.

Proof. These constructions closely follow the traditional constructions for inter-
section and union of finite automata, i.e., their state sets consist of the product
and union of the original state sets, respectively. It is easy to combine the weight
functions such that the desired behaviors are achieved.

Another important problem for unweighted automata is deciding emptiness of
the accepted language; i.e., whether there is at least one tree that is accepted.
The natural generalization of this problem is to compute the supremum of the
behaviour of A over all possible input trees. Using the ideas developed in [1], it is
possible to show that this problem can be solved in polynomial time for WGBA
(and hence also for WBA and WLA).

Lemma 10. Given a WGBA A, the value
⊕

t∈ΣK∗ (‖A‖, t) is computable in time
polynomial in the size of A.

Proof. By combining the input alphabet Σ with the state set of A, we can con-
struct an automaton working over a singleton alphabet whose behavior on the
unique input tree is exactly the desired supremum. We can then use the polyno-
mial algorithm from [1] to compute this value.

We will now look at the problem of deciding inclusion of the languages accepted
by two automata and later show how this can be generalized to the weighted
scenario.

3 Deciding Inclusion

We are interested in the inclusion problem of two automata, which can use dif-
ferent acceptance conditions. This problem is formally defined as follows.

Problem (Inclusion IX,Y). Given an XA A and a YA A′, decide whether L(A′) ⊆
L(A).

8

One approach to solving this problem is to construct an automaton that ac-
cepts the complement of L(A), since the inclusion L(A′) ⊆ L(A) holds iff
L(A′) ∩ L(A) = ∅. If one is able to efficiently decide the emptiness of this
intersection, then the inclusion problem can be easily solved. Thus, we look also
at the complementation problem.
Problem (Complementation CX,Y). Given an XA A, construct a YA A with
L(A) = L(A).

Notice that we do not require that the complement automaton has the same
acceptance condition as the original one. This is motivated by the fact that LA,
BA and CA are not closed under complement [18, 14], but e.g., the complement
of an LA is expressible through a BA (see Theorem 13).

Despite the difference in expressivity, the inclusion problem for Büchi automata
IB,B, for co-Büchi automata IC,C and for looping automata IL,L have the same
complexity; they are all ExpTime-complete.

Theorem 11. The problems IL,L, IB,B, and IC,C are ExpTime-complete.

Proof. We show ExpTime-hardness of IL,L by reduction of the inclusion problem
for finite trees, i.e., given two automata A and A′ on finite trees, decide whether
L(A′) ⊆ L(A). It was shown in [17, Theorem 2.1] that this problem is ExpTime-
complete.

The reduction employs a straightforward translation of automata on finite trees
to looping automata. Given an automaton A = (Q,Σ, I,∆) on finite trees, the
equivalent LA B = (Q′,Σ′, I ′,∆′) is constructed as follows:

• Q′ := Q ∪ {q?, q0}, where q?, q0 are new states.

• Σ′ := Σ ∪ {?}, where ? is a new symbol.

• I ′ := I ∪ {q0}.

• ∆′ := ∆ ∪ {(q, ?, q?, . . . , q?) | q ∈ Q} ∪ {(q?, α′, q?, . . . , q?) | α′ ∈ Σ′} ∪
{(q0, α, q1, . . . , qk) | ∃1 ≤ i ≤ k.qi = q0 ∧ ∀j 6= i.qj = q?}.

In this construction every infinite tree t′ ∈ Σ′K
∗ with a ? on every path represents

the finite tree t ∈ ΣT that is the subtree of t′ before the first ?’s. B accepts all trees
that have an infinite path without a ? (guessed via q0). On all trees that represent
finite trees it behaves the same as A. It is easy to see that L(A′) ⊆ L(A) holds
for two automata on finite trees iff L(B′) ⊆ L(B) holds for their corresponding
looping automata.

We will now give an algorithm that decides IB,B in time exponential in the size
of the input BA A and A′. Let n and n′ be the number of states of A and A′,
respectively.

9

1. We translate A into an equivalent APA B. The transition function δ of this
automaton can be determined as in Example 4. This construction yields an
automaton with n states and 2 priorities.

2. We use [19, Lemma 6.8] to construct an equivalent PA B′.2 This non-
deterministic automaton has a number of states exponential in n and a
number of priorities polynomial in n. Let 2p(n) be a bound on the number
of states and p′(n) be a bound on the number of priorities of B′ for suitable
polynomials p and p′.

3. Now we have to construct an automaton C recognizing the intersection of
L(B′) and L(A′). To do this, we use a standard product construction on
the automata, where the acceptance conditions have first been rewritten
as Streett conditions. For B′, the equivalent Streett condition has at most
p′(n) pairs and for A′ we only need one pair. The product automaton then
has as acceptance condition the conjunction of these two Streett conditions,
which is again a Streett condition with at most p′(n)+1 pairs. The number
of states of C is bounded by n′2p(n).

4. We rewrite the SA C again as a PA C ′. For this we use the construction
in [4, Theorem 7]. This construction takes a finite-state Streett game and
constructs an equivalent Rabin chain game. Unweighted automata can
be interpreted as special finite-state games, so this result also holds for
Streett automata and Rabin chain automata (see, e.g., [18]). Rabin chain
conditions can equivalently be expressed as parity conditions of the same
size.

We arrive at a PA with O(n′2p(n)(p′(n) + 1)!) states and O(p′(n) + 1) prior-
ities. Thus, the number of states is bounded by n′2r(n) and the number of
priorities by r′(n) for polynomials r and r′.3

5. By testing emptiness of L(C ′), we effectively decide the inclusion problem
for A and A′. It was shown in [12, Theorem 5.1 (1)] that emptiness of the
parity automaton C ′ is decidable in time O

(
(n′2r(n))r

′(n)
)
, i.e., exponential

in the number of states of A.

This concludes the proof that IB,B is in ExpTime. The same procedure can be
used to show that IC,C is in ExpTime, since co-Büchi automata are also easily
expressed as parity or Streett automata.

The ExpTime-decision procedures for IB,B and IC,C provided by this proof are
not practical, since they include several transformations into different automata

2In [19] alternating automata are defined differently, but the two descriptions can be trans-
formed into each other in polynomial time.

3The factorial x! is bounded by xx = 2x log x ≤ 2x2
.

10

models. However, we can effectively give an exponential construction for the
problem CL,B, which means that we can develop an optimal algorithm for solving
IL,B.

Definition 12. Let A = (Q,Σ, I,∆) be an LA. The complement automaton of
A is the BA A := (Qc,Σ, Ic,∆c, Fc) where

• Qc := P(Q).

• Ic := {I}.

• For Q0, . . . , Qk ⊆ Q and α ∈ Σ, (Q0, α,Q1, . . . , Qk) ∈ ∆c iff

∀
q0∈Q0

∀
y=(q0,α,q1,...,qk)∈∆

∃
i∈K

qi ∈ Qi .

• Fc := {∅}.

Notice that A is exponential in the size of A.

Theorem 13. If A is an LA and A its complement automaton, then L(A) =
L(A).

Proof. Let t ∈ L(A). Then there is a successful run r ∈ QK∗
c of A on t. Assume

that there also is a valid run r ∈ QK∗ of A on t. We now inductively construct a
path p ∈ Path(K∗) for which r(u) ∈ r(u) holds for all nodes u ∈ p.

• For u = ε we have r(ε) ∈ I = r(ε).

• Let u ∈ p be a node for which r(u) ∈ r(u) holds. Since r and r are valid, we
have (r(u), t(u), r(u1), . . . , r(uk)) ∈ ∆ and (r(u), t(u), r(u1), . . . , r(uk)) ∈
∆c. By definition of ∆c, there must be an i ∈ K with r(ui) ∈ r(ui). We
now append ui to the path p and continue.

The run r cannot fulfill the final state condition {∅} of A on the path p, since
every label along the path must contain at least one element. This contradicts
the fact that r is successful, and thus t cannot be accepted by A.

For the other inclusion, let t /∈ L(A). By Corollary 8, there must be a closed,
finite subtree T ⊆ K∗ on which no valid subrun exists. We now inductively
construct a successful run r ∈ QK∗

c of A on t for which every node u ∈ T has the
following property:

P (u) ≡ ∀
r∈Qu[K∗]

[
r(u) ∈ r(u)→

(
∃

w∈u[K∗]∩int(T)

−−−−→
r(t, w) /∈ ∆

)]
This means that every mapping r ∈ Qu[K∗] that starts in a state q0 ∈ r(u) at u
must violate ∆ at some node in int(T) that lies below u.

11

• If we set r(ε) := {I}, then P (ε) holds because of Corollary 8.

• If u is a leaf of T or u /∈ T , we set r(ui) := ∅ for each i ∈ K.

• Let now u be an inner node of T where r(u) has already been defined and
P (u) holds. We initially set r(ui) := ∅ for every i ∈ K. Thus, P (ui)

trivially holds for every i ∈ K, but the transition
−−−→
r(t, u) need not be valid.

We now have to expand the label sets r(ui) in such a way that

1. the transition
−−−→
r(t, u) becomes valid and

2. the properties P (ui) are not violated.

We do this by checking the conditions of ∆c step by step.

– Let q0 ∈ r(u) and y = (q0, t(u), q1, . . . , qk) ∈ ∆.
– Assume that for each index i ∈ K there is a mapping ri ∈ Qui[K∗] with
ri(ui) = qi that does not violate ∆ below ui in int(T). Then we could
join these mappings into a mapping r ∈ Qu[K∗] with r(u) := q0 and
r(uiw) := ri(uiw) for all i ∈ K and w ∈ K∗. This mapping does not
violate ∆ below u in int(T), which contradicts P (u).

– Thus we can find an index i ∈ K such that P (ui) still holds after we
add qi to r(ui).

After we have done this for every q0 ∈ r(u) and every matching transition
y ∈ ∆, we have fully determined the successor labels r(ui) and P (ui) still
holds for every i ∈ K. Additionally,

−−−→
r(t, u) now is a valid transition in ∆c.

To show that r is a valid run of A on t, we need to show that every transition is
compatible with ∆c. If the transition fully lies in T or T , this is clear from the
construction.

Let now u ∈ fr(T). Since P (u) holds, all mappings r ∈ Qu[K∗] with r(u) ∈ r(u)
must violate ∆ in u[K∗] ∩ int(T) = ∅, which is clearly not possible. This implies
that r(u) = ∅, and thus, the transition

−−−→
r(t, u) = (∅, t(u), ∅, . . . , ∅) is valid in ∆c.

It is clear that r is successful since every infinite path must leave T at some node
u and thus has the label ∅ at every node below u. This implies t ∈ L(A).

We can in fact improve this result by giving a construction that solves CC,GB.
Since every GBA can be transformed into a BA in polynomial time, this gives us
a solution also for CC,B, and hence for IC,B. The following construction follows
the ideas developed in [15] for simulating alternating tree automata using non-
deterministic automata.

Definition 14. The complement automaton of a CA A = (Q,Σ, I,∆, F) is the
GBA A := (Qc,Σ, Ic,∆c, Fc,1, . . . , Fc,|F |+1), where

12

• Qc contains all tuples of the form (Q0, Q1, . . . , Q|F |+1), where Q0 ⊆ Q \ F
and Q1, . . . , Q|F |+1 ⊆ F are disjoint.

• Ic := {(I \ F, I ∩ F, ∅, . . . , ∅)}.

• From a state (Q
(0)
0 , Q

(0)
1 , . . . , Q

(0)
|F |+1) at a node labeled with α, the transition

to ((Q
(1)
0 , Q

(1)
1 , . . . , Q

(1)
|F |+1), . . . , (Q

(k)
0 , Q

(k)
1 , . . . , Q

(k)
|F |+1)) is allowed iff

|F |+1

∀
j=0
∀

q∈Q(0)
j

∀
(q,α,q1,...,qk)∈∆

 ∃
i∈K
qi∈F

|F |+1

∃
l=max{j,1}

qi ∈ Q(i)
l

 ∨
 ∃

i∈K
qi /∈F

qi ∈ Q(i)
0

 .

• Fc,j := {(Q0, Q1, . . . , Q|F |+1) ∈ Qc | Qj = ∅} for j ∈ {1, . . . , |F |+ 1}.

The proof that this construction is correct closely follows the main ideas used in
the proof of Theorem 13. We will now show the correctness in two steps.

Lemma 15. Let A = (Q,Σ, I,∆, F) be a CA and A its complement automaton.
Then L(A) ⊆ L(A).

Proof. Let t ∈ L(A), i.e., there is a successful run r ∈ QK∗
c of A on t, and assume

that there also is a successful run r ∈ QK∗ of A on t. For a node u ∈ K∗,
define R(u) :=

⋃|F |+1
j=0 r(u)j. Then we can inductively construct an infinite path

p ∈ Path(K∗) for which r(u) ∈ R(u) holds for all u ∈ p:

• Since r(ε) ∈ I, either r(ε) ∈ I \ F = r(u)0 or r(ε) ∈ I ∩ F = r(u)1 must
hold, and thus r(ε) ∈ R(ε).

• Let u ∈ p be a node with the property r(u) ∈ R(u). Since
−−−→
r(t, u) ∈ ∆ and

−−−→
r(t, u) ∈ ∆c, there must be an i ∈ K such that r(ui) ∈ r(ui)j holds for
some j ∈ {0, . . . , |F |+ 1}. Thus r(ui) ∈ R(ui) holds and we can append ui
to the path p.

Since r is successful, there must be a node u0 ∈ p such that r(u) ∈ F holds for
all nodes u ∈ p ∩ u0[K∗] that occur below u0 along the path p. That means
that r(u) always occurs in a component r(u)j with j ≥ 1. The index j of this
component can only grow bigger or stay the same with each transition, and thus
there must be a node u1 ∈ p after which r(u) ∈ r(u)j always holds for some fixed
j ∈ {1, . . . , |F |+ 1}. Thus r(u)j can never be empty after the node u1 along the
path p, which contradicts the success of r.

For this direction, it is easy to see the similarity to the proof of Theorem 13.
The other direction is also similar. The property P (u) is replaced by a more
complex property Fail(u) and the proof is generally more complex to account for
the different components of each state. Instead of Corollary 8, we have to use the
more general version in Corollary 7 for this proof.

13

Lemma 16. Let A = (Q,Σ, I,∆, F) be a CA and A its complement automaton.
Then L(A) ⊇ L(A).

Proof. Let t /∈ L(A). We inductively construct a successful run r ∈ QK∗
c of A on

t. For every node u ∈ K∗ the following property Fail(u) will be satisfied.

Fail(u) ≡
|F |+1

∀
j=0
∀

r∈Qu[K∗]

r(u) ∈ r(u)j → ∃
w∈u[K∗]

Fail(w,
−−−−→
r(t, w))

Fail(u, y = (q0, . . .)) ≡

y ∈ ∆→

q0 /∈ F ∧ ∀
r′∈Qu[K∗]

r′(u)=q0

¬Valid(r′, u) ∨ ¬Success(r′, u)

Valid(r, u) ≡ ∀

w∈u[K∗]

−−−−→
r(t, w) ∈ ∆

Success(r, u) ≡ ∀
p∈Path(u[K∗])

Inf(r, p) \ F = ∅

Success(r, u) expresses that a run r is “successful below u”, i.e., all infinite paths
starting from u must contain only finitely many states from Q \ F .4 The prop-
erty Valid(r, u) ensures that all transitions of a run r below a node u are valid
transitions of A. Using these two properties, we formulate Fail(u, y) by saying
that if y is a valid transition at u, then the current state must be non-final and
no valid run starting from this state can be successful. Finally, Fail(u) says that
every run starting in a state occurring in r(u) must fail somewhere below u.

The property Fail(u, y) is clearly of the form required by Corollary 7, and thus
Fail(u) is equivalent to a property Fail(u, (Tj,u)) for closed, finite trees Tj,u ⊆
u[K∗] (j ∈ {1, . . . , |F | + 1}). This property is the same as Fail(u), except that
“w ∈ u[K∗]” is replaced by “w ∈ Tj,u”.5

To start the construction of r, we set r(ε) := (I \ F, I ∩ F, ∅, . . . , ∅) and deduce
Fail(ε) as follows. If Fail(ε) was not fulfilled, there would be a run r ∈ QK∗ with
r(ε) ∈ I for which all transitions are valid and for every w ∈ K∗ with r(w) /∈ F
there would be a run r′w ∈ Qw[K∗] with r′w(w) = r(w) that is both valid and
successful below w. Then we could construct a run r′ ∈ QK∗ by replacing the

4Inf(r, p) denotes the set of states occurring infinitely often in r along p.
5The tree T0,u can always be chosen to be the singleton tree {u}: If every valid run starting

in a state from Q \ F at u must contain a node w with Fail(w,
−−−−→
r(t, w)), then for every such

run Fail(u,
−−−→
r(t, u)) will already be satisfied. This is because any path containing w must also

contain u.

14

labels of r on the subtree w[K∗] with those of r′w at every such node w ∈ K∗.6
This run r′ would be a valid and successful run of A on t, which contradicts the
assumption t /∈ L(A).

Suppose now that u ∈ K∗ is a node where r(u) has already been defined and for
which Fail(u, (Tj,u)) holds for some finite trees Tj,u ⊆ u[K∗] (j ∈ {1, . . . , |F |+1}).
For every i ∈ K we construct r(ui) from r(u) in several steps.

• First we determine an index j̃ ∈ {1, . . . , |F | + 1} with r(u)ej = ∅. Since we
will keep the sets r(u)j (j ∈ {1, . . . , |F |+ 1}) disjoint, there can be at most
|F | non-empty sets and thus such an index j̃ can always be chosen.

• We initially set r(ui) := (∅, . . . , ∅) for each i ∈ K, and thus Fail(ui) holds
for our initial definiton of r(ui). But clearly, the resulting transition

−−−→
r(t, u)

need not satisfy the transition relation ∆c. We now enlarge the sets r(ui)
in such a way that Fail(ui) remains satisfied and

−−−→
r(t, u) becomes a valid

transition.

• For every j ∈ {0, . . . , |F | + 1}, q ∈ r(u)j and y = (q, t(u), q1, . . . , qk) ∈ ∆,
we do the following.

– We choose one index i ∈ K for which qi is added to a component of
r(ui). The index of this new component is determined as follows:

∗ If qi /∈ F , we set r(ui)0 := r(ui)0 ∪ {qi}.
∗ If j > 0 and qi ∈ F , we set r(ui)j := r(ui)j ∪ {qi}.
∗ If j = 0 and qi ∈ F , we set r(ui)ej := r(ui)ej ∪ {qi}.

We choose i such that Fail(ui) remains satisfied after we add qi to
r(ui) as specified above. As we will show in the following, such an
index always exists. For this, we make a case distinction depending on
whether q ∈ F or not.

∗ Let q /∈ F , i.e., j = 0 and assume that Fail(ui) is violated by
adding qi to r(ui). Then there are subruns ri ∈ Qui[K∗] with the
properties
· ri(ui) = qi and

· Fail(w,
−−−−→
ri(t, w)) is not satisfied for any w ∈ ui[K∗], i.e., if

w /∈ F , then there is a valid and successful subrun r′w ∈ Qw[K∗]

with r′w(w) = ri(w).
As in the argument for Fail(ε), we can now construct a subrun r′ ∈
Qu[K∗] with

−−−−→
r′(t, u) = y which is valid and successful. This means

that Fail(u, y) is not satisfied. If we now construct the subrun
6We only do this replacement for the first occurrence of a state from Q \F , not in a subtree

that has already been replaced.

15

r ∈ Qu[K∗] by concatenating y and the subruns ri, Fail(w,
−−−−→
r(t, w))

is not satisfied for any w ∈ u[K∗], which is a contradiction to
Fail(u).
∗ If q ∈ F , i.e., j ≥ 1, we could use the same argument as above.

However, in this case we take a closer look at the finite tree Tj,ui
because this will later enable us to show that r is successful. Since
all qi are added to either r(ui)0 or r(ui)j, we need only be con-
cerned with the trees T0,ui and Tj,ui. We will show that we can
choose i ∈ K such that the property Fail(ui, (Tj′,ui)) remains sat-
isfied if we set T0,ui := Tj,ui := Tj,u ∩ ui[K∗].
If we assume the converse, we could deduce that there exist sub-
runs ri ∈ Qui[K∗] with the following properties:
· ri(ui) = qi.

· Fail(w,
−−−−→
ri(t, w)) is not satisfied for any w ∈ Tj,u ∩ ui[K∗].

If we now construct the subrun r ∈ Qu[K∗] by concatenating the
transition y and the subruns ri, then it is easily seen that r starts
in r(u) = q and no Fail(w,

−−−−→
r(t, w)) is satisfied for any w ∈ Tj,u ∩

ui[K∗] and for any i ∈ K. Furthermore, Fail(u,
−−−→
r(t, u)) is also not

satisfied, since
−−−→
r(t, u) = y ∈ ∆, but q ∈ F . This means that r is a

counterexample to Fail(u, (Tj′,u)).

– After we have done this for every j, q and y, the transition
−−−→
r(t, u) is

valid and the properties Fail(ui) still hold.

• As a last step, we need to make sure that the sets r(ui)1, . . . , r(ui)|F |+1

are disjoint for every i ∈ K. To do this, we remove all but the rightmost
occurrence of each state q ∈ F in these sets. The transition

−−−→
r(t, u) remains

valid, because ∆c only requires a state qi to be present in some position
l that is greater than or equal to max{j, 1}. The properties Fail(ui) also
still hold, because we only removed states from some of the components of
r(ui).

• Since Fail(ui) holds, there are finite trees Tj,ui (j ∈ {1, . . . , |F | + 1}) such
that Fail(ui, (Tj,ui)) holds. These trees can be determined as follows.

– T0,ui can be set to {ui} since Fail(ui) implies that for any run r ∈
Qui[K∗] with r(ui) ∈ r(ui)0 the property Fail(ui,

−−−−→
r(t, ui)) must hold.

– Tej,ui must be determined from Fail(ui) using Corollary 7.

– For any j that is not 0 or j̃, we can set Tj,ui := Tj,u ∩ ui[K∗]. This is
possible because of the way we constructed r(ui)j.

It remains to show that r is a successful run of A. For this we assume that there
is a path p ∈ Path(K∗) such that for some j ∈ {1, . . . , |F | + 1} the set r(u)j is

16

empty only finitely often for nodes u ∈ p. Then there is a node u ∈ p after which
no empty set occurs in the j-th component of r along p. By construction of r,
the property Fail(u, (Tj′,u)) must be satisfied for finite trees Tj′,u ⊆ u[K∗].

Let v be the first node of p that lies outside of Tj,u. By construction of r,
Fail(v, (Tj′,v)) must hold for finite trees Tj′,v ⊆ v[K∗]. The tree Tj,v can be
chosen to be Tj,u ∩ v[K∗] = ∅ since no empty set occurred in the j-th component
along the path from u to v. Since Fail(v, (Tj′,v)) is satisfied, this means that r(v)
must be empty, which contradicts the assumption. Thus, r is a successful run of
A on t and t ∈ L(A).

We obtain the following theorem.

Theorem 17. If A is a CA and A its complement automaton, then L(A) =
L(A).

Notice that the complement automaton of a CA A is exponential in the size of
A. This implies that CC,B (and thus, also IC,B) is solvable in exponential time.
We hence obtain the following corollary.

Corollary 18. The inclusion problem IC,B is ExpTime-complete.

Proof. Since LA are a special kind of BA and CA, ExpTime-hardness follows
from the hardness of IL,L (see Theorem 11). The upper bound is a direct conse-
quence of Theorem 17 and Lemmata 9 and 10.

Unfortunately, a similar construction for the problem CB,C is not possible. This
was shown in [13] by means of a counterexample, i.e., a tree language that is
recognizable by a BA, but whose complement is not recognizable by a CA.

4 The Weighted Inclusion Problem

As mentioned already, unweighted automata can be seen as weighted automata
over a very simple Boolean lattice, namely B, whose operators correspond to
the logical connectives. In fact, Boolean lattices can be seen as the natural
generalization of Boolean logic, where the conjunction, disjunction and negation
are translated to the infimum ⊗, supremum ⊕, and complementation −. We can
use this fact to describe “natural” generalizations of the decision problems for
unweighted automata to the weighted setting.

From a low-level point of view, the inclusion problem consists of deciding whether
the implication t ∈ L(A′)⇒ t ∈ L(A) holds for every input tree t. Equivalently,
we can express this property using the formula:∧

t∈ΣK∗

¬(‖A′‖, t) ∨ (‖A‖, t) ,

17

which can then be generalized to arbitrary Boolean lattices as follows.

Problem (Weighted Inclusion IWX,WY). Given a WXA A and a WYA A′ over the
same Boolean lattice, compute

⊗
t∈ΣK∗ (‖A′‖, t)⊕ (‖A‖, t).

Remark. A more intuitive generalization of the inclusion problem is to decide
whether (‖A′‖, t) ≤ (‖A‖, t) holds for all input trees t. This is, however, only a
special case of the above problem, since

(‖A′‖, t) ≤ (‖A‖, t)⇔ (‖A′‖, t)⊕ (‖A‖, t) = 1S .

Related to inclusion is the problem of deciding the equivalence of two unweighted
automata, which can be decided by two inclusion tests. Generalizing this to
Boolean lattices, one can compute the weighted equivalence of a WXA A and
a WYA A′ as the infimum of the two weighted inclusions of type IWX,WY and
IWY,WX . This value expresses the degree to which the two automata recognize
the same tree series and will be 1S iff these tree series are equal.

As in the unweighted case, the problem IWX,WY can sometimes be reduced to a
(lattice) complementation problem.

Problem (Weighted Complementation CWX,WY). Given a WXA A, construct a
WYA A such that (‖A‖, t) = (‖A‖, t) holds for every t ∈ ΣK∗ .

Similar to the unweighted case, this reduction is based on the feasibility of com-
puting the behavior of the binary infimum of two automata. This task is of poly-
nomial complexity for weighted Büchi tree automata (see Lemmata 9 and 10).

We now present two methods for solving the weighted inclusion problem over
arbitrary Boolean lattices. The first method uses the algorithm for testing the
inclusion of unweighted automata as a black-box. This algorithm is called several
times in a systematic way until the desired aggregated infimum is found.

The second method uses a glass-box approach instead, i.e., it modifies the original
inclusion algorithms from the previous section to perform the computations over
the lattice directly, without the need of repeatedly testing for inclusion. Our
transformation uses a straightforward translation of the logical operators into
their lattice counterparts. A surprising result is that the black-box approach is
in fact more efficient than the glass-box.

4.1 Black-Box Approach

Since we already have a decision procedure for the unweighted problem IB,B, we
can use this to construct a black-box algorithm for IWB,WB. This approach reduces
IWB,WB to several inclusion checks. The main advantage of such an approach is
that one can use any procedure deciding the unweighted problem, including any
optimizations developed for it, since this procedure needs not be modified.

18

The black-box reduction of IWB,WB to IB,B is based on an idea from [6] and
exploits the fact that every lattice element can be represented as the infimum of
all the meet prime elements above it.

Let A = (Q,Σ, S, in,wt, F) and A′ = (Q′,Σ, S, in′,wt′, F ′) be two WBA over the
same lattice S and p ∈ S a meet prime element. We define the cropped automata
Ap and A′p as the BA (Q,Σ, I,∆, F) and (Q′,Σ, I ′,∆′, F ′), respectively, where
the initial state sets and transition relations are as follows:

• I := {q ∈ Q | in(q) � p}, ∆ := {y ∈ Q× Σ×Qk | wt(y) � p},

• I ′ := {q′ ∈ Q′ | in′(q′) ≥ p}, ∆′ := {y′ ∈ Q′ × Σ×Q′k | wt′(y′) ≥ p}.

The transitions allowed in Ap (A′p) are exactly those transitions having weight
� p (≥ p) in A (A′). It is easy to show that this property is transferred to the
behavior of the weighted automata as follows. We have (‖A‖, t) ≤ p iff t /∈ L(Ap)
and (‖A′‖, t) ≥ p iff t ∈ L(A′p) for all t ∈ ΣK∗ . From this, it follows that⊗

t∈ΣK∗ (‖A‖, t)⊕ (‖A′‖, t) ≤ p holds iff L(A′p) * L(Ap).

We have assumed that the Boolean lattice S is generated by the elements in the
images of the initial distribution and transition weight functions of A and A′.
Since the number of meet prime elements in any distributive lattice is at most
exponential in the number of elements generating it,7 S has at most exponentially
many meet prime elements measured on the sizes of A and A′. Thus, this black-
box approach requires at most exponentially many inclusion tests, each of which
is itself exponential in the sizes of these automata. This means that IWB,WB is
solvable in exponential time.

Notice, additionally, that the reduction we used depends only on the number of
meet prime elements and on the existence of an exponential-time inclusion test
for the unweighted version of the automata, but not on the specific acceptance
condition used. In other words, if IX,Y can be decided in exponential time, then
IWX,WY is computable in exponential time, too.

Theorem 19. Let S be a Boolean lattice and X, Y be two acceptance conditions
such that the problem IX,Y is decidable in some complexity class C that includes
ExpTime. Then the problem of deciding whether a given value a ∈ S solves an
instance of IWX,WY is also in C.

Corollary 20. Let S be a Boolean lattice. The problems of deciding whether a
given value a ∈ S is the solution of IWB,WB, IWL,WL, IWC,WC, IWL,WB, or IWC,WB

are ExpTime-complete.
7Each meet prime element can be expressed as the supremum of some generating elements

and complements of generating elements.

19

4.2 Glass-Box Approach

We now describe a construction that computes IWX,WY directly, rather than by
means of several inclusion tests. This construction is in fact a generalization of
the method used for deciding inclusion of unweighted automata presented in the
previous section; hence the name glass-box.

Recall from Section 3 that the procedure deciding inclusion of two automata A
and A′ (i.e., whether L(A′) ⊆ L(A)) required three steps: first construct an
automaton A accepting the complement of L(A′); then, intersect A′ and A, and
finally decide emptiness of the resulting automaton. We have shown that the last
two steps can be solved for weighted Büchi automata in polynomial time (see
Lemmata 9 and 10). Thus, if we can solve the problem CWX,WB, then we will also
have a procedure that solves IWX,WB.

Let us consider first the case of complementing looping automata. Definition 12
shows us how to build an automaton that accepts the complement language of a
given looping automaton. Notice first that the transition relation of the automa-
ton A is equivalent to the following formula:∧

(q0,α,q1,...,qk)∈Q×Σ×Qk

q0 /∈ Q0 ∨ y /∈ ∆ ∨
∨
i∈K

qi ∈ Qi .

If we see this construction as a weighted automaton over the lattice B, then it is
easy to see how to generalize it to arbitrary Boolean lattices.

Definition 21. The complement automaton of a WLA A = (Q,Σ, S, in,wt) is
the WBA A = (Qc,Σ, S, inc,wtc, Fc) where

• Qc := SQ.

• For ϕ ∈ Qc, inc(ϕ) :=

{
1S if ϕ(q) ≥ in(q) for all q ∈ Q
0S otherwise .

• For ϕ0, . . . , ϕk ∈ Qc and α ∈ Σ, wtc(ϕ0, α, ϕ1, . . . , ϕk) :=⊗
y=(q0,α,q1,...,qk)∈Q×{α}×Qk

ϕ0(q0)⊕ wt(y)⊕
⊕
i∈K

ϕi(qi) .

• Fc := {0S} where 0S : Q→ S : q 7→ 0S.

We now show that this construction solves the weighted complementation problem
CWL,WB. For this, we fix a WLA A = (Q,Σ, S, in,wt) and an input tree t ∈ ΣK∗

and need to show that (‖A‖, t) = (‖A‖, t) holds. The next two sections are
dedicated to proving the two halves of this claim. The proof uses similar ideas to
those of Theorem 13, generalized to Boolean lattices.

20

4.2.1 Proof of (‖A‖, t) ≤ (‖A‖, t)

We show this direction by proving the inequality wtc(t, r) ≤ wt(t, r) for all r ∈
succ(A) and r ∈ QK∗ . If wtc(t, r) = 0S or wt(t, r) = 0S this is trivially satisfied,
so we fix two runs r ∈ succ(A) and r ∈ QK∗ with wtc(t, r) > 0S and wt(t, r) > 0S.

We proceed by showing that wtc(t, r) ⊗ wt(t, r) is smaller than a ⊗ a = 0S for
some suitably chosen a ∈ S. Looking at Theorem 13 one can already guess
that this argument has to do with paths p ∈ Path(K∗) for which r(u) ∈ r(u)
holds for all u ∈ p. In the weighted case, this property is replaced by the value⊗

u∈p r(u)(r(u)). To be exact, a has the form⊕
p∈Path(K∗,n)

⊗
u∈p

r(u)(r(u))

for some n ∈ N.

Lemma 22. There is a depth m ∈ N such that

wtc(t, r) ≤
⊗

p∈Path(K∗,m)

⊕
u∈p

r(u)(r(u)) .

Proof. Since r is successful, there is a minimal depth m ∈ N such that any path
p visits at least one node labeled by 0S before reaching depth m.

Let now p ∈ Path(K∗,m) and assume that wtc(t, r) �
⊕

u∈p r(u)(r(u)). Then⊕
u∈p r(u)(r(u)) < 1S and thus r(u)(r(u)) > 0S holds for every u ∈ p. Hence

there cannot be a node labeled with 0S along p in r, which contradicts the above
choice of m.

We now show the second part, which leads to the “contradiction” wt(t, r) ⊗
wtc(t, r) ≤ 0S.

Lemma 23. For all n ∈ N the following inequation holds:

wt(t, r)⊗ wtc(t, r) ≤
⊕

p∈Path(K∗,n)

⊗
u∈p

r(u)(r(u)) .

Proof. For n = 0 we have

wt(t, r)⊗ wtc(t, r) ≤ in(r(ε)) ≤ r(ε)(r(ε)) =
⊕

p∈Path(K∗,0)

⊗
u∈p

r(u)(r(u)) .

This holds since wtc(t, r) > 0S and thus inc(r(ε)) > 0S and r(ε)(r(ε)) ≥ in(r(ε)).

21

Let now the inequation hold for some n ∈ N. For p ∈ Path(K∗, n), we let
p = {p0, . . . , pn}, where p0 = ε and the nodes are ordered by the successor
relation. For any such path p we know that

wt(t, r)⊗ wtc(t, r) ≤ wt(
−−−−→
r(t, pn))⊗ wtc(

−−−−→
r(t, pn)) ,

and thus

wt(t, r)⊗ wtc(t, r) ≤
⊗

p∈Path(K∗,n)

wt(
−−−−→
r(t, pn))⊗ wtc(

−−−−→
r(t, pn)) .

Furthermore,

r(pn)(r(pn))⊗ wt(
−−−−→
r(t, pn))⊗ wtc(

−−−−→
r(t, pn))

=

(
r(pn)(r(pn))⊕ wt(

−−−−→
r(t, pn))

)
⊗⊗

y=(q0,t(pn),q1,...,qk)

(
r(pn)(q0)⊕ wt(y)

)
⊕
⊕
i∈K

r(pni)(qi)

(by de Morgan’s law)

≤
(
r(pn)(r(pn))⊕ wt(

−−−−→
r(t, pn))

)
⊗((

r(pn)(r(pn))⊕ wt(
−−−−→
r(t, pn))

)
⊕
⊕
i∈K

r(pni)(r(pni))

)
(choose y =

−−−−→
r(t, pn))

= r(pn)(r(pn))⊗ wt(
−−−−→
r(t, pn))⊗

⊕
i∈K

r(pni)(r(pni))

(by distributivity of S)

=
⊕
i∈K

r(pn)(r(pn))⊗ wt(
−−−−→
r(t, pn))⊗ r(pni)(r(pni)) .

Using the above two inequations we get

wt(t, r)⊗ wtc(t, r)

≤

 ⊕
p∈Path(K∗,n)

n⊗
j=0

r(pj)(r(pj))

⊗
 ⊗
p∈Path(K∗,n)

wt(
−−−−→
r(t, pn))⊗ wtc(

−−−−→
r(t, pn))

(by induction hypothesis and the first inequation)

≤
⊕

p∈Path(K∗,n)

(
n−1⊗
j=0

r(pj)(r(pj))

)
⊗ r(pn)(r(pn))

⊗ wt(
−−−−→
r(t, pn))⊗ wtc(

−−−−→
r(t, pn))

(by Lemma 1 b))

22

≤
⊕

p∈Path(K∗,n)

⊕
i∈K

(
n−1⊗
j=0

r(pj)(r(pj))

)
⊗ r(pn)(r(pn))

⊗ wt(
−−−−→
r(t, pn))⊗ r(pni)(r(pni))

(by the second inequation and distributivity of S)

≤
⊕

p∈Path(K∗,n+1)

⊗
u∈p

r(u)(r(u)) .

(combining p with pni)

This completes the proof by induction on n.

This allows us to conclude the first half of the proof of correctness.

Lemma 24. (‖A‖, t) ≤ (‖A‖, t).

Proof. Combining Lemmata 22 and 23, we get wt(t, r)⊗wtc(t, r) ≤ 0S. Lemma 1
now implies wtc(t, r) ≤ wt(t, r).

Since this holds for all r ∈ succ(A) and all runs r of A, we have (‖A‖, t) ≤
(‖A‖, t).

4.3 Proof of (‖A‖, t) ≥ (‖A‖, t)

Similar to Theorem 13, we define a successful run r ∈ QK∗
c of A with wtc(t, r) =

(‖A‖, t).

From Corollary 6 we know that there must be a closed, finite subtree T ⊆ K∗

such that for the computation of the weight (‖A‖, t), we only need to consider
the nodes in T .

Definition 25. Let the run r ∈ QK∗
c be inductively defined as follows:

• r(ε) := in.

• If u ∈ fr(T) or u /∈ T , set r(ui) := 0S for each i ∈ K.

• If u ∈ int(T) is a node where r(u) has already been defined, set

r(ui)(q) :=
⊗

r∈Qui[K∗]

r(ui)=q

⊕
w∈ui[K∗]∩int(T)

wt(
−−−−→
r(t, w))

for each i ∈ K and q ∈ Q.

23

From this definition, it is already clear that r is a successful run of A, since every
path will be labeled by 0S from some point on.

We additionally define a value P (u) for each node u ∈ T :

P (u) :=
⊗

r∈Qu[K∗]

r(u)(r(u))⊕
⊕

w∈u[K∗]∩int(T)

wt(
−−−−→
r(t, w))

Lemma 26. The following hold:

• P (ε) = (‖A‖, t).

• P (ui) = 1S for all ui ∈ T .

Proof. The first claim is easily proven by considering the definitions and Corol-
lary 6.

Additionally, for any ui ∈ T we have

P (ui) =
⊗

r∈Qui[K∗]

r(ui)(r(ui))⊕
⊕

w∈ui[K∗]∩int(T)

wt(
−−−−→
r(t, w))

≥
⊗

r∈Qui[K∗]

 ⊕
w∈ui[K∗]∩int(T)

wt(
−−−−→
r(t, w))

⊕
 ⊕
w∈ui[K∗]∩int(T)

wt(
−−−−→
r(t, w))

= 1S ,

which proves the second claim.

We now show that the run r has the claimed weight.
Lemma 27. The following hold:

a) inc(r(ε)) = 1S.

b) wtc(
−−−→
r(t, u)) = 1S for all u /∈ T .

c) wtc(
−−−→
r(t, u)) = P (u) for all u ∈ T .

Proof. a) holds by definition of inc and r(ε) and b) follows from the fact that
r(u) = 0S holds for all u /∈ T . For c), we consider two cases:

• wtc(
−−−→
r(t, u)) = P (u) for every u ∈ fr(T):

wtc(
−−−→
r(t, u)) =

⊗
y=(q0,t(u),q1,...,qk)

r(u)(q0)⊕ wt(y)

=
⊗

r∈Qu[K∗]

r(u)(r(u))⊕ wt(
−−−→
r(t, u))

= P (u) .

24

The second equation holds because of idempotency of ⊗. We consider any
transition y at u as the beginning of every run r ∈ Qu[K∗] with

−−−→
r(t, u) = y.

• wtc(
−−−→
r(t, u)) = P (u) for every u ∈ int(T):

wtc(
−−−→
r(t, u))

=
⊗

y=(q0,t(u),q1,...,qk)

r(u)(q0)⊕ wt(y)⊕
⊕
i∈K

r(ui)(qi)

=
⊗

y=(q0,t(u),q1,...,qk)

r(u)(q0)⊕ wt(y)⊕
⊕
i∈K

⊗
ri∈Qui[K∗]

ri(ui)=qi

⊕
w∈ui[K∗]∩int(T)

wt(
−−−−→
ri(t, w))

=
⊗

y=(q0,t(u),q1,...,qk)

r(u)(q0)⊕ wt(y)⊕

⊗
r1∈Qu1[K∗]

r1(u1)=q1

. . .
⊗

rk∈Quk[K∗]

rk(uk)=qk

⊕
i∈K

⊕
w∈ui[K∗]∩int(T)

wt(
−−−−→
ri(t, w))

(by distributivity of S)

=
⊗

y=(q0,t(u),q1,...,qk)

⊗
r1∈Qu1[K∗]

r1(u1)=q1

. . .
⊗

rk∈Quk[K∗]

rk(uk)=qk

r(u)(q0)⊕ wt(y)⊕
⊕
i∈K

⊕
w∈ui[K∗]∩int(T)

wt(
−−−−→
ri(t, w))

(by distributivity of S)

=
⊗

r∈Qu[K∗]

r(u)(r(u))⊕
⊕

w∈u[K∗]∩int(T)

wt(
−−−−→
r(t, w))

(concatenate y and r1, . . . , rk to r)
= P (u) .

These two cases account for all the nodes of T , since T is closed.

This completes the second half of the proof of correctness.

Lemma 28. (‖A‖, t) ≥ (‖A‖, t).

Proof. We easily deduce

(‖A‖, t) ≥ wtc(t, r) = inc(r(ε))⊗
⊗
u∈K∗

wtc(
−−−→
r(t, u)) = (‖A‖, t)

from Lemmata 26 and 27.

25

Theorem 29. If A is a WLA and A is its complement automaton, then for all
t ∈ ΣK∗, (‖A‖, t) = (‖A‖, t).

Proof. Since the construction of A does not depend on the input tree t, this
follows from Lemmata 24 and 28.

4.4 Complexity

This construction gives us an automaton that has |S||Q| states, where |Q| is the
number of states of the original automaton, and hence can be used to solve the
problems CWL,WB and IWL,WB in exponential time. This is optimal with respect
to the complexity of the problems, as shown by Corollary 20.

However, a more fine-grained analysis of the algorithms shows that the black-box
approach is in fact more efficient than the glass-box. The main consideration is
that the number of meet prime elements of any Boolean lattice is logarithmic
in the size of the lattice. Hence, if there are n meet prime elements, then the
black-box approach involves n emptiness tests8 of automata of size 2|Q|.

On the other hand, the glass-box approach will apply a polynomial time algorithm
on an automaton of size (2n)|Q|. Additionally, n cannot be considered indepen-
dently from |Q|, but, given our assumption that the lattice S is generated by
the input automata, n actually grows proportionally to |Q|. This means that the
bigger the input automata become, the more expensive the glass-box approach
is, relative to the black-box procedure. This is surprising because it shows that
an all-purpose procedure performs better than a specifically designed algorithm.

Obviously, looping automata are not the only ones that can be used in a glass-box
approach. In fact, by simply generalizing the construction from Definition 14 to
arbitrary Boolean lattices, we could obtain a method for solving CWC,WB. How-
ever, this would again result in an automaton having |S||Q| states, which is less
efficient than the black-box approach.

5 Conclusions

We have investigated some of the standard problems for unweighted automata
on infinite trees and their generalization to weighted automata. In particular, we
have looked at the inclusion and complementation problems for Büchi automata.
Despite this class of automata not being closed under complementation, we have
shown that for every looping or co-Büchi automaton it is possible to build a Büchi
automaton of exponential size accepting the complement language. We demon-
strated that these constructions can be generalized to the weighted setting, thus

8The emptiness of Büchi automata can be tested in quadratic time.

26

giving exponential time solutions to the weighted inclusion and complementa-
tion problems. Additionally, we described a black-box approach that solves these
problems by performing several (unweighted) inclusion tests.

Since automata on infinite trees provide a clear characterization of reasoning in
logics with the tree model property (e.g., some description logics), in our future
work we will study the relation between the generalized problems for weighted
automata and some non-standard inferences in these logics. In particular, we will
study their application to uncertainty and multi-valued reasoning.

Acknowledgements

We are grateful to Christof Löding for sharing his ideas on the complexity of the
inclusion problem for Büchi automata.

References

[1] Franz Baader and Rafael Peñaloza. Automata-based axiom pinpointing.
Journal of Automated Reasoning, 45(2):91–129, August 2010. Special Issue:
Selected Papers from IJCAR 2008.

[2] Glenn Bruns and Patrice Godefroid. Model checking with multi-valued logics.
In Proc. of ICALP 2005, volume 3142 of Lecture Notes in Computer Science,
pages 281–293. Springer, 2004.

[3] J. Richard Büchi. On a decision method in restricted second order arithmetic.
In E. Nagel et al., editors, Proc. Internat. Congr. on Logic, Methodology and
Philosophy of Science, pages 1–11. Stanford University Press, 1960.

[4] Nils Buhrke, Helmut Lescow, and Jens Vöge. Strategy construction in infinite
games with streett and rabin chain winning conditions. In Tiziana Margaria
and Bernhard Steffen, editors, Tools and Algorithms for the Construction
and Analysis of Systems, volume 1055 of Lecture Notes in Computer Science,
pages 207–224. Springer Berlin/Heidelberg, 1996.

[5] Manfred Droste and Paul Gastin. Weighted automata and weighted logics.
In Proceedings of ICALP 2005, volume 3580 of Lecture Notes in Computer
Science, pages 513–525. Springer, 2005.

[6] Manfred Droste, Werner Kuich, and George Rahonis. Multi valued MSO log-
ics over words and trees. Fundamenta Informaticae, 84(3-4):305–327, 2008.

[7] Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of Weighted
Automata. Springer, 1st edition, 2009.

27

[8] Manfred Droste and George Rahonis. Weighted automata and weighted
logics on infinite words. In Proceedings of DLT 2006, volume 4036 of Lecture
Notes in Computer Science, pages 49–58. Springer, 2006.

[9] Manfred Droste and Heiko Vogler. Weighted tree automata and weighted
logics. Theor. Comput. Sci., 366(3):228–247, 2006.

[10] George Grätzer. General Lattice Theory. Birkhäuser, Basel, second edition
edition, 1998.

[11] O. Kupferman and Y. Lustig. Lattice automata. In Proc. 8th Interna-
tional Conference on Verification, Model Checking, and Abstract Interpreta-
tion, volume 4349 of Lecture Notes in Computer Science, pages 199 – 213.
Springer-Verlag, 2007.

[12] Orna Kupferman and Moshe Y. Vardi. Weak alternating automata and tree
automata emptiness. In STOC ’98: Proceedings of the thirtieth annual ACM
Symposium on Theory of Computing, pages 224–233, New York, NY, USA,
1998. ACM.

[13] Salvatore La Torre and Aniello Murano. Reasoning about co-büchi tree
automata. In ICTAC, pages 527–542, 2004.

[14] Salvatore La Torre, Aniello Murano, and Margherita Napoli. Weak muller
acceptance conditions for tree automata. In Agostino Cortesi, editor, Veri-
fication, Model Checking, and Abstract Interpretation, volume 2294 of Lec-
ture Notes in Computer Science, pages 285–288. Springer Berlin/Heidelberg,
2002.

[15] David E. Muller and Paul E. Schupp. Simulating alternating tree automata
by nondeterministic automata: New results and new proofs of the theorems
of Rabin, McNaughton and Safra. Theoretical Computer Science, 141(1-
2):69–107, 1995.

[16] George Rahonis. Weighted muller tree automata and weighted logics. Journal
of Automata, Languages and Combinatorics, 12(4):455–483, 2007.

[17] Helmut Seidl. Deciding equivalence of finite tree automata. In B. Monien
and R. Cori, editors, STACS 89, volume 349 of Lecture Notes in Computer
Science, pages 480–492. Springer Berlin/Heidelberg, 1989.

[18] Wolfgang Thomas. Languages, automata, and logic. In Handbook of Formal
Languages, volume 3, pages 389–455. Springer New York, 1997.

[19] Moshe Y. Vardi and Thomas Wilke. Automata: From logics to algorithms. In
Jörg Flum, Erich Grädel, and Thomas Wilke, editors, Logic and Automata:
History and Perspectives, pages 629–736. Amsterdam University Press, 2007.

28

