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Abstract

We investigate the computational complexity of axiom pinpointing in Description Logics, which
is the task of finding minimal subsets of a knowledge base that have a given consequence. We con-
sider the problems of enumerating such subsets with and without order, and show hardness results
that already hold for the propositional Horn fragment, or for the Description Logic EL. We show
complexity results for several other related decision and enumeration problems for these fragments
that extend to more expressive logics. In particular we show that hardness of these problems depends
not only on expressivity of the fragment but also on the shape of the axioms used.

1 Introduction

Description Logics (DLs) [BCM+03] are a well-established family of logic-based knowledge repre-
sentation formalisms that are used to represent the conceptual knowledge of an application domain
in a structured and formally well-understood way. DLs have proven successful in various application
domains, but they have gained increased attention due to the fact that they provide the logical under-
pinning of OWL [HPSvH03], the standard ontology language for the semantic web. As a consequence
of this standardization, several ontology editors [KFNM04, KPS+06, HTR06], now support OWL and
ontologies written in OWL are employed in more and more applications. As the size of these ontologies
grows, tools that support knowledge engineers in maintaining their quality become more important. In
real world applications often the knowledge engineer not only wants to know whether her ontology has
a certain (unwanted) consequence or not, but also wants to know why it has this consequence. Even for
KBs of moderate size, finding explanations for a given a consequence is not an easy task without getting
support from an automated tool. The task of finding explanations for a given consequence, i.e., minimal
subsets of the original KB that have the given consequence is called axiom pinpointing in the literature.

Existing work on axiom pinpointing in DLs can be classified under two main categories, namely the
glass-box approach, and the black-box approach. The idea lying under the glass-box approach is to
extend the existing reasoning algorithms such that while reasoning, at the same time they can keep track
of the axioms used, and detect which of the axioms in the KB are responsible for a given consequence.
In [SC03] a pinpointing extension of the well-known tableau-based satisfiability algorithm for the DL
ALC [SSS91] has been introduced. Later in [PSK05], this approach has been further extended to DLs

∗Part of this work has been done when the author was still employed at Institute of Theoretical Computer Science, TU Dresden
in the DFG Project BA 1122/12-1.
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that are more expressive than ALC . In [MLBP06] a pinpointing algorithm for ALC with general con-
cept inclusions (GCIs) has been presented by following the approach in [BH95]. In order to overcome
the problem of developing a pinpointing extension for every particular tableau-based algorithm, a gen-
eral pinpointing extension for tableau algorithms has been developed in [BP07, BP10]. Similarly, an
automata-based general approach for obtaining glass-box pinpointing algorithms has been introduced
in [BP08, BP09].

In contrast to the glass-box approach, the idea lying under the black-box approach is to make use of the
existing highly optimized reasoning algorithms wihout having to modify them. The most naı̈ve black-
box approach would of course be to generate every subset of the originial KB, and ask a DL reasoner
whether this subset has the given consequence or not, which obviously is very inefficient. In [KPHS07]
more efficient approaches based on Reiter’s hitting set tree algorithm [Rei87] have been presented.
The experimental resuts in [KPHS07] demonstrate that this approach behaves quite well in practice on
realistic KBs written in expressive DLs. A similar approach has successfully been used in [HPS09] for
explaining inconsistencies in OWL ontologies. The main advantages of the black-box approach are that
one can use existing DL reasoners, and that it is independent of the DL reasoner being used. In [HPS08]
the black-box approach has been used for computing more fine grained explanations, i.e., not just the
set of relevant axioms in the KB but parts of these axioms that actually lead to the given consequence.

Although various methods and aspects of axiom pinpointing have been considered in the literature,
its computational complexity has not been investigated in detail yet. Obviously, axiom pinpointing is
at least as hard as reasoning. Nevertheless, especially for tractable DLs it makes sense to investigate
whether explanations for a consequence can efficiently be enumerated or not. In [BPS07] it has been
shown that a given consequence can have exponentially-many explanations (there called MinAs, which
stands for minimal axiom sets), and checking the existence of a MinA within a cardinality bound is
NP-complete. There it has also been shown that in a setting where MinAs are required to contain
certain (static) part of the KB, then the set of all MinAs cannot be computed in output polynomial time.
In [PS09] among other results we have shown that without the static part this problem is at least as hard
as computing minimal transversals of a hypergraph. We have also shown that if the MinAs are required
to be output in a specified order, then the problem is not solvable with polynomial delay.

In the present paper we present several new interesting complexity results on axiom pinpointing. We
give a polynomial delay algoritm for enumerating MinAs in the Horn setting, show that for dual-Horn
KBs the problem is at least as hard as hypergraph transversal enumeration, and for EL KBs it is not
output polynomial. We show that if MinAs are required to be output in a specified order, then for dual-
Horn and EL KBs this cannot be done with polynomial delay. We also consider several other decision
and enumeration problems on MinAs in different settings.

2 Preliminaries

We briefly recall basic notions from propositional logic, DLs, and complexity of enumeration. In propo-
sitional logic we build formulae using a set of propositional variables and the Boolean connectives ¬
(negation), ∨ (disjunction) and ∧ (conjunction). A variable or its negation is called a literal, and a dis-
junction of literals is called a clause. A clause is called a Horn (dual-Horn ) clause if it contains at most
one positive (negative) literal, and a definite Horn (dual-Horn) clause if it contains exactly one positive
(negative) literal. A Horn clause p1 ∨ ¬p2 ∨ ¬p3 can also be written as an implication of the form
p2∧p3 → p1. Throughout the text we will call definite Horn (dual-Horn) clauses just Horn (dual-Horn)
clauses for short. We will call clauses with exactly one positive and one negative literal like p1 → p2 as
core clauses.

In DLs one formalizes the relevant notions of an application domain with concept descriptions. Concept
descriptions are inductively built with the help of a set of constructors, starting with a set NC of concept
names and a set NR of role names. EL concept descriptions are formed using the three constructors ⊓, ∃
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Syntax Semantics

⊤ ∆I

C ⊓ D CI ∩ DI

∃r.C {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ CI}

C ⊑ D CI ⊆ DI

Table 1: Syntax and semantics of EL.

and ⊤ as shown in the upper part of Table 1. An EL TBox is a finite set of general concept inclusion
axioms (GCIs), whose syntax is shown in the lower part of Table 1. The semantics of EL is defined in
terms of interpretations I = (∆I , ·I), where the domain∆I is a non-empty set of individuals, and the
interpretation function ·I maps each concept name A ∈ NC to a subset AI of ∆I and each role name
r ∈ NR to a binary relation rI on∆I . The mapping ·I can be extended to arbitrary concept descriptions
as shown in the second colum of Table 1. An interpretation I is a model of a TBox T if, for every GCI
in T the conditions on the semantics column of Table 1 are satisfied. The main inference problem for
EL is the subsumption problem: Given two EL concept descriptions C, D and an EL TBox T , check
if C is subsumed by D w.r.t. T (written T |= C ⊑ D), i.e, check if CI ⊆ DI holds in every model
I of T . We will call a concept description simple if it is of the form A or ∃r.A for A ∈ NC, r ∈ NR,
and a GCI a Horn-EL GCI if it is of the form C1 ⊓ . . . ⊓ Cn ⊑ D, where Ci, D are simple concept
descriptions, 1 ≤ i ≤ n.

We will refer to both propositional clauses and EL GCIs as axioms, and a set of axioms as a knowledge
base (KB). We will say that a KB is a Horn (core, dual-Horn, EL) KB if it contains only Horn (core,dual-
Horn,EL) axioms. We are going to formulate our problems in a generic way without referring to a
specific type of KB, and show our results for each KB type separately.

In complexity theory, we say that an algorithm runs with polynomial delay [JYP88] if the time until the
first solution is generated, and thereafter the time between any two consecutive solutions is bounded
by a polynomial in the size of the input. We say that it runs in output polynomial time if it outputs all
solutions in time polynomial in the size of the input and the output.

3 Complexity of Enumerating All MinAs

The main problem we consider is, given a KB and a consequence of it, computing all MinAs for this
consequence in the given KB. We start with the definition of a MinA.

Definition 1. Let K be a set of axioms and ϕ be a logical consequence of it, i.e., K |= ϕ. We call a set
M ⊆ K a minimal axiom set orMinA for ϕ in K ifM |= ϕ and it is minimal w.r.t. set inclusion.

Our problem is formally defined as follows:

Problem: MINA-ENUM
Input: A KB K and an axiom ϕ of the same type such that K |= ϕ.
Output: The set of all MinAs for ϕ in K.

Note that for core KBs, which are basically directed graphs, a MinA is a simple path between two given
vertices, and enumerating all MinAs corresponds to enumerating all simple paths between two given
vertices, which can easily be done with polynomial delay. However, the situation is not so clear for
Horn KBs. To the best of our knowledge, only [NPA06] considers a problem related to ours on directed
hypergraphs, but it is not exactly the one considered here.
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3.1 Enumeration without a Specific Order

We start with the Horn setting and show that for this setting MinAs can efficiently be enumerated by
giving a polynomial delay algorithm. The algorithm depends on the following particular notion.

Definition 2. LetK be a Horn KB, and φ =
∧n

i=1 ai → b be an axiom inK. We denote the left handside
(lhs) of φ with T(φ), and its right handside (rhs) with h(φ), i.e., T(φ) := {a1, . . . , an} and h(φ) := b.
With h−1(b) we denote the set of axioms in K whose rhs are b. Let M = {t1, . . . , tm} be a MinA for∧
a∈A a → c. We call an ordering t1 < . . . < tm a valid ordering on M if for every 1 ≤ i ≤ m,

T(ti) ⊆ A ∪ {h(t1), . . . , h(ti−1)} holds.1

It is easy to see that for every MinAM there is always at least one such valid ordering. In the following,
we use this fact to construct from a givenMinA a set of KBs that precisely contain the remainingMinAs.

Definition 3. Let M be a MinA in K with |M| = m, and < be a valid ordering on M. For each
1 ≤ i ≤ m we obtain a KB Ki from K as follows: (i) for each j s.t. i < j ≤ m remove all axioms in
h−1(h(tj)) except for tj , i.e., remove all axioms with the same rhs as tj except for tj itself. (ii) remove
ti.

Lemma 4. Let M be a MinA for φ in K, and let K1, . . . ,Km be constructed from K and M as in
Definition 3. Then, for every MinA N for φ in K that is different from M, there exists exactly one i,
where 1 ≤ i ≤ m, such thatN is a MinA for φ in Ki.

Proof. Let t1 < . . . < tm be a valid ordering on M, and N a MinA for φ in K such that N 6= M.
Then,M\N 6= ∅. Let tk be the largest axiom inM\N w.r.t. the ordering<. We show thatN ⊆ Kk
andN 6⊆ Ki for all i 6= k, 1 ≤ i ≤ m.

Assume there is an axiom t ∈ N s.t. t 6∈ Kk. t should be one of the axioms removed from K either in
step (i), or in step (ii) of Definition 3. It cannot be step (ii) because tk 6∈ N since tk ∈ M \ N . Thus
it should be step (i). This implies that there exists a j, k < j ≤ m, such that tj satisfies h(t) = h(tj).
Recall that we chose j to be the largest axiom inM\N w.r.t. the valid ordering< onM. Then this tj
should be in N . But then N contains two axioms with the rhs h(t), which contradicts with the fact that
N is a MinA, and thus it is minimal. Hence,N ⊆ Kk.

Now take an i s.t. i 6= k. If i > k, then ti ∈ N but ti /∈ Ki, and hence N 6⊆ Ki. If i < k, then
there is an axiom t ∈ N such that h(t) = h(tk) since otherwise M and N would not be MinAs. By
construction, t /∈ Ki, henceN 6⊆ Ki.

Lemma 4 gives an idea of how to compute the remainingMinAs from a given one. Algorithm 1 describes
how we can use this lemma for enumerating all MinAs.

Theorem 5. Algorithm 1 solves MINA-ENUM for Horn KBs with polynomial delay.

Proof. The algorithm terminates since K is finite. It is sound since its outputs are MinAs for φ in K.
Completeness follows from Lemma 4.

In each recursive call of the algorithm there is one consequence check (line 2), and one MinA compu-
tation (line 4). The consequence check can be done in polynomial time by the well-known linear-time
algorithm in [DG84]. One MinA can be computed in polynomial time by iterating over the axioms in
K and removing an axiom if remaining ones still have the consequence. Thus the algorithm spends at
most polynomial time between each output, i.e., it is polynomial delay.

1That is, each variable on the lhs of ti is in A, or it is the rhs of a previous axiom.
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Algorithm 1 Enumerating all MinAs for Horn KBs
1: ALL-MINAS(K,φ)
2: ⊲ (K a Horn KB, φ an axiom s.t. K |= φ)
3: if K 6|= φ then return
4: else
5: M := a MinA in K
6: outputM
7: for 1 ≤ i ≤ |M| do
8: compute Ki fromM as in Definition 3
9: ALL-MINAS(Ki,φ)
10: end for
11: end if

Next we consider MINA-ENUM for dual-Horn KBs. For this, we first investigate the following decision
problem which is is closely related to MINA-ENUM. As we will see, determining its complexity is
important for determining the complexity of MINA-ENUM.

Problem: ALL-MINAS
Input: A KB K and an axiom ϕ of the same type such that K |= ϕ, and a set of KBs K ⊆ P(K).
Question: Is K precisely the set of all MinAs for ϕ in K?

As Proposition 6 shows, if ALL-MINAS cannot be decided in polynomial time, then MINA-ENUM cannot
be solved in output polynomial time.

Proposition 6. If ALL-MINAS cannot be decided in polynomial time, then MINA-ENUM cannot be
solved in output-polynomial time.

Proof. Assume we have an algorithm A that solves MINA-ENUM in output-polynomial time. Let its
runtime be bounded by a polynomial p(IS, OS) where IS denotes the size of the input KB and OS
denotes the size of the output, i.e., the set of all MinAs.

In order to decide ALL-MINAS for an instance given by K, ϕ, and K ⊆ P(K), we construct another
algorithm A

′ that works as follows: it runs A on K and ϕ for at most p(|K|, |K |)-many steps. If A

terminates within this many steps, thenA
′ compares the output of A with K and returns yes if and only

if they are equal. If they are not equal,A′ returns no. IfA has not yet terminated after p(|K|, |K |)-many
steps, this implies that there is at least one MinA that is not contained in K , so A

′ returns no. It is easy
to see that the runtime of A′ is bounded by a polynomial in |K| and |K |, that is A

′ decides ALL-MINAS
in polynomial time.

This proposition shows that the complexity of ALL-MINAS is indeed closely related to the complexity of
MINA-ENUM. It is not difficult to see that, for all types of axioms considered in this paper, ALL-MINAS
is in coNP: given an instance of ALL-MINAS, a nondeterministic algorithm can guess a subset of K that
is not in K , and in polynomial time verify that this is a MinA, thus K is not the set of all MinAs. In
the following we show that for dual-Horn KBs ALL-MINAS is at least as hard as recognizing the set of
all minimal transversals of a given hypergraph. However, whether it is coNP-hard remains unfortunately
open. We later show that ALL-MINAS is coNP-complete if Horn-EL axioms are considered.

First we briefly recall some basic notions on hypergraphs. A hypergraph [Ber89]H = (V, E) consists of
a set of vertices V = {vi | 1 ≤ i ≤ n}, and a set of (hyper)edges E = {Ej | 1 ≤ j ≤ m} where Ej ⊆
V . Following the convention in [Ber89] we assume that the set of edges as well as the set of vertices is
nonempty, and the union of all edges yields the vertex set. A set W ⊆ V is called a transversal of H
if it intersects every edge of H, i.e., ∀E ∈ E . E ∩ W 6= ∅. A transversal is called minimal if no proper
subset of it is a transversal. The set of all minimal transversals ofH constitutes another hypergraph on V
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called the transversal hypergraph ofH, which is denoted by Tr(H). Generating Tr(H) is an important
problem which has applications in many fields of computer science [GKMT97, EG02, Hag08]. It is
defined as follows:

Problem: TRANSVERSAL ENUMERATION (TRANS-ENUM)
Input: A hypergraphH = (V, E) on a finite set V .
Output: The edges of the transversal hypergraph Tr(H).

The well-known decision problem associated to this computation problem is defined as follows:

Problem: TRANSVERSAL HYPERGRAPH (TRANS-HYP)
Input: Two hypergraphsH = (V, EH) and G = (V, EG).
Question: Is G the transversal hypergraph ofH, i.e., does Tr(H) = G hold?

Complexity of TRANS-HYP has been investigated in detail in the literature [EG91, EG95b, EGM03,
EMG08, KS03]. It is known to be in coNP, but its lower bound is a prominent open problem. So
far neither a polynomial time algorithm has been found, nor has it been proved to be coNP-hard. In
a landmark paper [FK96] Fredman and Khachiyan proved that MONOTONE BOOLEAN DUALIZATION,
which is another well known problem that is computatitionally equivalent to TRANS-HYP, can be solved
in no(log n) time. This implies that TRANS-HYP is most likely not coNP-hard. It is conjectured that this
problem, together with several computationally equivalent problems, forms a class properly contained
between P and coNP [FK96].

In the following we say that a decision problem π is TRANS-HYP-hard if TRANS-HYP can be reduced to
π by a standard polynomial transformation.We say that π is TRANS-HYP-complete if it is TRANS-HYP-
hard and π can be reduced to TRANS-HYP by a polynomial transformation.

Theorem 7. ALL-MINAS is TRANS-HYP-hard for dual-Horn KBs.

Proof. Let an instance of TRANS-HYP be given by the hypergraphs H = (V, EH) and G = (V, EG).
FromH and G we construct an instance of ALL-MINAS as follows: for every vertex v ∈ V we introduce a
propositional variable pv, for every edgeE ∈ EH a propositional variable pE , and finally one additional
propositional variable a. For constructing a dual-Horn KB from H and a set of vertices W ⊆ V , we
define the following operator, which is also going to be used in later proofs:

KW,H := {pv →
∧

v∈E,E∈EH

pE | v ∈ W} ∪ {a →
∧

v∈V

pv}.

Using these we construct the KB K := KV,H, a set of KBs K := {KE,H | E ∈ EG} ⊆ P(K), and the
axiom ϕ := a →

∧
E∈EH

pE that follows from K. Obviously this construction creates an instance of
ALL-MINAS for dual-Horn KBs and it can be done in time polynomial in the sizes ofH and G.

We claim that G is the transversal hypergraph ofH if and only if K is precisely the set of all MinAs for
ϕ in K. Note that a →

∧
v∈V pv is the only axiom in K such that a appears on the lhs, which implies

that every MinA must contain this axiom. Hence, every MinA is of the form KW,H for some W ⊆ V .
To prove our claim, it suffices to show that a set of vertices W ⊆ V is a minimal transversal ofH if and
only if the set of axiomsKW,H is a MinA.

(⇒) Assume that W is a minimal transversal of H. By definition W satisfies W ∩ E 6= ∅ for every
E ∈ EH . This implies that KW,H |= ϕ holds. Moreover, KW,H is minimal since W is minimal, i.e.,
KW,H is a MinA.

(⇐) Now assume thatKW,H is a MinA. Then every pE whereE ∈ EH appears on the rhs of at least one
of the axioms in KW,H. This implies that W intersects every E, i.e., it is a transversal of H. Moreover
it is minimal since KW,H is minimal.
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Corollary 8. MINA-ENUM for dual-Horn KBs is at least as hard as enumerating hypergraph transver-
sals.

Next we show that ALL-MINAS becomes intractable for Horn-EL KBs.

Theorem 9. ALL-MINAS is coNP-complete for Horn-EL TBoxes.

Proof. We have already shown that it is in coNP. To show coNP-hardness, we present a reduction from
the following coNP-hard problem [EG91, BPS07].

Problem: ALL-MV
Input: A monotone Boolean formula φ and a set V of minimal valuations satisfying φ.
Question: Is V precisely the set of all minimal valuations satisfying φ?

Let φ, V be an instance of ALL-MV; we denote as sub(φ) the set of all subformulas of φ, and define
csub(φ) := sub(φ) \ {p ∈ sub(φ) | p is a propositional variable}. We introduce three concept names
Bψ, Cψ, Dψ, and two role names rψ, sψ for every subformulaψ of φ and two additional concept names
A and E. For each ψ ∈ sub(φ) we define a TBox Tψ as follows: if ψ is the propositional variable p,
then Tψ := {A ⊑ Bp}; if ψ = ψ1 ∧ ψ2, then Tψ := {A ⊑ ∃rψ .Cψ , Cψ ⊑ Bψ1

, Cψ ⊑ Bψ2
, ∃rψ .Bψ ⊑

Dψ, Bψ1
⊓ Bψ2

⊑ Bψ}; if ψ = ψ1 ∨ ψ2, then Tψ := {A ⊑ ∃rψ .Bψ1
, A ⊑ ∃sψ .Bψ2

, ∃rψ .Bψ ⊓
∃sψ.Bψ ⊑ Dψ, Bψ1

⊑ Bψ, Bψ2
⊑ Bψ}. Finally, we set

T :=
⋃

ψ∈sub(φ)

Tψ ∪ {
l

ψ∈csub(φ)

Dψ ⊓ Bφ ⊑ E}.

Notice that for every T ′ ⊆ T , if T ′ |= A ⊑ E, then also A ⊑ Dψ for every ψ ∈ csub(φ). But in order
to have A ⊑ Dψ, all the axioms in Tψ are necessary, and thus Tψ ⊆ T ′. In particular, if ψ = ψ1 ∧ ψ2,
then Bψ1

⊓ Bψ2
⊑ Bψ ∈ T ′, and if ψ = ψ1 ∨ ψ2, then {Bψ1

⊑ Bψ , Bψ2
⊑ Bψ} ⊆ T ′. Thus, a

valuation V satisfies φ iff TV := {A ⊑ Bp | p ∈ V} ∪
⋃
ψ∈csub(φ) Tψ ∪ {

d
ψ∈csub(φ) Dψ ⊓ Bφ ⊑ E}

entails A ⊑ E. This in particular shows that V is the set of all minimal valuations satisfying φ iff
{TV | V ∈ V } is the set of all MinAs for A ⊑ E in T .

The following is an immediate consequence of Theorem 9 and Proposition 6.

Corollary 10. For Horn-EL TBoxes MINA-ENUM cannot be solved in output polynomial time, unless
P =NP.

3.2 Enumeration in a Specified Order

We now consider the case when MinAs are required to be output in a specified lexicographic order. The
lexicographic order we use is defined as follows:

Definition 11. Let the elements of a set S be linearly ordered. This order induces a linear strict order
onP(S), which is called the lexicographic order. We say that a set R ⊆ S is lexicographically smaller
than a set T ⊆ S where R 6= T if the first element at which they disagree is in R.

Problem: FIRST-MINA
Input: A KB K and an axiom ϕ of the same type such that K |= ϕ, a MinAM for ϕ in K, and a linear
order on K.
Question: IsM the first MinA w.r.t. the lexicographic order induced by the given linear order?

Theorem 12. FIRST-MINA is coNP-complete for dual-Horn KBs.
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Proof. The problem is in coNP. IfM is not the lexicographically first MinA, a proof of this can be given
by guessing a subset of K and verifying in polynomial time that it is a MinA, and it is lexicographically
smaller thanM.

In order to show coNP-hardness, we present a reduction from the problem of checking whether a given
maximal independent set is the lexicographically last maximal independent set of a given graph. Recall
that a maximal independent set of a graph G = (V, E) is a subset V ′ ⊆ V of the vertices such that no
two vertices in V ′ are joined by an edge in E , and each vertex in V \ V ′ is joined by an edge to some
vertex in V ′. This problem is known to be coNP-complete [JYP88].

Problem: LAST MAX. INDEPENDENT SET (LAST-MIS)
Input: A graph G = (V, E), a maximal independent set S ⊆ V , and a linear order on V .
Question: Is S the last maximal independent set w.r.t. the lexicographic order induced by the given
linear order?

Let an instance of LAST-MIS be given with the graph G = (V, E) and the maximal independent set
S. From G and S we construct an instance of FIRST-MINA as follows: We construct the sets KW,G
as in the proof of Theorem 7, and consider the axiom ϕ := a →

∧
E∈E pE that follows from KV,G .

Additionally by using S we construct the set of axiomsM := KV \S,G. Note thatKV,G contains exactly
|V |+1 axioms. We order these axioms such that an axiomwith premise pv comes before the axiomwith
premise pv′ if and only if the vertex v comes before the vertex v′ in the originally given linear order on
V . Finally we place ϕ as the last one. It is easy to see that this construction indeed creates an instance
of FIRST-MINA for dual-Horn KBs, and it can be done in time polynomial in the sizes of G and S. We
claim that S is lexicographically the last maximal independent set if and only ifM is lexicographically
the first MinA.

(⇒) Assume S is the lexicographically last maximal independent set. Then V \ S contains at least one
vertex from every edge (i.e., it is a vertex cover), since otherwise S would not be an independent set.
Thus every pE , for E ∈ E , appears on the rhs of at least one axiom inM. That isM |= ϕ holds. Since
S is maximal, V \ S and thus M is minimal, i.e., M is a MinA. Moreover it is lexicographically the
first one since S is lexicographically the last maximal independent set.

(⇐) Assume M is lexicographically the first MinA. Then every pE , for E ∈ E , appears on the rhs of
at least one axiom in M since otherwise M |= ϕ would not hold. That is, V \ S contains at least one
vertex from every edge. Then S contains at most one vertex from every edge, i.e., it is an independent
set. Since M is minimal, V \ S is also minimal, and thus S is maximal. That is, S is a maximal
independent set. Moreover it is lexicographically the last one since M is the lexicographically first
MinA.

Since generating the lexicographically first MinA is already intractable, Theorem 12 has the following
consequence:

Corollary 13. Unless P = NP, MinAs cannot be enumerated for dual-Horn KBs in lexicographic order
with polynomial delay.

Next we consider the problem for Horn-EL KBs.

Theorem 14. FIRST-MINA is coNP-complete for Horn-EL KBs.

Proof. The problem is clearly in coNP. To show hardness, we give a reduction from LAST-MIS. Let
G = (V, E) and S be an instance of LAST-MIS. From G we construct a Horn-EL TBox T as follows:
first we introduce a concept PE for every E ∈ E , and concepts Pv, Qv and role name rv for each
v ∈ V , and additionally two concept names A, B. For every v ∈ V we construct the TBox Tv :=
{Pv ⊑ PE | v ∈ E, E ∈ EG} ∪ {A ⊑ ∃rv.Pv,

d
v∈E,E∈EG

∃rv.PE ⊑ Qv}. We then define the
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Algorithm 2 Enumerating all MinAs in reverse lex. order
1: ALL-MINAS-REV-ORDER(K,φ)
2: ⊲ (K a Horn KB, φ an axiom s.t. K |= φ)
3: Q := {K}
4: while Q 6= ∅ do
5: J := maximum element ofQ
6: remove J fromQ
7: M := the lex. largest MinA in J
8: outputM
9: for 1 ≤ i ≤ |M| do
10: compute Ki fromM as in Definition 3
11: insert Ki into Q if Ki |= φ
12: end for
13: end while

set Tf :=
⋃
v∈V Tv ∪ {

d
E∈EH

PE ⊓
d
v∈V Qv ⊑ B}, and finally, for a set of W ⊆ V , we define

TW := Tf ∪ {A ⊑ Pv | v ∈ W}.

Notice that for every T ′ ⊆ T , if T ′ |= A ⊑ Qv, then Tv ⊆ T ′. Hence, if T ′ |= A ⊑ B, then Tf ⊆ T ′.
Furthermore, S ⊆ V is an independent set iff TV \S |= A ⊑ B.

We now order the axioms in TV as follows: first appear all the axioms A ⊑ Pv using the same order of
V , and afterwards are all the axioms in Tf in any order. Then S is the last maximal independent set iff
TV \S is the first MinA for A ⊑ B in TV .

Although computing the first MinA is coNP-hard for both dual-Horn and Horn-EL KBs, interestingly
computing the last MinA is polynomial for all types of KBs we consider here. We start iterating over the
axioms of the KB with the axiom that is the smallest one w.r.t. the linear order on KB, and remove an
axiom if the remaining ones still have the given conseqence. The resulting set of axioms is lexicograph-
ically the last MinA. Even more interestingly, we now give an algorithm for Horn KBs that enumerates
MinAs in reverse lexicographic order with polynomial delay.

Our algorithm keeps a set of KBs in a priority queue Q. These KBs are the “candidates” from which
the MinAs are going to be computed. Each KB can contain zero or more MinAs. They are inserted
into Q by the algorithm at a cost of O(n · log(M)) per insertion, where n is the size of the original
KB and M is the total number of such KBs inserted. Note that M can be exponentially bigger than n
since there can be exponentially many MinAs. That is the algorithm uses potentially exponential space.
The other operation that the algorithm performs on Q is to find and delete the maximum element ofQ.
The maximum element ofQ is the KB inQ that contains the lexicographically largest MinA among the
MinAs contained in all other KBs in Q. This operation can also be performed within O(n · log(M))
time bound. The time bounds for insertion and deletion depend also on n since they require a last MinA
computation.

Theorem 15. Algorithm 2 enumerates MinAs in the Horn setting in reverse lexicographic order with
polynomial delay.

Proof. The algorithm terminates since K is finite. Soundness is shown as follows: Q contains initially
only the original KB K. Thus the first output is lexicographically the last MinA in K. By Lemma 4
the MinA that comes just before the last one is contained in exactly one of the Kis that are computed
and inserted into Q in lines 10 and 11. In line 5 J is assigned the KB that contains this MinA. Thus
the next output will be the MinA that comes just before the lexicographically last one. It is not difficult
to see that in this way the MinAs will be enumerated in reverse lexicographic order. By Lemma 4 it is
guaranteed that the algorithm enumerates all MinAs.
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In one iteration, the algorithm performs one find operation and one delete operation on Q, which both
take time O(n · log(M)), and a MinA computation that takes O(n) time. In addition it performs at most
n Ki computations, and at most n insertions into Q. Each Ki computation takes O(n2) time, and each
insertion takesO(n·log(M)) time. The total delay is thusO(2·(n·log(M))+n+n·(n2+n·log(M))) =
O(n3).

4 Preferred and Unwanted Axioms

Next we investigate the problem of existence of a MinA that does not contain any of the given sets of
axioms. This problem can be useful in applications where one wants to avoid certain combinations of
axioms in the MinAs.

Problem: MINA-IRRELEVANCE
Input: A KB K and an axiom ϕ of the same type such that K |= ϕ, and a set K ⊆ P(K).
Question: Is there a MinAM for ϕ in K such that S 6⊆ M for every S ∈ K ?

Theorem 16. MINA-IRRELEVANCE is NP-complete for dual-Horn KBs.

Proof. The problem is clearly in NP. A nondeterministic algorithm for solving it first guesses a set
M ⊆ K, then tests in polynomial time whether it is a MinA that does not contain any of the S in K .
For showing hardness we give a reduction from the NP-hard hypergraph 2-coloring problem [GJ90].

Problem: HYPERGRAPH 2-COLORING
Input: A hypergraphH = (V, E).
Question: IsH 2-colorable, i.e., is there aW ⊆ V such that for allE ∈ E ,W∩E 6= ∅ and (V \W )∩E 6=
∅?

Let an instance of HYPERGRAPH 2-COLORING be given with the hypergraphH = (V, E). We construct
an instance of MINA-IRRELEVANCE as follows: as in the proof of Theorem 7, we construct the KB
K := KV,H and the axiom ϕ contructed there, as well as a set of KBs K = {KE,H | E ∈ E}. It is easy
to see that this construction indeed creates an instance of MINA-IRRELEVANCE for dual-Horn KBs and
it can be done in time polynomial in the size ofH. We claim thatH is 2-colorable if and only if there is
a MinAM for ϕ in K such thatM satisfies S 6⊆ M for every S ∈ K .

(⇒) Assume H is 2-colorable. Then there is a W ⊆ V such that W ∩ E 6= ∅ and (V \ W ) ∩ E 6= ∅
for every E ∈ E , i.e., both W and its complement are transversals of H. Assume w.l.o.g. that W is
minimal. We claim that KW,H is the MinA we are looking for. Since W is a transversal, every pE for
E ∈ E , appears on the rhs of at least one axiom in KW,H. That is KW,H |= ϕ holds. KW,H is minimal
since W is minimal. Moreover, since V \ W is also a transversal, every edge E ∈ E contains at least
one vertex that is not in W . Thus every S ∈ K contains at least one axiom that is not in KW,H. In
other words, KW,H is a MinA that is not a superset of any S ∈ K .

(⇐) Assume M is a MinA that is not a superset of any S ∈ K . Define the set WM = {v | pv →∧
v∈E,E∈E pE ∈ M}. Since M is a MinA for ϕ, for every E ∈ E it contains at least one axiom on

whose rhs pE occurs. That is, WM intersects every E ∈ E . SinceM is not a superset of any S ∈ K ,
every S contains at least one axiom that is not inM. This that every E ∈ E contains at least one vertex
that is not in WM. That is, V \ WM intersects every E ∈ E . Thus we have shown that WM is a
2-coloring ofH.

Theorem 17. MINA-IRRELEVANCE is NP-complete for Horn-EL TBoxes

10



Proof. The problem is clearly in NP. We show NP-hardness by a reduction from the HYPERGRAPH
2-COLORING problem. Let H = (V, E) be a hypergraph; we construct the TBoxes Tv, Tf and TV as
in the proof of Theorem 14. It is easy to see that T := TV , φ := A ⊑ B and the set of TBoxes
K := {TE | E ∈ E} form an instance of MINA-IRRELEVANCE for Horn-EL TBoxes. Furthermore,
we know that for everyW ⊆ V ,W is a transversal ofH iff TW is a MinA for φ in T . The hypergraphH
is 2-colorable iff there is a transversalW ofH such that for allE ∈ E , E 6⊆ W . Hence,H is 2-colorable
iff there is a MinA T ′ for φ in T such that TE 6⊆ T ′ for all E ∈ E .

Next we consider the dual problem, which is checking the existence of a MinA that contains a certain
axiom.

Problem: MINA-RELEVANCE
Input: A KB K and an axiom ϕ of the same type such that K |= ϕ, and an axiom ψ ∈ K.
Question: Is there a MinAM for ϕ in K such that ψ ∈ M?

Theorem 18. MINA-RELEVANCE is NP-complete for Horn KBs.

Proof. The problem is clearly in NP. A nondeterministic algorithm for solving it first guesses a subset
of K, then tests in polynomial time whether it is a MinA containing ψ. For showing hardness we are
going to give a reduction from the following NP-complete problem [EG95a]:

Problem: HORN-RELEVANCE
Input: Two sets of propositional variables H and M , a set C of definite Horn clauses over H ∪ M , and
a propositional variable p ∈ H .
Question: Is there a minimal G ⊆ H such that G ∪ C |= M and p ∈ G?

Let an instance of HORN RELEVANCE be given with H, M, C and p. We construct an instance of MINA-
RELEVANCE as follows: In addition to the propositional variables in H ∪ M , we introduce two more
fresh ones a, and b. Using these we construct the Horn KBK := {a → h | h ∈ H}∪C∪{

∧
m∈M m →

b}, the axiom ϕ := a → b, and the axiom ψ := a → p. It is easy to see that this construction indeed
creates an instance of MINA-RELEVANCE and it can be done in polynomial time. We claim that there is
a minimal G ⊆ H such that G ∪ C |= M and p ∈ G if and only if there is a MinAM for ϕ in K such
that ψ ∈ M.

(⇒) Assume that there is such a minimal G. From G we construct KG := {a → g | g ∈ G} ∪ C ∪
{
∧
m∈M m → b}. KG |= a → b sinceG∪C |= M . Thus, there is a MinAM for φ inKG. Furthermore,

since G is minimal, for every g ∈ G the axiom a → g is inM. In particular, φ ∈ M.

(⇐) Assume that there is such a MinA M. It contains the axiom
∧
m∈M m → b, and also contains

axioms from C such that everym ∈ M occurs on the rhs of at least one axiom. AdditionallyM contains
axioms of the form a → h such that M |= a →

∧
m∈M m. Then the set G := {h | a → h ∈ M}

satisfies G ∪ C |= M . Moreover p ∈ G since a → p ∈ M, and G is minimal sinceM is minimal.

5 Counting MinAs

In applications where one is interested in computing all MinAs, it might also be useful to know in
advance how many of them exist. Next we consider this counting problem.

Problem: #MINA
Input: A KB K and an axiom φ of the same type such that K |= φ.
Output: The number of all MinAs for φ in K.
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IfK is a core KB, the problem boils down to the problem of counting simple paths between two vertices
of a given directed graph. This problem called S-T CONNECTEDNESS has already been considered
in [Val79b].

Problem: S-T CONNECTEDNESS
Input: A directed graph G = (V, E), and two vertices s, t ∈ V .
Output: The number of subgraphs of G in which there is a path from s to t.

In [Val79b] it has been shown that this problem is #P-complete. #P is defined [Val79a] as the class of
functions counting the accepting paths of nondeterministic Turing machines. Typical members of this
class are the problems of counting the number of solutions of NP-complete problems. Among them,
the most well-known one is #SAT, which is the problem of counting the distinct truth assignments that
satisfy a given Boolean formula in CNF.

Since core KBs are the simplest type of KB, the hardness result applies to the other KB types we
consider here. Moreover for the most expressive fragment we consider, namely EL, the problem of
checking whether a given set of axioms is a MinA is polynomial. This implies that for this fragment,
and all others considered here, #MINA is is in #P, thus it is #P-complete.

Corollary 19. #MINA is #P-complete for core,Horn,dual-Horn,Bool and EL KBs.

Next we consider another counting problem. Instead of the number of all MinAs, one can also be
interested in the number of MinAs that contain a specific axiom. If we are trying to explain an unwanted
consequence, the solution of this counting problem will allow us to detect axioms that are most likely
to be faulty, i. e. those that appear in the most MinAs. This idea has been proposed in [SHCH07] as a
heuristic for correcting an error while minimizing the changes in the set of axioms.

Problem: #MINA-RELEVANCE
Input: A KB K and an axiom φ of the same type such that K |= φ, and an axiom ψ ∈ K.
Output: The number of all MinAs for φ in K that contain ψ.

Theorem 20. #MINA-RELEVANCE is #P-complete for Horn KBs.

Proof. The problem is in #P since given a Horn KB K, an axiom φ that follows from K, an axiom
ψ ∈ K, and a candidate solution K′ ⊆ K, we can in polynomial time verify that K’ is a MinA and it
contains ψ.

For showing #P-hardness we give a parsimonious reduction from #MINA for core KBs, which has been
shown to be #P-hard above. Given an instance of #MINA with the core KB K and the axiom a → b
we construct the Horn KB K′ := K ∪ S, where S = {a → c, b ∧ c → d}, and c and d are two fresh
propositional variable names not occurring in K. It is not difficult to see that a set M ⊆ K is a MinA
for a → b in K if and only if M ∪ S is a MinA for a → d in K′. Moreover, every MinA for a → d
in K′ contains the axioms in S. Thus, there are exactly as many MinAs for a → b in K as there are for
a → d in K’ containing the axiom a → c.

Obviously, Theorem 20 implies that #MINA is #P-complete for Bool and Horn-EL KBs.

6 Concluding Remarks and Future Work

We have analyzed the complexity of axiom pinpointing and many related problems in the propositional
Horn fragment and in the DL EL. Our hardness results extend to more expressive DLs. Tables 2 and 3
summarize our results where TH stands for TRANS-HYP, TE stands for transversal enumeration, ‘-h’
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FIRST- LAST- ALL- MINA- MINA- #MINA #MINA-
MINA MINA MINAS REL IRREL REL

core poly poly #P-c
Horn poly poly NP-c #P-c #P-c

dual-Horn coNP-c poly TRANS-HYP-h NP-c #P-c
Bool coNP-c poly TRANS-HYP-h NP-c NP-c #P-c #P-c

Horn-EL coNP-c poly coNP-c NP-c NP-c #P-c #P-c

Table 2: Complexity of related decision and counting problems

MINA-ENUM
in lexicographic order unordered

forward backward
core output polynomial polynomial delay polynomial delay
Horn output polynomial polynomial delay polynomial delay

dual-Horn not polynomial delay TRANS-ENUM-h TRANS-ENUM-h
Bool not polynomial delay TRANS-ENUM-h TRANS-ENUM-h

Horn-EL not output polynomial

Table 3: Complexity of MINA-ENUM in different settings

stands for hard, and ‘-c’ stands for complete. As future work we are going to work on determining
the exact complexity of ALL-MINAS problem for dual-Horn KBs. We are going to check whether it is
equivalent to the TRANS-HYP problem. We are also going to investigate the complexity of ALL-MINAS
for more expressive DLs to see whether it remains in the same complexity class as reasoning.
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