
Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-794585

Oliver Arnold, Sebastian Haas, Gerhard Fettweis, Benjamin Schlegel, Thomas Kissinger,
Wolfgang Lehner

An Application-Specific Instruction Set for Accelerating Set-Oriented
Database Primitives

Erstveröffentlichung in / First published in:

SIGMOD/PODS'14: International Conference on Management of Data, Chicago 22. –
27.06.2017. ACM Digital Library, S. 767–778.

DOI: https://doi.org/10.1145/2588555.2593677

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-794585
https://doi.org/10.1145/2588555.2593677

An Application-Specific Instruction Set for Accelerating
Set-Oriented Database Primitives

Oliver Arnold, Sebastian Haas,
Gerhard Fettweis

Vodafone Chair Mobile Communications
Systems

Technische Universität Dresden
Dresden, Germany

Benjamin Schlegel
∗

, Thomas Kissinger,
Wolfgang Lehner

Database Technology Group
Technische Universität Dresden

Dresden, Germany

ABSTRACT
The key task of database systems is to efficiently manage
large amounts of data. A high query throughput and a low
query latency are essential for the success of a database sys-
tem. Lately, research focused on exploiting hardware fea-
tures like superscalar execution units, SIMD, or multiple
cores to speed up processing. Apart from these software op-
timizations for given hardware, even tailor-made processing
circuits running on FPGAs are built to run mostly stateless
query plans with incredibly high throughput. A similar idea,
which was already considered three decades ago, is to build
tailor-made hardware like a database processor. Despite
their superior performance, such application-specific proces-
sors were not considered to be beneficial because general-
purpose processors eventually always caught up so that the
high development costs did not pay off. In this paper, we
show that the development of a database processor is much
more feasible nowadays through the availability of customiz-
able processors. We illustrate exemplarily how to create
an instruction set extension for set-oriented database prim-
itives. The resulting application-specific processor provides
not only a high performance but it also enables very energy-
efficient processing. Our processor requires in various con-
figurations more than 960x less energy than a high-end x86
processor while providing the same performance.

Categories and Subject Descriptors
C.1 [PROCESSOR ARCHITECTURES]: Other Archi-
tecture Styles;; H.2 [DATABASE MANAGEMENT]:
Systems

Keywords
Hardware/Software-Codesign, Customizable Processors, In-
struction Set Extensions

∗This author is now at Oracle Labs, Belmont, CA, USA.

©2014 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in SIGMOD’14,
June 22–27, 2014, Snowbird, UT, USA.
DOI: http://dx.doi.org/10.1145/2588555.2593677.

1. INTRODUCTION
In addition to many beneficial features of a database sys-

tem, excellent query performance is still a decisive factor for
many applications scenarios. Database systems are there-
fore optimized in many different directions; efficient index
structures [32, 18], parallel sorting [6, 12], efficient query
operators [38, 4], fast compression [36, 26] are only some ex-
amples to speed up query processing. The key idea of most
of these optimizations is to exploit hardware features like
multiple cores, SIMD, and multiple execution units or to
adapt to hardware characteristics like cache hierarchies. Al-
gorithms deployed in database systems are therefore highly
tuned and very often either reach the processor’s peak per-
formance or are limited by some system characteristics like
memory bandwidth or interconnect capacity.

To push the envelope in database performance even fur-
ther, we may look into different directions. First, paral-
lelism can be enhanced within a single system by adding
more and more components and cores. Unfortunately, ther-
mal restrictions of current processor designs are a limiting
factor and force to build larger and more distributed systems
with higher latencies between the different components. Sec-
ond, processors themselves can be improved to allow for a
higher query throughput and lower latency by using spe-
cialized hardware optimized for query processing function-
ality. Features like instruction sets, cache sizes, memory
bus width, number of cores, among others can be adapted
to meet query processing needs.

Within this paper, we tackle both challenges by provid-
ing a specialized instruction set for set-oriented database
primitives in combination with a low-energy processor de-
sign. The extremely low-energy design enables us to put
hundreds of chips on a single board without any thermal
restrictions. This work also tries to spark the discussion on
real HW/SW co-design and calls for specialized hardware
optimized for query processing following this observation: It
is well known that the single-threaded performance of pro-
cessors has almost stopped increasing because the maximum
core frequency is limited by physical constraints. Unfortu-
nately, the current solution to put more and more homo-
geneous cores onto a single socket will also reach physical
limitations. As the feature size in which processors are man-
ufactured will go smaller and smaller, the number of tran-
sistors increases. However, not all of those transistors can
be supplied with power at the same time. This dark sili-
con [10, 13] will soon cover large fractions of the chip space.

Final edited form was published in "SIGMOD/PODS'14: International Conference on Management of Data. Snowbird 2014", S. 767–778, ISBN 978-1-4503-2376-5
https://doi.org/10.1145/2588555.2593677

1

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Since placing more homogeneous cores on the chip does then
obviously not help in terms of performance anymore, but
specialized circuits in form of instruction set extensions or
heterogeneous cores make a lot of sense [13].

As a proof point to demonstrate the feasibility of a spe-
cialized processor design, we tackle the challenge to opti-
mize set-oriented database primitives. For example, sorting,
set and string operations, indexing, compression, encryption
and partitioning, are good candidates for being processed
with specialized circuits. They are typically responsible for
a large fraction of the overall query runtime and follow—
besides different data types—often a predefined algorithm.

While there already exist instruction set extensions in
general-purpose processors to speed up string operations and
encryption (via SSE4.2 and AES), it is unlikely that more
database-specific instructions will be integrated in such pro-
cessors to keep their generality. In the opposite, database
processors [5, 3, 28, 19, 2], which have been developed in the
1980s, include almost only functionality that is required for
an efficient query processing in database systems. Despite
their superior performance, they have not been considered
as beneficial because (1) the I/O bandwidth of disks showed
to be the bottleneck of query processing and (2) the high
development costs did not pay off.

Since modern database architectures are mostly main-
memory centric, the argument (1) against database pro-
cessors does not hold any longer. In the opposite, modern
database engines require the optimization of memory access
patterns and efficient cache exploitation. Within this paper,
we also want to argue against (2): Building a complete pro-
cessor from scratch is obviously still expensive and therefore
prohibitive. However, customizable processors considerably
reduce the development effort by providing a configurable
base processor, which can be extended with application-
specific instruction sets. Therefore almost 30 years after the
initial attempt to build database processors, we demonstrate
the feasibility and show extremely encouraging results. The
techniques for developing application-specific processors pro-
posed in this paper can be easily reused to obtain instruction
sets for other (and even more complex) database primitives
and may trigger research for a second wave of database pro-
cessors.

In this paper, we show how to build an instruction set
extension for a customizable processor. As a show case, we
picked set-oriented database primitives. These primitives
can be used to speed up sorting, RID-list intersections, and
union operations, which often amount for a significant frac-
tion of the overall runtime of queries in database systems.
Our key contributions can be summarized as follows:
(1) We discuss the components of processors, shortly intro-

duce customizable processors, and show techniques for
improving them. We further extensively review related
work in the area of database processors.

(2) We propose the system model of a processor that is
tailor-made for data-intensive tasks and provide a de-
tailed description for obtaining such a processor based
on the Tensilica customizable processor.

(3) We discuss a novel instruction set extension to speed up
set-oriented database primitives. The instructions can
be used, for example, for efficient sort algorithms or set
operations on RID sets. We discuss each instruction in
very detail–including their implementation in hardware
and their usage within database engine code.

(4) We provide a broad evaluation of the system model and
the instruction set extension. Besides a performance
comparison, we evaluate the required chip space of the
instructions, their impact on the processor’s core fre-
quency, and the processor’s energy consumption. We
further compare the performance of algorithms running
on our processor with existing highly-optimized algo-
rithms running on modern x86 processors.

The remainder of this paper is structured as follows: We
describe the necessary background in Section 2. Section 3
provides details with respect to the development strategy
and the design of our application-specific processor. In Sec-
tion 4, we explain our instruction set extension in more detail
whereas Section 5 provides results of our vast experimental
evaluation. The paper concludes with an overall summary.

2. BACKGROUND
This section provides the necessary background of the pa-

per. We review the processor components that are required
to understand this work and discuss shortly available cus-
tomizable processors. We further give an overview on (1)
techniques for building application-specific instructions and
(2) the database primitive being optimized.

2.1 Customizable Processors
Although there exists a wide variety of processors, all can

be reduced to a simplified processor model (see Figure 1). In
what follows, we describe the components of such a model.

Core

Inst.
Cache

Data
Cache

Local Data
Memory

Local Inst.
Memory

Interrupts IF

Debug IF

Interconnection

FPU

MUL/DIV unit

Co-Processor

Register File

Load Store unit

Timer

MMU (+TLB)

Fetch

Decode

Execute

Memory Access

Write Back

ALU S/C Registers

Figure 1: State-of-the-art processor model

A single core of a processor is responsible for executing
instructions. The core itself consists of several components:
The arithmetic logic unit (ALU) is used to perform instruc-
tions working on integer values including, among others,
arithmetic, comparison, and shift instructions. The floating-
point unit (FPU) has basically the same task as the ALU
but processes only floating point values. It usually sup-
ports a different set of instructions since many floating point
instructions (e.g., rounding) have no integer counterparts.
Similarly, the MUL/DIV unit handles multiply and division
instructions. Besides the units required for processing in-
structions, the register file is used to stage data between
memory and these units.

Most instructions can only process data located in these
registers. Hence, data must be loaded before an instruction
can be performed. The status registers (S/C registers) hold
flags that are set or unset by the instructions, e.g., the zero,

Final edited form was published in "SIGMOD/PODS'14: International Conference on Management of Data. Snowbird 2014", S. 767–778, ISBN 978-1-4503-2376-5
https://doi.org/10.1145/2588555.2593677

2

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

carry, and overflow flag. The status register also influences
the control flow. Additional co-processors may support cer-
tain specialized instruction sets. Finally, the timer provides
a clock signal; the interrupt and debug interface allow the
operating system to interact with the core.

A single or multiple load–store units link the core to the
memory and potentially to other cores. The instruction
cache and data cache are directly connected to these units
and temporary cache instructions and data elements for a
fast access. Multiple caches can be organized in a hierarchy
and exhibit different access speeds. Some processors show
a local instruction memory and local data memory1, which
have the same access speed as the caches but are maintained
by the application program. The memory management unit
(MMU) together with the translation lookaside buffer (TLB)
are used for implementing virtual memory and to handle
memory requests on the interconnection network.

Since building a full processor and its components from
scratch is prohibitive, customizable processors are available
to ease the development of specialized processors. Exam-
ples are CoWare LISATek [7], Tensilica LX4 [34], and ARC
750 [1]. All these processors provide a basic core, which
can be extended by individual components, e.g., a floating
point unit or an application-specific instruction set. Besides
adding components, the basic cores can also be parametrized,
e.g., the number of pipeline stages, the bus width, and the
size of the local memory can be altered.

2.2 Optimization Techniques
Customizable processors could be improved in a large num-

ber of ways. In what follows, we outline techniques that are
used in this paper and discuss their potential as well as their
limitations.

The most promising way to improve processors is to ex-
tend them with application-specific instructions. These in-
structions often combine multiple existing instructions to a
single instruction, which are repeatedly performed together
within an application setting. A well-known example for
such an instruction merging are the fused multiply-add in-
structions, which combine an add and a multiply instruction
each and are widely available in modern processors.

However, customizable processors allow to build even more
complex instructions. Calculating a CRC value, for exam-
ple, requires shift, comparison, and XOR instructions, which
can all be combined into a single instruction. The time for
performing the CRC operation thus depends only on the la-
tency of the single new instruction instead of the latency of
the sequence of the core instructions.

Further and well-known opportunities also exist for bit
manipulation instructions, because they are often simple to
implement in hardware but require many shift and mask in-
structions when realized in software. For example, reversing
the order of the bits in a 32-bit word is cheap in hardware
whereas it requires dozens of instructions in software.

Unfortunately, there exist two problems for instruction
merging. Firstly, the more instructions are merged into a
single instruction, the more specialized (and less general)
becomes the instruction and the less it may probably be
used. Hence, the processor developer has to carefully select
which instructions and how many of them should be merged
because otherwise valuable chip space may be wasted with
instructions that are rarely used. Secondly, the critical path,

1This is often denoted as scratchpad memory or local-store.

which is the longest path of any circuit representing an in-
struction, might be largely increased when many instruc-
tions are merged into a single one. The core frequency, how-
ever, is determined by the critical path because the time for
a single cycle must be sufficient to allow a signal passing the
complete circuit of any instruction. Therefore, instructions
must be well designed to minimize the length of the critical
path and thus allow a high core frequency.

Adding SIMD instructions based on heavily-used scalar
instructions is an other way to improve customizable proces-
sors. SIMD instructions perform the same operation on mul-
tiple data elements. In what follows, we distinguish between
two types of SIMD instructions. Element-wise instructions
treat the elements of the vectors independently. A SIMD
add instruction, for example, always adds the elements that
have the same position in the input vectors; n addition cir-
cuits are used when two vectors with n elements are added.
The area occupied by element-wise instructions thus grows
linearly when the vector width is linearly increased. The
main limitation of SIMD instruction is the bandwidth to
main memory, which may not be arbitrarily increased. Al-
ternatively, intra-element wise instructions act across the
elements in the vectors being processed. For example, the
all-to-all comparison instruction of SSE4.2 compares all el-
ements of one vector with all elements of a second vector;
its implementation in hardware uses n2 comparison circuits
when the vectors have length n. Depending on the oper-
ation, the area occupied by intra-element wise instructions
grows more than linear (e.g., quadratic) when the vector
length is linearly increased. Therefore, a tradeoff between
the performance improvement through increasing the vec-
tor width and the area required for the instruction must be
found. In this paper, we combine both techniques and cre-
ate novel instructions by merging existing instructions and
building SIMD versions of them.

In addition to build new instruction set extensions, the
execution of instructions itself has to be optimized. Pipelin-
ing is a popular concept to reduce the critical path and
thus increasing a processor’s core frequency. In an n stage
pipeline, the instructions respective circuits can be divided
into n parts, which ideally divides the critical path by n.
Pipelining, however, makes the process of building instruc-
tions more complex and not every application code benefits
from it. Superscalar pipelining even provides multiple exe-
cution units in which instructions or parts of them could be
processed in parallel. In this paper, we use a form of su-
perscalar pipelining where multiple load–store units are used
by a single instruction at the same time.

2.3 Sorting and Set Operations in Databases
As mentioned earlier, we build an instruction set exten-

sion that is used to speed up (1) sorting and (2) operations
performed on sorted sets. We choose these operations be-
cause they are heavily used within database systems and
typically amount to a large fraction of the overall time re-
quired for query processing [17, 6, 9, 31]. Sorting, for exam-
ple, is used before sort-merge joins [4] or whenever the result
set should be returned in a specific order. Set operations
like intersection, difference, or union are often performed on
RID sets [31], which are obtained from secondary indices
when complex selection predicates within the WHERE clause
are specified, or when a query contains a INTERSECT, UNION,
or DIFFERENCE clause.

Final edited form was published in "SIGMOD/PODS'14: International Conference on Management of Data. Snowbird 2014", S. 767–778, ISBN 978-1-4503-2376-5
https://doi.org/10.1145/2588555.2593677

3

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

void merge(int* A, int* B, int l_a, int l_b, int* C) {
int pos_a = 0, pos_b = 0, pos_c = 0;
while(pos_a < l_a && pos_b < l_b) {
if(A[pos_a] < B[pos_b])
C[pos_c++] = A[pos_a++];

else
C[pos_c++] = B[pos_b++];

}
while(pos_a < l_a) C[pos_c++] = A[pos_a++];
while(pos_b < l_b) C[pos_c++] = B[pos_b++];

}

Figure 2: Merge procedure of merge-sort

In the following, we discuss the merge-sort algorithm, which
is among the most efficient sorting algorithms [6]. We also
touch upon merge-based set-operations algorithms based on
sorted sets. We will limit the discussion to only the algo-
rithms’ key aspects that are necessary to understand the
main concepts shown in this paper.

The merge-sort algorithm [23] is a divide and conquer al-
gorithm with O(n logn) time complexity. Its key idea is to
repeatedly merge sorted sequences to obtain larger sorted
sequences. The algorithm starts from sequences of length 1,
which are inherently sorted. With each iteration, the length
of the sorted sequences doubles until after log n iterations
the input sequence is sorted completely. Merge-sort spends
most of its time in the merge procedure so that its optimiza-
tion is key to a high sorting performance.

Figure 2 depicts the C-code of an implementation of the
merge procedure. The procedure takes two sorted sequences
A and B with length l_a and l_b, respectively, and a ref-
erence to the result sequence as input. Although merge-
sort can sort in-place, we depict an out-of-place implemen-
tation for ease of explanation. After initializing variables,
the core loop is repeated until the end of one input sequence
is reached. Within the core loop, both input sequences are
stepwise traversed using two indices pos_a and pos_b; the
smaller value of both sequences is written into the result set
and only the index of the input sequence from which the
value was taken is increased. After the core loop is left,
remaining values of the set that is not fully traversed are
written at the end of the result set.

The most expensive part of the merge procedure is the
hardly predictable branch. It reduces the effect of pipelining
and therefore degrades performance. To avoid branches in
the core loop and exploit the SIMD capabilities of modern
processors, Chhugani et al. [6] proposed to repeatedly use
small sorting networks, which are implemented with SIMD
instructions, to initially create and merge sorted sequences.
Basically, up to 8 values are loaded into SIMD register; shuf-
fle and min–max SIMD instructions are used to order the
values before writing them back to memory. In this paper,
we reuse this idea but instead of issuing multiple instructions
sequentially, we realize the sorting network in hardware and
issue only two instructions to sort four values.

Merge-based set-operations algorithms for intersection, dif-
ference, and union work very similar to the merge procedure
of the merge-sort. The result sequence, however, contains
the values of the performed set operation.

Figure 3 depicts the C-code for a function that intersects
two sorted sets A and B. The parameter of the function as well
as the variables and their initialization are the same as in
the merge procedure (cf. Figure 2). The core loop, however,
is slightly different and contains two branches. They are
used to choose one of three different actions based on the

int intersect(int* A, int* B, int l_a, int l_b, int* C) {
int pos_a = 0, pos_b = 0, pos_c = 0;
while(pos_a < l_a && pos_b < l_b) {
if(A[pos_a] == B[pos_b]) {
C[pos_c++] = A[pos_a];
pos_a++;
pos_b++;

}
else if(A[pos_a] < B[pos_b])
pos_a++;

else
pos_b++;

}
}

Figure 3: Sorted-set intersection

comparison of the current two values taken from both input
sets. The union and difference implementations differ only
in the actions they perform and in the way remaining values
of the input sets might be copied.

Despite their simplicity, the merge-based algorithms are
among the best algorithms for performing set operations.
Only few optimizations exist for them—see Ding and König
[9] for an overview. In earlier work [33], we proposed to use
SIMD instructions to speed up the intersection operation.
Basically, we use the aforementioned all-to-all comparison
instruction on two vectors containing 8 values of each set.
Although, several instructions are still issued per iteration
in the core loop, the indices of at least one input set are
increased by eight values instead of one. Based on this idea,
we build instructions for all three set-operations resulting in
only two instructions per core-loop iteration.

3. PROCESSOR DESIGN
In this section, we explain the tool chain employed to gen-

erate a processor and the respective development strategy
used to obtain efficient instructions. We further describe
the model of the processor in which we integrate our novel
instruction set extension.

3.1 Tool Chain and Development Strategy
The development strategy is divided in two main parts:

simulation to obtain the application-specific instruction set
and synthesis of the processor to generate results for area,
power, and timing. Figure 4 shows the respective tool flow,
i.e., steps performed in both parts and how they interact.

The tool flow starts with a cycle-accurate profiling of an
application to analyze its runtime behavior. The profiler un-
veils hotspots in the application’s execution, i.e., frequently
executed and computationally intensive parts. Based on the
obtained results and their analysis, a new instruction set
can be specified and attached to a customizable processor.
Furthermore, extension units can be added to the core. In
this work, for example, we attach an additional load–store
unit to allow concurrent data transfers and potentially dou-
bling the memory bandwidth of the processor. We will give
further details on the extension units in Section 3.2.

After specifying the instruction set, a processor generator
creates a cycle–accurate simulation model of the processor
as well as a suitable compiler. The newly introduced instruc-
tions are made available by intrinsics. They replace certain
parts of the original application code. An example is shown
in Section 4.

After generating the processor model, the verification is
performed, e.g., by applying unit tests, regression tests or

Final edited form was published in "SIGMOD/PODS'14: International Conference on Management of Data. Snowbird 2014", S. 767–778, ISBN 978-1-4503-2376-5
https://doi.org/10.1145/2588555.2593677

4

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Processor Model
RTL description (HDL)

ISA Extensions

Application

Profiling

Cycle Count & Hotspots

Processor Model
Simulation (cycle acc.)

Verification

Yes

Synthesis

Correctness? Area,
Power and Timing

Requirements met?

Processor with
Application-Specific ISA

No

Yes

Technology
Libraries

Processor Generator

Compiler

Application Adaptions

HDL Processor Generator

Unit Extensions

Processor Extensions

Synthesis
Parameter

s

s

No

Correctness?

HDL Verification

Figure 4: Tool flow for developing instruction set
extensions

equivalence checks. In our work, we use a dedicated unit
test for each newly introduced instruction. The unit tests
compare output results with pre-specified values—especially
considering corner cases.

If the correctness of the processor model is assured, fur-
ther optimizations are done, i.e., another profiling and in-
struction set development iteration is performed. Due to the
integration of the newly introduced instructions in the pre-
vious iteration cycle, the processor performance is improved.
Thus, the bottlenecks of the application in this iteration cy-
cle are either reduced or shifted to different parts of the
application. Consequently, these parts are now in the focus
of the instruction set extension development.

As soon as the improvement of the processor is exhausted,
a hardware description language (HDL) processor genera-
tor creates a synthesizable model on register transfer level
(RTL). It can be used for silicon prototypes. The iteration
cycle of the HDL processor generator as well as the syn-
thesis and verification cycle is several orders of magnitude
more time consuming compared to the iteration cycle of the
instruction set extension development. The latter is in the
range of some minutes.

Finally, the HDL verification assures the correctness of
the results of the synthesized processor model. If the area
demands (die size), power consumption as well as timing
requirements are met, the application-specific processor is
ready for production. If not, either the newly developed
instruction set or the synthesis needs to be adapted.

3.2 Processor Model
Our application-specific processor uses an Tensilica LX4

RISC processor as basis. The LX4 RISC processor can be
extended with further units and a new instruction set. In
our case, we add two units and database-specific instructions
to the processor. Figure 6 illustrates the processor model of
our processor with our modifications highlighted. In what
follows, we describe (1) how instructions are created and (2)
the employed additional units in more detail.

For our new instructions, we employ a VLIW instruction
format called Flexible Length Instruction Xtension (FLIX)
with the instruction width set to 64 bit. Additionally, we

introduce two types of additional internal memories into the
core: TIE registers and TIE states. Both can be varied
in number of instances, size and bit width. Registers are
used for generic memory access whereas states are typically
used to store data for application-specific parts of the proces-
sor, i.e., predefined instructions access (read or write) these
states in the same cycle the instructions are executed.

Figure 5 provides an example of a definition of a state,
a register file, an instruction definition as well as the corre-
sponding C-code. In this example, an 8-bit state with the
name state8 is firstly instantiated and initialized with zeros
every time the processor is powered-on. The add read write
statement allows to access the content of the state within
the C-code of the application. Macros are automatically
generated for read and write operations.

A user-defined register file is shown in part b) of the ex-
ample. Eight 32-bit width registers are generated. All TIE
instructions can use such a register file. In contrast to states,
register allocation as well as load and store of data is man-
aged by the compiler. In the latter case, it is the user’s
responsibility to manage the content of the states. Conse-
quently, explicit load and store operations are required.

Figure 5 c) illustrates the newly integrated example in-
struction add3 shift. In the first line, the operation keyword
starts the definition of an instruction, followed by its name.
The register access is specified in the next line. The general-
purpose Address Registers (AR) are part of the basic regis-
ter file of the processor, which are used to store the result.
The previously defined register file reg32 contains the input
operands. Furthermore, the state state8 is defined as an in-
put argument as well. The keywords in and out specify the
direction of the state and register file access of the operation.
The last line defines the functional behavior. In this exam-
ple, we use a TIE assignment statement: The three register
values are added and the their sum is shifted by the values
in state8. Note that the instruction is executed within only
a single clock cycle.

The corresponding C-code for an application is shown in
Figure 5 d). The new instruction uses three values of the new
register file as input arguments and state8 is set to 4. Reg-
ister initialization is not shown. The instruction add3 shift
itself has to be used with an automatically generated intrin-
sic. Finally, the result is stored in a user-defined integer
value. In Section 4, we will introduce our instruction-set
extension, which is obtained in a similar way.

// a) state definition
state state8 8 8’h0 add_read_write

// b) register definition
regfile reg32 32 8 reg

// c) instruction definition
operation add3_shift
{out AR res, in reg32 in0, in reg32 in1, in reg32 in2}
{in state8}
{assign res = (in0 + in1 + in2) >> state8;}

// d) C-code
reg32 v0, v1, v2; WUR_state8(4);
int value = add3_shift(v0, v1, v2);

Figure 5: State-, register-, instruction-specification
and C-code

Final edited form was published in "SIGMOD/PODS'14: International Conference on Management of Data. Snowbird 2014", S. 767–778, ISBN 978-1-4503-2376-5
https://doi.org/10.1145/2588555.2593677

5

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Besides the instructions, we integrate a second load–store
unit and a data prefetcher (cf. Figure 6). The additional
load–store unit is mainly used to improve memory latency
and bandwidth. The data prefetcher is included to perform
data transfers over the on–chip interconnection network. It
contains a direct–memory access controller (DMAC) and a
programmable finite state machine (FSM). The latter is used
to control the DMAC. The programming of the FSM is done
either by the processor itself or by another entity in the sys-
tem. The data transfers of the data prefetcher and proces-
sor execution are performed concurrently. Consequently, it
fetches data prior it is needed. Results are written back
while the next operator has already started its execution.
To allow this mode of operation, we include dual-port local
memories, which support two memory accesses to occur at
the same time. One port is connected to the processor, the
other to the data prefetcher and the interconnection net-
work. In contrast to caches, no cache-misses occur and the
cache logic can be omitted. Hence, area is reduced but the
processor in this work has no direct access to the intercon-
nection network. It solely operates on the local instruction
and data memory. By using this approach data locality is
maximized and system performance may thus be enhanced.

The data prefetcher uses furthermore burst transfers, typ-
ically in the order of several KB to improve memory access
patterns. Burst transfers can potentially improve the in-
terconnection network usage and the access to the off–chip
memory. Consequently, the observed bandwidth is increased
and performance enhanced.

The following parts of the processor can be additionally
adapted, but are not regarded in this work: TIE queues, TIE
ports and TIE lookups. TIE queues read or write data from
external queues. TIE input and output ports define a dedi-
cated interface from the outside of the processor to internal
states. TIE lookups request data from external devices.

Processor Model

Inst. Fetch L/S Unit 0

Instruction Set

L/S Unit 1

Local
Memory

Inst.

Local
Memory
Data0

Local
Memory
Data1

Basic RISC ISA

DB-Specific ISA

Basic Registers

DB-Specific Registers

DB-Specific States

Interconnection

Data Prefetcher

Figure 6: Processor model schematic

4. INSTRUCTION SET EXTENSION
In this section, we introduce our novel instruction set ex-

tension. Table 1 gives an overview of the instructions and
a short summary of their functionality. All five instructions
are executed within an iteration of our example set-based
algorithms. In what follows, we explain (1) the instruction
ordering as well as the instruction pipeline and (2) how the
instructions are integrated into the implementation of the
algorithms.

Inst. Explanation

LD This load instruction is available for each Load-Store
Unit (LSU)—LD 0 for LSU0 and LD 1 for LSU1. For
each LSU up to 128 bits are loaded from the local mem-
ory to the intermediate Load states of the processor.

LD P Is available for each LSU—LD P 0 for LSU0 and
LD P 1 for LSU1. It (partially) reloads the words from
the Load states to the Word states for each set. Hence,
it is ensured that after each operation all Word states
are fully filled with elements.

SOP It performs the actual sorted-set operation based on
an all-to-all comparison. It is applied on 4 elements of
each set. All results are saved in the Result states.

ST S Reorders and shuffles the results of the SOP operation
and save them to the Store states.

ST Stores the results from the Store states to the local
memory. Due to the word aligned memory access 128
bits are always written by the LSU.

Table 1: Instruction overview

LD LD_P STSOP ST_S

LD_P_1

Cy+1 Cy+2 Cy+3 Cy+4

LD_P_0

LD_1

LD_0

Figure 7: Instruction ordering

The overall instruction ordering is illustrated in Figure 7.
Firstly, the LD instruction loads the data from the local
memory to the processor’s intermediate states. Afterwards,
this data is partially or fully moved and reordered (LD P) to
a second internal state. Thus, the loading and the reordering
is decoupled for a reduction of the critical path while load-
ing data. The sorted-set operations (SOP) perform the ac-
tual execution of the database-specific tasks. The obtained
results are shuffled to guarantee correct ordering of the re-
sulting elements (ST S). For this reason, we implement a
first-in first-out like implementation. The store instruction
(ST) saves the results in the local memory.

SO
P

LD
_0

LD
_1

LD
_P

_1
LD

_P
_0

Word_A0 Word_A1 Word_A2 Word_A3

Load_A0 Load_A1 Load_A2 Load_A3

Word_B0 Word_B1 Word_B2 Word_B3

Load_B0 Load_B1 Load_B2 Load_B3

Result_0

Result_1

Result_2

Result_3

<Set-Operator>

Load-Store Unit 1

Load-Store Unit 0

Local Data Memory 1 (Set B)

Local Data Memory 0 (Set A)

Figure 8: Load, pre-execution reordering, and exe-
cution phase

Final edited form was published in "SIGMOD/PODS'14: International Conference on Management of Data. Snowbird 2014", S. 767–778, ISBN 978-1-4503-2376-5
https://doi.org/10.1145/2588555.2593677

6

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

ST
ST_SSO

P

Result_0

Result_1

Result_2

Result_3

Store_0 Store_1 Store_2 Store_3

TmpStore_0 TmpStore_1 TmpStore_2

Load-Store Unit 1

Shuffle

Local Data Memory 1 (Result)

Figure 9: Pre-store reordering and store phase

An example data flow for 32-bit wide elements is depicted
in Figure 8 and 9 for the load and execution as well as the
store phase respectively. It uses partial loading and result re-
ordering to store the data. Firstly, eight elements are loaded
with two Load-Store Units (LSUs) to the Load states. Each
of them is equipped with a 128-bit interface to the local
memory. As soon as the data is present in the processor
and is partially reordered according to the available elements
of the Word states, always four elements per set are ready
for comparison. An all-to-all comparison performs the ac-
tual work, e.g., obtaining common values within the loaded
values from both input sets. The results are stored in the
Result states and are prepared for storage with a shuffle net-
work (see Figure 9). It assures, that always four elements
are written back from the Store states to the local memory.
The store instruction is delayed in the case of three or less
available elements. As soon as four elements are present,
the store operation is performed. The TmpStore states are
used as intermediate buffers.

The pipeline of the processor is depicted in Figure 10. A
snippet during the execution is shown in which in each cy-
cle either two times 128-bits are loaded from the memory or
128-bits of results are written back to the memory. There-
fore, the memory interface is the limiting factor at this point
of time. The latency is six cycles. The maximum theoretical
throughput is the number of elements, which can be loaded
with two LSUs multiplied by the clock frequency of the pro-
cessor. Since every two cycles eight elements are loaded
from the local memory, a maximum theoretical throughput
of 2,000 million elements per second at a clock frequency of
500 MHz would be achieved.

ST_S ST

C
yc

le
 n

C
yc

le
 (

n
+1

)

C
yc

le
 (

n
+2

)

C
yc

le
 (

n
+5

)

C
yc

le
 (

n
+6

)

LD_P STSOP

C
yc

le
 (

n
+3

)

C
yc

le
 (

n
+4

)

ST_S

LD LD_P STSOP ST_S

LD LD_P SOP ST_S

LD LD_P

LD

…

…

…

…

Figure 10: Pipeline snippet

INIT_STATES(); // state initializations and initial load
LD_LDP_SHUFFLE();

while(STORE_SOP()) { // core loop
LD_LDP_SHUFFLE();

}

Figure 11: Sorted-set intersection core loop with
TIE instructions

Figure 11 illustrates the initialization and the core loop of
a sorted-set implementation that exploits our new instruc-
tions. The initialization and the first load takes one cycle
each. One iteration of the core loop requires only three cy-
cles. One cycle is required for the actual operation and the
store. A second cycle is required to load the data before the
next evaluation. An additional cycle is required to evaluate
the loop condition.
LD_0, LD_1, LD_P_0, LD_P_1, and ST_S are concurrently

executed by integrating all parts in a fused LD_LDP_SHUFFLE

instruction. In the final implementation the code is further
accelerated by applying loop unrolling. Consequently, the
average number of cycles per loop is reduced. For example,
if 32 loops are unrolled the average number of cycles per
loop is reduced to 2.03.

INIT_STATES(); // state initializations and initial load
LD();

while(LD()) { // core loop
STORE_MERGE();

}

Figure 12: Merge-sort core loop with TIE instruc-
tions

Figure 12 illustrates the core loop of the merge-sort im-
plementation that exploits our new instructions and merges
sorted sequences. All elements are loaded as well as stored
and no elimination of duplicates is necessary. Consequently,
the shuffle instruction (ST S) and the LD P instruction are
not applied in this case. The LD instruction loads always
from LSU0 with instruction LD0 and thereafter the merge
instruction compares eight values. The additional presort-
ing, i.e., building sorted sequences of four sorted values, is
not shown in this example. For this purpose, special load
and store instructions exists, which concurrently perform a
sort operation to built such sequences. Furthermore, as soon
as one list is empty the remainder elements of the other lists
are copied using 128-bit copy instructions.

5. EXPERIMENTAL RESULTS
This section contains the results of our experimental eval-

uation. We provide details to the used experimental setup,
compare the performance for different processor models, and
evaluate the area and power consumption of our implemen-
tations. Finally, we compare two algorithms employing our
instructions with two existing highly-optimized algorithms
that run on modern x86 processors.

5.1 Setup
We use the configurable Tensilica Xtensa LX4 Core as

foundation of our processor. In the following, it is called
DBA 1LSU. The DBA 1LSU processor has similar features
like the 108Mini2 processor, but includes a 64KB local data

2http://www.tensilica.com/uploads/pdf/108Mini.pdf
contains more information about this processor.

Final edited form was published in "SIGMOD/PODS'14: International Conference on Management of Data. Snowbird 2014", S. 767–778, ISBN 978-1-4503-2376-5
https://doi.org/10.1145/2588555.2593677

7

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

http://www.tensilica.com/uploads/pdf/108Mini.pdf

store, which is accessable via a single load–store unit (LSU).
Furthermore, the instruction and data bus width was in-
creased from 32 to 64 and from 32 to 128 bit, respectively.
In contrast to the 108Mini no hardware support for integer
division is available. The configurations DBA 1LSU EIS
and DBA 2LSU EIS further contain our instruction set ex-
tension from Section 4. The difference between both con-
figurations is that the latter contains two load–store units.
Each of them is equipped with its own local data memory.
The data memory is equally distributed between both mem-
ories. Hence, 32KB are accessable by each LSU. All DBA
processors have 32KB local instruction memory.

For comparison a Tensilica Diamond standard processor
108Mini was chosen. It is a mid-sized controller with ad-
ditional instructions for digital signal processing. Further-
more, the DBA 2LSU processor is synthesized to obtain
area, maximum frequency and power consumption. These
can be compared to the DBA 1LSU processor to analyze
the impact of the second LSU. Nevertheless, the compiler is
not able to make use of it. Consequently, performance is the
same and will not be further evaluated.

All versions of the processors have been synthesized with
Synopsys Design Compiler for a 65 nm low-power TSMC
process using typical case conditions (25◦C, 1.25 V). The
processor as well as the memories are regarded. For the
latter low power TSMC libraries are used. Additionally,
the same tool flow was used with a 28 nm super low-power
(SLP) Global Foundries process, including super low volt-
age (SLVT) parameters. Typical case conditions are applied
(25◦C, 0.8 V).

Power Consumption was simulated as follows: the core
and the memories have been synthesized as previously de-
scribed. Results of this step are a net list on gate level as well
as a Standard Delay Format (SDF) file with timing informa-
tion. Simulation of representative test cases were performed
in Mentor Questa. Hereby, a dump file is created containing
all switching activity of the entity. In a last step, Synopsys
PrimeTime with the previously created files as input is used
to obtain the corresponding power consumption.

5.2 Performance
In the first set of experiments, we compare the perfor-

mance of our processor variants (or processor configurations)
for the three set operation algorithms and the merge-sort al-
gorithm. The first processor variant is 108Mini, which is one
of Tensilica’s default processor configurations with a mini-
mal set of features. It does not contain features (e.g., an
FPU) that are not required to run the four algorithms. For
both, DBA 1LSU EIS and DBA 2LSU EIS, there exists a
variant with and without partial loading. Table 2 illustrates
the core frequency and the throughput achieved by the six
different configurations.

As can be seen, the core frequency of the different proces-
sor configurations is nearly the same. 108Mini achieves the
highest core frequency with 442MHz. With more features
integrated into the processors, the core frequency slightly
decreases because the longest critical path increases. With
all our features enabled, i.e, the two load–store units and
our instruction set extensions (DBA 2LSU EIS), the core
frequency decreases to 410MHz. For partial loading how-
ever, we observe no decrease in the core frequency whether
it is enabled or not. In general, we can conclude that our

Processor P
a
rt

ia
l

L
o
a
d
–
S

to
re

f[
M

H
z]

In
te

rs
ec

ti
o
n

U
n

io
n

D
iff

er
en

ce

M
er

g
e–

S
o
rt

108Mini - 442 31.3 26.4 35.7 1.7
DBA 1LSU - 435 50.7 47.7 50.4 3.2
DBA 1LSU EIS no 424 513.4 665.0 658.8 29.3
DBA 2LSU EIS no 410 693.0 643.0 637.0 28.3
DBA 1LSU EIS yes 424 859.0 574.2 859.0 29.3
DBA 2LSU EIS yes 410 1203.0 780.4 1192.6 28.3

Table 2: Maximum throughput [million elements
per second]

instruction set extension is well-designed because it has only
a small impact on the core frequency of the processor.

The maximum throughput for the four algorithms under
test is depicted on the right side of Table 2. We define the
throughput Tset of any of the three set-operation algorithms
as Tset = la+lb

t
where la and lb denote the number of values

in the input sets a and b and t denotes the time required
to perform the operation. The throughput Tsort of sort-
ing is defined as Tsort = n

t
where n denotes the number

of values being sorted and t denotes the time required for
sorting. We further define the selectivity of a set operation
as the number of results which can be minimally (0%) and
maximally (100%) obtained. This is achieved by varying
the input data, e.g, the intersection has 100% selectivity if
both input sets contain the same elements. If not mentioned
otherwise, we set the selectivity in all following experiments
to 50%. The input set size for the set-operation algorithms
and the sorting algorithm are 5000 and 6500 32-bit elements
respectively. These values represent the maximum number
of elements, which fit in the local data memories. If more
values should be used, the data prefetcher is required for
reloading elements. System level simulation validates a con-
stant throughput of the processor for larger data sets due
to the concurrently performed data prefetch. In this work,
only processor variations and the impact of the application-
specific instruction set are regarded. Consequently, the data
prefetcher is not included in the evaluation.

The order of the values being sorted has no impact on the
throughput of our chosen merge-sort implementation, i.e.,
we do not employ any shortcuts when the data is already
partially sorted. The 108Mini and the DBA 1LSU run the
scalar sorted-set algorithms.

The throughput of 108Mini is around 30 million elements
per second for the three set operations. The union opera-
tion’s throughput is typically lower than the throughput of
the other operations because it produces more output tu-
ples, which have to be written into the result set. With
the attached local store (DBA 1LSU), the throughput of
all three operations almost doubles because access to mem-
ory is less expensive. As soon as our instruction set ex-
tension is employed, however, the throughput increases by
an order of magnitude compared to the processor configu-
rations that provide only the standard instruction set. The
use of a second load–store unit (DBA 2LSU EIS) increases
throughput even further by 35% since values of both input
sets can now be read in one cycle. Finally, partial loading
increases throughput up about 1,203 million elements per
second for the intersection and difference operation. This

Final edited form was published in "SIGMOD/PODS'14: International Conference on Management of Data. Snowbird 2014", S. 767–778, ISBN 978-1-4503-2376-5
https://doi.org/10.1145/2588555.2593677

8

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

0

200

400

600

800

1000

1200

1400

1600

1800

0 10 20 30 40 50 60 70 80 90 100

Th
ro

u
gh

p
u

t
[M

ill
io

n
 e

le
m

e
n

ts
 p

er
 s

e
co

n
d

]

Selectivity [in %]

DBA_2LSU_EIS w/ partial loading DBA_1LSU_EIS w/ partial loading

DBA_2LSU_EIS w/o partial loading DBA_1LSU_EIS w/o partial loading

DBA_1LSU 108Mini

Figure 13: Selectivity of the intersection

amounts to a speedup of up to 38.4x compared to the initial
processor configuration 108Mini.

We observed that the throughput of the set operation al-
gorithms varies depending on the selectivity of both sets.
If the selectivity increases, the throughput usually increases
as well because the number of comparisons decreases with
more common values in both sets (cf. Section 2.3). Fig-
ure 13 illustrates the throughput of the six different proces-
sor configurations for the intersection operation. As before,
108Mini and DBA 1LSU always show the lowest through-
put, which slightly increases as the selectivity increases to
100%. The throughput of the other four configurations how-
ever, increases at a faster pace so that the processors employ-
ing our instruction set extension reach even higher speedups
when the selectivity approaches 100%. Again, the proces-
sors with partial loading achieve a higher throughput than
the processors without. Only if the selectivity reaches 100%,
i.e., the values in both sets are equal, partial loading has no
advantage anymore because the algorithms then proceed by
4 values in each input set in each iteration. We obtain sim-
ilar results also for the other two set operation algorithms.

Finally, the throughput for sorting is depicted in the right-
most column in Table 2. Since sorting requires multiple
runs over the data, the absolute throughput numbers are
clearly smaller compared to the ones of the set operations.
We furthermore compare only three processor configurations
because partial loading as well as two load–store units are
not beneficial for sorting. The 108Mini processor achieves
the lowest throughput of all three configurations with only
1.3 million elements per second. Using a local store as in
DBA 1LSU almost doubles the throughput since memory is
accessed using a single cycle. Again, throughput increases by
an order of magnitude when using our instruction set exten-
sion. DBA 1LSU EIS is 16x and 8.5x faster than 108Mini
and DBA 1LSU, respectively.

5.3 Area, Timing and Power Consumption
Within the next set of experiments, we compare the area

and power consumption of the different processor configu-
rations. The synthesis results reflect the accurate area and
timings that would be used in the final processor after the
tape-out. To obtain the power consumption of the processor
configurations, we use the Synopsys PrimeTime estimation
tool.

T
ec

h
n

o
lo

g
y

P
ro

ce
ss

o
r

A
L
O
G
I
C

[m
m

2
]

A
M

E
M

[m
m

2
]

f
M

A
X

[M
H

z]

P
[m

W
]

@
f
M

A
X

65 nm 108Mini 0.2201 - 4421 27.41

DBA 1LSU 0.177 0.874 435 56.6
DBA 2LSU 0.177 0.870 429 57.1
DBA 1LSU EIS 0.523 0.874 424 123.5
DBA 2LSU EIS 0.645 0.870 410 135.1

28 nm DBA 2LSU EIS 0.169 0.232 500 47.0
1http://www.tensilica.com/uploads/pdf/108Mini.pdf

Table 3: Synthesis results

Table 3 provides the synthesis results for the 65 nm and all
five processor configurations as well as for the 28 nm technol-
ogy and the DBA 2LSU EIS processor. 108Mini occupies
only 0.22mm2, which is completely covered with logic since
it has no caches or a local store on the chip. It is therefore
500x smaller than a Intel Xeon 3040 processor3, which is
a dual-core processor, similarly manufactured using 65 nm
technology, and has a die size of 111mm2. DBA 1LSU oc-
cupies less area for logic than 108Mini but is in total 5x
larger because of its on-chip local-store. Adding our instruc-
tion set extension and the second load–store unit increases
only the logic area, which remains smaller than the area
used for the local store. The DBA 2LSU EIS processor in-
cluding all features is roughly 7x larger than 108Mini and
thus still 73x smaller than the Intel Xeon 3040 processor.
When switching to the 28 nm technology, the area occupied
by DBA 2LSU EIS shrinks by 3.8x and the core frequency
slightly increases. The super-low power process, the super-
low voltage libraries and the 0.8 V supply voltage restricts
the maximum frequency but achieves significant lower power
consumption.

Part Area[%]

Basic Core 20.5
Decoding/Muxing 14.4
States 14.7
Op: All 11.3
Op: Intersection 6.8
Op: Difference 9.0
Op: Union 17.6
Op: Merge-Sort 5.7

SUM 100

Table 4: Relative area consumption per newly in-
troduced instruction (DBA 2LSU EIS processor)

Table 4 lists the relative area broken down to the compo-
nents of the DBA 2LSU EIS processor. The basic core and
standard instruction set already amount to one third of the
overall area. The decoding and multiplexing part, which is
shared by all of our new instructions, occupies the second
third of the chip. The circuits for the novel instruction oc-
cupy the remaining area, whereby the union operation is
most expensive. It requires more wires than the other in-
structions for writing result values back, i.e., the instruction
may write values from both input sets in one operation back
whereas the other instruction write at most values from one
input set back. The circuits used for the sorting instructions

3http://ark.intel.com/products/27203

Final edited form was published in "SIGMOD/PODS'14: International Conference on Management of Data. Snowbird 2014", S. 767–778, ISBN 978-1-4503-2376-5
https://doi.org/10.1145/2588555.2593677

9

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

http://www.tensilica.com/uploads/pdf/108Mini.pdf
http://ark.intel.com/products/27203

require less area than the other instruction because they do
not include partial loading and use only one load–store unit.

The power consumption of the processor variants are de-
picted on the right-most column of Table 3. The basic
core and standard instruction set consumes 57 mW. This
is 2.1x more than the 108Mini processor. Especially due
to the integration of the local memories and the increased
processor bus widths. By applying the newly developed
instruction set and a second LSU the power consumption
of the DBA 1LSU is increased by 2.4x to 135 mW. When
switching to the 28 nm technology, the power consumed by
DBA 2LSU EIS shrinks by 2.9x to 47 mW.

5.4 Comparison with Other Architectures
In the last set of experiments, we compare the perfor-

mance of algorithms using our instruction set extension with
existing highly-optimized algorithms. More specifically, we
compare our merge-sort implementation (hwsort) with the
merge-sort implementation (swsort) of Chhugani et al. [6]
as well as our sorted-set intersection implementation (hwset)
with the sorted-set intersection implementation (swset) of
earlier work [33]. We use absolute performance numbers pro-
vided in the respective papers and compare them with re-
sults obtained in our experiments. Our implementations run
always on our DBA 2LSU EIS processor whereas the exist-
ing implementations run on modern x86 processors, which
provide multiple cores. Since our processor has only a single
core, we only compare the implementations’ single-threaded
performance. Besides the performance, we compare the fea-
tures of the employed processors.

For the sorting-performance comparison, we calculate—
using the formulas in Section 5.2—the throughput based on
the time for sorting 6500 values in hwsort and the time
provided by Chhugani et al. [6] for sorting 512,000 values
with swsort. As before, we cannot sort more values with
hwsort because of the small local store. We expect, how-
ever, a similar performance for sorting a larger number of
values. We obtain the intersection throughput based on the
time for intersecting two sets with 2500 values each in hwset
and the time for intersecting two sets with 10 million values
each in swset. In both cases, the selectivity is set to 50%.

Intel Q9550 DBA 2LSU EIS

Throughput (elements/s) 60 mio 28.3 mio
Clock frequency 3.22 GHz 0.41 GHz
Max. TDP 95 W 0.135 W
Cores/Threads 4/4 1/1
Feature size 45 nm 65 nm
Area (logic & memory) 214 mm2 1.5 mm2

Table 5: Merge-sort comparison

Table 5 illustrates the results for the comparison of the
merge-sort implementations. Chhugani et al. [6] run swsort
in their experiments on an Intel Q9550 processor4, which
has a 8x higher core frequency but consumes up to 700x
more power than our DBA 2LSU EIS processor. Clearly,
this power consumption comparison is not entirely fair, since
the Intel Q9550 supports four hardware threads while our
processor supports only a single hardware thread. The In-
tel Q9550 itself, however, has a slight advantage through
its lower feature size, which typically improves energy con-
sumption (cf. Table 3). When comparing the throughputs,

4http://ark.intel.com/products/33924

swsort can sort roughly twice as much values in the same
time compared to hwsort. However, already small improve-
ments on DBA 2LSU EIS’s core frequency, i.e., by reducing
the feature size or integrating pipelining, would easily al-
low matching up throughput of swsort and hwsort. Fur-
thermore, the number of cores of DBA 2LSU EIS could be
largely increased until it occupies the same area as the In-
tel Q9550 processor. Even under pessimistic assumptions,
DBA 2LSU EIS could provide an order of magnitude more
cores than the Intel Q9550 processor. Summing up, al-
though hwsort is slower than the highly-optimized swsort,
it is much more energy-efficient and may easily outperform
swsort when our processor is further optimized.

Intel i7-920 DBA 2LSU EIS

Throughput (elements/s) 1,100 mio 1,203 mio
Clock frequency 2.67 GHz 0.41 GHz
Max. TDP 130 W 0.135 W
Cores/Threads 4/8 1/1
Feature size 45 nm 65 nm
Area (logic & memory) 263 mm2 1.5 mm2

Table 6: Sorted-set intersection comparison

The results for comparing hwset and swset are depicted
in Table 6. In our earlier work [33], we used an Intel i7-
920 processor5 within our experimental evaluation; it has a
6.5x higher core frequency and consumes up to 960x more
power than DBA 2LSU EIS but can run 8 threads in paral-
lel with Hyperthreading enabled. As before, Intel i7-920’s
per thread power consumption is lower but it is manufac-
tured using 45 nm feature size, which forms an advantage
over DBA 2LSU EIS. The throughput of hwset is 9.4%
higher than the swset’s throughput despite of the much
lower core frequency and power consumption. Again, we
expect even a higher throughput when our processor is fur-
ther optimized.

6. FURTHER RELATED WORK
In this section, we provide additional related work that

is not already covered within the paper; it can be divided
into three parts covering (1) existing instruction set exten-
sions and database algorithms that exploit them, (2) a brief
overview about early attempts of database processors, and
(3) novel tailor-made FPGA circuits and ASICs for process-
ing database tasks.

Hardware vendors like Intel, AMD, or IBM started early
to enhance their processors with additional instruction sets
to speed up algorithms of various applications. Starting with
floating-point instructions running in co-processors, instruc-
tion set extensions for multimedia processing, encryption,
video encoding, and string processing were integrated into
processors. For modern general-purpose processors from
Intel, for example, there exist MMX, various revisions of
SSE and AVX, SSSE3, Quick Sync [15], AES, VT-x, and
FMA3.6 Although none of the instruction sets available in
any general-purpose processor is primarily developed to sup-
port database operations, many of them can still be utilized
to speed up such operations. Typically, the SIMD instruc-
tion sets have been proved to be helpful for this purpose.
Examples are vectorized versions of compression algorithms

5http://ark.intel.com/products/37147
6Details to these instruction sets can be found in Intel’s
optimization reference manual [16].

Final edited form was published in "SIGMOD/PODS'14: International Conference on Management of Data. Snowbird 2014", S. 767–778, ISBN 978-1-4503-2376-5
https://doi.org/10.1145/2588555.2593677

10

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

http://ark.intel.com/products/33924
http://ark.intel.com/products/37147

[26, 36], database operators [38, 4], tree-based and hash-
based search algorithms [18, 32], and sorting algorithms [6,
12]. However—as already known and again shown in this
paper—even highly-optimized algorithms that use general-
purpose instruction sets cannot match the energy efficiency
and therefore performance of algorithms that use application-
specific instruction sets. Since instruction sets specifically
designed for database operations will most likely not appear
in general-purpose processors, our paper provides the neces-
sary background to develop and build such instruction sets
efficiently. The aforementioned vectorized algorithms might
be a good starting point for this development.

In the 1980s, database machines were developed to speed
up query processing by using application-specific hardware.
Early approaches put processing logic directly into the write–
read heads of magnetic disks. Simple tasks like tuple pars-
ing, searching and selecting tuples could therefore be per-
formed while reading from the disks’ tracks. Boral et al. [5]
provide an excellent overview of such disk-head processing
architectures. Later database machines, e.g., GRACE [21],
the Super Database Computer [20], or the GAMMA dataflow
machine [8], are mostly shared-nothing architectures where
multiple nodes, which consist of a processor, a disk cache,
and disks, are connected via a network. Query processing
is therefore performed in a highly parallel fashion. The
nodes itself are often enhanced using specialized circuits,
e.g., hardware sorter [22]. The CAFS system [3], the LEECH
processor [28], the pipelined relational query processor [19],
and the relational database machine [2] are even proces-
sors that are solely designed for database query process-
ing. They support complex operations, e.g., join, aggre-
gation, and sorting, and provide a much higher query pro-
cessing performance than general-purpose processors having
a similar core frequency. Although all these processors and
systems aim at speeding up query processing using special-
ized hardware, none of the existing works has an answer on
how to build processors efficiently. Employing customizeable
processors—as proposed in our paper—eases the processor
development and decreases its costs and thus first enables
building database processors.

Based on the disk-head processing architectures, recently
tailor-made circuits intended to be run on FPGAs were de-
veloped to speed up mostly stateless data processing tasks.
For example, Mueller et al. [29, 30] proposed circuits for
various data streaming operators, e.g., selection, projection,
and windowed aggregation and median; Koch et al. [24] dis-
cussed FPGA sorting approaches; and Teubner et al. [35]
proposed an FPGA stream join. Besides academic research,
IBM Netezza [11] uses FPGAs in the data path from disks to
host processors for filtering and transforming tuples loaded
from disk. More or less all these approaches rely on the re-
configurability of the FPGAs, e.g., the circuit running on
the FPGA is changed for each streaming query [29, 30, 11].
The reconfigurability, however, comes at the price of a lower
density, higher power consumption, and lower core frequency
compared to application-specific integrated circuits (ASICs)
where the circuits cannot be changed. Kuon [25] reported
that in average an FPGA is 40x larger, consumes 12x more
dynamic power, and is 3.2x slower than an ASIC. Since
most database processing tasks (e.g., sorting, aggregating,
or joins) are relatively fixed and well-defined, the reconfig-
urability of an FPGA is not required. Hence, specialized
instruction sets as proposed in our paper should be supe-

rior to FPGA circuits in terms of energy consumption and
performance when processing the same tasks.

Lately, several authors proposed specialized instruction
sets for database systems similar to our instruction set ex-
tension. Wu et al. [37] proposed the HARP accelerator for
speeding up partitioning of numerical values, which is heav-
ily used in database systems. The key idea of the approach
is to build specialized streaming cores that solely partition
numeric sequences besides the regular cores used for pro-
cessing. Stream buffer instructions are used to initialize the
streaming cores and feed them with values that should be
partitioned. Similarly, Kim et al. [27] built specialized cores
for processing hash joins. These walker units are solely used
to traverse the collision lists of hash tables to find whether
a hashed key occurs in them or not. Hayes et al. [14] pro-
posed a vector instruction set with 28 instructions to speed
up hash joins in columnar database systems. Besides the
different application areas, all three authors have no answer
how to eventually build a processor supporting their instruc-
tions. They use different simulators to evaluate them and
discuss their integration into x86 processors, however, only
our work considers all steps from developing an instruction
set extension to its final integration into a processor.

Lastly, Iyer [17] proposed two instructions to speed up
tournament-tree sorting used within DB2. Basically, certain
often reused instruction sequences in this sort algorithm are
merged to obtain the two instructions. Although the in-
structions are integrated into IBM’s z-series processors, Iyer
neglects the question how to ease the processor development.
Only our paper provides a viable solution for this issue.

7. CONCLUSION
Database systems should provide a high query throughput

and low query latency. Consequently, one of the key tasks
in the development of database systems is a high query per-
formance. To achieve this, they are optimized manifoldly:
efficient data structures or in-memory data layouts, cache-
optimized and parallel algorithms, and even data processing
circuits for FPGAs are developed with the goal of process-
ing queries faster. Our goal in this paper is to show how
to improve the query performance using database-specific
instruction set extensions. We discuss the necessary back-
ground to obtain such instructions, proposed the model of a
database-centric processor, and provide exemplarily instruc-
tions for set-oriented database primitives. In our experi-
ments, we show that algorithms that are run on our proces-
sor and exploit the presented instruction set achieve a sim-
ilar performance than highly-optimized algorithms on mod-
ern x86 processors but require much less energy at the same
time. Since general-purpose processors will not scale be-
cause of thermal and energy constraints, the development of
application-specific processors is inevitable. Clearly, many
more instruction sets need to be developed to run entire
database systems efficiently on such processors. Our paper
provides the foundation for building such instruction sets.

8. ACKNOWLEDGEMENTS
This work has been supported by the state of Saxony

under grant of ESF 100098198 (IMData) and 100111037
(SREX) and the German Research Foundation within cfaed
and the grant LE 1416/22-1 (HAEC). Furthermore, we would
like to thank Synopsys and Tensilica for software and IP.

Final edited form was published in "SIGMOD/PODS'14: International Conference on Management of Data. Snowbird 2014", S. 767–778, ISBN 978-1-4503-2376-5
https://doi.org/10.1145/2588555.2593677

11

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

9. REFERENCES

[1] ARC Inc. 750D Core Architecture Manual, 2005.

[2] H. Auer, W. Hell, H.-O. Leilich, J. Lie, H. Schweppe,
S. Seehusen, G. Stiege, W. Teich, and H. C. Zeidler.
Rdbm-a relational data base machine. Information
Systems, 6(2), 1981.

[3] E. Babb. Implementing a relational database by
means of specialzed hardware. ACM Transactions on
Database Systems, 4(1), 1979.

[4] C. Balkesen, G. Alonso, J. Teubner, and M. T. Ozsu.
Multi-core, main-memory joins: Sort vs. hash
revisited. Proceedings of the VLDB Endowment, 7(1),
2013.

[5] H. Boral and D. J. DeWitt. Database machines: An
idea whose time has passed? a critique of the future of
database machines. Springer, 1983.

[6] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy,
M. Hagog, Y.-K. Chen, A. Baransi, S. Kumar, and
P. Dubey. Efficient implementation of sorting on
multi-core simd cpu architecture. Proc. VLDB
Endow., 2008.

[7] CoWare Inc. LISA Language Reference Manual, 2011.

[8] D. J. DeWitt, S. Ghandeharizadeh, D. A. Schneider,
A. Bricker, H.-I. Hsiao, and R. Rasmussen. The
gamma database machine project. Knowledge and
Data Engineering, 1990.

[9] B. Ding and A. C. König. Fast set intersection in
memory. Proc. VLDB Endow., 4(4), Jan. 2011.

[10] H. Esmaeilzadeh, E. Blem, R. St. Amant,
K. Sankaralingam, and D. Burger. Dark silicon and
the end of multicore scaling. In ISCA, 2011.

[11] P. Francisco. The Netezza Data Appliance
Architecture: A Platform for High Performance Data
Warehousing and Analytics. IBM Corp., 2011.

[12] B. Gedik, R. R. Bordawekar, and P. S. Yu. Cellsort:
high performance sorting on the cell processor. In
VLDB, 2007.

[13] N. Hardavellas, M. Ferdman, B. Falsafi, and
A. Ailamaki. Toward dark silicon in servers. Micro,
2011.

[14] T. Hayes, O. Palomar, O. Unsal, A. Cristal, and
M. Valero. Vector extensions for decision support
dbms acceleration. In MICRO, 2012.

[15] Intel corp. Technology Insight: Intel Next Generation
Microarchitecture Codename Ivy Bridge, 2011.

[16] Intel Corp. Intel 64 and IA-32 Architectures
Optimization Reference Manual, July 2013.

[17] B. R. Iyer. Hardware assisted sorting in IBM’s DB2
DBMS. In COMAD, 2005.

[18] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D.
Nguyen, T. Kaldewey, V. W. Lee, S. A. Brandt, and
P. Dubey. Fast: fast architecture sensitive tree search
on modern cpus and gpus. In SIGMOD, 2010.

[19] W. Kim, D. Gajski, and D. J. Kuck. A parallel
pipelined relational query processor. ACM
Transactions on Database Systems, 9(2), June 1984.

[20] M. Kitsuregawa and Y. Ogawa. Bucket spreading
parallel hash: A new, robust, parallel hash join
method for data skew in the super database computer
(sdc). In VLDB, 1990.

[21] M. Kitsuregawa, H. Tanaka, and T. Moto-Oka.
Application of hash to data base machine and its
architecture. New Generation Computing, 1(1), 1983.

[22] M. Kitsuregawa, W. Yang, T. Suzuki, and M. Takagi.
Design and implementation of high speed pipeline
merge sorter with run length tuning mechanism. In
Database Machines and Knowledge Base Machines.
Springer, 1988.

[23] D. E. Knuth. The Art of Computer Programming,
Volume III: Sorting and Searching. Addison-Wesley,
1973.

[24] D. Koch and J. Torresen. Fpgasort: a high
performance sorting architecture exploiting run-time
reconfiguration on fpgas for large problem sorting. In
ACM/SIGDA, FPGA ’11, 2011.

[25] I. Kuon and J. Rose. Measuring the gap between fpgas
and asics. Computer-Aided Design of Integrated
Circuits and Systems, 26(2), 2007.

[26] D. Lemire and L. Boytsov. Decoding billions of
integers per second through vectorization. Software:
Practice and Experience, 2013.

[27] K. Lim, B. Falsafi, J. Picorel, B. Grot,
P. Ranganathan, O. Kocberber, et al. Meet the
walkers: Accelerating index traversals for in-memory
databases. In MICRO, 2013.

[28] D. R. McGregor, R. G. Thomson, and W. N. Dawson.
High performance hardware for database systems. In
VLDB, 1976.

[29] R. Mueller, J. Teubner, and G. Alonso. Data
processing on fpgas. Proc. VLDB Endow., 2(1), Aug.
2009.

[30] R. Mueller, J. Teubner, and G. Alonso. Streams on
wires: a query compiler for fpgas. PVLDB, Aug. 2009.

[31] V. Raman, L. Qiao, W. Han, I. Narang, Y.-L. Chen,
K.-H. Yang, and F.-L. Ling. Lazy, adaptive rid-list
intersection, and its application to index anding. In
SIGMOD, 2007.

[32] K. A. Ross. Efficient hash probes on modern
processors. In ICDE, 2007.

[33] B. Schlegel, T. Willhalm, and W. Lehner. Fast
sorted-set intersection using simd instructions. In
ADMS, 2011.

[34] Tensilica Inc. Tensilica Instruction Extension (TIE)
Language Reference Manual, 2013.

[35] J. Teubner and R. Mueller. How soccer players would
do stream joins. In SIGMOD, 2011.

[36] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner,
A. Zeier, and J. Schaffner. Simd-scan: Ultra fast
in-memory table scan using on-chip vector processing
units. PVLDB, 2009.

[37] L. Wu, R. J. Barker, M. A. Kim, and K. A. Ross.
Navigating big data with high-throughput,
energy-efficient data partitioning. In ISCA, 2013.

[38] J. Zhou and K. A. Ross. Implementing database
operations using simd instructions. In SIGMOD, 2002.

778

Final edited form was published in "SIGMOD/PODS'14: International Conference on Management of Data. Snowbird 2014", S. 767–778, ISBN 978-1-4503-2376-5
https://doi.org/10.1145/2588555.2593677

12

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

	Introduction
	Background
	Customizable Processors
	Optimization Techniques
	Sorting and Set Operations in Databases

	Processor Design
	Tool Chain and Development Strategy
	Processor Model

	Instruction Set Extension
	Experimental Results
	Setup
	Performance
	Area, Timing and Power Consumption
	Comparison with Other Architectures

	Further Related Work
	Conclusion
	Acknowledgements
	References

