

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-793260

Till Kolditz, Dirk Habich, Wolfgang Lehner, Matthias Werner, Stefan T.J. de Bruijn

AHEAD: Adaptable Data Hardening for On-the-Fly Hardware Error
Detection during Database Query Processing

Erstveröffentlichung in / First published in:

SIGMOD/PODS '18: International Conference on Management of Data, Houston 10.-
15.06.2018. ACM Digital Library, S. 1619–1634. ISBN 978-1-4503-4703-7.

DOI: https://doi.org/10.1145/3183713.3183740

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-793260
https://doi.org/10.1145/3183713.3183740

AHEAD: Adaptable Data Hardening for On-the-Fly Hardware
Error Detection during DatabaseQuery Processing

Till Kolditz, Dirk Habich,

Wolfgang Lehner

Database Systems Group

Technische Universität Dresden

[first.last]@tu-dresden.de

Matthias Werner

Center for Information Services and

High Performance Comp.

Technische Universität Dresden

matthias.werner1@tu-dresden.de

S.T.J. de Bruijn

NubiloSoft

The Netherlands

stefan@nubilosoft.com

ABSTRACT
We have already known for a long time that hardware components

are not perfect and soft errors in terms of single bit flips happen all

the time. Up to now, these single bit flips are mainly addressed in

hardware using general-purpose protection techniques. However,

recent studies have shown that all future hardware components be-

come less and less reliable in total and multi-bit flips are occurring

regularly rather than exceptionally. Additionally, hardware aging ef-

fects will lead to error models that change during run-time. Scaling

hardware-based protection techniques to cover changing multi-bit

flips is possible, but this introduces large performance, chip area,

and power overheads, which will become non-affordable in the

future. To tackle that, an emerging research direction is employing

protection techniques in higher software layers like compilers or

applications. The available knowledge at these layers can be effi-

ciently used to specialize and adapt protection techniques. Thus, we

propose a novel adaptable and on-the-fly hardware error detection

approach called AHEAD for database systems in this paper. AHEAD
provides configurable error detection in an end-to-end fashion and

reduces the overhead (storage and computation) compared to other

techniques at this level. Our approach uses an arithmetic error cod-

ing technique which allows query processing to completely work

on hardened data on the one hand. On the other hand, this enables

on-the-fly detection during query processing of (i) errors that mod-

ify data stored in memory or transferred on an interconnect and

(ii) errors induced during computations. Our exhaustive evaluation

clearly shows the benefits of our AHEAD approach.

CCS CONCEPTS
• General and reference → Reliability; • Information sys-
tems → Record and buffer management; Main memory en-
gines;

KEYWORDS
Reliability, Error Detection, Database Systems, Query Processing

©2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in SIGMOD’18, June
10–15, 2018, Houston, TX, USA
DOI: https://doi.org/10.1145/3183713.3183740

ACM Reference Format:
Till Kolditz, Dirk Habich, Wolfgang Lehner, Matthias Werner, and S.T.J. de

Bruijn. 2018. AHEAD: Adaptable Data Hardening for On-the-Fly Hardware

Error Detection during Database Query Processing. In Proceedings of 2018
International Conference on Management of Data (SIGMOD’18). ACM, New

York, NY, USA, 16 pages. https://doi.org/10.1145/3183713.3183740

1 INTRODUCTION
The key objective of database systems is to reliably manage data,

where high query throughput and low query latency are core re-

quirements [2]. To satisfy these requirements, database systems

constantly adapt to novel hardware features [9, 13, 18, 35, 48, 58].

In the recent past, we have seen numerous advances, in particular

with respect to memory, processing elements, and interconnects [12,
27, 62]. Although it has been intensively studied and commonly

accepted that hardware error rates increase dramatically with the

decrease of the underlying chip structures [11, 28, 74], most data-

base system research activities neglected this fact, traditionally

focusing on improving performance characteristics exploiting new

data structures and efficient algorithms and leaving error detection

(and error correction to some extent) to the underlying hardware.

Especially for memory, silent data corruption (SDC) as a result

of transient bit flips leading to faulty data is mainly detected and

corrected at the DRAM and memory-controller layer [74]. How-

ever, since future hardware becomes less reliable [28, 63, 70] and

error detection as well as correction by hardware becomes more

expensive, this free-ride will come to an end in the near future.

The increasing hardware unreliability is already observable. For

instance, repeatedly accessing one memory cell in DRAM modules

causes bit flips in physically-adjacent memory cells [40, 54]. The

reason for this is a hardware failure mechanism called disturbance
error [40, 54], where electromagnetic (cell-to-cell) interference leads

to bit flips. It is already known that this interference effect increases

with smaller feature sizes and higher densities of transistors [40, 54].

Kim et al. [40] evaluated that all newer DRAMmodules are affected

and they observed one to four bit flips per 64 bit word even for error-

correcting code DRAM (ECC DRAM). Other recent studies have

also shown that multi-bit flips become more frequent and that the

bit flip model changes at run-time due to transistor aging [40, 63].

Additionally, hardware-based protection is very challenging [28,

63, 70]. Thus, the semiconductor as well as hardware/software

communities have recently experienced a shift towards mitigating

these reliability issues also at higher software layers, rather than

completely mitigating these issues in hardware [28, 63].

Consequently, several software-level reliability techniques have

evolved, e.g., error detection using duplicated instructions [57] or

Research 15: Databases for Emerging Hardware SIGMOD’18, June 10-15, 2018, Houston, TX, USA

Final edited form was published in "SIGMOD/PODS '18: International Conference on Management of Data. Houston 2018", S. 1619–1634, ISBN 978-1-4503-4703-7
https://doi.org/10.1145/3183713.3183740

1

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

https://doi.org/10.1145/3183713.3183740
https://doi.org/10.1145/3183713.3183740
https://www.acm.org/publications/policies/artifact-review-badging/#replicated

0

0.5

1

1.5

2

2.5

1

2.01

1.19

R
e
l
a
t
i
v
e
R
u
n
t
i
m
e

(a) Runtime

0

0.5

1

1.5

2

2.5

1

2.00

1.50

R
e
l
a
t
i
v
e
M
e
m
o
r
y

C
o
n
s
u
m
p
t
i
o
n

(b) Storage

Unprotected

DMR

AHEAD

Figure 1: Relative comparison using the star-schema bench-
mark [68]. More details in Section 6.

software implemented fault tolerance (SWIFT) [65]. These general-

purpose software techniques are usually based on data/code re-

dundancy using dual or triple modular redundancy (DMR/TMR).

However, the application of these techniques with respect to in-

memory database systems causes a high overhead as illustrated in

Figure 1. Obviously, software-based DMR protection requires twice

as much memory capacity compared to a normal (unprotected)

setting, since data must be kept twice in different main memory lo-

cations. Furthermore, every query is redundantly executed with an

additional voting at the end resulting in a computational overhead

slightly higher than 2x. Figure 1 highlights the average relative

overheads for all 13 queries of the SSB benchmark [56, 68] with the

unprotected approach as baseline.

Core Contribution. Generally, any undetected bit flip destroys

the reliability objective of database systems in form of false nega-

tives (missing tuples), false positives (tuples with invalid predicates)

or inaccurate aggregates in a silent way. Since (i) general-purpose

software-based protection techniques introduce toomuch overhead,

(ii) memory systems will be significantly more error-prone in the fu-

ture due to smaller chip structures, and (iii) generic hardware-level

detection mechanisms will be too costly and too inflexible, there is

a clear need for database-specific approaches to guarantee reliable

data storage and processing without sacrificing the overall perfor-

mance. In this paper, we present a novel approach called AHEAD
for error detection tailored to state-of-the-art in-memory column

store systems [32, 75]. As highlighted in Figure 1, our AHEAD ap-

proach reduces the overhead compared to DMR to a large degree

for storage as well as for processing. Furthermore, multi-bit flips

occurring during query processing are on-the-fly detectable, which

is not the case for DMR, where errors are only detected during the

voting at the end [64]. We achieve this property and the signifi-

cant overhead reduction by encoding each value in a fine-grained

way using a software-based error coding scheme, which allows

to directly work on the encoded data representation during query

processing. Moreover, we intentionally devise an error detection-
only mechanism and leave the repair mechanism to the database

system itself, e.g. by deploying a fine-grained recovery procedure.

We intentionally also position our approach orthogonal to other

coding domains like compression [1] or encryption [71], which al-

lows a free combination of different schemes to the underlying data.

To represent the intention of detecting hardware errors, we intro-

duce new terms for encoding and decoding. We denote the process

of encoding data as data hardening, since data is literally firmed

so that corruption becomes detectable. In contrast, we denote as

data softening the decoding of data, as it becomes vulnerable to

corruption again. Furthermore, we introduce the notion of bit flip
weight as the number of flipped bits per logical data value.

Contributions in Detail and Outline. To present our novel

AHEAD approach in detail, we make the following contributions:

(1) Reliability concerns for future hardware have attractedmajor

attention in the recent past. In Section 2, we give a precise

problem description and define requirements for reliable

data management on future hardware.

(2) We promote arithmetic codes as software-based error coding

scheme and AN coding as one representative, in Section 3. In

particular, we justify that AN coding has unique properties

with regard to our defined requirements.

(3) Based on AN coding, we present our hardened data storage

concept for state-of-the-art in-memory column stores in

Section 4. Additionally, we describe the adaptation of our

hardened storage for various bit flip weights and introduce

performance improvements for AN code operations.

(4) Based on this hardened storage foundation, we present our

on-the-fly error detection during query processing in Sec-

tion 5. We introduce different error detection opportunities

and determine continuous detection as the best solution, for

which we describe essential query processing adjustments.

(5) In Sections 6 and 7, we exhaustively evaluate our AHEAD
approach, the underlying AN coding scheme, and our devel-

oped performance improvements.

Finally, we present related work in Section 8 as well as briefly sum-

marize the paper including a discussion of future work in Section 9.

2 HARDWARE RELIABILITY CONCERNS
Hardware components fabricated with nano-scale transistors face

serious reliability issues like soft errors, aging, thermal hot spots,

and process variations as a consequence of the aggressive transis-

tor miniaturization [63]. These issues arise from multiple sources

and they jeopardize the correct application execution [63]. The re-

cently published book [63] summarizes state-of-the-art protection

techniques in all hardware as well as software layers and presents

new results of a large research initiative. In their work, the authors

primarily target on soft errors, because soft errors are one of the

most important reliability issues in the nano-era. Especially, they

describe the technical backgrounds, why soft errors increase with

decreasing feature sizes and higher densities of transistors [63].

Shift towards Multi-Bit Flips. The soft errors are caused due

to external influences like energetic particle strikes, and/or internal
disruptive events like noise transients at circuit, chip or system level,

cross talks, and electromagnetic interference [63]. The soft error

rate (SER) grows exponentially, because the number of transistors

on the die increases exponentially [31, 63]. Consequently, multi-

bit flips become much more frequent [11, 28, 63] and transistor

aging leads to a changing bit flip behavior at run-time where heat

stimulates this effect [28]. All hardware components are affected,

but memory cells are more susceptible than logic gates [28, 30, 39].

For example, memory technologies are already much more vul-

nerable to electromagnetic interference effects [40, 54] (disturbance
errors) as well as to data retention problems. A practical solution

to tackle interference effects in DRAM is to increase the DRAM

refresh rate, so that the probability of inducing disturbance errors

Research 15: Databases for Emerging Hardware SIGMOD’18, June 10-15, 2018, Houston, TX, USA

Final edited form was published in "SIGMOD/PODS '18: International Conference on Management of Data. Houston 2018", S. 1619–1634, ISBN 978-1-4503-4703-7
https://doi.org/10.1145/3183713.3183740

2

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

before DRAM cells get refreshed is reduced [40, 54]. However, re-

fresh operations waste energy and degrade system performance

by interfering with memory accesses [40, 54]. In addition, with in-

creasing DRAM device capacities, the following effects with regard

to DRAM refresh arise at the same time as well (data retention prob-
lem) [38, 37, 50, 54]. First, more refresh operations are necessary to

maintain data correctly. Second, smaller DRAM capacitors require

lower retention times [54]. Third, the voltage margins separating

data values become smaller, and as a result the same amount of

charge loss is more likely to cause multi-bit flips [38, 37, 50, 54].

Theses effects increase as DRAM capacities increase [38, 37, 50, 54].

Furthermore, emerging non-volatile memory technologies like

PCM [46], STT-MRAM [44], and PRAM [86] exhibit similar and

perhaps even more reliability issues [38, 37, 50, 54]. For example,

PCM are based on multi-level cells (MLC) to store multiple bits in

one cell which is achieved by using intermediate resistive states

for storing information, in addition to the low and high resistance

levels [51]. A major problem in PCM is that a time-dependent

resistance drift can effect that a different value than the originally

stored one will be read [51]. Furthermore, if one cell drifts to the

incorrect state, other cells are also highly likely to drift in the near

future. Due to this correlation, multi-bit errors changing at run-time

are much more likely in MLC PCM [51]. Moreover, heat produced

by writing one PCM cell can alter the value stored in many nearby

cells (e.g., up to 11 cells in a 64 byteblock [34]) [51].

Protection Techniques.Hardware components usually feature

protection techniques such as error correction codes (ECC) [26, 39]

or hardware redundancy [19, 76]. However, these approaches are

aligned to single bit flips nowadays. Thus, hardware research in

two directions is necessary: (i) developing appropriate protection

technique to cover new effects like disturbance errors and/or (ii)
scaling up traditional techniques to cover multi-bit flips. Research is

currently done in both directions [63]. For example, to mitigate dis-
turbance errors, the inter-cell isolation is improved, but this is chal-

lenging due to ever-decreasing feature sizes and higher densities [40,

54]. Furthermore, the implementation of multi-bit error detection

and correction codes in memory has been investigated [39]. How-

ever, this results in high chip area costs for storing the extra parity

bits and increased calculation/checking/correction logic, whereas

the overhead quickly grows with the code strength [39]. Then,

reading and computing the parity bits can be a bottleneck [39].

There are a lot of hardware-oriented activities (see also Appen-

dix B), but these activities show that hardware-based approaches

are very effective, but the protection is very challenging and each

technique introduces large performance, chip area, and power over-

heads. Furthermore, the techniques have to be implemented in a

pessimistic way to cover the aging aspect leading usually to an

over-provisioning. The whole is made more difficult by Dark Sili-
con [20]: billions of transistors can be put on a chip, but not all them

can be used at the same time. This and the various new disruptive

interference effects make the reliable hardware design and develop-

ment very challenging, time consuming, and very expensive [63].

The disadvantages outweigh the advantages for hardware-based

protection, so that the semiconductor as well as hardware/software

communities have recently experienced a shift towards mitigating

these reliability issues also at higher software layers, rather than

completely mitigating these issues only in hardware [28, 63, 70].

Consequences for Database Systems. Since multi-bit flips

will occur more frequently in future hardware and are not han-

dled at the hardware layer, a major challenge is resilient query

processing [7]. To tackle that, an emerging research direction will

be employing protection techniques in database systems and using

the available knowledge to specialize as well as to balance protec-

tion and the associated overhead. That means, appropriate solutions

have to satisfy the following requirements:

R1: Solutions have to detect and later correct (i) errors (multi-bit

flips) that modify data stored in main memory, (ii) errors

induced during transferring on interconnects and (iii) er-

rors induced during computations during query processing

(detection capability).
R2: Solutions should be adaptable at run-time for different error

models because the number and the rate of bit flips may vary

over hardware generations or due to hardware aging effects.

(run-time adaptability).
R3: Solutions should only introduce the necessary overhead in

terms of memory consumption and query runtime, which is

required to detect a desired number of bit flips. That means

the overhead should be as small as possible, but still provide

a reliable behavior (balanced overhead).
In the remainder of this paper, we focus on error detection as a

first step and present a novel approach. Our approach is tailored to

state-of-the-art in-memory column stores and satisfies R1 to R3.

3 SOFTWARE-BASED ERROR CODING
Our novel AHEAD approach is based on error coding instead of

general-purpose DMR. The most important property of error codes

is the detection capability, i.e. the guaranteed minimum bit flip

weight, whereby the basic idea is as follows: The data word space

D contains the original data. From a given data word an encod-

ing (hardening) maps to a code word, which can be decoded back

(softening) to the original data word in the best case without bit

flips. The code domain is typically much larger than the original

data domain, where only the original data words can be mapped

between both domains. The code words belonging to this subset are

called valid – valid hardened data words. All other code words are

invalid or corrupted. A bit flip may change a valid code word either

to an invalid one which can be detected, or to another valid one

which is undetectable and known as silent data corruption (SDC).

Error codes have been widely studied in theory and applied in

practice [52]. Thus, there is a large corpus of error codes avail-

able [52]. We examined a variety of these codes with regard to our

three requirements R1 to R3. Based on this analysis, we decided to

use an arithmetic code called AN coding. Before we justify our deci-

sion in Section 3.2, we introduce AN coding in detail in Section 3.1.

Figure 2 highlights and compares AN coding (right side) with the

well-known Hamming code [26] (left) using an 8-bit example value.

3.1 AN Coding Description
AN coding is a representative of arithmetic codes

1
[4, 29], allowing

only error detection. Hardened code words c ∈ CA
DΘ

are computed

by multiplying a constant A ∈ A onto each original data word

1
Please note that some unrelated codes for lossless lightweight data compression are

also called arithmetic codes [84]. These are not equivalent to the codes used here.

Research 15: Databases for Emerging Hardware SIGMOD’18, June 10-15, 2018, Houston, TX, USA

Final edited form was published in "SIGMOD/PODS '18: International Conference on Management of Data. Houston 2018", S. 1619–1634, ISBN 978-1-4503-4703-7
https://doi.org/10.1145/3183713.3183740

3

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

d ∈ DΘ as illustrated on the right side in Figure 2:

c = d · A (1)

A, DΘ, and C
A
DΘ

respectively are the sets of all possible parameters

A, data words d of type Θ, and code words c . The multiplication

modifies the data word itself and all data is viewed as integers. As a

result of the multiplication, the domain of code words CA
DΘ

expands

such that only multiples of A become valid code words, and all

other integers are considered non-code words. The impact of A on

the detection capability is described later. A division is required for

softening:

d = c/A (2)

Errors are detected by testing the remainder of the division by A,
which must be zero, otherwise the code word was corrupted (cε),
e.g., by a bit flip denoted as b:

c ≡ 0 (mod A) (3)

(cε = c ⊕
2b) . 0 (mod A) (4)

A unique feature of arithmetic codes, and thus AN coding, is

the ability to operate directly on hardened data by encoding the

other operands, too. In particular, due to the monotony of the

multiplication, the following operations on two hardened operands

yield the same results as operations on unencoded data:

c1 ± c2 = (d1 · A) ± (d2 · A) = (d1 ± d2) · A (5)

c1 ◦ c2 ≡ (d1 · A) ◦ (d2 · A)
1/A
≡ d1 ◦ d2 , ◦ ∈ {<, ≤,=, . . . } (6)

Care must be taken for operations like multiplication

OK c1 · d2 = d1 · d2 · A, (7a)

BAD c1 · c2 = (d1 · A) · (d2 · A) = d1 · d2 · A
2, (7b)

OK c1 · c2 ⇒ c1 · c2/A = d1 · d2 · A, (7c)

and division

OK

c1
d2
=
d1 · A

d2
=
d1
d2
· A, (8a)

BAD

c1
c2
=
d1 · A

d2 · A
=
d1
d2
, (8b)

OK

c1
c2
⇒

c1
c2
· A =

d1 · A

d2 · A
· A =

d1
d2
· A. (8c)

While Equations (7a) and (8a) are valid operations using an encoded

and an unencoded operand, Equation (7b)’s result would be invalid

due to the resulting A2
and Equation (8b) produces an unencoded

result. By that, for multiplication with two hardened operands, one

operand must be divided by A (Equation (7c)). For division, the

result must be multiplied by A (Equation (8c)), where the correct

order of the additional multiplication is crucial. The division of the

two code words must take precedence to prevent an overflow.

3.2 AN Coding Justification
As shown in Figure 2, AN coding hardens the bit representation

of the original value with additional bits for error detection. This

applies not only to AN coding, but also to any other error code [52].

For example, the left side of Figure 2 shows the hardening using

the well-known Extended Hamming code [26]. As illustrated, the

Extended Hamming Code also introduces five additional parity bits

2⊕ can be a binary XOR, OR, or AND-operation, depending on the actual error model.

Bit position

Value 38

7 6 5 4 3 2 1 0

0 0 1 0 0 1 1 0

P1 = XOR of bits at positions (0, 1, 3, 4, 6)

P2 = XOR of bits at positions (0, 2, 3, 5, 6)

P3 = XOR of bits at positions (1, 2, 4, 7)

P4 = XOR of bits at positions (4, 5, 6, 7)

P5 = XOR of all bits including P1 to P4

5 4 3 2 1

1 1 0 0 1

1

2

1

1

10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 0 1 0 0 1 1 1 0

Original BitsParity Bits

Hamming Code
(systematic)

AN encoding
(non-systematic)

Multiplication value with a constant A;

e.g., A = 29

38 * 29 = 1102 (hardened value)

C1 = XOR of bits at positions (P1, 0, 1, 3, 4, 6) == 0?

C2 = XOR of bits at positions (P2, 0, 2, 3, 5, 6) == 0?

C3 = XOR of bits at positions (P3, 1, 2, 4, 7) == 0?

C4 = XOR of bits at positions (P4, 4, 5, 6, 7) == 0?

C5 = XOR of all bits including P1 to P5 == 0?

No errors if (C1, C2, C3, C4, C5) equals (0, 0, 0, 0,0)

mod A == 0?

No errors when result equals zero

Example:

1102 mod 29 = 0

Checking: Checking:

7 6 5 4 3 2 1 0

0 0 1 0 0 1 1 0

Hardening

Detection

Original data word

Code word
Code word

Figure 2: Illustration of Hamming and AN coding.

as AN coding in this setting, whereas four are computed using a bit

mask (not shown here for brevity, but indicated in Figure 2) over

the 8-bit value. The fifth parity bit P5 is computed over all bits.

A difference between both codes is that AN coding is a rep-

resentative of non-systematic error codes, whereas Hamming is a

systematic error code. Systematic codes allow a separation of the

original bits and additional bits. This means that the original data

word is embedded as-is in the hardened representation (cf. Figure 2).

In contrast, in non-systematic codes, the hardened representation

does not contain the original data, so that it is not separable from

the additional bits. While this makes accessing the original data

faster, AN codes have a big advantage: the hardened codewords can

be processed directly and each arithmetic operation also computes

the additional bits, which is not the case for codes like Hamming.

There, the additional bits have to be recomputed in addition to

each arithmetic, introducing even more computational overhead.

By that, for the database domain, codes like AN codes are preferable.

Furthermore, the complete and direct processing of the hardened

codewords as possible for AN codes allows the recognition of (i)

errors that modify data stored in memory, (ii) errors induced dur-

ing transferring on interconnects, and (iii) errors induced during

computations (satisfying requirement R1).
In our example (Figure 2), the specific AN code with A = 29 and

the Extended Hamming code introduce five additional bits. Both

codes detect all 1- and 2-bit flips per codeword, but in contrast to AN

codes, Extended Hamming can also correct 1-bit errors. However,
the correction property has a negative impact on the error detection

capability for bit flips weights ≥ 2 (cf. Figure 3). The chances of

detecting higher bit flip weights are much better for AN coding

than for Hamming, because the SDC probability
3
is much lower.

As depicted in Figure 3, Hamming shows a zig-zag-curve for higher

bit flip weights due to the correction capabilities and this pattern

holds for all Hamming codes. Many invalid code words resulting

from odd-numbered bit flip weights (> 2) are mistakenly corrected

to a different data word, which is not detectable. Server-grade ECC

main memory uses Hamming codes and thus exhibits such behavior.

This is another reason for employing AN codes for detection and

why we concentrate on detection in this paper.

The very good detection capability combinedwith the easy adapt-

ability of AN coding allows the satisfaction of the requirements

3
The computation of these SDC probabilities is a topic of its own and described in

Appendix C

Research 15: Databases for Emerging Hardware SIGMOD’18, June 10-15, 2018, Houston, TX, USA

Final edited form was published in "SIGMOD/PODS '18: International Conference on Management of Data. Houston 2018", S. 1619–1634, ISBN 978-1-4503-4703-7
https://doi.org/10.1145/3183713.3183740

4

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

0.01

0.1

1

1 2 3 4 5 6 7 8 9 10 11 12 13

S
D
C
p
r
o
b
a
b
i
l
i
t
y

Bit Flip Weight [# Flipped Bits]

8-bit data, 13-bit code words

Hamming

AN (A=29)

Figure 3: Comparison of SDC probabilities (lower is better)
for Hamming and AN coding for our 8-bit data width exam-
ple and A = 29. SDC probabilities for bit flip weights 1 and 2

are zero, because both codes always detect these.

R2 and R3. The easy adaptability of AN coding means: to detect

all 3 bit flip weights or more, we only have to harden the values

with a greater A. This aspect is discussed in the following section

in detail. Consequently, AN coding as error detection-only code is a
very good choice for bit flip detection in database systems allowing

to balance detection capability and necessary overhead at run-time.

A comparative performance evaluation is done in Section 7.

4 HARDENED DATA STORAGE
In this paper, we mainly focus on detecting bit flips in state-of-

the-art in-memory columns by tightly integrating AN coding for

data hardening. Generally, the physical data storage model of col-

umn stores significantly deviates from classical row stores [17, 32,

45, 75, 87]. Here, relational data is maintained using the decompo-

sition storage model (DSM) [14], where each column of a table is

separately stored as a fixed-width dense array [3]. To be able to

reconstruct the tuples of a table, each column record is stored in

the same (array) position across all columns of a table [3]. Column

stores typically support a fixed set of basic data types, including

integers, decimal (fixed-, or floating-point) numbers, and strings.

For fixed-width data types (e.g., integer, decimal and floating-point),

column stores utilize basic arrays of the respective type for the val-

ues of a column [3, 32]. For variable-width data types (e.g., strings),

some kind of dictionary encoding is applied to transform them

into fixed-width columns [1, 3, 6]. The simplest form constructs a

dictionary for an entire column sorted on frequency, and represents

values as integer positions in this dictionary [3].

4.1 AHEAD Columnar Storage Concept
Based on this, we can ascertain that column stores consist of two

main data structures: (i) data arrays with fixed-width data types (e.g.
integer and decimal numbers) and (ii) dictionaries for variable-width
data types. Thus, each base table column is stored either by means

of a single data array or by a combination of a dictionary and a data

array containing fixed-width integer references to the dictionary.

The decision is made based on the data type of the column. Thus,

our hardened storage has to protect both structures.

Hardening Data Arrays: For data arrays with integer or deci-

mal values, we only have to harden values and this is done using

AN coding. Regarding integer data, this requires only multiplica-

tion with a constant factor of A. These integer values are usually
compressed in column stores to reduce storage and to speedup

query performance [1, 3, 21, 49, 87, 88]. We address that aspect

using byte-aligned integer sizes; columns are compressed in a fixed

byte-oriented way. For decimal numbers, the case is a bit more com-

plex: for the sake of correctness and accuracy, database systems

typically use fixed-point numbers and arithmetic instead of native

floating point numbers (float / double)
4
. One possibility of repre-

senting fixed-point numbers is to split a number into powers of 100,

so-called limbs, e.g. 1, 024 = 10 ∗ 1001 + 24 ∗ 1000. In this case, each

limb fits into a single byte and the position of the decimal point is

stored separately, for instance in column meta data. In general, the

limbs can, of course, be larger. Using this representation, there are

two options for hardening a fixed-point number: (1) harden each

limb, or (2) harden the number as a whole. The former approach

requires adapting the algorithms to work on larger limbs, as each

limb becomes a code word on its own. Using the latter approach

allows to leave the algorithms unchanged, but unfortunately, deriv-

ing the detection capabilities for large arbitrary data widths is very

expensive
5
. Consequently, only the former approach is feasible.

Hardening Dictionaries: Dictionaries are usually realized us-

ing index structures to efficiently encode and decode [6]. In contrast

to data arrays, not only data values must be hardened, but also nec-

essary pointers within the index structures. To tackle that issue,

we proposed various techniques to harden B-Trees [43]. As we

have shown, hardening pointer-intensive structures pose their own

challenges and we refer to this solution for hardening dictionaries.

Moreover, for dictionaries of integer data, AN hardening can be ap-

plied on the dictionary entries. The corresponding column contains

fixed-width, AN hardened integer references to the dictionary.

UDI-Operations:Our hardening approach is orthogonal to UDI-
operations (Update, Delete and Insert) and does not affect them.

New and modified data is usually appended at the end of a column,

and hardening such data is trivial – hardened data simply has to be

inserted.

4.2 AHEAD Adaptability
AN coding has only one parameterA having an impact on the error

detection rate as well as the necessary storage overhead. Generally,

there are arbitrarily many As to choose from and we now clarify

which one to actually use. As it turns out, eachA has different error

detection properties with regard to the data width. This is why CA
DΘ

depends on both A and DΘ. It follows that for any distinct data

width, which the database supports, the error detection capabilities

for a large set of As must be computed. To compute the detection

properties of an A, we have to determine the Hamming distance

dH of all pairs of code words, i.e., the difference in the number of

bits of any two code words. In other words, this corresponds to a

bit population count of all error patterns, which leads from any

valid code word to any other valid one. In the coding domain this is

known as a code’s distance distribution. Next, a histogram over that

distribution must be built and from that we derive the minimum
Hamming distance dH,min. This is the smallest Hamming distance

, 0 in the distance distribution and any code is guaranteed to detect

at least all error patterns with up to dH,min − 1 flipped bits.

4
We would like to point to the article by Thomas Neumann providing a discussion and

background information on this issue [55]. In essence, rounding and precision loss

problems of native floating-point numbers and operations are usually unacceptable

for database systems. This is why these systems employ fixed-point arithmetic and

there exist several libraries providing a variety of mathematical operators [23, 24, 66].

5
See Appendix C for details.

Research 15: Databases for Emerging Hardware SIGMOD’18, June 10-15, 2018, Houston, TX, USA

Final edited form was published in "SIGMOD/PODS '18: International Conference on Management of Data. Houston 2018", S. 1619–1634, ISBN 978-1-4503-4703-7
https://doi.org/10.1145/3183713.3183740

5

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Table 1: Super As for detecting a guaranteed minimum
bit flip weight (min bfw), excerpt from |D | ∈ {1, . . . , 32}.
Numbers are: A/|A|/|CA

DΘ
|. ∗=derived by approximation,

bold=prime, tbc=to be computed.

min

bfw

|DΘ |

8 16 24 32

1 3/2/10 3/2/18 3/2/26 3/2/34
2 29/5/13 61/6/22 61/6/30 125/7/39

3 233/8/16 463/9/27 981/10/34 881/10/42
4 1,939/11/19 7,785/13/29 15,993/14/38 16, 041∗/14/46

5 13,963/14/22 63,877/16/32 tbc tbc

6 55,831/16/24 tbc tbc tbc

As described in Appendix C, obtaining the distance distribution

requires a brute force approach. For each combination of bit widths

|DΘ |
6
and |A|, there exists at least one “super A” having optimal

error detection capabilities among all otherAs for that combination.

For that, our optimality criterion is that that a “superA” has (1) high-
est dH,min, (2) lowest bit width |A|, and (3) lowest first non-zero

histogram value in its category, i.e., depending on the minimum bit

flip weight (min bfw) and |DΘ |. Table 1 lists an extract of “super

As” for different numbers of minimum bit flip weights and differ-

ent data widths |DΘ | ∈ {8, 16, 24, 32}. This table also confirms our

example from Section 3 where we used A=29 for 8-bit data and a

minimum bit flip weight of two. As depicted, we require five addi-

tional bits for the hardening. If we want to increase the minimum

bit flip weight to 3, we only have to use A = 233 resulting in a code

word width of 16. In this case, the data overhead increases from

62.5% (13 bit code word width) to 100% (16 bit code word width

for 8 bit data). Table 3 in the appendix lists all super As which we

obtained until now, for all 1 ≤ |D| ≤ 32 and 1 ≤ |A| ≤ 16. The

determination of the “super As” is extremely compute-intensive,

because only a brute force approach is possible. Some values are

currently only approximated
7
, which is only an intermediate solu-

tion. Computations for 1 ≤ |D| ≤ 32 and 1 ≤ |A| ≤ 16 took 2700

GPU hours in total on an nVidia Tesla K80 GPU cluster, including

the approximations. Time complexity is in O(22· |D |) and doubles

with every additional code bit. Our approximation is configurable

through parameter M and reduces runtimes by 2
|D|/M and we used

M = 1001. For instance, runtimes are reduced by more than 5 orders

of magnitude for |D| = 27. The maximal relative error is below 1%

for code lengths which we could verify exhaustively.

To summarize, we have calculated the “super As” not only for

byte-aligned data widths, but also for any data widths between 1

and 32. The “super As” adhere to our optimality criterion and are

the smallest ones for detecting all bit flips up to a minimum bit

flip weight. As we can see in Table 1: (1) equal or different As are
optimal for the same minimum bit flip weight and varying |DΘ |;
(2) for increasing |DΘ |, we typically need larger |A|s to achieve

the same detection capability; and (3) not all super As are prime

numbers. Now, we are able to use this information for a balanced

data hardening with regard to a specific hardware error model (bit

flip weights and rates) and data width. Additionally, data can be

6
We use the following notation of | | for bit widths in this paper.

7
The remaining correct values are still determined and will be made public on our

GitHub project page https://brics-db.github.io/ (see Appendix D)

re-hardened at run-time with different As. Thus, the requirements

R2 and R3 are adequately addressed from the storage perspective.

4.3 AHEAD Performance Improvements
Our third requirement R3 is that the approach introduces as little

overhead as necessary. Up to now, we have shown that the mem-

ory overhead can be adjusted according to the data width and the

required error detection capabilities. Unfortunately, error detection

and softening/decoding are based on division and modulo computa-

tions, which are expensive even on modern server-grade processors

(cf. Section 7). We now show how to circumvent both operations.

Faster Softening: Processors’ arithmetic logic units (ALUs) im-

plicitly do computations in a residue class ring (RCR) modulo the

power of two to the native register width (e.g. 8, 16, 32, 64 bits). In

such an RCR, the division by any odd A can be replaced by multi-

plication with the multiplicative inverse A−1. This cannot be done
automatically by the compiler since the A will only be known at

run-time and the code width may differ from the native register

widths. Now, decoding becomes:

c/A ≡ c · A−1 ≡ (d · A) · A−1 ≡ d mod 2

|CADΘ
|
. (9)

The inverse can be computed with the Extended Euclidean algo-

rithm for the RCR modulo 2

|CADΘ
|
. When working with code word

widths different from the processor’s native register widths, the

result must be masked, i.e. AND-ed with a bit mask having the

appropriate |CA
DΘ
| least significant bits set to one. This is because

there may be ones in the remaining most significant bits from the

multiplication. Using the inverse has several advantages:

(1) Only odd numbers are coprime to any 2
n (n ∈ N) and thus

have a multiplicative inverse. Consequently, it is required to

use only odd As.
(2) Using the inverse relieves Equation (7c) from the division.

(3) The inverse enables more efficient reencoding from one code

word c1 = d · A1 into another c2 = d · A2, by multiplying

with the factor A∗ = A−1
1
· A2:

c1 · A
∗ = (d · A1) · (A

−1
1
· A2) = d · A2 = c2 (10)

The product (A−1
1
·A2) is a constant factor and needs to be calculated

only once, especially when reencoding multiple values.

Faster Error Detection:Using themultiplicative inverse allows

to get rid of the modulo operator for error detection, too. For that,

as in [29], we must know the largest and smallest encodable data

word:

dmax = max(DΘ),

dmin = min(DΘ),

where the latter is required for signed integers, only. Since compu-

tations on code words must be done on register widths ≥ |CA
DΘ
|, it

follows that:

|c · A−1 | = |d∗ | = |c | > |d | , d∗ = d . (11)

I.e., when decoding, the resulting data word d∗ is computed in

the larger RCR (modulo 2

|CADΘ
|
) than the original data d requires

(modulo 2
|DΘ |

). This becomes very useful, because we discovered

Research 15: Databases for Emerging Hardware SIGMOD’18, June 10-15, 2018, Houston, TX, USA

Final edited form was published in "SIGMOD/PODS '18: International Conference on Management of Data. Houston 2018", S. 1619–1634, ISBN 978-1-4503-4703-7
https://doi.org/10.1145/3183713.3183740

6

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

https://brics-db.github.io/

that in this case it holds that:

d∗ > dmax → d∗ = (d ⊕ b) (12)

d∗ < dmin → d∗ = (d ⊕ b) (13)

where b is an arbitrary, detectable bit flip of any weight and d∗

was decoded from a corrupted code word. This goes further than

in [29], because we found that it holds for any detectable error.

For signed integers, the binary representation contains ones in the

|A| most significant bits (MSBs) where there should be zeros after

the multiplication with the inverse. Likewise, the same holds for

negative integers, but now there are zeros in the |A| MSBs, where

there should only be ones. For unsigned integers, the first test

suffices, while for signed integers both tests must be conducted.

Consider the following example for signed integers (sint) with

|Dsint | = |A| = 8⇒ |CA
Dsint

| = 16,d = 5,A = 233, andA−1 = 55, 129

(unsigned) = −10, 407 (signed):

1) 5 · A = 1, 165 =

overflow︷ ︸︸ ︷
. . . 0000

|A |︷ ︸︸ ︷
0000 0100

|D
sint
|︷ ︸︸ ︷

1000 11012

2) 1, 165 · A−1 = . . . 0100 0000 0000 0000 01012

3) +1: 1, 166 · A−1 = . . . 0100 1101 0111 0101 11102

4) −1: 1, 164 · A−1 = . . . 0011 0010 1000 1010 11002

The first line shows the encoding, with the result in binary repre-

sentation. The second line is the decoding of the valid code word,

with no zeros in the |A| MSBs. Lines 3 and 4 show decoding of

altered code words, where 1, 165 + 1 and 1, 165 − 1 represent a

double and single bit flip in the LSB(s), respectively. The overflow

column shows that computing with non-register widths requires

masking for decoding. For the signed case, line 3 triggers the test

from Equation (13) and line 4 the one from Equation (12). Although

we cannot prove this in general
8
, we could confirm this for all odd

As with 2 ≤ |A| ≤ 16, signed integers with 1 ≤ |Dsint | ≤ 24, and

|CA
Dsint

| = |A|+ |Dsint |. We validated Equations (12) and (13) using an

exhaustive test over all possible code words
9
. From Equations (12)

and (13) it follows that testing an AN-encoded data word for errors

is achieved by first decoding it and then comparing it with the largest
(and smallest) encodable data word for unsigned (signed) integers.

For error testing and decoding, Hoffmann et al. [29] use a compa-

rable approach for their voter, but they require two comparisons

and the modulo and division operators. In contrast, our approach

requires one multiplication and one or two comparisons.

5 ON-THE-FLY ERROR DETECTION
On-the-fly error detection during query processing becomes now

possible for both state-of-the-art processing models of column-at-

a-time [3, 32] and vector-at-a-time [87] with our hardened storage

concept. There are two reasons: (i) the column structure is un-

changed, only the data width is increased and (ii) the values are

multiplied by A and can thus be processed as before.

5.1 Error Detection Opportunities
Basically, there are three opportunities for on-the-fly error detection

as shown in Figure 4, whereby Figure 4a represents an example

query execution plan (QEP) without any hardened data. In this QEP,

8
A proof is very difficult due to the convolution of the multiplication.

9
On a 64-core AMD Opteron 6274 server it took almost 50K CPU hours in total.

data from two columns R and S is filtered, the results are joined,

and finally grouped by column R. We use this QEP, to describe our

three detection possibilities during query processing.

Early Onetime Detection: As a first possibility, error detec-

tion happens only once, when touching data the very first time in

the base columns (Figure 4b). For that, we introduce the detect-and-
decode operator ∆ taking as input a column containing hardened

data and outputing a column containing the decoded data. ∆ is put

before any other operator in the QEP. The physical realization of ∆
is based on a regular column scan-operator conducting detection

and decoding based on the formulas presented in Section 4.3. How-

ever, the disadvantage is that bit flips during the remaining query

processing are not detected.

Late Onetime Detection: Second, since AN coding allows ar-

bitrary operations directly on hardened data, detection may take

place in a late stage of a QEP. For instance, a hardened column can

be filtered just by encoding the filter predicate with the same A the

input columns are hardened with. Thus, our detect-and-decode ∆
can be placed in the QEP at a point, where there are still sufficiently

many tuples left for bit flip detection, e.g. before a group-by as

in Figure 4c. Operators taking multiple inputs, like joins, may en-

counter differently encoded inputs so that ∆ must be placed before

these (Figure 4d, Section 5.2 provides further details). However, the

disadvantage is that bit flips are only detected at a single point and

errors are propagated through the QEP.

Continuous Detection: Thus, we have to integrate bit flip

detection into each and every physical operator (Figure 4e). This is

conceptually the best solution, because bit flips are quickly detected

and∆ becomes superfluous. By that, each and every value is checked

for bit flips in the columns of base tables and intermediate results.

5.2 Adjustments for Continuous Detection
We now focus on necessary adjustments to the query processing to

realize the continuous error detection approach.

Error Detection Primitives for Physical Operators: Each
physical query operator has to be adjusted to include appropriate

AN coding detection primitives. We do this with a vector storing

the array position of corrupted values per column. Of course, this

error vector can also be affected by bit flips, so we harden it with

AN coding, too. Further adjustments are exemplarily described for

a filter scan operator on signed integers, as shown in Algo-

rithm 1. For reasons of better traceability, the algorithm description

is conceptually based on MonetDB primitives using their BAT data

structures for columns [8]. The operator takes two inputs: (i) a

single hardened input BAT and (ii) a hardened predicate (pred∗).
To provide a full-fledged example, assume that (i) both head and

tail of the input BAT are non-virtual and encoded with different

As and (ii) the operator returns a hardened output BAT and two

error vectors. First, the operator initializes the error vectors (lines

1 and 2). Variable pos (lines 3 and 15) is used to keep track of the

position in the input BAT, so that we are able to store the error

position within the input BAT. When iterating over head and tail

they are first decoded (lines 5 and 6) and then tested according

to Equations (12) and (13) (lines 7 and 10). Upon detection of an

error, the hardened position is stored in the appropriate error vector

(lines 8 and 11). If the tail value is assumed to be valid, the filter is

Research 15: Databases for Emerging Hardware SIGMOD’18, June 10-15, 2018, Houston, TX, USA

Final edited form was published in "SIGMOD/PODS '18: International Conference on Management of Data. Houston 2018", S. 1619–1634, ISBN 978-1-4503-4703-7
https://doi.org/10.1145/3183713.3183740

7

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

(a) Normal (b) Early
Onetime

(c) Late
Onetime 1

(d) Late
Onetime 2

(e) Continuous (f) Continuous
With Reencoding

Figure 4: Illustration of the query processing variants. ∆ is a dedicated check-and-decode operator. Different As are indicated
via superscripts at the columns andoperators, and via different colors and line decorations. Reencoding is indicated asA1 → A2.

Algorithm 1 Filter scan for continuous error detection, having

head and tail hardened with different As and reencoding its output.

∗
denotes hardened values and BATs. Subscript h and t denote head

and tail, respectively.

Input: B∗
in

◃ hardened input BAT

Input: Ah ,A−1h ,At ,A
−1
t ◃ AN coding parameters

Input: A′h ,A
′
t ◃ Reencoding parameters

Input: Apos ◃ Error position hardening parameter

Input: dh,max
,dt,max ◃ largest unencoded values for B∗

in

Input: dh,min
,dt,min ◃ smallest unencoded value for B∗

in

Input: ◦ ∈ {<, ≤,=,,, ≥, >} ◃ comparison operator

Input: pred∗ ◃ predicate encoded with At
Output: B∗

out
◃ result BAT (same A as B∗

in
)

Output: vh ,vt ◃ error bit vectors for head and tail
1: vh .initialize() ◃ allocate memory for vh
2: vt .initialize() ◃ allocate memory for vt
3: pos← 0

4: for each (head
∗
, tail

∗
) ∈ B∗

in
do

5: h ← head
∗ ∗A−1h

6: t ← tail
∗ ∗A−1t

7: if h < dh,min
or h > dh,max

then
8: vh .append(pos ∗Apos)

9: end if
10: if t < dt,min or t > dt,max then
11: vt .append(pos ∗Apos)

12: else if tail∗ ◦ pred∗ then
13: append (h ∗A′h , t ∗A

′
t) to B

∗
out

14: end if
15: pos← pos +1

16: end for

evaluated (line 12) and if it matches, the hardened column value is

appended to the output BAT (line 13). Likewise, this pattern can

be applied to all other physical operators, whereas the number of

error vectors varies depending on the number of input columns.

Physical Operations with Different As: Table 1 shows that
there are different superAs for different data widths. Consequently,
base columns will be hardened with different As. In Figure 4 differ-

entAs are indicated by superscripts at data and operators and by dif-
ferent line types and colors between operators. Columns with differ-

entAs are a challenge for binary operations like joins (see Figure 4e).
There, for different As it holds that (d · A1) , (d · A2), A1 , A2

and an equi-join would at most produce false positives, when

d1 · A1 = d2 · A2, d1 , d2. To produce correct results, binary

operators have to adapt one of the inputs (hardened with A1) to

match the other’s A2 by multiplying the factor A−1
1
· A2 onto each

hardened value of the first input column, or A1 · A
−1
2

onto the sec-

ond. Optionally, the decoded value, which is computed for error

detection and resides in a CPU register, could be multiplied by A2

only, as well. As a side effect, each operator may well harden or

soften the data on-the-fly (Figure 4f), called reencoding. This can,

e.g., reduce the data width for intermediate results or prepare the

data for the following operator (cooperative operators as intro-

duced in [41]). Consequently, it allows to adjust space requirements

against reliability, i.e., multi-bit flip detection capabilities. Reencod-

ing is actually the same as the adaptation described for the join

operator. In Figure 4f, each operator reencodes its input with a

new A, indicated as Ax → Ay . Generally, this reencoding is a very

interesting property as will be shown in the evaluation.

Handling of Intermediate Results: Because all operations

can directly work on hardened data and each operator passes its

hardened results to the next operator, the intermediate results are

automatically hardened. There is only one special feature in column

stores, namely, virtual IDs can sometimes be materialized during

the query processing [3, 32]. In order to detect errors during the

further processing of these virtual IDs, these IDs are automatically

hardened during their generation. Differently encoded IDs can be

handled as indicated above for the join.

Bit Flip Detection in ALU Operations: As described in Sec-

tion 3, AN coding allows to detect errors in certain operations of

a CPU’s ALU (arithmetic logic unit), which performs arithmetic,

comparison and logic operations. For arithmetic operations like

+,−, /, . . . (cf. Equation (5) and eqs. (7a), (7c), (8a) and (8c)), the re-

sult can be immediately checked by multiplying with the respective

A’s inverse. The checks must be anchored in the corresponding

physical operators, as already described.

Error detection for comparison operations like <, ≤,=, . . . (cf.

Equation (6)) is much more challenging, since comparisons are

required for the detection itself. We could use a technique similar

to branch-avoidance by replacing the comparison with an array

access, as depicted in Figure 5. Suppose that for each comparison

operator there is an infinitely large array of boolean values:

aOp[i] ∈ {⊤,⊥}, Op ∈ {<, ≤, . . . }, i ∈ {−∞ . . . 0 . . .∞}.

The difference of the two operands yields the position in the array,

where we find the boolean value representing the result of the

Research 15: Databases for Emerging Hardware SIGMOD’18, June 10-15, 2018, Houston, TX, USA

Final edited form was published in "SIGMOD/PODS '18: International Conference on Management of Data. Houston 2018", S. 1619–1634, ISBN 978-1-4503-4703-7
https://doi.org/10.1145/3183713.3183740

8

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

(a) Equal (b) Less-Than (c) Less-or-Equal

Figure 5: Replacing comparison by access to a boolean array.

original comparison operation. For instance, Figure 5a illustrates

the array contents for the equality comparison. There, we compute

the difference of the two operands c2 − c1 and the array contains

only one true value at position zero, since c2 = c1 ⇔ c2 − c1 = 0.

Likewise, for ’<’ comparison (Figure 5b), we find true only for

i > 0 and for ’≤’ true is at all i ≥ 0. However, infinite arrays

can not be stored in memory and their contents would have to be

verified at runtime as well.

Consequently, errors in logic operations (&, ∥, ⊕,¬) cannot be

detected solely by AN coding and bit operations like AND-ing, OR-

ing, XOR-ing, or inverting all bits produce invalid code words. By

that, these operations must be protected in another way. Therefore,

we assume reliable comparison and logic operations. Both areas

must be considered separately in future work.

Vectorization: The array-like hardened storage of columns,

where only values of the very same data type are stored, allows to

use vectorization (SIMD) instructions [88, 83]. Our improved AN

coding requires only multiplication and comparison, which are well

supported as SIMD instructions in virtually all modern processors.

Consequently, for code word widths which fit into native SIMD

registers, our AHEAD approach can be well combined with vector-

izable physical operators like filter or aggregation. Willhalm et al.

show how data with bit widths from 1 to 32 bits is aligned in SIMD

registers to be processable, even with complex predicates and with

special optimizations for each bit case [83]. After their alignment

step, multiplication and comparison instructions for AN coding

operations can be included. There are, however, some peculiarities

with SIMD operations. As of now, instruction sets like Streaming

SIMD Extensions (all variants until SSE4.2) and Advanced Vector

Extensions 1 & 2 do not support unsigned integer comparison,

which must be emulated with 2 operations. For instance, for the

unsigned “>” comparison in SSE4.2, instead of a single

v> = _mm_cmpgt_epu(vector(d0,d1, . . .), vector(dmax)),

the following is required:

vtmp = _mm_max_epu(vector(d0,d1, . . .), vector(dmax + 1))

v> = _mm_cmpeq_epi(vtmp, vector(d0,d1, . . .)

Afterwards, the result of the comparison can be translated into

an integer using one of the _mm_movemask instruction variants.

AVX-512 is supposed to provide the comparisons natively and some

operations even immediately return an appropriate mask, so instead

of three instructions, a single one suffices – at least from a source

code perspective.

6 END-TO-END EVALUATION
We evaluate our AHEAD approach using the analytical SSB bench-

mark [56]. All experiments are conducted without error induction,

because the conditional SDC probabilities are known (cf. Section 4).

Our system was equipped with one Intel
®
Core

™
i7 6820HK CPU

(@ 2.70GHz), and 16 GB of DDR3 main memory (@ 2133MHz)

running 64-bit Ubuntu 16.04.3 LTS using GCC 7.1.0.

6.1 Implementation
We implemented a self-contained AHEAD prototype using a col-

umn-at-a-time execution model
10
, due to the following: (1) We

wanted to have both protected and unprotected data to measure

the appropriate runtimes in a uniform way. This requires to have

operators for both available simultaneously, which would require

to reimplement all physical operators in an existing DBMS. (2) We

want to first show that our approach is feasible, without any side

effects, so that it can then be integrated in an existing system. Our

AHEAD prototype is completely written in C++ using well-known

column store concepts [3] and supports both unprotected and hard-

ened query processing in a unified way for comparability. For that,

a separate type system allows to distinguish data types and the

actual width of a type is adjusted through a mere typedef. Our
current prototype differentiates between 8-, 16-, 32-, and 64-bit

data types, i.e. we do byte-level compression on native CPU register

granularity. We call the types tinyint, shortint, int, and bigint,
respectively. The hardened variants (restiny, resshort, resint,
and resbig, respectively) are mapped to the next available native

integer width, i.e. 16, 32, 64, and again 64 bits. For tinyint, this
allows As up to a width of 8-bits, for the others As up to 16-bit

and bigint is limited to 48-bits of actual data
11
. For strings, we

use a separate data heap and the data column contains pointers

to the actual string values. Our current implementation does not

use dictionary compression. The physical query operators support

all these data types through template programming to ease the

data type specialization. Furthermore, for the vectorized operators,

the template programming helps to specialize only those details

of the SSE operators which require calls to specific intrinsics. For

instance, the algorithm skeletons are the same for all integer types,

but e.g. multiplication requires different intrinsics for 16-bit (_-
mm_mullo_epi16, pmullw) or 32-bit (_mm_mullo_epi32, pmulld)
data, just to name two examples. We implemented both, scalar

and SSE4.2 query operators, while Hash-join and Group-by use

Google’s dense_hash_map12 for performance reasons. All of the 13

SSB queries are manually written, guided by the query explanation

output from MonetDB [10]. We chose single-threaded execution to

avoid any side-effects and to precisely measure the overhead.

6.2 SSB Runtime Performance
We compare our AHEAD approach with the Unprotected baseline

and dual modular redundancy (DMR). In the Unprotected baseline,

data is always compressed on a byte-level based on the column

characteristics. DMR uses the Unprotected setting and replicates all

data in main memory, executes each query twice sequentially, and

afterwards a voter compares both results. Our AHEAD approach

hardens each column using the largest currently known A for the

corresponding column data width from Table 1. Thus, compared

10
The prototype is available on GitHub https://brics-db.github.io/, see Appendix D

11
128-bit integer implementations like the Boost C++ library could be used to support

larger integer widths, using a simple typedef change for scalar code.
12
https://github.com/sparsehash

Research 15: Databases for Emerging Hardware SIGMOD’18, June 10-15, 2018, Houston, TX, USA

Final edited form was published in "SIGMOD/PODS '18: International Conference on Management of Data. Houston 2018", S. 1619–1634, ISBN 978-1-4503-4703-7
https://doi.org/10.1145/3183713.3183740

9

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

https://brics-db.github.io/
https://github.com/sparsehash

0

0.5

1

1.5

2

2.5

Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3

R
e
l
a
t
i
v
e
R
u
n
t
i
m
e

Unprotected

DMR

Early

Late

Continuous

Reencoding

Figure 6: Relative SSB runtimes for vectorized (SSE4.2) execution (average over all scale factors).

0

0.5
1

1.5
2

2.5
3

Unenc. DMR Early Late Cont. Reenc.

5.10 5.14

2
.6

2
.5

3
.5

2
.5

2
.3

2
.3

R
e
l
a
t
i
v
e
R
u
n
t
i
m
e

Scalar Vectorized

Figure 7: Scalar against vectorized runtimes (SSB 1.1 to 1.3).

to Unprotected setting, AHEAD increases the data width of each

column to the next byte level. For all approaches, we measured all

13 SSB queries for scalar and vectorized (SSE4.2) execution and we

varied the SSB scale factor from 1 to 10. Each single experiment

ran 10 times. Figure 6 shows vectorized (SSE4.2) runtimes relative

to the Unprotected baseline. DMR results in the expected runtime

overhead of about 100%, because each query is executed twice.

For our AHEAD detection schemes, we can draw the following

conclusions:

Early Detection has a very high initial overhead of the ∆ op-

erator leading to an overhead between 64% and 185% for scalar

execution (cf. Figure 11 in Appendix A). With vectorization, early

detection is much faster, because ∆ benefits so much more than the

other operators, and the overhead is reduced to 18% to 56%.

Late Detection executes ∆ only on hardened data arrays prior

to the aggregation or grouping and newly created intermediates

like IDs are never hardened. Consequently, it checks much less

values and errors are detected only very late in the query, resulting

in overheads of at most 10% for both scalar and SSE4.2 execution.

Errors might add up to valid code words, so that less are detected.

Continuous and Reencoding use the same query plan as the

baseline but with AN-coding-aware operators, where the latter

reencode each operator’s output. As we assume no particular error

rate or bit flip weight distribution, our policy for the new A for

Reencoding is to decrease the bit width of A by 1 for each input.

For that, we use an extended version of Table 1. This is meant to

simply show the feasibility of reencoding each operator output.

The runtime of Continuous Detection lies between Early and Late

with about 10% to 26% (scalar) and 7% to 28% (vectorized) overhead.

This is due to the tight integration of error detection in each op-

erator. Reencoding adds virtually no overhead to Continuous with
overheads of 10% to 27% (scalar) and 10% to 31% (SSE4.2).

6.3 Scalar vs. Vectorized Execution
Having compared the detection variants per query, we now show

in more detail the impact of the vectorization. We use the average

over SSB queries 1.1 to 1.3 because they filter on small integer

data and there the impact of vectorization is greatest. Vectorized

Unprotected serves as baseline. Figure 7 shows that all variants

benefit greatly from SSE4.2 vectorization for queries 1.1 to 1.3. The

0

0.2
0.4
0.6
0.8
1

1.2
1.4

1 2 3 4
∗R

e
l
a
t
i
v
e
R
u
n
t
i
m
e

Scalar SSE4.2

(a) Runtime

0

0.5
1

1.5
2

2.5

1 2 3 4
∗

R
e
l
a
t
i
v
e
C
o
n
s
u
m
p
t
i
o
n

Unprotected

Continuous

Bit-Packed

1
.4
3

1
.4
9

1
.5
5

1
.6
1

(b) Storage
Figure 8: SSB query 1.1 runtime and storage comparison
for Continuous with different min bfw’s (x axis). 4∗: we in-
creased restiny size to 32 bits to allow |A| > 8.

speedup factor is shown at the arrows for each variant, as well.

For Early it is larger because ∆ benefits very much. Note that the

speedups for Continous and Reencode are only slightly smaller than

for Unprotected, although they operate on half as many code words

per SIMD instruction. Consequently, our AHEAD approach scales

well using vectorization.

6.4 Influence of Bit Flip Weight
Up to now, we used the largest A for data hardening in our ex-

periments. We will now investigate the influence of different As
on the runtime and storage overhead of the Continuous variant.
For each hardened data type, we vary the A of all base and inter-

mediate columns to the smallest one for guaranteed minimum bit

flip weights (min bfw) 1 to 4 from Table 1. We chose this scenario,

because Kim et al. [40] observed one to four bit flips in all newer

DRAM modules. For the case of 4, we let the restiny datatype be

32 bits wide to allow |A| > 8. Due to our type system, this is a sim-

ple typedef change. Figure 8a shows the runtimes as in Figure 6,

while Figure 8b shows the storage overhead. Runtimes differ only

slightly for both scalar and SSE4.2 execution. With Continuous, the
storage consumption doubles for min bfw 1 to 3, because we only

work on native register widths. Formin bfw 4, the storage overhead

is slightly higher (126%), since restiny is twice as big. This shows

the limitation of our current byte-oriented compression. Willhalm

et al. showed how to store data in a bit-packed fashion and how to

evaluate even complex filter predicates in a vectorized manner [82,

83]. To overcome our current implementation limitation, we could

use their approach. To show the benefit, we projected the stor-

age consumption for bit-packed compression in Figure 8b as well,

which displays potentials for reducing the memory overhead of

our AHEAD approach. Since bit-packing reduces the load on the

memory subsystem, this might improve query runtimes, too, but

that remains to be seen.

7 MIRCO BENCHMARKS
We also conducted micro benchmarks to support our error code

decision from a performance perspective.

Research 15: Databases for Emerging Hardware SIGMOD’18, June 10-15, 2018, Houston, TX, USA

Final edited form was published in "SIGMOD/PODS '18: International Conference on Management of Data. Houston 2018", S. 1619–1634, ISBN 978-1-4503-4703-7
https://doi.org/10.1145/3183713.3183740

10

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

S
c
a
l
a
r
R
u
n
t
i
m
e
[
s
]

0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

2
0

2
2

2
4

2
6

2
8

2
10

unroll / block size

(a) Encode Scalar

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2
0

2
2

2
4

2
6

2
8

2
10

unroll / block size

(c) Decode Scalar

0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

2
0

2
2

2
4

2
6

2
8

2
10

unroll / block size

(e) Detect Scalar

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2
0

2
2

2
4

2
6

2
8

2
10

unroll / block size

(g) Refined Decode Scalar

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2
0

2
2

2
4

2
6

2
8

2
10

unroll / block size

(i) Refined Detect Scalar

S
S
E
R
u
n
t
i
m
e
[
s
]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2
0

2
2

2
4

2
6

2
8

2
10

unroll / block size

(b) Encode SSE4.2 / AVX2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

2
0

2
2

2
4

2
6

2
8

2
10

unroll / block size

(d) Decode SSE4.2 / AVX2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2
0

2
2

2
4

2
6

2
8

2
10

unroll / block size

(f) Detect SSE4.2 / AVX2

0.02

0.04

0.06

0.08

0.1

0.12

0.14

2
0

2
2

2
4

2
6

2
8

2
10

unroll / block size

(h) SSE4.2 / AVX2

0

0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18

2
0

2
2

2
4

2
6

2
8

2
10

unroll / block size

(j) SSE4.2 / AVX2

XOR
scalar/SSE

XOR
AVX2

AN
scalar/SSE

U

AN
scalar/SSE

S

AN
AVX2

U

AN
AVX2

S

Hamming

Figure 9: Micro Benchmarks – runtimes for scalar, SSE4.2 and AVX2 code functions. For XOR the block size is varied, while
for Hamming and AN a loop unroll factor is varied. ANU = unsigned, ANS = signed.

7.1 Error Code Evaluation
In our first micro benchmark series, we compared AN coding with

other well-known und heavily applied coding schemes to show

the advantages of AN coding for software-based error detection.

In detail, we consider Hamming codes as presented in Section 3

and checksums, both systematic error codes where data bits and

additional, redundant bits are separable. Checksums add a small-

sized value derived from an arbitrary data block forming a hardened

data block allowing limited error detection. Nowadays, the term

checksum is also used when hash functions are applied. There exists

a multitude of algorithms with varying complexity and hardware

support, e.g. parity bits, parity words, Message-Digest Algorithms

(e.g. MD5) [67, 73] or cyclic redundancy checks (e.g. CRC32) [59,

73]. In the case of parity bits (words), the data bits (words) are

summed up using the binary exclusive or operation (XOR, ⊕). The

size of the resulting checksum can be arbitrary, but is usually either

a single bit or aligned to machine words, respectively, for the sake

of performance. In the following, we restrict our discussion to

XOR checksums, since they are one of the most simple types of

checksums. Furthermore, both Hamming code and XOR checksum

can be vectorized [53, 80] which is important for performance.

In detail, we compared runtime overheads for the following

functions: hardening, decoding and error detection. For this, we
implemented these functions for all three error codes using C++

template-meta programming to let the compiler unroll the code.

We always implemented scalar and SSE4.2 variants, and AVX2 for

AN and XOR. In the experiments, we processed about 250 Million

16-bit integers depending on either the blocksize (XOR) or a loop

unroll factor (AN, Hamming). The blocksize indicates over how

many values a checksum is computed, whereas Hamming and AN

coding is applied on each single value. Furthermore, our vectorized

algorithms take into account that the number of values may not be

aligned to the blocksize/unroll factor.

Hardening Overhead. Figures 9a and 9b show the runtimes

for data hardening/encoding. As we can see, Hamming coding is

more than an order of magnitude slower than XOR and AN coding.

For AN coding, signed and unsigned are equal.

Decoding Overhead. Figures 9c and 9d show that decoding is

straightforward for Hamming and XOR, as the redundant bits are

easily separable from the original data bits. The original AN coding,

however, requires expensive integer division, so that both sequential

and vectorized variants are more than an order of magnitude slower

than the other two.

Detection Overhead. For bit flip detection, Hamming and XOR

have to recompute the redundant bits and compare them against

those retrieved from memory. This is basically the same as encod-

ing with additional comparisons. Figures 9e and 9f show that XOR

detection is the fastest. Original AN coding shows poor perfor-

mance due to the expensive modulo operator, for which no SSE

or AVX SIMD instructions exist. Hamming is again more than an

order of magnitude slower than XOR, but since population count

computation can be vectorized, it comes closer to AN coding.

Conclusion. From a performance perspective, the original AN

coding approach does not perform very well compared to XOR

checksums. Thus, we introduced our improvements in Section 4.3.

7.2 Evaluation of AN Coding Improvements
In the second micro benchmark series, we evaluated our AN cod-

ing improvements for faster softening and detection. Figures 9g

and 9h show the decoding performance and Figures 9i and 9j de-

pict the detection performance. Comparing these improvements

with XOR, we see great improvements over the original AN coding

Research 15: Databases for Emerging Hardware SIGMOD’18, June 10-15, 2018, Houston, TX, USA

Final edited form was published in "SIGMOD/PODS '18: International Conference on Management of Data. Houston 2018", S. 1619–1634, ISBN 978-1-4503-4703-7
https://doi.org/10.1145/3183713.3183740

11

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

0

50

100

150

200

250

300

7 1
5

3
1

6
3

1
2
7

C
o
m
p
u
t
e
T
i
m
e
[
n
s
]

|C | [# bits]

|C | ≤ 7

|C | ≤ 15

|C | ≤ 31

|C | ≤ 63

|C | ≤ 127

Figure 10: Runtimes for computing multiplicative inverses.

variant. The improved AN coding is much closer to the XOR per-

formance. For these improvements, we require the multiplicative

inverse for a given A. As illustrated in Figure 10, the calculation

can be done on-the-fly as well, since the computation time is in

the sub-microsecond range. There, we varied the code word width

(|C| ∈ {7, 15, 31, 63, 127}) and for each the bit width of the A for

which to compute the inverse (2 ≤ |A| ≤ |C|). Each curve represents
an average over 10.000 · (|C| − 2) computations.

Conclusion. The micro benchmarks proof that using the multi-

plicative inverse makes AN coding well competitive, which is why

Continuous and Reencoding perform so good at SSB.

8 RELATEDWORK
A few years ago, Boehm et al. [7] already pointed out the lack of

data management techniques dealing with an increasing number of

bit flips in main memory as an increasingly relevant source. In [60,

61], the combination of TMR and database systems was investigated.

Themost recent database-specific work of Kolditz et al. [43] hardens

index structures like B-Trees using various techniques for online

error detection. They have shown that slightly increasing data

redundancy at the right places by incorporating context knowledge

increases error detection significantly. AHEAD can be extended

by their work (cf. Sections 4.1 and 6.1). Furthermore, checksums

are usually utilized to check for data integrity. For instance, HDFS

computes a checksum of each data block and stores it in separate,

hidden files [72]. Whenever a client fetches a data block, it verifies

the retrieved data using the associated checksum [72], but this is

only done for disk blocks leaving in-memory data vulnerable.

Moreover, AN coding has also been used for software-based fault

tolerance [29, 69, 79]. For instance, the work of Schiffel [69] allows

to encode existing software binaries or to add encoding at compile

time, where not all variables’ states need to be known in advance.

However, in her work she only describes encoding integers of size

|D| ∈ {1, 8, 16, 32} bits and pointers, where the encoded values are

always 64 bits large. Furthermore, protecting processors by AN

coding was also suggested in [22].

9 CONCLUSION AND OUTLOOK
Future hardware becomes less reliable in total and scaling up to-

days hardware-based protection introduces too much overhead [11,

28, 63, 70]. Therefore, a shift towards mitigating these reliability

issues at higher layers, rather than only dealing with these issues

in hardware was initiated [28, 63, 70]. However, traditional general-

purpose software-based protection techniques mainly rely on dual

modular redundancy (DMR) to detect errors [25, 57, 65, 63]. For

database systems, DMR introduces high overhead, because all data

has to be duplicated and every query is executed redundantly in-

cluding a result comparison as the final step. To overcome these

drawbacks, we have presented our novel adaptable and on-the-
fly error detection approach called AHEAD. With our approach,

we achieve the following properties: (1) AHEAD detects (i) errors

(multi-bit flips) that modify data stored in main memory or transmit

over an interconnect and (ii) errors induced during computations,

(2) AHEAD provides configurable error detection capabilities to be

able to adapt to different error models at run-time, and (3) AHEAD
drastically reduces the overhead compared to DMR and errors are

continuously detected at query processing. Thus,AHEAD is the first

comprehensive database-specific approach to tackle the challenge

of resilient query processing on unreliable hardware. As next, the

following steps have to be done:

Optimization and Extension: In Section 6 we show that our

current storage overhead is suboptimal. Bit-level data compression

as in [82, 83] could be one solution. While data hardening and

lightweight compression [1, 15] are orthogonal to each other, their

interplay is very important to keep the overall memory footprint

of data as low as possible. With hardening, compression gains even

more significance, since it can reduce the newly introduced storage

overhead. However, combining both may be challenging and has to

be investigated in detail. Furthermore, AHEAD cannot detect errors

in logic operations, whereas these are frequently used in database

systems, e.g., in novel column storage layouts like BitWeaving [49]

and ByteSlice [21]. This domain must be considered separately, for

this, AHEAD can serve as the basis. Further extensions of AHEAD
could be (1) the use of code word accumulators to do detection

every nth code word, trading accuracy against performance, or (2)

hardening of database meta data and block or string data.

Error Correction: So far, we were concerned with the continu-

ous detection of bit flips during query processing. Next, continuous

error correction should be considered so that detected bit flips are

corrected during query processing. With AHEAD, we are able de-
tect bit flips on value granularity and can find out where the error

occurred. Based on that, specific correction techniques can be de-

veloped and integrated in the query processing. For example, if we

detect a faulty code word in the inputs of an operator, we can re-

transmit it, possibly several times, to correct errors induced during

transmission. If we get a valid code word, processing can continue

with this correct code word. If we get an invalid code word, we can

assume that bits are flipped in main memory and then we require

an appropriate technique for error correction. For that, correcting

errors in the memory requires data redundancy in any case.

Cross-Layer Approach: AHEAD is primarily a software ap-

proach. Another interesting research direction would examine the

interplay of hardware and software protection mechanisms. In par-

ticular it should be scrutinizedwhat should be done in hardware and

what should be done in software. From our point of view, AHEAD
could serve as foundation for such a novel research direction [63].

ACKNOWLEDGMENTS
This work is partly funded by the German Research Foundation

(DFG) within the Cluster of Excellence “Center for Advancing Elec-

tronics Dresden” (Resilience Path). Parts of the evaluation hardware

were generously provided by the Dresden GPUCenter of Excellence.

We also thank the anonymous reviewers for their constructive feed-

back to improve this paper.

Research 15: Databases for Emerging Hardware SIGMOD’18, June 10-15, 2018, Houston, TX, USA

Final edited form was published in "SIGMOD/PODS '18: International Conference on Management of Data. Houston 2018", S. 1619–1634, ISBN 978-1-4503-4703-7
https://doi.org/10.1145/3183713.3183740

12

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

REFERENCES
[1] Daniel J. Abadi, Samuel Madden, and Miguel Ferreira. “Integrating compres-

sion and execution in column-oriented database systems”. In: SIGMOD. 2006,
pp. 671–682.

[2] Daniel Abadi et al. “The Beckman report on database research”. In: Commun.
ACM 59.2 (2016), pp. 92–99.

[3] Daniel Abadi et al. “The Design and Implementation of Modern Column-

Oriented Database Systems”. In: Foundations and Trends in Databases 5.3 (2013),
pp. 197–280.

[4] Algirdas Avizienis. “Arithmetic Error Codes: Cost and Effectiveness Studies for

Application in Digital System Design”. In: IEEE Trans. Computers 20.11 (1971),
pp. 1322–1331.

[5] Algirdas Avizienis. “The N-Version Approach to Fault-Tolerant Software”. In:

IEEE Trans. Software Eng. 11.12 (1985), pp. 1491–1501.
[6] Carsten Binnig, Stefan Hildenbrand, and Franz Färber. “Dictionary-based order-

preserving string compression for main memory column stores”. In: SIGMOD.
2009, pp. 283–296.

[7] Matthias Böhm, Wolfgang Lehner, and Christof Fetzer. “Resiliency-Aware Data

Management”. In: PVLDB 4.12 (2011), pp. 1462–1465.

[8] Peter A. Boncz and Martin L. Kersten. “MIL Primitives for Querying a Frag-

mented World”. In: VLDB J. 8.2 (1999), pp. 101–119.
[9] Peter A. Boncz, Martin L. Kersten, and Stefan Manegold. “Breaking the memory

wall in MonetDB”. In: Commun. ACM 51.12 (2008), pp. 77–85.

[10] Peter Alexander Boncz. “Monet; a next-Generation DBMS Kernel For Query-

Intensive Applications”. PhD thesis. University of Amsterdam, 2002.

[11] Shekhar Y. Borkar. “Designing Reliable Systems from Unreliable Components:

The Challenges of Transistor Variability and Degradation”. In: IEEE Micro 25.6
(2005), pp. 10–16.

[12] Shekhar Borkar and Andrew A. Chien. “The future of microprocessors”. In:

Commun. ACM 54.5 (2011), pp. 67–77.

[13] Sebastian Breß, Henning Funke, and Jens Teubner. “Robust Query Processing

in Co-Processor-accelerated Databases”. In: SIGMOD. 2016, pp. 1891–1906.
[14] George P. Copeland and Setrag Khoshafian. “A Decomposition Storage Model”.

In: SIGMOD. 1985, pp. 268–279.
[15] Patrick Damme et al. “Lightweight Data Compression Algorithms: An Experi-

mental Survey (Experiments and Analyses)”. In: EDBT. 2017, pp. 72–83.
[16] Timothy J Dell. “A white paper on the benefits of chipkill-correct ECC for PC

server main memory”. In: IBM Microelectronics Division 11 (1997).

[17] Cristian Diaconu et al. “Hekaton: SQL server’s memory-optimized OLTP en-

gine”. In: SIGMOD. 2013, pp. 1243–1254.
[18] Jaeyoung Do et al. “Query processing on smart SSDs: opportunities and chal-

lenges”. In: SIGMOD. 2013, pp. 1221–1230.
[19] Dan Ernst et al. “Razor: circuit-level correction of timing errors for low-power

operation”. In: IEEE Micro 24.6 (2004), pp. 10–20.
[20] Hadi Esmaeilzadeh et al. “Dark Silicon and the End of Multicore Scaling”. In:

IEEE Micro 32.3 (2012), pp. 122–134.
[21] Ziqiang Feng et al. “ByteSlice: Pushing the Envelop of Main Memory Data

Processing with a New Storage Layout”. In: SIGMOD. 2015, pp. 31–46.
[22] P Forin. “Vital Coded Microprocessor: Principles and Application for Various

Transit Systems”. In: IFAC-GCCT (1989).

[23] Free Software Foundation. The GNU Multiple Precision Arithmetic Library.
https://gmplib.org/. Nov. 2016.

[24] Brian Gladman et al. MPIR: Multiple Precision Integers and Rationals. http :
//mpir.org/. Nov. 2016.

[25] Olga Goloubeva et al. Software-implemented hardware fault tolerance. Springer
Science & Business Media, 2006.

[26] Richard W Hamming. “Error detecting and error correcting codes”. In: Bell
System technical journal 29.2 (1950).

[27] Jörg Henkel. “Emerging Memory Technologies”. In: IEEE Design & Test 34.3
(2017), pp. 4–5.

[28] Jörg Henkel et al. “Reliable on-chip systems in the nano-era: lessons learnt and

future trends”. In: DAC. 2013, 99:1–99:10.
[29] Martin Hoffmann et al. “A Practitioner’s Guide to Software-Based Soft-Error

Mitigation Using AN-Codes”. In: HASE. 2014, pp. 33–40.
[30] Andy A. Hwang, Ioan A. Stefanovici, and Bianca Schroeder. “Cosmic rays don’t

strike twice: understanding the nature of DRAM errors and the implications

for system design”. In: ASPLOS. 2012, pp. 111–122.
[31] Eishi Ibe et al. “Impact of scaling on neutron-induced soft error in SRAMs from

a 250 nm to a 22 nm design rule”. In: IEEE Transactions on Electron Devices 57.7
(2010), pp. 1527–1538.

[32] Stratos Idreos et al. “MonetDB: Two Decades of Research in Column-oriented

Database Architectures”. In: IEEE Data Eng. Bull. 35.1 (2012), pp. 40–45.
[33] K Itoh et al. “A single 5V 64K dynamic RAM”. In: ISSCC. Vol. 23. 1980, pp. 228–

229.

[34] Lei Jiang, Youtao Zhang, and Jun Yang. “Mitigating Write Disturbance in Super-

Dense Phase Change Memories”. In: DSN. 2014, pp. 216–227.

[35] Tomas Karnagel, Dirk Habich, and Wolfgang Lehner. “Adaptive Work Place-

ment for Query Processing on Heterogeneous Computing Resources”. In:

PVLDB 10.7 (2017), pp. 733–744.

[36] D. Kaur and D. Wedding. “Reliability of Hamming code transmission versus

error probability on message bits”. In: Microelectronics Reliability 34.7 (1994).

[37] Samira Manabi Khan, Donghyuk Lee, and Onur Mutlu. “PARBOR: An Efficient

System-Level Technique to Detect Data-Dependent Failures in DRAM”. In:

DSN. 2016, pp. 239–250.
[38] Samira Khan et al. “The Efficacy of Error Mitigation Techniques for DRAM Re-

tention Failures: A Comparative Experimental Study”. In: SIGMETRICS Perform.
Eval. Rev. 42.1 (June 2014), pp. 519–532.

[39] Jangwoo Kim et al. “Multi-bit Error Tolerant Caches Using Two-Dimensional

Error Coding”. In: Symposium on Microarchitecture. 2007, pp. 197–209.
[40] Yoongu Kim et al. “Flipping bits in memory without accessing them: An exper-

imental study of DRAM disturbance errors”. In: ISCA. 2014, pp. 361–372.
[41] Thomas Kissinger et al. “QPPT: Query Processing on Prefix Trees”. In: CIDR.

2013.

[42] Masanobu Kohara et al. “Mechanism of electromigration in ceramic packages

induced by chip-coating polyimide”. In: IEEE Transactions on Components,
Hybrids, and Manufacturing Technology 13.4 (1990), pp. 873–878.

[43] Till Kolditz et al. “Online bit flip detection for in-memory B-trees on unreliable

hardware”. In: DaMoN. 2014, 5:1–5:9.
[44] Emre Kultursay et al. “Evaluating STT-RAM as an energy-efficient main mem-

ory alternative”. In: ISPASS. 2013, pp. 256–267.
[45] Tirthankar Lahiri, Marie-Anne Neimat, and Steve Folkman. “Oracle TimesTen:

An In-Memory Database for Enterprise Applications”. In: IEEE Data Eng. Bull.
36.2 (2013), pp. 6–13.

[46] Benjamin C. Lee et al. “Architecting phase change memory as a scalable dram

alternative”. In: ISCA. 2009, pp. 2–13.
[47] Christiane Lemieux. Monte Carlo and Quasi-Monte Carlo Sampling. Springer,

2009. isbn: 978-1441926760.

[48] Feng Li et al. “Accelerating Relational Databases by Leveraging Remote Mem-

ory and RDMA”. In: SIGMOD. 2016, pp. 355–370.
[49] Yinan Li and Jignesh M. Patel. “BitWeaving: Fast Scans for Main Memory Data

Processing”. In: SIGMOD. 2013, pp. 289–300.
[50] Jamie Liu et al. “An Experimental Study of Data Retention Behavior in Modern

DRAM Devices: Implications for Retention Time Profiling Mechanisms”. In:

SIGARCH Comput. Archit. News 41.3 (June 2013), pp. 60–71.
[51] Sparsh Mittal. “A Survey of Soft-Error Mitigation Techniques for Non-Volatile

Memories”. In: Computers 6.1 (2017), p. 8.
[52] Todd K Moon. “Error correction coding”. In: Mathematical Methods and Algo-

rithms. Jhon Wiley and Son (2005).

[53] Wojciech Mula, Nathan Kurz, and Daniel Lemire. “Faster Population Counts

using AVX2 Instructions”. In: CoRR (2016).

[54] Onur Mutlu. “The RowHammer problem and other issues we may face as

memory becomes denser”. In: DATE. 2017, pp. 1116–1121.
[55] Thomas Neumann. The price of correctness. http://databasearchitects.blogspot.

de/2015/12/the-price-of-correctness.html. Nov. 2016.

[56] Patrick O’Neil et al. “The Star Schema Benchmark and Augmented Fact Table

Indexing”. In: TPCTC 2009: Performance Evaluation and Benchmarking. Berlin,
Heidelberg: Springer, 2009, pp. 237–252. doi: 10.1007/978-3-642-10424-4_17.

[57] Nahmsuk Oh, Philip P Shirvani, and Edward J McCluskey. “Error detection by

duplicated instructions in super-scalar processors”. In: IEEE Transactions on
Reliability 51.1 (2002), pp. 63–75.

[58] Ismail Oukid et al. “FPTree: A Hybrid SCM-DRAM Persistent and Concurrent

B-Tree for Storage Class Memory”. In: SIGMOD. 2016, pp. 371–386.
[59] William Wesley Peterson and Daniel T Brown. “Cyclic codes for error detec-

tion”. In: IRE 49.1 (1961), pp. 228–235.

[60] Frank M. Pittelli and Hector Garcia-Molina. “Database Processing with Triple

Modular Redundancy”. In: SRDS. 1986, pp. 95–103.
[61] Frank M. Pittelli and Hector Garcia-Molina. “Reliable Scheduling in a TMR

Database System”. In: ACM Trans. Comput. Syst. 7.1 (1989), pp. 25–60.
[62] Fred J. Pollack. “New Microarchitecture Challenges in the Coming Generations

of CMOS Process Technologies”. In: Symposium on Microarchitecture. 1999, p. 2.
[63] Semeen Rehman, Muhammad Shafique, and Jörg Henkel. Reliable Software for

Unreliable Hardware - A Cross Layer Perspective. Springer, 2016.
[64] Steven K. Reinhardt and Shubhendu S. Mukherjee. “Transient fault detection

via simultaneous multithreading”. In: ISCA. 2000, pp. 25–36.
[65] George A. Reis et al. “SWIFT: Software Implemented Fault Tolerance”. In: CGO.

2005, pp. 243–254.

[66] Michael C. Ring. MAPM, A Portable Arbitrary Precision Math Library in C.
http://www.tc.umn.edu/~ringx004/mapm-main.html. Nov. 2016.

[67] Ronald Linn Rivest. The MD5 Message-Digest Algorithm. Nov. 2016. url: https:

//tools.ietf.org/html/rfc1321.

[68] Jimi Sanchez. “A Review of Star Schema Benchmark”. In: CoRR abs/1606.00295

(2016).

[69] Ute Schiffel. “Hardware error detection using AN-Codes”. PhD thesis. Dresden

University of Technology, 2011.

Research 15: Databases for Emerging Hardware SIGMOD’18, June 10-15, 2018, Houston, TX, USA

Final edited form was published in "SIGMOD/PODS '18: International Conference on Management of Data. Houston 2018", S. 1619–1634, ISBN 978-1-4503-4703-7
https://doi.org/10.1145/3183713.3183740

13

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

https://gmplib.org/
http://mpir.org/
http://mpir.org/
http://databasearchitects.blogspot.de/2015/12/the-price-of-correctness.html
http://databasearchitects.blogspot.de/2015/12/the-price-of-correctness.html
https://doi.org/10.1007/978-3-642-10424-4_17
http://www.tc.umn.edu/~ringx004/mapm-main.html
https://tools.ietf.org/html/rfc1321
https://tools.ietf.org/html/rfc1321

0

0.5
1

1.5
2

2.5
3

Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3

R
e
l
a
t
i
v
e
R
u
n
t
i
m
e

Unprotected

DMR

Early

Late

Continuous

Reencoding

Figure 11: Relative SSB runtimes for scalar execution (average over all scale factors).

[70] Muhammad Shafique et al. “Multi-layer software reliability for unreliable

hardware”. In: it - Information Technology 57.3 (2015), pp. 170–180.

[71] Erez Shmueli et al. “Database encryption: an overview of contemporary chal-

lenges and design considerations”. In: SIGMOD Record 38.3 (2009), pp. 29–

34.

[72] Konstantin Shvachko et al. “The Hadoop Distributed File System”. In: MSST.
2010, pp. 1–10.

[73] Gopalan Sivathanu, Charles P. Wright, and Erez Zadok. “Ensuring Data In-

tegrity in Storage: Techniques and Applications”. In: StorageSS. 2005.
[74] Michael Spica and T. M. Mak. “Do We Need Anything More Than Single Bit

Error Correction (ECC)?” In: MTDT. 2004, pp. 111–116.
[75] Michael Stonebraker et al. “C-Store: A Column-oriented DBMS”. In: VLDB.

2005, pp. 553–564.

[76] Stephen Y. H. Su and Edgar DuCasse. “A hardware redundancy reconfigura-

tion scheme for tolerating multiple module failures”. In: IEEE Transactions on
Computers 3.C-29 (1980), pp. 254–258.

[77] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. “Simultaneous Multi-

threading: Maximizing On-Chip Parallelism”. In: ISCA. 1995, pp. 392–403.
[78] Peter Ulbrich, Martin Hoffmann, and Christian Dietrich. CoRed: Experimental

Results. https://www4.cs.fau.de/Research/CoRed/experiments/. July 2017.

[79] Peter Ulbrich et al. “Eliminating single points of failure in software-based

redundancy”. In: EDCC. 2012, pp. 49–60.
[80] Henry S Warren. Hacker’s delight. Pearson Education, 2013.

[81] Matthias Werner et al. “Multi-GPU Approximation for Silent Data Corruption

of AN Codes”. In: Further Improvements in the Boolean Domain. Ed. by Bernd

Steinbach. Cambridge Scholars Publishing, 2018. Chap. 2.3, pp. 136–155.

[82] Thomas Willhalm et al. “SIMD-scan: Ultra Fast In-memory Table Scan Using

On-chip Vector Processing Units”. In: Proc. VLDB Endow. (2009).
[83] Thomas Willhalm et al. “Vectorizing database column scans with complex

predicates”. In: ADMS. 2013, pp. 1–12.
[84] Ian H. Witten, Radford M. Neal, and John G. Cleary. “Arithmetic Coding for

Data Compression”. In: Commun. ACM 30.6 (1987), pp. 520–540.

[85] J. Wolf, A. Michelson, and A. Levesque. “On the Probability of Undetected Error

for Linear Block Codes”. In: IEEE Transactions on Communications 30.2 (1982).
[86] H.-S. Philip Wong et al. “Metal-Oxide RRAM”. In: Proceedings of the IEEE 100.6

(2012), pp. 1951–1970.

[87] Marcin Zukowski, Mark van de Wiel, and Peter A. Boncz. “Vectorwise: A

Vectorized Analytical DBMS”. In: ICDE. 2012, pp. 1349–1350.
[88] Marcin Zukowski et al. “Super-Scalar RAM-CPU Cache Compression”. In: ICDE.

2006, p. 59.

A SSB SCALAR RUNTIME PERFORMANCE
Figure 11 shows the relative scalar runtimes for all 13 SSB queries

as averages over all 10 scale factors and 10 runs each. The Un-
protected variant is the baseline. DMR shows the expected 100%

runtime overhead, whereas Early has very high overheads between

64% and 185%, where the main overhead results from the slow ∆ op-

erator which decodes all encoded columns. The overhead of Late
Detection is always below 10%. Continuous and Reencoding
runtimes show overheads between 10% and 27%.

B PROTECTION TECHNIQUES
Hardware-based protection can be done on three layers [63]:

(i) transistor, (ii) circuit, and (iii) architectural. On the transistor
layer, several techniques have been proposed to harden transistors

against radiation events like alpha particles or neutron strikes [33,

42]. For example, thick polyamide can be used for alpha particle

protection [33, 42]. However, this technique cannot be utilized for

neutron strikes [63]. In general, techniques at this layer have in

common that the protection results in adopted fabrication processes

using specialized materials [33, 42, 63]. Therefore, these techniques

are very effective, but they produce (i) substantial overhead in terms

of area and cost, and (ii) immense validation and verification costs.

At the circuit layer, redundant circuits and error detection/correc-
tion circuits are prominent examples [16, 19, 39, 63]. For instance,

the RAZOR approach introduces shadow flip flops in the pipeline

to recover from errors in logic gates [19]. Memories and caches

are usually protected using error correcting codes (ECC) or parity

techniques. Current ECC memories are based on Hamming using

a (72,64) code, meaning that 64 bits of data are enhanced with 8

bits of parity allowing single error correction and double error

detection. However, this is not sufficient to address multi-bit flips.

To tackle multi-bit flips advanced ECC schemes have to be used.

Examples are (i) IBM’s Chipkill approach, wich computes the parity

bits from different memorywords and even separate DIMMs instead

of physically adjacent bits [16], and (ii) [39], which shows that

other ECC codes like BCH-codes [52] can be realized in hardware

to be able to correct e.g., 8-bit flips and detect 9-bit flips for 64

bits of data. However, this increases the number of transistors

in hardware and consequently impacts the energy demand, the

overhead growing quickly as the code strength is increased [39].

Additionally, reading and computing the enhanced ECC bits can be

a performance bottleneck during read operations [39]. To mitigate

disturbance errors at this layer, hardware vendors improve inter-cell

isolation, but this is challenging due to ever-decreasing feature sizes

and higher densities [40, 54].

At the architectural layer, the protection is based upon the redun-

dant execution either in space (using duplicated hardware units)

or in time (using the same hardware multiple times for redundant

execution and comparing the results). Dual Modular Redundancy

(DMR) and Triple Modular Redundancy (TMR) are traditional ap-

proaches. Generally, these techniques lead to an increased power

usage which may potentially increase the temperature [63]. In-

creased temperatures lead to higher soft error rate and increased

aging [63]. To lower these effects, multi-/manycore architectures

provide soft error tolerance through the availability of a high num-

ber of cores. Idle cores can now be exploited to provide redundancy

either at the hardware level (using redundant instructions or redun-

dant threads) or operating system level (using redundant thread

processes). For example, the Simultaneous Redundant Threading

(SRT) approach [64] adapts the concept of Simultaneous Multi-

threading (SMT) [77]. SMT was proposed to improve performance

via executing program codes of different applications in a simulta-

neous multithreaded fashion on multiple functional units inside a

given processor. In contrast to that, SRT executes two redundant

threads of the same application on multiple functional units and

then performs the output comparison.

Research 15: Databases for Emerging Hardware SIGMOD’18, June 10-15, 2018, Houston, TX, USA

Final edited form was published in "SIGMOD/PODS '18: International Conference on Management of Data. Houston 2018", S. 1619–1634, ISBN 978-1-4503-4703-7
https://doi.org/10.1145/3183713.3183740

14

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

https://www4.cs.fau.de/Research/CoRed/experiments/

exact σ
grid,1D,4·GPU

k tCPU t1·GPU t4·GPU tM ∆M M

8 7ms 1ms 3ms 6ms 0.0232 101

16 376ms 130ms 41ms 11ms 0.0031 1001

24 382min 99min 27min 354ms 0.0053 1001

32 – – – 5min – 1001

Table 2: Computing the distance distributions of AN codes
for A = 61. Average values after 5 runs. CPU: 2×E5-2680 v3
Haswell 12-core 2.50GHz, gcc5.3, OpenMP 4.0. GPU: NVIDIA
Tesla K80, CUDA 7.5

To summarize, hardware-based protection techniques are usually

very effective, but they also have major drawbacks in terms of

(i) high area overhead leading at the same time to more power

overhead and (ii) performance penalties. Furthermore, the high

verification/validation costs make the reliable hardware design

and development very expensive and time consuming [63]. To

overcome these non-negligible drawbacks, a rich set of software-

based techniques has evolved.

Classical software-based protection techniques are [25, 63]:

(i) N-version programming, (ii) code redundancy, (iii) control flow

checking, and (iv) checkpoint recovery. For instance, N-version

programming [5] is based on implementing multiple program ver-

sions of the same specification which reduces the probability of

identical errors occurring in two or more versions. State-of-the-art

redundancy-based techniques are Error Detection using Duplicated

Instructions (EDDI) [57] and Software Implemented Fault Toler-

ance (SWIFT) [65]. Both provide software reliability by duplicat-

ing instructions, and inserting comparison and checking instruc-

tions. However, these techniques incur significant performance

overheads [57, 65].

C COMPUTING THE SDC PROBABILITY
There is plenty of work on evaluating the probability of undetected

errors for linear block codes
13

and Hamming code in particular [36,

85, 52]. For AN codes, this has only been done for 8- and 16-bit

data andAs up to 8 and 16 bits [29, 78]. However, this is insufficient

for the database domain, because (1) possibly all data bit widths

between 1 and 64 bits are to be supported [83], and (2) larger As
may be required for future error models. To overcome that, we

developed a practical methodology for determining the probability

of SDC for non-systematic, non-linear
14

coding schemes in general

and independent of a specific error model [81]. For this, we use

the following definitions: A code C (EDC/ECC) is defined by the

triplet (n,k,dmin), were n = |C| is the code word width, k is the

data width, and dmin is the minimum Hamming distance between

any of the code’s valid code words. Further, b denotes the number

of flipped bits. For AN coding, the definitions from Section 3 further

apply.

Conceptually, we model the space of all valid code words as an

undirected, fully connected, weighted graph, where the code words

are the vertices. Each valid code word is connected with every other

13
For linear codes, the linear combination (exclusive OR) of two valid code words is

always also a valid code word.

14
In non-linear codes, the linearity property is not always satisfied.

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

∆

t
i
n
s

M

k = 24, A = 61
1√
M

log(M)
M
texact

t
pseudo

tquasi

t
grid

∆
pseudo

∆quasi

∆
grid

Figure 12: Convergence of maximum relative error ∆ and
run-time t according to the number of iterationsM .

valid one and the edge weights denote the Hamming distance dH
between the two code words. Thus, we only concentrate on the

transitions originating from valid code words to other valid ones,

regardless of the coding. Then, computing SDC probabilities requires

two steps. First, we build a histogram over all transition weights,

by which we get the numbers cb of undetectable b-bit flips:

Definition 1. For a given code, cb denotes the number of transi-
tions of weight b between valid code words.

The set {cb |b ∈ {1, . . . ,k}} is called weight distribution. For AN
coding, cAb represents the count for a given A. Second, we relate

each cb to the respective total number of possible b-bit flips
(n
b
)
.

Consequently, there can be 2
k ·

(n
b
)
b-bit flips in all valid code words.

This number includes all transitions from any valid codeword to

any other possible code word. By that, when computing the weight

distribution, we also have to count the transitions modeled in the

graph twice (i.e., for each direction), because with a single error

pattern we can make a transition in both direction. In total, this

results in the SDC probability for b-bit flips, which we denote as:

pb =
cb

2
k ·

(n
b
) (14)

Now, the challenge is to obtain cb in an efficient manner. For

non-linear codes like AN coding, cb must be counted in a brute

force manner to the best of our knowledge. For AN coding, the

convolution of the multiplication cannot be described in a way

which allows simplifications. We use the following function to

describe the naive approach:

δb (x ,y) =

{
1, if dH (x ,y) = b,

0, if dH (x ,y) , b,
0 ≤ b ≤ n .

Then, we can compute the distance distribution as

cb =
∑
α ∈C

∑
β ∈C

δ (α , β) . (15)

The complexity of Equation (15) is O(4k), i.e. with each additional

data bit, there are four times as many distances. In practice, it is

half as much due to the symmetry (only one edge is computed

and then counted twice). For parameter optimization, this might

be run many thousands of times. Especially, for AN coding each

odd Amust be examined again for each data width |DΘ | and with

Research 15: Databases for Emerging Hardware SIGMOD’18, June 10-15, 2018, Houston, TX, USA

Final edited form was published in "SIGMOD/PODS '18: International Conference on Management of Data. Houston 2018", S. 1619–1634, ISBN 978-1-4503-4703-7
https://doi.org/10.1145/3183713.3183740

15

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Algorithm 2 AN code distance distribution – basic algorithm

Input: k ≥ 2

Input: Value A > 0, n = k + h, h = ⌈log
2
(A)⌉

Input: Initial distance distribution cAb = 0, b = 0, . . . ,n

Output: Distance distribution cA of code CA
1: for α = 0, . . . , (2k − 1) do ◃ outer loop is parallelized on

GPU[s]

2: for β = σ
grid
(r), r = 0, . . . ,M do ◃ inner loop is processed

by each thread

3: b ← dH (Aα ,Aβ)
4: cAb ← cAb + 1

5: end for
6: end for
7: return cA

each additional bit, the number of candidates doubles. We call this

naive approach exact, as it examines all code words. For AN coding,

Table 2 shows runtimes for the exact computation of the weight

distribution for a single A using a single CPU, a single GPU, or a

small cluster of 4 GPUs.

To mitigate the complexity, we use a sampling-based approach,

which approximates the weight distribution by comparing only

a subset of all code words. Here, the main problem is the dis-
tribution function for choosing the subset of code words. We in-

vestigated three different distributions: pseudo-random (σ
pseudo

),

quasi-random (σquasi), and grid-point (σ
grid

). Note that σ
pseudo

is

prone to clustering, while σquasi fills the space more uniformly.

The probabilistic error of Monte-Carlo (pseudo-random) is known

to be O(1/
√
M) and for quasi-Monte-Carlo it is O((logM)q/M) with

number of dimensions q and number of iterations M [47]. The

grid-point approach chooses regularly aligned samples, given by

σ
grid
(r) = (2k ·r)/M . If M = 2

k
, then the grid sampling yields the

correct result, while random numbers still miss the solution due

to collisions and gaps. Figure 12 shows a comparison between the

three distributions of convergence and runtime for the case k = 24

and A = 61⇒ n = 30 and includes the theoretic Monte-Carlo error

boundaries. Pseudo- and quasi-random numbers were generated

with the cuRAND library. The 1D grid approximation outperforms

the random distributions in virtually all cases, yielding smaller error

∆ and lower runtime t . It is, furthermore, directly influenced by

the value ofM , and we found that odd values lead to much smaller

errors than even ones.

Algorithm 2 shows the 1D grid approach for enumerating the

weight distribution of an AN code. For GPU clusters, we distribute

the outer loop evenly across the GPUs.When symmetry is exploited

in line 2, the workload size of each GPU is computed by:

⌈2kωi+1⌉ − ⌈2
kωi ⌉, wi = 1 −

√
1 − i/N , 0 ≤ i < N=#GPUs (16)

ωi is the solution of

∫ i+1
i 1−x dx = 1/N for equal work size areas.

The maximal relative error of the estimation ĉAb is given by ∆ =

maxb>0
|cAb −ĉ

A
b |

cAb
(b = 0 is omitted due to cA

0
= 2

k
).

Algorithm 2 can be parallelized on GPUs, since the Hamming

distances of two code words can be computed independently. We

use CUDA C/C++ for programming Nvidia GPUs. As registers of

|DΘ |
minimal detectable bit flip weight

1 2 3 4 5 6 7

1 3/2 7/3 15/4 31/5 63/6 127/7 255/8

2 3/2 13/4 53/6 213/8 853/10 3285/12 13141/14

3 3/2 29/5 45/6 467/9 1837/11 7349/13 23733/15

4 3/2 27/5 89/7 933/10 6777/13 31385/15

5 3/2 29/5 117/7 933/10 7085/13 31373/15

6 3/2 29/5 233/8 1899/11 7837/13 62739/16

7 3/2 29/5 217/8 1803/11 13963/14 55831/16

8 3/2 29/5 233/8 1939/11 13963/14 55831/16

9 3/2 29/5 185/8 1939/11 15717/14 55831/16

10 3/2 61/6 185/8 3739/12 27425/15

11 3/2 61/6 451/9 3739/12 27425/15

12 3/2 61/6 463/9 3737/12 29925/15

13 3/2 61/6 463/9 3349/12 27825/15

14 3/2 61/6 463/9 6717/13 63877/16

15 3/2 61/6 463/9 7785/13 63877/16

16 3/2 61/6 463/9 7785/13 63877/16

17 3/2 61/6 393/9 7785/13 63859/16

18 3/2 61/6 947/10 7785/13 63859/16

... ...

28 3/2 111/7 951/10 29685/15

29 3/2 111/7 835/10 *29685/15

30 3/2 125/7 835/10 *31693/15

31 3/2 125/7 881/10 *32211/15

32 3/2 125/7 881/10 *32417/15

Table 3: Smallest super As per minimal detectable bit flip
weight in the formA/|A|. Bold numbers are prime. * obtained
through grid approximation.

GPUs are 32-bit wide, the multi-GPU implementation uses 32-bit

integers as long as the array elements in a thread do not overflow.

From Equation 14 follows maxb c
A
b ≤ maxb 2

k (n
b
)
= 2

k (n
n/2

)
and

the upper bound for using 32-bit integers is:

cAb, thread ≤
2
k (n

n/2
)

threads

< 2
32 .

The GPU uses 64 bits for the global array, so the highest data bit

width for the GPU algorithm is k = 33. The range for each GPU

is between ⌈2kωi ⌉ and ⌈2
kωi+1⌉ from Equation 16. We use thread-

local arrays and one global array to avoid memory contention.

Since local array indexing is dynamic and non-uniform, it cannot

be stored into the fast registers, as they are not addressable at

run-time. Hence, the local array is stored in local memory, which

is L1 cached thread-private global memory. To get scalable and

flexible kernels, the outer loop strides by the size of a CUDA grid

(threads per block × blocks per grid). The kernel is called with

blocks=32 · numberOfMultiprocessors and 128 threads per block.

After the local histogram is filled, atomic operations are used to

add the values to the global distance distribution. The respective

runtimes are shown in Table 2 on the right half. More details can

be found in [81].

D GITHUB
Finally, wewould like to point out our project BRICS-DB onGitHub15

where our prototypical AHEAD implementation is available, as well

as our GPU implementation for computing distance distributions

(SDC probability). We also provide the full table for all smallest

super As per bit flip weight which we computed until now. More

super As will be calculated and all updated information will be

provided on github. Table 3 shows an excerpt of the current table

of super As.

15
https://brics-db.github.io/

Research 15: Databases for Emerging Hardware SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1634

Final edited form was published in "SIGMOD/PODS '18: International Conference on Management of Data. Houston 2018", S. 1619–1634, ISBN 978-1-4503-4703-7
https://doi.org/10.1145/3183713.3183740

16

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

	Abstract
	1 Introduction
	2 Hardware Reliability Concerns
	3 Software-based Error Coding
	3.1 AN Coding Description
	3.2 AN Coding Justification

	4 Hardened Data Storage
	4.1 AHEAD Columnar Storage Concept
	4.2 AHEAD Adaptability
	4.3 AHEAD Performance Improvements

	5 On-the-fly Error Detection
	5.1 Error Detection Opportunities
	5.2 Adjustments for Continuous Detection

	6 End-to-End Evaluation
	6.1 Implementation
	6.2 SSB Runtime Performance
	6.3 Scalar vs. Vectorized Execution
	6.4 Influence of Bit Flip Weight

	7 Mirco Benchmarks
	7.1 Error Code Evaluation
	7.2 Evaluation of AN Coding Improvements

	8 Related Work
	9 Conclusion and Outlook
	A SSB Scalar Runtime Performance
	B Protection Techniques
	C Computing The SDC Probability
	D Github

