

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-794668

Ingo Müller, Peter Sanders, Arnaud Lacurie, Wolfgang Lehner, Franz Färber

Cache-Efficient Aggregation: Hashing Is Sorting

Erstveröffentlichung in / First published in:

SIGMOD/PODS'15: International Conference on Management of Data, Melbourne
31.05.2015. ACM Digital Library, S. 1123–1136. ISBN 978-1-4503-2758-9.

DOI: https://doi.org/10.1145/2723372.2747644

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-794668
https://doi.org/10.1145/2723372.2747644

Cache-Efficient Aggregation: Hashing Is Sorting

Ingo Müller1†‡, Peter Sanders2†, Arnaud Lacurie3‡
Wolfgang Lehner4∗, Franz Färber5‡

†Karlsruhe Institute of Technology, ‡SAP SE, ∗Dresden University of Technology
1ingo.mueller@kit.edu, 2sanders@kit.edu, 3arnaud.lacurie@sap.com,

4wolfgang.lehner@tu-dresden.de, 5franz.faerber@sap.com

ABSTRACT
For decades researchers have studied the duality of hashing and sort-
ing for the implementation of the relational operators, especially for
efficient aggregation. Depending on the underlying hardware and
software architecture, the specifically implemented algorithms, and
the data sets used in the experiments, different authors came to dif-
ferent conclusions about which is the better approach. In this paper
we argue that in terms of cache efficiency, the two paradigms are
actually the same. We support our claim by showing that the com-
plexity of hashing is the same as the complexity of sorting in the
external memory model. Furthermore we make the similarity of
the two approaches obvious by designing an algorithmic framework
that allows to switch seamlessly between hashing and sorting during
execution. The fact that we mix hashing and sorting routines in the
same algorithmic framework allows us to leverage the advantages
of both approaches and makes their similarity obvious. On a more
practical note, we also show how to achieve very low constant fac-
tors by tuning both the hashing and the sorting routines to modern
hardware. Since we observe a complementary dependency of the
constant factors of the two routines to the locality of the input, we
exploit our framework to switch to the faster routine where appro-
priate. The result is a novel relational aggregation algorithm that is
cache-efficient—independently and without prior knowledge of in-
put skew and output cardinality—, highly parallelizable on modern
multi-core systems, and operating at a speed close to the memory
bandwidth, thus outperforming the state-of-the-art by up to 3.7×.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query processing; H.2.4
[Database Management]: Systems—Parallel databases

Keywords
Hashing, sorting, aggregation, grouping, cache-efficient, shared-mem-
ory, robust performance, “group by”, adaptive algorithm

1. INTRODUCTION
GROUPING with AGGREGATION is one of the most expensive rela-
tional database operators, maybe the most expensive one after the
©2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in SIGMOD’15, May
31–June 4, 2015, Melbourne, Victoria, Australia.
DOI: http://dx.doi.org/10.1145/2723372.2747644.

JOIN. It occurs in many analytical queries, e.g., in queries with a
GROUP BY clause in SQL. The dominant cost of AGGREGATION
is, as with most relational operators, the movement of the data. In
the days of disk-based database systems, relational operators were
designed to reduce the number of I/Os needed to access the disk
whereas access to main memory was considered free. In today’s
in-memory database systems, the challenge stays more or less the
same but moves one level up in the memory hierarchy [32]: How
should an aggregation operator be designed such that it uses the
CPU caches efficiently to overcome the bottleneck to the much
slower main memory?

Traditionally, there are two opposite approaches to implement
this operator: hashing and sorting. HASHAGGREGATION inserts the
input rows into a hash table, using the grouping attributes as key and
aggregating the remaining attributes in-place. SORTAGGREGATION
first sorts the rows by the grouping attributes and then aggregates the
consecutive rows of each group. The question about which approach
is better has been debated for a long time and different authors came
to different conclusions about which is the better approach in which
context [3, 7, 19, 26]. The consensus is that HASHAGGREGATION
is better if the number of groups is small enough such that the output
fits into the cache, and SORTAGGREGATION is better if the number
of groups is very large. Many systems implement both operators
and decide a priori which one to use. In this paper we argue that in
terms of data movement, the two paradigms are actually the same.
By recognizing the fact that hashing is sorting, we can construct a
single AGGREGATION operator with the advantages of both worlds.

As a first argument for our claim, we compare the number of
cache line transfers of HASHAGGREGATION and SORTAGGREGA-
TION. We reason in a general external memory model [1], which
holds in the cache setting as well as in the disk-based setting. We
confirm that if implemented naively, the two algorithms indeed ex-
hibit a certain duality with respect to the number of groups. However
with two simple, commonly known optimizations, the respective
drawbacks of both algorithms can be removed. The two approaches
have then exactly the same costs in terms of cache line transfers,
matching the lower bound of MULTISETSORTING in the common
case.

As a second argument for the similarity of the two approaches,
we design an algorithmic framework that allows seamless switching
between hashing and sorting during execution. It is based on the
observation that hashing is in fact equivalent to sorting by hash
value. Since hashing is a special form of sorting, intermediate results
of a hashing routine can be further processed by a sorting routine
and vice versa. This allows us to apply state-of-the-art optimizations
to both routines separately, but still combine them to benefit from
their respective advantages. Furthermore is sorting by hash value
an easy instance of sorting, since hashing makes the key domain

Final edited form was published in "SIGMOD/PODS'15: International Conference on Management of Data. Melbourne 2015", S. 1123–1136, ISBN 978-1-4503-2758-9
https://doi.org/10.1145/2723372.2747644

1

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

http://dx.doi.org/10.1145/2723372.2747644

dense and eliminates value skew. We also discuss how to apply this
framework in the context of column-store database systems and just-
in-time compiled query plans, which are two most commonly used
architectures for analytical workloads.

Furthermore we show how to achieve very low constant fac-
tors for both the hashing and the sorting routine by tuning them
to modern hardware, thus making our analysis in the external mem-
ory model meaningful. The main techniques are wait-free paral-
lelization, enabling super scalar instruction execution, and careful
cache management. This is more important on modern in-memory
database systems than on traditional disk-based systems, since much
fewer CPU instructions can be executed in the time of a cache line
transfer than in the time needed for loading a page from disk. With
our careful tuning, however, we are able to leave the memory access
costs as the main remaining performance bottleneck.

Despite all tuning, there is an intrinsic reason why hashing and
sorting have complementary performance vis-à-vis the locality of
keys in the input: Hashing allows for early aggregation while sort-
ing does not. If several rows of the same group occur close to each
other, hashing aggregates them immediately to a single row. By
reducing very early and possibly by large factors the amount of sub-
sequent work, hashing is much faster than sorting in this case. In
the other case however, i.e., in case of an input with few repeating
keys, the additional effort of trying to aggregate is in vain, so regular
sorting without early aggregation is faster here. Our framework can
exploit this complementarity by effectively detecting locality during
execution and switching to the faster routine when appropriate, thus
putting the insights of the theoretical analysis into practice.

Putting everything together, we obtain a novel relational aggre-
gation algorithm that is optimal in terms of memory access com-
plexity—independently and without prior knowledge of input skew
and output cardinality—and has very low constant factors on mod-
ern hardware. It is cache-efficient, highly parallelizable on modern
multi-core systems, and operating at a speed close to the memory
bandwidth. With our single, robust aggregation operator, the possi-
bly error-prone decision of the optimizer before the query execution
is eliminated. We present extensive experiments on a variety of data
sets comparing our implementation to the state-of-the-art, which we
are able to outperform by up to factor 3.7.

The rest of the paper is organized as follows: In Section 2 we
discuss the complexity of textbook algorithms for external aggre-
gation, followed by a presentation of our algorithmic framework in
Section 3. We continue with tuning our routines to modern hard-
ware in Section 4 and show how their advantages can be combined
in Section 5. The resulting AGGREGATION operator is evaluated in
Section 6. Finally, we compare our contributions to prior work in
Section 7, and make some concluding remarks in Section 8.

2. ANALYSIS OF EXTERNAL AGGREGA-
TION

In this section we analyse the text book aggregation algorithms
briefly mentioned in Section 1 in terms of the number of cache line
transfers they incur. We show that with two simple optimizations,
SORTAGGREGATION and HASHAGGREGATION have in fact the
same costs. This insight will guide the design of our algorithm in
the later sections.

2.1 Analysis of Sort-Based Aggregation
We do the analysis in the external memory model [1] because this
model yields very general results that are applicable for both cache
line transfers and I/Os. The external memory model has the follow-

20 24 28 212 216 220 224 228 232
0

4

8

12

16

·NB M

Number of groups (K)

N
um

be
ro

fc
ac

he
lin

e
tr

an
sf

er
s

SORTAGG

SORTAGGOPT

HASHAGG

HASHAGGOPT

Figure 1: Comparison of aggregation algorithms in the Exter-
nal Memory model for N = 232, M = 216, and B = 16.

ing parameters for the input data and the cache:

N = number of input rows
K = number of groups in the input
M = number of rows fitting into cache
B = number of rows per single cache line

Note that the output will be of size K. The costs of an algo-
rithm are the number of cache line transfers in the worst case—
computations and access to the cache are free.

When applied to CPU caches, the external memory model does
not allow to make as precise performance predictions as it does for
the disk-based setup, for which it was originally conceived. It is still
widely adopted [18, 15, 6, 41, 5] as a formal method to understand
and minimize memory access costs of algorithms and data struc-
tures. In this case the implicit assumption holds that CPU costs can
be reduced or hidden in large parts, for example by making out-of-
cache memory access sequential, eliminating branches, and using
out-of-order execution or vectorization. We will show in Section 4
how to achieve this with the algorithms we propose.

We start with the analysis of SORTAGGREGATION. We use bucket
sort because the analysis is simple, the result is valid for any other
cache-efficient sort algorithm and because it can be easily turned
into a state-of-the-art radix sort, the fastest known type of sort al-
gorithms for dense domains [45, 25, 36]. Bucket sort recursively
partitions the input into buckets until the data is sorted. Then a final
pass over the data aggregates the rows of the same group, which
reside in consecutive memory locations in the sorted input.

We use the tree representing the recursive calls of the algorithm
for the analysis of SORTAGGREGATION, which we develop in three
iterations. The first, simple iteration of the analysis works as fol-
lows: Since we can sort each cache line for free before we write it,
the recursion stops when all partitions have size B, so there are as
many leaves in the call tree as there are cache lines in the input: N

B .
Furthermore the tree has degree M

B since the number of partitions is
limited by the number of buffers that fit into cache. This means that
if we assume that the tree is somewhat balanced, it has a height of⌈

log M
B

N
B

⌉
. Since the input is read and written once per level of the

Final edited form was published in "SIGMOD/PODS'15: International Conference on Management of Data. Melbourne 2015", S. 1123–1136, ISBN 978-1-4503-2758-9
https://doi.org/10.1145/2723372.2747644

2

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

tree and the subsequent aggregation pass reads the input (N
B) and

writes the output once (K
B), the overall costs of SORTAGGREGATION

are roughly:

SORTAGGSTAT(N,K) = 2 · N
B
·
⌈

log M
B

N
B

⌉
+

N
B
+

K
B

The analysis is slightly simplified because it assumes a static
depth of the call tree independently of K. In a second iteration, we
can make the analysis more precise by taking into account the fact
that the keys form a multiset in the cases where K < N. In this case
the recursion actually stops earlier than for the case where K = N.
In fact, the call tree only has min(N

B ,K) leaves, at most one for each
partition, so SORTAGGREGATION needs the following number of
cache line transfers:

SORTAGG(N,K) = 2 · N
B
·
⌈

log M
B

(
min

(
N
B
,K
))⌉

+
N
B
+

K
B

It is known that this is a lower bound for multiset sorting [33], i.e.,
no sort algorithm can do asymptotically less cache line transfers
in the general case. Other than bucket sort, also distribution sort,
sample sort, quicksort, and radix sort achieve this bound, with an
analysis very similar to the above, first shown by Aggarwal and
Vitter [1], as well as variants of heap sort [43] and sorting with
buffer trees [4].

Figure 1 plots the number of cache line transfers as function
of K for N = 232, M = 216, and B = 16, which are typical values
for modern CPU caches. For small K, SORTAGGREGATION needs
one pass for sorting and one pass for aggregating. For larger K, the
number of passes only increases logarithmically. Due to the large
base and the rounding, the logarithm has only values ∈ {1,2,3}
in our plot (corresponding to the steps) and is never larger than
four in most realistic settings. Only for very large K, where K gets
close to N, the K

B cache line transfers for writing the output become
noticeable.

In the third iteration of the analysis, we make a small modifica-
tion to SORTAGGREGATION: we merge the last bucket sort pass
with the final aggregation pass, i.e., instead of writing a cache-line
to memory when the buffer of a partition runs full, we aggregate
the elements of this cache-line to make space. Since there are few
enough groups left in the last pass, this produces the final result
of the current bucket in cache and thus completely eliminates one
pass over the entire data. Furthermore it allows us to hold a factor B
more partitions (M instead of M

B), so there are now only K
B leaves in

the call tree of the algorithm. This optimization requires that inter-
mediate results are of size O(1), which is true for distributive and
algebraic aggregation functions [22], including the most common
ones like COUNT, SUM, MIN, MAX, and AVG, but not for MEDIAN. With
this analysis and a small reorganization of the formula, the number
of cache line transfers made by SORTAGGREGATIONOPTIMIZED
is the following:

SORTAGGOPT(N,K) =
N
B
+2 · N

B

(⌈
log M

B

K
B

⌉
−1
)
+

K
B

The first and the last term correspond to reading the input and
writing the output respectively. The second term corresponds to
writing intermediate results and reading them again in the next level
of recursion.

Figure 1 plots the costs of SORTAGGREGATIONOPTIMIZED. It
shows that the optimization eliminates an entire pass and slightly
delays the necessity of an additional pass due to better cache usage
in the last pass. In particular, for K < M, the algorithm just reads
the data once and calculates the result in cache.

2.2 Analysis of Hash-Based Aggregation
We now analyze the number of cache line transfers that HASHAG-
GREGATION needs. Apart from the K

B cache lines for writing the
result, the algorithm just needs the N

B cache line transfers for read-
ing the input—as long as the resulting hash table fits into the cache,
i.e., K <M, and assuming that intermediate aggregates can be saved
in a state of size O(1) like above. In the other case, if K > M, even
with a perfect cache and without hash collisions, only a fraction of
M
K rows can be in the cache at the same time, so every access to one
of the other rows produces a cache miss (= 1write+ 1read). The
overall number of cache line transfers is therefore:

HASHAGG(N,K) =
N
B
+

{
K
B if K < M
2 ·
(
1− M

K
)
·N otherwise

Figure 1 shows the costs of HASHAGGREGATION: As long as the
output K is small enough to fit into the cache, HASHAGGREGATION
is really fast. However as soon as the cache cannot hold the output
anymore, HASHAGGREGATION triggers a cache miss for almost
every input row, so the number of cache line transfers explodes.

A common optimization to overcome this problem is to (recur-
sively) partition the input by hash value and to apply HASHAGGRE-
GATION on each partition separately. Since each partition contains
only a part of the groups, i.e., since K is reduced, this makes the al-
gorithm work in cache. However the partitioning also entails costs,
which are the same as the partitioning of bucket sort. Consequently
the analysis works the same way as the one for SORTAGGREGA-
TIONOPTIMIZED:

⌈
log M

B

K
B

⌉
−1 partitioning passes plus the read-

ing (N
B) and writing (K

B) of the HASHAGGREGATION pass of the
partitions. In total HASHAGGREGATIONOPTIMIZED needs the fol-
lowing number of cache line transfers:

HASHAGGOPT(N,K) = 2 · N
B

(⌈
log M

B

K
B

⌉
−1
)
+

N
B
+

K
B

Figure 1 shows that HASHAGGREGATIONOPTIMIZED has the
same cost in terms of number of cache line transfers as the optimized
sort-based aggregation above.

2.3 Conclusions from the Analysis
Our analysis shows that SORTAGGREGATION and HASHAGGRE-
GATION have indeed a complementary behavior if implemented
naively: HASHAGGREGATION performs better when the number
of groups is small, while SORTAGGREGATION is more efficient in
the other case. However the respective drawback of both algorithms
can be removed if each of them includes a simple, well-known opti-
mization: doing the aggregation pass together with the last sorting
pass and recursive partitioning as preprocessing respectively. This
suggests that—at least on this level of abstraction—there is no such
thing as a duality between hashing and sorting. In terms of cache
line transfers, the two approaches are actually the same. Note that
since bucket sort matches the lower bound for sorting in the com-
mon case, this reasoning is valid for any other optimal sort algorithm
as well.

Since no algorithm is known to date that requires fewer cache
line transfers than the algorithms presented above, one might even
wonder whether this is an intrinsic property of aggregation itself
rather than being a property of specific algorithms, i.e., whether
there is a lower bound on the cache line transfers needed to compute
an aggregation query. We conjecture that there is indeed such a
bound and that it matches the bound of multiset sorting for the most
interesting parameter ranges, but leave the proof open for future
research.

Final edited form was published in "SIGMOD/PODS'15: International Conference on Management of Data. Melbourne 2015", S. 1123–1136, ISBN 978-1-4503-2758-9
https://doi.org/10.1145/2723372.2747644

3

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Algorithm 1 Algorithmic Building Blocks
1: func PARTITIONING(run: Seq. of Row, level)
2: for each row in run do
3: Rh← Rh∪ row with h = HASH(row.key, level)
4: return (R1, . . . ,RF)

5: func HASHING(run: Seq. of Row, level)
6: for each row in run do
7: table.INSERTORAGGREGATE(row.key, row, level)
8: if table.ISFULL() then
9: tables← tables∪ table ; table.RESET(())

10: return (R1, . . . ,RF) with Ri←
⋃

t∈tables
GETRANGE(t,i)

The insights of this analysis shall be the design principles of the
following sections. We show how to engineer a single aggregation
algorithm similar to the optimized versions of both SORTAGGRE-
GATION and HASHAGGREGATION that has excellent practical per-
formance characteristics independently of the value of K.

3. ALGORITHMIC FRAMEWORK
In this section we present an algorithmic framework for an AGGRE-
GATION operator putting the theoretical insights of the previous
section into practice. The main idea is to design the algorithm like
an integer sort algorithm on the dense hash values with hashing as a
special case used for early aggregation. Furthermore we show how
to achieve wait-free parallelization of the algorithm. Finally we also
discuss how to fit the framework into popular processing models of
modern database systems.

3.1 Mixing Hashing and Sorting
As presented in the previous section, sort-based and hash-based ag-
gregation have the same complexity in the external memory model.
This is very intuitive considering the fact that the two algorithms
have the same high-level structure: they recursively partition the in-
put—either by the keys of the groups or by their hash values—until
there are few enough groups left to process each partition in cache.
However the two approaches are even more similar: the process of
building up a hash table also partitions the input by hash value.

Consequently we can define the following two partitioning rou-
tines, which will be the main building blocks of our framework and
which are shown in Algorithm 1: plain partitioning by hash value
called PARTITIONING (Line 1) and a partitioning routine based on
the creation of hash tables called HASHING (Line 5). Both routines
produce partitions in form of “runs”1: PARTITIONING produces one
run per partition by moving every row to its respective run. HASH-
ING starts with a first hash table of the size of the cache and replaces
its current hash table with a new one whenever it is full. Every full
hash table is split into one run per partition—merely a logical op-
eration since the hash values of one hash partition are stored in a
consecutive range in the hash table.

Note that the working set of both HASHING and PARTITIONING
is strictly limited to the CPU cache. The working set of PARTITION-
ING is limited through its partitioning fan-out, while HASHING has
a limited working set because the hash table size is fixed to the size
of the cache.

We can now combine these two building blocks into a recur-
sive algorithm similar to both SORTAGGREGATIONOPTIMIZED and

1We consciously use the term “run” from the disk-based era, which
was commonly used to denote temporary files for intermediate pro-
cessing results on disk [19].

Algorithm 2 Aggregation Framework
1: AGGREGATE(SPLITINTORUNS(input), 0) . initial call
2: func AGGREGATE(input: Seq. of Seq. of Row, level)
3: if |input|== 1 and ISAGGREGATED(input[0]) then
4: return input[0]
5: for each run at index j in input do
6: PRODUCERUNS← HASHINGORPARTITIONING()
7: R j,1, . . . ,R j,F ← PRODUCERUNS(run, level)
8: return

⋃F
i=1 AGGREGATE(

⋃
j R j,i, level+1)

HASHAGGREGATIONOPTIMIZED. The algorithm is shown in Al-
gorithm 2: The input is first split into runs. Then each run of the
input is processed by one of the two routines selected by HASHING-
ORPARTITIONING (line 6), which produces runs for the different
buckets. Once the entire input has been processed, the algorithm
treats all runs of the same partition as a single bucket and recurses
into the buckets one after each other. With every step of the recur-
sive partitioning, more and more hash digits are in common within
a bucket, thus reducing the number of groups per bucket more and
more. The recursion stops when there is a single run left for each
bucket and in that run, all rows with of same group have been ag-
gregated to a single output row.

Using the hash values as partition criterion has the advantage
that it solves the problem of balancing the number of groups in the
buckets, which was an assumption of the analysis in Section 2. The
hash function distributes the groups uniformly—it makes the key
domain dense and hence the partitioning easier.

The way we use HASHING has also the advantage that it enables
early aggregation [19, 27]. In contrast to the two illustrative al-
gorithms from the previous section, we can now aggregate in all
passes, not just the last. Since HASHING can aggregate rows from
the same group, the resulting hash tables and hence the output runs
are potentially much smaller than the input run, thus reducing the
amount of data for subsequent passes by possibly large factors. It
is important to understand that this does not change the number of
cache lines needed in the worst case, but it is very beneficial in case
of locality of the groups. So one might even wonder why we do not
used HASHING all the time, similarly to recent work on disk-based
systems [23]. As we show in the next section, on modern hardware,
PARTITIONING can be tuned to a 4 times higher throughput than
HASHING, which makes it the better routine in cases where early
aggregation is not helpful.

The fact that our framework supports HASHING and PARTITION-
ING interchangeably not only makes the similarity between the two
approaches obvious but also gives it the power to switch to the
better routine where appropriate: In presence of locality or clus-
ters, our framework can use HASHING, whose early aggregation
reduces the amount of work for later passes. In absence of locality,
we can switch to the faster PARTITIONING instead. The switching
can happen spontaneously during runtime, without loosing work
accomplished so far, and without coordination or planning. Algo-
rithm 2 still uses HASHINGORPARTITIONING as a black box, but
in Section 5, we discuss several switching strategies.

We argue that the design of our framework resembles that of a
sort algorithm. While the similarity to bucket sort from the previous
section is obvious, our framework has similarities with other sort
algorithms as well: Since the bucket of an element is determined
by some bits of a hash function, our algorithm is in fact a radix
sort rather than a bucket sort. Thus hashing turns AGGREGATION
into an instance of integer sorting, which is easier than sorting in
general [45, 25, 36]. Furthermore it repeatedly merges intermediate

Final edited form was published in "SIGMOD/PODS'15: International Conference on Management of Data. Melbourne 2015", S. 1123–1136, ISBN 978-1-4503-2758-9
https://doi.org/10.1145/2723372.2747644

4

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

runs from different parts of the input, so in a way the algorithm is
also similar to merge sort. Finally, hashing can be seen as a variant
of insertion sort, which is commonly used for the leaves of recursive
sort algorithms [14].

An interesting interpretation is the following: The concatenation
of the final runs of our algorithm is a hash table like HASHAGGRE-
GATION would produce but it is built with a sorting algorithm—
which is actually much faster. This suggests that the optimal way to
do hashing is sorting.

Finally the fact that we mix hashing and sorting requires some
technical attention: The buckets may contain rows that were just
copied from the input, but also rows that are already aggregates of
several rows from the input. In order to aggregate two aggregated
values, one needs to use the so-called super-aggregate function [22],
which is not always the same as the function that aggregates two
values from the input. For example the super-aggregate function of
COUNT is SUM. However it is easy to keep some meta-information
associated with the intermediate runs indicating which aggregation
function should be used.

3.2 Parallelization
Apart from cache-efficiency, the design of our framework is also
influenced by the requirement for intra-operator parallelism of large
analytical systems. It allows for full parallelization of all phases
of the algorithm: First, the main loop that partitions the input in
Line 5 of Algorithm 2 can be executed in parallel without further
synchronization since neither input nor output are shared among
the threads. Second, the recursive calls on the different buckets in
Line 8 can also be done in parallel. Only the management of the
runs between the recursive calls (the

⋃
-operations in our pseudo-

code) require synchronization, but this happens infrequently enough
to be negligible.

We use user level scheduling to balance the two axes of paral-
lelism as follows: we always create parallel tasks for the recursive
calls, which are completely independent of each other, while we use
work-stealing to parallelize the loop over the input. It is important to
see that the latter form of parallelization implies that several runs per
bucket are produced (at least one per thread), which in turn implies
another level of recursion. By using work-stealing, our framework
limits the creation of additional work to situations where no other
form of parallelism is available. In particular, parallelizing the main
loop is needed in the following two cases: First it is the only way
to parallelize the initial call of the algorithm and second it allows
for full parallelization even in presence of heavy skew: the buckets
after the first call can be of arbitrarily different sizes because even
an ideal hash function only distributes the groups evenly over the
buckets, but does not affect the distribution of rows into these groups
(which is given by the input). With work-stealing in the main loop
however, our framework can schedule the threads to help with the
large buckets once they have finished their own recursive call.

3.3 System Integration
We now want to discuss how to integrate our operator into the two
prevailing processing models of analytical in-memory database sys-
tems, column-wise processing and just-in-time compiled (JiT) query
plans.

Column-wise processing is the traditional processing model of
column store database systems. It imposes some specific require-
ments for the implementation of aggregation operators. While our
framework fulfills these requirements, this is not true for all aggre-
gation algorithms proposed in the past. In the column store archi-
tecture, the question arises when and how the aggregate columns
should be processed with respect to the grouping columns. The

k1

k2

k0

k2

k3

k1

k0

k2

k1

k0

k1

k2

k3

1

2

0

2

3

1

0

2

1

v0

v1

v2

v3

v4

v5

v6

v7

v8

Σ0

Σ1

Σ2

Σ3

... ...

grouping column aggregate column 1mapping
vector

Figure 2: Column-wise processing.

question has been discussed in the literature for the column store
architecture in general [10, 11, 31], but there are some additional
aspects specific to aggregation.

One possibility for column-wise processing is to process all col-
umns at the same time, similarly to a row store. An aggregation
operator would read the values of a single row from one column
after another, compute the aggregates, and then store them in their
respective result columns one after each other. This approach is
known to have the disadvantage that the data is not processed in
tight loops [11], which results in considerable performance deterio-
ration on modern hardware. Furthermore it effectively decreases the
size of the cache during aggregation: Since all relevant attributes of
a row together are larger than than just a single attribute, less ele-
ments fit into cache, so an aggregation operator needs more passes
for cache-efficient processing.

Another possibility is to do the processing one column at a time,
like it is done for example in MonetDB [10, 31]. With this approach,
aggregation is split into two operators as illustrated by Figure 2: The
first operator processes the grouping column and produces a vector
with identifiers of the groups and a mapping vector, which maps
every input row to the index of its group. The second operator ap-
plies this mapping vector by aggregating every input value with the
current aggregate of the group as indicated by the mapping vector
and is executed once for each aggregate column. This approach is
known to have the disadvantage to require additional memory ac-
cess to write and read the mapping vector. Furthermore it ignores
the insights of our analysis for cache-efficient aggregation: if we ag-
gregate the input values directly to their group in the output column,
we get the same sub-optimal memory access pattern as HASHAG-
GREGATION, producing close to a cache miss for every input row
for large outputs. Since there are often many more aggregate col-
umns than grouping columns, this would even have a worse impact
on performance than inefficient processing of the keys.

The state-of-the-art column-wise processing model was intro-
duced in MonetDB/X100 [11] and combines the advantages of the
above two possibilities by interleaving the processing of the differ-
ent columns in blocks of the size of the cache. Applied to aggre-
gation, this allows to process the columns in tight loops without
materialization of the mapping vector to memory. However we also
need to adopt this model inside the aggregation operator to make
it compatible with our recursive run production. Consequently our
framework operates as follows if used for column-wise processing:

Final edited form was published in "SIGMOD/PODS'15: International Conference on Management of Data. Melbourne 2015", S. 1123–1136, ISBN 978-1-4503-2758-9
https://doi.org/10.1145/2723372.2747644

5

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

While producing a run of the grouping column, both HASHING and
PARTITIONING produce a mapping vector as depicted in Figure 2,
but only for this run. This mapping is then applied to the correspond-
ing parts of the aggregate columns. When the corresponding runs
of all columns have been produced, the framework continues with
the processing of the rest of the input.

One important aspect of this discussion is that not all techniques
for aggregation proposed in prior work are compatible with column-
wise processing. Our two routines, hashing and partitioning, move
every input element directly to its final location, so it is easy to
create the required mapping vector. However it is unclear how to fit
some other routines into this scheme, for example vectorized sorting
networks recently used for joins [7] or software-caching used for
cache-efficient aggregation in row stores [13].

Recent work [35, 17, 34] promises to replace column-wise pro-
cessing by a processing model based on just-in-time compilation
(JiT). In this model, each pipeline of the execution plan of a query
is compiled into a fragment of machine code just before execution,
thus enabling processing in tight loops without decoupling the pro-
cessing of different columns. It is straightforward to fit our frame-
work into this model: The main part of the operator, i.e., the initial
call to the AGGREGATE function of Algorithm 2, is compiled into
the pipeline fragment including (and ending with) the aggregation
operator. When this pipeline ends, all data resides in intermediate
runs in the first level of the buckets. For the recursive function calls,
a second code fragment is compiled, which only contains the code
to process the buckets further. Both fragments contain the code path
of both the PARTITIONING and the HASHING routine from Algo-
rithm 1. Since the runtime decision between the two paths is the
same for the entire run, it is easy to predict by the hardware and
does hence not hurt performance.

4. MINIMIZING COMPUTATIONS
In this section we study the details of the two routines used in our
algorithm: hashing and partitioning. The goal is to bring the be-
haviour of our implementation on real hardware as close as possible
to the idealized external memory machine model. Our analysis and
the algorithmic framework built upon it are only relevant if we turn
the movement of the data into the dominant part of the execution
time by reducing the computational overhead to a minimum (i.e.,
ideally by making it “free”). We show that this is much more diffi-
cult in the cache setting of modern hardware than it used to be in the
disk setting, since the gap between fast and slow memory is much
narrower and small differences in the implementation can change
the performance by factors.

The microbenchmarks that we run in this section are run in the
same experimental setup as the experiments in Section 6.

4.1 Minimizing CPU Costs of Hashing
We conducted a performance comparison of several hash table im-
plementations. It turned out that the simplest approach has the low-
est CPU overhead: a single level hash table with linear probing,
similar to the state-of-the-art dense_hash_map of Google2. We fix
the hash table to the size of the L3 cache and consider it full at
a very low fill rate of 25%. With this configuration, collisions are
very rare or even non-existing with high probability if the number of
groups is more than two orders of magnitude smaller than the cache,
so no CPU cycles are lost for collision resolution. The apparent
waste of memory is in fact negligible because it is limited to one or
very few hash tables per thread in our final algorithm presented in
the next section. Interestingly this is the opposite of what Barber et

2https://code.google.com/p/sparsehash/

me
mc
py

na
ive

, k
ey

na
ive

, h
ash

sw
wc,

ke
y

sw
wc,

ha
sh

sw
wc,

ha
sh

, o
oo

sw
wc,

hash
, o

oo
, 2

lvl

sw
wc,

map
, 2

lvl
0

2

4

6

8

10

12

T
hr

ou
gh

pu
t[

G
B

/s
]

memcpy partitioning

Figure 3: Microbenchmark of degenerated partitioning rou-
tines.

al. [8] recently proposed for JOINs, where denser storage increased
performance. We tried out many different hash functions that are
popular among practitioners and found that for small elements, Mur-
murHash23 is the fastest. On a technical note, we adapted the linear
probing to work within blocks, such that we can cleanly split a table
into ranges for the recursive calls. The final insertion costs of our
implementation are below 6 ns per element. This is roughly 4 times
more than an L1 cache access, but more than an order of magnitude
faster than out-of-cache insertion, where CPU costs are dwarfed by
the costs of cache misses and our reasoning in the external memory
model is meaningful.

4.2 Minimizing CPU Costs of Partitioning
To minimize the CPU costs of the partitioning routine, we use a
technique known from integer sorting for dense domains. A large
body of prior work suggests that this kind of sort algorithms is faster
than comparison based sorting [45, 25, 36], except special cases
such as sorting almost sorted data [12]. With partitioning, integer
sorting is made branch- and even comparison-free, which eliminates
most CPU costs of comparison-based sort algorithm.

The key idea is to use a technique called “software write-com-
bining”, first described by Intel [24] and used by various other au-
thors [7, 38, 42]. Software write-combining is designed to avoid
the read-before-write overhead and to reduce the number of TLB
misses inherent in partitioning [30], which writes to a high number
of memory pages. It consists in buffering one cache line per parti-
tion, which is flushed when it runs full using a non-temporal store
instruction that by-passes the cache. This scheme works best with
256 partitions, so we use this number to split runs into ranges in our
framework. Since the final size of the partitions is unknown before
processing, most authors start with a counting pass to determine
output positions. Wassenberg et al. [42] eliminate this pass using
a trick with virtual memory to over-allocate every partition so that
it can hold the entire input. This is not possible with the memory

3https://code.google.com/p/smhasher/

Final edited form was published in "SIGMOD/PODS'15: International Conference on Management of Data. Melbourne 2015", S. 1123–1136, ISBN 978-1-4503-2758-9
https://doi.org/10.1145/2723372.2747644

6

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

https://code.google.com/p/sparsehash/
https://code.google.com/p/smhasher/

20 24 28 212 216 220 224 228
0

50

100

150

200

cache 256·cache

Target output size (K)

“E
le

m
en

tt
im

e”
=

T
·P

/
N
/C

[n
s]

Pass 2 (hashing)
Pass 1 (hashing)
Pass 0 (hashing)

(a) HASHINGONLY

20 24 28 212 216 220 224 228
0

50

100

150

200

cache 256·cache

Target output size (K)

Pass 1 (hashing)
Pass 0 (partitioning)

(b) PARTITIONALWAYS (2 passes)

20 24 28 212 216 220 224 228
0

50

100

150

200

cache 256·cache

Target output size (K)

Pass 2 (hashing)
Pass 1 (partitioning)
Pass 0 (partitioning)

(c) PARTITIONALWAYS (3 passes)

Figure 4: Breakdown of passes of illustrative aggregation strategies using P = 20 threads.

management of industry-grade database systems, but using a two-
level data structure, a list of arrays, has the same benefit and only
very low overhead, as we show below. We use this technique for
processing not only for the grouping column but also for the aggre-
gate columns as discussed in Section 3.3, since their memory access
pattern is equivalent.

We conducted a series of microbenchmarks to measure the im-
pact of our optimizations. Figure 3 shows the (payload) bandwidth
of different versions of the partitioning routine on uniformly dis-
tributed random data. The first bar shows the bandwidth of a self-
implemented memcpy using non-temporal store instructions as a
reference. The next two bars show the throughput of a naive par-
titioning scheme, once partitioning according to some bits of the
keys themselves (called key) once partitioning according to bits of
the hash function (called hash). The difference between the two
is only small as the throughput is mainly limited by the inherent
TLB misses mentioned before. The next two bars show how soft-
ware write-combining considerably improves performance (called
swwc): The key-variant is 2.9 times faster than the naive counter-
part. The variant partitioning by hash value seems to suffer from
the computational overhead though. However we can benefit from
out-of-order execution by manually unrolling the main loop into
blocks of 16 elements, which are first all hashed and then all put
into their partition buffers. The next bar (denoted ooo) shows that
we gain 24% throughput with this optimization, thus achieving a
3.0 times higher throughput than the naive partitioning routine. Fi-
nally we replace over-allocated output partitions by the two-level
data structure, which lowers performance by roughly 2%. This final
routine runs at 97% of the bandwidth of our memcpy. The last bar
shows the bandwidth of applying the mapping vector to an aggre-
gate column using software write-combining and our two-level data
structure (denoted map). Since reading the mapping vector adds
memory traffic that we do not count as application bandwidth, the
bandwidth here is slightly lower than that of the previous variant,
namely 93% of our measured memory bandwidth.

To sum things up, like in the case of hashing, partitioning of both
grouping and aggregate columns can be tuned to modern hardware
such that the inevitable movement of the data remains the dominant
part of the processing time.

5. ADAPTATION TO LOCALITY
In the previous sections, we describe an algorithmic framework for
designing an aggregation operator similar to a sort algorithm and

how to reduce the CPU costs of two possible subroutines. In this
section, we answer the remaining question of when to select which
of the two.

To that aim we present a series of experiments with naive strate-
gies for selection of one of the two routines that illustrate their re-
spective performance characteristics. Figure 4 shows the results. In
HASHINGONLY the only subroutine used is HASHING (Figure 4(a)),
whereas with PARTITIONALWAYS, the input is always preprocessed
by one or two passes of PARTITIONING before a final HASHING
pass (Figure 4(b) and 4(c)). To keep our implementation simple, we
only allow a single HASHING pass by exceptionally letting its hash
tables grow larger than the cache. This prevents full parallelization
for very small K and cache misses for very large K, but these ef-
fects do not occur in our final algorithm. The experiments are run
on uniformly distributed data.

The first observation that can be made in this experiment is the
fact that HASHINGONLY automatically does the right number of
passes: If K < cache, it computes the result in cache. The subse-
quent merging of the runs of the different threads is insignificant due
to their small size and thus not visible in the plot. Once K > cache,
HASHING recursively partitions the input until the result is com-
puted in cache and the recursion stops automatically. For PARTI-
TIONALWAYS this is not the case. Since it does not aggregate dur-
ing partitioning, it can only be used as preprocessing and external
knowledge is necessary to find the right depth of recursion before
the final HASHING pass.

The second observation is that PARTITIONING is much faster than
HASHING if K > cache, i.e., if the latter produces more than one run
(by more than factor 4 in our experiments). In this case HASHING
suffers from its non-sequential memory access and wasted space
and hence wasted memory transfers intrinsic to hash tables. Further-
more, as discussed in Section 2, as soon as there are only slightly
more groups than fit into one hash table, chances are very low to
find two elements with the same key, so the amount of data is not
reduced significantly. In contrast PARTITIONING achieves a high
throughput independently of K thanks to the tuning from the previ-
ous section.

In the case of uniformly distributed data, the best strategy is ob-
vious: use PARTITIONING until the number of groups per partition
is small enough such that HASHING can do the rest of the work
in cache. However it is not clear how to find out when this is the
case if K is not known. Furthermore the best strategy is less obvi-
ous with other distributions: consider a clustered distribution with

Final edited form was published in "SIGMOD/PODS'15: International Conference on Management of Data. Melbourne 2015", S. 1123–1136, ISBN 978-1-4503-2758-9
https://doi.org/10.1145/2723372.2747644

7

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

a high locality where each key mostly occurs in one narrow region
of the input. HASHING is then able to reduce the amount of data
significantly although the entire partition has more groups than fit
into cache. Hence HASHING can be the better choice even before
the last pass if the ratio of input data size to output data size high
enough.

This leads us to defining an ADAPTIVE strategy. The algorithm
starts with HASHING. When a hash table gets full, the algorithm
determines the factor α := nin

nout
by which the input (run) has been

reduced, where nin is the number of processed rows and nout the
size of the hash table. If α > α0 for some threshold α0, HASHING
was the better choice as the input was reduced significantly, so the
algorithm continues with HASHING. Otherwise it switches to PAR-
TITIONING. The parameter α0 balances the performance penalty of
HASHING compared to PARTITIONING with its benefit of reducing
the work of later passes. We show how we determine this machine
constant in Appendix A.1. When enough data was processed with
the faster PARTITIONING routine such that the overhead of the (inad-
equate) HASHING is amortized, i.e., when nin = c · cache for some
c, the algorithm switches back to its initial mode in case the dis-
tribution has changed. In experiments shown in Appendix A.2, we
found c = 10 to be a good compromise between amortization effect
and reactivity to distribution changes.

Figure 5 shows the performance of ADAPTIVE compared to the
illustrative strategies from Figure 4. It shows that ADAPTIVE auto-
matically partitions the input using PARTITIONING until HASHING
can process each partition in cache—without knowing K in advance.
Consequently its performance corresponds piecewise to the best of
the other strategies. If K < cache (or K/256i < cache for pass i),
each thread only works with a single hash table, which never runs
full. If however the input does not fit into one hash table, input is
partitioned with the faster PARTITIONING routine first. The fact that
PARTITIONING is interleaved with occasional HASHING to check
whether the distribution has changed has only low overhead and is
barely noticeable for K < 256 · cache. In the following section, we
show that ADAPTIVE not only works well on uniform data, but has
a robust performance on many distributions.

We see the main advantage of our approach in the fact that it com-
bines the respective advantages of two complementary routines by
switching between them based on a simple, local criterion. No com-
pleted work is ever thrown away; no extra work or preprocessing is
necessary; no potentially unprecise information from the optimizer
is needed; no synchronization is needed among the threads. In fact
the different threads do not even need to take the same decision:
they can benefit from changing locality or clusteredness in the in-
put by aggregating where the locality is high and partitioning first
where it is low.

6. EVALUATION
In this section we evaluate the effectiveness of our algorithm design,
assess the quality of our implementation, and compare the perfor-
mance of our operator with previous work.

We implemented our algorithm for column-wise processing, but
argue that the experiments have a certain validity for the JiT process-
ing model as well: Where not otherwise mentioned, the experiments
are run just on the grouping column, so the inner loops of both pro-
cessing models are exactly equivalent.

6.1 Test Setup
We run the experiments on two Intel Xeon E7-8870 CPU4 with
256 GB of main memory. They run at 2.4 GHz and have 10 cores

4http://ark.intel.com/products/53580

20 24 28 212 216 220 224 228
0

50

100

150

200

cache 256·cache

Target output size (K)

“E
le

m
en

tt
im

e”
=

T
·P

/N
/C

[n
s]

HASHINGONLY

PARTITIONALWAYS (2 passes)
PARTITIONALWAYS (3 passes)

ADAPTIVE

Figure 5: ADAPTIVE strategy in comparison with HASHING-
ONLY and PARTITIONALWAYS (2 and 3 passes) using P = 20
threads.

each. Each core has 64 kB of private L1 cache, 256 kB of private
L2 cache, and access to a shared 30 MB on-chip L3 cache (3 MB
per core). The TLB of the CPUs have two levels, the first of which
have 64 entries for data and 128 for instructions and the second 512
entries for both combined. The operating system is SLES 11.3 with
Linux kernel 3.0.101 for x86_64. We use GCC 4.8.3 as compiler
using -O3 -march=native optimizations.

Our data sets consist of N = 231 rows where all columns are
64-bit integers. If not otherwise mentioned we report run times as
“Element Time” = T ·P/N/C, where T is the total run time, P the
number of cores, and C the number of columns (grouping and aggre-
gate columns combined). This metric represents the time each core
spends to process one element and makes numbers of different con-
figurations easily comparable—among themselves and to known
machine constants such as the time of a cache miss.

All presented numbers are the median of 10 runs.

6.2 Scalability with the Number of Cores
We first assess the parallelization mechanisms of Section 3.2 and
the quality of our implementation in terms of scalability with the
number of cores. Figure 6 shows the speedup of ADAPTIVE for dif-
ferent numbers of groups K compared to its respective performance
on a single core. As the plot shows, the speedup is around 16 on our
20 CPU cores no matter K, which is as close to optimal speedup as
practical implementations usually get. Section 6.5 also shows the
experiments with other distributions, where we found our algorithm
to perform just as well. Finally we also ran this experiment with
concurrent dummy threads on the idle cores in order to simulate
a real system under load: If the dummy threads loop over their re-
spective 3 MB of cache to keep the cache warm, the performance of
our algorithm is not influenced since its threads only rely on their
respective part of the cache. However if the dummy threads run
an out-of-cache memcpy, the performance of our algorithm deteri-
orates by up to factor two, confirming that memory bandwidth is
the main bottleneck our algorithm faces. The good scalability in
all situations does not come to a surprise, since the threads of our
algorithm do not share any resources and synchronize only at a very
coarse granularity.

Final edited form was published in "SIGMOD/PODS'15: International Conference on Management of Data. Melbourne 2015", S. 1123–1136, ISBN 978-1-4503-2758-9
https://doi.org/10.1145/2723372.2747644

8

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

http://ark.intel.com/products/53580

1 4 8 12 16 20
1

4

8

12

16

20

Number of cores (P)

Sp
ee

du
p

optimal
K = 231

K = 226

K = 221

K = 216

K = 211

Figure 6: Speedup of ADAPTIVE compared to single core per-
formance.

6.3 Scalability with the Number of Columns
Figure 7 shows how the number of aggregate columns affects the
performance of ADAPTIVE for different output cardinalities K. Just
for this plot, we use N = 228 input elements to compensate the
memory increase due to the additional columns. The experiment
evaluates the effectiveness of the column-wise processing presented
in Section 3.3, which is designed to process the different columns
independently. Indeed the plot indicates that the run time per ele-
ment is almost the same for any number of columns. As discussed
in Section 4, the processing of the grouping column is a bit more
expensive as the processing of the other columns because of the
hashing and collision resolution, which explains the slightly higher
costs per element with lower number of aggregates.

We also confirmed the scalability of our operator with the number
of columns in experiments with other data distributions omitted here
due to space constraints. Since the number of columns does not
affect the processing cost per element, we run all other experiments
only with a grouping column, i.e., without aggregate columns or
C = 1.

6.4 Comparison with Prior Work
We now show an experimental analysis of several state of the art
algorithms for in-memory aggregation from the work of Cieslewicz
and Ross [13] and Ye et al. [46] and compare them to ADAPTIVE.
Since their work targets the row store architecture (implicitly as-
suming JiT query compilation) while our implementation targets
the column store architecture, we use a DISTINCT query with no
aggregate columns (C = 1) for the comparison. In this type of query,
the input and output data structure are equivalent in both architec-
tures, and our algorithm does not need to produce a mapping vector
for column-wise processing, so the experiments abstracts from all
architectural differences.

We used the original implementations, but made the following
modifications to tune them to this experiment: First we changed
the minimal output data structure size to the size of the L3 cache,
which effectively eliminates collision resolution for small K and
consequently reduces the run time in these cases by up to 25%. Sec-
ond we removed padding and redundant fields in the intermediate
and output data structures, in order to reduce tuple size and hence
memory traffic. This reduces the run time by roughly 20% for large
K and even up by to 50% where the reduction in size makes the
output just fit into cache. The padding originally improved the col-

1 2 4 6 8 10
0

50

100

Number of columns (C)

“E
le

m
en

tt
im

e”
=

T
·P

/N
/C

[n
s]

K = 227

K = 223

K = 219

K = 215

K = 211

Figure 7: Scalability of ADAPTIVE with the number of columns
using P = 20 threads.

lision resolution in the high-throughput cases of small K, but our
first modification improves theses cases even more. Third we re-
placed system mutexes by much smaller spin locks, again to reduce
memory traffic, which also reduces the time by roughly 20% for the
variants using them. Finally we replaced the multiplicative hashing
by MurmurHash2, which we use in our algorithms as well. This has
the same effect on the algorithms from prior work than on ours: a
more predictable performance with up to 20% run time reduction
due to less collisions, but noticeable overhead for small K. Further-
more we exceptionally provide ADAPTIVE with the output size,
which is an information that all algorithms from the shown competi-
tors rely on and which makes our algorithms somewhat faster due
to implementation details (the benefit is only noticeable for large
output cardinalities, i.e., if K ≈ N, and always less than 10%).

Figure 8 shows a comparison of run times on data with uniform
distribution. As we analyze in the following, all algorithms from
prior work have an intrinsic limit in terms of K. They all consist of
a fixed number of passes (either one or two) over the data, which
means that they work well until a certain number of groups, but are
penalized by a high number of cache misses beyond this limit. This
is in line with our analysis of Section 2.

We describe the different algorithms and analyze their perfor-
mance in more detail:

HYBRID (1 pass): Each thread aggregates its part of the input
into a private hash table with a size fixed to its part of the shared
L3 cache. When this table is full, old entries are evicted similarly
to an LRU cache and inserted into a global, shared hash table. This
becomes inefficient as soon as most of the output does not fit into
the private tables, which happens for K > 216 (marked with L3 in
Figure 8).

ATOMIC (1 pass): All threads work on a single, shared hash table
protected by atomic instructions. This approach can suffer from
contention due to concurrent updates as discussed by the original
authors [13], but in the present DISTINCT query without aggregate
columns, virtually no updates occur, so the problem is inexistent. It
reaches its cache efficiency limit when the shared hash table exceeds
the cache size, namely at around K = 219 (marked with ΣL3). This
gives ATOMIC an advantage over all other algorithms for numbers
of groups where it can fit its output into the combined cache while
the shared-nothing approaches cannot.

INDEPENDENT (2 passes): In a first pass, every thread produces
a hash table of his part of the input. In a second pass, the hash tables

Final edited form was published in "SIGMOD/PODS'15: International Conference on Management of Data. Melbourne 2015", S. 1123–1136, ISBN 978-1-4503-2758-9
https://doi.org/10.1145/2723372.2747644

9

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

20 24 28 212 216 220 224 228
0

50

100

150

200

L3 ΣL3 256 ·L3

Target output size (K)

“E
le

m
en

tt
im

e”
=

T
·P

/N
/C

[n
s]

HYBRID

PART.+AGGR.
INDEPENDENT

PLAT

ATOMIC

ADAPTIVE

(a) Single core run time per element

20 24 28 212 216 220 224 228
0

500

1,000

1,500

2,000

L3 ΣL3 256 ·L3

Target output size (K)

T
hr

ou
gh

pu
t=

N
/T

[m
ill

io
n

el
em

en
ts

/s
] HYBRID

PART.+AGGR.
INDEPENDENT

PLAT

ATOMIC

ADAPTIVE

(b) Total throughput

Figure 8: Comparison with prior work of Cieslewicz and Ross [13] and Ye et al. [46] using P = 20 threads.

are split and merged in parallel5. This makes the algorithm similar
to HASHINGONLY with two passes, but since the hash tables of the
first pass can be larger than the cache, both passes can trigger close
to a cache miss per row. This limit is reached when the working set
exceeds the L3 cache fraction corresponding to each thread, namely
roughly at K = 216 for the first pass (marked with L3) and K = 224

for the second (marked with 256 ·L3).
PARTITION-AND-AGGREGATE (2 passes): Similarly to PARTI-

TIONALWAYS with two passes, this algorithm first partitions the
entire input by hash value and then merges each partition into its
part of a hash table. Like our algorithm if limited to two passes
as shown in Figure 4(b), this algorithm cannot do the merging in
a cache-efficient manner if K > 256 · cache = 224 (256 ·L3 in the
plot). Furthermore its partitioning uses the naive implementation as
presented in Section 4 and is therefore slower than ours.

PLAT (Partition with Local Aggregation Table, 2 passes): Simi-
larly to HYBRID, in this algorithm each thread aggregates into a pri-
vate, fixed-size hash table. When it is full, new entries are overflown
into hash partitions, which are merged in a subsequent pass like in
the previous algorithm. This entails the same limit: the merging
becomes inefficient if K > 256 · cache = 224 (marked with 256 ·L3
in the plot). The partitioning in itself is also less efficient than ours,
but in contrary to the previous algorithm, our optimization could
not be applied here, since the private hash tables would destroy the
explicit L1 cache management of software write-combining.

ADAPTIVE (variable number of passes): Our algorithm is the
only algorithm that gracefully degrades with larger K thanks to the
efficient additional passes. Compared to the fastest of the other al-
gorithms, it achieves a speedup of at least factor 2.7 for all K ≤ 221.
The peak speedup factor of 3.7 is achieved at K = 224 where ADAP-
TIVE needs only 41 ns/element while ATOMIC needs 153 ns/element.
Note that this speedup is higher than one usually hopes for for such
a fundamental operator like aggregation, where improvements of
several tens of percent are already worth some effort.

It is also worth noting that the second best algorithm for large

5Note that the time of the second pass was not taken into account
in the original paper [13].

values of K is actually the simplest in terms of cache management:
While the cache-efficiency mechanisms of the other algorithms take
extra time even though they do not work outside the range of K they
were designed for, ATOMIC “just” pays single cache miss per row.

As Figure 8(b) shows, ADAPTIVE is also as least as fast as almost
all other algorithm for other values of K6. The similarity of all algo-
rithms for small K does not come as a surprise, since all hash-based
algorithms do effectively exactly the same in these scenarios. It is in-
teresting to see however that the throughput starts dropping slightly
later for ADAPTIVE than for the other algorithms. The reason is that
the linear probing scheme our algorithms use can store more ele-
ments in the same amount of space than the chaining scheme used
by the other algorithms, which need to store an additional pointer7.
Only for K = 218, ATOMIC can fit the output just into its shared
L3 cache, and is therefore slightly faster than ADAPTIVE, which
already needs a partitioning pass. Since the partitioning is so fast
though, the difference is only very small.

6.5 Skew Resistence
We now extend the experiments on uniform data to other data sets
in order to test the skew resistance of our ADAPTIVE operator. We
use the synthetic data generators of Cieslewicz et al. [13], which
generate input data for any combination of N and K for a series of
distributions with different characteristics (since data cannot have
K = N groups and be skewed at the same time, K is only approxi-
mated). The distributions are namely heavy-hitter, moving-cluster,
self-similar, sorted, uniform, and zipf8. In short, in heavy-hitter, 50%
of all records have the key 1, the others are distributed uniformly
between 2 and K. In moving-cluster, the keys are chosen uniformly
from a sliding window of size 1024. Self-similar is the Pareto dis-
tribution with an 80–20 proportion (also known as 80–20 rule) and
zipf is the Zipfian distribution with exponent 0.5.

6We leave the narrow gap to INDEPENDENT as small open problem.
7This is also the reason why the cache sizes indicated in Figure 8
are off by factor two for ADAPTIVE.
8We omit the distribution sequence because of its similarity to uni-
form.

Final edited form was published in "SIGMOD/PODS'15: International Conference on Management of Data. Melbourne 2015", S. 1123–1136, ISBN 978-1-4503-2758-9
https://doi.org/10.1145/2723372.2747644

10

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

20 24 28 212 216 220 224 228
0

20

40

60

80

100
cache 256·cache

Target output size (K)

“E
le

m
en

tt
im

e”
=

T
·P

/N
/C

[n
s]

heavy-hitter
moving-cluster
self-similar
sorted
uniform
zipf

Figure 9: ADAPTIVE on different data sets using P = 20
threads.

Figure 9 shows the performance of ADAPTIVE on all data sets.
The first and most important observation is that ADAPTIVE is not
slower on the other distribution than uniform. In this sense, uniform
is the hardest distribution for our operator and skew only improves
its performance. Since skew means that some keys occur more often
than others, our operator can benefit from skew by using hashing
for early aggregation of these values.

To show the mechanics of how our algorithm adapts to the skew,
we plot those cases of each distribution with solid markers where
our algorithm uses only hashing in the first phase, while we plot
with hollow markers the cases where it switches to partitioning in
the first phase at least once. This way we can see that on the sorted
data set, ADAPTIVE switches to partitioning only where K ≥ N/2.
Before that point every values is repeated at least 4 times, so every
run of hashing reduces the data by factor α = 4 ≥ α0 or more, so
our algorithm uses hashing for the next run as well. Since all hash
tables are produced in cache and there are only very few of them
except for the largest K, the second pass remains negligible and
makes the run time only grow slowly with larger K. The behaviour
with moving-cluster is very similar, except that the hashing is more
costly due to inferior locality. Since self-similar only exhibits rela-
tively mild skew, the same effect is less pronounced on this data set:
the reduction factor α is only high enough where there are just more
groups that would fit into cache. The run time is consequently very
similar to that of uniform data, except that our algorithm switches
to partitioning slightly later, namely for K ≥ 219. Heavy-hitter even
switches to partitioning at the same point as uniform, so for our algo-
rithm this distribution does not have noticeable skew. In particular it
does not cause contention since there are no shared data structures
in our algorithm. It rather seems like the non-hitter keys are the hard
part of this distribution. The zipf data set is so little skewed that it
is processed just like uniform data. The fact that it takes less time
for the largest K is an artifact intrinsic to the generation of skewed
data as discussed above.

As discussed and shown experimentally in the original papers,
some of the algorithms of Cieslewicz and Ross [13] and Ye et
al. [46] also adapt to skew, but to a lesser degree than ours. All
of them are based on hashing and therefore profit from locality.
However only HYBRID can adapt to changes in locality as occur-

ring in data sets like sorted or moving-cluster since it maintains a
set of “hot” groups similarly to an LRU cache. Furthermore HY-
BRID can be complemented with ATOMIC, which has the best per-
formance of the algorithms known at the time for larger K, as shown
by Cieslewicz and Ross [13]. By using sampling during execution,
they can choose the best of the two algorithms, which is quite ro-
bust but has considerably higher constants than our ADAPTIVE. All
other shown competitors have no mechanism to adapt to changing
locality.

Maybe even more importantly, the authors of above algorithms
do not give mechanisms to adapt to unknown K and rely on a pre-
diction of the optimizer instead. This could be fixed by growing
the data structures on demand, but would be highly non-trivial (if
at all possible efficiently) for the shared data structure of ATOMIC,
which would decrease the performance of their best algorithm for
large K. In contrast, our recursive, run-based algorithm handles any
K transparently.

7. RELATED WORK
We now give a brief overview about other work on AGGREGATION.
The problem has been studied extensively in the disk-based setting.
Many of the algorithms presented in the last decades were built with
an analysis in mind that is similar to ours, thus often consisting of
recursive processing with some optimization for the case of small
output. Examples of early work include a merge-sort with early ag-
gregation by Bitton and DeWitt [9] and a hybrid aggregation by
DeWitt et al. [16], which does as much hash aggregation as possible
during recursive partitioning of the input. Shatdal and Jeffrey [39]
propose to use an algorithm similar to INDEPENDENT for small
results and an algorithm similar to PARTITIONALWAYS for large re-
sults. They either sample to decide on the algorithm beforehand or
switch from hashing to partitioning when the first hash table is full.
This is similar to our switching criterion, but somewhat more naive
and without mechanism to switch back. Helmer et al. [23] maintain
a cache with LRU replacement with “hot” groups for early aggre-
gation and partition the rest recursively similarly to PLAT. Finally
Graefe [20] designed a sort-based aggregation algorithm through
clever scheduling of disk pages such that it behaves like hash-based
aggregation for small cardinalities while keeping its advantage of
recursive processing for large cardinalities. The algorithm was later
implemented by Albutiu et al. [2, 3]. Other techniques can be found
in surveys on the topic [19, 21, 44].

As argued throughout the paper, not all of the techniques from
the disk-based world can be applied directly in the in-memory set-
ting because computations are relatively more expensive in the lat-
ter scenario. However we think that the basic ideas to reduce data
movement are still relevant, so it comes to a surprise that none of
the in-memory algorithms we found is recursive. As dissected in
detail in Section 6, Cieslewicz and Ross [13] and Ye et al. [46]
studied many algorithms in the in-memory setting, but all of them
with a fixed number of passes and the consequent short-comings.
DB2 BLU [37] and HyPer [28] both implement algorithms similar
to PLAT, where aggregation is done in private hash tables if possi-
ble and additional data is overflown to partitions for later merging,
but both of them do not mention recursive processing, so they are
most likely limited as well in the number of groups they can process
efficiently.

Finally it is interesting to note that the Reduce phase of MapRe-
duce is very similar to aggregation. It is therefore not surprising
that Vernica et al. [40] study cache-efficiency and adaptation mech-
anisms for the MapReduce framework remotely similar to ours.

Final edited form was published in "SIGMOD/PODS'15: International Conference on Management of Data. Melbourne 2015", S. 1123–1136, ISBN 978-1-4503-2758-9
https://doi.org/10.1145/2723372.2747644

11

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

8. CONCLUSION
In summary, our work starts with the assumption that even in the in-
memory setting, the movement of data is the hard part of relational
operators such as aggregation. We use an external memory model
to show that HASHAGGREGATION and SORTAGGREGATION are
equivalent in terms of the number of cache lines transfers they incur.
Consequently we design an algorithmic framework based on sorting
by hash value that allows to combine hashing for early aggregation
and state-of-the-art integer sorting routines depending on the local-
ity of the data. We tune both the hashing and the sorting routine
to modern hardware and devise a simple, yet effective criterion of
locality to switch between the two. We show extensive experiments
on different data sets and a comparison with several algorithms from
prior work. Thanks to the combination of optimal high-level design
guided by our theoretical analysis and low-level tuning to modern
hardware, we are able to outperform all our competitors by up to
factor 3.7. We expect work like ours to become of increasing im-
portance in the near future, since memory bandwidth is developing
at a lower rate than processing speed of multi-core CPUs. In par-
ticular we believe that other cache-efficient sort algorithms can be
augmented with early aggregation similar to what we do with bucket
sort, so we invite more work on the duality of hashing and sorting.

Acknowledgments
We would like to thank SAP, the SAP HANA development team,
and the students from the SAP HANA Campus for the fruitful work
environment and helpful discussions and feedback. We would also
like to express our gratitude to Cieslewicz and Ross [13] and Ye et
al. [46] for providing the code of their work.

9. REFERENCES
[1] A. Aggarwal and J. S. Vitter. The Input/Output Complexity of

Sorting and Related Problems. Commun. ACM,
31(9):1116–1127, 1988.

[2] M.-c. Albutiu. Scalable Analytical Query Processing. PhD
thesis, 2013.

[3] M.-C. Albutiu, A. Kemper, and T. Neumann. Massively
Parallel Sort-Merge Joins in Main Memory Multi-Core
Database Systems. In PVLDB, volume 5, pages 1064–1075,
2012.

[4] L. Arge. The Buffer Tree: A New Technique for Optimal
I/O-Algorithms. BRICS, pages 334–345, 1996.

[5] L. Arge, G. S. l. Brodal, and R. Fagerberg. Cache-Oblivious
Data Structures. In Handbook of Data Structures and
Applications, pages 38/1–38/28. 2005.

[6] L. Arge, M. T. Goodrich, M. Nelson, and N. Sitchinava.
Fundamental parallel algorithms for private-cache chip
multiprocessors. In SPAA, page 197, 2008.

[7] C. Balkesen, G. Alonso, J. Teubner, and M. T. Özsu.
Multi-core, main-memory joins: Sort vs. hash revisited. In
PVLDB, volume 7, pages 85–96, 2013.

[8] R. Barber, G. Lohman, I. Pandis, G. Attaluri, N. Chainani,
S. Lightstone, V. Raman, R. Sidle, and D. Sharpe.
Memory-Efficient Hash Joins. In PVLDB, pages 353–364,
2015.

[9] D. Bitton and D. J. DeWitt. Duplicate record elimination in
large data files. TODS, 8(2):255–265, 1983.

[10] P. A. Boncz and M. L. Kersten. MIL primitives for querying a
fragmented world. The VLDB Journal, 8(2):101–119, 1999.

[11] P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100:

Hyper-Pipelining Query Execution. In CIDR, pages 225–237,
2005.

[12] B. Chandramouli and J. Goldstein. Patience is a Virtue:
Revisiting Merge and Sort on Modern Processors. In
SIGMOD, pages 731–742, 2014.

[13] J. Cieslewicz and K. Ross. Adaptive Aggregation on Chip
Multiprocessors. In PVLDB, pages 339–350, 2007.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction To Algorithms. MIT Press, 2001.

[15] E. D. Demaine. Cache-Oblivious Algorithms and Data
Structures. BRICS, page 29, 2002.

[16] D. J. DeWitt, R. H. Katz, et al. Implementation Techniques
for Main Memory Database Systems. In SIGMOD, pages 1–8,
1984.

[17] C. Freedman, E. Ismert, and P.-A. k. Larson. Compilation in
the Microsoft SQL Server Hekaton Engine. IEEE Data Eng.
Bull., 37(1):22–30, 2014.

[18] M. Frigo, C. Leiserson, H. Prokop, and S. Ramachandran.
Cache-oblivious algorithms. In FOCS, pages 285–297, 1999.

[19] G. Graefe. Query evaluation techniques for large databases.
ACM Computing Surveys, 25(2):73–169, 1993.

[20] G. Graefe. New algorithms for join and grouping operations.
Computer Science – R&D, 27(1):3–27, 2011.

[21] G. Graefe, R. Bunker, and S. Cooper. Hash Joins and Hash
Teams in Microsoft SQL Server. In PVLDB, pages 86–97,
1998.

[22] J. Gray, A. Bosworth, A. Lyaman, and H. Pirahesh. Data
cube: a relational aggregation operator generalizing
GROUP-BY, CROSS-TAB, and SUB-TOTALS. In ICDE,
pages 152–159, 1996.

[23] S. Helmer, T. Neumann, and G. Moerkotte. Early Grouping
Gets the Skew. Technical report, 2011.

[24] Intel Corporation. Intel R© 64 and IA-32 Architectures
Optimization Reference Manual. 2009.

[25] D. Jimenez-Gonzalez, J. Navarro, and J.-L. Larriba-Pey.
CC-Radix: a cache conscious sorting based on Radix sort. In
PDP, pages 101–108. IEEE, 2003.

[26] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, et al. Sort vs.
Hash Revisited: Fast Join Implementation on Modern
Multi-Core CPUs. PVLDB, 2(2):1378–1389, 2009.

[27] P.-k. Larson. Grouping and duplicate elimination: Benefits of
early aggregation. Technical report, 1997.

[28] V. Leis, P. Boncz, A. Kemper, and T. Neumann.
Morsel-driven parallelism. In SIGMOD, pages 743–754,
2014.

[29] C. Lemke, K.-U. Sattler, F. Faerber, and A. Zeier. Speeding
Up Queries in Column Stores – A Case for Compression. In
DaWaK, pages 117–129, 2010.

[30] S. Manegold, P. Boncz, and M. Kersten. Optimizing
main-memory join on modern hardware. TKDE,
14(4):709–730, 2002.

[31] S. Manegold, P. Boncz, N. Nes, and M. Kersten.
Cache-conscious radix-decluster projections. In PVLDB,
volume 30, pages 684–695, 2004.

[32] S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizing
database architecture for the new bottleneck: memory access.
The VLDB Journal, 9(3):231–246, 2000.

[33] Y. Matias, E. Segal, and J. S. Vitter. Efficient Bundle Sorting.
SIAM Journal on Computing, 36(2):394, 2006.

[34] F. Nagel, G. Bierman, and S. D. Viglas. Code generation for

Final edited form was published in "SIGMOD/PODS'15: International Conference on Management of Data. Melbourne 2015", S. 1123–1136, ISBN 978-1-4503-2758-9
https://doi.org/10.1145/2723372.2747644

12

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

efficient query processing in managed runtimes. In PVLDB,
pages 1095–1106, 2014.

[35] T. Neumann. Efficiently compiling efficient query plans for
modern hardware. volume 4, pages 539–550, 2011.

[36] O. Polychroniou and K. A. Ross. A comprehensive study of
main-memory partitioning and its application to large-scale
comparison- and radix-sort. In SIGMOD, pages 755–766,
2014.

[37] V. Raman, G. Attaluri, R. Barber, N. Chainani, et al. DB2
with BLU Acceleration: So Much More than Just a Column
Store. In PVLDB, page 773, 2013.

[38] N. Satish, C. Kim, J. Chhugani, A. D. Nguyen, V. W. Lee,
D. Kim, and P. Dubey. Fast sort on CPUs and GPUs. In
SIGMOD, page 351, 2010.

[39] A. Shatdal and J. F. Naughton. Adaptive Parallel Aggregation
Algorithms. In SIGMOD, pages 104–114, 1995.

[40] R. Vernica, A. Balmin, K. S. Beyer, and V. Ercegovac.
Adaptive MapReduce using situation-aware mappers. In
EDBT, page 420, 2012.

[41] J. S. Vitter. External memory algorithms and data structures:
dealing with massive data. ACM Computing Surveys,
33(2):209–271, 2001.

[42] J. Wassenberg and P. Sanders. Engineering a multi-core radix
sort. In Euro-Par, pages 160–169, 2011.

[43] L. Wegner and J. Teuhola. The External Heapsort. TSE,
15(7):917–925, 1989.

[44] J. Wen. Revisiting aggregation techniques for data intensive
applications. PhD thesis, 2013.

[45] Wikipedia. Integer sorting — Wikipedia, the free
encyclopedia, 2015. [Online; accessed 22-January-2015].

[46] Y. Ye, K. A. Ross, and N. Vesdapunt. Scalable Aggregation
on Multicore Processors. In DaMoN, pages 1–9, 2011.

APPENDIX
A. TUNING OF ALGORITHM CONSTANTS
In this section we show how we empirically determine the constants
of the ADAPTIVE algorithm described in Section 5.

A.1 Switching Threshold α0

The parameter α0 balances the performance penalty of HASHING
compared to PARTITIONING with its benefit of reducing the work of
later passes. In order to determine its value for our system, we run
both HASHINGONLY and PARTITIONALWAYS on data sets with
varying skew using our parameterized data generators from Sec-
tion 6.5. For every data set, we observe the value of α = nin

nout
in

the traces of HASHINGONLY. For unclustered distributions like uni-
form, the transition from α = ∞, where all elements fit into the a
single hash table, to the other extreme, α = 1, where all keys are dis-
tinct, is very sharp and only small values of α occur at all. Almost
any value of α0 works in these cases.

However the three distributions moving-cluster, self-similar, and
heavy-hitter can be parameterized to a large range of degrees of spa-
tial locality. In Figure 10, we plot the run times of HASHINGONLY
and PARTITIONALWAYS on different data sets with these distribu-
tions as function of the observed values of α . As expected, for high
values of α and any distribution, HASHINGONLY outperforms PAR-
TITIONALWAYS. In these cases the input of the first pass can be
reduced by large factors, so it exhibits enough spatial locality for
the HASHING routine to be beneficial. For values of α approach-
ing 1, the order of the routines is inverted: it is better to ignore low
locality and use PARTITIONING instead. The desired threshold α0

HASHINGONLY

PARTITIONALWAYS

11020304050

10

15

20

25

30

35

moving-cluster

self-similar

heavy-hitter

Observed α

“E
le

m
en

tt
im

e”
=

T
·P

/N
/C

[n
s]

Figure 10: Determining the cross-over of HASHINGONLY and
PARTITIONONLY.

0 5 10 15 20
0

50

100

150

200

c

“E
le

m
en

tt
im

e”
=

T
·P

/N
/C

[n
s]

K = 227

K = 220

K = 210

Figure 11: Impact of tuning constant c on the run time of ADAP-
TIVE.

should separate the first case from the latter. We observe that the
respective lines of a particular distribution all intersect in the range
of α ∈ [7,16] and use the α with the smallest overall error as value
for α0 in our system, which is roughly 11.

A.2 Ratio of HASHING vs PARTITIONING (c)
The constant c in the ADAPTIVE algorithm controls how long the
PARTITIONING routine is run before the algorithm switches back to
HASHING, which happens after c · cache processed rows. Figure 11
shows the impact of c on the run time of ADAPTIVE for different
K and the uniform data set. For K < cache, such as K = 210 in
the plot, the algorithm never switches to PARTITIONING in the first
place, so c does not have any impact. In the extreme case of c = 0,
the algorithm degenerates into HASHINGALWAYS, which is quite
slow for K > cache (cf. Figure 5). The larger c gets, the more data is
processed with the faster PARTITIONING in the non-leaf recursive
calls, so the more the performance of ADAPTIVE approaches that

Final edited form was published in "SIGMOD/PODS'15: International Conference on Management of Data. Melbourne 2015", S. 1123–1136, ISBN 978-1-4503-2758-9
https://doi.org/10.1145/2723372.2747644

13

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

of PARTITIONALWAYS. This suggests that c = ∞ is the best choice,
i.e., never to switch back.

However, smaller c have the benefit to be able to adapt to chang-
ing distributions, which are likely to occur after UNION ALL oper-
ators or as an artifact of reordering of rows for compression pur-
poses [29]. This benefit is hard to quantify because it depends on
the database system and typical workloads. Because with growing
c the benefit diminishes, a smaller c seems affordable anyway: For

c = 5, the difference to PARTITIONALWAYS is 17% for K = 220

(19% for K = 227), while it is 5% (11%) for c = 10 and still 4%
(5%) for c = 20.

In summary c allows to choose a trade-off between robustness
to changing distributions and maximum throughput. We choose a
rather performance oriented value of c = 10 for the experiments of
this paper, which are all done on data sets of a single distribution,
but suggest a slightly lower value for productive systems.

Final edited form was published in "SIGMOD/PODS'15: International Conference on Management of Data. Melbourne 2015", S. 1123–1136, ISBN 978-1-4503-2758-9
https://doi.org/10.1145/2723372.2747644

14

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

	Introduction
	Analysis of External Aggregation
	Analysis of Sort-Based Aggregation
	Analysis of Hash-Based Aggregation
	Conclusions from the Analysis

	Algorithmic Framework
	Mixing Hashing and Sorting
	Parallelization
	System Integration

	Minimizing Computations
	Minimizing CPU Costs of Hashing
	Minimizing CPU Costs of Partitioning

	Adaptation to Locality
	Evaluation
	Test Setup
	Scalability with the Number of Cores
	Scalability with the Number of Columns
	Comparison with Prior Work
	Skew Resistence

	Related Work
	Conclusion
	References
	Tuning of Algorithm Constants
	Switching Threshold 0
	Ratio of Hashing vs Partitioning (c)

