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Abstract

Axiom pinpointing has been introduced in description logics (DLs)
to help the used understand the reasons why consequences hold by
computing minimal subsets of the knowledge base that have the con-
sequence in consideration. Several pinpointing algorithms have been
described as extensions of the standard tableau-based reasoning algo-
rithms for deciding consequences from DL knowledge bases. Although
these extensions are based on similar ideas, they are all introduced for
a particular tableau-based algorithm for a particular DL, using spe-
cific traits of them. In the past, we have developed a general approach
for extending tableau-based algorithms into pinpointing algorithms.

In this paper we explore some issues of termination of general
tableaux and their pinpointing extensions. We also define a subclass
of tableaux that allows the use of so-called blocking conditions, which
stop the execution of the algorithm once a pattern is found, and adapt
the pinpointing extensions accordingly, guaranteeing its correctness
and termination.

1 Introduction

Description logics (DLs) [2] are a successful family of logic-based knowl-
edge representation formalisms, which can be used to represent the concep-
tual knowledge of an application domain in a structured and formally well-
understood way. They have been employed in several application domains,
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but perhaps their most notable success so far is the adoption of the DL-based
language OWL [9] as standard ontology language for the semantic web. As
a consequence of this, ontologies written in OWL are more usual. With the
size of such ontologies, the importance of developing tools that support im-
proving the quality of large DL-based ontologies grows. A common approach
for detecting inconsistencies and infering other implicit consequences consists
in applying tableau-based algorithms [6].

Whenever a consequence holds, it is usually desirable to understand the
reasons for it, or even to decide how to change the ontology if it is an un-
wanted consequence. This is a hard task, and would be unrealistic to try
to perform it without the help of an automated reasoning tool in ontologies
with hundreds of thousands of axioms.

Axiom pinpointing has been introduced to provide that support. Most
of the pinpointing algorithms described in the DL literature (see, e.g. [3, 13,
12, 11, 10]) are obtained as extensions of tableau-based reasoning algorithms
[6] for deciding consequences of DL knowledge bases. These papers describe
the pinpointing algorithms and prove their correctness only for a specific DL
using a specific type of knowledge base, and it is in general not clear on
how this approach can be generalized, nor which of the known tableau-based
algorithms for DLs can be extended in a similar fashion. For example, the
pinpointing extension described in [10], which can deal with general concept
inclusions (GCIs) in the DL ALC, follows the approach introduced in [3],
but since GCIs require the introduction of so-called blocking conditions into
the tableau-based algorithm to ensure termination [6], there are some new
non-trivial problems to be solved.

To avoid the need of designing a new pinpointing extension for every
possible tableau-based algorithm, and needing to prove its correctness every
time, we introduced in [4] a general approach for extending tableau-based
algorithms to pinpointing algorithms. This approach, however, is limited
only to tableau-based algorithms that terminate without any cylce-checking
mechanisms such as blocking. Furthermore, even if the tableau-based algo-
rithm terminates, it is not necessarily the case that the pinpointing extension
does that too. In fact, we will show that the problem of verifying whether a
tableau-based algorithm (or its pinpointing extension) terminates on every
input is undecidable.

A subclass of tableau-based algorithm that ensure termination of both the
original algorithm and its pinpointing extension was presented in [5]. The
algorithms in this class produce forest-like models with a bounded depth. In
this paper we use a similar approach to define the notion of blocking, and
extend the pinpointing methods to apply also for the case when the tableau
execution is stoped by means of blocking.
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The paper is organized as follows. The next section introduces the main
basic notions regarding the problem we are trying to solve. Afterwards, in
Section 3, we briefly recall the notions of general tableaux and their pin-
pointing extension, and show that it is in general undecidable whether their
execution stops after a finite number of steps. Finally, we introduce in Sec-
tion 4 the notion of forest tableaux and show how blocking techniques can be
applied to them. We also adapt the pinpointing extension accordingly, and
show its correctness and termination for a specific kind of blocking called
subset blocking. All this is followed by some conclusions and thoughts on
future work.

2 Basic Definitions

We will begin by defining a general notion of inputs in which our decision
algorithms are applied and the decision problems that they are supposed to
solve.

Definition 1 (Axiomatized input, c-property) Let I and T be the sets
of inputs and axioms, respectively. An axiomatized input over these sets is
of the form (I, T ) where I ∈ I and T ∈ Pfin(T) is a finite subset of T.
A consequence property (or c-property for short) is a set P ⊆ I×Pfin(T)
such that (I, T ) ∈ P implies (I, T ′) ∈ P for every T ′ ⊇ T .

Intuitively, a c-property P holds if an input I “follows” from the axioms
in T . Due to the monotonicity requirement, there can be some superfluous
axioms; that is, axioms that are not necessary for the property to hold. We
are interested in distinguishing these from the axioms that are responsible
for the property.

Definition 2 Given an axiomatized input Γ = (I, T ) and a c-property P, a
set of axioms S ⊆ T is called a minimal axiom set (MinA) for Γ w.r.t. P
if (I,S) ∈ P and (I,S ′) /∈ P for every S ′ ⊂ S. The set of all MinA for Γ
w.r.t. P will be denoted as MINP(Γ).

Note that the notions of MinA and MaNA are only interesting if Γ ∈ P.
Otherwise, the monotonicity requirement in P would entail that MINP(Γ) = ∅.

Instead of directly trying to compute MINP(Γ), one can also try to compute
a pinpointing formula. In order to define this formula, we assume that every
axiom t ∈ T is labeled with a unique propositional variable lab(t). Let lab(T )
be the set of all propositional variables labeling axioms in T . A monotone
Boolean formula over lab(T ) is a Boolean formula using variables in lab(T )
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and only the connectives conjunction and disjunction. As usual, we identify a
propositional valuation with the set of propositional variables it makes true.
For a valuation V ⊆ lab(T ), let TV = {t ∈ T | lab(t) ∈ V}.

Definition 3 (pinpointing formula) Given a c-property P and an axiom-
atized input Γ = (I, T ), a monotone Boolean formula φ over lab(T ) is called
a pinpointing formula for P and Γ if for every valuation V ⊆ lab(T ) it holds
that (I, TV) ∈ P iff V satisfies φ.

The next lemma follows directly from the definition of a pinpointing for-
mula.

Lemma 4 Let P be a c-property, Γ = (I, T ) an axiomatized input, and φ a
pinpointing formula for P and Γ. Then

MINP(Γ) = {TV | V is a minimal valuation satisfying φ}

This lemma shows that if we want to obtain all MinA, it is enough to
design an algorithm that computes a pinpointing formula. Conversely, the
set MINP(Γ) can be translated into the pinpointing formula

∨

S∈MINP(Γ)

∧

s∈S

lab(s)

3 General Tableaux

General tableaux and their pinpointing extension were first introduced in [4].
For the rest of this paper we use V and D to denote countably infinite sets
of variables and constants, respectively. A signature Σ is a set of predicate
symbols, where each predicate P ∈ Σ is equipped with an arity. A Σ-
assertion is of the form P (a1, . . . , an) where P ∈ Σ is an n-ary predicate
and a1, . . . , an ∈ D. Analogously, a Σ-pattern is of the form P (x1, . . . , xn)
where P ∈ Σ is an n-ary predicate and x1, . . . , xn ∈ V. If the signature is
clear from the context, we will often just say pattern (assertion). For a set
of assertions A (patterns B), cons(A) (var(B)) denotes the set of constants
(variables) occurring in A (B).

A substitution is a mapping σ : V → D, where V is a finite set of variables.
In this case, we say that σ is a substitution on V. If B is a set of patterns
such that var(B) ⊆ V , then Bσ denotes the set of assertions obtained from B
by replacing each variable by its σ-image. The substitution θ on V ′ extends
σ on V if V ⊆ V ′ and θ(x) = σ(x) for all x ∈ V .
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Definition 5 (Tableau) Let I and T be sets of inputs and axioms, respec-
tively. A tableau for I and T is a tuple S = (Σ, ·S,R, C) where:

• Σ is a signature;

• ·S is function that maps every I ∈ I to a finite set of finite sets of
Σ-assertions and every t ∈ T to a finite set of Σ-assertions;

• R is a set of rules of the form (B0,S)→ {B1, . . . , Bm}, where for every
i, 0 ≤ i ≤ m,Bi is a finite set of Σ-patterns and S is a finite set of
axioms;

• C is a set of finite sets of Σ-patterns, called clashes.

Given a rule R : (B0,S)→ {B1, . . . , Bm}, the variable y is a fresh variable
in R if it occurs in one of the sets B1, . . . , Bm, but not in B0.

A S-state is a pair S = (A, T ) where A is a finite set of assertions and
T a finite set of axioms. We extend the function ·S to axiomatized inputs by
setting

(I, T )S = {(A ∪
⋃

t∈T

tS, T ) | A ∈ IS}.

A tableau works in the following way. Given an input (I, T ), we begin
with the initial set of states M = (I, T )S, and then use the rules in R to
modify this set. Each rule application picks a S-state S fromM and replaces
it by finitely many new S-states S1, . . . ,Sm, each of them extending the first
component of S. When no more rules are applicable toM we check whether
all the elements of M contain a clash. If it is the case, then the input is
accepted; otherwise, it is rejected.

Definition 6 (rule application, saturated, clash) Given a S-state S =
(A, T ), a rule R : (B0,S) → {B1, . . . , Bm}, and a substitution ρ on var(B0),
R is applicable to S with ρ if (i) S ⊆ T , (ii) B0ρ ⊆ A, and (iii) for every
i, 1 ≤ i ≤ m and every substitution ρ′ on var(B0 ∪ Bi) extending ρ we have
that Biρ

′ 6⊆ A.
Given a set of S-states M and a S-state S = (A, T ) ∈ M to which

the rule R is applicable with substitution ρ, the application of R to S with ρ
yields the new set M′ = (M\ {S}) ∪ {(A ∪ Biσ, T ) | 1 ≤ i ≤ m}, where σ
is a substitution on the variables occurring in R that extends ρ and maps the
fresh variables of R to distinct new constants; i.e., constants not occurring
in A.

If M′ is obtained from M by the application of R, then we write M→R

M′, or simplyM→SM′ if it is not relevant which of the rules of the tableau
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S was applied. The reflexive-transitive closure of →S is denoted by
∗
−→S. A

set of S-statesM is called saturated if there is noM′ such thatM→SM′.
The S-state S = (A, T ) contains a clash if there is a C ∈ C and a

substitution ρ on var(C) such that Cρ ⊆ A, and the set of S-statesM is full
of clashes if all its elements contain a clash.

We will proceed now to relate tableaux and c-properties, by describing
the conditions under which a tableau is considered correct for a c-property.

Definition 7 (correctness) Let P be a c-property on axiomatized inputs
over I and T, and S a tableau for I and T. We say that S is correct for P
if the following holds for every axiomatized input Γ = (I, T ) over I and T:

1. S terminates on Γ; i.e., there is no infinite chain of rule applications
M0 →SM1 →SM2 →S . . . starting with M0 = ΓS.

2. For every chain of rule applications M0 →S . . . →S Mn such that
M0 = ΓS and Mn is saturated, we have Γ ∈ P iff Mn is full of
clashes.

The second condition in this definition requires that the algorithm gives
the same answer independent of the chain of rule applications considered.
Thus, if several rules are applicable simultaneously, the choice of which of
them to apply next has no influence on the final result. However, this re-
quirement is in fact built into our definition of rules and clashes. For every
tableau S, if there are two terminating chains of rule applicationsM0

∗
−→S M

andM0
∗
−→S M′, then M is full of clashes iffM′ is also full of clashes.

The first condition turns out to be more problematic. It requires that
every chain of rule applications leads to a saturated state after a finite num-
ber of steps, regardless of the input given to the tableau. In general, it is
undecidable whether a given tableau satisfies this requirement. To prove
this, we will show that it is possible to simulate the execution of a Turing
machine (TM) by means of tableau rule applications. A Turing machine is
a quadruple M = (Q,Ω, δ, q0) where Q is a finite set of states, q0 ∈ Q is the
initial state, Ω is a finite set of symbols containing the blank symbol t, and
δ : Q×Ω→ (Q ∪ {h, “yes”, “no”})×Ω× {←,→} is the transition relation.
For a given TM M , we will construct a tableau whose states simulate the
configuration of the tape at each execution step of M .

To simulate a TM M = (Q,Ω, δ, q0), we will use a predicate symbol for
each symbol in Ω; that is, for every g ∈ Ω, the signature of our tableau will
contain the unary predicate symbol Tg. Intuitively, an assertion of the form
Tg(a) expresses that the symbol g appears in the current configuration of the
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tape. To simulate the position of the symbols, we add the unary predicate
symbols Fz for z ∈ Z to the signature, where Fz(a) says that a is allocated
in tape position z. The extra assertion Hq(a) indicates the internal state
of the machine. The constants in this setting work as gluing elements to
express which symbols appear in which tape positions; they can also be used
to identify the position of the head. The initial tape configuration can easily
be expressed with the help of these assertions.

When the TM executes a transition step, it changes the symbol on the
tape cell where the head is pointing, changes the internal state of the ma-
chine, and moves the head either to the left or to the right, according to the
transition relation. To reflect these changes in the states of a tableau, we
would have to remove the assertions expressing the position of the head, the
state of the cell position and the internal state, and replace them accordingly.
Our definition of tableau does not allow for assertions to be removed by a
rule application, and hence those changes cannot be performed directly. We
will instead add the unary predicate symbol ⊥ to our signature. Intuitively,
the assertion ⊥(a) expresses that no assertion using the constant a should
be taken into consideration any more.

A TM can in write over an arbitrary number of tape cells, although the
initial word written on the tape is finite. All the rest of the tape cells are
assumed to be written with the blank symbol t. Since tableaux do not allow
infinite sets of assertions as states, we cannot simply represent the infinite
tape as such, but need to be able to add assertions of the form Fz(a) as they
are needed, along with the corresponding assertion Tt(a) stating the symbol
in the new tape cell. These cells should only be added if the cell is not yet in
use. Since rule applicability cannot check the non-existence of an assertion
before triggering the rule, we will need to use non-deterministic rules for this.

Definition 8 (simulating tableau) Let M = (Q,Ω, δ, q0) be a TM and let
the set of inputs I ⊆ Ω∗ and the set of axioms T = ∅. The tableau simulating
M is the tableau for I and T given by SM = (Σ, ·S,R, ∅) where

• Σ = {Fz | z ∈ Z}∪ {Tg | g ∈ Ω}∪ {Hq | q ∈ Q}∪ {⊥}, all with arity 1.

• for every w = g1 . . . gk ∈ I we have

wS = {Tgi
(ai), Fi(ai) | 1 ≤ i ≤ k} ∪ {Hq0(a1)}

• for every pair (q, g) ∈ Q×Ω, let B(q, g) = {Fk(x), Tg(x), Hq(x)}; then
if δ(q, g) = (q′, g′,→), the rules

(B(q, g) ∪ {Fk+1(y), Sg′′(y)}, ∅) → {{Fk(z), Tg′(z), Hq′(y),⊥(x)}}

({Fk(x), Tg(x), Hq(x)}, ∅) → {{Fk+1(z)}, {Fk+1(z), T⊥(z)}}

7



are in R, and if δ(q, g) = (q′, g′,←), the rules

(B(q, g) ∪ {Fk−1(y), Sg′′(y)}, ∅) → {{Fk(z), Tg′(z), Hq′(y),⊥(x)}}

({Fk(x), Tg(x), Hq(x)}, ∅) → {{Fk−1(z)}, {Fk−1(z), T⊥(z)}}

are in R, for all k ∈ Z.

Proposition 9 Let M be a TM. The tableau SM terminates on input (w, ∅)
iff M halts on input w.

Since the halting problem for Turing machines is undecidable [7], then
the problem of knowing whether a tableau terminates on every input or not
must also be undecidable.

A correct tableau S can be extended to an algorithm that computes a
pinpointing formula. Recall that for the definition of this formula we assume
that every axiom t ∈ T is labeled with a unique propositional variable, lab(t)
and the set of all propositional variables labeling an axiom in T is denoted
by lab(T ). In the following, we further assume that the symbol >, which
always evaluates to true, also belongs to lab(T ). The pinpointing formula is
a monotone Boolean formula over lab(T ).

For an axiomatized input Γ = (I, T ), the modified algorithm works also
on sets of S-states, but now every assertion a occurring in the assertion com-
ponent of a S-state is equipped with a label lab(a) consisting of a monotone
Boolean formula over lab(T ). We call such S-states labeled S-states. In the
inintial set of S-stateM = (I, T )S, every assertion is labeled with >.

We must also modify the definition of rule application, so that it takes
the labels of the assertions into account. Let A be a set of labeled assertions
and ψ a monotone Boolean formula. The assertion a is ψ-insertable into A
if either (i) a /∈ A, or (ii) a ∈ A but ψ 6|= lab(a). Given a set B of assertions
and a set A of labeled assertions, the set of ψ-insertable elements of B into A
is defined as insψ(B,A) = {b ∈ B | b is ψ-insertable into A}. By ψ-inserting
these insertable elements into A, we obtain the following new set of labeled
assertions: Adψ B = A∪ insψ(B,A), where each assertion a ∈ A \ insψ(B,A)
keeps its old label lab(a), each assertion in insψ(B,A) \ (A) gets label ψ, and
each assertion b ∈ A ∩ insψ(B,A) gets the new label ψ ∨ lab(b).

Definition 10 (pinpointing rule application) Let S be a tableau. Given
a labeled S-state S = (A, T ), a rule R : (B0,S) → {B1, . . . , Bm}, and a
substitution ρ on var(B0), this rule is pinpointing applicable to S with ρ
if (i) S ⊆ T , (ii) B0ρ ⊆ A, and (iii) for every 1 ≤ i ≤ m and every
substitution ρ′ on var(B0 ∪Bi) extending ρ we have insψ(Biρ

′, A) 6= ∅, where
ψ =

∧
b∈B0

lab(bρ) ∧
∧
s∈S lab(s).
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Given a set of labeled S-states M and a labeled S-state S ∈ M to which
the rule R is pinpointing applicable with substitution ρ, the pinpointing ap-
plication of R to S with ρ inM yields the new setM′ = (M\{S})∪{(Adψ

Biσ, T ) | 1 ≤ i ≤ m}, where ψ is defined as above and σ is a substitution on
the variables occurring in R that extends ρ and maps the fresh variables of R

to distinct new constants.
If M′ is obtained from M by the pinpointing application of R, then we

write M →Rpin M′ or M →Spin M′ if the specific rule used is not relevant.
As before, the reflexive-transitive closure of →Spin is denoted by

∗
−→Spin. A set

of labeled S-states M is pinpointing saturated if there is no M′ such that
M→Spin M′.

Consider a chain of pinpointing rule applicationsM0 →Spin . . .→Spin Mn

such that M0 = ΓS for an axiomatized input Γ and Mn is pinpointing
saturated. The label of an assertion in Mn expresses which axioms are
needed to obtain this assertion. A clash in a S-state ofMn depends on the
joint presence of certain assertions. Thus, we define the label of the clash
as the conjunction of the labels of these assertions. Since it is enough to
have just one clash per S-state S, the labels of different clashes in S are
combined disjunctively. Finally, since we need a clash in every S-state of
Mn, the formulae obtained from the single S-states are again conjoined.

Definition 11 (clash formula) Let S = (A, T ) be a labeled S-state and
A′ ⊆ A. A′ is a clash set in S if there is a clash C ∈ C and a substitution ρ on
var(C) such that A′ = Cρ. The label of this clash set is ψA′ =

∧
a∈A′ lab(a).

Let M = {S1, . . . ,Sn} be a set of labeled S-states. The clash formula
induced by M is defined as

ψM =
n∧

i=1

∨

A′ clash set in Si

ψA′

Theorem 12 (correctness of pinpointing) Let P be a c-property on ax-
iomatized inputs over I and T, and S a correct tableau for P. The following
holds for every axiomatized input Γ = (I, T ) over I and T:

For every chain of rule applications M0 →Spin . . . →Spin Mn

such that M0 = ΓS and Mn is pinpointing saturated, the clash
formula ψMn

induced by Mn is a pinpointing formula for P and
Γ.

As with the original tableau methods, the correctness of a pinpointing
extension assumes that this pinpointing algorithm terminates. Perhaps a lit-
tle more surprising than Proposition 9 is the fact that, even if we restrict our
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attention to terminating tableaux, it is undecidable whether the pinpointing
extension terminates. We can show this by a reduction similar to the one
made for tableaux, but in this case constructing, for a TM M , a terminating
tableau whose pinpointing extension simulates M .

Notice that none of the rules of the tableau SM in Definition 8 is applicable
if there is no assertion of the form Hq(x) describing the internal state of the
machine. We can then create a tableau that starts with a state describing
the whole input, but leaving aside the internal state of the machine, which
we know that must be q0 at the beginning of the execution of the TM. If
this tableau never adds the assertion Hq0(a1) to the states, then the rules for
simulating the execution of the TM are never triggered. Thus, we want to
construct a tableau such that, when executed in the normal way, it always
terminates but whose pinpointing extension adds the assertion Hq0(a1) if the
correct axioms are used, starting this way the simulation of the TM. This
tableau would then be terminating, but the termination of its pinpointing
extension will depend on whether the TM it is simulating halts or not on
every input.

We construct the tableau Spin

M by allowing the set of axioms to be T =
{ax1, ax2} and modifying SM from Definition 8 as follows. Add to the signa-
ture the unary predicate names P, P ′, Q1, Q2, and add to R the rules

({P (x)}, {ax1}) → {{P ′(x), Q1(x)}} (1)

({P (x)}, {ax2}) → {{P ′(x), Q2(x)}} (2)

({P ′(x)}, ∅) → {{Hq0(x)}, {P1(x)}, {P2(x)}}. (3)

We also modify the definition of ·S to repalce Hq0(a1) by P (a1) in wS.
This tableau is terminating. At the initial state, none of the rules from

SM can be triggered since Hq0(a1) is not present. The only way to add this
assertion is to apply Rule (3) above, which in turn can only be applied once
an assertion of the form P ′(x) is present; that is, only after applying either
Rule (1) or Rule (2). But the application of any of these rules immediately
dissallows application of Rule (3). Hence, after at most two rule applications,
Spin

M reaches a saturated state.
If instead of executing this tableau we apply its pinpointing extension

with both axioms ax1 and ax2 as input, after applying the first two rules,
Rule (3) is pinpointing applicable. After its pinpointing application, we have
three Spin

M -states. Two of them are already saturated, but not the third
one, which now contains the assertion Hq0(a1), the only missing piece for
starting the simulation of M over the given input. This shows the following
undecidability result.
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Proposition 13 Let M be a TM. The pinpointing extension of Spin

M termi-
nates on input (w, {ax1, ax2}) iff M halts on input w.

As shown by Propositions 9 and 13, one of the main issues of this approach
to pinpointing corresponds to dealing with termination. We can turn now
our attention to see how this issues are dealt with in practice. One are where
tableau-based decision procedures are widely used is in description logics.
One common approach for ensuring the termination of the decision procedure
consists on building a (non-terminating) tableau, and then extending it with
appropriate an cycle-checking technique, also called blocking, that stops the
execution of the algorithm. This method constructs partial tree models that
can be completed into infinite tree models, or raveled into finite models.

A relaxed notion of rule application, called modified rule application was
introduced in [4, 5] as an aid to prove the correctness of the pinpointing exten-
sion. For this, the applicability condition (iii) from Definition 6 is removed.
The same notion will be helpful in the following section, and is therefore here
recalled.

Definition 14 (modified rule application) Given a S-state S = (A, T ),
a rule R : (B0,S) → {B1, . . . , Bm} and a substitution ρ on var(B0), R is m-
applicable to S with ρ if (i) S ⊆ T and (ii) B0ρ ⊆ A. In this case, we write
M→Sm M′ if S ∈M and M′ = (M\ {S}) ∪ {(A ∪Biσ, T ) | 1 ≤ i ≤ m},
where σ is a substitution on the variables occurring in R that extends ρ and
maps the fresh variables of R to distinct new constants.

We will proceed now to show how this approach can be adapted to the
pinpointing framework. In the next section, we will define a sub-class of
tableau for which a blocking condition can be used to ensure termination,
and also termination of their pinpointing extension.

4 Tableaux with Blocking

One of the reasons for termination of the tableau algorithms for certain DLs
is that they create a tree structure with an out-degree bounded by a function
of the size of the input formula. The nodes of these trees have labels that
must be selected from a finite set. After a depth bounded also by the size of
the input formula, one can reuse the information presented by the finite tree
in order to obtain an infinite tree, simply by concatenating finite portions in
the correct way. An example of this method is the tableau-based decision
procedure for satisfiability of ALC-concepts w.r.t. GCIs [1]. The algorithm
can be seen as generating a set of assertions of the form r(a, b) where r is a
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role and C(a) where C is an ALC-concept. The tree structure is induced by
role assertions, and the nodes are labeled by sets of concepts; that is, a node a
is labeled with {C1, . . . , Cn} if C1(a), . . . , Cn(a) are all the concept assertions
involving a. When a node has a predecessor whose label is a superset of its
own label, then that node stops being expanded, since the predecessor can
be used to complete the tree. We say then that the node is blocked.

Things in general can be a little more complicated. For example, the
algorithm that decides consistency of ALC-ABoxes (see [8, 6]) does not con-
struct a tree, but rather several trees growing out from the input ABox. Each
of these trees can be treated as in the previous case, ensuring termination.

We want to formalize the notion of the tree structures built by the tableau
algorithm, as well as the notion of blocking, within the general framework of
tableaux. In order to be as general as possible, we do not want to restrict
assertions to be built from unary and binary predicates only. For this reason,
we allow predicates to have arbitrary arity, but restrict our assertions such
that the states induce graph-like structures.

We must be able to distinguish between nodes and edges in the graph.
Thus, we now assume that the signature Σ is partitioned into the sets Λ and
∆ where each predicate name P ∈ Λ is equipped with an arity n, while every
predicate name r ∈ ∆ has a double arity 0 < m < n. Strictly speaking,
the arity of r ∈ ∆ is n; however, the first m argument positions are grouped
together, as are the last n −m. Intuitively, the elements of Λ will form the
nodes of the graph-like structure, while the elements of ∆ will induce the
edges.

If a pattern/assertion p starts with a predicate from ∆ (Λ), we say that

p is a ∆-pattern/assertion (Λ-pattern/assertion), and write p ∈ ∆̂ (p ∈ Λ̂).

For the rest of this paper, assertions and patterns in Λ̂ will be denoted
using capital letters (P,Q,R, . . .), and those in ∆̂ using lower-case letters
(r, s, t, . . .). Given a predicate p ∈ ∆ with double arity m,n, the sets of
parents and descendants of the pattern r = p(x1, . . . , xm, xm+1, . . . , xn) are
given by ←−r = {x1, . . . , xm} and −→r = {xm+1, . . . , xn}, respectively.

Definition 15 (connected) Let B be a set of Σ-patterns (Σ-assertions),
and x, y ∈ var(B) (a, b ∈ cons(B)). We say that x and y (a and b) are B-
connected, denoted as x ∼B y (a ∼B b), if there are variables x0, x1, . . . , xn ∈

var(B) (constants a0, a1, . . . , an ∈ cons(B)) and patterns P1, . . . , Pn ∈ B ∩ Λ̂

(assertions P1, . . . , Pn ∈ B∩Λ̂) such that x = x0, y = xn (a = a0, b = an) and
for every 1 ≤ i ≤ n it holds that {xi−1, xi} ⊆ var(Pi) ({ai−1, ai} ⊆ cons(Pi)).

We say that B is connected if, for every x, y ∈ var(B) (a, b ∈ cons(B)),
we have x ∼B y (a ∼B b). If B is clear from the context, we will simply write
x ∼ y to represent x ∼B y.
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Connected sets of assertions can be viewed as bundles joining the con-
stants that appear in them. Nodes will be formed by maximal sets of asser-
tions from ∆̂. An assertion from Λ̂ will be treated as an edge that connects a
node containing its parent constants with a node containing the descendant
ones.

Definition 16 (B-graph) Let B be a set of assertions. A maximal con-

nected subset N ⊆ B ∩ Λ̂ is called a node in B. An assertion r ∈ B ∩ ∆̂
is called an edge in B if there are two nodes N1 and N2 in B such that
←−r ⊆ cons(N1) and cons(N2) ⊆

−→r . In this case, we say that r connects N1

to N2. The set B is a graph structure if every r ∈ B ∩ ∆̂ is an edge. If B
is a graph structure, the corresponding B-graph GB contains one vertex vN
for every node N , and an edge (vN , vM) if there is an edge connecting N to
M . The notion of a graph structure and of the corresponding graph can be
extended to states S = (B, T ) in the obvious way: S is a graph structure if
B is one, and in this case GS := GB.

Recall that the tableau-based decision procedure for consistency of ALC-
ABoxes starts with an ABox, that is, a graph, and extends it by trees that
grow out of the nodes of this graph. We introduce now forest tableaux, which
are meant to show a similar behaviour, based in the more general notion of
graph structure introduced above.

Definition 17 (forest tableau) The tableau S = (Σ, ·S,R, C) is called a
forest tableau if for every axiomatized input Γ and every S ∈ ΓS, the state
S is a graph structure, every clash C ∈ C is connected, and the following
conditions hold for every rule (B0,S)→ {B1, . . . , Bm} and every 1 ≤ i ≤ m:

1. for every Σ-pattern r ∈ (B0 ∪ Bi) ∩ ∆̂, there exists a Σ-pattern P ∈

B0 ∩ Λ̂ such that ←−r ⊆ var(P ).

2. for every Σ-pattern r ∈ Bi ∩ ∆̂, we have −→r ∩ var(B0) = ∅.

3. if r, s ∈ Bi ∩ ∆̂ are distinct patterns, then −→r ∩ −→s = ∅.

4. for every Σ-pattern P ∈ Bi ∩ Λ̂, either there is a Σ-pattern r ∈ (B0 ∪

Bi) ∩ ∆̂ such that var(P ) ⊆ −→r or there is a Q ∈ B0 ∩ Λ̂ with var(P ) ⊆
var(Q).

5. if B0 ∩ ∆̂ 6= ∅, then Bi ∩ ∆̂ = ∅.

6. B0 ∩ Λ̂ is connected.
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A rule where there is a 1 ≤ i ≤ m such that Bi ∩ ∆̂ 6= ∅ is called generating.

We will briefly state the intuitions of these conditions. Condition 1 en-
sures that every edge, either old or newly introduced by a rule application, is
connected to a parent node. In particular, this implies that rule application
cannot add new parents for a node, and new nodes are connected to the
rest of the graph structure. Condition 2 states that every new edge has only
new constants as descendants; i.e., new edges never connect old nodes, but
only generate new nodes. Condition 3 ensures that, even if several edges are
added by a single rule application, these edges connect different nodes with
the parent node, and thus every node has only one edge connecting it to its
parent. Condition 4 states that whenever a non-edge assertion is added, it
must belong to either an old node, or to the descendant node added by a new
edge. Condition 5 states that addition of new edges must depend only on the
assertions appearing in the parent nodes, and never in the presence of other
edges. Finally, Condition 6 endures that the non-edge assertions triggering
a rule application belong to the same node.

Given a forest tableau S and an S-state S, we can define a partial ordering
<S on the nodes of S. Given an axiomatized input Γ, the family of strict
partial orderings <S= {<S| ΓS

∗
−→SM,S ∈M} is called a compatible order

for S and Γ if for all S-states S and S′ it holds that S ⊆ S′ implies that
<S⊆<S′ and <S contains the parent relation on S \ ΓS.

In order to ensure termination of a tableau, we will implement a cycle-
checking technique called blocking that stops the application of rules. For
this technique to be applicable, we must ensure that nodes cannot grow
indefinitely; that is, that the number of assertions that can appear in a
single node is bounded.

Definition 18 (cover) Let S = (Σ, ·S,R, C) be a tableau and T a set of
axioms. A set Ω ⊆ Σ is called a T -cover if, for every rule R : (B0,S) →
{B1, . . . , Bn} such that S ⊆ T and B0 contains only predicates from Ω, the
sets Bi for i = 1, ..., n also contain only predicates from Ω. The tableau S is
covered if, for every axiomatized input Γ = (I, T ), there is a finite T -cover
ΩΓ such that every S-state in ΓS contains only predicates from ΩΓ.

Given such a covered tableau, every state that can be reached from an
initial state in ΓS by applying rules from S contains only predicates from
ΩΓ. We will show that this ensures that nodes cannot grow indefinitely. We
proceed now to define what is a blocking condition and how it affects the
execution of a tableau. For this we need the notion of substate. For two
sets of assertions A and A′ we denote by A � A′ the existance of a renaming
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function f : cons(A) → cons(A′) such that if the assertion P (a1, . . . , ak) is
in A, then P (f(a1), . . . , f(ak)) is in A′. A state S = (A, T ) is a substate of
S

′ = (A′, T ′), denoted as S � S
′, if it holds that T ⊆ T ′ and A � A′.

Definition 19 (blocking) Given a forest tableau S, an axiomatized input
Γ, and <S a compatible order for S and Γ, let S be a S-state forming a
graph structure A binary relation C between nodes is a blocking relation
w.r.t. <S if for every N1 C N2 it holds that N1 � N2, N2 <S N1, and
cons(N1) ∩ cons(ΓS) = ∅. A node N is blocked if either there is a node N ′

such that N CN ′, or the predecessor node of N is blocked.
A non-generating rule is C-applicable if it is applicable; a generating rule

is C-applicable if it is applicable with substitution ρ and the node containing
all the constants in the range of ρ is not blocked.

Let M and M′ be finite sets of S-states. If M′ is obtained from M by
the C-application of R, then we writeM→/

R M
′ or simplyM→/

SM
′ if it is

not relevant which of the rules of the tableau S was applied. A S-state is C-
saturated if no rule is C-applicable to it. A set of S-statesM is C-saturated
if every S ∈M is C-saturated.

A forest tableau is C-correct if it terminates and is sound and complete
with respect to C-application; i.e. the following two conditions hold for every
axiomatized input Γ = (I, T ):

1. there is no infinite chain of rule applications ΓS =M0 →/
SM1 →/

S . . .;

2. for every chain of rule applications ΓS = M0 →/
S . . . →/

S Mn such
that Mn is C-saturated we have that Γ ∈ P iff Mn is full of clashes.

According to this definition, for a node to be blocked either it or any of
its predecessors should satisfy the blocking relation. We will show now that
in fact, for C-saturated states, being blocked entails that there is another
node in the tree containing the same assertions, modulo constant renaming.

The intuition behind blocking is that we can reuse a node that was pre-
viously generated instead of generating a new one, if the old node contains
the “same” assertions that the new one will have. This way, we can avoid
repeating unnecessary work. Notice that there are several blocking condi-
tions, depending on the ordering <S and binary relation C chosen. We will
use now the weakest notion of blocking possible, where <S is the family con-
taining exclusively the parent-relation on the nodes in every S-state, and C

requires no additional conditions than those stated in Definition 19. This
will be called subset blocking and denoted as ⊆-blocking. We will call a
forest tableau using ⊆-blocking a ⊆-blocking tableau. It is possible to show
that, under subset blocking, a forest tableau always terminates; nonetheless,
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we will prove a stronger result: that under subset blocking, the pinpointing
extension of a forest tableau terminates in every case.

Since we have changed conditions under which a rule is applicable in a
forest tableau with blocking to dissallow rule applications in nodes that are
already blocked, we need to change the notion of pinpointing rule applica-
tion accordingly. When executing the pinpointing algorithm, the blocking
condition must also consider the labels on the states before stoping the ex-
ecution. This is done in a straightforward manner. For two sets of labeled
assertions A and A′ we denote by A �pin A

′ the existance of a renaming func-
tion f : cons(A) → cons(A′) such that if the assertion P (a1, . . . , ak) is in A
with label φ, then P (f(a1), . . . , f(ak)) is in A′ with label ψ such that φ |= ψ.
A state S = (A, T ) is a pinpointing substate of S′ = (A′, T ′), denoted as
S �pin S′, if it holds that T ⊆ T ′ and A �pin A

′.

Definition 20 (pinpointing blocking) Let S be a forest tableau, Γ an ax-
iomatized input and Γ and S a S-state for Γ. Given two nodes N,N ′, we
will use the notation N C

⊆
pin N

′ if it holds that N ′ < N , N �pin N ′ and

cons(N) ∩ cons(GaS) = ∅, where < denotes the predecessor order in S \ ΓS.
A node N is pinpointing ⊆-blocked if either there is a node N ′ such that
N C

⊆
pin N

′, or the predecessor node of N is pinpointing ⊆-blocked.
A non-generating rule is pinpointing C-applicable if it is pinpointing ap-

plicable; a generating rule is pinpointing C-applicable if it is applicable with
substitution ρ and the node containing all the constants in the range of ρ is
not blocked.

Let M and M′ be finite sets of S-states. If M′ is obtained from M by
the pinpointing C-application of R, then we write M →/

Rpin M′ or simply
M →/

Spin M′ if it is not relevant which of the rules of the tableau S was
applied. A S-state is pinpointing C-saturated if no rule is pinpointing C-
applicable to it. A set of S-states M is pinpointing C-saturated if every
S ∈M is pinpointing C-saturated.

We will begin by proving that the pinpointing extenstion of a ⊆-blocking
tableau terminates on every input. As a first step towards this goal, we will
show that if a tree in the forest generated by rule applications reaches a depth
big enough, then we will be able to find a blocked node in every branch. This
follows easily from the next lemma. The lemma is in fact shown for a more
general case, using the modified rule applications defined in the previous
section.

Lemma 21 Let S be a ⊆-blocking tableau and S0 →Sm S1 →Sm · · · a
sequence of modified rule applications. Then, for every Si = (Ai, T ) and
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P ∈ Ai∩Λ̂, either cons(P ) ⊆ cons(A0) or there are r ∈ Ai∩∆̂ and Q ∈ Ai∩Λ̂
such that ←−r ⊆ cons(Q) and cons(P ) ⊆ −→r .

Proof. The proof is by induction on i. For S0 the result is trivial. Sup-
pose now that it holds for Si and that the rule R : (B0,S) → {B1, . . . , Bm}
is applied to Si to obtain Si+1 = (Ai+1, T ), where Ai+1 = Ai ∪ Bjσ for

some substitution σ and some j, 1 ≤ j ≤ m. Let P ∈ Ai+1 ∩ Λ̂. If P ∈ Ai,
then by the induction hypothesis and the fact that Ai ⊆ Ai+1, the result
holds. Otherwise, P was added by the application of R. By Condition 4
of Definition 17, we have that either (i) there is r ∈ (B0 ∪ Bj)σ ∩ ∆̂ with

cons(P ) ⊆ −→r , or (ii) there is a Q ∈ B0σ ∩ Λ̂ with cons(P ) ⊆ cons(Q).
We analyze Case (ii) first. Since R was applied with substitution σ, we

have that B0σ ⊆ Ai, and thus Q ∈ Ai ∩ Λ̂. By the induction hypothesis,
either cons(Q) ⊆ cons(A0) or ←−r ⊆ cons(Q′), cons(Q) ⊆ −→r for r, Q′ ∈ Ai. In
both cases the transitivity of ⊆ yields the desired result.

We will analyze now Case (i). We have here that cons(P ) ⊆ −→r and r ∈
(B0∪Bj)σ. By Condition 1 of Definition 17 there must exist a Q ∈ B0σ ⊆ Ai
such that ←−r ⊆ cons(Q), which finishes the proof.

A couple of remarks come in place before proving termination of the
pinpointing extension of⊆-blocking tableaux. Notice first that Condition 6 of
Definition 17 ensures that all the assertions in Λ̂ triggering a rule applications
must all belong to the same node. Second, by Lemma 21, for every new node
N (i.e., a node that was not present in the initial state) and assertion P ∈ N
there is an edge r such that cons(P ) ⊆ −→r . Since distinct edges have disjoint
sets of descendants (Condition 3 of Definition 17, any other assertion Q ∈ N
also satisfies cons(Q) ⊆ −→r . Thus, all the constants occurring in a node all
belong to the descendant set of the edge by which the node was created.

Theorem 22 Let S be a ⊆-blocking tableau, then its pinpointing extension
terminates on every input.

Proof. Suppose that there is an input Γ = (I, T ) for which ther is
an infinite sequence of pinpointing rule applications S0 →Spin S1 →Spin · · · ,
where S0 ∈ ΓS. Since S is a covered tableau, there is a finite T -cover ΩΓ

such that the assertions in Si use only predicate symbols from ΩΓ, for every
i ≥ 0. As already noted, every node has a fixed finite set of constants that
can appear in its assertions. This set is either the set of constants occurring
in S0 (for an old node) or the descendants in the unique edge by which the
node was created (for a new node). Since the T -cover is finite, the assertions
that can occur in a given node form a finite set. Each of these assertions my
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repeatedly have its label modified by pinpointing rule applications; however,
every pinpointing rule application produces a more general label, in the sense
that the new monotone Boolean formula has more models than the previous
one. Since these formulas are built over a finite set of propositional variables,
this can happen only finitely often. Analogously, the label of a given edge
can be changed only finitely often.

Hence, to produce a non-terminating sequence of rule applications, in-
finitely many new nodes must be added. Conditions 4 and 1 of Definition 17
ensure that every newly added node N is created as a successor for an ex-
isting node with a unique edge r ∈ ∆̂ joining them, and all the constants
in N are new constants appearing in −→r . If infinitely many new nodes are
created, then either there is a node with infinitely many direct successors,
or an infinite chain of nodes, each one being a successor of the previous, is
created.

The number of constants appearing in a new node is bounded by the
largest cardinality of a predicate name r ∈ ∆; hence, there can only be
finitely many different labelled nodes, up to constant renaming. Then, for
every chain of nodes N0, N1, . . . , Nm which is sufficiently long (i.e., where
m is larger than the number of distinct labelled nodes possible) there must
exist 1 ≤ n < n′ ≤ m such that Nn′ �pin Nn, and thus Nn′ is pinpointing
⊆-blocked by Nn. Thus, the second case above is not possible.

Consider now the first case; that is, that there is a node N for which
infinitely many successors are created. As stated before, the constants in
N are from a fixed finite set of constants C, and the predicate symbols
that can occur in the applied rules must all belong to the finite T -cover
ΩΓ. Thus, up to variable renaming, there are only finitely many rules that
can be applied to N , and there are only finitely many ways of replacing
the variables in the left-hand side of rules by constants from C. Moreover,
the fresh variables in the right-hand side are always replaced by distinct
new constants. Thus, for a fixed rule and a fixed substitution σ replacing
the variables in the left-hand side of this rules by constants from C, the
assertions introduced by two different applications of this rule using σ only
differ by a renaming of these new constants. By the way pinpointing rule
applicability is defined, such renamed variants can only be added as longs as
their labels are not equivalent. But there are only finitely many labels up to
propositional equivalence. Thus, N can in fact obtain only a finite number
of successors. Hence, the pinpointing extension of the tableau S must always
terminate.

Notice that if a rule is applicable in the normal tableau sense, then it is
also pinpointing applicable. Thus, termination of the pinpointing extension
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implies termination of the original tableau.

Corollary 23 A ⊆-blocking forest tableau terminates on every input.

We have now shown that the problems relating termination do not ap-
ply to forest tableaux with subset blocking. Unfortunately, since blocking
changes the applicability conditions for rules, and we had to adapt the pin-
pointing extension accordingly, the previous proofs of correctness of these
extensions are not valid in this framework. Hence, we need to prove the cor-
rectness of blocking pinpointing extensions; that is, that they still compute
a pinpointing formula for the property. We will show this with the help of
the raveled versions of S-states. Suppose thatM is a set of states such that
ΓS →/

S M. Then S = (A, T ) ∈ M is a graph-structure that consists on a
set of tree-like structures growing out from a graph structure appearing in
ΓS, we call this a forest-like structure. For every blocked node N1, we remove
all its descendants. This way, we obtain another forest-like structure, where
blocked nodes only appear as leafs of the trees. For every pair of nodes nodes
N1 and N2 in S such that N1 CN2 we know that N1 � N2 and hence there is
a renaming function f : cons(N1) → cons(N2). We modify the (only) asser-

tion r(←−r ,−→r ) ∈ ∆̂ ∩ A with −→r = cons(N1) to r(←−r , f(−→r )) and then remove
N1. The graph-structure obtained this way is called the raveled version of
S, and denoted as S	. If M is a set of S-states, then its raveled version is
M	 = {S	 | S ∈M}.

As the raveling process removes all the blocked nodes, one could think
that this may lead to a loss of some information contained in the original S-
state. The next lemma shows that this is not the case, since all the assertions
appearing in a blocked node also appear in a node of smaller depth.

Proposition 24 Let S be C-saturated and N a node in S. If N is blocked,
then there is another node N ′ of S such that N � N ′ and the depth of N ′ is
smaller than the depth of N .

Proof. The proof goes by induction on the structure of S. If N is
blocked, then either there is a N ′ such that N CN ′ or the parent node of N
is blocked. In the first case the result holds trivially. We will focus now on the
second case, assuming that the result holds for the parent node M of N ; thus,
there is a node M ′ such that M �M ′. Since we are dealing with a blocking
tableau, N could only be created by a rule application using the node M ; as
M � M ′, the same rule could be applied to M ′; thus, there is a descendant
N ′ of M ′ that is joined to M ′ by an edge equivalent (modulo renaming) to
the edge joining M to N . Analogously, any rule application that could be
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applied to M or N to add assertions in N would also be applicable in M ′ or
N ′, respectively, to add equivalent assertions in N ′. Thus, N � N ′.

A trivial consequence of this proposition is that raveling has no influence
in the presence of clashes in C-saturated states. Since clashes are always
connected sets of patterns, any valuation that maps them to a state has
to actually map them to a node; as we have seen, if we have a node in a
C-saturated state S, then an equivalent node appears in S	.

Corollary 25 Let S be C-saturated. S is clash-free iff S	 is clash-free.

We can relate C-saturatedness to saturatedness in the general sense by
means of the raveled versions of states. This way, we can reuse some of
the results shown for the general tableau framework that will be helpful for
showing the correctness of the pinpointing extensions of blocking tableau.

Lemma 26 If S is C-saturated, then S	 is saturated.

Proof. Let S = (A, T ),S	 = (A	, T ) and R : (B0,S) → {B1, . . . , Bm}
be applicable to S	 with substitution ρ. Assume first that R is a generat-
ing rule. Then B0ρ is connected, and hence belongs to a node in S	, and
since raveling never modifies any nodes in the graph structure, except from
removing some, B0ρ must also be a node in S. In particular, B0ρ ⊆ A.
Since S in C-saturated, R is not C-applicable to it. This means that either
the node containing B0ρ is blocked, or there is a substitution σ extending ρ
such that Biσ ⊆ A for some 1 ≤ i ≤ m. Since raveling removes all blocked
nodes and B0ρ ⊆ A	, the first case cannot occur; thus, the second option
must be the case. We can then construct a substitution σ′ extending ρ such
that Biσ

′ ⊆ A	 as follows: for every x ∈
⋃m

j=0 var(Bj), if σ(x) is a constant
in a non-blocked node of A, then σ′(x) = σ(x); if σ(x) belongs to a node N1

blocked by N2, then in particular N1 � N2 and thus there exists a function
f : cons(N1) → cons(N2); in this case define σ′(x) = f(σ(x)). This violates
the condition for R to be applicable to S	 with substitution ρ, contradicting
this way our initial assumption.

Suppose now that R is a non-generating rule. If B0ρ ⊆ A, since C-
applicability coincides with regular applicability for non-generating rules,
the proof is analogous to the one for the previous case; thus, we can assume
w.l.o.g. that B0ρ 6⊆ A. Then, B0ρ must contain edges that were added by the
raveling process; these edges are of the form p(←−r , fr(

−→r )), where N ⊆ −→r for
a blocked node N , and fr is the function given by the definition of blocking.
Since S is a forest tableau, the sets −→r are pairwise disjoint. For each constant
B0ρ\Λ̂ there is a constant ar such that fr(ar) = a. We construct the valuation
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ρ′ as follows: ρ′(x) = ρ(x) if x ∈ var(B0 ∩ Λ̂); ρ′(x) = ar if x ∈ var(B0 \ Λ̂)
and ρ(x) = a. In particular, B0ρ

′ ⊆ A.

Let N be the node of S containing B0ρ
′ ∩ Λ̂. By the way raveling was

defined, we know that if N ′ is the node of S	 containing B0ρ ∩ Λ̂, then
N = N ′. Since R is non-generating, by Conditions 4 and 6 of Definition 17
it must be the case that var(Bi) ⊆ var(B0 ∩ Λ̂) for all 1 ≤ i ≤ m. Since S is
C-saturated, then R is not applicable to S with substitution ρ′; this implies
that there must exist a 1 ≤ i ≤ m such that Biρ

′ ⊆ A. In particular, Biρ
′ is

contained in the node N , and since ρ′ coincides with ρ on every variable of
Bi, Biρ ⊆ A	. Thus, R is not applicable to S	.

As in the general case, the proof of correctness of pinpointing extensions
will use projections of S-states. Recall that given a set T of labeled axioms,
a propositional valuation V induces the subset TV = {t ∈ T | lab(t) ∈ V}.
Analogously, for a set A of labeled assertions, the valuation V induces the
subset AV = {a ∈ A | V satisfies lab(a)}. The V-projection of S = (A, T ) is
V(S) = (AV , TV). For a set of S-states M, V(M) = {V(S) | S ∈ M}. The
following lemma is a direct consequence of the definition of clash formula
(see [4]).

Lemma 27 Let M be a finite set of labeled S-states and V a propositional
valuation. Then V satisfies ψM iff V(M) is full of clashes.

There is also a close connection between pinpointing C-saturatedness of
a set of labeled S-states and C-saturatedness of its projection.

Lemma 28 Let M be a finite set of labeled S-states and V a propositional
valuation. If M is pinpointing C-saturated, then V(M) is C-saturated.

Proof. Suppose that there is a S-state S = (A, T ) ∈ M and a rule
R = (B0,S) → {B1, . . . , Bm} such that R is C-applicable to V(S) with
substitution ρ. If R is a non-generating rule, then it would also be applicable
(in the normal sense) to V(S) with substitution ρ, and hence the proof given
for the general case [5] applies here too; thus we assume that R is a generating
rule. This means that S ⊆ TV , B0ρ ⊆ AV , for every i, 1 ≤ i ≤ m and every
substitution ρ′ on var(B0 ∪Bi) extending ρ it holds that Biρ

′ 6⊆ AV , and the
node containing all the constants in the range of ρ is not blocked.

We will show now that R is pinpointing C-applicable to S with the same
substitution ρ. Since S ⊆ TV ⊆ T and B0ρ ⊆ AV ⊆ A, the first two
conditions of pinpointing applicability are satisfied. For the third condition,
consider an i and a substitution ρ′ on var(B0 ∪ Bi) extending ρ. We must
show that insψ(Biρ

′, A) 6= ∅ where ψ =
∧
b∈B0

lab(bρ)∧
∧
s∈S lab(s). Note that
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S ⊆ TV and B0ρ ⊆ AV imply that V satisfies ψ. Since Biρ
′ 6⊆ AV , there is a

b ∈ Bi such that bρ′ /∈ AV . Thus bρ′ /∈ A or V does not satisfy lab(bρ′). In the
first case, bρ′ is clearly ψ-insertable into A. In the second case, ψ 6|= lab(bρ′)
since V satisfies ψ, and thus bρ′ is again ψ-insertable into A.

We have shown up to now that R is pinpointing applicable to S with
valuation ρ. It remains to show that the node containing all the constants in
the range of ρ is not pinpointing ⊆-blocked. Call this node N . Since NV is
not blocked, for every predecessor node M of N it holds that NV 6�MV ; thus
for every renaming function f : cons(NV) → cons(MV) there is an assertion
a ∈ NV such that f(a) /∈ MV . Then, either f(a) /∈ M or f(a) ∈ M but
ψ 6|= lab(f(a)). In both cases it holds that N 6�pin M , and hence N is not
pinpointing ⊆-blocked.

The idea of the projections of states is that they simulate the behaviour
of the tableau in case that the input (I, TV) is given. Unfortunately, this does
not work so easily, since there are rules that could be pinpointing applied to
a S-state but not to its projection. We can overcome this problem by using
modified rule applications, analogously to the way they are used in [5]. The
following proposition was shown in [5].

Proposition 29 Let M,M′ be two sets of S-states. If M →Spin M′, then
either V(M)→Sm V(M′) or V(M) = V(M′).

Notice that if M →/
S M

′, then it is also the case that M →S M′;
analogously for pinpointing rule application, if M→/

Spin M′, then M→Spin

M′. This, along with the previous proposition, shows that M →/
Spin M′

implies that either V(M) →Sm V(M′) or V(M) = V(M′). In particular, it

also holds thatM0
∗
−→

/

Spin M implies V(M0)
∗
−→Sm V(M).

One consequence of the lemmas shown so far is that if there are ΓS =
M0,M andM′ such thatM0

∗
−→SM,M0

∗
−→SM′, andM,M′ are both C-

saturated, thenM is full of clashes iffM′ is full of clashes. To see this, recall
that for sets of states N and N0, if N0 is saturated and there are S ∈ N
and S0 ∈ N0 with S � S0, then for every N →Sm N ′ there is a S′ ∈ N ′

such that S
′ � S0 [4]. Since for every S ∈ M there is a S0 ∈ M0 with

S0 � S and M	 is saturated (Lemma 26), we know that for every S ∈ M
there is a S′ ∈ M′ such that S′ � S	. Thus, if M′ is full of clashes, so is
M (Corollary 25). The same argument can be used analogously for proving
the other direction.

With all this, we can now proceed to proving the correctness of the pin-
pointing extension of a blocking tableau.
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Theorem 30 (correctness of pinpointing) Let P be a c-property on ax-
iomatized inputs over I and T, and S a correct ⊆-blocking tableau for P.
Then the following holds for every axiomatized input Γ = (I, T ) over I and
T:

For every chain of rule applicationsM0 →/
Spin . . .→/

Spin Mn such
that M0 = ΓS and Mn is pinpointing C-saturated, the clash
formula ψMn

induced by Mn is a pinpointing formula for P and
Γ.

Proof. Let Γ = (I, T ) be an axiomatized input, and assume that ΓS =

M0
∗
−→

/

Spin Mn with M pinpointing C-saturated. To show that ψM is a
pinpointing formula for P, we have to show that for every propositional
valuation V, it holds that (I, TV) ∈ P iff V satisfies ψM.

Let N0 = (I, TV)S. Since S terminates, there is a C-saturated set N such

that N0
∗
−→

/

S N . Also, as M0
∗
−→

/

Spin M, we have that V(M0)
∗
−→Sm V(M).

Additionally, V(M0) = N0 and also V(M0) is C-saturated; thus, N is full
of clashes iff V(M) is full of clashes. By the correctness of S for P, we have
then that (I, TV) ∈ P iff N is full of clashes iff V(M) is full of clashes iff V
satisfies ψM (Lemma 27)

We have thus shown how one can correctly adapt pinpointing to the well-
known subset blocking condition. Unfortunately, our framework cannot deal
with the DL constructors regarding inverses of roles, as the forest tableaux
defined in [5] do. If we weaken the restrictions of forest tableaux to allow
such constructors, then Lemma 26 does not hold anymore unless we use a
stronger notion of blocking (equality blocking) as used in the DL literature.

5 Conclusions

In this paper we have shown that the problem of deciding termination of
general tableaux is undecidable. Furthermore, even deciding termination of
the pinpointing extension of terminating tableaux is an undecidable problem.
To overcome this drawback, we introduced the notion of forest tableaux and
how they can be used to specify blocking conditions that ensure termination
of both the tableaux and its pinpointing extension.

The framework presented here can only deal with the weakest notion of
blocking, also known as subset blocking. Future research will try to extend
this framework to stronger versions of blocking such as equality blocking,
which is widely used in DLs for dealing with inverse roles.
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[4] Franz Baader and Rafael Peñaloza. Axiom pinpointing in general
tableaux. In Proceedings of the 16th International Conference on
Automated Reasoning with Analytic Tableaux and Related Methods
TABLEAUX 2007, LNAI, Aix-en-Provence, France, 2007. Springer.
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