
Dresden University of Technology
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

Completing Description Logic Knowledge Bases

using Formal Concept Analysis

F. Baader B. Ganter U. Sattler B. Sertkaya

LTCS-Report 06-02

Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
http://lat.inf.tu-dresden.de

Hans-Grundig-Str. 25
01062 Dresden

Germany

Completing Description Logic Knowledge Bases
using Formal Concept Analysis

Franz Baader
Institute for Theoretical Computer Science

TU Dresden, Germany
baader@tcs.inf.tu-dresden.de

Bernhard Ganter
Institute for Algebra

TU Dresden, Germany
ganter@math.tu-dresden.de

Ulrike Sattler
Department of Computer Science

University of Manchester, UK
Ulrike.Sattler@manchester.ac.uk

Barış Sertkaya
Institute for Theoretical Computer Science

TU Dresden, Germany
sertkaya@tcs.inf.tu-dresden.de

Abstract

We propose an approach for extending both the terminological and the
assertional part of a Description Logic knowledge base by using information
provided by the assertional part and by a domain expert. The use of
techniques from Formal Concept Analysis ensures that, on the one hand,
the interaction with the expert is kept to a minimum, and, on the other
hand, we can show that the extended knowledge base is complete in a
certain sense.

Contents

1 Introduction 3

2 Formal Concept Analysis 5

2.1 The classical case . 5

2.2 Partial contexts . 10

2.3 Attribute exploration with partial contexts 12

3 Description Logics 21

3.1 Basic definitions . 21

3.2 DLs and partial contexts . 23

3.3 Completion of DL knowledge bases 24

4 Implementation 28

5 Conclusion 29

2

1 Introduction

Description Logics (DLs) [1] are a successful family of logic-based knowledge rep-
resentation formalisms, which can be used to represent the conceptual knowledge
of an application domain in a structured and formally well-understood way. They
are employed in various application domains, such as natural language process-
ing, configuration, databases, and bio-medical ontologies, but their most notable
success so far is the adoption of the DL-based language OWL [12] as standard
ontology language for the semantic web. As a consequence of this standardiza-
tion, many ontology editors support OWL [2, 15, 17, 13], and ontologies written
in OWL are employed in more and more applications. As the size of such ontolo-
gies grows, tools that support improving the quality of large DL-based ontologies
become more important. The tools available until now use DL reasoning to de-
tect inconsistencies and to infer consequences, i.e., implicit knowledge that can
be deduced from the explicitly represented knowledge. There are also first ap-
proaches that allow to pinpoint the reasons for inconsistencies and for certain
consequences, and that help the ontology engineer to resolve inconsistencies and
to remove unwanted consequences [24, 22, 23, 20, 14]. These approaches address
the quality dimension of soundness of an ontology, both within itself (consistency)
and w.r.t. the intended application domain (no unwanted consequences). In the
present paper, we are concerned with a different quality dimension: completeness.
We want to develop tools that support the ontology engineer in checking whether
an ontology contains all the relevant information about the application domain,
and to extend the ontology appropriately if this is not the case.

A DL knowledge base (nowadays often called ontology) usually consists of two
parts, the terminological part (TBox), which defines concepts and also states
additional constraints (so-called general concept inclusions, GCIs) on the inter-
pretation of these concepts, and the assertional part (ABox), which describes
individuals and their relationship to each other and to concepts. Given an appli-
cation domain and a DL knowledge base (KB) describing it, we can ask whether
the KB contains all the relevant information about the domain:

• Are all the relevant constraints that hold between concepts in the domain
captured by the TBox?

• Are all the relevant individuals existing in the domain represented in the
ABox?

As an example, consider the OWL ontology for human protein phosphatases that
has been described and used in [27]. This ontology was developed based on
information from peer-reviewed publications. The human protein phosphatase
family has been well characterised experimentally, and detailed knowledge about
different classes of such proteins is available. This knowledge is represented in the

3

terminological part of the ontology. Moreover, a large set of human phosphatases
has been identified and documented by expert biologists. These are described as
individuals in the assertional part of the ontology. One can now ask whether the
information about protein phosphatases contained in this ontology is complete.
Are all the relationships that hold among the introduced classes of phosphatases
captured by the constraints in the TBox, or are there relationships that hold
in the domain, but do not follow from the TBox? Are all possible kinds of
human protein phosphatases represented by individuals in the ABox, or are there
phosphatases that have not yet been included in the ontology or even not yet
been identified?

Such questions cannot be answered by an automated tool alone. Clearly, to check
whether a certain relationship between concepts, which does not follow from the
TBox, holds in the domain, one needs to ask a domain expert, and the same
is true for questions regarding the existence of individuals not described in the
ABox. The rôle of the automated tool is to ensure that the expert is asked as few
questions as possible; in particular, she should not be asked trivial questions, i.e.,
questions that could actually be answered based on the represented knowledge.
In the above example, answering a non-trivial question regarding human protein
phosphatases may require the biologist to study the relevant literature, query
existing protein databases, or even to carry out new experiments. Thus, new
biological knowledge may be acquired by the expert in the process.

Attribute exploration [6] is an approach developed in Formal Concept Analysis
(FCA) [7] that can be used to acquire knowledge about an application domain by
querying an expert. One of the earliest applications of this approach is described
in [26], where the domain is lattice theory, and the goal of the exploration process
is to find, on the one hand, all valid relationships between properties of lattices
(like being distributive), and, on the other hand, to find counterexamples to
all the relationships that do not hold. To answer a query whether a certain
relationship holds, the lattice theory expert must either confirm the relationship
(by using results from the literature or providing a new proof for this fact), or give
a counterexample (again, by either finding one in the literature or constructing a
new one).

Although this sounds very similar to what is needed in our context, we cannot
directly use this approach. The main reason is the open-world semantics of de-
scription logic knowledge bases. Consider an individual i from the ABox and a
concept C occurring in the TBox. If we cannot deduce from the TBox and ABox
that i is an instance of C, then we do not assume that i does not belong to C.
Instead, we only accept this as a consequence if the TBox and ABox imply that
i is an instance of ¬C. Thus, our knowledge about the relationships between
individuals and concepts is incomplete: if TBox and ABox imply neither C(i)
nor ¬C(i), then we do not know the relationship between i and C. In contrast,
classical FCA and attribute exploration assume that the knowledge about indi-

4

viduals is complete: the basic datastructure is that of a formal context, i.e., a
crosstable between individuals and properties. A cross says that the property
holds, and the absence of a cross is interpreted as saying that the property does
not hold.

There has been some work on how to extend FCA and attribute exploration from
complete knowledge to the case of partial knowledge [3, 18, 4]. However, this work
is based on assumptions that are different from ours. In particular, it assumes
that the expert cannot answer all queries, and as a consequence the knowledge
obtained after the exploration process may still be incomplete and the relation-
ships between concepts that are produced in the end fall into two categories:
relationships that are valid no matter how the incomplete part of the knowledge
is completed, and relationships that are valid only in some completions of the
incomplete part of the knowledge. In contrast, our intention is to complete the
KB, i.e., in the end we want to have complete knowledge about these relation-
ships. What may be incomplete is the description of individuals used during the
exploration process.

In the next section, we first briefly review some notions and results from FCA.
Then, we develop our variant of FCA that can deal with partial contexts, and
finally describe an attribute exploration procedure that works with partial con-
texts. In Section 3, we give a brief introduction into description logics, show
how a DL knowledge base gives rise to a partial context, and specialize our new
attribute exploration procedure to the case of partial contexts induced by DL
knowledge bases. In Section 4, we describe a first experimental implementation
of a tool for completing DL knowledge bases, and in Section 5 we summarize the
results of the paper and mention some topics for future research.

2 Formal Concept Analysis

In the first part of this section, we briefly recall some notions and results from
classical formal concept analysis. More details and proofs of the results that we
mention can be found in [7]. In the second part, we introduce our extension to the
case of partial knowledge, and in the third part we develop a variant of attribute
exploration that works for partial knowledge.

2.1 The classical case

Formal Concept Analysis (FCA) [7] is a field of applied mathematics that is based
on a lattice-theoretic formalization of the notions of a concept and of a hierarchy
of concepts. It is supposed to facilitate the use of mathematical reasoning for
conceptual data analysis and knowledge processing. In FCA, one represents data

5

in the form of a formal context, which in its simplest form is a way of speci-
fying which attributes (properties) are satisfied by which objects (individuals).
Formally, a formal context is defined as follows:

Definition 2.1 A formal context is a triple K = (G, M, I), where G is a set of
objects, M is a set of attributes, and I ⊆ G×M is a relation that associates each
object g with the attributes satisfied by g. In order to express that an object g is
in relation I with an attribute m, we write gIm.

A formal context is usually visualised as a crosstable, where the rows represent
the objects, and the columns represent the attributes. A cross in column m of
row g means that object g has attribute m, and the absence of a cross means
that g does not have attribute m. In this paper, we will always assume the set
of attributes M to be finite.

Let K = (G, M, I) be a formal context. For a set of objects A ⊆ G, the intent A′

of A is the set of attributes that are satisfied by all objects in A, i.e.,

A′ := {p ∈ M | ∀a ∈ A: aIp}.

Similarly, for a set of attributes B ⊆ M , the extent B′ of B is the set of objects
that satisfy all attributes in B, i.e.,

B′ := {o ∈ G | ∀b ∈ B: oIb}.

It is easy to see that, for A1 ⊆ A2 ⊆ G (resp. B1 ⊆ B2 ⊆ M), we have

• A′
2 ⊆ A′

1 (resp. B′
2 ⊆ B′

1),

• A1 ⊆ A′′
1 and A′

1 = A′′′
1 (resp. B1 ⊆ B′′

1 and B′
1 = B′′′

1).

As an easy consequence one obtains that the ·′′ operation is a closure operator on
both G and M .

Definition 2.2 Let S be a set and ϕ a mapping from the powerset of S into
itself. Then ϕ is called a closure operator on S if it is

• extensive: B ⊆ ϕ(B) for all B ⊆ S;

• monotone: B1 ⊆ B2 implies ϕ(B1) ⊆ ϕ(B2); and

• idempotent: ϕ(ϕ(B)) = ϕ(B).

We say that a set B ⊆ S is ϕ-closed if B = ϕ(B).

6

Given a formal context, one common method to analyse it is to find (a base
of) the implications between the attributes of this context. Implications between
attributes are constraints between attributes that hold in the given context. They
are statements of the form

“Every object that satisfies the attributes mi1, . . . ,mik also satisfies
the attributes mj1, . . . ,mj`.”

Formally, an implication between attributes is defined as follows:

Definition 2.3 Let K = (G, M, I) be a formal context. An implication between
the attributes in M is a pair of sets L, R ⊆ M , usually written as L → R. An
implication L → R holds in K if every object of K that has all of the attributes
in L also has all of the attributes in R, i.e., if L′ ⊆ R′. We denote the set of
implications that hold in K by Imp(K).

It is easy to see that an implication L → R holds in K iff R is contained in the
·′′-closure of L, i.e., if R ⊆ L′′.

A set of implications induces its own closure operator.

Definition 2.4 Let L be a set of implications. For a set P ⊆ M , the implica-
tional closure of P with respect to L, denoted by L(P), is the smallest subset Q
of M such that

• P ⊆ Q, and

• Li → Ri ∈ L and Li ⊆ Q imply Ri ⊆ Q.

It is easy to see that L(·) is indeed a closure operator.

From a logician’s point of view, computing the implication closure of a set of
attributes P is just computing consequences in propositional Horn logic. In fact,
the notions we have just defined can easily be reformulated in propositional logic.
To this purpose, we view the attributes as propositional variables. An implication
L → R can then be expressed by the formula φL→R :=

∧
`∈L ` →

∧
r∈R r. Let ΓL

be the set of formulae corresponding to the set of implications L. Then

L(P) = {b ∈ M | ΓL ∪ {
∧
p∈P

p} |= b},

where |= stands for classical propositional consequence. Obviously, the formulae
in ΓL are Horn clauses. For this reason, the implication closure L(B) of a set of
attributes B can be computed in time linear in the size of L and B using methods
for deciding satisfiability of sets of propositional Horn clauses [5]. Alternatively,

7

these formulae can be viewed as expressing functional dependencies in relational
database, and thus the linearity result can also be obtained by using methods for
deriving new functional dependencies from given ones [16].

Definition 2.5 The implication L → R is said to follow from a set J of impli-
cations if R ⊆ J (L). The set of implications J is called complete for a set of
implications L if every implication in L follows from J . It is called sound for L
if every implication that follows from J is contained in L. A set of implications
J is called a base for a set of implications L if it is both sound and complete for
L, and no strict subset of J satisfies this property.

Again, the consequence operation between implications coincides with the usual
logical notion of consequence if one translates implications into Horn clauses, as
described above.

If J is sound and complete for Imp(K), then the two closure operators that we
have introduced until now coincide, i.e., B′′ = J (B) for all B ⊆ M . Consequently,
given a base J for Imp(K), any question of the form “B1 → B2 ∈ Imp(K)?” can
be answered in time linear in the size of J ∪ {B1 → B2} since it is equivalent to
asking whether B2 ⊆ B′′

1 = J (B1).

In many applications, one needs to classify a large (or even infinite) set of objects
with respect to a relatively small set of attributes. Moreover, it is often the
case that the formal context is not given explicitly as a crosstable, but it is
rather “known” to a domain expert. In such cases, Ganter’s interactive attribute
exploration algorithm [6] has proved to be a useful method to efficiently capture
the expert’s knowledge. By asking implication questions to a domain expert, the
method computes a base for Imp(K) and a subcontext K′ of the K such that
Imp(K′) = Imp(K). For each implication question, the expert either says that
it holds in K, in which case the implication is added to the base, or the expert
gives a counterexample from K, which is then added to K′.

In order to produce a base for Imp(K), one could, of course, enumerate all possible
implications, and have the expert decide for each of them whether it holds in K or
not. Obviously, this would be very inefficient, and produce all of Imp(K) rather
than a small base for this set. The main idea underlying attribute exploration
(see Algorithm 1) is that one can restrict the attention to implications having
a left-hand side that is closed under the implications of the context, and whose
right-hand side is obtained from the left-hand side by applying the ·′′ closure
operator. The left-hand sides are enumerated in a certain order, called the lectic
order, which ensures that it is sufficient to build the implication closure w.r.t. the
already computed implications. In addition, the ·′′ operator is computed w.r.t.
the already computed subcontex rather than the full context K.

Definition 2.6 Assume that M = {m1, . . . ,mn} and fix some linear order m1 <
m2 < · · ·mn on M . This order imposes a linear order on the power set of M ,

8

Algorithm 1 Attribute exploration

1: Initialization
2: K0 {initial formal context, possibly empty set of objects}
3: L0 := ∅ {initial empty set of implications}
4: P0 := ∅ {lectically smallest L0-closed subset of M}
5: i := 0
6: while Pi 6= M do
7: Compute P

′′
i w.r.t. Ki

8: if Pi 6= P
′′
i then

9: Ask the expert if Pi → P
′′
i holds

10: if yes then
11: Ki+1 := Ki

12: Li+1 := Li ∪ {Pi → P
′′
i \ Pi}

13: Pi+1 := Li+1((Pi∩{m1, . . . ,mj−1})∪{mj}) for the max. j that satisfies
Pi <j Li+1((Pi ∩ {m1, . . . ,mj−1}) ∪ {mj})

14: else
15: Get an object o of K from the expert s.t: Pi ⊆ o′ and P

′′
i 6⊆ o′

16: Ki+1 := Ki ∪ {o}
17: Pi+1 := Pi

18: Li+1 := Li

19: end if
20: else
21: Ki+1 := Ki

22: Li+1 := Li

23: Pi+1 := Li+1((Pi ∩ {m1, . . . ,mj−1})∪ {mj}) for the max. j that satisfies
Pi <j Li+1((Pi ∩ {m1, . . . ,mj−1}) ∪ {mj})

24: end if
25: i := i + 1
26: end while

called the lectic order, which we also denote by <: For mi ∈ M and A, B ⊆ M
we define

A <i B iff mi ∈ B, mi 6∈ A and ∀j < i. (mj ∈ A ⇔ mj ∈ B).

The order < is the union of these orders <i, i.e.,

A < B iff A <i B for some i ∈ M.

Obviously, < extends the strict subset order, and thus ∅ is the smallest and M
the largest set w.r.t. <.

The following proposition shows how one can enumerate all closed sets w.r.t. a
given closure operator in the lectic order.

9

Proposition 2.7 Given a closure operator ϕ on M and a ϕ-closed set A (M ,
the next ϕ-closed set following A in the lectic order is

ϕ((A ∩ {m1, . . . ,mj−1}) ∪ {mj})

where j is maximal such that A <j ϕ((A ∩ {m1, . . . ,mj−1}) ∪ {mj}.

It can be shown that Algorithm 1 always terminates, and that the set of impli-
cations Li obtained after termination is a base for Imp(K). More precisely, one
can show that it is the so-called Duquenne-Guigues base of the context, which
contains a minimal number of implications. This base can be described indepen-
dently of the algorithm, based on the notion of a pseudo-intent of the context.

Definition 2.8 A set P ⊆ M is called a pseudo-intent of the context K =
(G, M, I) if P 6= P ′′ and Q′′ ⊆ P holds for all pseudo-intents Q (P .

The Duquenne-Guigues base of K consists of implications that have the pseudo-
intents of K as left-hand sides.

Definition 2.9 The Duquenne-Guigues base of the context K consists of the
implications P → P ′′ \ P, where P ranges over all pseudo-intents of K.

2.2 Partial contexts

The goal of this subsection is to extend the classical approach to FCA described
above to the case of objects that have only a partial description in the sense
that, for some attributes, it is not known whether they are satisfied by the object
or not. As above, we assume that we have a finite set M of attributes and a
(possibly infinite) set of objects.

Definition 2.10 A partial object description (pod) is a tuple (A, S) where A, S ⊆
M are such that A ∩ S = ∅. We call such a pod a full object description (fod)
if A ∪ S = M . A set of pods is called a partial context and a set of fods a full
context.

Note that the notion of a full context introduced in this definition coincides with
the notion of a formal context introduced in the previous section: a set of fods
K corresponds to the formal context KK := (K, M, I), where (A, S)Im iff m ∈ A
for all (A, S) ∈ K.

A partial context can be extended by either adding new pods or by extending
existing pods.

10

Definition 2.11 We say that the pod (A′, S ′) extends the pod (A, S), and write
this as (A, S) ≤ (A′, S ′), if A ⊆ A′ and S ⊆ S ′. Similarly, we say that the partial
context K′ extends the partial context K, and write this as K ≤ K′, if every pod
in K is extended by some pod in K′. If K is a full context and K ≤ K, then K
is called a realizer of K. If (A, S) is a fod and (A, S) ≤ (A, S), then we also say
that (A, S) realizes (A, S).

Next, we extend the definition of the implications of a formal context to the case
of partial contexts.

Definition 2.12 Let L, R ⊆ M . The implication L → R is refuted by the pod
(A, S) if L ⊆ A and R ∩ S 6= ∅. It is refuted by the partial context K if it is
refuted by at least one element of K. The set of implications that are not refuted
by a given partial context K is denoted by Imp(K). The set of all fods that do not
refute a given set of implications L is denoted by Mod(L).

If (A, S) is a fod and L → R an implication, then (A, S) does not refute L → R iff
L ⊆ A implies R∩S = ∅ iff L ⊆ A implies R ⊆ M \S = A. Thus, the implication
L → R is not refuted by the full context K iff it holds in the corresponding formal
context KK.

The following simple facts regarding the connection between Imp(·), Mod(·), and
the consequence operator for implications will be employed later on without ex-
plicitly mentioning their application:

• If K is a full context and L a set of implications, then K ⊆ Mod(L) iff
L ⊆ Imp(K).

• If K is a partial context and L a set of implications, then L ⊆ Imp(K)
implies that every implication that follows from L belongs to Imp(K).

The following is a trivial fact regarding the connection between partial contexts
and the implications they do not refute.

Proposition 2.13 For a given set P ⊆ M and a partial context K,

K(P) := M \
⋃
{S | (A, S) ∈ K, P ⊆ A}

is the largest subset of M such that P → K(P) is not refuted by K.

The following facts are immediate consequences of the definition of K(·):

• If P ⊆ Q, then K(P) ⊆ K(Q).

11

• If K ≤ K′, then K′(P) ⊆ K(P).

For a full context K, the operator K(·) coincides with the ·′′ operator of the
corresponding formal context KK. In fact, if L is a base for Imp(KK), then we
have m ∈ P ′′ iff m ∈ L(P) iff P → {m} follows from L iff P → {m} holds in KK
iff P → {m} is not refuted by K iff m ∈ K(P).

The following proposition connects refutation by a partial context to refutation
by the realizers of this partial context.

Proposition 2.14 Let K be a partial context. An implication is refuted by K iff
it is refuted by all realizers of K.

Proof. First, let L, R ⊆ M be such that L → R is refuted by K, and let K be
a realizer of K. Then, by the definition of refutation, there is an (A, S) ∈ K
such that L ⊆ A and R ∩ S 6= ∅, and by the definition of a realizer, there is a
fod (A, S) ∈ K such that A ⊆ A and S ⊆ S. Obviously, we have L ⊆ A and
R ∩ S 6= ∅. Thus, L → R is refuted by K as well.

Second, assume the implication L → R is not refuted by K, i.e., for every pod
(A, S) ∈ K we have that L ⊆ A implies R ∩ S = ∅. We define a realizer K of
K as follows. Consider a pod (A, S) ∈ K. If L 6⊆ A, then we add (A, M \ A) to
K: obviously, (A, M \ A) realizes (A, S) and does not refute L → R. If L ⊆ A,
then we also have R∩ S = ∅, and we add (M \ S, S) to K: obviously, (M \ S, S)
realizes (A, S) and does not refute L → R.

Note that the if-direction of this proposition need not hold if we consider a set
of implications rather than a single implication. For example, consider the impli-
cations {a, b} → {c}, {a} → {b}. The partial context that consists of the single
pod ({a}, {c}) does not refute any of these two implications, but each realizer of
this partial context refutes one of them.

In the proof of the only-if-direction, we did not make use of the fact that K is a
full context. Thus, this direction also holds for partial contexts.

Lemma 2.15 If K,K′ are partial contexts such that K ≤ K′, then every impli-
cation refuted by K is also refuted by K′.

2.3 Attribute exploration with partial contexts

In contrast to existing work on extending FCA to the case of partial knowledge
[3, 18, 4], we do not assume that the expert has only partial knowledge and thus
cannot answer all implication questions. In principle, our expert is assumed to

12

have access to a full context K and thus can answer all implication questions w.r.t.
K.1 What is partial is the subcontext that the attribute exploration algorithm
works with. The reason is that the initial context may be partial, and the same
is true for the counterexamples that the experts provides for implications that do
not hold in K.

More formally, we consider the following setting. We are given an initial (possibly
empty) partial context K, an initially empty set of implications L, and a full
context K that is a realizer of K. The expert answers implication questions
“L → R?” w.r.t. the full context K. More precisely, if the answer is “yes,” then
K does not refute L → R (and thus L → R holds in the corresponding formal
context KK). The implication L → R is then added to L. Otherwise, the expert
extends the current context K such that the extended context refutes L → R and
still has K as a realizer. Consequently, the following invariant will be satisfied by
K,K,L:

K ≤ K ⊆ Mod(L).

Our aim is to enrich K and L such that eventually L is not only sound, but also
complete for Imp(K), and K refutes all other implications (i.e., all the implications
refuted by K). As in the classical case, we want to do this by asking as few as
possible questions to the expert.

Definition 2.16 Let L be a set of implications and K a partial context. An
implication is called undecided w.r.t. K and L if it neither follows from L nor is
refuted by K. It is decided w.r.t. K and L if it is not undecided w.r.t. K and L.

In principle, our attribute exploration algorithm tries to decide all undecided
implications by either adding the implication to L or extending K such that it
refutes the implication. If all implications are decided, then our goal is achieved.

Proposition 2.17 Assume that K ≤ K ⊆ Mod(L) and that all implications
are decided w.r.t. K and L. Then L is complete for Imp(K) and K refutes all
implications not belonging to Imp(K).

Proof. First, assume that there is an implication L → R in Imp(K) that does not
follow from L. By our assumption, L → R is decided w.r.t. K and L, and thus it
is refuted by K. However, according to Proposition 2.14, it is then also refuted
by the realizer K of K, which contradicts our assumption that L → R belongs to
Imp(K).

Second, assume that L → R is an implication that is refuted by K, but is not
refuted by K. Since L → R is decided, this implies that L → R follows from L.

1though finding these answers may involve literature study, or even proving new mathemat-
ical theorems or carrying out new experiments.

13

However, K ⊆ Mod(L) implies L ⊆ Imp(K), and thus L → R also belongs to
Imp(K). This contradicts our assumption that L → R is refuted by K.

How can we find the undecided implications? The following proposition motivates
why it is sufficient to consider implications whose left-hand sides are L-closed. It
is an immediate consequence of the fact that L(·) is a closure operator, and thus
idempotent.

Proposition 2.18 Let L be a set of implications and L → R an implication.
Then, L → R follows from L iff L(L) → R follows from L.

Given an L-closed set L as left-hand side, what kind of right-hand sides should
we consider? Obviously, we need not consider right-hand sides R for which the
implication L → R is refuted by K: such implications are already decided. By
Proposition 2.13, the largest right-hand side R such that L → R is not refuted
by K is R = K(L). It is actually enough to consider just this right-hand side. In
fact, once we have decided L → K(L) (by either extending K such that it refutes
the implication or adding the implication to L), all implications L → R′ with
R′ ⊆ K(L) are also decided.

In order to enumerate all left-hand sides, we again use the lectic order and the
procedure derived from Proposition 2.7 for enumerating all L-closed sets w.r.t.
this order.

Until now, we have talked as if there was a fixed set of implications L and a fixed
partial context K to work with. In reality, however, both L and K are changed
during the run of our procedure. We start with an empty set of implications
and an initial partial context, and the procedure can extend both. The following
proposition shows that the left-hand sides of the previously added implications
are also closed with respect to the extended set of implications. This is due to
the fact that the left-hand sides are enumerated in lectic order.

Proposition 2.19 Let L be a set of implications and P1 < . . . < Pn the lectically
first n L-closed sets. If L is extended with L → R s.t. L is L-closed and Pn < L,
then P1, . . . , Pn are still the lectically first n closed sets with respect to the extended
set of implications.

Proof. If P1 < . . . < Pn and Pn < L, then Pi < L for i = 1, . . . , n by transitivity
of <. Since < is irreflexive and contains the strict subset order, L 6⊆ Pi holds
for i = 1, . . . , n. Consequently, the L-closed sets Pi are closed w.r.t. L → R, and
thus also w.r.t. the extended set of implications L′ := L ∪ {L → R}.

It remains to show that P1, . . . , Pn−1 are all the L′-closed sets smaller than Pn.
Thus, assume that P < Pn is an L′-closed set. Since L ⊆ L′, we know that P is
also L-closed, and thus it is actually one of the sets Pi, 1 ≤ i < n.

14

If an implication has been added because the expert has stated that it holds in
K, then we can extend the current context K by applying the implications to the
first component of every pod in K. To be more precises, for a partial context K
and a set of implications L we define

L(K) := {(L(A), S) | (A, S) ∈ K}.

The following is a simple consequence of this definition.

Proposition 2.20 Let K ≤ K be a partial and a full context, respectively, and
let L be a set of implications such that L ⊆ Imp(K). Then L(K) is a partial
context and K ≤ L(K) ≤ K.

Proof. Obviously, K ≤ L(K) follows from the fact that A ⊆ L(A). To show
L(K) ≤ K, we consider a pod (A, S) ∈ K. We must show that (L(A), S) is
realized by some fod in K. We know that (A, S) is realized by some fod in K,
i.e., there is a fod (A, S) ∈ K such that A ⊆ A and S ⊆ S. Since L ⊆ Imp(K),
we have L(A) = A, and thus L(A) ⊆ L(A) = A. This shows that (A, S) also
realizes (L(A), S).

The fact that L(K) is a partial context, i.e., that L(A) ∩ S = ∅ holds for all
(A, S) ∈ K, is an immediate consequence of L(K) ≤ K.

Going from K to L(K) is actually only one way to extend the current context
based on the already computed implications. For example, if we have the pod
({`}, {n}) and the implication {`, m} → {n} is not refuted by K, then we know
that m must belong to the second component of every fod realizing ({`}, {n}).
Consequently, we can extend ({`}, {n}) to ({`}, {m, n}). To allow also for this
and possible other ways of extending the partial context, the formulation of the
algorithm just says that, in case an implication is added, the partial context can
also be extended.

Whenever an implication is not accepted by the expert, K will be extended to a
context that refutes the implication and still has K as a realizer. The following
proposition shows that the right-hand sides of implications accepted by the expert
and computed with respect to the smaller partial context are identical to the ones
that would have been computed with respect to the extended one.

Proposition 2.21 Let K ≤ K′ ≤ K, where K,K′ are partial contexts and K is
a full context. If L → K(L) is an implication that is not refuted by K, then
L → K(L) is not refuted by K′ and K(L) = K′(L).

Proof. We have K′ ≤ K, and thus Proposition 2.14 implies that L → K(L) is
not refuted by K′. Since K ≤ K′, we have K′(L) ⊆ K(L). If this inclusion were

15

strict, then L → K(L) would be refuted by K′ by Proposition 2.13. Thus, we
have shown that K(L) = K′(L).

Based on these considerations, our attribute exploration algorithm for partial
contexts is described in Algorithm 2. The following proposition shows that this

Algorithm 2 Attribute exploration for partial contexts

1: Initialization
2: K0 {initial partial context, realized by the underlying full context K}
3: L0 := ∅ {initial empty set of implications}
4: P0 := ∅ {lectically smallest L0-closed subset of M}
5: i := 0
6: while Pi 6= M do
7: Compute Ki(Pi)
8: if Pi 6= Ki(Pi) then {Pi → Ki(Pi) is undecided}
9: Ask the expert if the undecided implication Pi → Ki(Pi) is refuted by K

10: if no then {Pi → Ki(Pi) not refuted}
11: Ki+1 := K′ where K′ is a partial context such that Ki ≤ K′ ≤ K
12: Li+1 := Li ∪ {Pi → Ki(Pi) \ Pi}
13: Pi+1 := Li+1((Pi∩{m1, . . . ,mj−1})∪{mj}) for the max. j that satisfies

Pi <j Li+1((Pi ∩ {m1, . . . ,mj−1}) ∪ {mj})
14: else {Pi → Ki(Pi) refuted}
15: Get a partial context K′ from the expert such that Ki ≤ K′ ≤ K and

Pi → Ki(Pi) is refuted by K′

16: Ki+1 := K′

17: Pi+1 := Pi

18: Li+1 := Li

19: end if
20: else {trivial implication}
21: Ki+1 := Ki

22: Li+1 := Li

23: Pi+1 := Li+1((Pi ∩ {m1, . . . ,mj−1})∪ {mj}) for the max. j that satisfies
Pi <j Li+1((Pi ∩ {m1, . . . ,mj−1}) ∪ {mj})

24: end if
25: i := i + 1
26: end while

algorithm always terminates, and in which sense it is correct.

Proposition 2.22 Let M be a finite set of attributes, and K and K0 respectively
a full and a partial context over the attributes in M such that K0 ≤ K. Then
Algorithm 2 terminates, and upon termination it outputs a partial context K and
a set of implications L such that

16

• L is sound and complete for Imp(K), and

• K refutes every implication that is refuted by K.

Proof. First, we show termination. The algorithm starts with the lectically
smallest L0-closed set P0 = L0(∅). At each execution of the while loop, it
performs one of the following operations:

1. it extends the current set of implications Li, and continues with the lecti-
cally next closed set Pi+1 computed by using the extended set of implications
Li+1 (lines 12,13 in Algorithm 2).

2. it extends the current context Ki to a context Ki+1 that does not refute any
of the implications in Li, and continues with Pi+1 := Pi (lines 16,17).

3. it continues with the lectically next closed set Pi+1, computed by using the
current set of implications Li (line 23).

Steps of the form 1 or 3 can be executed only finitely often. In fact, in each of
these steps, a lectically larger set is generated. Since M is finite, there are only
finitely many subsets of M , and thus every strictly ascending chain w.r.t. < is
obviously finite. In steps of the form 2, the algorithm continues with Pi+1 := Pi,
but extends Ki to a partial context Ki+1 that refutes the implication Pi → Ki(Pi).
Consequently, Ki+1(Pi) (Ki(Pi). This shows that, for a fixed set Pi, steps of
the form 2 can also be applied only finitely often. Thus, we have shown that
termination is guaranteed.

Second, to show soundness of the output set of implications L for Imp(K), it is
sufficient to note that the invariant Ki ≤ K ⊆ Mod(Li) is preserved throughout
the run of the algorithm. Consequently, we also have K ≤ K ⊆ Mod(L). But
then K ⊆ Mod(L) implies L ⊆ Imp(K), and thus soundness of L for Imp(K).

Third, since we have K ≤ K ⊆ Mod(L), Proposition 2.17 shows that completeness
of L for Imp(K) as well as the fact that K refutes every implication that is refuted
by K follow as soon as we have shown that every implication is decided w.r.t.
K and L. To see this, consider the sets P0 = L0(∅), P1, . . . , Pn = M generated
during the run of the algorithm. We have P0 < P1 < . . . < Pn, and iterated
applications of Proposition 2.19 show that P0, P1, . . . , Pn are all the L-closed
subsets of M .

Now, assume that the implication L → R is undecided w.r.t. K and L. Thus,
L → R does not follow from L and is not refuted by K. By Proposition 2.18,
L(L) → R also does not follow from L. In addition, since L ⊆ L(L), it is also not
refuted by K. Since L(L) is L-closed, there is an i such that L(L) = Pi. During
iteration i of the algorithm, the implication Pi → Ki(Pi) is considered.

17

First, assume that this implication is not refuted by K. Then, Pi → Ki(Pi) follows
from Li+1, and thus also from its superset L. However, the fact that Pi → R is not
refuted by K implies that it is also not refuted by Ki since Ki ≤ K (Lemma 2.15).
Thus R ⊆ Ki(Pi) by Proposition 2.13, and the fact that Pi → Ki(Pi) follows from
L implies that Pi → R follows from L, which yields a contradiction.

Second, assume that Pi → Ki(Pi) is refuted by K. Then, Ki is extended to
a partial context Ki+1 that refutes the implication Pi → Ki(Pi). If Ki+1 also
refutes Pi → R, then we are done since Ki+1 ≤ K implies that also K refutes
Pi → R, and thus K refutes L → R because L ⊆ Pi. Otherwise, note that
Pi+1 = Pi and Li+1 = Li, and thus in the next iteration the expert gets the
implication Pi → Ki+1(Pi). By our assumption, Pi → R is not refuted by Ki+1,
and thus R ⊆ Ki+1(Pi). In addition, we have Ki+1(Pi) (Ki(Pi) due to the fact
that Ki+1 refutes Pi → Ki(Pi).

If Pi → Ki+1(Pi) is not refuted by K, then we can continue as in the first case
above, and derive that Pi → R follows from L. Otherwise, we can continue as
in the second case. However, because in this case the size of the right-hand side
of the implication given to the expert strictly decreases, we cannot indefinitely
get the second case. This shows that, eventually, the implication L → R will
become decided w.r.t. some Kj and Lj for some j ≥ i + 1, which contradicts our
assumption that it is undecided w.r.t. their extensions K and L.

We have shown that the implication set L produced by the algorithm is sound
and complete for Imp(K). Next, we show that this set is actually the Duquenne-
Guigues base of KK, the formal context corresponding to the full context K. Since
Imp(K) = Imp(KK), we call this also the Duquenne-Guigues base of K. Recall
that the left-hand sides of the implications in this base are pseudo-intents of KK.
Because the operator ·′′ for KK and the operator K(·) coincide, a subset P of M
is a pseudo-intent of KK if P 6= K(P) and K(Q) ⊆ P holds for all pseudo-intents
Q (P . We call such a set also a pseudo-intent of K.

Proposition 2.23 The set L computed by Algorithm 2 is the Duquenne-Guigues
base of K, and thus contains the minimum number of implications among all sets
of implications that are sound and complete for Imp(K).

Proof. From FCA we know that the Duquenne-Guigues base of a formal con-
text, and thus also of the corresponding full context K, contains the minimum
number of implications among all implication sets that are sound and complete
for Imp(K). In Proposition 2.22, we have already shown that the implication
set L produced by Algorithm 2 is sound and complete for Imp(K). Thus, it is
enough to show that that (i) the left-hand sides L of the implications in L are
pseudo-intents of K, and (ii) the corresponding right-hand sides are of the form
K(L) \ L.

18

To show (ii), consider an implication L → R in L. By the construction of L,
there is an index i such that R = Ki(L) \L. We know that L → R is not refuted
by K, and thus Ki(L) = Ki+1(L) = . . . = K(L) by Proposition 2.21. Thus, it
is enough to show that K(L) = K(L). The inclusion K(L) ⊆ K(L) follows from
the fact that K ≤ K, and the inclusion in the other direction follows from the
fact that L → Ki(L) \ L, and thus also L → K(L), is not refuted by K (see
Proposition 2.13).

To show (i), first note that the implication L → Ki(L) \ L is only added by the
algorithm to the implication set if L 6= Ki(L). Together with what we have shown
in the proof of (ii) above, this yields L 6= K(L). To show that L is indeed a pseudo-
intent of K, we assume that Q is a pseudo-intent of K such that Q (L. We must
show that K(Q) ⊆ L. By Proposition 2.13, Q → K(Q) is not refuted by K.
Since L is complete for Imp(K) by Proposition 2.22, the implication Q → K(Q)
follows from L, i.e., K(Q) ⊆ L(Q). In addition, Q ⊆ L implies L(Q) ⊆ L(L), and
we know from the proof of Proposition 2.22 that L is L-closed. Thus, we have
K(Q) ⊆ L(Q) ⊆ L(L) = L, which completes the proof that L is a pseudo-intent
of K.

In the remainder of this section, we demonstrate the execution of the algorithm
on a small example.

Example 2.24 Let M = {m1, m2, m3, m4} be a set of attributes, K0 an initial
set of pods describing objects from some application domain, and K the set of fods
that represents the expert’s view of this application domain. The contexts K0

and K are shown below as crosstables, where for a pod oi = (A, S), “+” indicates
that the attribute belongs to A, “−” indicates that the attribute belongs to S,
and the remaining attributes are marked by “?”.

K0 m1 m2 m3 m4

o1 + ? + −
o2 + ? ? −
o3 ? − ? +

K m1 m2 m3 m4

o1 + + + −
o2 + − + −
o3 + − + +
o4 + + − −

Table 2.24 shows the execution of Algorithm 2 on K0 and w.r.t. the underlying
full context K.
In Step 1, the user extends the partial context by adding the new pod ({m1}, {m3})
with name o4 as a counterexample to the implication ∅ → {m1, m3}, since this
implication is refuted by K. In Step 2, the user accepts the implication ∅ → {m1}
since it is not refuted by K. In addition, this new implication is used to extend
the partial context. Since the implication says that every object should have
attribute m1, the entry for attribute m1 of pod o3 is changed to +. A similar
extension is done in Step 4. After adding the new implication {m1, m4} → {m3},
we update the entry for attribute m3 of pod o3 by changing it to +. Note that

19

Pi Ki(Pi) refuted by K ? action
1 ∅ {m1,m3} yes new pod

o4 := ({m1}, {m3})
2 ∅ {m1} no new imp.

∅ → {m1}
set (o3,m1) := +

3 {m1} {m1} next Pi

4 {m1,m4} {m1,m3,m4} no new imp.
{m1,m4} → {m3}
set (o3,m3) := +

5 {m1,m3} {m1,m3} next Pi

6 {m1,m3,m4} {m1,m3,m4} next Pi

7 {m1,m2} {m1,m2,m3,m4} yes set (o1,m2) := +
8 {m1,m2} {m1,m2,m3} yes set (o4,m2) := +
9 {m1,m2} {m1,m2} next Pi

10 {m1,m2,m3} {m1,m2,m3} next Pi

11 {m1,m2,m3,m4}

Table 1: Execution of the algorithm on K0 and K

later on, this avoids asking a redundant question to the expert. If we had not
updated this value, the next Pi would also be {m1, m3}, but Ki(Pi) would be
{m1, m2, m3}, and the implication question “{m1, m3} → {m1, m2, m3}?” would
be asked. This implication is refuted by K, so the user would have to provide a
counterexample in order to refute it.
The execution of the algorithm continues in a similar way until in Step 11 Pi is
the whole set of attributes (see the table for details). Note that, in Steps 7 and 8,
instead of adding a new pod, the partial context is extended by changing existing
pods, in order to turn them into counterexamples to the implication questions
asked.
At the end of its execution, the algorithm has produced the following partial
context K

K m1 m2 m3 m4

o1 + + + −
o2 + ? ? −
o3 + − + +
o4 + + − ?

and the implication bases {∅ → {m1}, {m1, m4} → {m3}}.
Thus, at the end of the exploration, some entries in the table describing the
partial context are still undetermined, i.e., marked with “?.” This means that
the described context is still partial and not full.

20

Name of constructor Syntax Semantics

top-concept > ∆I

bottom-concept ⊥ ∅
negation ¬C ∆I \ CI

conjunction C uD CI ∩DI

disjunction C tD CI ∪DI

value restriction ∀r.C {x ∈ ∆I | ∀y : (x, y) ∈ rI → y ∈ CI}
existential restriction ∃r.C {x ∈ ∆I | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
general concept inclusion C v D CI ⊆ DI

concept assertion C(a) aI ∈ CI

role assertion r(a, b) (aI , bI) ∈ rI

Table 2: Syntax and semantics of ALC-concept descriptions, TBoxes, and
ABoxes.

3 Description Logics

In the first part of this section, we briefly recall some notions regarding Descrip-
tion Logics (DLs). More details and references for the results mentioned below
can be found in [1]. In the second part, we show how DL knowledge bases can give
rise to partial contexts, and in the third part we show how attribute exploration
for partial contexts can be used to complete DL knowledge bases.

3.1 Basic definitions

In order to represent knowledge about an application domain using DLs, one usu-
ally first defines the relevant concepts of this domain, and then describes relation-
ships between concepts and between individuals and concepts in the knowledge
base. To construct concepts, one starts with a set NC of concept names (unary
predicates) and a set NR of role names (binary predicates), and builds complex
concept descriptions out of them by using the concept constructors provided by
the particular description language being used. In addition, a set NI of individ-
ual names is used to refer to concrete individuals (objects). As an example, we
consider the language ALC, which provides for the concept constructors shown
in the upper part of Table 2. In this table, r stands for a role name, C, D stand
for concept descriptions, and a, b stand for individual names. An ALC-concept
description is either a concept name, or obtained by applying one of the concept
constructors of the table to ALC-concept descriptions. A TBox is a finite set of
general concept inclusions (GCIs), and an ABox is a finite set of concept and role
assertions (see the lower part of Table 2). A knowledge base consists of a TBox
together with an ABox.

The semantics of concept descriptions, TBoxes, and ABoxes is given in terms

21

of an interpretation I = (∆I , ·I), where ∆I (the domain) is a non-empty set,
and ·I (the interpretation function) maps each concept name A ∈ NC to a set
AI ⊆ ∆I , each role name r ∈ NR to a binary relation rI ⊆ ∆I × ∆I , and each
individual name a ∈ NI to an element aI ∈ ∆I . The semantics of arbitrary
concept descriptions is defined inductively, as seen in the semantics column of
Table 2. An interpretation I is a model of the TBox T (the ABox A) if it
satisfies all its GCIs (assertions) in the sense shown in the semantics column of
the table. In case I is a model of both T and A, it also called a model of the
knowledge base (T ,A).

Given a TBox T , an ABox A, concept descriptions C, D, and an individual name
a, the following are relevant inference problems :

• Satisfiability: C is satisfiable w.r.t. T if there is a model I of T such that
CI 6= ∅.

• Subsumption: C is subsumed by D w.r.t. T (C vT D) if CI ⊆ DI holds
for all models I of T .

• Consistency: the knowledge base (T ,A) is consistent if it has a model.

• Instance: a is an instance of C w.r.t. T and A (T ,A |= C(a)) if aI ∈ CI

holds for all models of T and A.

For the DL ALC with the TBox and ABox formalisms as introduced above, the
satisfiability, the subsumption, the instance, and the consistency problem are
ExpTime-complete. Note that, in a DL that allows for conjunction and negation,
the subsumption and the satisfiability problem are interreducable in polynomial
time, and the same is true for the instance and the consistency problem. In
addition, the satisfiability problem can always be reduced in polynomial time
to the consistency problem. Highly optimized DL reasoners such at FaCT [10],
Racer [8], and Pellet [25] can solve these problems in DLs that are considerably
more expressive than ALC.

If the TBox is empty or acyclic, then these problems are PSpace-complete. An
acyclic TBox consists of concept definitions of the form A ≡ C with A a concept
name, which can be expressed by the pair of GCIs A v C, C v A. This set of
concept definitions must satisfy the additional requirements that a concept name
can occur at most once as a left-hand side of a definition and that there are no
cyclic dependencies between the definitions.

It should be noted that the approach for completing DL knowledge bases intro-
duced below is not restricted to ALC. It applies to arbitary DLs, provided that
some restrictions on the availability of certain constructors and on the algorithmic
solvability of the above inference problems are satisfied:

• The description language must allow for conjunction and negation.

22

• The TBox formalism must allow for GCIs.

• The ABox formalism must allow for concept assertions.

• The subsumption, the instance, and the consistency problem must be de-
cidable.

3.2 DLs and partial contexts

Given a consistent DL knowledge base (T ,A), any individual in A induces a
partial object description, where the set of attributes consists of concepts. To be
more precise, let M be a finite set of concept descriptions. Any individual name
a occurring in A gives rise to the partial object description

podT ,A(a, M) := (A, S) where A := {C ∈ M | T ,A |= C(a)} and
S := {C ∈ M | T ,A |= ¬C(a)},

and the whole ABox induces the partial context

KT ,A(M) := {podT ,A(a, M) | a is an individual name occurring in A}.

Note that podT ,A(a, M) is indeed a pod since (T ,A) was assumed to be consistent,
and thus we cannot simultaneously have T ,A |= C(a) and T ,A |= ¬C(a).

Similarly, any element d ∈ ∆I of an interpretation I gives rise to the full example

fodI(d,M) := (A, S) where A := {C ∈ M | d ∈ CI} and
S := {C ∈ M | d ∈ (¬C)I},

and the whole interpretation induces the full context

KI(M) := {fodI(d,M) | d ∈ ∆I}.

Note that fodI(d,M) is indeed a fod since every d ∈ ∆I satisfies either d ∈ CI

or d ∈ ∆I \ CI = (¬C)I .

Proposition 3.1 Let (T ,A) be a consistent knowledge base, M a set of concept
descriptions, and I a model of (T ,A). Then KI(M) is a realizer of KT ,A(M).

Proof. Consider a pod (A, S) ∈ KT ,A(M), i.e., (A, S) = podT ,A(a, M), where
a is an individual name occurring in A. We claim that (A, S) is realized by
(A, S) := fodI(a

I , M) ∈ KI(M).

Let C be an element of A, i.e., T ,A |= C(a). Since I is a model of (T ,A), this
implies aI ∈ CI , and thus C ∈ A. This shows A ⊆ A. The inclusion S ⊆ S can
be shown accordingly.

23

The notion of refutation of an implication is transferred from partial (full) con-
texts to knowledge bases (interpretations) in the obvious way.

Definition 3.2 The implication L → R over the attributes M is refuted by
the knowledge base (T ,A) if it is refuted by KT ,A(M), and it is refuted by the
interpretation I if it is refuted by KI(M). If an implication is not refuted by
I, then we say that it holds in I. The set of implications over M that hold in
I is denoted by ImpM(I). In addition, we say that L → R follows from T if
uL vT uR, where uL and uR respectively stand for the conjunctions

d
C∈L C

and
d

D∈R D.

Obviously, L → R is refuted by (T ,A) iff there is an individual name a occurring
in A such that T ,A |= C(a) for all C ∈ L and T ,A |= ¬D(a) for some D ∈ R.
Similarly, L → R is refuted by I iff there is an element d ∈ ∆I such that d ∈ CI

for all C ∈ L and d 6∈ DI for some D ∈ R. In addition, the implication L → R
holds in I iff (uL)I ⊆ (uR)I .

Proposition 3.3 Let T be a TBox and I be a model of T . If the implication
L → R follows from T , then it holds in I.

Proof. If L → R follows from T , then (uL)I ⊆ (uR)I holds since I is a model
of T . This shows that L → R holds in I.

The operator KT ,A(M)(·) induced by the partial context KT ,A(M) is defined as
in Proposition 2.13. Since in the following the attribute set M can be assumed
to be fixed, we will write KT ,A rather that KT ,A(M). Obviously, the result of
applying this operator to a set P ⊆ M can be described as follows:

KT ,A(P) = M \
⋃
{D ∈ M | ∃a. P ⊆ {C | T ,A |= C(a)} ∧ T ,A |= ¬D(a)}

By Proposition 2.13, KT ,A(P) is the largest subset of M such that P → KT ,A(P)
is not refuted by (T ,A).

3.3 Completion of DL knowledge bases

We are now ready to define what we mean by a completion of a DL knowledge
base. Intuitively, the knowledge base is supposed to describe an intended model.
For a fixed set M of “interesting” concepts, the knowledge base is complete if it
contains all the relevant knowledge about implications between these concepts.
To be more precise, if an implication holds in the intended interpretation, then it
should follow from the TBox, and if it does not hold in the intended interpretation,
then the ABox should contain a counterexample. Based on the notions introduced
in the previous subsection, this can formally be defined as follows.

24

Definition 3.4 Let (T ,A) be a DL knowledge base, M a finite set of concept
descriptions, and I a model of (T ,A). Then (T ,A) is M -complete (or simply
complete if M is clear from the context) w.r.t. I if the following three statements
are equivalent for all implications L → R over M :

1. L → R holds in I;

2. L → R follows from T ;

3. L → R is not refuted by (T ,A).

Let (T0,A0) be a DL knowledge base that also has I as a model. Then (T ,A) is
a completion of (T0,A0) if it is complete and extends (T0,A0), i.e., T0 ⊆ T and
A0 ⊆ A.

In order to rephrase the definition of completeness, let us say that the element
d ∈ ∆I of an interpretation I satisfies the subsumption statement C v D if
d 6∈ CI or d ∈ DI , and that I satisfies this statement if every element of ∆I

satisfies it. In addition, let us call the individual name a a counterexample in
(T ,A) to the subsumption statetment C v D if T ,A |= C(a) and T ,A |= ¬D(a).

Lemma 3.5 The knowledge base (T ,A) is complete w.r.t. its model I iff the
following statements are equivalent for all subsets L, R of M :

1. uL v uR is satisfied by I;

2. uL vT uR holds;

3. (T ,A) does not contain a counterexample to uL v uR.

In the following, we use an adaptation of the attribute exploration algorithm for
partial contexts presented in the previous section in order to compute a comple-
tion of a given knowledge base (T0,A0) w.r.t. a fixed model I of this knowledge
base. It is assumed that the expert has enough information about this model to
be able to answer questions of the form “Is L → R refuted by I?”. If the answer
is “no,” then L → R is added to the implication base computed by the algorithm.
In addition, the GCI uL v uR is added to the TBox. Since L → R is not refuted
by I, the interpretation I is still a model of the new TBox obtained this way. If
the answer is “yes,” then the expert must extend the current ABox (by adding
assertions) such that the extended ABox refutes L → R and I is still a model of
this ABox. Because of Proposition 3.3, before actually asking the expert whether
the implication L → R is refuted by I, we can first check whether uL v uR
already follows from the current TBox. If this is the case, then we know that

25

Algorithm 3 Completion of DL knowledge bases

1: Input: T0, A0, M {(T0,A0) has the underlying interpretation I as model}
2: i := 0
3: L0 := ∅ {initial empty set of implications}
4: P0 := ∅ {lectically smallest L0-closed subset of M}
5: while Pi 6= M do
6: Compute KTi,Ai

(Pi)
7: if Pi 6= KTi,Ai

(Pi) then {check whether the implication follows from Ti}
8: if uPi vTi

uKTi,Ai
(Pi) then

9: Ai+1 := Ai

10: Li+1 := Li ∪ {Pi → KTi,Ai
(Pi) \ Pi}

11: Pi+1 := Li+1((Pi∩{m1, . . . ,mj−1})∪{mj}) for the max. j that satisfies
P <j Li+1((Pi ∩ {m1, . . . ,mj−1}) ∪ {mj})

12: else
13: Ask the expert if Pi → KTi,Ai

(Pi) is refuted by I.
14: if no then {uPi v uKTi,Ai

(Pi) is satisfied in I}
15: Ai+1 := Ai

16: Li+1 := Li ∪ {Pi → KTi,Ai
(Pi) \ Pi}

17: Pi+1 := Li+1((Pi ∩ {m1, . . . ,mj−1}) ∪ {mj}) for the max. j that
satisfies P <j Li+1((Pi ∩ {m1, . . . ,mj−1}) ∪ {mj})

18: Ti+1 := Ti ∪ {uPi v u(KTi,Ai
(Pi) \ Pi)} {extend the TBox}

19: else
20: Get an ABox A′ from the expert such that Ai ⊆ A′, I is a model of

A′, and Pi → KTi,Ai
(Pi) is refuted by A′

21: Ai+1 := A′ {extend the ABox}
22: Ti+1 = Ti

23: Pi+1 := Pi

24: Li+1 := Li

25: end if
26: end if
27: else
28: Ai+1 := Ai

29: Ti+1 := Ti

30: Li+1 := Li

31: Pi+1 := Li+1((Pi ∩ {m1, . . . ,mj−1})∪ {mj}) for the max. j that satisfies
P <j Li+1((Pi ∩ {m1, . . . ,mj−1}) ∪ {mj})

32: end if
33: i := i + 1
34: end while

L → R cannot be refuted by I. This completion algorithm for DL knowledge
bases is described in more detail in Algorithm 3.

26

Note that Algorithm 3 applied to T0,A0, M with the underlying model I of
(T0,A0) behaves identical to Algorithm 2 applied to the partial context KT0,A0(M)
with the underlying full context KI(M) as realizer. This is an immediate conse-
quence of the following facts:

1. for all i ≥ 0, the underlying interpretation I is a model of (Ti,Ai);

2. if the test uPi vTi
uKTi,Ai

(Pi) is successful, then the implication Pi →
KTi,Ai

(Pi) holds in I, and thus the expert would have answered “no” to
this implication question;

3. if T ′ is a TBox such that Ti ⊆ T ′ and I is a model of T ′, then KTi,Ai
(M) ≤

KT ′,Ai
(M) ≤ KI(M);

4. if A′ is an ABox such that Ai ⊆ A′, I is a model of A′, and Pi →
KTi,Ai

(Pi) is refuted by A′, then KTi,Ai
(M) ≤ KTi,A′(M) ≤ KI(M) and

Pi → KTi,Ai
(Pi) is refuted by KTi,A′(M).

Thus, Proposition 2.22 immediately implies the following proposition.

Proposition 3.6 Let (T0,A0) be a knowledge base, M a finite set of concept
descriptions, and I a model of (T0,A0). Then Algorithm 3 terminates, and upon
termination outputs a knowledge base (T ,A) and a set of implications L such
that

• L is sound and complete for ImpM(I), and

• (T ,A) refutes every implication that is refuted by I.

It remains to show that Algorithm 3 really computes a completion of the input
knowledge base.

Theorem 3.7 Let (T0,A0) be a knowledge base, M a finite set of concept descrip-
tions, and I a model of (T0,A0), and let (T ,A) be the knowledge base computed
by Algorithm 3. Then (T ,A) is a completion of (T0,A0).

Proof. Obviously, (T ,A) extends (T0,A0) and has I as a model. To prove
that (T ,A) is complete, we must show that the following three statements are
equivalent for all implications L → R over M :

1. L → R holds in I;

2. L → R follows from T ;

27

3. L → R is not refuted by (T ,A).

“2 → 1” is an immeditate consequence of the fact that I is a model of T , and
“1 → 2” follows from the facts that L is complete for ImpM(I) and T contains
the GCIs uL′ v uR′ for all implications L′ → R′ in L.

“1 → 3” is an immeditate consequence of the fact that I is a model of A, and
“3 → 1” of the fact that (T ,A) refutes every implication that is refuted by I.

4 Implementation

Based on the ideas and results presented in the previous two sections, we have
implemented a first experimential version of a tool for completing DL knowledge
bases as an extension of the so-called Instance Store (iS) [11]. The iS is based on
a hybrid architecture that combines a DL reasoner and a relational database in
order to support efficient reasoning with a very large number of individuals. Our
reason for using the iS tool was that our completion approach works better (i.e.,
asks less questions to the expert) if the ABox already contains a large number of
individuals. In fact, the more individuals are already present, the less new ones
need to be created by the expert as counterexamples to implication questions.
The iS can only deal with role-free ABoxes, i.e., ABoxes that do not contain
role assertions, but this is sufficient for the human protein phosphatases ontology
mentioned as a motivating example in the introduction.

A more problematic restriction is the fact that the iS does not support incre-
mental reasoning when the knowledge base is extended. Extending the TBox
is not supported at all by its user interface, and though adding new concept
assertions is possible, the frequent extensions required by our Algorithm 3 are
computationally quite expensive. For this reason, our first implementation does
not continuously extend the underlying DL knowledge base during the run of the
exploration algorithm, but only once when the exploration process is finished.

To be more precise, the completion tool works as follows. First, it asks the expert
for a concept description C0 describing the part of the knowledge base that is to
be explored. This concept description determines the set of relevant attributes:

M := {A | A is a concept name occurring in (T0,A0) such that A vT0 C0}.

Based on M and the knowledge base (T0,A0), the initial partial contextKT0,A0(M)
is computed. In principle, the current version of our tool then uses Algorithm 2
to explore this partial context. However, before an implication question is given
to the expert, the tool first checks whether the corresponding subsumption rela-
tionship follows from the TBox. If this is the case, the implication is accepted
without asking the expert. Whenever an implication is added, the current con-
text Ki is extended to L(Ki). In the case where an implication does not hold

28

in the full context induced by the underlying model of the knowledge base, the
expert is offered the opportunity to extend the partial context by either adding a
new pod as counterexample or by extending an already existing pod. The system
supports the extension of existing pods by showing to the user all pods from the
current context that have an extension to a counterexample of the implication in
question. Before adding a new pod (A, S) or extending an existing one to (A, S),
the system checks whether this pod really is a counterexample to the implication
question and whether it is consistent with the TBox, i.e., whether uAu

d
C∈S ¬C

is satisfiable w.r.t. T0.
2 When the attribute exploration is finished with a final

partial context K and a finite set of implications L, the TBox T0 is extended to

T := T0 ∪ {uL v uR | L → R ∈ L}

and the ABox A0 is extended to

A := A0 ∪ {C(a(A,S)),¬D(a(A,S)) | (A, S) ∈ K \ KT0,A0(M), C ∈ A, D ∈ S},

where a(A,S) is a new individual name created for the pod (A, S).3 It is easy to
show that the statement of Theorem 3.7 also holds in this case, i.e., the knowledge
base (T ,A) computed by our current implementation is a completion of the input
knowledge base (T0,A0).

Viewed in the light of Algorithm 2, of which Algorithm 3 is an instance, the main
difference between our current implementation and Algorithm 3 is the following.
Since the TBox and the ABox are not extended during the exploration process,
the extension K′ used in lines 11 and 16 of Algorithm 2 may be smaller than the
ones that would have been created by Algorithm 3. This does not compromise
correctness of the algorithm, but it may result in more implication questions being
asked to the expert.

5 Conclusion

We have described a knowledge acquisition method that allows to extend a De-
scription Logic knowledge base (T0,A0) by additional information on the relation-
ships that hold in a specific interpretation I between concepts in a set of concept
descriptions M deemed to be interesting. The method extends the TBox of the
knowledge base by additional GCIs for relationships that hold in I, but do not
follow from the TBox; and it extends the ABox by counterexamples to relation-
ships that do not hold in I, and are not yet refuted by the existing individuals in

2This allows the system to detect errors made by the expert. In the formulation of our
algorithms, we have assumed that the expert only gives answers that are correct w.r.t. the
underlying full context (model of the knowledge base). However, in practice, errors probably
cannot be avoided, and thus the system should at least try to detect “obvious” ones.

3Usually, this name will be provided by the expert.

29

the ABox. To obtain the necessary information on whether a relationship holds
or not, the existing TBox and ABox are checked first. Only if they cannot be used
to decide this question, an expert that “knows” I is asked. The method is based
on the well-known attribute exploration approach from Formal Concept Analysis.
However, this approach had to be extended in order to be able to handle partial
contexts, to correctly represent the open-world semantics of DL knowledge bases.

As a formalization of what “relationships between the concepts in M” really
means, we have used subsumption relationships between arbitrary conjunctions
of elements of M . The reason was, on the one hand, that these relationships
should be fairly easy to decide by a domain expert. On the other hand, the close
connection between such relationships and implications, as considered in Formal
Concept Analysis, facilitated the adaptation of attribute exploration for our pur-
poses. One could also be interested in more complex relationships, however. For
example, one could fix a specific description language D (e.g., comprising some
subset of the constructors of ALC), then take as attributes D-concept descrip-
tions over the concept “names” from M , and ask for all subsumption relationships
between the conjunctions of the concept descriptions obtained this way. The im-
mediate disadvantage of this extension is that in general the set of attributes
is no longer finite, and thus termination of the exploration process is no longer
guaranteed. An extension of classical attribute exploration (i.e., for full contexts)
in this direction is described in [21]. The main idea to deal with the problem of
an infinite attribute set used there is to restrict the attention to concept descrip-
tions with a bounded role depth. But even though this makes the attribute set
finite, its size is usually too large for practical purposes. Thus, an adaptation of
the method described in [21] to our purposes not only requires an extension of
this method to partial contexts, but also some new ideas of how to deal with the
practicality issue.

Regarding our implementation, we intend to migrate it from the Instance Store
as underlying reasoner to the system Pellet [25]. Pellet can also reason efficiently
with a large number of individuals, but in contrast to the Instance Store, it
supports role assertion and incremental reasoning [19, 9]. Thus, using Pellet will
allow us to implement Algorithm 3, and compare its performance (in particular
w.r.t. the number of implication question asked) with the one of our current
implementation.

References

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implemen-
tation, and Applications. Cambridge University Press, 2003.

30

[2] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd: A reason-able
ontology editor for the semantic web. In F. Baader, G. Brewka, and T. Eiter,
editors, KI-2001: Advances in Artificial Intelligence, volume 2174 of Lecture
Notes in Artificial Intelligence, pages 396–408. Springer-Verlag, 2001.

[3] P. Burmeister and R. Holzer. On the treatment of incomplete knowledge in
formal concept analysis. In Proceedings of the 8th International Conference
on Conceptual Structures, (ICCS 2000), volume 1867 of Lecture Notes in
Computer Science, pages 385–398. Springer-Verlag, 2000.

[4] P. Burmeister and R. Holzer. Treating incomplete knowledge in formal con-
cept analysis. In Formal Concept Analysis, volume 3626 of Lecture Notes in
Computer Science, pages 114–126. Springer-Verlag, 2005.

[5] W. F. Dowling and J. H. Gallier. Linear-time algorithms for testing the
satisfiability of propositional horn formulae. Journal of Logic Programming,
1(3):267–284, 1984.

[6] B. Ganter. Two basic algorithms in concept analysis. Technical Report
Preprint-Nr. 831, Technische Hochschule Darmstadt, Darmstadt, Germany,
1984.

[7] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Founda-
tions. Springer-Verlag, Berlin, Germany, 1999.

[8] V. Haarslev and R. Möller. RACER system description. In Proc. of the Int.
Joint Conf. on Automated Reasoning (IJCAR 2001), 2001.

[9] C. Halaschek-Wiener, B. Parsia, E. Sirin, and A. Kalyanpur. Description
logic reasoning for dynamic ABoxes. In Proc. of the 2006 Description Logic
Workshop (DL 2006), CEUR Electronic Workshop Proceedings, pages 200–
207, 2006.

[10] I. Horrocks. Using an expressive description logic: FaCT or fiction? In
Proc. of the 6th Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR’98), pages 636–647, 1998.

[11] I. Horrocks, L. Li, D. Turi, and S. Bechhofer. The instance store: DL rea-
soning with large numbers of individuals. In Proc. of the 2004 Description
Logic Workshop (DL 2004), pages 31–40, 2004.

[12] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and
RDF to OWL: The making of a web ontology language. Journal of Web
Semantics, 1(1):7–26, 2003.

[13] A. Kalyanpur, B. Parsia, E. Sirin, B. Cuenca-Grau, and J. Hendler. Swoop:
A Web ontology editing browser. J. of Web Semantics, 4(2), 2006.

31

[14] A. Kalyanpur, B. Parsia, E. Sirin, and B. C. Grau. Repairing unsatisfiable
concepts in owl ontologies. In Proc. of the 3rd Eur. Semantic Web Conference
(ESWC’06), volume 4011 of Lecture Notes in Computer Science, pages 170–
184. Springer-Verlag, 2006.

[15] H. Knublauch, R. W. Fergerson, N. F. Noy, and M. A. Musen. The Protégé
OWL plugin: An open development environment for semantic web applica-
tions. In Proceedings of the Third International Semantic Web Conference,
Hiroshima, Japan, 2004.

[16] D. Maier. The Theory of Relational Databases. Computer Science Press,
Maryland, 1983.

[17] D. Oberle, R. Volz, B. Motik, and S. Staab. An extensible ontology software
environment. In S. Staab and R. Studer, editors, Handbook on Ontologies,
International Handbooks on Information Systems, pages 311–333. Springer-
Verlag, 2004.

[18] S. A. Obiedkov. Modal logic for evaluating formulas in incomplete contexts.
In Proceedings of the 10th International Conference on Conceptual Struc-
tures, (ICCS 2002), volume 2393 of Lecture Notes in Computer Science,
pages 314–325. Springer-Verlag, 2002.

[19] B. Parsia, C. Halaschek-Wiener, and E. Sirin. Towards incremental reason-
ing through updates in OWL-DL. In Reasoning on the Web (RoW2006),
Workshop at WWW2006, 2006.

[20] B. Parsia, E. Sirin, and A. Kalyanpur. Debugging OWL ontologies. In
A. Ellis and T. Hagino, editors, Proc. of the 14th International Conference
on World Wide Web (WWW’05), pages 633–640. ACM, 2005.

[21] S. Rudolph. Exploring relational structures via FLE . In K. E. Wolff, H. D.
Pfeiffer, and H. S. Delugach, editors, 12th International Conference on Con-
ceptual Structures (ICCS 2004), volume 3127 of Lecture Notes in Computer
Science, pages 196–212, 2004.

[22] S. Schlobach. Debugging and semantic clarification by pinpointing. In
A. Gómez-Pérez and J. Euzenat, editors, Proc. of the 2nd Eur. Semantic
Web Conference (ESWC’05), volume 3532 of Lecture Notes in Computer
Science, pages 226–240. Springer-Verlag, 2005.

[23] S. Schlobach. Diagnosing terminologies. In M. M. Veloso and S. Kamb-
hampati, editors, Proc. of the 20th Nat. Conf. on Artificial Intelligence
(AAAI 2005), pages 670–675. AAAI Press/The MIT Press, 2005.

[24] S. Schlobach and R. Cornet. Non-standard reasoning services for the debug-
ging of description logic terminologies. In G. Gottlob and T. Walsh, editors,

32

Proc. of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI 2003),
pages 355–362, Acapulco, Mexico, 2003. Morgan Kaufmann, Los Altos.

[25] E. Sirin and B. Parsia. Pellet: An OWL DL reasoner. In Proc. of the 2004
Description Logic Workshop (DL 2004), pages 212–213, 2004.

[26] R. Wille. Restructuring lattice theory: An approach based on hierarchies of
concepts. In I. Rival, editor, Ordered Sets, pages 445–470. Reidel, Dordrecht-
Boston, 1982.

[27] K. Wolstencroft, A. Brass, I. Horrocks, P. W. Lord, U. Sattler, D. Turi, and
R. Stevens. A little semantic web goes a long way in biology. In Proc. of the
4th Int. Semantic Web Conf. (ISWC’05), volume 3729 of Lecture Notes in
Computer Science, pages 786–800. Springer-Verlag, 2005.

33

	Introduction
	Formal Concept Analysis
	The classical case
	Partial contexts
	Attribute exploration with partial contexts

	Description Logics
	Basic definitions
	DLs and partial contexts
	Completion of DL knowledge bases

	Implementation
	Conclusion

