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Abstract

Manufacturing process development is under constant
pressure to achieve a good yield for stable processes. The
development of new technologies, especially in the field of
photomask and semiconductor development, is at its phys-
ical limits. In this area, data, e.g. sensor data, has to be
collected and analyzed for each process in order to ensure
process quality. With increasing complexity of manufactur-
ing processes, the volume of data that has to be evaluated
rises accordingly. The complexity and data volume exceeds
the possibility of a manual data analysis. At this point, data
mining techniques become interesting. The application of
current techniques is complex because most of the data is
captured with sensor measurement tools. Therefore, every
measured value contains a specific error. In this paper we
propose an error-aware extension of the density-based al-
gorithm DBSCAN. Furthermore, we present some quality
measures which could be utilized for further interpretation
of the determined clustering results. With this new cluster
algorithm, we can ensure that masks are classified into the
correct cluster with respect to the measurement errors, thus
ensuring a more likely correlation between the masks.

1. Introduction

Current technology development is driving measurement
technology to the border of physics and engineering. Es-
pecially in the field of semiconductors and its photolitho-
graphic mask production, the race for the smallest struc-
tures drives sensor technology to new dimensions. Pho-
tolithographic masks are used to imprint the structures on
the wafer for chip production. Chips consist of multiple
layers, and for each layer, a unique mask is needed. Ide-
ally, masks are produced exactly once for every chip de-
sign. Wafer manufacturers are eager to receive a mask as
perfect as possible, since every variance in the structures
on the mask is reflected on every chip produced with the

mask. Therefore, wafer manufacturers define the tolerance
values of the target mask structures for the mask very tight.
Current technology specifies a tolerance value of no more
than 2.5% of the actual structure size. With tools being able
to measure with an accuracy of 0.25% of the actual struc-
ture size, the difference between specified structure size and
measured structure size may suffer from an uncertainty of
up to 10% of the tolerance value. The difference of spec-
ified and measured size is a major attribute for the quality
of a mask. Mask development always tries to optimize the
processes against these process quality measures.

Almost every process step for mask manufacturing is in-
fluenced by the structures on the mask. Cleaning fluids,
for example react differently for masks with only a small
number of structures. For processes to settle, chip manu-
facturers can produce multiple wafers and tune process pa-
rameters with every new wafer until the correct setting has
been found for this product. Ideally, a mask shop produces
exactly one mask per order that can be shipped to the cus-
tomer. Therefore, rules for the determination of manufac-
turing parameters must be built on the basis of historical
masks. To be able to create rules for process parameters,
masks with similar behavior must be found and grouped.

In general, clustering is defined as the problem of par-
titioning multiple data objects into groups. Objects in the
same group have strong similarities with each other, while
objects in different clusters bear weaker or no similaritiess
at all. This definition requires a well-defined distance mea-
sure between data objects that captures intra-cluster simi-
larity. Then, clustering becomes the problem of grouping
data objects. With the help of such clustering algorithms,
the necessary mask equivalence groups can be found. The
selection of attributes used for clustering is one of the key
factors for success of the clustering techniques. The num-
ber of dimensions for clustering used for mask production
can fluctuate from only a few to several hundred, depending
on the specific use case. Most of these values are measure-
ments from sensors containing a specific uncertainty.

Due to the subsequent use of the clustering results in
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important processing steps, the uncertainty included in the
data must be taken into consideration when applying clus-
tering algorithms. For this reason, this paper proposes a
seamless error-aware extension of the density-based clus-
tering technique DBSCAN[3]. Fundamentally, an impor-
tant aspect within this area is the definition of a distance
measure between two uncertain data objects. This defini-
tion is usually of complex nature and in general, one single
distance measure is difficult to determine. Therefore, our
approach creates the opportunity to adjust the used similar-
ity for the clustering in a well-defined way. The advantage
of this approach is that each application is able to specify
a desired similarity measure based on uncertainy. Aside
from presenting this seamless extension, we propose fur-
ther means of quality measures for clusters. These quality
measures enable a more detailed insight into uncertain data
and the computed clustering results. Based on one quality
measure, we propose an extended clustering algorithm in-
cluding a novel similarity measure.

The remainder of the paper is structured as follows: In
the following section, we give a more detailed specification
of the problem. In Section 3, we present our basic error-
aware extension of the density-based clustering algorithm
DBSCAN. In Section 4, we propose new quality measures
and present an approach on how they could be efficiently
used for further data analysis. The paper closes with some
preliminary evaluation results in Section 5, an overview of
related work in Section 6 and with a conclusion in Section
7.

2. Problem Specification

Our specific application scenario is characterized by the
following aspect: Each data object O is represented by a
number of n different captured sensor values Si (1 ≤ i ≤
n). As a result, a data object is described not only by one
single feature vector as an n-dimensional data point but by
an n-dimensional region in which all points within this re-
gion equally likely represent the object (Figure 1). In the
ongoing description, we denote the n-dimensional region
as data region. More formally, a data object O is described
by the following vector:

O = {S1, . . . , Sn, E1, . . . , En}, (1)

where n repesents the number of captured sensor values.
S1, . . . , Sn are the measured sensor values and each Ei
(1 ≤ i ≤ n) represents a complex function as error quantifi-
cation for each sensor value. These error functions depend
on several factors. Moreover, these error functions may
be independent of or dependent on several measured sen-
sor values. Figure 1(b) shows data objects where the error
functions are independent from each other, and therefore,
the shapes of the data regions are hypercubes. However,

Figure 1. Representation of Data Objects

shapes of the data regions may be arbitrary. Within the data
region, we assume that each possible data point represents
the data object with the same probability.

The starting point is now a data set D = {O1, . . . , Om}
containing a number of m different data objects Oj . The
goal of the clustering task is to determine groups of simi-
lar data objects represented by data regions. However, all
well-known distance functions, like the Euclidean or maxi-
mum distance functions, require n-dimensional data points.
These distance functions idealize the data and do not take
the uncertainty into account. To analyze the impact of im-
precise measurement values on the clustering result with
a traditional approach, we conducted a number of exper-
iments. In these experiments, we observed the following
effects: clusters may split, clusters may merge, data points
may jump from one cluster to another, and data points may
fall out of or fall in to a cluster.

For the conducted experiments, we generated a synthetic
two-dimensional data set containing 5 clusters with a Gaus-
sian distribution around the centroids and 100, 000 data
points in total. As illustrated in Figure 2(a), four smaller
clusters are arranged as satellites around a center cluster.
Furthermore, we defined an uncertainty for each dimension
(±1 cm as maximum error). From this original data set, a
number of different data sets are derived by changing the
position of the data point within the data region specified
by the uncertainy. To investigate the uncertainy in detail,
each derived data set includes only points that are moved
by a certain percentage smaller than 100 percent of the al-
lowed maximum. Then, each data set was clustered with
DBSCAN, whereas the values of MinPts and ε are deter-
mined using the proposed heuristic [3].

In the first experiment series, the four satellite clusters
are very close to the center cluster in the original data set,
so that the resulting data regions acoording to the speci-
fied error range functions highly overlap. As we can see in
Figure 2(b), the higher the percentage of the allowed max-
imum by which the points are randomly moved, the more
the clustering results are differ from the clustering result of
the original data sets. The differences between two results
are determined by measuring the disagreement between two
clusteringsC andC ′ as a pair of data points (v, u), such that
C places them in the same cluster, whileC ′ places them in a
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(a) Data Set (b) Satellites dense to Center Cluster (c) Satellites more remote from
Center Cluster

Figure 2. Evaluation of Impact of Uncertainty

different cluster, or vice versa (according to [4]). The graph
runs asymptotically against a fixed number because some
pairs of data points do not change their behavior (always
grouped together or never).

In the second experiment series, the four satellite clus-
ters are more remote from the center cluster. As we can see
in Figure 2(c), smaller uncertainty has less significant im-
pact on the clustering results than in the first experiment
series. The impact increases with increasing uncertainty
(hihger percentage). Again, the graph runs asymptotically
against a fixed number.

To summarize, the presented experiment indicates that
the consideration of error information in the clustering task
could lead to very different clustering results with tradi-
tional clustering algorithms. In the next section, we present
our error-aware density-based clustering algorithm.

3. Error-Aware Extension of DBSCAN

In this section, we present our error-aware extension of
the density-based clustering approach DBSCAN [3]. As al-
ready outlined, our starting data set D consists of m data
objects {O1, . . . , Om}. Rather than describing each object
Oi (1 ≤ i ≤ m) by one single vector as an n-dimensional
data point, we use an n-dimensional region (data region)
in which all points within this region are equally likely to
represent the object.

In order to be able to apply clustering algorithms to such
data regions, a distance model is required. In case of data
regions, we are always able to determine two extreme dis-
tance values between two data regions P andQ: a minimum
distance dmin(P,Q) and a maximum distance dmax(P,Q).
Figure 3 illustrates the two distance measures with an ex-
ample. These two measures are only extremes with regard
to two data objects. If the two data regions intersect each
other, the minimum distance is equal to zero.

Fundamentally, the computation of the maximum dis-
tance and the minimum distance between two data objects
described by n-dimensional data regions of arbitrary shape

Figure 3. Min-Max Distances between P and
Q (two-dimensional example)

is not trivial. In our approach, we assume that we can ap-
proximate these measures either with a minimal bounding
rectangle (MBR) technique or via object sampling. Object
sampling is a common method in the computer graphics
field. A sample frequency defines the density for the sur-
face of data regions. The knots of the resulting meshes on
the objects are used to calculate the distances.

This distance model is now the foundation of our
error-aware DBSCAN (DBSCANEA) clustering approach.
Moreover, our DBSCANEA approach is a seamless ex-
tension of the original DBSCAN [3] approach to process
uncertain data. In a first step, DBSCAN checks the ε-
neighborhood of each data point in the database. If the
ε-neighborhood Nε(o) of a point o contains more than
MinPts elements, the data point o is a so-called core data
point. In our approach, we define a (ε, λ)-neighborhood of
a data region P as follows:

Definition 1 ((ε, λ)-neighborhood of a data region)
The (ε, λ)-neighborhood of a data region P , denoted by
N(ε,λ)(P ), is defined by

N(ε,λ) = {Q ∈ D|dist(P,Q) ≤ ε} (2)

with

dist(P,Q) = (1− λ) ∗ dmax(P,Q) + λ ∗ dmin(P,Q) (3)
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Figure 4. Clustering Results with Different Values for λ

This (ε, λ)-neighborhood definition is of complex na-
ture and introduces a novel correlation parameter λ. Due
to our distance model, we have two extreme distance mea-
sures dmax(P,Q) and dmin(P,Q) between two data re-
gions P and Q. The first measure can be seen as a pes-
simistic distance, while the second measure is a very op-
timistic distance measure for the similarity of two consid-
ered data regions. In general, each value in the range of
[distmin(P,Q), distmax(P,Q)] is also a possible similar-
ity measure. Therefore, our newly introduced parameter λ
enables users to specify a correlation factor to be used in the
determination of the similarity.

Definition 2 (correlation factor λ) The correlation factor,
denoted by λ, is defined as {λ ∈ <|0 < λ < 1}. In this
way, a correlation factor of λ = 1 corresponds to a high
(optimistic) correlation between two data regions, while a
correlation factor of λ = 0 signifies a low (pessimistic) ap-
proach.

The idea behind this correlation factor is to give users
a specialized factor they can easily use to adjust the anal-
ysis to their requirements. Furthermore, the complexity of
DBSCANEA is similar to the orginal DBSCAN approach.
The remaining definitions for the density-based clustering
are as follows:

Definition 3 (directly density-reachable) A data region
Q is directly density-reachable from a data region P with
respect to ε, λ and MinPts if

1. Q ∈ Nε,λ(P ), and

2. |Nε,λ(P )| > MinPts (core data region condition).

Definition 4 (density-reachable) A data region Q is
density-reachable from a data region P with respect to ε, λ
and MinPts if there is a chain of data regions Q1, . . . , Qk
such that Q1 = P and Qk = Q and Qi+1 is directly
density-reachable from Qi for 1 ≤ i ≤ k.

Definition 5 (density-connected) A data region Q is
density-connected to a data region P with respect to ε, λ
and MinPts if there is a data region R such that both Q
and P are density-reachable fromR with respect to ε, λ and
MinPts.

Definition 5 (density-based cluster region) Let D be a
database of data regions. A cluster region CR in D with
respect to ε, λ and MinPts is a non-empty subset of D
satisfying the following conditions:

1. ∀P,Q ∈ D: if P ∈ CR and Q is density reachable
from P with respect to ε, λ and MinPts, then Q ∈
CR

2. ∀P,Q ∈ CR: P is density-connected to Q with re-
spect to ε, λ and MinPts.

Definition 6 (noise) Let CR1, . . . , CRk be the clusters of
the data set D with respect to ε, MinPts, and λ. Then we
define the noise as the set of data regions in the data set D
not belonging to any cluster CRi:

noise = {P ∈ D|∀i(1 ≤ i ≤ k) : P /∈ CRi} (4)

Figure 4 depicts example results of our clustering with
four different values for the correlation factor λ. The er-
ror model was created as a hypercube (symmetric errors
for all dimensions). With an increasing correlation fac-
tor (pessimistic to optimistic), the satellites around C2 (see
Figure4a) in the investigated data set turn into their own
clusters. Since the satellites represent major biasing effects
during a measurement, the clusters make sense. On the
other hand, a drift is recognised as a cluster C1 (see Figure
4(a,b)) with a correlation factor of 0 − 0.50. Beyond this
range, the drift splits into two clusters C1 and C4 (see Fig-
ure 4(c,d)). The parameters ε and MinPts are determined
according to the proposed heuristic in [3].

4. Quality Measures

Our presented DBSCANEA algorithm has three input pa-
rameters: ε, MinPts, and λ. That means the clustering re-
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Figure 5. Similarity Graph

sult depends on those parameters. In this section, we want
to explore the λ parameter in more detail.

Using the λ parameter, users are able to define the sim-
ilarity correlation between data regions used in the cluster-
ing. Therefore, this parameter has a strong impact on the
clustering result. On the other hand, the λ parameter allows
to derive further means of quality measures of clusters: the
cluster stability and the similarity measure.

Cluster Stability

In Section 2, we showed, that data points change their clus-
ter association when we directly add error values to the
points within the error range. As a coarse-grained effect,
merging and splitting of clusters occur. The same effects
are observable in the clustering of data regions using our
DBSCANEA approach with different values of λ.

The cluster stability (CS) is a quality measure for clus-
ters determining the range of correlation factors in which
the cluster is stable. To calculate CS, our clustering algo-
rithm is applied multiple times on the data set. Every time
the algorithm is applied, the correlation factor λ is increased
by a constant factor4λ until the maximal correlation factor
λ = 1 is reached. For the first application of the algorithm,
the correlation factor is either set to an initial value speci-
fied by the user or to zero. After each iteration, the resulting
cluster association is compared to the association of the pre-
vious run with a lower correlation factor. Two clusters are
equal if the difference in the associated data regions is not
larger than δλ with respect to the total number of data re-
gions in the larger cluster.

In general, the interpretation of the cluster stability mea-
sure specifies the degree of robustness of the extracted clus-
ters with respect to the maximum error of the data.

Similarity Measure

Aside from cluster stability, we are able to determine a spe-
cific similarity measure between data regions. This quality
measure determines how close two data regions are asso-
ciated with each other in the clustering. To compute this

Figure 6. Extended Error-Aware Clustering
Approach

specific similarity measure, our proposed DBSCANEA

method is applied several times. With every new applica-
tion, the correlation factor λ is decreased by a constant fac-
tor 4λ from the maximum value λ = 1 to the mimimum
value λ = 0. The similarity measure between two data re-
gions P and Q is computed as follows:

1. During each application of the clustering algorithm,
we compute a local similarity measure. If both data
regions, P and Q, are in the same cluster for the cur-
rently considered correlation factor λ, the local simi-
larity LS is equal to (4λ)(1−λ). The smaller the cor-
relation factor λ (more optimistically), the higher is the
local similarity. If the two data regions do not belong
to the same cluster, the local similarity is set to zero.

2. The global similarity between P and Q is the sum of
all local similarity values with respect to P andQ. The
higher the sum of the local similarity values, the higher
is the similarity of the two data regions. The advantage
of this global similarity measure is that this measure is
computed across several clustering results considering
the uncertainty in different ways.

Now, we are able to assign each pair of data regions a
global similarity measure. The higher the value, the more
similar the data regions are. At this point, we can construct
a graph as illustrated in Figure 5. Each vertex of the graph
represents a data object (data region) of the data set. The
weight of the edge (O1, O2) is the specific similarity be-
tween objects O1 and O2. Using algorithms from the cor-
relation clustering [1] or clustering aggregation area [4, 5],
a global clustering result based on this similarity graph can
be computed.

The advantage of the overall extended error-aware ap-
proach (see Figure 6) is that each uncertain data set is in-
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Figure 7. Influence of the λ Parameter on the
Number of Clusters

vestigated with several local DBSCANEA algorithms con-
sidering the uncertainty in different ways. These local in-
formation are aggregated together to determine a global re-
sult. Our next research tasks focus on the refinement of this
extended error-aware clustering process, including the fol-
lowing steps:

• investigating the parameterization of the local
DBSCANEA algorithms in the context of our whole
approach,
• development and evaluation of several local similarity

functions,
• evaluation of the influence of the value4λ, and
• integration of arbitrary probalitity-density functions

(further specification of data regions) in the determi-
nation process of4λ

5. Evaluation
In this section, we present some evaluation results.

Due to the current early phase of our overall Extended
Error-Aware Clustering Approach (see Figure 6), we can
only show some preliminary evaluation results regarding
DBSCANEA. Figure 7 illustrates the influence of the λ pa-
rameter on the number of detected clusters within the data
set. In this experiment, we used the illustrated data set of
Figure 4(a). As depicted, the number of clusters increases if
the value of the λ parameter increases. Due to our seamless
extension to DBSCAN, our DBSCANEA shows the same
efficiency as the orginal approach. In general, the perfor-
mance depends on the approximation of the mimimum and
maximum distance.

6. Related Work
An overview of state-of-the-art data clustering ap-

proaches is given by Jain et al. in [6]. Well-known al-
gorithms are k-means [2] and DBSCAN [3]. K-means
belongs to the class of partitioning algorithms, while DB-
SCAN is an example of a density-based clustering ap-
proach. However, most of the published data clustering

techniques do not consider data objects with imprecise val-
ues. Kriegel and Pfeile presented a density-based [7] and
a hierarchical density-based clustering approach [8] for un-
certain data. They proposed a fuzzy distance function to
measure the similarity between fuzzy objects. This function
does not express the similarity by a single numerical value.
Instead, the similarity is expressed by means of probability
functions, which assign a numerical value to each distance
value. Based on this fuzzy distance function, we proposed
an extension of the DBSCAN algorithm. Ngai et al. [9] pre-
sented an extension of the k-means algorithm for uncertain
data.

7. Conclusion

In this paper, we presented our basic error-aware exten-
sion to the density-based clustering algorithm DBSCAN to
cluster uncertain data. Moreover, we proposed a novel qual-
ity measure to interpret the clustering results. Furthermore,
we presented a method on how to use a resulting quality
measure to determine a global clustering result. All these
presented concepts are implemented and tested in the field
of mask manufacturing. The first application on real data
showed a significant improvement for the manufacturing
yield in comparison to applications using the classical DB-
SCAN algorithm. Our next steps include (i) the exhaustive
comparison with other algorithms, like [7, 9], and (ii) the
refinement of our Extended Error-Aware Clustering algo-
rithm.
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