

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-794598

Tomas Karnagel, Tal Ben-Nun, Matthias Werner, Dirk Habich, Wolfgang Lehner

Big data causing big (TLB) problems: taming random memory accesses
on the GPU

Erstveröffentlichung in / First published in:

SIGMOD/PODS'17: International Conference on Management of Data. Chicago 14.-
19.05.2017. ACM Digital Library, Art. Nr. 6.

DOI: https://doi.org/10.1145/3076113.3076115

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-794598
https://doi.org/10.1145/3076113.3076115

Big Data causing Big (TLB) Problems:
Taming Random Memory Accesses on the GPU

Tomas Karnagel?, Tal Ben-Nun#, Ma�hias Werner†, Dirk Habich?, and Wolfgang Lehner?

?Database Systems Group
Technische Universität Dresden,

Germany
{�rst.last}@tu-dresden.de

#Department of Computer Science
Hebrew University of Jerusalem,

Israel
talbn@cs.huji.ac.il

†Information Services and HPC
Technische Universität Dresden,

Germany
ma�hias.werner1@tu-dresden.de

ABSTRACT
GPUs are increasingly adopted for large-scale database processing,
where data accesses represent the major part of the computation. If
the data accesses are irregular, like hash table accesses or random
sampling, the GPU performance can su�er. Especially when scaling
such accesses beyond 2GB of data, a performance decrease of an
order of magnitude is encountered. �is paper analyzes the source
of the slowdown through extensive micro-benchmarking, a�ribut-
ing the root cause to the Translation Lookaside Bu�er (TLB). Using
the micro-benchmarks, the TLB hierarchy and structure are fully
analyzed on two di�erent GPU architectures, identifying never-
before-published TLB sizes that can be used for e�cient large-scale
application tuning. Based on the gained knowledge, we propose a
TLB-conscious approach to mitigate the slowdown for algorithms
with irregular memory access. �e proposed approach is applied
to two fundamental database operations — random sampling and
hash-based grouping — showing that the slowdown can be dra-
matically reduced, and resulting in a performance increase of up
to 13x.

KEYWORDS
GPU, TLB, Random Memory Access, Virtual Memory, Grouping
ACM Reference format:
Karnagel, Ben-Nun, Werner, Habich, Lehner. 2017. Big Data causing Big
(TLB) Problems: Taming Random Memory Accesses on the GPU. In Pro-
ceedings of DaMoN’17, Chicago, IL, USA, May 15, 2017, 10 pages.
DOI: h�p://dx.doi.org/10.1145/3076113.3076115

1 INTRODUCTION
Graphics Processing Units (GPUs) are increasingly used within
heterogeneous hardware systems for large-scale query processing
in databases [2, 5, 12]. Speci�cally, their hardware parallelism and
memory access bandwidths contribute to considerable speedups.
While most query operations show regular memory access pa�erns,
like table or column scans, some operations exhibit highly irregular

©2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in DaMoN’17, Chicago,
IL, USA
DOI: h�p://dx.doi.org/10.1145/3076113.3076115

data access pa�erns. For example, a hash-based implementation of
the group-by operator on the GPU utilizes data-dependent memory
writes to �ll a hash table [6]. If such operations are developed
without considering all details of the GPU architecture, substantial
slowdowns may occur. Currently, the most signi�cant drop in
performance for this kind of operator can be noticedwhen accessing
GPU data larger than 2GB, which, in some cases, may result in a
≈13.3x runtime decrease (Section 2.1). �is phenomenon has been
previously observed in other works [4, 6], but up to now, only
speculations were made about its origins.

To tackle this performance drop systematically, we examine two
di�erent query operations with irregular access pa�erns in this
paper: random sampling and hash-based grouping. Both operations
show a signi�cant slowdown at 2GB. Based on an in-depth analysis
with respect to the GPU memory hierarchy, we determine that the
performance drop relates to the virtual memory system. Speci�-
cally, we identi�ed the Translation Lookaside Bu�er (TLB) as the
source of this slowdown, where TLB misses cost hundreds of cycles
per memory access. To understand the problem in detail, we formu-
late an elaborate micro-benchmarking methodology that uncovers
the entire TLB hierarchy of a given GPU. �e micro-benchmarks
determine page size, number of TLB entries, number of hierarchy
levels, TLB sharing across GPU multiprocessors, and the miss delay
of each layer.

Using this knowledge, we propose TLB-conscious data access: a
generalized, multi-stage approach for random memory accesses
exceeding the TLB limits. We apply our solution to the two opera-
tions and show a performance bene�t. Generally, we consider two
di�erent GPU architectures in this paper: (1) NVIDIA Kepler [15]
and (2) NVIDIA Pascal [16]. With our benchmarks, we determine
that the TLB hierarchy may vary from device to device. Conse-
quently, we present how this variation is translated to di�erences in
performance with respect to data size, and how the operations can
be tuned to the underlying TLB hierarchy for increased e�ciency.
Our contributions are:

(1) We identify TLB misses to cause potential slowdowns of up
to 13.3x for GPU operations with randommemory accesses.

(2) We propose a micro-benchmarking methodology to e�ec-
tively determine the entire TLB hierarchy for a given GPU.

(3) We present �ndings of an unconventional TLB hierarchy,
including a 3-level TLB and apparently di�erent page sizes.

(4) We propose an easy-to-implement approach to mitigate
the slowdown and show the e�ectiveness in our evaluation,
yielding a performance increase of up to 13x.

Final edited form was published in "SIGMOD/PODS'17: International Conference on Management of Data. Chicago 2017", Art. Nr. 6 , ISBN 978-1-4503-5025-9
https://doi.org/10.1145/3076113.3076115

1

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

DaMoN’17, May 15, 2017, Chicago, IL, USA Karnagel, Ben-Nun, Werner, Habich, Lehner

2 DATABASE GPU-OPERATIONS
In this section, we introduce our two investigated database opera-
tions, using large amounts of memory with an irregular memory
access pa�ern. �e two operations are sampling of random values
and hash-based grouping as used in a group-by operator. In par-
ticular, we present and discuss the initial performance and scaling
behavior with varying data sizes on two di�erent GPU architectures.
Table 1 summarizes the characteristics of the used GPUs.

2.1 Random Sampling
For random sampling, data is accessed at random positions to com-
pute estimations like selectivities or aggregations (min, max, avg),
without reading the full data set. We implemented this behavior
by using a linear congruential generator (LCG) [7] to determine
random data positions. LCGs are light-weight random number
generators and do not add a signi�cant computational overhead.
Each GPU thread performs multiple read-only operations and adds
the values to a sum, resulting in the following execution pa�ern:

for (i = 0; i < 1024; i++)
sum += data[next Random Position()];

Each thread reads 1024 values at random positions and produces
exactly one value as output. �e kernel (GPU function) is started
with enough threads to fully utilize the computational power of
the given GPUs. In our evaluation, we kept the workload �xed, i.e.,
number of threads and memory accesses, but scale the memory
region in which the data accesses are performed. �e results for
our two GPUs are depicted in Figure 1a. As we scale the memory
region, we see two signi�cant decreases in performance for the
Kepler-K80 (region I and II) and one signi�cant decrease for the
Pascal-P100 (region II). Interestingly, the major slowdown starts at
2GB of memory for both GPUs (region II).

2.2 Hash-Based Grouping
Our grouping operation is based on a hash table, in which input
data is aggregated. �e input data can be accessed in a coalesced
and GPU-friendly way, while the hash table accesses are pseudo-
random. To evaluate possible e�ects, we implement a grouping
prototype based on earlier work [6]. In our implementation, a large
column of input data is divided into 128MB chunks, which are stored
in CPU pinned main memory and accessed from the GPU using
zero-copy (Uni�ed Virtual Addressing [14]). We use the Murmur3
hash-function [1] together with a �ll factor of 0.5, assuming that the
number of groups is known or estimated correctly. For hash table
inserts, we use linear probing to access subsequent hash buckets
until we match the current search key or an empty bucket. As

Name Arch. #Cores Mem. size Mem. bandwidth Clock freq.
K80 Kepler 2x2496 2x12GB 2x 240GB/s 875 MHz
P100 Pascal 3584 16GB 732GB/s 1480 MHz
Table 1: GPU properties. �e K80 has two GPUs on one
board, however, we only use a single GPU for our tests to
avoid interferences of both GPUs.

0

1

2

3

4
K80

I

II 13.3x

 3.3x

0

2

4

6

8

0 2 4 6 8 12 16

I

II

P100

m
em

or
y

ac
ce

ss
es

 /
se

c
(b

ill
io

n)

data size (GB)

4.3x

(a) Random Sampling

0.0

0.2

0.4

0.6

0.8
K80

I

II 12.6x

 2.6x

0.5

1.0

1.5

0 2 4 6 8 12 16

I

II

P100

H
T

 in
se

rt
s

/ s
ec

 (
bi

lli
on

)

hash table size (GB)

3.3x

(b) Hash-Based Grouping

Figure 1: Multiple slowdowns for random data accesses.

input data, we only use one column of integer values to minimize
e�ects through data transfers and we build the hash table with two
entries per hash-bucket (value, count) as it would be needed for the
following query:

SELECT value, count (∗) FROM values GROUP BY value;

In our evaluation, the input column has a size of 6GB (≈1.6 billion
values), whereas the values are randomly distributed in a range of
[0, #group). �e number of distinct values (#group) is changing
in the experiments, therefore, we change the size of the accessed
hash table, while keeping the workload constant (always ≈1.6B
hash tables accesses in total). �e results are shown in Figure 1b.
�e performance is similar to the random sampling scenario, with
two decreases in performance for the K80 (region I and II) and
one major decrease for the P100 (region II). �e performance is
overall lower than random sampling, because one hash table insert
includes reading the input value, applying the hash function, and
multiple memory accesses in the hash table through linear probing
to �nd the right hash bucket.

2.3 Result Discussion
To summarize, we observe similar results for random sampling and
hash-based grouping, i.e., a signi�cant performance loss for >2GB
of memory (region II) for both GPUs and a smaller performance
decrease on the K80 in region I. For both GPUs, memory accesses
beyond 2GB are highly feasible, as 2GB are only 1

6 (K80, 12GB per
GPU) or 1

8 (P100, 16GB) of the total available GPU memory.
As the slowdown is similar for both scenarios, we can exclude

possible problem sources like input data access, the use of atomic
functions, or overhead through the random number generation,
as these operations only occur in one of the two applications. As
the problem persists for multiple distinct scenarios, we can also
exclude isolated programming issues. �erefore, the problem must
be caused by the GPU architecture in combination with random
memory accesses, the only common operation for both scenarios.

In our tests, we see that the P100 shows a signi�cantly be�er
performance than the K80, as it has a newer hardware architec-
ture. However, the slowdown for memory accesses >2GB is still
signi�cant with factors of 4.3x for random sampling and 3.3x for
grouping. To avoid this slowdown, we �rst need to identify the
source by examining the GPU hardware architecture in detail.

Final edited form was published in "SIGMOD/PODS'17: International Conference on Management of Data. Chicago 2017", Art. Nr. 6 , ISBN 978-1-4503-5025-9
https://doi.org/10.1145/3076113.3076115

2

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Big Data causing Big (TLB) Problems: Taming Random Memory Accesses on the GPU DaMoN’17, May 15, 2017, Chicago, IL, USA

3 TLB BENCHMARK METHODOLOGY
In the previous section, we have seen a major performance drop
for operations with random memory accesses at around 2GB on
two di�erent GPU architectures. �e main question is now: What
is causing this e�ect? �e L2 data cache can not be responsible for
the problem as its size is 1.5 MB (K80) and 4 MB (P100), far below
the 2 GB border [6]. �rough extensive micro-benchmarking, we
found the virtual address translation and the TLBs to be the source
of our performance slowdown. To determine the necessary TLB
characteristics – properties and sharing between multiprocessors
(SM) of a GPU – we developed two low-level benchmarks1.

3.1 Virtual Memory on GPUs
GPUs use virtual addresses for their device memory for two reasons:
(1) Isolation: �e indirection controls a program’s memory accesses
and, thus, keeps it from disallowed memory accesses to internal
device data or to data of other applications using the same GPU.
(2) Fragmentation: Memory fragmentation can be hidden with vir-
tual pages, allowing a large consecutive region of virtual memory
to be sca�ered across many positions in physical memory. �is can
also increase memory bandwidth if physical memory is sca�ered to
multiple memory chips, which then can be accessed in parallel. �e
translation of virtual to physical addresses is usually performed in
pages, which are �xed blocks of memory. To access data within
one page, a virtual page address is translated to a physical page
address using a page table, while an additional o�set de�nes the
requested position inside the page. Address translation using the
page table is costly. To reduce the page translation delays, TLBs
cache virtual to physical address mappings. Generally, TLBs can
be implemented for di�erent page sizes and di�erent amounts of
entries. Unfortunately, NVIDIA does not publish any information
about TLB sizes of their GPUs.

3.2 TLB property benchmark
To identify the TLB properties such as size or delays, we de�ned a
single-threaded GPU kernel traversing a continuous data array in
a speci�c stride for a speci�c distance (traversed data size), while
performing data dependent accesses (pointer chasing). �e ker-
nel is always executed twice. �e �rst run initializes the memory
by loading data into the TLB, while the second run measures the
execution cycles for memory accesses with initialized TLBs. We
will measure low cycle counts if the data �ts in the TLB (always
TLB hit), while otherwise measuring high cycle counts due to TLB
misses. To eliminate the in�uence of data cache misses, the ac-
cessed data for our kernel is stored in the L2 data cache, which
also works with physical addresses. So even with the data being
cached, the addresses have to be translated. �us, any increase in
our measurements is purely due to TLB misses.

We use our kernel to benchmark a given GPU with multiple
strides and multiple distances, while searching for the pa�ern as
shown in Figure 2. �e depicted pa�ern consists of three stride
sizes (X , 12X , and 2X). If we �nd this pa�ern, we can conclude that
X = paдe size , 12X accesses every page twice, and 2X only accesses
every second page. Each one of these stride sizes shows a low cycle

1Source code is available at: h�ps://github.com/gcoe-dresden/cuda-gpu-tlb

page n page n+1 page n+2 page n+3

Figure 2: TLB Boundary pattern.

count for smaller data sizes and a higher cycle count for larger ones,
hence, this is a TLB border. If the stride size is equal to the page
size (X), every data access requires a new address translation. TLB
misses are encountered when the TLB can not hold all pages of the
�rst execution run (>a in Figure 2).

For a stride size of 1
2X , every �rst access triggers a TLB miss,

while the second access experiences a TLB hit, as it accesses the
same page. A TLB hit is faster than a miss, so the average cycle
count of all accesses is lower than X . However, it still accesses
exactly the same pages as X (each page twice), which leads to
TLB misses at exactly the same traversed data size (position a in
Figure 2). Every stride size smaller than the page size behaves like
1
2X : showing lower cycle counts but experiences the �rst TLB miss
at the same position.

For a stride size of 2X , every second page is accessed, leading to
a TLB miss for double the traversed data size (2a). �e low and high
cycle counts are the same as X , because every access leads to an
address translation and potentially to a TLB miss. Every stride size
larger than the page size behaves like 2X : showing similar cycle
counts, while experiencing the �rst TLB miss at later positions.

3.3 TLB sharing benchmark
Our TLB sharing benchmark uses three stages: (1) accessing N
pages on the i-th multiprocessor SMi , (2) accessing N di�erent
pages on the k-th multiprocessor SMk , and (3) accessing the �rst N
pages again on SMi . N is the number of pages that �t in the TLB,
which should be tested. We measure the used cycles for the last
stage. A low cycle count indicates no sharing between SMi and
SMk , i.e., the accessed pages from the �rst stage are still in the TLB;
whereas a high cycle count indicates TLB sharing, i.e., SMk evicts
the pages loaded by SMi . To determine TLB sharing, we have to
test every SM combination (#SM x #SM) for every TLB level.

4 BENCHMARK APPLICATION AND
OBSERVATIONS

With our TLB benchmarks, we test di�erent stride sizes until we
�nd the pa�ern shown in Figure 2. In the following section, we
present our �ndings separately for the TLB property benchmark
and the TLB sharing benchmark.

Final edited form was published in "SIGMOD/PODS'17: International Conference on Management of Data. Chicago 2017", Art. Nr. 6 , ISBN 978-1-4503-5025-9
https://doi.org/10.1145/3076113.3076115

3

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

https://github.com/gcoe-dresden/cuda-gpu-tlb

DaMoN’17, May 15, 2017, Chicago, IL, USA Karnagel, Ben-Nun, Werner, Habich, Lehner

1 2 3 4 5

235

240

245

250

255

traversed data size (MB)

cy
cl

es

64 KB stride
128 KB stride
256 KB stride

239
cycles

248 cycles

(a) L1 TLB boundary.

100 150 200 250 300

240

260

280

300

320

340

traversed data size (MB)

cy
cl

es

1 MB stride
2 MB stride
4 MB stride

248 cycles

303 cycles

(b) L2 TLB boundary.

1500 2500 3500 4500

250

300

350

400

450

500

550

traversed data size (MB)

cy
cl

es

1 MB stride
2 MB stride
4 MB stride

303
cycles

480 cycles

(c) L3 TLB boundary.

Figure 3: TLB boundary benchmark results for the K80.

10 20 30 40 50 60 70 80

305

310

315

320

325

traversed data size (MB)

cy
cl

es

1 MB stride
2 MB stride
4 MB stride

307
cycles

316 cycles

(a) L1 TLB boundary.

1500 2500 3500 4500

300

350

400

450

traversed data size (MB)

cy
cl

es

16 MB stride
32 MB stride
64 MB stride

316
cycles

426 cycles

(b) L2 TLB boundary.

Figure 4: TLB boundary benchmark results for the P100.

4.1 TLB property benchmark results
K80: �e results for the K80 are shown in Figure 3. We found our
TLB boundary pa�ern three times for the K80, indicating three TLB
levels. Figure 3a shows the L1 TLB with 2MB capacity and a page
size of 128KB, indicating that the L1 TLB has 16 entries.

Figure 3b shows the L2 TLB, which is visible at 130MB as tra-
versed data size. Interestingly, the benchmark identi�es 2MB as
page size, indicating that the L2 TLB has 65 entries. �is means that
the L2 TLB works with a 16x larger page size as the L1 TLB. �is is
also visible in the cycle counts. All stride sizes have the same cycle
counts for data sizes <130MB. �is indicates that all tested stride
sizes access a new page for every data access (no two accesses to
the same page). �is is not the case for data >130MB, which hints
to two di�erent page sizes. �e small noise-like area just around
130MB is probably caused by the TLB cache associativity. Due to
this, some entries can be evicted before the TLB is full and some
entries might stay in the TLB even when more memory is accessed.
�ese associativity e�ects disappear with larger data, when clearly
no entries can be kept in the TLB from the �rst iteration of our
benchmark.

Figure 3c shows our search pa�ern for the L3 TLB, identifying
2MB as page size, 1032 TLB entries, and a traversed data size of
2064MB.

We can thus conclude that the K80 contains three TLB levels,
with apparently di�erent page sizes for the L1 TLB and the L2/L3
TLBs.

P100: �e results for the P100 are shown in Figure 4. We found
our TLB boundary pa�ern twice for the P100, indicating at least two
TLB levels. For the L1 TLB (Figure 4a), the cycle count increases
for 32MB traversed data sizes with a page size of 2MB. �is results
in 16 entries, which is the same amount of entries as for the L1
TLB of the K80. For the L2 TLB, we see the �rst increase in cycles
at around 2080MB for a page size of 32MB, which is 16 times the
size of the smaller page size. Similar to the K80, the P100 has 65 L2
TLB entries and the small noise-like behavior around the L2 TLB
boundary (Figure 4b). Given the similarities to the K80, we assume
that the L3 TLB boundary on the P100 is around 32GB (32MB page
sizes and 1032 entries). Since our tested P100 GPU only contains
16 GB of memory, we can not test this TLB level.

4.2 TLB sharing benchmark results
We also apply our TLB sharing benchmark using the gained knowl-
edge of page sizes and TLB entries. We test every SMi -SMk combi-
nation and mark SM TLB sharing with .

Final edited form was published in "SIGMOD/PODS'17: International Conference on Management of Data. Chicago 2017", Art. Nr. 6 , ISBN 978-1-4503-5025-9
https://doi.org/10.1145/3076113.3076115

4

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Big Data causing Big (TLB) Problems: Taming Random Memory Accesses on the GPU DaMoN’17, May 15, 2017, Chicago, IL, USA

SMi/k

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

(a) L1 TLB sharing.

SMi/k

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

(b) L2 TLB sharing.

SMi/k

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

(c) L3 TLB sharing.

Figure 5: TLB sharing benchmark results for the K80 with 13 SMs (0-12).

SMi/k 0 0

10

10

20

20

30

30

40

40

50

50

(a) L1 TLB sharing.

SMi/k 0 0

10

10

20

20

30

30

40

40

50

50

(b) L2 TLB sharing.

Figure 6: TLB sharing benchmark results for the P100 with 56 SMs (0-55).

K80: In Figure 5a, we see that only the SM itself can evict its L1
TLB entries, resulting in a diagonal pa�ern symbolizing a private
L1 TLB.

For the L2 TLB, two or three SMs can interfere with each other,
i.e., can evict each other’s L2 TLB entries. We found that in general,
the TLB is shared in a group of three SMs and for two groups, only
two SMs share an L2 TLB. �is can be explained by deactivated
SMs on the GPU.�e K80 GPU processor (GK210) is designed for 15
SMs, however, only 13 of them are activated. Based on the pa�ern
from Figure 5b, we can add 2 hypothetical SMs between SM9 and
SM10 to reconstruct a regular pa�ern of three SMs sharing the
L2 TLB as illustrated in Figure 7. Interestingly, the SMs that are
deactivated can be di�erent for every GPU, even if the GPUmodel is
the same. We tested 256 di�erent K80 GPUs and found 11 di�erent
con�gurations, caused by a di�erent combination of deactivated
SMs. �e detailed results of these con�gurations are presented in
Appendix A.

For the L3 TLB in Figure 5c, we see that every SM can evict L3
TLB entries of every other SM, therefore, we assume global L3 TLB
sharing.

P100: For the P100, we can only test the L1 and L2 TLB sharing.
Figure 6a shows the sharing behavior for the L1 TLB and Figure 6b
depicts L2 TLB sharing. Instead of a private L1 TLB, each SM
shares its L1 TLB with another SM. For the L2 TLB sharing, we
observe that the TLB is usually shared between 10 SMs, with the
exception of sometimes only 8 SMs sharing one L2 TLB. Again, this

SMi/k

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

Figure 7: Hypothetical L2 TLB sharing with 15 SMs (hypo-
thetical SMs are highlighted).

Final edited form was published in "SIGMOD/PODS'17: International Conference on Management of Data. Chicago 2017", Art. Nr. 6 , ISBN 978-1-4503-5025-9
https://doi.org/10.1145/3076113.3076115

5

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

DaMoN’17, May 15, 2017, Chicago, IL, USA Karnagel, Ben-Nun, Werner, Habich, Lehner

can be explained with deactivated SMs. On the P100, only 56 SMs
are activated, however, the architecture was designed for 60 SMs.
�erefore, four SMs are deactivated, resulting in the non-uniform
sharing of the L2 TLB. �e reconstructed pa�ern of all 60 SMs is
presented in Appendix B.

4.3 Observation Summary
�e results of our benchmarks are summarized in Table 2 for both
GPUs. �e key observations are:

(1) We found three levels of TLBs for the K80 and two levels
for the P100.

(2) For both GPUs, the di�erent TLB levels apparently use
di�erent page sizes, where the L1 TLB uses a small page
size and the L2/L3 TLB use a 16x larger page size.

(3) Compared to K80, the P100 always has 16x larger pages.
(4) For data larger than 2GB, the K80 has a total delay of 241

cycles, while the P100 only has a 119 cycle delay.

4.4 Plausibility and Validation
As our results show unconventional TLB properties, we discuss
their plausibility below. NVIDIA does not publish any information
about TLB sizes on their GPUs. �us, we have to rely on our results,
but we found �ve points that strengthen our benchmark results:

First, the sizes of the L1 TLB (16 entries) and L2 TLB (65 entries)
for Kepler GPUs (K80) were already reported by Mei et al. [10]
and our measurements con�rm their results. However, the authors
did not report the di�erent page sizes but only the page size of
2MB. �is is understandable, because, even with 2MB strides, an L1
TLB miss occurs a�er 16 accesses. However, we found that smaller
strides (down to 128KB) also need 16 accesses before a TLB miss
occurs, indicating that a 2MB stride would only access every 16th
page.

Second, NVIDIA announced that the P100 GPUs work with 2MB
page sizes [3]. We can con�rm this for the L1 TLB, while the K80
already uses 2MB pages for the L2 and L3 TLB (as shown by [10]).

�ird, the GPU cores are organized in a hierarchy, where one
or more SMs are grouped to a Texture Processing Cluster (TPC)
and multiple TPCs are combined to a Graphics Processing Cluster
(GPC) [16]. �e K80 has 1 SM per TPC and 3 SMs per GPC, while
the P100 has 2 SMs per TPC and 10 SMs (5 TPC) per GPC [16]. For
both GPUs, we see exactly the same hierarchy for our TLB sharing,
indicating that every TPC has its own L1 TLB and every GPC has
its own L2 TLB, while the L3 TLB is shared for all SMs.

Fourth, for both GPUs, we can see a signi�cant performance
drop in our investigated database operations when we access more
data than ≈2GB. Even with di�erent page sizes for both GPUs, we
can pinpoint the problem to the L3 TLB on the K80 and the L2 TLB
on the P100. We can even identify the L2 TLB boundary on the K80,
where performance problems start at ≈130MB.

Fi�h, in [6], the performance of a grouping operator on Kepler
GPUs was improved by reducing the number of threads to <1000
instead of multiple thousands for data accesses beyond 2GB. With
our results, we can explain that this is bene�cial because each
thread can load one page translation in the L3 TLB (1032 entries).
�e page translations stay in the TLB and since the threads use
linear probing in the hash table, the translations can be reused. For

L1 TLB L2 TLB L3 TLB

K8
0

Entries 16 65 ≈1032
Page Size 128 KB 2 MB 2 MB
Cache-able Memory 2 MB 130 MB ≈2064 MB
Delay on Miss ≈9 cycles ≈55 cycles ≈177 cycles
TLB sharing private 3 SM global

P1
00

Entries 16 65 -
Page Size 2 MB 32 MB -
Cache-able Memory 32 MB 2080 MB -
Delay on Miss ≈9 cycles ≈110 cycles -
TLB sharing 2 SM 10 SM -

Table 2: TLB Findings for K80 and P100. ”≈” indicates that
the result is slightly varying or inconclusive.

more threads, page entries would be evicted during linear probing,
resulting inmultiple TLBmisses per hash table access. We evaluated
this approach on the K80 and the P100: (1) on the K80 with 1032
L3 TLB entries, we see the same e�ect, and (2) on the P100, no
performance improvement is visible, as there <65 threads would be
needed to avoid L2 TLB misses, however, these few threads severely
underutilize the GPU and show a bad overall performance.

4.5 Arguments for Unconventional Properties:
�ere are mainly two unconventional results: (1) TLB entry num-
bers not being the power of two and (2) di�erent page sizes for
di�erent TLB levels. �e former was explained by Mei et al. for the
L2 TLB [10]. 65 entries are the result of associativity optimizations,
where six sets hold eight entries and one set holds 17 entries to
store aligned page addresses. �e L3 TLB could have similar opti-
mizations resulting in the unconventional number of 1032 entries.

Di�erent page sizes are already used in some CPU systems,
where they can be stored in the same or di�erent TLBs [11]. How-
ever, each page is allocated in one size or the other. For our results,
di�erent allocation sizes are not possible as all TLBs work with
these allocations. We evaluated the allocation size and found that
the smaller page size is always used for allocations (128KB on K80,
2MB on P100). One possible explanation for the apparently larger
page sizes in the L2/L3 TLB could be a static pre-fetching algorithm,
which always loads 16 contiguous pages when a TLB miss occurs.
�is would result in one TLB miss and 15 TLB hits, when using
the small page size as traversal stride. �erefore, this optimization
signi�cantly reduces TLB misses as most applications with regular
memory access scan large memory regions. For applications (and
our benchmark), this can be interpreted as 16x larger page sizes,
while in fact, only the reloading mechanism works on 16 pages
at once. We have to emphasize that this is only our speculation.
Without knowing the internal hardware con�guration, we state
the measured page sizes in Table 2.

5 TLB-CONSCIOUS DATA ACCESS
As a result of the previous section, we have to ensure a data access
behavior according to the TLB properties for the given GPU to

Final edited form was published in "SIGMOD/PODS'17: International Conference on Management of Data. Chicago 2017", Art. Nr. 6 , ISBN 978-1-4503-5025-9
https://doi.org/10.1145/3076113.3076115

6

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Big Data causing Big (TLB) Problems: Taming Random Memory Accesses on the GPU DaMoN’17, May 15, 2017, Chicago, IL, USA

alleviate the observed slowdown for database operations with ran-
dom memory accesses. To achieve such a data access, we propose
an e�ective approach to reduce TLB misses called TLB-conscious
data access. In this section, we introduce the general idea of our
TLB-conscious data access and describe the application to our two
database operations.

5.1 General Idea
Our overall approach is illustrated in Figure 8. For large memory
regions, we channel the data accesses to be within a sub-section,
which we call TLB scope. A TLB scope is smaller than or equal to the
TLB capacity allowing an adjustment to di�erent TLB properties.
�e data accesses of a GPU kernel are only executed when they
fall within the current TLB scope, while other accesses are ignored.
To access the whole memory region, the GPU kernel needs to be
executed multiple times, whereas each pass uses a di�erent TLB
scope. �is is bene�cial for two reasons: (1) �e large slowdown of
random memory access beyond the TLB capacity is avoided; and (2)
for each kernel pass, only a fraction of the read or write operations
is executed, reducing the overall memory accesses per pass. In total,
we have the same amount of memory accesses compared to the
traditional approach, but there is overhead in form of redundant
computation and additional kernel launches. However, this over-
head should be low compared to TLB misses based on the provided
computational power.

5.2 Application to Random Sampling
We apply our approach to random sampling by changing the kernel
towards accessing a memory location only if it resides in a pre-
de�ned TLB scope, as shown in the following execution pa�ern:

for (i = 0; i < 1024; i++){
position = next Random Position() ;
if (in current TLB Scope(scopeNumber, position))

sum += data[position];
}

Depending on the size of the data and the size of the TLB scope,
the kernel needs to be executed multiple times. For example, 4GB
of data can be divided into two 2GB TLB scopes, therefore, the
kernel has to be executed two times, every time restricted to only
one scope. �e kernel evaluates the access position before any data
access. When starting a kernel pass, the current TLB scope number
needs to be speci�ed. Furthermore, it is crucial to initialize the
random number generator in exactly the same way, to compute the
same random numbers for each execution and the result sum needs
to be kept globally for all kernel executions.

5.3 Application to Hash-Based Grouping
For hash-based grouping, the application is similar, with the dif-
ference that input data also has to be accessed. We propose two
di�erent approaches to apply our TLB-conscious data access: (1) a
naive approach, similar to random sampling, and (2) a copy-based
approach with further optimizations.

S 3

S 2

S 1

GPU Memory Region

. . .

Stop

Stop

(a) First pass

S 3

S 2

S 1

GPU Memory Region

. . .

Stop

Stop

(b) Second Pass

S 3

S 2

S 1

GPU Memory Region

. . .

Stop

Stop

(c) �ird Pass

Figure 8: TLB-conscious data access with multiple passes to
access the whole memory region.

Naive Approach: For the naive approach, the hash table is di-
vided into smaller TLB scopes and the kernel is executed multiple
times. �is avoids L2/L3 TLB misses for the hash table, however,
the input data is scanned multiple times, resulting in multiple zero-
copy transfers over the PCI-Express (PCIe) bus.

Copy Approach: To avoid multiple zero-copy transfers, we can
�rst copy the data to the GPU and then apply the naive approach.
We follow this idea, but merge the copy operation with the �rst
pass over the data for e�ciency (Figure 9). �e �rst pass accesses
the data through zero-copy as before. If data can be wri�en in the
�rst TLB scope, we perform the hash table access. If it needs to
be wri�en to another TLB scope, we store it in a separate memory
bu�er on the GPU to be processed later. All following passes can use
the data already stored on the GPU and avoid the memory transfer.
Storing the input data on the GPU is only a small space overhead,
as our grouping operator natively works on 128MB strides of input
data at one time. �is means that only 128MB of input data need to
be stored on the GPU at any time, even if the original input column
is much larger.

S 3

S 2

S 1

Hash Table

1st pass
2nd pass
3rd pass

Figure 9: TLB-conscious grouping: copy approach.

Final edited form was published in "SIGMOD/PODS'17: International Conference on Management of Data. Chicago 2017", Art. Nr. 6 , ISBN 978-1-4503-5025-9
https://doi.org/10.1145/3076113.3076115

7

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

DaMoN’17, May 15, 2017, Chicago, IL, USA Karnagel, Ben-Nun, Werner, Habich, Lehner

data size (GB)

m
em

or
y

ac
ce

ss
es

 /
se

c
(b

ill
io

n)

0
0.5

1
1.5

2
2.5

3
3.5

4

0 2 4 6 8 10

original
128MB
2GB

0.11

1.10

0.08

(a) K80

data size (GB)

m
em

or
y

ac
ce

ss
es

 /
se

c
(b

ill
io

n)

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16

original
128MB
2GB

2.63

1.29

(b) P100

Figure 10: Random sampling with di�erent TLB scope sizes.

6 EVALUATION
We evaluate our TLB-conscious Data Access for random sampling
and the hash-based grouping, both on the K80 and the P100. We
use two di�erent scope sizes: 128MB, potentially avoiding L2 TLB
misses on the K80, and 2GB, potentially avoiding L3 TLB misses on
the K80 and L2 TLB misses on the P100.

It is worth noting that smaller TLB scopes were also tested,
in order to avoid L1 TLB misses. However, the large amount of
necessary passes, combined with the small delay of an L1 TLB miss,
prevent performance improvement in those cases.

6.1 Random Sampling
Figure 10 illustrates the results for random sampling. �e K80
results are shown in Figure 10a. For the small TLB scopes of 128MB,
the performance is decreasing with increasing data sizes, as more
and more passes are necessary. A minor improvement is seen for
data sizes between 130MB and 1GB, as 128MB scopes avoid L2
TLB misses as well as L3 TLB misses. However, with more than 8
passes, the speedup disappears due to the additional pass overhead.
For larger data sizes (>2.5GB), there is a small speedup again, as
the original version su�ers from L3 TLB misses. 2GB scopes only
avoid L3 TLB misses, while the larger scope size results in fewer
passes than for 128MB. For 2GB TLB scopes, the pass overhead is
not signi�cant due to the lower number of necessary passes, and
the avoidance of L3 TLB misses outweighs the additional overhead.
�e �nal speedup is 13x.

�e P100 results are shown in Figure 10b. 128MB TLB scopes are
not bene�cial due to their pass overhead and due to not avoiding
L1 TLB misses. For the P100, the overhead of multiple passes is
more signi�cant, as the delay of an L2 TLB miss is smaller than
L3 TLB misses on the K80. �is is clearly visible for 2GB scopes.
In this case, with every new pass, the performance �rst decreases,
mostly due to memory accesses being in the �rst pass while adding
the computational overhead of the second pass (e.g., around 2GB).
When accessing a wider memory range, data accesses are equally
divided between the passes, hiding the pass overhead and leading
to be�er performance again (e.g., around 4GB). At some point

(>8GB) the execution is purely bound by the pass overhead, leading
to a performance decrease with every new pass and a constant
performance for a constant amount of passes. Even in this case, a
speedup of 2x can be achieved for accesses of 16GB.

6.2 Hash-Based Grouping
For the grouping operator, we evaluate both TLB scope sizes and the
two proposed approaches: naive, where data is accessed through
the PCIe bus for every pass, and copy, where data is copied within
the �rst pass, while subsequent passes do not use the PCIe bus
again.

�e K80 results are shown in Figure 11a. Again, 128MB scopes
exhibit a minor speedup on the K80. We test hash tables sizes up
to 11.2GB, where 128MB scopes result in 89 passes. Applying our
naive approach, each pass transfers 6GB of data from the CPU to
the GPU, which results in e�ectively transferring 89∗6GB = 534GB
through the PCIe. It is interesting that even this approach shows
a small speedup compared to one pass transferring only 6GB and
accessing the entire hash table. When optimizing this through our
data copy approach, the performance increases signi�cantly, as we
can exchange up to 88 PCIe data transfers with global memory
reads on the GPU. For 2GB TLB scopes, the copy approach is also
be�er than the naive approach. However, the improvement is not
that substantial, as we can only omit up to 5 PCIe transfers, which
is insigni�cant compared to the original problem. �e �nal speedup
is 12.5x.

For the P100, the results are slightly di�erent (Figure 11b), be-
cause the extent of the problem is not as vast as for the K80. Either
version with 128MB scopes is slower than the original version, as
multiple passes over the data are too time consuming, even when
using our copy approach. We see a signi�cant di�erence in the
two approaches for 2GB scopes, as the execution is limited by PCIe
transfers for three passes or more. Without the additional transfers
(copy approach), we achieve a �nal speedup of 2.5x.

Final edited form was published in "SIGMOD/PODS'17: International Conference on Management of Data. Chicago 2017", Art. Nr. 6 , ISBN 978-1-4503-5025-9
https://doi.org/10.1145/3076113.3076115

8

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Big Data causing Big (TLB) Problems: Taming Random Memory Accesses on the GPU DaMoN’17, May 15, 2017, Chicago, IL, USA

hash table size (GB)

H
T

 in
se

rt
s

/ s
ec

 (
bi

lli
on

)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 2 4 6 8 10

original
128MB naive
128MB copy
2GB naive
2GB copy

0.30
0.26
0.11
0.03
0.02

(a) K80

hash table size (GB)

H
T

 in
se

rt
s

/ s
ec

 (
bi

lli
on

)

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 2 4 6 8 10 12 14 16

128MB naive
128MB copy
2GB naive
2GB copy

original

1.14

0.39
0.45

0.23

(b) P100

Figure 11: Grouping results for di�erent TLB scope sizes.

7 RELATEDWORK
Caching physical addresses with TLBs has been studied for main
memory database systems and has been found to be a performance
critical factor on CPUs [8, 9]. For GPUs, the problem with random
reads on more than 2GB was also reported for hash joins [4] and
groupings [6]. In both works, the TLB was not identi�ed as the
source of the problem. Mei et al. [10] benchmark the GPU memory
hierarchy for the NVIDIA Fermi, Kepler, and Maxwell architectures
with some TLB-related tests for the L1 and L2 TLB, including asso-
ciativity. Papadopoulou et al. [13] benchmark an older GT200 GPU,
reporting an L1 TLB with 16 entries, an L2 TLB with 64 entries, and
a third TLB structure they could not measure, all using 512 KB as
page size. �e authors state that the L2 TLB shows incomprehensi-
ble associativity behavior, which could indicate 65 entries instead
of 64 [10]. As we showed, the page sizes vary between di�erent
architectures, so 512 KB for the larger pages on an older GPU is
realistic.

8 CONCLUSION
In this paper, we evaluated two data-intensive operations with irreg-
ular data access pa�erns and show that the performance decreases
for larger data sizes. More recent GPU architectures, such as the
P100, mitigate this e�ect, however, the performance decrease is still
signi�cant. �rough extensive micro-benchmarking, we found the
source of the problem to be the TLB hierarchy, where data access
beyond a TLB’s ability to cache pages results in a TLB miss, slowing
down the execution. We present our benchmarking methodology in
detail and report the benchmark results for the K80 and P100 GPU.
Interestingly, we found three levels of TLBs and two di�erent page
sizes per GPU. Based on the newly gained hardware knowledge,
we propose TLB-conscious data access, which reduces TLB misses
through redundant work. We apply this approach successfully to
the two data-intensive operations and show speedups of up to 13x
on the K80 and up to 2.5x on the P100.

ACKNOWLEDGMENTS
�is work is funded by the German Research Foundation (DFG)
within the Cluster of Excellence “Center for Advancing Electronics
Dresden” (Orchestration Path), and supported by the DFG Ger-
man Priority Programme 1648 “So�ware for exascale Computing”
(SPPEXA), project FFMK. Parts of the evaluation hardware were
generously provided by Dresden GPU Center of Excellence. We
also thank the OS group of TU Dresden for the constructive discus-
sions on TLB architectures.

REFERENCES
[1] Austin Appleby. 2008. Murmurhash project. (2008).

h�p://code.google.com/p/smhasher/.
[2] Max Heimel, Michael Saecker, Holger Pirk, Stefan Manegold, and Volker Markl.

2013. Hardware-oblivious parallelism for in-memory column-stores. Proceedings
of the VLDB Endowment 6, 9 (2013), 709–720.

[3] Jeremy Appleyard. 2016. Nvidia Presentation: PASCAL AND CUDA 8.0.
[4] Tim Kaldewey, Guy Lohman, Rene Mueller, and Peter Volk. 2012. GPU Join

Processing Revisited. In Proceedings of the Eighth International Workshop on Data
Management on New Hardware (DaMoN ’12). ACM, New York, NY, USA, 55–62.

[5] Tomas Karnagel, Dirk Habich, and Wolfgang Lehner. 2017. Adaptive Work Place-
ment for�ery Processing on Heterogeneous Computing Resources. PVLDB,
Vol. 10, No. 7 (2017).

[6] Tomas Karnagel, Rene Mueller, and Guy M. Lohman. 2015. Optimizing GPU-
accelerated Group-By and Aggregation. In ADMS at VLDB.

[7] Donald E. Knuth. 1997. �e Art of Computer Programming, Volume 2 (3rd Ed.):
Seminumerical Algorithms. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

[8] Stefan Manegold. 2002. Understanding, modeling, and improving main-memory
database performance.

[9] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. 2000. Optimizing
Database Architecture for the New Bo�leneck: Memory Access. �e VLDB
Journal 9, 3 (Dec. 2000), 231–246. DOI:h�p://dx.doi.org/10.1007/s007780000031

[10] Xinxin Mei and Xiaowen Chu. 2017. Dissecting GPU memory hierarchy through
microbenchmarking. IEEE Transactions on Parallel and Distributed Systems 28, 1
(2017), 72–86.

[11] Sparsh Mi�al. 2016. A survey of techniques for architecting TLBs. Concurrency
and Computation: Practice and Experience (2016).

[12] Todd Mostak. 2013. An Overview of MapD (Massively Parallel Database). White
Paper (2013).

[13] Misel myrto Papadopoulou, Maryam Sadooghi-alvandi, and Henry Wong. 2009.
Micro-benchmarking the GT200 GPU. Technical Report.

[14] NVIDIA 2015. CUDA C Programming Guide (7.0 ed.). NVIDIA.
[15] NVIDIA. 2015. TESLA K80 GPU Accelerator - Board Speci�cation (BD-07317-

001 v05 ed.).
[16] NVIDIA. 2016. NVIDIA Tesla P100 - �e Most Advanced Datacenter Accelerator

Ever Built Featuring Pascal GP100, the World’s Fastest GPU (WP-08019-001 v01.1
ed.).

Final edited form was published in "SIGMOD/PODS'17: International Conference on Management of Data. Chicago 2017", Art. Nr. 6 , ISBN 978-1-4503-5025-9
https://doi.org/10.1145/3076113.3076115

9

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

http://dx.doi.org/10.1007/s007780000031

DaMoN’17, May 15, 2017, Chicago, IL, USA Karnagel, Ben-Nun, Werner, Habich, Lehner

APPENDIX
A TLB SHARING FOR 256 K80 GPUS
To get a be�er understanding of the TLB sharing pa�erns, we eval-
uated our TLB sharing benchmark on 256 di�erent yet theoretically
identical K80 models. �e L1 TLB and the L3 TLB pa�erns are �xed:
L1 TLBs are always private for one SM and L3 TLBs are always
shared between all SMs. However, the L2 TLB shows di�erent pat-
terns according to the deactivated SMs. In theory, there could be
105 di�erent combinations for two deactivated SMs out of 15. �e
con�guration statistics are shown in Table 3. �e shown pa�ern
in Figure 5b is by far the most common one, used in 161 of the 256
tested GPUs. Most GPUs have the deactivated SMs in two di�erent
sharing groups, leaving two groups of 2 SMs that share the L2 TLB
(instead of 3 SMs). Additionally, we found one occurrence, where
two SMs of one group where deactivated (SM 5 and 10 missing),
leaving 1 SM to have its own L2 TLB, while the other L2 TLBs are
shared each by three SMs. Depending on the workload, this might
result in di�erent performance of the SMs when either one, two, or
three SMs share an L2 TLB.

B HYPOTHETICAL L2 TLB SHARING FOR
THE P100

Figure 6b showed an incomplete pa�ern of L2 TLB sharing, caused
by deactivated SMs. �e four deactivated SMs are missing between
SM 43 and 44. �e complete pa�ern is shown in Figure 12. To
achieve this complete pa�ern, the four missing SMs need to be
added (in gray) and the TPC containing SM 50 and 51 need to be
swapped with the TPC containing 53 and 54 (in orange). In our
TLB sharing benchmark, we identify the SMs according to the smid
register, because we can not proactively schedule a thread on a
speci�c SM. Since these SM-IDs are logical, they are not directly
dependent on the SM’s location and IDs might be con�gured in
di�erent order for any reason. Unfortunately, we do not have
multiple P100 GPUs, so we can not verify if these SMs are always
swapped, and which SMs are usually deactivated.

Deactivated SMs Occurrence Percentage
10, 11 161 62.9%
10, 13 36 14.1%
10, 12 23 9.0%
10, 14 17 6.6%
12, 14 4 1.6%
11, 14 4 1.6%
11, 12 4 1.6%
13, 14 2 0.8%
11, 13 2 0.8%
12, 13 2 0.8%
5, 10 1 0.4%
total 256 ≈100%

Table 3: Deactivated SMs (0-14) for 256 K80 GPUs.

SMi/k 0 0

10

10

20

20

30

30

40

40

50

50

Figure 12: Hypothetical L2 TLB sharing with 60 SMs (0-59).
Four SMs were added (gray) and four SMs were swapped (or-
ange).

Final edited form was published in "SIGMOD/PODS'17: International Conference on Management of Data. Chicago 2017", Art. Nr. 6 , ISBN 978-1-4503-5025-9
https://doi.org/10.1145/3076113.3076115

10

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

	Abstract
	1 Introduction
	2 Database GPU-Operations
	2.1 Random Sampling
	2.2 Hash-Based Grouping
	2.3 Result Discussion

	3 TLB Benchmark Methodology
	3.1 Virtual Memory on GPUs
	3.2 TLB property benchmark
	3.3 TLB sharing benchmark

	4 Benchmark Application and Observations
	4.1 TLB property benchmark results
	4.2 TLB sharing benchmark results
	4.3 Observation Summary
	4.4 Plausibility and Validation
	4.5 Arguments for Unconventional Properties:

	5 TLB-conscious Data Access
	5.1 General Idea
	5.2 Application to Random Sampling
	5.3 Application to Hash-Based Grouping

	6 Evaluation
	6.1 Random Sampling
	6.2 Hash-Based Grouping

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A TLB sharing for 256 K80 GPUs
	B Hypothetical L2 TLB sharing for the P100

