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Abstract

Within Business Intelligence contexts, the importance of
data mining algorithms is continuously increasing, partic-
ularly from the perspective of applications and users that
demand novel algorithms on the one hand and an efficient
implementation exploiting novel system architectures on the
other hand. Within this paper, we focus on the latter issue
and report our experience with the exploitation of graphic
card processor technology within the SAP NetWeaver Busi-
ness Intelligence Accelerator (BIA). The BIA represents a
highly distributed analytical engine that supports OLAP
and data mining processing primitives. The system orga-
nizes data entities in column-wise fashion and its operation
is completely main-memory-based. Since case studies have
shown that classic data mining queries spend a large por-
tion of their runtime on scanning and filtering the data as a
necessary prerequisite to the actual mining step, our main
goal was to speed up this expensive scanning and filtering
process. In a first step, the paper outlines the basic data
mining processing techniques within SAP NetWeaver BIA
and illustrates the implementation of scans and filters. In
a second step, we give insight into the main features of a
hybrid system architecture design exploiting graphic card
processor technology. Finally, we sketch the implementa-
tion and give details of our vast evaluations.

1 Introduction

Data mining is gaining more and more significance from

two perspectives. On the one hand, the acquisition and

storage of the digital footprints of individual entities (prod-

ucts, human beings, Web sessions) is now technically fea-

sible and economically affordable. On the other hand, data

mining mechanisms have gone mainstream, i.e., algorithms

are more sophisticated and yet easier to use for non-expert

users. Both aspects have a significant impact on the way

data is processed. Within SAP NetWeaver BI, common

data mining methods, such as association rule mining, time

series, outlier analyses, and some special statistical algo-

rithms, are seamlessly integrated into the backend. The im-

plementation heavily exploits the SAP NetWeaver BI Ac-

celerator (BIA) in order to provide efficient data mining ca-

pabilities to achieve short query times.

The SAP NetWeaver Business Intelligence (BI) Accel-

erator ([10]) is used to speed up OLAP and data mining

queries usually stored in relational databases. Compared

with most previous approaches, this tool offers an immense

improvement in speed and flexibility of access to the data.

This improvement is significant in business contexts where

existing approaches incur quantifiable costs. By leveraging

the falling prices of hardware relative to other factors, the

new tool offers business benefits that more than balance its

procurement cost.

Figure 1 shows the overall setup of a BIA system. In the

presence of the acceleration tool, business data is replicated

to the BIA and stored as highly optimized index structures

within main memory. Since BIA follows the shared-nothing

paradigm, a BIA landscape is able to scale out to a fairly

large number of individual nodes. Analytical queries target-

ing data indexed within the BIA are transparently rerouted

to the BIA through the BI analytical engine. The accelerator

responds to queries and performs joins, aggregates, and data

mining operations on the fly. The main principle is to keep

data in one single place and to efficiently perform classic

OLAP operations as well as highly specialized data mining

tasks using the same data structures and access operations.

The BIA system is originally based on search engine

technology and offers comparable performance for both fre-
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Figure 1. Query Processing in Memory

quently and infrequently submitted queries. This enables

companies to relax previous technically motivated restric-

tions on data access; since BIA is purely based on main

memory technology, there is no need to explicitly build ma-

terialized views or to pre-compute certain aggregates. In

practical terms, the result is that with the help of the accel-

erator, users can select and display aggregated data, slice it

and dice it, drill down anywhere for details, and expect ex-

act responses within seconds, however unusual their queries

may be, even over data cubes containing billions of records

and occupying terabyte volumes of raw data.

The main architectural features of the BI accelerator are

as follows:

• Distributed and parallel processing for scalability and

robustness

• In-memory processing to eliminate the runtime cost of

disk accesses

• Optimized data structures for reads and optimized

structures for writes

• Data compression coding to minimize memory usage

and I/O overhead.

Data Mining Using BIA

Over the last years, SAP’s BIA system has been function-

ally enriched with regard to data mining capabilities. As of

now, the system supports classic data mining operations like

time series analyses, the detection of association rules or

the computation of correlations within large item sets. Al-

though data mining algorithms can be seamlessly integrated

into the BIA engine, we experienced significant challenges

arising from the specific patterns of data mining operations.

For example, consider a data mining query to predict 20

values of the overall sales revenue on a weekly basis in

a real SAP customer sales data cube with 1,093,470,000

fact entries (80 parts distributed over 10 blades with 80

cores in total). The variation in the range of the query

shows an interesting fact: scanning the (in-memory) data

and picking the qualifying entries for the succeeding time

series analysis is demanding for a large portion of the over-

all query runtime. Query 1 considers only sales satisfy-

ing the predicate country=ALABAMA with a selectivity

of 1.54%. Surprisingly, out of 150ms in total to complete

the query, the system spends 40ms (and therefore almost

one third of the overall query runtime) to find the appro-

priate sales entries. An increase in the selectivity, i.e., an

increase in the number of satisfying entries, shows an even

higher fraction of data scanning relative to the overall query

runtime (50% of the overall runtime is spent on evaluat-

ing the predicate for the individual data cube entries for

the predicate country=CALIFORNIA with selectivity of

23.07%). Obviously, there is a significant need to improve

the scan times to lower the overall query runtime. As can

be seen, if we perform a time series analysis for all sold

articles (performed in 484ms for 1billion rows), the data

access ratio is reduced to only 11%.
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Figure 2. Example: Time Series Analysis

In order to tackle this issue of expensive scans and fil-

ters, we report on the implementation of scan operators for

the main-memory-based BI acceleration engine from two

perspectives. On the one hand, we outline the implemen-

tation of scan methods (point-wise access and scan mode).

On the other hand, we describe our experience with an im-

plementation of the scan exploiting graphic card processor

technology and we discuss different configuration issues.

Related Work

Using graphic card processors to speed up computing-

intensive applications has been around for quite some time

(e.g., [1] for scan optimization) but has received special at-

tention in the database ([7, 3]) and data mining ([4, 5]) com-

munity.

From a system-architectural perspective, recent work ad-

dresses the efficient processing of join operators (for ex-

ample, [8, 9]) and–similar to our work–the optimization of
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the scan operation. For example, [6, 11] implemented seg-

mented scan primitives and work-efficient scans also using

Nvidia CUDA programming API. Another interesting work

related to our approach is presented in [2], where the input

vector is decomposed into small chunks (via a 2D matrix)

fitting into the registers of their Cray Y-MP architecture. We

use such a technique for our output data. However, all these

efforts do not specifically focus on the decomposition and

extraction of non-word-aligned values, which is the algo-

rithmic center of our work.

Structure of the Paper

The rest of this paper is organized as follows. The next

section outlines the SAP NetWeaver BI Accelerator in suf-

ficient detail for the reader to understand the challenges for

efficient data mining operations. Sections 3 and 4 represent

the core of the paper and describe different methods to per-

form scans over indexed data sets. In a first step, we show

the point-wise data access; in a second step, we focus on

the scanning process to access compressed data. After the

presentation of the conceptual work, we describe the details

of our implementation on top of Nvidia GeForce 8800 GTX

and present the results of our vast experiments. The paper

closes with a conclusion summarizing our experiences with

non-standard hardware to speed up data mining queries.

2 Basic Architecture

This section introduces the concept of the SAP

NetWeaver BIA. First of all, we outline the general archi-

tecture and then we dive into the physical storage scheme

used by BIA.

Scalable Multiserver Architecture

The BI Accelerator runs on commodity blade servers that

can be procured and installed as required to handle increas-

ing volumes. For example, a moderately large instance of

the accelerator may run on 10 − 16 blades in typical cus-

tomer scenarios1, each with two Intel Xeon quad-core pro-

cessors and 16GBytes of main memory; thus, the accelera-

tor typically has 160 − 256GByte of RAM with 80 − 128
CPU cores to handle user requests. The accelerator index

structures are compressed, usually by a factor of well over

ten relative to regular database tables from which they are

generated (see the following discussion on compression),

so the available main memory is enough to handle most of

the BI scenarios running in commercial SAP NetWeaver BI

environments.

In each BIA landscape, a name server maintains a list of

active services, switches to backups where necessary, and

1A lab installation with 140 nodes showed linear scaling behavior.

balances load over active services (figure 3). Customers

will implement the BI Accelerator on preconfigured hard-

ware that can be plugged into their existing SAP landscape.

In an adaptive landscape, accelerator instances will be repli-

cated as required, by cloning services, and they will form

groups with master and backup servers and additional co-

hort servers. The master servers will handle both indexing

and search load; the cohorts will handle only query load.

Such groups can be optimized for both high availability and

good load balancing, with the overall goal being the require-

ment of zero administration.

Figure 3. Multiserver Architecture for Scala-
bility

The accelerator engine usually partitions large tables

horizontally for parallel processing on multiple machines in

distributed landscapes (figure 4). This enables it to handle

very large data volumes and yet stay within the limits of in-

stalled memory. The engine splits such large volumes over

multiple hosts, by a round-robin procedure to build up parts

of equal size, so that they can be processed in parallel. A

logical index server distributes join operations over partial

indexes and merges the partial results returned from them.

This scalability enables the accelerator to run on commodity

computing infrastructures, such as blade servers over which

load can be redistributed dynamically.

Figure 4. Horizontal Partitioning of Indexes
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Main Memory Data Structures

In a traditional database, all the data in a table is organized

in complete rows. The BIA engine decomposes table data

vertically into columns that are stored separately, thereby

using memory space more efficiently than with row-based

storage, since the engine needs to search only in relevant at-

tributes. Column-wise storage has proven to be appropriate

for data analytics scenarios, where most users want to see

only a selection of data and attributes. The engine can also

sort the columns individually to bring specific entries to the

top.

Data for the accelerator is compressed using integer cod-

ing and dictionary lookup. Integers represent the text or

other values in table cells, and the dictionaries are used to

replace integers by their values during post-processing. In

particular, each record in a table has a RowID, and each

value of a characteristic or an attribute in a record has a

ValueID (figure 5). Dictionary-based compression schemes

greatly reduce the average volumes of processed and cached

data, which allows more efficient numerical processing and

smart caching strategies. Altogether, data volumes and

flows are reduced in typical customer scenarios by an av-

erage factor of ten. The overall goal of this reduction is to

improve the utilization of memory space and to reduce I/O

within the accelerator. These techniques enable the acceler-

ator to perform fast read and search operations on mass data

and yet remain within the constraints imposed by installed

memory.

Dictionary

RowId ValueId
1 3

2 4

3 3

Attribute Table

ValueId Value

1 IBM

2 Microsoft

3 Google

4 Sun

5 Novell

… …

0000 0010 

0000 0101 

0000 … 

0000 …

…

0000 0010  0000 0101  0000 …  0000 …

4 x 8-bit values can be
concatenated to one
32-bit integer

Int 1 Int 2 Int 3 Int 4

1 328 2416Bit #

3 3

4 2

5 3
6 1

7 3
8 2

9 2
10 5

… …

Figure 5. Data Compression Using Integers

To handle updates to the accelerator index structures,

the accelerator uses a delta index mechanism that stores

changes to an index structure in a delta index, which resides

next to the main index in memory. The delta index struc-

ture is optimized for fast writes and it is small enough for

fast searches. The engine performs searches within an index

structure in parallel over both the main index and the delta

index and then merges the results. From time to time, to

prevent the delta index from growing too large, it is merged

with the main index. The merge is performed as a back-

ground job that does not block searches or inserts, so re-

sponse times are not degraded.

3 Data Access in BIA

As shown in our introduction, scanning data and retriev-

ing items satisfying a given filter criterion are the most

performance-critical operations. This section focuses on the

basic mechanisms of accessing data for point-wise access

and for scan-like operations.

Characteristics and Requirements

Since the BIA engine works purely within main memory,

storage efficiency is one of the greatest challenges. Within

the scope of this paper, this characteristic poses two impli-

cations:

• In contrast to classic database systems, the BIA engine

does not have any secondary indexes. This implies that

the evaluation of any filter expressions results in a full

main memory scan of the associated column index.

• Compression schemes are not limited to byte bound-

aries. The system uses only as many bits per value as

necessary to code the number of distinct values.

With regard to the second issue, the system takes advantage

of the acceleration model: the initial number of distinct val-

ues can be retrieved from the primary database; if that num-

ber increases dramatically, the system is able to react by

storing new data in the temporary index and by re-indexing

the affected column with a new coding scheme after the re-

index. The first issue mentioned above implies the need for

highly efficient data access operations in order to extract

values at a given position or to return all values satisfying

a given predicate. The main challenge of these data access

operations is therefore to extract values out of a compressed

storage format–this will be the focus of the remainder of

this paper.

Memory Layout

The BIA system supports coding schemes and extraction

operations for all bit lengths between 1 and 32 to reflect in-

dexes in the global dictionary. This implies the maximum

number of 232 distinct values to be represented within a sin-

gle column. In real scenarios, most columns can be coded

with 5 to 9 bits. For the scope of the following discussion,

we refer to the 15-bit case, which is not word-aligned and

therefore shows all possible access cases. All other cases

either use the same algorithm or they are simpler because

of byte alignment (e.g., 8 bit, 16 bit, 24 bit, and 32 bit).

Figure 6 shows the sample storage layout of individual

values. As can be seen, the first four values are within the

Final edited form was published in "IEEE International Conference on Data Mining Workshops (ICDM Workshops). Pisa, 2008". S. 506-515. 
ISBN 978-0-7695-3503-6 

https://doi.org/10.1109/ICDMW.2008.61

4 
 

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden



42427~ 32766

~ 314155114 128~

063

0

1 ~ 314155114 128~

42427~ 3~

…

1

2

3

42427~ 32766vector[0]:

Mask (0x7FFF): 0000…………………………….0000 111…111

42

42

(a) position 1

42427~ 32766

~ 314155114 128~

063

0

1

42427~ 3~

…

2

3

42427~ 32766vector[0]:

Mask (0x7FFF): 0000…………………………….0000 111…111

42700..00 32766Shift (>> 15):

4

4

(b) position 2

Figure 7. Extracting Values at Pos 1 and 2

42427~ 32766

~ 314155114 128~

42427~ 3~

…

063

0

1

2

3

42427~ 32766vector[0]:

~ 12800..00Shift (>> 60):

~ 314155114 128~Vector[1]:

Mask (0x7FF): 0000…………………………...0000   11…1

128 ~00..00Shift (<< 4): 00..00

vector[0]:

128

128

~ 12800..00

Vector[1]: 128 ~00..00

OR:

00..00

(shifted)

(shifted & masked)

Figure 8. Extracting Value at Position 5

42427~ 32766

~ 314155114 128~

063

314155114 128

42427~ 3~

…

Figure 6. Example Setup for Scan Operations

first 64-bit vector. The 5th value, however, spans two vec-

tors and has to be combined during the extraction process.

Point-Wise Data Access

The first way to access data in main memory retrieves the

value stored at a given position within the index. The input

consists of 64-bit vectors; the output is the value represented

as a 32-bit integer used as an index into the dictionary.

For our running example of the 15-bit case, we can iden-

tify three different situations. In the first case, the position is

aligned with a 15 ∗ 64-bit block. For example, the 1st value

can be directly retrieved by masking out the unused bit po-

sitions (mask vector[0] with 0x7FFF in the 15-bit scenario)

and by inflating the 15-bit value to a 32-bit length. Figure

7a shows this situation.

In the second case, the positions are still within a 64-bit

word. As can be seen in figure 7b, the 2nd value has to

be shifted by 15 bits, followed by the masking and inflation

process equivalent to the first case (shift vector[0] by 15 and

mask with 0x7FFF). Obviously, in order to extract the 3rd

and the 4th values, the 64-bit vector has to be shifted by 30

or 45.

The most interesting case retrieves values at positions

spanning two vectors. In our running example, the 5th value

is comprised of 4 bits from the first vector and 11 bits com-

ing from the second vector (figure 8). In a first phase, the

first vector is shifted and masked in order to retrieve the first

fragment of the final value (shift vector[0] by 60 in the 15-

bit example). Analogous to the first case, the second vector

is masked in order to retrieve the second fragment of the fi-

nal values (mask vector[1] with 0x7FF). After shifting the

second vector by the number of bits coming from the first

vector (shift by 4), both intermediate results are combined.

An inflation step results in the final 32-bit integer value.

Depending on the situation of the required position, one

of the three cases is applied in order to retrieve the values at

a given position.

Data Access Using Scan

As already mentioned, scanning the data and returning the

positions of values satisfying a given value range ((range-
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From <= value < rangeTo)) are the most critical access

patterns. The implementation of the scan obviously exploits

the extraction rules illustrated above. A loop over all po-

sitions and a call of the appropriate extraction method for

the current position have shown a significant performance

degradation. We therefore introduced a special imple-

mentation with unrolled loops and pre-computed bit shifts

and masks for every possible combination. Working on a

15 ∗ 64-bit block level, all matching entries are indicated by

setting the appropriate bits in a 64-bit result vector.

Unrolling all loops and pre-computing all shift and mask

operations show a significant performance advantage. Table

1 states performance figures for different data sizes search-

ing for a single value with a selectivity of 1
255 . The factor of

the performance difference for the 8-bit and the 15-bit case

turns out to be around 3.5− 4, which is indeed significant.

Summary

When working completely within main memory, the need to

utilize memory to the best possible extent is obvious. Cat-

alog compression requires only the storage of index values

and is therefore the building block for more sophisticated

compression schemes. Since every column uses only as

many bits as required to represent the number of distinct

values, the extraction scheme requires significant attention.

While this section has shown the basic extraction process,

we can now concentrate on the implementation details of

this extraction technique using graphic card processors.

4 Scan Using Graphics Card Processor

Modern graphic cards earmark the beginning of the

desktop-parallel computing age by representing the first

widespread parallel architecture on commodity hardware.

The reasonable price in combination with performance op-

timized for arithmetic computation make it extremely inter-

esting for high-speed data mining applications. As a first

step to exploit GPU technology for OLAP and data mining

queries, we investigated the cost/benefit ratio of using GPUs

within the BIA by porting the scan operation introduced in

the preceding section.

4.1 Architectural Approach

Within our experiments, we used a Nvidia GeForce

8800 GTX graphics board with the G80 GPU (1350 MHz).

The G80 consists of 8 Thread Processing Clusters (SIMD

Groups) with 16 ALUs, each providing the opportunity to

execute 16 ∗ 8 = 128 threads in a truly parallel way. The

graphic card was equipped with 768MByte GDDR3 RAM

(memory bus width: 384bit). Communication with the reg-

ular main memory was performed using the PCIe x16 inter-

face, resulting in a theoretic bandwidth of 4GByte/s (half-

duplex). Since moving data from main memory to the local

memory of the graphic card is an additional cost factor, we

measured the real communication bandwidth in a first set of

experiments. Table 2 shows the transfer cost for 512MByte.

Compared to the 62, 5ms in theory, we experienced com-

munication that was slower by a factor of 4 − 6 depend-

ing on the transfer mode (PINNED does prohibit the mem-

ory from being swapped to disk, while PAGED does not

have any restriction on the swapping mechanism). As can

be seen, the PINNED mode reaches only 30% of the theo-

retic bandwidth (and is roughly 30% faster than the PAGED

mode). Nevertheless, our experiments showed a reasonable

communication bandwidth of 1.5−2.5GByte/s (CPU RAM

→ GPU RAM) and 1.25 − 2GByte/s (GPU RAM → CPU

RAM).

Programming Model

Nvidia provides a programming framework to abstract from

implementation details and to release the power of the

SIMD architecture. We therefore also used the Nvidia Com-

pute Unified Device Architecture (CUDA) consisting of a

CUDA toolkit, CUDA SDK, and CUDA runtime driver. A

CUDA application consists of a host-part (C/C++) and the

device code usually called the kernel.

In order to exploit the SIMD flavor of the G80, the ap-

plication has to exploit the extremely light-weight thread

model. Up to 512 threads form a thread block; one or more

thread blocks are executed sequentially on the same multi-

processor. All threads of one block share the 8192 registers

of one multiprocessor and are scheduled by the GPU Thread

Manager to fully occupy the hardware.

Up to 65, 535 thread blocks can be combined to a thread
grid. Thread blocks and thread grids are organized in a

3-dimensional structure used as an addressing scheme for

the instantiation process of a CUDA kernel. This modular

structure and 3-dimensional addressing scheme enables the

application programmer to deploy the system with a well-

designed parallel program layout. In total, the G80 provides

32 truly parallel threads in 4 clock cycles.

Scan Operation

As illustrated in the preceding section, a logical processing

unit (data block) for a k-bit coding scheme consists of k∗32
bit2. For our running example with k = 15 (figure 6), a data

block consists of 480 bit. The obvious choice is to assign

one data block to one kernel in order to perform the decod-

ing process as described before. The individual kernels are

grouped to blocks; the GPU thread manager schedules the

2As of now, Nvidia CUDA is only able to work with 32-bit data types

on devices of computation capability 1.0
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lines unrolled loop factor
8bit 1, 000, 000 8.16ms 27.93ms 3.42

8bit 100, 000 0.815ms 2.799ms 3.43

8bit 10, 000 0.075ms 0.274ms 3.65

15bit 1, 000, 000 7.6ms 29.7ms 3.91

15bit 100, 000 0.756ms 3.071ms 4.06

15bit 10, 000 0.077ms 0.277ms 3.59

Table 1. Runtime Comparison: Loop versus Unrolled Scan Operation

direction transfer mode transfer time resulting bandwidth

– THEORY (8b/10b coded) 62.5 ms 4GByte/s

Host RAM→ GC RAM PINNED 196.3 ms 2.54GByte/s

Host RAM→ GC RAM PAGED 290.7 ms 1.71GByte/s

GC RAM→ Host RAM PINNED 246.8 ms 2.02GByte/s

GC RAM→ Host RAM PAGED 384.3 ms 1.3GByte/s

Table 2. Data Transfer Cost (512MByte, Half-Duplex)

�	�

���

�	�

���

�	�

�����(��)*

�����(��+*

�����(���*tim
e 

in
 m

s

�

	�

���

��� �	
 ��� 	��
27308192 4096 2048

Threads:

Blocks:

Figure 9. Number of Threads per Block

existing blocks and kernel programs. In order to gain max-

imum performance, we implemented separate code blocks

for every bit combination.

The number of threads heavily depends on the kernel

types: since kernels for non-aligned encoding schemes use

multiple registers for their data manipulation, the maximum

number of 512 concurrently running threads cannot be de-

ployed. This deficit can be compensated by a variation of

the number of threads per block. For the 15-bit case, exper-

iments have shown an optional number of 192 threads per

block. In contrast, for an 8-bit case, the maximum number

of 512 threads per block can be generated and obviously

showed the best performance.

Table 3 shows a comparison of runtimes for the 8-bit and

the 15-bit scenario to learn the overhead of non-aligned ker-

nel types. In order to retrieve the same number of values

(and therefore perform the same number of value extraction

operations), the memory size varies for the two situations.

The selectivity of the point search was 1
255 with uniformly

distributed data sets.

As can be seen, the query runtimes increase propor-

tionally with the data volume. Moreover, the 15-bit case

requires between 19% − 56% more time by processing

187.5% data volume of the 8-bit case.

Scan Configuration

The system configuration opens up two directions of pa-

rameterization of the scan operation. On the one hand: the

number of threads per block which alters the number of us-

able registers per thread; one the other hand: the size of

data blocks (k*32 bit with k being the coding parameter)

per thread. In the following, we will show our experience

with regard to these parameters.
Figure 9 shows the query runtimes for an 8-bit cod-

ing scheme with varying number of threads per block for

512MByte raw data. Surprisingly, the resulting query run-

times comparing the extracted values with a single search

value do not exhibit any correlation with the thread/block

configuration.

The second parameter, the size of data blocks per thread,

however, does show a significant impact on query runtimes.

Figure 10 illustrates the behavior of the thread factor, de-

termining the number of data blocks per thread. Within our

experiments, we measured the runtimes with thread factor

values 1, 8, 16, 32, 64, and 128 for different raw data sizes.

As can be seen, the query runtimes get worse with increas-

ing thread factor, i.e., the more threads (with smaller data

sets), the better the query runtime. This behavior is surpris-

ing and can only be explained by the extremely light-weight

thread model. A similar pattern was also experienced with

the 15-bit case.
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raw data size query runtime
no. of extracted values 8-bit case 15-bit case 8-bit case 15-bit case
67, 108, 864 64 MB 120 MB 17.16 20.53
134, 217, 728 128 MB 240 MB 31.77 39.89
268, 435, 456 256 MB 480 MB 50.44 78.95

Table 3. Query Runtime for 8- and 15-bit Case

G80 Xeon
per input integer ˜0.92 ˜14.0
per output integer ˜0.23 ˜3.5
processor speed 1.35 GHz 2.67 GHz

factor 1.0 15.21

Table 5. Number of Processor Cycles
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Figure 10. Number of Data Blocks per Thread

Cost per Filter Criterion

In another setup, we evaluated the cost of an additional filter

criterion. We tackled this question from two perspectives.

First, we were interested in the cost of adding another value

as a filter criterion, i.e., the overhead to test against another

value. In a second step, we looked into the overhead of

different hit ratios. We therefore ran multiple tests with dif-

ferent hit/value ratios. As can be seen in figure 11 for the

8-bit case, a first series considers zero, one, and five hits

for five different filter values; a second series distinguishes

the situation of a hit/no hit for a point query (one single test

value as filter criterion).

Overhead per Filter Criterion In order to compute the

overhead of an additional filter criterion, we refer to the dif-

ference of the 0
5 - and 0

1 -query runtimes resulting in 1.5msec

for 16, 777, 216 entries. Therefore, an additional filter crite-

rion increases the overall query runtime by 9% for the 8-bit

case. For our running example of the 15-bit case, we expe-

rienced a similar overhead, which, however, amounts only

to a relative increase of 6% due to the higher query costs in

general.

Overhead per Hit As can be easily figured out in figure

11, the overhead of a hit amounts to 0.5msec in the 0
5 and

1
5 case normalized to the smallest set of 8, 388, 608 differ-

ent input values; this compares to 7% of the overall query
runtime. In general, we experienced a 7%− 24% overhead

for the 8-bit scenario, and 3%−13% overhead for the 15-bit

case. The minor overhead in the 15-bit case results from the

higher shifting and masking overhead in those un-aligned

bit cases.

GPU versus CPU

As a final test, we measured query runtimes of the GPU-

based implementation of the scan with the (from an algo-

rithmical perspective) identical implementation on a regu-

lar CPU (Intel Xeon X5355 with 2.67GHz and 1333 MHz

Front Side Bus) used in productive SAP NetWeaver BIA

environments. We used a uniformly distributed test set with

255 distinct values and ran a point query on 33, 554, 432
Bytes comprising 134, 217, 728 different values (8-bit cod-

ing scheme). Surprisingly, we experienced a significant per-

formance boost by a factor of 5 and more for the GPU-based

implementation.

In order to be as fair as possible, we ran the test environ-

ment using all 4 cores of the Xeon X5355 CPU as much

as possible by dividing the data set into 4 partitions and

we ran 4 parallel scan operations. As can be seen, using

all cores brings the CPU-based implementation close to the

GPU version; the speed-up of the GPU-based implementa-

tion degrades to 1.29. It is also worthwhile to mention in

this context that a further step to a dual-xenon system with

2x4 cores does not yield any noticeable performance gain

because of higher communication costs between the CPUs.

As a final comparison, we show the number of

CPU/GPU cycles to process the 134, 217, 728 different val-

ues with a selectivity of 1
255 . Table 5 shows the result: the

massive parallel system architecture of the GPU with 128
multiprocessors is far superior (by a factor of 15) to the

Intel Xeon CPU with only 4 cores in this particular setup.

However, we also have to note that the current work on
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processor time in msec factor
Intel Xeon X5355 (1 core) 452 4.96
Intel Xeon X5355 (4 cores) 118 1.29
Nvidia G80 91 1.0

Table 4. Runtime Comparison: GPU versus CPU

a full-scale exploitation of the SSE4.1 feature of the In-

tel CPU Xeon E5430 shows extremely promising results,

which reverses the gathered results in certain situations. Un-

fortunately, an SSE implementation requires a completely

different algorithm design to take full advantage of the vec-

torization capabilities and is therefore not directly compa-

rable to the GPU-based implementation.

Summary

The Nvidia CUDA SDK provides an abstract program-

ming interface that makes it extremely productive to de-

velop GPU-based applications. We conducted a vast set of

experiments using a port of the SAP NetWeaver BIA scan

operation. Within our experiments, we investigated the lay-

out of threads per block and the total number of threads. We

are deeply impressed by the extremely light-weight thread

model, which allowed us to schedule individual threads for

small kernels extracting values out of the smallest possible

data blocks. Our experiments showed significant perfor-

mance gains compared to a classic CPU-based implemen-

tation; however, using OpenMP to exploit all cores of the

CPU, the performance gain degraded to 18% and–with the

help of the SSE technique of Intel and a different algorith-

mic approach–it might even vanish into thin air.

5 Conclusion

Within this paper, we reported our experience in exploit-

ing graphic card processor technology to speed up data min-
ing queries within the SAP NetWeaver BIA. The BIA en-

gine is a highly scalable shared-nothing column store with

two main characteristics. First, all the data is stored in a

compressed form completely within main memory. Second,

a large spectrum of analytical applications ranging from re-

porting via interactive data exploration to data mining use

the same data structures without any explicit or implicit re-

dundancy. In order to cope with these requirements, the

scan and filter operators, i.e., the more performance-critical

operators, have to be awarded with special attention with

regard to an efficient implementation.

We therefore focused on the extraction procedure of bit-

compressed index values referring to the user data dictio-

nary. We showed the main characteristics of point-wise data

access and of the scan operator to retrieve values satisfying

a certain predicate. We also gave details of our implemen-

tation based on a G80 processor found on a Nvidia GeForce

8800 GTX. Our extensive testing showed some surprising

results. First, we were absolutely fascinated by the ex-

tremely light-weight thread scheduling–a necessary prereq-

uisite to exploit the full potential of the 128 multiprocessors

of the G80. Second, we experienced a speed-up of the fac-

tor 5 compared to one core of a Xeon X5355, which is used

in the SAP BIA appliance product.

Although the experiment exploiting graphic card proces-

sor technology to speed up data mining queries by improv-

ing the scan and filter operations showed positive results,

we decided against the general use of graphic cards for the

BIA product. The main reasons are:

• data transfer from main memory to the GPU memory

is not for free and adds to the overall query runtimes;
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• for data-intensive applications like the BIA case, the

graphic card does not have enough memory (even

the current Nvidia Tesla product line only provides

1.5GBytes of local RAM);

• we also experienced a significant energy consumption

of 120−170 Watt in combination with additional cool-

ing overhead.

Although we do not pursue the GPU-based implemen-

tation for SAP’s Netweaver BIA for product development

purposes in the near future, we are convinced that the mas-

sive parallel architecture with the extremely light-weight

thread scheduling mechanism reflects a very powerful and

easy-to-develop hardware platform for many non-standard

database and data mining applications.
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