
Dresden University of Technology

Institute for Theoretical Computer Science

Chair for Automata Theory

LTCS–Report

Putting ABox Updates into Action

Conrad Drescher, Hongkai Liu, Franz Baader, Steffen Guhlemann,
Uwe Petersohn, Peter Steinke, Michael Thielscher

LTCS-Report 09 - 01

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nöthnitzer Str. 46

Dresden

Putting ABox Updates into Action

Conrad Drescher, Hongkai Liu, Franz Baader, Steffen Guhlemann,
Uwe Petersohn, Peter Steinke, Michael Thielscher

Theoretische Informatik
Technische Universität Dresden

Germany

Abstract

When trying to apply recently developed approaches for updating De-
scription Logic ABoxes in the context of an action programming language,
one encounters two problems. First, updates generate so-called Boolean
ABoxes, which cannot be handled by traditional Description Logic rea-
soners. Second, iterated update operations result in very large Boolean
ABoxes, which, however, contain a huge amount of redundant informa-
tion. In this paper, we address both issues from a practical point of view.

1 Introduction

Agent programming languages such as Golog [16] and Flux [24] employ actions
whose effects are defined in a logic-based calculus to describe and implement the
behaviour of intelligent agents. In the so-called progression approach, the agent
starts with a (possibly incomplete) description of the initial state of the world.
When an action is performed, it updates this description to take into account
the effects of this action. Reasoning about the description of the current state
of the world is then, for example, used in the control structures of the agent
program to decide which action to apply. The calculi underlying Golog and
Flux (situation calculus and fluent calculus, respectively) employ full first-order
predicate logic, which makes the computation of exact updates as well as the use
of decision procedures for reasoning about descriptions of the state of the world
impossible. To overcome this problem, recent papers [6, 17] have proposed to
employ a decidable Description Logic (DL) [4] in place of full first-order predicate
logic. In particular, states of the world are then described using a DL ABox. In
[17], a method for updating DL ABoxes has been developed, and in [13] it was
shown that this notion of an update conforms with the semantics employed by
Golog and Flux.

1

In practice, however, there are two obstacles towards employing the update ap-
proach from [17] in the context of agent programs. First, using the update proce-
dures in the form described in [17] quickly leads to unmanageably large ABoxes.
However, there is quite some room for optimizations since the updated ABoxes
contain a lot of redundant information. The second problem is that the updated
ABoxes are so-called Boolean ABoxes, which cannot be directly handled by tra-
ditional DL reasoners. The main contributions of this paper are, on the one
hand, that we propose and evaluate different optimization approaches for com-
puting more concise updated ABoxes. On the other hand, we compare different
approaches for reasoning with Boolean ABoxes, among them one based on the
DPLL(T) approach.

The rest of this paper is organized as follows. In Section 2, we recall the basic
notions for DLs and ABox updates. In Sections 3 we present optimizations that
enable the construction of more concise updated ABoxes, and in Section 4 we
discuss reasoning with Boolean ABoxes. In Section 5, the approaches introduced
in the previous two sections are empirically evaluated.

2 Preliminaries

In DLs, knowledge is represented with the help of concepts (unary predicates)
and roles (binary predicates). Complex concepts and roles are inductively defined
starting with a set NC of concept names, a set NR of role names, and a set NI of
individual names. The expressiveness of a DL is determined by the set of available
constructors to build concepts and roles. The concept and role constructors of the
DLs ALCO@ and ALCO+ that form the base of our work on ABox update are
shown in Table 1, where C,D are concepts, q, r are roles, and a, b are individual
names. The DL that allows only for negation, conjunction, disjunction, and
universal and existential restrictions is called ALC. By adding nominals O, we
obtain ALCO, which is extended to ALCO@ by the @-constructor from hybrid
logic [3], and to ALCO+ by the Boolean constructors on roles and the nominal role
[17]. We will use ⊤ (⊥) to denote arbitrary tautological (unsatisfiable) concepts
and roles. By sub(φ) we denote the set of all subconcepts and subroles of a
concept or role φ, respectively.

The semantics of concepts and roles is defined via interpretations I = (∆I , ·I).
The domain ∆I is a non-empty set and the interpretation function ·I maps each
concept name A ∈ NC to a subset AI of ∆I , each role name r ∈ NR to a binary
relation rI on ∆I , and each individual name a ∈ NI to an individual aI ∈ ∆I .
The interpretation function ·I is inductively extended to complex concepts and
roles as shown in Table 1.

An ABox assertion is of the form C(a), r(a, b), or ¬r(a, b) with r a role, C a
concept and a, b individual names. A classical ABox, or an ABox for short, is a

2

Name Syntax Semantics

negation ¬C ∆I \ CI

conjunction C ⊓ D CI ∩ DI

disjunction C ⊔ D CI ∪ DI

universal restriction ∀r.C {x | ∀y.((x, y) ∈ rI → y ∈ CI)}

existential restriction ∃r.C {x | ∃y.((x, y) ∈ rI ∧ y ∈ CI)}

nominal {a} {aI}

@ constructor @aC ∆I if aI ∈ CI , and ∅ otherwise

role negation ¬r (∆I × ∆I) \ rI

role conjunction q ⊓ r qI ∩ rI

role disjunction q ⊔ r qI ∪ rI

nominal role {(a, b)} {(aI , bI)}

Table 1: Syntax and semantics of ALCO@ and ALCO+.

finite conjunction of ABox assertions. A Boolean ABox is a Boolean combination
of ABox assertions. For convenience we will also sometimes represent classical and
Boolean ABoxes as finite sets of assertions by breaking the toplevel conjunctions.
An interpretation I is a model of an assertion C(a) if aI ∈ CI . I is a model of
an assertion r(a, b) (resp. ¬r(a, b)) if (aI , bI) ∈ rI (resp. (aI , bI) /∈ rI). A model
of a (Boolean) ABox is defined in the obvious way. We use M(A) to denote
the set of models of a Boolean ABox A. A (Boolean) ABox A is consistent if
M(A) 6= ∅. Two (Boolean) ABoxes A and A′ are equivalent, denoted by A ≡ A′,
if M(A) = M(A′). An assertion α is entailed by a Boolean ABox A, written
as A |= α, if M(A) ⊆ M({α}). Classical ALCO@-ABoxes can equivalently be
compiled to Boolean ALCO-ABoxes (and vice versa) — the translation in the
first direction is exponential, in the other direction it is linear [17]. Consistency
checking and entailment for classical ABoxes are standard inference problems and
supported by all DL reasoners1, while, to the best of our knowledge, no state of
the art reasoner directly supports these inferences for Boolean ABoxes. Reasoning
in ALCO+ is NExpTime-complete [25]; for ALCO@ it is PSpace-complete [2].

2.0.1 ABox Update

An ABox can be used to represent knowledge about the state of some world. An
update contains information on changes that have taken place in that world.

Definition 1 (Update). An update U = {δ(t̄)} contains a single literal, i.e. δ(t̄)
is of the form A(a), ¬A(a), r(a, b), or ¬r(a, b) with A a concept name, r a role

1A list of DL reasoners is available at http://www.cs.man.ac.uk/~sattler/reasoners.

html.

3

name, and a, b individual names.2 △

Intuitively, an update literal δ(t̄) says that this literal holds after the change of
the world state. The formal semantics of updates given in [17] defines, for every
interpretation I, a successor interpretation IU obtained by changing this model
according to the update. Given an ABox A, all its models are considered to be
possible current states of the world. The goals is then to find an updated ABox
A∗ U that has exactly the successor of the models of A as its models, i.e., A∗ U
must be such that M(A ∗ U) = {IU | I ∈ M(A)}. In general, such an updated
ABox need not exists.

AU = (A ⊔ ⊔
¬A(a)∈U

{a}) ⊓ ¬(⊔
A(a)∈U

{a})

rU = (r ⊔ ⊔
¬r(a,b)∈U

{(a, b)}) ⊓ ¬(⊔
r(a,b)∈U

{(a, b)})

{a}U = {a} {(a, b)}U = {(a, b)}
(¬C)U = ¬CU (¬r)U = ¬rU

(C ⊓ D)U = CU ⊓ DU (r ⊓ q)U = rU ⊓ qU

(C ⊔ D)U = CU ⊔ DU (r ⊔ q)U = rU ⊔ qU

(∃r.C)U = ∃rU .CU (∀r.C)U = ∀rU .CU

Figure 1: Constructing CU and rU for ALCO+

(@iC)U = @iC
U

(∃r.C)U = (⊓
a∈Obj(U)

¬{a} ⊓ ∃r.CU) ⊔ ∃r.(⊓
a∈Obj(U)

¬{a} ⊓ CU)

⊔ ⊔
a,b∈Obj(U),r(a,b)6∈U

({a} ⊓ ∃r.({b} ⊓ CU)) ⊔ ⊔
¬r(a,b)∈U

({a} ⊓ @bC
U)

(∀r.C)U = (⊔
a∈Obj(U)

{a} ⊔ ∀r.CU) ⊓ ∀r.(⊔
a∈Obj(U)

{a} ⊔ CU)

⊓ ⊓
a,b∈Obj(U),r(a,b)6∈U

(¬{a} ⊔ ∀r.(¬{b} ⊔ CU)) ⊓ ⊓
¬r(a,b)∈U

(¬{a} ⊔ @bC
U)

Figure 2: Constructing CU for ALCO@

The minimal DLs that contain both the basic DL ALC and are closed under
ABox updates are ALCO@ and Boolean ALCO. For ALCO@, updated ABoxes
are exponential in the size of the original ABox and the update. The DL ALCO+

admits updated ABoxes that are exponential in the size of the update, but poly-
nomial in the size of the original ABox. This is the reason why, in this work,
we focus on ALCO+ and ALCO@. The following two propositions, which are
simplified and streamlined versions of the ones given in [17], tell us how updated
ABoxes can be computed for these two DLs:

2In [17], an update is defined as a consistent set of literals, not as a single literal. Updating
an ABox A with a set of literals can in our setting be achieved by iteratively updating A with
the individual literals.

4

Proposition 2 (Updated ABox for ALCO+). Let αU be the concept (role) ob-
tained by the construction defined in Figure 1. Let the ABox A′ be defined as

A′ =
∧

(A ∪ U) ∨
∧

(AU ∪ U), (1)

where the ABox AU is defined as AU = {αU(t̄) | α(t̄) ∈ A}. Then A ∗ U ≡ A′.

For the DL ALCO@, the part of the construction of updated concepts CU that
differs from the construction for ALCO+ is depicted in Figure 2. Here Obj(U)
denotes all the individuals that occur in the update U .

Proposition 3 (Updated ABox for ALCO@). For ALCO@ the ABox AU is de-
fined as

AU = {CU(a) | C(a) ∈ A} ∪ {r(a, b) | r(a, b) ∈ A ∧ ¬r(a, b) /∈ U}∪
{¬r(a, b) | ¬r(a, b) ∈ A ∧ r(a, b) /∈ U}.

Let A′ be as defined in (1). Then A ∗ U ≡ A′.

To see how the construction of updated ABoxes works consider the following
example:

Example 4 (Updated ABox). Let the ABox A = {A(a)} be updated with U =
{¬A(a)}. Following Propositions 2 and 3 we obtain the (highly redundant) up-
dated ABox

{(A(a) ∧ ¬A(a)) ∨ ((A ⊔ {a})(a) ∧ ¬A(a))},

which can be simplified to {¬A(a)}. The first disjunct is for the case that the
update was already true, whereas the second disjunct is for the case that it wasn’t.

In the following, we want to illustrate the usefulness of ABox updates by a simple
example. In this example, it is convenient to use also a TBox. TBoxes are a
very useful feature of DLs that allow us to introduce abbreviations for complex
concepts. A TBox T is a finite set of concept definitions of the form A ≡ C, where
A is a concept name (called a defined concept) and C is a complex concept. This
TBox is acyclic if it does not contains multiple or cyclic definitions. Acyclic
TBoxes introduce abbreviations for complex concepts, but these abbreviations
can be expanded out [4]. This makes it possible to work with ABox updates
also in the presence of acyclic TBoxes as long as defined concept names do not
occur in the update. This restriction avoids semantic problems [6] such as the
ramification problem.

Example 5 (Medical Record – Acetylsalicylic Acid). The following concept def-
initions could be part of a bigger medical ontology for pain treatment. It states
under what conditions a treatment with acetylsalicylic acid (ASA) is indicated for

5

a patient, in terms of both anamnesis and diagnosis results, under the additional
safety condition that there must not be a contraindication for “similar” patients:3

ASA-indicated ≡ ASA-tolerant ⊓ ASA-Diagnosis ⊓
∀similar patient.ASA-tolerant

ASA-tolerant ≡ ¬Pregnant ⊓ ¬Atopic ⊓ ¬Infant ⊓ ¬Child
ASA-Diagnosis ≡ (Migraine ⊔ Tension Headache ⊔ Cluster Headache ⊔

Drug-induced Headache ⊔ Impingement Syndrome ⊔
...

HIV Peripheral Neuropathy) ⊓
¬Bleeding Diathesis ⊓ ¬Heart Disease ⊓
¬Renal Disease ⊓ ¬Peptic Ulcer

Migraine ≡ . . .

Assume that the ABox describing the medical record of the patient Mary, who
has come to the hospital because she suffers from migraine, includes the ABox
assertions in the first line below. In addition, assume that this ABox contains the
information that the patient Jane is similar to Mary:

ASA-Diagnosis(Mary),ASA-tolerant(Mary),∀similar patient.ASA-tolerant(Mary),
similar patient(Mary, Jane), similar patient(Jane,Mary).

The DL reasoner can infer from this information that Mary belongs to the concept
ASA-indicated, and that Jane belongs to the concept ASA-tolerant. But assume
that, at her next visits, Mary tells the doctor that she is now pregnant. If her
medical record is updated with {Pregnant(Mary)}, then we can conclude that an
ASA treatment is no longer possible for Mary since the updated ABox implies
¬ASA-indicated(Mary). However, it also implies ¬ASA-indicated(Jane) since
there is now a patient similar to Jane (i.e., Mary) that is not ASA tolerant. To
avoid this (obviously unintended) consequence, we must additionally update the
ABox with ¬similar patient(Mary, Jane) and ¬similar patient(Jane,Mary) (un-
less we have learnt that Jane is now also pregnant).

3 Optimizations for ABox Updates

It turns out that a naive implementation of the update algorithms based on
Proposition 2 or 3 is not practical. Even for very simple update problems —
where simple means e.g. small initial ABoxes containing only literals — after
only a few updates we obtain ABoxes so huge and redundant that the reasoners
cannot handle them anymore. In this section we propose a range of techniques
for obtaining less redundant updated ABoxes.

3We assume here that the (reflexive and symmetric) similarity relation between patients is
computed by some separate, non-DL mechanism [27].

6

In particular we are looking for ABoxes that are smaller than, but equivalent to,
the updated ABoxes. In principle this could be done by enumerating ever bigger
ABoxes, and checking for equivalence to the updated ABox. This is not likely to
be practical, though. Instead we focus on logical transformations for obtaining
smaller updated ABoxes. Since these transformations can be computationally
expensive themselves, we also identify fragments of the transformations that we
expect to be relatively cheap. The proposed techniques are each motivated by
avoidable redundancy that we observed in practical examples. We present the
various techniques for obtaining smaller updated ABoxes individually; they can
be combined in a modular fashion.

3.0.2 Updating Boolean ABoxes

Updating an ABox according to Proposition 2 or 3 results in a Boolean ABox.
In [17] this updated ABox is transformed to a non-Boolean ABox using the @-
constructor, before it is updated again. The following observation shows that
Boolean ABoxes can directly be updated again by updating the individual asser-
tions, avoiding the transformation.

Observation 6 (Distributivity of Update). Update distributes over conjunction
and disjunction in Boolean ABoxes; i.e.

(A1 ⊠ A2) ∗ U ≡ (A1 ∗ U) ⊠ (A2 ∗ U),

where ⊠ denotes either ∧ or ∨ (negation can be pushed inside the assertions).

By updating a Boolean ABox directly we also obtain a slightly more compact
representation than the original one — the update U is no longer contained in
two disjuncts:

Observation 7 (Updating Boolean ABoxes). For a Boolean ABox A (we assume
negation has been pushed inside the assertions), let the updated ABox A′ be defined
as

A′ = (A ⊛ U) ∧
∧

U .

Here A ⊛ U is defined recursively as

α ⊛ U = α ∨ αU

(α ⊠ B) ⊛ U = (α ⊛ U) ⊠ (B ⊛ U)

where ⊠ denotes ∧ or ∨, α is an assertion, and {α}D is defined as in Proposition
2 (or 3) for ALCO+ (or for ALCO@, respectively). Then A ∗ U ≡ A′.

7

3.0.3 Determinate Updates

Looking at the construction of updated ABoxes, we see that from an ABox A by
an update we get a disjunction A∨AU . This causes a rapid growth of the updated
ABox. If, however, either the update or its negation is entailed by the ABox A,
then one of the disjuncts is inconsistent and can be removed:

Observation 8 (Determinate Updates). For (Boolean) ABox A, update U = {δ},
and updated ABox A′ we have that A′ ≡ A if A � δ; and A′ ≡ U∪AU if A � ¬δ.4

Otherwise, if neither A |= δ nor A |= ¬δ, both A∅ and AU are consistent with U .

Detecting this type of situation requires up to two reasoning steps: A |= δ and
A |= ¬δ, resulting in a tradeoff between time and space efficiency.

3.0.4 Exploiting the Unique Name Assumption

The common unique name assumption (UNA) means that no two individual
names may denote the same object. The constructions depicted in Figure 1 and
2 do not take the UNA into account; but we can construct simpler updated
ABoxes by keeping track of the individuals s̄ and t̄ that an assertion γ(s̄) refers
to when updating it with δ(t̄):

Observation 9 (Updated Assertion with UNA). Let A be an ABox, U an update,
and A′ the updated ABox. Further, let the ABox B be obtained by re-defining the
ABox AU as AU = {CU ,a(a) | C(a) ∈ A} ∪ {rU ,a−b(a, b) | r(a, b) ∈ A} for
ALCO+, and as

AU = {CU(a),a | C(a) ∈ A} ∪ {r(a, b) | r(a, b) ∈ A ∧ ¬r(a, b) /∈ U}∪
{¬r(a, b) | ¬r(a, b) ∈ A ∧ r(a, b) /∈ U}

for ALCO@, where CU ,i and rU ,i−j are given in Figure 3.5 Then A′ ≡ B.

This UNA-based construction is not costly at all. It cannot identify all cases
where the UNA admits a more concise updated ABox, though. The next example
illustrates both its strength and limitations:

Example 10 (Exploiting UNA). If we update the ABox A = {A(i)} with U =
{¬A(j)}, using AU ,i we obtain A(i), instead of A⊔{j}(i) using AU . Next consider
the ABox A = {∀r.({j} ⊓ A)}(i), updated by U = {A(k)}. As part of the update
construction we obtain ∀r.({j} ⊓ (A ⊓ ¬{k}))(i) which can be simplified using
UNA to ∀r.({j}⊓A)(i). Our method for exploiting UNA cannot detect this latter
case.

4The latter of these two observations is from [17].
5We omit the Boolean constructors.

8

AU,i = ⊤, if ¬A(i) ∈ U AU,i = ⊥, if A(i) ∈ U
AU,i = A, if (¬)A(i) /∈ U
rU,i−j = ⊤, if ¬r(i, j) ∈ U rU,i−j = ⊥, if r(i, j) ∈ U
rU,i−j = r, if (¬)r(i, j) /∈ U
{i}U,i = ⊤ {i}U,j = ⊥
{(i, j)}U,i−j = ⊤ {(i, j)}U,k−l = ⊥, if k 6= i or l 6= j
(∃r.C)U,i = ∃r.(CU), if q(i, x) /∈ U (∀r.C)U,i = ∀r.(CU), if q(i, x) /∈ U

for q ∈ sub(r) for q ∈ sub(r)
(∃r.C)U,i = (∃r.C)U , otherwise (∀r.C)U,i = (∀r.C)U , otherwise
(@jC)U,i = @jC

U,j (@iC)U = @iC
U,i

Figure 3: Constructing CU ,i and rU ,i−j for ALCO+ and ALCO@

3.0.5 Omitting Subsuming Disjuncts and Entailed Assertions

Intuitively, in a disjunction we can omit the “stronger” of two disjuncts:

Observation 11 (Omitting Subsuming Disjuncts). Let the disjunction (A∨AU)
be part of an updated ABox. If A � AU (or AU � A) then (A ∨ AU) ≡ AU (or
(A ∨AU) ≡ A).

Detecting subsuming disjuncts in general requires reasoning. But by a simple,
syntactic check we can detect beforehand some cases where one of the disjuncts
AU and A will subsume the other. Then the computation of subsuming disjuncts
can be avoided. We say that an occurrence of a concept or role name δ in an
assertion is positive, if it is in the scope of an even number of negation signs, and
negative otherwise; δ occurs only positively (negatively) in an assertion if every
occurrence of δ is positive (negative).

Observation 12 (Detecting Subsuming Disjuncts). If for an ABox A, updated
with update U = {(¬)δ(t̄)}, we have that:

(1) if the update is positive (i.e. δ(t̄)) then

– if δ occurs only positively in A then AU � A; and

– if δ occurs only negatively in A then A � AU .

(2) if the update is negative (i.e. ¬δ(t̄)) then

– if δ occurs only positively in A then A � AU ; and

– if δ occurs only negatively in A then AU � A.

Conversely, we can also avoid updating entailed assertions:

Observation 13 (Omitting Entailed Assertions). Let A be an ABox and U an
update. If U |= α or A \ {α} |= α for some assertion α ∈ A, then A ∗ U ≡
(A \ {α}) ∗ U .

9

Removing all entailed assertions might be too expensive in practice; one might
try doing this periodically.

3.0.6 Propositional ABoxes

Sometimes we do not need the full power of DL reasoning, but propositional
reasoning is enough:

Definition 14 (Propositional ABox). We call a Boolean ABox A propositional
if it does not contain quantifiers. △

For propositional ABoxes we could in principle use progression algorithms for
propositional logic [1] and efficient SAT-technology, since an updated proposi-
tional ABox is propositional, too.

3.0.7 Independent Assertions

Next we address the question under which conditions an assertion in an ABox is
not affected by an update, i.e. independent. The more independent assertions we
can identify, the more compact our ABox representation becomes.

Definition 15 (Independent Assertion). Assertion α in an ABox A is indepen-
dent from update U = {δ} iff A ∗ U ≡ α ∧ (B ∗ U) where B = A \ {α}. △

Detecting this in all cases requires reasoning steps and thus is costly. It is easy,
though, to syntactically detect some of the independent assertions:

Observation 16 (Independent Assertion). For an ABox A in negation normal
form and update U = {(¬)δ(t̄1)}, the assertion α(t̄2) ∈ A is independent if δ /∈
sub(α). It is also independent if A � t̄1 6= t̄2, δ occurs in α only outside the scope
of a quantifier, and for all subconcepts @iC of α the assertion C(i) is independent
of U .

4 Reasoning with Boolean ABoxes

As we have seen in the previous sections, updated ABoxes are Boolean ALCO@-
or ALCO+-ABoxes, so that an intelligent agent built on top of ABox update
needs Boolean ABox reasoning. Reasoning with ALC-LTL formulas [5] requires
Boolean ABox reasoning, too. However, Boolean ABox reasoning is not directly
supported by DL reasoners. In this section, we present four different reasoning
methods that can handle Boolean ABoxes:

10

• one where a DL reasoner operates on single disjuncts of a Boolean ABox in
DNF;

• one which uses Otter, a first-order theorem prover;

• one which uses a consistency preserving reduction from a Boolean ABox to
a non-Boolean ABox; and

• one which is based on propositional satisfiability testing modulo theories —
the DPLL(T) approach.

Replacing every assertion in a Boolean ABox A with a propositional letter results
in a propositional formula FA. The ABox A is a Boolean ABox in CNF (resp.
DNF) if FA is in CNF (resp. DNF). The first approach works on Boolean ABoxes
in DNF while the other approaches are based on CNF.

In all approaches we do not use the equivalence-preserving, exponential transfor-
mation from [17] for compiling the @ constructor away. Instead we simulate the
@-operator by a universal role [8]; this consistency-preserving transformation is
linear.

We use Pellet as a DL reasoner because it supports nominals, query-answering
and pinpointing [23].

4.0.8 The DNF Approach

A Boolean ABox in DNF is consistent iff it contains a consistent disjunct. We
can employ a DL reasoner to decide the consistency of each disjunct. We refer
to this approach as Pellet-DNF. A drawback of this approach is that we will see
that the less redundant updated ABoxes are in CNF, and thus require a costly
translation to DNF (using de Morgan’s laws).

4.0.9 The Theorem Prover Approach

The DL ALCO+ admits smaller updated ABoxes than ALCO@ [17]; however,
its role operators are not supported by current mature DL reasoners. Once we
translate ALCO+ to first order logic [9], we can use theorem provers that can cope
with Boolean role constructors. We chose to use Otter [18] because it supports
query-answering via answer literals [15]; this is useful e.g. for parametric actions,
which are to be instantiated to concrete actions. After a few experiments we chose
to configure Otter to use hyperresolution combined with Knuth-Bendix-rewriting,
plus the set-of-support strategy.

11

4.0.10 The Reduction Approach

We can linearly compile Boolean ALCO@-ABoxes to classical ALCO@-ABoxes
[17]. Then, simulating the @-operator by a universal role, we can directly use a
standard DL reasoner; this approach is henceforth called Pellet-UR.

4.0.11 The DPLL(T) Approach

Most modern SAT-solvers [14, 12] are variants of the Davis-Putnam-Logemann-
Loveland (DPLL) procedure [11, 10]. Such a SAT-solver exhaustively applies
transition rules6 to generate and extend a partial interpretation and thus decides
satisfiability of a propositional formula in CNF. One of the strengths of the DPLL
procedures is that they can efficiently prune the search space by building and
learning backjump clauses [28].

The DPLL(T) approach combines a DPLL procedure with a theory solver that
can handle conjunctions of literals in the theory to solve the satisfiability prob-
lem modulo theories (SMT) [19]. In DPLL(T) a DPLL procedure works on the
propositional formula obtained by replacing the theory atoms with propositional
letters. Whenever the DPLL procedure extends the current partial interpreta-
tion by a new element the theory solver is invoked to check consistency of the
conjunction of the theory atoms corresponding to the partial, propositional in-
terpretation. If the theory solver reports an inconsistency, the DPLL procedure
will backjump and thus the search space is pruned.

The consistency problem of Boolean ABoxes can be viewed as an instance of SMT
where ABox assertions are the theory atoms and a DL reasoner serves as theory
solver.

The non-standard DL inference of pinpointing [21, 7] is highly relevant to this ap-
proach. Explaining why an ABox is inconsistent is an instance of the pinpointing
problem, where an explanation is a minimal sub-conjunction of the input ABox,
containing only those assertions that are responsible for the inconsistency. Based
on these explanations in the DPLL(T) approach we can build better backjump
clauses [19].

We implemented an algorithm based on the DPLL(T) approach with the strategy
of MiniSat [14]. Pellet was chosen as the theory solver because it supports
pinpointing. Henceforth we call this approach Pellet-DPLL.

6See [19] for the details.

12

4.0.12 Propositional Reasoning

For the case where we can identify propositional ABoxes we have developed and
implemented a simple, specialized method. Reasoning there is reduced to effi-
cient list operations. This reasoner is used to supplement the other reasoning
approaches (if possible).

5 Experimental Results

In this section, we evaluate the efficiency of the different update and reasoning
mechanisms. The relevant measures are the time needed for computing the up-
dated ABox together with its size, and the efficiency of reasoning with it. We
will see that choosing the right update and reasoning algorithms depends upon a
problem’s specifics.

An update algorithm based on Proposition 2 or 3 generates Boolean ABoxes in
DNF, while an algorithm based on Proposition 7 outputs ABoxes in CNF. Of
course, every Boolean ABox can equivalently be represented in CNF or in DNF;
however, this transformation (using De Morgan’s laws) is rather expensive. The
performance of reasoning with updated ABoxes strongly depends on the choice
of underlying representation. We use several types of testing data:

• we use a set of randomly generated Boolean ABoxes in CNF;

• we use a set of random ABoxes, Updates, and Queries; and

• we use the Wumpus world [20].

We distinguish two main types of update algorithms that we implemented:

• In one we compute updated ABoxes in DNF; we call this the DNF approach.

• Alternatively, we compute updated ABoxes in CNF; we call this the CNF
approach.

Both approaches are further parametrized by using different reasoners, and a
different combination of optimization techniques. We have implemented the dif-
ferent ABox update algorithms in ECLiPSe-Prolog.

The reasoning methods have already been described in Section 4. We call a rea-
soning method hybrid if it resorts to our propositional reasoner whenever possible;
for example, we then speak of hybrid Pellet-UR.

13

5.1 Representation: DNF or CNF?

We have used both the Wumpus world and the random update examples to
compare DNF and CNF based update algorithms (with and without optimiza-
tions). CNF representation consistently proved to be superior: The DNF ap-
proach quickly drowns in redundant information. This is because to compute an
updated ABox in DNF is to include both the update and all the non-affected
information in both disjuncts. Detecting subsuming disjuncts and determinate
updates alleviates this problem, but does not eliminate it. By avoiding this
redundancy we immediately obtain an updated ABox in CNF. On DNF-based
updated ABoxes Pellet-DNF performs best — the other methods suffer from the
expensive conversion to CNF. In the following we only consider the CNF-based
representation of updated ABoxes.

5.2 Consistency Checking for Boolean ABoxes in CNF

We implemented a random generator of Boolean ALC-ABoxes, which randomly
generates a propositional formula in CNF and then assigns a randomly generated
assertion to each propositional letter. Several parameters are used to control the
shape of the generated Boolean ABoxes (the numbers in parentheses indicate
the upper bound on the parameters we used): the number n1 of literals in a
clause (53), the number n2 of propositional letters (36), the number n3 of clauses
(83), the number d of nested roles in a concept assertion (23), the number ncs
of the constructors in a concept assertion (106), the numbers nc, nr, and ni of
concept names, role names, and individual names in an assertion (12 each), and
the probability pr of generating a role assertion (0.2).

In Figure 4, we plot the runtimes of Pellet-DPLL and Pellet-UR on these testing
data against the number of symbols in the Boolean ABox. The points plotted
as + indicate the runtime of Pellet-DPLL while those plotted as × indicate the
runtime of Pellet-UR. We depict the performance on consistent and inconsistent
Boolean ABoxes separately — the testing data contained more consistent than
inconsistent Boolean ABoxes.

We can see that the runtime of Pellet-UR linearly increases with the size of the
input (the bar from the lower left to the upper right corner). On inconsistent
ABoxes Pellet-DPLL also exhibits a linear increase in runtime, while on consistent
ABoxes the runtime is less predictable. Pellet-DPLL performs better on all of the
inconsistent Boolean ABoxes. On most of the consistent ABoxes, the Pellet-UR
approach does better. This is due to the fact that in Pellet-DPLL the frequent
invocations of the theory solver Pellet are more likely to pay off if inconsistency of
the current, partial model can be detected often: We then can build a back-jump
clause that helps to prune the search space. The runtimes of Pellet-UR are about
the same on both consistent and inconsistent input data.

14

For Otter the conversion from ABoxes in CNF to full first order CNF proved to
be a big obstacle, as did the conversion to DNF for Pellet-DNF.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0 40000 80000 120000 160000

tim
e

(m
s)

number of symbols in the input

On consistent ABoxes

Pellet-DPLL
Pellet-UR

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 20000 40000 60000 80000

tim
e

(m
s)

number of symbols in the input

On inconsistent ABoxes

Pellet-DPLL
Pellet-UR

Figure 4: Experimental results for Pellet-DPLL and Pellet-UR

5.3 Random Updates

We have extensively experimented with a set of randomly generated ABoxes and
updates. Initial ABoxes were between two and thirty assertions in size.We were
mostly interested in runtime and space consumption for iterated updates. We
could make a number of interesting observations:

• The UNA-based concept update construction from Figure 3 always paid.

• The reasoning needed to identify determinate updates pays in the long run.

• Syntactically detecting subsuming disjuncts worked, too. Doing so using a
reasoner proved to be too expensive.

• Identifying all entailed assertions to shrink the ABoxes proved to be too
expensive, too.

• Resorting to our dedicated propositional reasoner whenever possible re-
sulted in significantly better performance.

• We can keep updated ABoxes much smaller at a low cost by syntactically
identifying independent assertions.

Updating an ABox according to [17] is a purely syntactic procedure. But if we
iteratively update ABoxes, then in the long run we get both a lower space and
time consumption by calling a reasoner to identify determinate updates. Using
our propositional reasoner whenever possible for this resulted in better perfor-
mance. If identifying determinate updates required DL reasoning then Pellet-UR

15

performed slightly better than Pellet-DPLL. This is due to the fact that less up-
dates were determinate than not, and thus inconsistency was not detected often.
On a subset of the random examples where there were more determinate updates
Pellet-DPLL performed better than Pellet-UR. The runtimes for Otter widely
varied: converting CNF-ABoxes to full first order CNF proved the bottleneck.
Pellet-DNF was not competitive because of the expensive conversion to DNF.

We could also identify characteristics of initial ABoxes that allow to predict per-
formance: If the initial ABox does not contain nested quantifiers then perfor-
mance is acceptable; e.g. we can iteratively apply 300 singleton updates to a
fifteen assertion ABox in 90 seconds, without a significant increase in size. If the
initial ABox contains nested quantifiers space consumption quickly grows out of
bounds. This is because we then cannot cheaply identify independent assertions
and use the UNA-based concept update construction. For nested quantifiers us-
ing ALCO+ instead of ALCO@ helps to reduce space consumption; but this still
does not result in satisfactory overall performance.

5.4 The Wumpus World

The Wumpus World [20] is a well-known challenge problem in the reasoning about
action community. It consists of a grid-like world: cells may contain pits, one cell
contains gold, and one the fearsome Wumpus. The agent dies if she enters a cell
containing a pit or the Wumpus. But she carries one arrow so that she can shoot
the Wumpus from an adjacent cell. If the agent is next to a cell containing a pit
(Wumpus), she can detect that one of the surrounding cells contains a pit (the
Wumpus), but doesn’t know which one. She knows the contents of the already
visited cells. Getting the gold without getting killed is the agent’s goal.

At each step, the agent performs sensing to learn whether one of the adjacent
cells contains a pit or the Wumpus. Since the sensing results are disjunctive, we
cannot treat them via ABox updates. But since the properties sensed are static
(i.e., cannot change once we know them), we can simply adjoin the sensing results
to the ABox serving as the agent’s current world model. The effects of the agent’s
(non-sensing) actions (like moving to another cell) are modelled as ABox update.

The Wumpus World can be modelled in different ways. In the simplest model,
the initial ABox contains the connections between the cells, the agent’s location,
and the facts that the agent carries an arrow, and that the Wumpus is alive
(Model PL1). For this, Boolean combinations of concept/role literals are enough.
In Model PL2, we include the fact that the Wumpus is at exactly one location
by enumerating all possible cases in a big disjunction. We turn PL1 into a DL
problem by including the information ∃at.⊤(wumpus) (Model DL1). Model DL2
is obtained from PL2 by adding this same assertion, which here is redundant.
Table 2 shows the runtimes, where n/a stands for unavailable expressivity and *

16

for non-termination in 15 minutes. For the propositional models we also used the
action programming language Flux [24].

Model Prop hybrid Otter hybrid Pellet-UR Flux

4x4 PL1 0.008 s 0.008 s 0.008 s 0.6 s

8x8 PL1 0.26 s 0.26 s 0.26 s 14.9 s

8x8 PL2 16.9 s 16.9 s 16.9 s n/a

4x4 DL1 n/a 36.4 s 5.5 s n/a

4x4 DL2 n/a * 23.93 s n/a

Table 2: Runtimes for the Wumpus World.

Pellet-DNF, and to a lesser extent also Otter, again had difficulties with the
necessary input conversion. Pellet-UR proved to be the best DL reasoner in this
setting. This is due to the fact that this domain requires query-answering: The
agent e.g. needs to know for which values of x and y we have that at(agent, x) ∧
connected(x, y). Pellet-DPLL is the only reasoner that lacks direct support for
query-answering. Thus, for query C(x), we iteratively check for every individual
name i ∈ NI whether C(i) holds — but this results in bad performance for Pellet-
DPLL.

We also see that the propositional reasoner performs quite well on the proposi-
tional models. Including more information wrt. the Wumpus’ location results in
worse performance. We used Model DL2 to see if it pays to identify all entailed
assertions: after omitting the entailed ∃at.⊤(wumpus) the model is propositional
again. In practice this proved too costly. The other observations from Section 5.3
also hold in this domain. Sometimes removing assertions entailed by the update
did help, though. In particular, once the Wumpus is found, we can remove the
assertion ∃at.⊤(wumpus) entailed by the respective update and then resort to
efficient propositional reasoning.

6 Summary and Future Work

In this work, we have investigated implementation techniques for ABox update,
and for reasoning with (updated) Boolean ABoxes. We have introduced and eval-
uated several optimizations of the ABox update algorithms in [17]. The lessons
learnt were: Using CNF-representation of updated ABoxes is strongly recom-
mended. The (incomplete) syntactic techniques for exploiting the unique name
assumption, and detecting subsuming disjuncts and independent assertions have
also resulted in an improved performance. The benefit of identifying determinate
updates made up for the associated reasoning costs. Other techniques requiring
DL reasoning in general proved to be too expensive; but removing some entailed
assertions helped in the Wumpus world.

17

Regarding the investigated reasoning methods for Boolean ABoxes, we have come
to the following conclusions. Pellet-DNF is the best reasoner for Boolean ABoxes
in DNF. For consistency checking of ABoxes in CNF, Pellet-DPLL and Pellet-UR
worked best. Pellet-DPLL did better for detecting an actual inconsistency, while
it performed worse than Pellet-UR on most of the consistent Boolean ABoxes.
On the randomly generated update examples, Pellet-UR also performed slightly
better than Pellet-DPLL because inconsistency was not detected often. On a
subset where the updates were mostly determinate, Pellet-DPLL outperformed
Pellet-UR. If query-answering is among the reasoning tasks, then Pellet-UR is to
be preferred over Pellet-DPLL because of Pellet’s direct support for this inference.

It would be interesting to develop heuristics for finding suitable individual names
as well as other optimizations for query-answering in the DPLL(T) approach.
The performance of the DPLL(T) approach also depends on the performance of
the SAT solver and the pinpointing service. Thus Pellet-DPLL can benefit from
more efficient implementation of these tasks as well.

The tests on the Wumpus world confirmed that resorting to our dedicated propo-
sitional reasoner whenever possible is useful. In the Wumpus world, removing
entailed assertions helped a lot. In contrast, for the randomly generated update
examples, finding entailed assertions did not pay off.

Using Otter as a theorem prover might be considered somewhat unfair (to the
theorem proving approach), since it is no longer actively maintained and opti-
mized. The conversion to full first order CNF proved to be the biggest obstacle
for Otter. We chose to use Otter because it supports query-answering, which is
not supported by most current provers [26], but vital in some domains. If this is
to change,7 we can try to resort to state-of-the art theorem provers for reasoning
in ALCO+. This may allow us to really exploit the fact that ALCO+ admits
smaller updated ABoxes than ALCO@. Alternatively, one could also try to use
a more dedicated reasoning system for ALCO+ [22].

Acknowledgments: Many thanks to Albert Oliveras for his help regarding the
construction of a backjump clause in the DPLL(T) approach.

References

[1] E. Amir and S. J. Russell. Logical Filtering. In IJCAI-03, Proceedings of the
Eighteenth International Joint Conference on Artificial Intelligence. Morgan Kauf-
mann, 2003.

[2] Areces, Blackburn, and Marx. A road-map on complexity for hybrid logics. In
CSL: 13th Workshop on Computer Science Logic. LNCS, Springer-Verlag, 1999.

7cf. www.cs.miami.edu/~tptp/TPTP/Proposals/AnswerExtraction.html.

18

[3] C. Areces and M. de Rijke. From Description Logics to Hybrid Logics, and Back.
In Advances in Modal Logic, 2001.

[4] F. Baader, D. Calvanese, D. L. Mcguinness, D. Nardi, and P. F. Patel-Schneider,
editors. The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, 2003.

[5] F. Baader, S. Ghilardi, and C. Lutz. LTL over Description Logic Axioms. In
Proceedings of the 11th International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR2008), 2008.

[6] F. Baader, C. Lutz, M. Milicic, U. Sattler, and F. Wolter. Integrating Description
Logics and Action Formalisms: First Results. In Proceedings of the Twentieth
National Conference on Artificial Intelligence (AAAI 2005). AAAI Press, 2005.

[7] F. Baader and R. Peñaloza. Automata-Based Axiom Pinpointing. In Proceedings of
the 4th International Joint Conference on Automated Reasoning, (IJCAR 2008).
Springer, 2008.

[8] Y. Bong. Description Logic ABox Updates Revisited. Master thesis, TU Dresden,
Germany, 2007.

[9] A. Borgida. On the Relative Expressiveness of Description Logics and Predicate
Logics. Artificial Intelligence, 1996.

[10] M. Davis, G. Logemann, and D. Loveland. A Machine Program for Theorem-
proving. Communications of the ACM, 1962.

[11] M. Davis and H. Putnam. A Computing Procedure for Quantification Theory.
Journal of the ACM, 1960.

[12] L. de Moura and N. Bjørner. Z3: An efficient SMT Solver. In Tools and Algo-
rithms for the Construction and Analysis of Systems, 14th International Confer-
ence, TACAS 2008. Springer, 2008.

[13] C. Drescher and M. Thielscher. Integrating Action Calculi and Description Logics.
In Proceedings of the 30th Annual German Conference on Artificial Intelligence
(KI 2007), 2007.

[14] N. Een and N. Sörensson. An Extensible SAT-solver. In International Conference
on Theory and Applications of Satisfiability Testing (SAT), 2003.

[15] C. Green. Theorem Proving by Resolution as a Basis for Question-answering
Systems. Machine Intelligence, 1969.

[16] H. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. Scherl. GOLOG: A logic
programming language for dynamic domains. Journal of Logic Programming, 1997.

[17] H. Liu, C. Lutz, M. Milicic, and F. Wolter. Updating Description Logic ABoxes.
In Proceedings of the Tenth International Conference on Principles of Knowledge
Representation and Reasoning (KR’06). AAAI Press, 2006.

19

[18] W. McCune. OTTER 3.3 Reference Manual. Computing Research Repository,
2003.

[19] R. Nieuwenhuis, A. Oliveras, E. Rodŕıguez-Carbonell, and A. Rubio. Challenges in
Satisfiability Modulo Theories. In 18th International Conference on Term Rewrit-
ing and Applications. Springer, 2007.

[20] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, 2003.

[21] S. Schlobach. Non-Standard Reasoning Services for the Debugging of Description
Logic Terminologies. In Proceedings of the Eighteenth International Joint Confer-
ence on Artificial Intelligence, (IJCAI-03). Morgan Kaufmann, 2003.

[22] R. A. Schmidt and D. Tishkovsky. Using tableau to decide expressive description
logics with role negation. In Proceedings of the 6th International Semantic Web
Conference, ISWC 2007. Springer, 2007.

[23] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical
OWL-DL reasoner. Journal of Web Semantics, 2007.

[24] M. Thielscher. FLUX: A Logic Programming Method for Reasoning Agents. The-
ory and Practice of Logic Programming, 2005.

[25] S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge
Representation. PhD thesis, RWTH-Aachen, Germany, 2001.

[26] R. J. Waldinger. Whatever happened to deductive question answering? In Logic
for Programming, Artificial Intelligence, and Reasoning, 14th International Con-
ference, LPAR 2007, Yerevan, Armenia, October 15-19, 2007, Proceedings, pages
15–16. Springer, 2007.

[27] P. Zezula, M. Batko, V. Dohnal, , and G. Amato. Similarity Search: The Metric
Space Approach. Springer, 2006.

[28] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik. Efficient Conflict
Driven Learning in a Boolean Satisfiability Solver. In International Conference on
Computer-Aided Design (ICCAD’01), 2001.

20

