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Abstra
t. In its many guises and variations, propositional dynami


logi
 (PDL) plays an important role in various areas of 
omputer s
i-

en
e su
h as databases, arti�
ial intelligen
e, and 
omputer linguisti
s.

One relevant and powerful variation is ICPDL, the extension of PDL

with interse
tion and 
onverse. Although ICPDL has several interesting

appli
ations, its 
omputational properties have never been investigated.

In this paper, we prove that ICPDL is de
idable by developing a trans-

lation to the monadi
 se
ond order logi
 of in�nite trees. Our result has

appli
ations in information logi
, des
ription logi
, and epistemi
 logi
.

In parti
ular, we solve a long-standing open problem in information logi
.

Another virtue of our approa
h is that it provides a de
idability proof

that is more transparent than existing ones for PDL with interse
tion

(but without 
onverse).

1 Introdu
tion

Propositional Dynami
 Logi
 (PDL) has originally been proposed as a modal

logi
 for reasoning about the behaviour of programs [21, 12, 13℄. Sin
e then, the

adaptation of PDL to a growing number of appli
ations has led to many mod-

i�
ations and extensions. Nowadays, these additional appli
ations have be
ome

the main driving for
e behind the 
ontinuing interest in the PDL family of logi
s,

see e.g. [14, 8, 2, 5, 1℄. An important family of variations of PDL is obtained by

adding an interse
tion operator on programs, and possibly additional program

operators. Alas, the extension of PDL with interse
tion (IPDL) is notorious for

being \theoreti
ally diÆ
ult". This is mostly due to an intri
ate model theory: in


ontrast to most other extensions of PDL, the addition of interse
tion destroys

the tree model property in a rather dramati
 way. In parti
ular, original PDL

and many of its extensions 
an be de
ided by using automata on in�nite trees [?℄

or embedding into the alternation-free fragment of Kozen's �-
al
ulus [16℄. By

adding interse
tion to PDL and destroying the tree model property, we leave this

framework and thus lose the toolkit of results and te
hniques that have been es-

tablished over the last twenty years. Consequently, the results obtained for IPDL

are qui
kly summarized: the �rst result about the 
omputational properties of

PDL with interse
tion is due to Harel, who proved that satis�ability in IPDL
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with deterministi
 programs is unde
idable [15℄. In 1984, Dane
ki showed that

dropping determinism regains de
idability [7℄. He also establishes a 2-ExpTime

upper bound. It was long unknown whether this upper bound is tight: only in

2004, the ExpTime lower bound for IPDL stemming from original PDL was im-

proved to an ExpSpa
e one and then even to a tight 2-ExpTime one [17, 18℄. An

axiomatization for IPDL is long sought, but until now only the axiomatization

of relatively weak fragments has been su

essfully a

omplished [4℄.

It appears that virtually nothing is known about extensions of IPDL. Most

strikingly, the natural extension of IPDL with 
onverse programs (ICPDL) has

never been investigated. The aim of this paper is to perform a �rst investiga-

tion of the 
omputational properties of ICPDL: we show that satis�ability in

ICPDL is de
idable by developing a (satis�ability preserving) translation into

the monadi
 se
ond order logi
 of in�nite trees (from now on simply 
alled MSO).

This result has several interesting 
onsequen
es:

First, de
idability of ICPDL implies de
idability of the information logi
 DAL

(Data Analysis Logi
), a problem that has been open sin
e DAL was proposed

in 1985 [11℄. The purpose of DAL is to aggregate data into sets that 
an be


hara
terized using given properties, and, dually, to determine properties that

best 
hara
terize a given set of data. Te
hni
ally, DAL may be viewed as the

variant of IPDL obtained by requiring all relations to be equivalen
e relations

and admitting only the program operators \ and [

�

, where the latter is a 
om-

bination of PDL's operators [ and �

�

. In ICPDL, equivalen
e relations 
an be

simulated using (a[a

�

)

�

for some atomi
 program a. Thus, DAL 
an be viewed

as a fragment of ICPDL.

Se
ond, there is a 
lose 
orresponden
e between variants of PDL and des
rip-

tion logi
s (DLs). In parti
ular, the des
ription logi
 ALC

reg

[3, 14℄ is a synta
ti


variant of PDL without the test operator [22℄, and the interse
tion operator of

IPDL 
orresponds to the interse
tion role 
onstru
tor in des
ription logi
s. The

latter is a traditional 
onstru
tor that is present in many DL formalisms, see

e.g. [9, 6, 19, 20℄. De
idability and 
omplexity results play a 
entral role in the

area of des
ription logi
, but have never been obtained for the natural extension

ALC

\

reg

of ALC

reg

with role interse
tion. Clearly, ALC

\

reg

is a synta
ti
 variant

of test-free ICPDL, and thus our de
idability result 
arries over.

Third, ICPDL 
an be applied to obtain results in epistemi
 logi
 [10℄. The

basi
 observation is as in the 
ase of DAL: ICPDL 
an simulate equivalen
e re-

lations by writing (a[ a

�

)

�

. Sin
e union and transitive 
losure of programs 
an

be 
ombined to express the 
ommon knowledge operator of epistemi
 logi
, and

interse
tion of programs 
orresponds to the distributed knowledge operator, de-


idability of ICPDL 
an be used to obtain de
idability for epistemi
 logi
 with

both 
ommon knowledge and distributed knowledge. We should admit, how-

ever, that this approa
h is rather brute for
e: sin
e the 
ommon knowledge and

distributed knowledge operators of epistemi
 logi
 
annot be nested to build up

more 
omplex operations on relations, epistemi
 logi
 la
ks mu
h of the 
omplex-

ity of ICPDL. Therefore and as noted in [10℄, de
idability 
an also be obtained

using more standard te
hniques.
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Apart from the appli
ations just mentioned, we believe that there is an addi-

tional virtue of the MSO translation exhibited in this paper: without intending

to derogate the admirable work of Dane
ki that provided the basi
 ideas for

the tree en
oding of ICPDL models developed in this paper [7℄, it seems fair to


laim that Dane
ki's de
idability proof for IPDL is rather intri
ate and diÆ
ult

to understand. Moreover, the 
orre
tness is hard to verify sin
e the only available

presentation (a 
onferen
e paper) la
ks many non-trivial details. Although the

MSO translation presented in the 
urrent paper also involves some non-trivial

en
odings, in our opinion it is the easiest proof of the de
idability of IPDL that

has been obtained so far. Together with the te
hni
al report a

ompanying this

paper [?℄, the proofs are fully rigorous and readily 
he
ked in detail.

This paper is organized as follows. In Se
tion 2, we introdu
e ICPDL. Se
-

tion 3 prepares for the MSO translation by dis
ussing, on an intuitive level, how

ICPDL models 
an be abstra
ted into trees. The translation itself is exhibited

in Se
tion 4 whi
h also 
ontains a 
orre
tness proof. We dis
uss future work and


on
lude in Se
tion 5.

2 The Language

Let Var and Prog be 
ountably in�nite sets of propositional variables and atomi


programs, respe
tively. The sets of ICPDL programs and ICPDL formulas are

de�ned by simultaneous indu
tion as follows:

{ ea
h atomi
 program is a program;

{ ea
h propositional variable is a formula;

{ if � and � are programs and ' is a formula, then the following are also

programs:

�

�

; � \ �; � [ �; �;�; �

�

; '?

{ if ' and  are formulas and � is a program, then the following are also

formulas:

:'; h�i'

We use '

1

^ '

2

as an abbreviation for h'

1

?i'

2

, '

1

_ '

2

for :(:'

1

^ :'

2

), and

[�℄' for :h�i:'. Moreover, we use > to abbreviate an arbitrary (but �xed)

propositional tautology, and ? for :>.

The semanti
s of ICPDL is de�ned in the usual way through Kripke stru
-

tures. A Kripke stru
ture is a triple K = (W;R;L), where

{ W is a set of points,

{ R assigns to ea
h atomi
 program a 2 Prog a binary relation R(a) on W ,

{ L assigns to ea
h atomi
 proposition p 2 Var the set of points L(p) in whi
h

it holds.
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The extension of R to 
omplex programs and the de�nition of the 
onsequen
e

relation j= for ICPDL are, again, by simultaneous indu
tion:

R(�

�

) is the 
onverse of R(�)

R(�

1

\ �

2

) = R(�

1

) \ R(�

2

);

R(�

1

[ �

2

) = R(�

1

) [ R(�

2

);

R(�

1

;�

2

) = R(�

1

) ÆR(�

2

):

R(�

�

) is the re
exive-transitive 
losure of R(�)

R('?) = f(w;w) 2 W

2

j K;w j= 'g

K;w j= p i� w 2 L(p) for p 2 Var

K;w j= :' i� K;w 6j= '

K;w j= h�i' i� there is w

0

: (w;w

0

) 2 R(�) and K;w

0

j= '

Let ' be a formula and K = (W;R;L) a Kripke stru
ture. Then K is a model

of ' if there is a w 2 W with K;w j= '. The formula ' is 
alled satis�able if it

has a model.

3 ICPDL Models

Our aim is to devise a satis�ability preserving translation from ICPDL to MSO

over in�nite trees. The main diÆ
ulty is posed by the fa
t that ICPDL does not

have the tree model property. This is witnessed e.g. by the formulas

:p ^ ha \ a

�

ip and :p ^ [b℄?^ h(a; p?; a) \ b

�

i>

whi
h both enfor
e a 
y
le of length 2.

1

To 
arry out the translation to MSO,

it is important to develop a tree-shaped abstra
tion of ICPDL models. Su
h an

abstra
tion is des
ribed in the 
urrent se
tion. Although it provides the guiding

intuitions for developing the translation to MSO, there is no need to formally

establish the 
orre
tness of the abstra
tion beforehand. Therefore, our dis
ussion

will remain on an intuitive level.

Interse
tion

ICPDL's la
k of the tree model property is 
learly due to the interse
tion oper-

ator on relations. Even the simple formula ha \ bi> does not have a tree model:

it enfor
es a Kripke stru
ture K as shown on the left-hand side of Figure 1. For

the MSO translation, we represent K using the tree displayed on the right-hand

side of the same �gure. In this tree, the left son represents the substru
ture of

K that is obtained by dropping the b edge, and the right son des
ribes the sub-

stru
ture obtained by dropping the a edge. The symbol \\" labelling the root

node indi
ates that a parallelization operation is required to 
onstru
t K from

1

It is easy to modify these formulas su
h that they enfor
e a 
y
le whose length is

exponential in the length of the formula.
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a b

ba

\

x

t

x

t

y

t

x

t

x

t

y

t

y

Fig. 1. Tree for interse
tion.

these two substru
tures: simply identify their roots and sinks. Intuitively, the

root node represents the whole stru
ture K.

The tree representation does not only en
ode the relational stru
ture of K,

but also re
ords satisfa
tion of relevant formulas by states of K. The following

de�nition �xes the set of formulas relevant for de
iding satis�ability of an ICPDL

formula ': the (Fis
her-Ladner) 
losure of '.

De�nition 1 (Closure). The set of subprograms subp(�) of ICPDL programs

� and the set of subformulas subf(') of ICPDL formulas ' is de�ned simulta-

neously as follows:

{ subp(a) = fag if a is atomi
;

{ subp(�) = f�g [ subp(�) [ subp(
) if � = � \ 
 or � = �; 
;

{ subp(�) = f�g [ subp(�) if � = �

�

or � = �

�

;

{ subp('?) = f'?g [

S

h�i 2subf(')

subp(�);

{ subf(p) = fpg if p 2 Var;

{ subf(:') = f:'g [ subf(');

{ subf(h�i') = fh�i'g [ subf(') [

S

 ?2subp(�)

subf( ).

Finally, we de�ne the 
losure of an ICPDL formula ' as


l(') := f ;: j  2 
l(')g:

For x a state in a Kripke stru
ture, the type of x is the set of formulas f' 2


l('

0

) j K;x j= 'g, where '

0

is the formula whose satis�ability is to be de
ided.

In the tree representation of a model, ea
h node stores the type of the root state

and of the sink state of the substru
ture that this node represents. In the 
ase

of Figure 1, all three tree nodes store the type t

x

of x and t

y

of y sin
e they all

des
ribe a substru
ture of K with root x and sink y. We say that t

x

is stored in

the �rst pla
e of ea
h node, and t

y

is stored in the se
ond pla
e. Observe that

distin
t pla
es in tree nodes may represent identi
al states in the model. This

indu
es an equivalen
e relation on pla
es, whose skeleton is given as dotted lines

in Figure 1. This relation will play a 
entral role in the translation to MSO.
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Composition

Now 
onsider a formula ha; bi>. It enfor
es the model on the left-hand side of

Figure 2. Again, the right-hand side displays the 
orresponding tree abstra
tion

ba

x

t

z

t

x

t

y

t

y

t

z

a

y

z

b

t

x

;

Fig. 2. Tree for 
omposition.

with the dotted edges providing a skeleton for the equivalen
e relation on pla
es.

The symbol \;" of the root nodes indi
ates that the stru
ture represented by the

root node is obtained from the stru
tures represented by the leaves through a


omposition operation: identify the sink of the left son with the root of the right

son.

Kleene Star

Formulas ha

�

i> enfor
e an a-path of arbitrary length. To represent a path of

length zero (i.e., a single state), we use a tree 
onsisting of a single node labelled

\=". The two pla
es of this node are equivalent, i.e., represent the same state.

To represent longer paths, we may repeatedly apply the 
omposition operation

to nodes labelled \a" and \=". A tree representation of a path of length two 
an

be found in Figure 3.

x

a

y

a

z

a

t

y

t

z

a

t

z

t

x

t

y

t

z

t

x

;

t

y

;

t

z

t

z

=

Fig. 3. Tree for Kleene star.
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Observe the dotted edge 
onne
ting the two pla
es of the \=" node. It should be


lear that, by 
ombining the representation s
hemata given in Figures 1 and 2

and by using \=" nodes, we 
an 
onstru
t a tree representation of models en-

for
ed by any formula h�i>, with � 
omposed from the operators f[;\; '?; ; ; �

�

g

in an arbitrary way: the operator \[" requires no expli
it represention in the

tree stru
ture and the operator \'?" 
an be treated via a node labelled \=".

Converse

To deal with the 
onverse operator, we take an approa
h that may not be what

one would expe
t on �rst sight. As dis
ussed later, the seemingly 
ompli
ated

treatment of 
onverse allows to simplify other parts of the MSO translation.

Consider a formula ha

�

i> and the enfor
ed model given on the right-hand side

of Figure 4.

x

y

t

x

t

y

t

y

t

x

a

a

Fig. 4. Tree for 
onverse programs

Until now, all 
onsidered models have been abstra
ted into binary trees. For

dealing with 
onverse, we swit
h to ternary trees. The Kripke stru
ture from

Figure 4 is represented by the tree given on the right-hand side of the same

�gure. The third son represents the stru
ture in whi
h there is an a-edge from

root y to sink x, i.e., the horizontal mirror image of the Kripke stru
ture on

the left. In 
ontrast, the root represents the original stru
ture, where there is an

a-edge from sink y to root x. Observe that the equivalen
e relation indu
ed by

the pointed edges swaps the pla
es of the root and the third son as expe
ted.

Also observe that the root node does not have a parti
ular type su
h as \\"

or \;". We need not introdu
e a dedi
ated type for 
onverse sin
e, for te
hni
al

reasons dis
ussed below, every node in the tree has a third son whose pla
es are

obtained by swapping the pla
es of the original node. Finally, note that the �rst

and se
ond son of the root are simply dummies. Although they will be required

to exist for te
hni
al reasons, intuitively they 
arry no meaningful information.

Multiple Diamonds

So far, we have mostly 
on
entrated on tree abstra
tions of models for simple

formulas of the form h�i'. Tree abstra
tions of models for arbitrarily shaped
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formulas 
an be obtained by joining, in a suitable way, the tree abstra
tions

of models for su
h simple formulas. Consider the formula ha; bi> ^ h
i>, whi
h

enfor
es the stru
ture shown on the left-hand side of Figure 5. As usual, the

t

x

t

y

t

w

t

x


a b

t

x

t

y

t

z

t

y

t

x

y

b

z

a

x




w

;

t

z

Fig. 5. Tree for multiple diamonds

tree abstra
tion is shown on the right-hand side. The root together with the

�rst two sons are the tree abstra
tion of the substru
ture witnessing ha; bi>,

where the dotted edges are as in Figure 2 but omitted for simpli
ity. The third

son exists be
ause every node is required to have a third son. The dotted edges


onne
ting the root and the third son are as in Figure 4, but again omitted.

Finally, the fourth son by itself (i.e., without the root) is the tree abstra
tion of

the substru
ture witnessing h
i>.

The ratio of this representation is as follows: suppose that a state x in a

Kripke stru
ture sati�es multiple diamonds h�

1

i'

1

; : : : ; h�

k

i'

k

. For 1 � i � k,

we take the representation of the model enfor
ed by h�

i

i'

i

as a ternary tree as

des
ribed above. Let these trees be T

1

; : : : ; T

k

. To join them into a single tree,

we atta
h the roots of T

2

; : : : ; T

k

as sons number 4 to k + 3 to the root of T

1

.

Observe that, in the resulting tree, the �rst pla
e of the root node is equivalent

to the �rst pla
e of sons number 4 to k+3. This is indi
ated by the dotted edge

in Figure 5.

Using this method, we 
an deal with the problem that a state represented

by the left-hand pla
e of a tree node may have to satisfy more than a single

diamond. What will we do if a state x represented by a right-hand pla
e of a

tree node has to satisfy diamonds h�

1

i'

1

; : : : ; h�

k

i'

k

? We simply exploit the

fa
t that every node has a third son swapping the pla
es: we atta
h the trees

T

1

; : : : ; T

k

representing the models enfor
ed by the diamonds h�

1

i'

1

; : : : ; h�

k

i'

k

as sons number 4 to k + 4 to the third son of the node whose right-hand pla
e

represents x. By 
omposing the dotted edges displayed in Figures 4 and 5, it is

easily veri�ed that, then, the se
ond pla
e of the root of T

1

is equivalent to the

�rst pla
e of the root of T

2

as required.
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4 Translation to MSO

We now put the ideas developed in the previous se
tion to work. The goal is to

prove the main result of this paper:

Theorem 1. Satis�ability in PDL with interse
tion and 
onverse is de
idable.

Let '

0

be an ICPDL formula whose satis�ability is to be de
ided. Moreover, let

k be the number of diamond formulas h�i' in 
l('

0

). We translate '

0

into an

eqi-satis�able formula '

�

0

of monadi
 se
ond-order logi
 of the in�nite k+3-ary

tree. More pre
isely, we assume MSO models to have domain f1; : : : ; k + 3g

�

,

whi
h from now on we abbreviate with [k+3℄

�

. There are k+3 unary fun
tions

s

i

mapping ea
h node to it's i-th son.

Intuitively, the formula '

�

0

is 
onstru
ted su
h that the models of '

�

0

are

pre
isely the tree abstra
tions of models of '

0

. In parti
ular, the intuition behind

the k + 3 su

essors is as explained in the previous se
tion. The assembly of '

�

0

involves several steps. First, we �x the MSO signature used:

{ unary predi
ates F

1

'

and F

2

'

for every ' 2 
l('

0

);

{ unary predi
ates T

=

, T

\

, T

;

, and T

?

;

{ a unary predi
ate T

a

for ea
h atomi
 program a.

The predi
ates F

i

'

are used to store types in the �rst and se
ond pla
e of tree

nodes (
.f. previous se
tion): if M is an MSO model and x 2 [k + 3℄

�

, then

f' jM j= F

1

'

(x)g is the type stored in the �rst pla
e of x and f' jM j= F

2

'

(x)g

is the type stored in the se
ond pla
e of x.

The predi
ates T

a

, T

=

, T

\

, T

;

, and T

?

are markers for the di�erent kinds

of nodes in trees. The only kind of node that was not dis
ussed in the previous

se
tion is T

?

. This kind of node is used when the i-th son is not needed, for

some i with 3 < i � k + 3. For example, assume that M 6j= F

1

'

(x) for some

node x 2 [k + 3℄

�

and all formulas ' 2 
l('

0

) of the form h�i'. Then the

sons x4; : : : ; x(k + 3) of x are not needed. Sin
e our MSO models should be full

k + 3-ary trees, we simply mark su
h sons with T

?

.

To ensure that the sets f' j M j= F

1

'

(x)g des
ribe valid types, we have

to des
ribe the semanti
s of negation and of diamonds|re
all that all other

operators are merely abbreviations. Dealing with negation is easy:

 

�

1

:=

^

:'2
l('

0

)

8x : F

1

:'

(x)$ :F

1

'

(x) ^

F

2

:'

(x)$ :F

2

'

(x)

To treat diamonds, we need some preliminaries. First, we de�ne a formula with

two free variables that 
hara
terizes the identitiy of pla
es as dis
ussed in the

previous se
tion. More pre
isely, it is 
onvenient to de�ne four su
h formulas

�

i;j

, i; j 2 f1; 2g, as shown in Figure 6. Intuitively, we have M j= �

i;j

[x; y℄ i�

the i'th pla
e of x is equivalent to the j'th pla
e of y. A

ording to the idea of
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#(P

1

; P

2

) := 8z:(T

=

(z)! (P

1

(z)$ P

2

(z))) ^ (1)

8z:(T

\

(z)! (P

1

(s)$ P

1

(s

1

(z)))) ^ (2)

8z:(T

\

(z)! (P

1

(s)$ P

1

(s

2

(z)))) ^ (3)

8z:(T

\

(z)! (P

2

(s)$ P

2

(s

1

(z)))) ^ (4)

8z:(T

\

(z)! (P

2

(s)$ P

2

(s

2

(z)))) ^ (5)

8z:(T

;

(z)! (P

1

(z)$ P

1

(s

1

(z)))) ^ (6)

8z:(T

;

(z)! (P

2

(z)$ P

2

(s

2

(z)))) ^ (7)

8z:(T

;

(z)! (P

2

(s

1

(z))$ P

1

(s

2

(z)))) ^ (8)

8z:(P

1

(z)$ P

2

(s

3

(z))) ^ (9)

8z:(P

2

(z)$ P

1

(s

3

(z))) ^ (10)

^

3<`�k+3

8z:(:T

?

(s

`

(z))! (P

1

(z)$ P

1

(s

`

(z)))) (11)

�

i;j

(x; y) := 8P

1

; P

2

:(P

i

(x) ^ #(P

1

; P

2

))! P

j

(y)

Fig. 6. The formulas �

i;j

(x; y).

pla
e equivalen
e, all equivalent pla
es should have the same type:

 

�

2

:=

^

i;j2f1;2g

8x; y : �

i;j

(x; y)! (

^

'2
l('

0

)

F

i

'

(x)$ F

j

'

(y))

We now de�ne, for ea
h program � 2 subp('

0

), a formula �

�

that relates the

�rst pla
e of a node x to the se
ond pla
e of a node y i� the states represented

by these two pla
es are related via the program �: for ea
h � 2 subp('

0

), set:

{ �

a

(x; y) := 9z:�

1;1

(x; z) ^ T

a

(z) ^ �

2;2

(y; z);

{ �

'?

(x; y) := �

1;2

(x; y) ^ F

1

'

(x);

{ �

�[�

(x; y) := �

�

(x; y) _ �

�

(x; y);

{ �

�\�

(x; y) := �

�

(x; y) ^ �

�

(x; y);

{ �

�;�

(x; y) := 9z; z

0

:�

�

(x; z) ^ �

2;1

(z; z

0

) ^ �

�

(z

0

; y);

{ �

�

�
(x; y) := �

�

(s

3

(y); s

3

(x));

{ �

�

�

(x; y) := �

1;2

[x; x℄ _ 8P:

�

(P (s

3

(x)) ^ #

0

�

(P ))! P (y)

�

with

#

0

�

(P ) := 8x; y; z:

�

(P (x) ^ �

2;1

(x; y) ^ �

�

(y; z))! P (z)

�

Some remarks are in order. To see why �

a

does not simply read x = y ^ T

a

(x),


onsider Figure 1: the left pla
e of the root node is 
learly related to the right
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pla
e of the root node via the program a although the root is not labelled \a". In

�

�;�

, the middle 
onjun
t is ne
essary sin
e we only relate �rst pla
es to se
ond

pla
es. The formula �

�

�
is easily understood by 
onsidering the equivalen
e of

pla
es indi
ated in Figure 4. Finally, 
onsider �

�

�

. The �rst disjun
t re
e
ts

the fa
t that, in Kripke stru
tures, �

�

relates every state to itself. The formula

#

0

�

(P ) states that the set of nodes P is 
losed under making �-steps from se
ond

pla
es of nodes in P : if x 2 P , the se
ond pla
e of x is equivalent to the �rst

pla
e of some y, and y is related to some z via �

�

, then the se
ond pla
e of z


an be rea
hed from the se
ond pla
e of x by making an � transition and we

add z to P . Note that, in the de�nition of �

�

�

, we put s

3

(x) into P as the initial

element rather than x. This is ne
essary sin
e �

�

�

relates �rst pla
es to se
ond

pla
es, but #

0

�

(P ) 
loses o� under making �-steps from se
ond pla
es of nodes

in P . Moreover, the se
ond pla
e of s

3

(x) is 
learly equivalent to the �rst pla
e

of x.

Using the formulas �

�

, we 
an now des
ribe the semanti
s of diamonds:

 

�

3

:=

^

h�i'2
l('

0

)

8x : F

1

h�i'

(x)$ 9y:�

�

(x; y) ^ F

2

'

(y))

It pays o� here that we require every node to have a third son with swapped

pla
es: due to this son, there is no need to expli
itly des
ribe the semanti
s of

diamonds satis�ed by se
ond pla
es, i.e., re
orded via formulas F

i

h�i'

(x) with

i = 2. We thus save the de�nition of 
ounterparts of the formulas �

�

that

relate se
ond pla
es to �rst pla
es. Also, there is no need to de�ne 
ounterparts

of the formulas �

�

that relate �rst pla
es to �rst pla
es, or se
ond pla
es to

se
ond pla
es: via the third son, su
h relationships 
an always be understood as

a relationship from a �rst pla
e to a se
ond pla
e.

Finally, we assemble '

�

0

:

'

�

0

:=  

�

1

^  

�

2

^  

�

3

^ 9x:F

1

'

0

(x)

To establish 
orre
tness of the translation, we prove the following lemma.

Lemma 1. '

0

is satis�able in ICPDL i� '

�

0

is satis�able in MSO.

Before we a
tually do that, we establish a te
hni
al lemma providing a semanti



hara
terization of the formulas �

i;j

. In the following, let P := [k+3℄

�

�f1; 2g be

the set of pla
es. A sequen
e of pla
es (x

0

; i

0

); : : : ; (x

n

; i

n

) 2 P , n � 0, is 
alled

an identity trail from (x

0

; i

0

) to (x

n

; i

n

) if, for all j < n, one of the 
onditions

listed in Figure 7 is satis�ed when x is repla
ed with x

j

, y with x

j

+ 1, i with

i

j

, and j with i

j+1

.

Lemma 2. For all MSO modelsM and (x; i); (y; j) 2 P , we haveM j= �

i;j

[x; y℄

i� there exists an identity trail from (x; i) to (y; j).

Proof. For the \if" dire
tion, we prove by indu
tion on n that the existen
e

of an identity trail (z

0

; i

0

); : : : ; (z

n

; i

n

) 2 P implies M j= �

i

0

;i

n

[z

0

; z

n

℄. For the

indu
tion start, we have n = 0 and are done sin
e the de�nition of �

i;j

easily
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1. x 2 T

M

=

and x = y;

2. x 2 T

M

\

, i = j, and y = s

m

(x) for some m 2 f1; 2g;

3. y 2 T

M

\

, i = j, and x = s

m

(y) for some m 2 f1; 2g;

4. x 2 T

M

;

, i = j, and y = s

i

(x);

5. y 2 T

M

;

, i = j, and x = s

i

(y);

6. there is a z 2 T

;

(z)

M

su
h that f(x; i); (y; j)g = f(s

1

(z); 2); (s

2

(z); 1g;

7. y = s

3

(x) and fi; jg = f1; 2g;

8. x = s

3

(y) and fi; jg = f1; 2g;

9. y = s

m

(x) for some m with 3 < m � k + 3, M 6j= T

?

(y), and i = j = 1;

10. x = s

m

(y) for some m with 3 < m � k + 3, M 6j= T

?

(x), and i = j = 1.

Fig. 7. Conditions for identity trails.

yields that M j= �

i;i

[x; x℄ for all x 2 [k + 3℄

�

and i 2 f1; 2g. For the indu
tion

step, the IH gives us that M j= �

i

0

;i

n�1

[z

0

; z

n�1

℄, i.e., for all P

1

; P

2

� [k + 3℄

�

with z

0

2 P

i

0

and M j= #[P

1

; P

2

℄, we have z

n�1

2 P

i

n�1

. Fix two su
h sets P

1

and P

2

. We have to show that z

n

2 P

i

n

. By de�nition of identity trails, one

of the 
onditions in Figure 7 is satis�ed when x is repla
ed with z

n�1

, y, with

z

n

, i with i

n�1

, and j with i

n

. Thus, z

n

2 P

i

n


an be shown by making a 
ase

analysis and referring to the de�nition of #. We omit details here and only note

that Condition 1 in Figure 7 
orresponds to Line 1 of #, Conditions 2 and 3


orrespond to Lines 2 to 5 of #, Condition 6 
orresponds to Line 8, Conditions 7

and 8 
orrespond to Lines 9 and 10 of #, and Conditions 9 and 10 
orrespond

to Line 11 of #.

For the \only if" dire
tion, let M j= �

i;j

[x; y℄. To the 
ontrary of what is to

be shown, assume that there does not exist an identity trail from (x; i) to (y; j).

We indu
tively de�ne two sets P

1

; P

2

� [k + 3℄

�

as follows:

{ P

0

i

:= fxg and P

0

i

:= ;, where 1 denotes 0, and 0 denotes 1;

{ P

`+1

h

is de�ned as P

`

h

extended with those z 2 [k + 3℄

�

for whi
h there is

a z

0

2 P

`

h

0

, for some h

0

2 f1; 2g, su
h that one of the 
onditions listed in

Figure 7 is satis�ed when x is repla
ed with z

0

, y with z, i with h

0

, and j

with h;

{ P

i

:=

S

`�0

P

`

i

for i 2 f1; 2g.

It is easily seen that, by de�nition of P

1

and P

2

, having y 2 P

j

implies the

existen
e of an identity trail from (x; i) to (y; j). As we have assumed that there

is no su
h trail, we get y =2 P

j

. Sin
e we have x 2 P

i

by de�nition, to establish a


ontradi
tion to M j= �

i;j

[x; y℄ it remains to show that M j= #[P

1

; P

2

℄. This is

straightforward by 
onsidering the de�nition of P

1

and P

2

, and by again noting

the 
orresponden
e between the 
onditions in Figure 7 and the 
onjun
ts of #.

❏

The following properties of the �

i;j

formula will play an important role in the

proof of Lemma 1.

Lemma 3. Let M be an MSO model, x; y; z 2 [k + 3℄

�

, and fi; j; `g � f1; 2g.

Then



13

(a) M j= �

i;j

[x; y℄ implies M j= �

j;i

[y; x℄;

(b) M j= �

i;j

[x; y℄ and M j= �

j;`

[y; z℄ implies M j= �

i;`

[x; z℄;

Proof. First for Point (a). By Lemma 2,M j= �

i;j

[x; y℄ implies that there is an

identity 
hain (z

0

; i

0

); : : : ; (z

n

; i

n

) from (x; i) to (y; j). It is easy but tedious to

verify that the 
hain (z

n

; i

n

); : : : (z

0

; i

0

) is an identity 
hain from (y; j) to (x; i):

we omit details and only note that Conditions 1 and 6 in Figure 7 are symmetri
,

Condition 2 is inverse to Condition 3, and similarly for the 
ondition pairs (4,5),

(7,8), and (9,10). Again by Lemma 2, we thus get M j= �

j;i

[y; x℄ as required.

Now for Point (b). LetM j= �

i;j

[x; y℄ andM j= �

j;`

[y; z℄. By Lemma 2, there

are identity trails (z

0

; i

0

); : : : ; (z

n

; i

n

) from (x; i) to (y; j) and (z

0

0

; i

0

0

); : : : ; (z

0

m

; i

0

m

)

from (y; j) to (z; `). Sin
e (z

n

; i

n

) = (y; j) = (z

0

0

; i

0

0

), the following is an identity

trail from (x; i) to (z; `):

(z

0

; i

0

); : : : ; (z

n

; i

n

); (z

0

1

; i

0

1

); : : : ; (z

0

m

; i

0

m

):

Again by Lemma 2, we get M j= �

i;`

[x; z℄. ❏

We now prove Lemma 1.

Proof of Lemma 1. \if". Assume that '

�

0

is satis�able in MSO, i.e. there is a

tree stru
ture M of out-degree k + 3 su
h that '

�

0

is satis�ed in M. We de�ne

the relation � on the set of pla
es P by setting (x; i) � (y; j) i� M j= �

i;j

[x; y℄.

We �rst show the following:

Claim 1. � is an equivalen
e relation.

Proof: (a) We have to establish the following properties:

{ Re
exivity. By de�nition of �

i;j

, it is immediate that M j= �

1;1

[x; x℄ and

M j= �

2;2

[x; x℄ for all x 2 [k + 3℄

�

(there is no need to 
onsider the formula

# to see this). Thus (x; 1) � (x; 1) and (x; 2) � (x; 2) for all x 2 [k + 3℄

�

.

{ Symmetry. Let (x; i) � (y; j). Then M j= �

i;j

[x; y℄. By Lemma 3a, we get

M j= �

j;i

[y; x℄ implying (y; j) � (x; i) as required.

{ Transitivity. Let (x; i) � (y; j) � (z; `). Then we have M j= �

i;j

[x; y℄ and

M j= �

j;`

[y; z℄. By Lemma 3b, we get M j= �

i;`

[x; z℄ and thus (x; i) � (z; `)

as required.

This �nishes the proof of Claim 1. Let [x; i℄ denote the equivalen
e 
lass of

(x; i) 2 P w.r.t. �. We de�ne a Kripke stru
ture K = (W;R;L) as follows:

{ W = f[x; i℄ j (x; i) 2 Pg;

{ R(a) = f([x; 1℄; [y; 2℄) jM j= �

a

[x; y℄g for all atomi
 programs a;

{ L(p) = f[x; 1℄ j x 2 (F

1

p

)

M

g [ f[x; 2℄ j x 2 (F

2

p

)

M

g for all p 2 Var.

Note that K is well-de�ned: due to '

�

2

, (x; 1) � (y; 1) implies that x 2 (F

1

p

)

M

i�

y 2 (F

1

p

)

M

for all p 2 Var, and likewise for F

2

p

. Additionally, by de�nition of �

a

,

(x; 1) � (x

0

; 1) and (y; 2) � (y

0

; 2) implies that M j= �

a

[x; y℄ i� M j= �

a

[x

0

; y

0

℄,

for all atomi
 programs a.
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It remains to prove the following, 
entral 
laim.

Claim 2. For all x; y 2 [k + 3℄

�

, ' 2 
l('

0

), and � 2 subp('

0

), we have

1. ([x; 1℄; [y; 2℄) 2 R(�) i� M j= �

�

[x; y℄;

2. M j= F

i

'

[x℄ i� K; [x; i℄ j= '

For suppose that the 
laim has been proved. Sin
e '

�

0

is satis�ed in M, there is

an x 2 [k+3℄

�

su
h thatM j= F

1

'

0

[x℄. By Point 2 of the 
laim, this implies that

K is a model of '

0

.

Points 1 and 2 of Claim 2 are proved by simultaneous indu
tions on programs

and formulas. For Point 1, we have the following 
ases:

{ � is atomi
. Immediate by de�nition of R(a).

{ � = '?. Let ([x; 1℄; [y; 2℄) 2 R('?). Then [x; 1℄ = [y; 2℄ and K; [x; 1℄ j= '.

The former yields (x; 1) � (y; 2) and thus (i) M j= �

1;2

[x; y℄ by de�nition of

\�". By Point 2 of IH, K; [x; 1℄ j= ' yields (ii) M j= F

1

'

[x℄. By de�nition of

�

'?

, (i) and (ii) implies M j= �

'?

[x; y℄ as required.

Now letM j= �

'?

[x; y℄. By de�nition of �

'?

[x; y℄, we have (i)M j= �

1;2

[x; y℄,

and (ii) M j= F

1

'

[x℄. From (i), we get (iii) [x; 1℄ = [y; 2℄. From (ii), we

get K; [x; 1℄ j= ' by Point 2 of IH, and thus ([x; 1℄; [x; 1℄) 2 R('?) by the

semanti
s. Together with (iii), this yields ([x; 1℄; [y; 2℄) 2 R('?) as required.

{ � = � [ 
. We have ([x; 1℄; [y; 2℄) 2 R(� [ 
) i� ([x; 1℄; [y; 2℄) 2 R(�) [ R(
)

i� M j= �

�

[x; y℄ orM j= �




[x; y℄ i� M j= �

�[


[x; y℄. The �rst \i�" is by the

semanti
s, the se
ond by Point 1 of IH, and the third by de�nition of �

�[


.

{ � = � \ 
. We have ([x; 1℄; [y; 2℄) 2 R(� \ 
) i� ([x; 1℄; [y; 2℄) 2 R(�) \ R(
)

i� M j= �

�

[x; y℄ and M j= �




[x; y℄ i� M j= �

�\


[x; y℄. The �rst \i�" is by

the semanti
s, the se
ond by Point 1 of IH, and the third by de�nition of

�

�\


.

{ � = �; 
. Let ([x; 1℄; [y; 2℄) 2 R(�; 
). Then there is a (z; `) 2 P su
h that

(i) ([x; 1℄; [z; `℄) 2 R(�) and (ii) ([z; `℄; [y; 2℄) 2 R(
). First assume that

` = 2. Then (i) and Point 1 of IH yield (iii) M j= �

�

[x; z℄. By Line 10 of

#, we have (iv) M j= �

2;1

(z; s

3

(z)) implying (v) [z; 2℄ = [s

3

(z); 1℄. Then,

(ii) and (v) imply ([s

3

(z); 1℄; [y; 2℄) 2 R(
) and we get M j= �




[s

3

(z); y℄ by

Point 1 of IH. This together with (iii) and (iv) yields M j= �

�;


[x; y℄: use

z to instantiate the variable of the same name in �

�;


, and use s

3

(z) to

instantiate the variable z

0

. The 
ase ` = 1 is symmetri
 to the previous one.

Now let M j= �

�;


[x; y℄. By de�nition of �

�;


, there are z; z

0

2 [k + 3℄

�

su
h that (i) M j= �

�

[x; z℄, (ii) M j= �

2;1

[z; z

0

℄, and (iii) M j= �




[z

0

; y℄. By

Point 1 of IH, (i) and (iii) yield ([x; 1℄; [z; 2℄) 2 R(�) and ([z

0

; 1℄; [y; 2℄) 2

R(
), respe
tively. Sin
e (ii) implies [z; 2℄ = [z

0

; 1℄, we obtain ([x; 1℄; [y; 2℄) 2

R(�; 
) by the semanti
s.

{ � = �

�

. Let ([x; 1℄; [y; 2℄) 2 R(�

�

). Then (i) ([y; 2℄; [x; 1℄) 2 R(�) by the

semanti
s. By Lines 9 and 10 of #, we have (ii) M j= �

1;2

(x; s

3

(x)) and

(iii) M j= �

2;1

(y; s

3

(y)) yielding [x; 1℄ = [s

3

(x); 2℄ and [y; 2℄ = [s

3

(y); 1℄,

respe
tively. Together with (i), we thus obtain ([s

3

(y); 1℄; [s

3

(x); 2℄) 2 R(�)
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whi
h implies M j= �

�

[s

3

(y); s

3

(x)℄ by Point 1 of IH. Thus M j= �

�

�
[x; y℄

by de�nition of �

�

�
.

Now letM j= �

�

�
[x; y℄. By de�nition of �

�

�
, we haveM j= �

�

[s

3

(y); s

3

(x)℄.

By Point 1 of IH, we get (i) ([s

3

(y); 1℄; [s

3

(x); 2℄) 2 R(�). By Lines 9 and 10

of #, we have [x; 1℄ = [s

3

(x); 2℄ and [y; 2℄ = [s

3

(y); 1℄ and thus (i) yields

([y; 2℄; [x; 1℄) 2 R(�), implying ([x; 1℄; [y; 2℄) 2 R(�

�

) by the semanti
s.

{ � = �

�

. Let ([x; 1℄; [y; 2℄) 2 R(�

�

). First assume that [x; 1℄ = [y; 2℄. Then

M j= �

1;2

[x; y℄, and thus M j= �

�

�

[x; y℄ by the �rst disjun
t of �

�

�

. Now

assume [x; 1℄ 6= [y; 2℄. Then there are (z

0

; i

0

); : : : ; (z

n

; i

n

) 2 P , n > 0, su
h

that

(i) [x; 1℄ = [z

0

; i

0

℄,

(ii) [z

n

; i

n

℄ = [y; 2℄, and

(iii) ([z

`

; i

`

℄; [z

`+1

; i

`+1

℄) 2 R(�) for ` < n.

Let Q � [k + 3℄

�

su
h that

(iv) s

3

(x) 2 P and

(v) for all z; z

0

; z

00

2 [k + 3℄

�

, z 2 Q, M j= �

2;1

[z; z

0

℄, and M j= �

�

[z

0

; z

00

℄

implies z

00

2 Q.

We show the following, for ` < n:

(vi) if i

`

= 1, then s

3

(z

`

) 2 Q;

(vii) if i

`

= 2, then z

`

2 Q.

This is done by indu
tion on i. The 
ase i = 0 is immediate by (i) and (iv).

For i > 0, we distinguish the following 
ases:

� i

`�1

= i

`

= 1. By IH and Lemma 3a, we have s

3

(z

`�1

) 2 Q. By Line 9

of #, we have M j= �

2;1

[s

3

(z

`�1

); z

`�1

℄ and M j= �

1;2

[z

`

; s

3

(z

`

)℄. The

latter yields [z

`

; 1℄ = [s

3

(z

`

); 2℄ and thus ([z

`�1

; 1℄; [s

3

(z

`

); 2℄) 2 R(�)

by (iii). By Point 1 of (the outer) IH, we get M j= �

�

[z

`�1

; s

3

(z

`

)℄. By

(v), this together with s

3

(z

`�1

) 2 Q andM j= �

2;1

[s

3

(z

`�1

); z

`�1

℄ yields

s

3

(z

`

) 2 Q as required.

� i

`�1

= 1 and i

`

= 2. By IH and Lemma 3a, we have s

3

(z

`�1

) 2 Q. By

Line 9 of #, we haveM j= �

2;1

[s

3

(z

`�1

); z

`�1

℄. By Point 1 of (the outer)

IH, (iii) yieldsM j= �

�

[z

`�1

; z

`

℄. By (v), this together with s

3

(z

`�1

) 2 Q

and M j= �

2;1

[s

3

(z

`�1

); z

`�1

℄ yields z

`

2 Q as required.

� i

`�1

= 2 and i

`

= 1. By IH, we have z

`�1

2 Q. By Line 10 of #,

we have M j= �

2;1

[z

`�1

; s

3

(z

`�1

)℄ and M j= �

1;2

[z

`

; s

3

(z

`

)℄. This im-

plies [z

`�1

; 2℄ = [s

3

(z

`�1

); 1℄ and [z

`

; 1℄ = [s

3

(z

`

); 2℄, respe
tively. To-

gether with (iii), we thus obtain ([s

3

(z

`�1

); 1℄; [s

3

(z

`

); 2℄) 2 R(�) and

M j= �

�

[s

3

(z

`�1

); s

3

(z

`

)℄ by Point 1 of the (outer) IH. By (v), this to-

gether with z

`�1

2 Q and M j= �

2;1

[z

`�1

; s

3

(z

`�1

)℄ yields s

3

(z

`

) 2 Q as

required.

� i

`�1

= i

`

= 2. By IH, we have z

`�1

2 Q. By Line 10 of #, we have M j=

�

2;1

[z

`�1

; s

3

(z

`�1

)℄ implying [z

`�1

; 2℄ = [s

3

(z

`�1

); 1℄. Together with (iii),

we thus obtain ([s

3

(z

`�1

); 1℄; [z

`

; 2℄) 2 R(�) and M j= �

�

[s

3

(z

`�1

); z

`

℄

by Point 1 of the (outer) IH. By (v), this together with z

`�1

2 Q and

M j= �

2;1

[z

`�1

; s

3

(z

`�1

)℄ yields z

`

2 Q as required.
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By (ii) and (vii), we have [y; 2℄ 2 Q for all sets Q � [k + 3℄

�

satisfying (iv)

and (v). By de�nition of �

�

�

, we thus have M j= �

�

�

[x; y℄ as required.

Now let M j= �

�

�

[x; y℄. A

ording to the de�nition of �

�

�

, we have to

distinguish two 
ases. The �rst is M j= �

1;2

[x; y℄. By Claim 1, this yields

�

1

(x) = �

2

(y). By the semanti
s, we have (�

1

(x); �

2

(y)) 2 R(�

�

) as required.

In the se
ond 
ase, we have y 2 Q for all Q � [k + 3℄

�

su
h that

(i) s

3

(x) 2 Q, and

(ii) for all z; z

0

; z

00

2 [k + 3℄

�

, z 2 Q, M j= �

2;1

[z; z

0

℄, and M j= �

�

[z

0

; z

00

℄

implies z

00

2 Q.

We show that there exist sequen
es z

0

; : : : ; z

n

2 [k + 3℄

�

and z

0

0

; : : : ; z

0

n�1

2

[k + 3℄

�

su
h that

(iii) z

0

= s

3

(x),

(iv) z

n

= y,

(v) M j= �

2;1

[z

i

; z

0

i

℄ for i � n, and

(vi) M j= �

�

[z

0

i

; z

i+1

℄ for i < n.

Assume to the 
ontrary that no su
h sequen
es exist. De�ne a set Q � [k+3℄

�

as follows:

� Q

0

= fs

3

(x)g;

� Q

i+1

= Q

i

[ fz

00

2 [k + 3℄

�

j 9z; z

0

: z 2 Q

i

; M j= �

2;1

[z; z

0

℄; and M j=

�

�

[z

0

; z

00

℄g;

� Q =

S

i

Q

i

.

It is readily 
he
ked that y 2 Q implies the existen
e of sequen
es z

0

; : : : ; z

n

and z

0

0

; : : : ; z

0

n�1

satisfying (iii) to (vi). As no su
h sequen
es exist, we have

y =2 Q. Sin
e Q 
learly satis�es (i) and (ii), we obtain a 
ontradi
tion to the

fa
t that y is 
ontained in all su
h sets.

Hen
e, there are sequen
es z

0

; : : : ; z

n

and z

0

0

; : : : ; z

0

n�1

satisfying (iii) to (vi).

By (v), we have (vii) [z

i

; 2℄ = [z

0

i

; 1℄ for i � n. By (vi) and Point 1 of IH,

we have ([z

0

i

; 1℄; [z

i+1

; 2℄) 2 R(�) for i < n. This together with (vii) and the

semanti
s yields (viii) ([z

0

; 2℄; [z

n

; 2℄) 2 R(�

�

). By (iii) and Line 9 of #, we

have M j= �

1;2

[x; z

0

℄, thus [x; 1℄ = [z

0

; 2℄. Together with (iv) and (viii), we

get ([x; 1℄; [y; 2℄) 2 R(�

�

) as required.

For Point 2 of Claim 2, we have the following 
ases:

{ ' is atomi
. Immediate by de�nition of K.

{ ' = : . Straightforward using Point 2 of IH, the semanti
s, and  

�

1

.

{ ' = h�i . First for the \if" dire
tion. So let K; [x; i℄ j= h�i . Then there is

a [y; j℄ 2 P with (i) ([x; i℄; [y; j℄) 2 R(�) and K; [y; j℄ j=  . The latter yields

(ii) M j= F

j

 

[y℄ by Point 2 of IH. To 
ontinue, we distinguish four 
ases:

� i = j = 1. By Line 9 of #, we have (iii) M j= �

1;2

[y; s

3

(y)℄, and thus

[y; 1℄ = [s

3

(y); 2℄. From (i), we thus obtain ([x; 1℄; [s

3

(y); 2℄) 2 R(�) whi
h

yields (iv) M j= �

�

[x; s

3

(y)℄ by Point 1 of IH. By  

�

2

, (ii), and (iii), we

have M j= F

2

 

[s

3

(y)℄. This together with (iv) implies M j= F

1

h�i 

[x℄ as

required.

� i = 1 and j = 2. Then (i) and Point 1 of IH yields M j= �

�

[x; y℄. This

together with (ii) yields M j= F

1

h�i 

[x℄ by  

�

3

.
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� i = 2 and j = 1. By Lines 9 and 10 of #, we have (iii)M j= �

2;1

[x; s

3

(x)℄

and (iv) M j= �

1;2

[y; s

3

(y)℄, and thus [x; 2℄ = [s

3

(x); 1℄ and [y; 1℄ =

[s

3

(y); 2℄. From (i), we thus obtain ([s

3

(x); 1℄; [s

3

(y); 2℄) 2 R(�) whi
h

yields (v)M j= �

�

[s

3

(x); s

3

(y)℄ by Point 1 of IH. By  

�

2

, (ii), and (iv), we

have M j= F

2

 

[s

3

(y)℄. This together with (v) implies M j= F

1

h�i 

[s

3

(x)℄.

By (iii) and  

�

2

, this implies M j= F

2

h�i 

[x℄ as required.

� i = j = 2. By Line 10 of #, we have (iii) M j= �

2;1

[x; s

3

(x)℄, and

thus [x; 2℄ = [s

3

(y); 1℄. From (i), we thus obtain ([s

3

(x); 1℄; [y; 2℄) 2 R(�)

whi
h yields (iv) M j= �

�

[s

3

(x); y℄ by Point 1 of IH. Now (ii) and (iv)

impliesM j= F

1

h�i 

[s

3

(x)℄. By (iii) and  

�

2

, this impliesM j= F

2

h�i 

[x℄ as

required.

Now for the \only if" dire
tion. Assume that M j= F

i

h�i 

[x℄. First assume

that i = 1. By  

�

3

, this implies that there is a y 2 [k+3℄

�

su
h that (i)M j=

�

�

[x; y℄, and (ii)M j= F

2

 

[y℄. By Point 1 of IH, (i) yields ([x; 1℄; [y; 2℄) 2 R(�).

By Point 2 of IH, (ii) yields K; [y; 2℄ j=  . Thus, we get K; [x; 1℄ j= h�i by

the semanti
s.

Now assume that i = 2. By Line 10 of #, we have M j= �

2;1

[x; s

3

(x)℄.

Thus,  

�

2

and M j= F

2

h�i 

[x℄ implies M j= F

1

h�i 

[s

3

(x)℄. We 
an argue as in

the 
ase \i = 1" that this yields K; [s

3

(x); 1℄ j= h�i . This together with

M j= �

2;1

[x; s

3

(x)℄ and  

�

2

yields K; [x; 2℄ j= h�i as required.

This �nishes the proof of Claim 2 and thus of the \if" dire
tion of Lemma 1.

Now for the \only if" dire
tion of Lemma 1. Let K = (W;R;L) be a model

of '

0

, and let w

0

2 W su
h that K;w

0

j= '

0

. To 
onstru
t an MSO model with

domain [k + 3℄

�

satisfying '

�

0

at the root, we indu
tively de�ne three mappings

�

1

: [k + 3℄

�

! W

p : [k + 3℄

�

! subp('

0

) [ f";?g

�

2

: [k + 3℄

�

! W

su
h that the following 
ondition is satis�ed:

for all x 2 [k + 3℄

�

; p(x) 6= ? implies (�

1

(x); �

2

(x)) 2 R(p(x)); (y)

where R(") is de�ned as the identitiy relation on W . Intuitively, �

1

(x) identi�es

the state des
ribed by the �rst pla
e of x, �

2

(x) identi�es the state des
ribed by

the se
ond pla
e of x, and p(x) is the program that we want to hold between

these two pla
e. The 
ase p(x) = ? means that the mapping p(�) 
arries no

relevant information for the node x. Before we 
an start the de�nition, we need

some preliminaries:

{ We assume that the diamond formulas in 
l('

0

) are linearly ordered, and

that E

i

yields the i-th su
h formula (the numbering starts with 0).

{ A program � is 
alled determined if its top-level operator is not \[". We

indu
tively �x a 
hoi
e fun
tion 
h that maps every triple (w;�;w

0

) �W �
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subp('

0

)�W with (w;w

0

) 2 R(�) to a determined program 
h(w;�;w

0

) 2

subp(�) su
h that R(
h(w;�;w

0

)) � R(�) and (w;w

0

) 2 R(
h(w;�;w

0

)): let

(w;w

0

) 2 R(�).

� if � is determined, set 
h(w;�;w

0

) := �.

� if � is not determined, then � = � [ 
. By the semanti
s, (w;w

0

) 2

R(�) implies (w;w

0

) 2 R(�) or (w;w

0

) 2 R(
). In the �rst 
ase, set


h(w;�;w

0

) := � if � is determined, and 
h(w;�;w

0

) := 
h(w; �; w

0

)

otherwise. In the se
ond 
ase, set 
h(w;�;w

0

) := 
 if 
 is determined,

and 
h(w;�;w

0

) := 
h(w; 
; w

0

) otherwise.

Now, the three mappings are de�ned simultaneously by making a 
ase distin
tion

as follows:

1. To start, set

�

1

(") := w

0

p(") := "

�

2

(") := w

0

(The 
hoi
e of p(") and �

2

(") is not 
ru
ial).

2. Let �

1

(x) be de�ned, �

1

(s

1

(x)) unde�ned, and p = �

1

\ �

2

. Then set, for

i 2 f1; 2g:

�

1

(s

i

(x)) := �

1

(x)

p(s

i

(x)) := 
h(�

1

(x); �

i

; �

2

(x))

�

2

(s

i

(x)) := �

2

(x)

3. Let �

1

(x) be de�ned, �

1

(s

1

(x)) unde�ned, and p = �;�. By (y) and the

semanti
s, there is a w 2 W with (�

1

(x); w) 2 R(�) and (w; �

2

(x)) 2 R(�).

Set

�

1

(s

1

(x)) := �

1

(x)

�

1

(s

2

(x)) := w

p(s

1

(x)) := 
h(�

1

(x); �; w)

p(s

2

(x)) := 
h(w; �; �

2

(x))

�

2

(s

1

(x)) := w

�

2

(s

2

(x)) := �

2

(x)

4. Let �

1

(x) be de�ned, �

1

(s

1

(x)) unde�ned, p = �

�

, and �

1

(x) = �

2

(x). Set,

for i 2 f1; 2g,

�

1

(s

i

(x)) := w

0

p(s

i

(x)) := "

�

2

(s

i

(x)) := w

0

Intuitively, the �rst and se
ond su

essor of x are not needed. To nevertheless

obtain a full k + 3-ary tree, we \restart" at w

0

.



19

5. Let �

1

(x) be de�ned, �

1

(s

1

(x)) unde�ned, p = �

�

, and �

1

(x) 6= �

2

(x). By (y)

and the semanti
s, there is a sequen
e w

0

; : : : ; w

n

2W su
h that �

1

(x) = w

0

,

�

2

(x) = w

n

, (w

i

; w

i+1

) 2 R(�) for i < n, and w

i

6= w

j

for i < j � n. Let

w

0

; : : : ; w

n

2W be the shortest su
h sequen
e. Set

�

1

(s

1

(x)) := �

1

(x)

�

1

(s

2

(x)) := w

1

p(s

1

(x)) := 
h(�

1

(x); �; w

1

)

p(s

2

(x)) := �

�

�

2

(s

1

(x)) := w

1

�

2

(s

2

(x)) := �

2

(x)

6. Let �

1

(x) be de�ned, �

1

(s

1

(x)) unde�ned, and p 2 Prog or p of the form �

�

.

Set, for i 2 f1; 2g,

�

1

(s

i

(x)) := w

0

p(s

i

(x)) := "

�

2

(s

i

(x)) := w

0

Similar to Case 4, the �rst and se
ond su

essor of x are not needed.

7. Let �

1

(x) be de�ned and �

1

(s

3

(x)) unde�ned. Set

�

1

(s

3

(x)) := �

2

(x)

�

2

(s

3

(x)) := �

1

(x)

p(s

3

(x)) :=

(


h(�

2

(x); �; �

1

(x)) if p(x) = �

�

? if p(x) is not of the form �

�

8. Let �

1

(x) be de�ned and �

1

(s

n

(x)) unde�ned for some n with 3 < n � k+3,

and K; �

1

(x) j= E

n�3

= h�i'. Then by the semanti
s there is a w 2W with

(�

1

(x); w) 2 R(�) and K;w j= '. Set

�

1

(s

n

(x)) := �

1

(x)

p(s

n

(x)) := 
h(�

1

(x); �; w)

�

2

(s

n

(x)) := w

9. Let �

1

(x) be de�ned and �

1

(s

n

(x)) unde�ned for some n with 3 < n � k+3,

and K; �

1

(x) 6j= E

n�3

= h�i'. Then set

�

1

(s

n

(x)) := w

0

p(s

n

(x)) := "

�

2

(s

n

(x)) := w

0

As in Cases 4 and 6, we restart at w

0

sin
e the n-th su

essor of x is not

needed.

Now we 
onstru
t an MSO model M as follows:
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{ for all ' 2 
l('

0

) and i 2 f1; 2g, set

(F

i

'

)

M

:= fx 2 [k + 3℄

�

j K; �

i

(x) j= 'g

{ set

T

M

=

:= fx 2 [k + 3℄

�

j p(x) = "g

[ fx 2 [k + 3℄

�

j p(x) = '? for some formula 'g

[ fx 2 [k + 3℄

�

j p(x) = �

�

for some � 2 subp('

0

) and �

1

(x) = �

2

(x)g

T

M

\

:= fx 2 [k + 3℄

�

j p(x) = � \ � for some �; � 2 subp('

0

)g

T

M

;

:= fx 2 [k + 3℄

�

j p(x) = �;� for some �; � 2 subp('

0

)g

[ fx 2 [k + 3℄

�

j p(x) = �

�

for some � 2 subp('

0

) and �

1

(x) 6= �

2

(x)g

T

M

?

:= fs

n

(x) j K; �

1

(x) 6j= E

n�3

g

{ for a 2 prog, set T

M

a

:= fx 2 [k + 3℄

�

j p(x) = ag:

It remains to show that M j= '

�

0

["℄. To this end, we �rst establish a series of


laims.

Claim 1. For all x; y 2 [k + 3℄

�

and i; j 2 f1; 2g,M j= �

i;j

[x; y℄ implies �

i

(x) =

�

j

(y).

Let M j= �

i;j

[x; y℄. By Lemma 2, this implies the existen
e of an identity trail

(z

0

; i

0

); : : : ; (z

n

; i

n

) from (x; i) to (y; j). To establish Claim 1, it 
learly suÆ
es

to show that �

i

`

(z

`

) = �

i

`+1

(z

`+1

) for ` < n. Fix an ` < n. By de�nition of

identitiy trails, one of the Conditions of Figure 7 is satis�ed if x is repla
ed with

z

`

, y with z

`+1

, i with i

`

, and j with i

`+1

. We make a 
ase analysis a

ording to

the 
onditions in Figure 7:

1. z

`

2 T

M

=

and z

`

= z

`+1

. The latter implies that it suÆ
es to show �

1

(z

`

) =

�

2

(z

`

) for proving �

i

`

(z

`

) = �

i

`+1

(z

`+1

). By de�nition of T

M

=

, we 
an distin-

guish the following 
ases:

{ p(x) = ". By Case 1, 4, 6, and 9 of the de�nition of p, this implies

�

1

(z

`

) = �

2

(z

`

).

{ p(x) = '?. By (y), this yields (�

1

(z

`

); �

2

(z

`

)) 2 R('?) and thus �

1

(z

`

) =

�

2

(z

`

) by the semanti
s.

{ p(x) = �

�

and �

1

(z

`

) = �

2

(z

`

). There's nothing to show.

2. z

`

2 T

M

\

, i

`

= i

`+1

, and z

`+1

= s

m

(z

`

) for some m 2 f1; 2g. By de�nition

of T

M

\

and Case 2 of the de�nition of p, z

`

2 T

M

\

implies �

i

(z

`

) = �

i

(s

j

(z

`

))

for all i; j 2 f1; 2g. Thus, z

`+1

= s

m

(z

`

) implies �

i

`

(z

`

) = �

i

`+1

(z

`+1

) as

required.

3. Similar to the previous 
ase.

4. z

`

2 T

M

;

, i

`

= i

`+1

, and z

`+1

= s

i

`

(z

`

). By de�nition of T

M

;

, we 
an distin-

guish the following 
ases:

{ p(z

`

) = �;� for some �; � 2 subp('

0

). By Case 3 of the de�nition of p,

this implies �

1

(z

`

) = �

1

(s

1

(z

`

)) and �

2

(z

`

) = �

2

(s

2

(z

`

)). Thus, i

`

= i

`+1

and z

`+1

= s

i

`

(z

`

) yields �

i

`

(z

`

) = �

i

`+1

(z

`+1

) as required.
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{ p(z

`

) = �

�

for some � 2 subp('

0

) and �

1

(z

`

) 6= �

2

(z

`

). Similar to the

previous sub
ase, using Case 5 of the de�nition of p.

5. Similar to the previous 
ase.

6. There is a z 2 T

M

;

su
h that f(x; i); (y; j)g = f(s

1

(z); 2); (s

2

(z); 1)g. By

de�nition of T

M

;

, we 
an distinguish the following 
ases:

{ p(z) = �;� for some �; � 2 subp('

0

). By Case 3 of the de�nition of p, this

implies �

2

(s

1

(z)) = �

1

(s

2

(z)). Thus, f(x; i); (y; j)g = f(s

1

(z); 2); (s

2

(z); 1)g

yields �

i

`

(z

`

) = �

i

`+1

(z

`+1

) as required.

{ p(z) = �

�

for some � 2 subp('

0

) and �

1

(z

`

) 6= �

2

(z

`

). Similar to the

previous sub
ase, using Case 5 of the de�nition of p.

7. z

`+1

= s

3

(z

`

). We have �

i

`

(z

`

) = �

i

`+1

(z

`+1

) by Case 7 of the de�nition of p.

8. Similar to the previous 
ase.

9. z

`+1

= s

m

(z

`

) for some m with 3 < m � k + 3, M 6j= T

?

[z

`+1

℄, and i

`

=

i

`+1

= 1. By de�nitin of T

M

?

,M 6j= T

?

[z

`+1

℄ implies K; �

1

(z

`

) j= E

n�3

. Thus,

Case 8 of the de�nition of p yields �

1

(z

`

) = �

1

(s

m

(z

`

)). From z

`+1

= s

m

(z

`

)

and i

`

= i

`+1

= 1, we thus get �

i

`

(z

`

) = �

i

`+1

(z

`+1

) as required.

10. Similar to the previous 
ase.

This �nishes the proof of Claim 1.

Claim 2. Let x 2 [k+3℄

�

and p(x) = 
h(�

1

(x); �; �

2

(x)). ThenM j= �

�

[y; z℄ for

all y; z 2 [k + 3℄

�

with M j= �

1;1

[y; x℄ and M j= �

2;2

[x; z℄.

To establish this 
laim, we �rst show that, for all x; y 2 [k+3℄

�

and (w;�;w

0

) 2

W � subp('

0

)�W ,

M j= �


h(w;�;w

0

)

[x; y℄ implies M j= �

�

[x; y℄: (�)

So let M j= �


h(w;�;w)

[x; y℄. By de�nition of 
h, there is a determined program

� and a sequen
e of programs �

0

1

; : : : ; �

0

n

, n � 1, su
h that 
h(w;�;w

0

) = � and,

modulo 
ommutativity, we have � = (� � � (�[�

0

1

)[�

0

2

) � � �[�

0

n

): By the semanti
s

of �

�[�

0

1

, M j= �

�

[x; y℄ implies M j= �

�[�

0

[x; y℄. Repeating this argument n� 1

times yields M j= �

�

[x; y℄, whi
h proves (�).

By (�), to establish Claim 2 it suÆ
es to show that, for all x 2 [k + 3℄

�

, we

haveM j= �

p(x)

[y; z℄ for all y; z 2 [k+3℄

�

withM j= �

1;1

[y; x℄ andM j= �

2;2

[x; z℄.

The proof is by indu
tion on the stru
ture of p(x). Let y; z 2 [k + 3℄

�

with

M j= �

1;1

[y; x℄ and M j= �

2;2

[x; z℄: (y)

We distinguish the following 
ases:

{ p(x) = a is atomi
. By de�nition ofM, p(x) = a impliesM j= T

a

[x℄. Together

with (y), we get M j= �

a

[y; z℄ by de�nition of �

a

.

{ p(x) = '?. By de�nition ofM, p(x) = '? implies thatM j= T

=

[x℄, and thus

(i) M j= �

1;2

[x; x℄ by Line 1 of #. By (y), p(x) = '? implies (�

1

(x); �

2

(x)) 2

R('?) and (ii) K; �

2

(x) j= ' by the semanti
s. By (y), (i), and Lemma 3b,

we have (iii) M j= �

1;2

[y; x℄. Together with (y) and Lemma 3b, this yields

(iv) M j= �

1;2

[y; z℄. From (ii) and (iii), we get K; �

1

(y) j= ' by Claim 1.

By de�nition of (F

1

'

)

M

, this yields M j= F

1

'

[y℄. From this and (iv), we get

M j= �

'?

[y; z℄ by de�nition of �

'?

.
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{ p(x) = �

1

[ �

2

. This 
ase does not o

ur sin
e, by de�nition of p and 
h,

p(x) is determined for all x 2 [k + 3℄

�

.

{ p(x) = �

1

\ �

2

. By de�nition of M, p(x) = �

1

\ �

2

yields (i) M j= T

M

\

[x℄.

By Case 2 of the de�nition of p, p(x) = �

1

\ �

2

yields (ii) p(s

i

(x)) =


h(�

1

(x); �

i

; �

2

(x)) for i 2 f1; 2g. By (i) and de�nition of �

i;j

, we haveM j=

�

1;1

[x; s

i

(x)℄ and M j= �

2;2

[x; s

i

(x)℄, for i 2 f1; 2g. Together with (y) and

Lemma 3b, we get (iii) M j= �

1;1

[y; s

i

(x)℄ and M j= �

2;2

[z; s

i

(x)℄, for i 2

f1; 2g. By IH and (�), (ii) and (iii) yield M j= �

�

i

[y; z℄ for i 2 f1; 2g. By

de�nition of �

�

1

\�

2

, this yields M j= �

p(x)

[y; z℄.

{ p(x) = �

1

;�

2

. By de�nition of M, p(x) = �

1

;�

2

yields (i) M j= T

M

;

[x℄. By

Case 3 of the de�nition of p, p(x) = �

1

;�

2

yields (ii) p(s

i

(x)) = 
h(�

1

(x); �

i

; w)

and (iii) p(s

i

(x)) = 
h(w;�

i

; �

2

(x)) for some w with (�

1

(x); w) 2 R(�

1

)

and (w; �

2

(x)) 2 R(�

2

). By (i) and de�nition of �

i;j

, we have (iv) M j=

�

1;1

[x; s

1

(x)℄, (v) M j= �

2;1

[s

1

(x); s

2

(x)℄, and (vi) M j= �

2;2

[x; s

2

(x)℄. To-

gether with (y) and of Lemma 3b, (iv) yields (vii) M j= �

1;1

[y; s

1

(x)℄. Sim-

ilarly, (y), (vi), and Lemma 3b yield (viii) M j= �

2;2

[z; s

2

(x)℄. Now, we

have (ix) M j= �

2;2

[s

1

(x); s

1

(x)℄ and M j= �

1;1

[s

2

(x); s

2

(x)℄ by de�nition of

�

i;j

. By IH and (�), (ii), (vii), and (ix) yield M j= �

�

1

[y; s

1

(x)℄, and (iii),

(ix), and (viii) yield M j= �

�

2

[s

2

(x); z℄. By de�nition of �

�

1

;�

2

, this yields

M j= �

p(x)

[y; z℄.

{ p(x) = �

�

. By Case 7 of the de�nition of p, p(x) = �

�

yields (i) p(s

3

(x)) =


h(�

1

(x); �; �

2

(x)). To show M j= �

�

�
[y; z℄, by de�nition of �

�

�
we have to

show that M j= �

�

[s

3

(z); s

3

(y)℄. To this end, we show that

(ii) M j= �

1;1

[s

3

(z); s

3

(x)℄;

(iii) M j= �

2;2

[s

3

(x); s

3

(y)℄;

and then apply IH to (i), (ii), and (iii). In fa
t, (ii) is a 
onsequen
e ofM j=

�

1;2

[s

3

(z); z℄ (whi
h holds by Line 10 of # and Lemma 3)a, M j= �

2;1

[z; x℄

(whi
h holds by (y) and Lemma 3)a, M j= �

2;1

[x; s

3

(x)℄ (whi
h holds by

Line 10 of #), and Lemma 3b. Similarly, (iii) is a 
onsequen
e of Line (9) of

#, (y), and Lemma 3b.

{ p(x) = �

�

. By Case 5 of the de�nition of p, p(x) = �

�

implies that there is

some n � 0 su
h that we have

(i) p(s

i

2

(x)) = �

�

for i � n;

(ii) �

1

(s

i

2

(x)) 6= �

2

(s

i

2

(x)) for i < n;

(iii) �

1

(s

n

2

(x)) = �

2

(s

n

2

(x));

(iv) p(s

1

(s

i

2

(x))) = 
h(w;�;w

0

) for some w;w

0

2W , for i < n.

First assume n = 0. By (i), (iii), and de�nition of M, we then have M j=

T

M

=

[x℄. By Line 1 of #, this implies M j= �

1;2

[x; x℄. Together with (y) and

Lemma 3, this yields M j= �

1;2

[y; z℄. By de�nition of �

�

�

, it follows M j=

�

�

�

[y; z℄ as required.

Now assume n � 1. By de�nition ofM, (i) and (ii) yieldM j= T

M

;

[s

i

2

(x)℄ for

i < n. This together with the de�nition of �

i;j

implies

(v) M j= �

1;1

[s

i

2

(x); s

1

(s

i

2

(x))℄ for i < n;

(vi) M j= �

2;1

[s

1

(s

i

2

(x)); s

i+1

2

(x))℄ for i < n;

(vii) M j= �

2;2

[s

i

2

(x); s

i+1

2

(x)℄ for i < n.
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By IH, (�), and sin
e M j= �

i;i

[x; x℄ for all i 2 f1; 2g and x 2 [k + 3℄

�

, we

obtain from (iv) that

(viii) M j= �

�

[s

1

(s

i

2

(x)); s

1

(s

i

2

(x))℄.

Now let Q � [k +3℄

�

be su
h that s

3

(y) 2 Q andM j= #

0

�

[Q℄. To show that

M j= �

�

�

[y; z℄ as required, it suÆ
es to prove that z 2 Q. This is done in

the following. We distinguish two sub-
ases. First, assume n > 1. Then we

show by indu
tion on i that s

1

(s

i

2

(x)) 2 Q for i < n� 1:

� i = 0. By Line 9 of # and Lemma 3a, we have M j= �

2;1

[s

3

(y); y℄.

Together with (y), this yields M j= �

2;1

[s

3

(y); x℄ by Lemma 3b. With

(v), we obtain M j= �

2;1

[s

3

(y); s

1

(x)℄. Thus, s

3

(y) 2 Q, (viii), and M j=

#

0

�

[Q℄ yield s

1

(x) 2 Q.

� i > 0. By (inner) IH, we have s

1

(s

i�1

2

(x)) 2 Q. Moreover, (v) and (vi)

yieldM j= �

2;1

[s

1

(s

i�1

2

(x)); s

1

(s

i

2

(x))℄ by Lemma 3b. This together with

(viii) and M j= #

0

�

[Q℄ yield s

1

(s

i

2

(x)) 2 Q.

Thus, s

1

(s

n�2

2

(x)) 2 Q. Now observe that

(ix) M j= �

2;1

[s

1

(s

n�2

2

(x)); s

1

(s

n�1

2

(x))℄;

(x) M j= �

2;2

[s

1

(s

n�1

2

(x)); z℄.

Indeed, (ix) follows from (v), (vi), and Lemma 3b. For (x), we note thatM j=

T

M

=

[s

n

2

(x)℄ by (i), (iii), and de�nition of M. Thus M j= �

1;2

[s

n

2

(x); s

n

2

(x)℄.

Together with (vii), (y) and Lemma 3b, this yields (x).

Now let us show that z 2 Q: this is an immediate 
onsequen
e of s

1

(s

n�2

2

(x)) 2

Q, (ix), (viii), (x), and M j= #

0

�

[Q℄.

Finally, 
onsider the se
ond sub-
ase, i.e., n = 1. Using arguments as in the

previous sub-
ase, it is easy to show that

(xi) M j= �

2;1

[s

3

(y); s

1

(x)℄;

(xii) M j= �

2;2

[s

1

(x); z℄;

Sin
e s

3

(y) 2 Q, (xi), (xii), (viii) and M j= #

0

�

[Q℄ yields z 2 Q as required.

This �nishes the proof of Claim 2.

Claim 3. For all x; y 2 [k + 3℄

�

and � 2 subp('

0

), M j= �

�

[x; y℄ implies

(�

1

(x); �

2

(y)) 2 R(�).

The proof is by indu
tion on the stru
ture of �:

{ � = a atomi
. Let M j= �

a

[x; y℄. By de�nition of �

a

, there is a z 2 [k + 3℄

�

su
h that (i) M j= �

1;1

[x; z℄, (ii) M j= T

a

[z℄, and (iii) M j= �

2;2

[y; z℄. From

(ii), we get (iv) (�

1

(z); �

2

(z)) 2 R(a) by de�nition of T

M

a

. From (i) and (ii),

by Claim 1 we get �

1

(x) = �

1

(z) and �

2

(y) = �

2

(z). Thus, (iv) 
an be read

as (�

1

(x); �

2

(y)) 2 R(a), and we are done.

{ � = '?. LetM j= �

'?

[x; y℄. By de�nition of �

'

, this means (i)M j= �

1;2

[x; y℄

and (ii) M j= F

1

'

[x℄. By Claim 1, (i) yields (iii) �

1

(x) = �

2

(y). By de�-

nition of (F

1

'

)

M

, (ii) implies K; �

1

(x) j= '. This together with (iii) yields

(�

1

(x); �

2

(y)) 2 R('?).

{ � = � [ 
. We have that M j= �

�[


[x; y℄ implies (M j= �

�

[x; y℄ or M j=

�




[x; y℄) implies (�

1

(x); �

2

(y)℄) 2 R(�) [R(
) implies (�

1

(x); �

2

(y)) 2 R(� [


). The �rst impli
ation is by de�nition of �

�[


, the se
ond by IH, and the

third by the semanti
s.
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{ � = � \ 
. We have that M j= �

�\


[x; y℄ implies (M j= �

�

[x; y℄ and M j=

�




[x; y℄) implies (�

1

(x); �

2

(y)) 2 R(�)\R(
) implies (�

1

(x); �

2

(y)) 2 R(�\
).

The �rst impli
ation is by de�nition of �

�[


, the se
ond by IH, and the third

by the semanti
s.

{ � = �; 
. Let M j= �

�;


[x; y℄. By de�nition of �

�;


, there are z; z

0

2 [k + 3℄

�

su
h that (i) M j= �

�

[x; z℄, (ii) M j= �

2;1

[z; z

0

℄, and (iii) M j= �




[z

0

; y℄. By

IH, (i) and (iii) yield (�

1

(x); �

2

(z)) 2 R(�) and (�

1

(z

0

); �

2

(y)) 2 R(
), respe
-

tively. Sin
e (ii) implies �

2

(z) = �

1

(z

0

) by Claim 1, we obtain (�

1

(x); �

2

(y)) 2

R(�; 
) by the semanti
s.

{ � = �

�

. Now let M j= �

�

�
[x; y℄. By de�nition of �

�

�
, we have M j=

�

�

[s

3

(y); s

3

(x)℄. By IH, we get (i) (�

1

(s

3

(y)); �

2

(s

3

(x))) 2 R(�). Now the

de�nition ofM yields �

1

(x) = �

2

(s

3

(x)) and �

2

(y) = �

1

(s

3

(y)). Thus, (i) and

the semanti
s yields (�

1

(x); �

2

(y)) 2 R(�

�

).

{ � = �

�

. Let M j= �

�

�

[x; y℄. A

ording to the de�nition of �

�

�

, we have to

distinguish two 
ases. The �rst is M j= �

1;2

[x; y℄. By Claim 1, this yields

�

1

(x) = �

2

(y). By the semanti
s, we have (�

1

(x); �

2

(y)) 2 R(�

�

) as required.

In the se
ond 
ase, we have y 2 Q for all Q � [k + 3℄

�

su
h that

(i) s

3

(x) 2 Q, and

(ii) for all z; z

0

; z

00

2 [k + 3℄

�

, z 2 Q, M j= �

2;1

[z; z

0

℄, and M j= �

�

[z

0

; z

00

℄

implies z

00

2 Q.

We show that there exist sequen
es z

0

; : : : ; z

n

2 [k + 3℄

�

and z

0

0

; : : : ; z

0

n�1

2

[k + 3℄

�

su
h that

(iii) z

0

= s

3

(x),

(iv) z

n

= y,

(v) M j= �

2;1

[z

i

; z

0

i

℄ for i � n, and

(vi) M j= �

�

[z

0

i

; z

i+1

℄ for i < n.

Assume to the 
ontrary that no su
h sequen
es exist. De�ne a set Q � [k+3℄

�

as follows:

� Q

0

= fs

3

(x)g;

� Q

i+1

= Q

i

[ fz

00

2 [k + 3℄

�

j 9z; z

0

: z 2 Q

i

; M j= �

2;1

[z; z

0

℄; and M j=

�

�

[z

0

; z

00

℄g;

� Q =

S

i

Q

i

.

It is readily 
he
ked that y 2 Q implies the existen
e of sequen
es z

0

; : : : ; z

n

and z

0

0

; : : : ; z

0

n�1

satisfying (iii) to (vi). As no su
h sequen
es exist, we have

y =2 Q. Sin
e Q 
learly satis�es (i) and (ii), we obtain a 
ontradi
tion to the

fa
t that y is 
ontained in all su
h sets.

Hen
e, there are sequen
es z

0

; : : : ; z

n

and z

0

0

; : : : ; z

0

n�1

satisfying (iii) to (vi).

By (v) and Claim 1, we have (vii) �

2

(z

i

) = �

1

(z

0

i

) for i � n. By (vi) and

Point 1 of IH, we have (�

1

(z

0

i

; 1); �

2

(z

i+1

)) 2 R(�) for i < n. This together

with (vii) and the semanti
s yields (viii) (�

2

(z

0

); �

2

(z

n

)) 2 R(�

�

). By (iii) and

Line 9 of #, we haveM j= �

1;2

[x; z

0

℄, and thus �

1

(x) = �

2

(s

3

(x)) by Claim 1.

Together with (iv) and (viii), we get (�

1

(x); �

2

(y)) 2 R(�

�

) as required.

This �nishes the proof of Claim 3. We now show that M j= '

�

0

["℄ =  

�

1

^  

�

2

^

 

�

3

^ 9x:F

1

'

0

(x):
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{ M j=  

�

1

. Easy to show using the de�nition of the predi
ates (F

i

'

)

M

and the

semanti
s of negation in ICPDL.

{ M j=  

�

2

. Let M j= �

i;j

[x; y℄ for some x; y 2 [k + 3℄� and i; j 2 f1; 2g. By

Claim 1, we get �

i

(x) = �

j

(y). Hen
e K; �

i

(x) j= ' i� K; �

j

(y) j= ' for all

' 2 
l('

0

). By de�nition of (F

1

'

)

M

and (F

2

'

)

M

, this yields M j= F

i

'

[x℄ i�

M j= F

j

'

[y℄ for all ' 2 
l('

0

).

{ M j=  

�

3

. We have to show that, for all x 2 [k + 3℄

�

and h�i' 2 
l('

0

), we

have M j= F

1

h�i'

[x℄ i� there is a y 2 [k + 3℄

�

su
h that M j= �

�

[x; y℄ and

M j= F

2

'

[y℄.

\if". By de�nition of (F

2

'

)

M

, M j= F

2

'

[y℄ implies K; �

2

(y) j= '. By Claim 3,

M j= �

�

[x; y℄ yields (�

1

(x); �

2

(y)) 2 R(�). Thus, we have K; �

1

(x) j= h�i'

by the semanti
s. By de�nition of (F

1

h�i'

)

M

, this implies M j= F

1

h�i'

[x℄ as

required.

\only if". Let h�i' = E

n

. By de�nition of (F

1

h�i'

)

M

, M j= F

1

h�i'

[x℄ im-

plies K; �

1

(x) j= h�i'. By Case 8 of the de�nition of p and �

2

, this implies

(i) p(s

n+3

(x)) = 
h(�

1

(x); �; w) and (ii) �

2

= w for some w with (�

1

(x); w) 2

R(�) and (iii) K;w j= '. By de�nition of �

i;j

, we haveM j= �

1;1

[x; s

n+3

(x)℄

and M j= �

2;2

[s

n+3

(x); s

n+3

(x)℄. This together with (i) and Claim 2 yields

M j= �

�

[x; s

n+3

(x)℄. Sin
e (ii) and (iii) imply that M j= F

2

'

[s

n+3

(x)℄ by

de�nition of (F

2

'

)

M

, we are done.

{ M j= 9x:F

1

'

0

(x). By de�nition of (F

i

'

0

)

M

and sin
e K; �

1

(") = w

0

and

K;w

0

j= '

0

, we haveM j= F

1

'

0

["℄.

ut

5 Con
lusion

In this paper, we have proved de
idability of ICPDL, i.e. PDL extended with

interse
tion and 
onverse. As laid out in the introdu
tion, this result that has sev-

eral interesting appli
ations. One additional virtue of the presented de
idability

proof is that, 
ompared to existing proofs for PDL with interse
tion (but witout


onverse), it is relatively simple and fully rigorous. There is, however, a pri
e to

be paid for this simpli
ity: our translation to MSO only yields a non-elementary

upper bound. Indeed, when translating the following sequen
e ('

i

)

i2N

of ICPDL

formulas, we obtain a sequen
e of MSO formulas with a stri
tly in
reasing quan-

ti�er alternation depth:

'

i

:= [(� � � ((a

�

0

; a

1

)

�

; a

�

2

); � � � ; a

�

i

)℄p:

We believe that this upper bound is not tight. Indeed, it seems likely that sat-

is�ability in ICPDL is 2-ExpTime-
omplete, just as satis�ability in IPDL. For

proving this, however, it seems inevoidable to use the 
omplex te
hniques of

Dane
ki [7℄, in parti
ular his \`" relation. Therefore, we believe that it is useful

and illustrative to �rst prove only de
idability in a more transparent way. Pin-

pointing the exa
t 
omputational 
omplexity of ICPDL is left for future work.

Another interesting question is whether or not there are useful fragments of
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ICPDL that involve both interse
tion and Kleene star and for whi
h reasoning

is in ExpTime|thus not harder than in PDL. We believe that the set of pro-

gram operators f[;\; �

�

; �

�

; '?g indu
es su
h a fragment and 
urrently work on

proving this. Note that the mentioned fragment of ICPDL is still strong enough

to 
apture the information logi
 DAL.

A
knowledgements I would like to thank Ulrike Sattler, Lidia Tendera, and

Martin Lange for many intense and fruitfull dis
ussions about PDL with inter-

se
tion.

Referen
es

1. L. Afanasiev, P. Bla
kburn, I. Dimitriou, B. Gai�e, E. Goris, M. Maarx, and

M. de Rijke. PDL for ordered trees. Journal of Applied Non-Classi
al Logi
,

2005. To appear.

2. N. Ale
hina, S. Demri, and M. de Rijke. A modal perspe
tive on path 
onstraints.

Journal of Logi
 and Computation, 13(6):939{956, 2003.

3. F. Baader. Augmenting 
on
ept languages by transitive 
losure of roles: An alter-

native to terminologi
al 
y
les. In Pro
eedings of the Twelfth International Joint

Conferen
e on Arti�
ial Intelligen
e (IJCAI-91), pages 446{451, Sydney, Australia,

1991.

4. P. Balbiani and D. Vakarelov. Iteration-free PDL with interse
tion: a 
omplete

axiomatization. In Fundamenta Informati
ae, volume 45, pages 1{22. 2001.

5. D. Berardi, D. Calvanese, G. De Gia
omo, M. Lenzerini, and M. Me
ella. Auto-

mati
 
omposition of e-servi
es that export their behavior. In Pro
. of the 1st Int.

Conf. on Servi
e Oriented Computing (ICSOC 2003), volume 2910 of LNCS, pages

43{58. Springer, 2003.

6. D. Calvanese, G. De Gia
omo, and M. Lenzerini. On the de
idability of query


ontainment under 
onstraints. In Pro
eedings of the 17th ACM SIGACT SIGMOD

SIGART Symposium on Prin
iples of Database Systems (PODS'98), pages 149{

158, 1998.

7. R. Dane
ki. Nondeterministi
 propositional dynami
 logi
 with interse
tion is de-


idable. In A. Skowron, editor, Pro
eedings of the Fifth Symposium on Computation

Theory, volume 208 of LNCS, pages 34{53, Zabor�ow, Poland, De
. 1984. Springer.

8. G. De Gia
omo and M. Lenzerini. PDL-based framework for reasoning about

a
tions. In Pro
eedings of the 4th Congress of the Italian Asso
iation for Arti�
ial

Intelligen
e (AI*IA'95), volume 992, pages 103{114. Springer, 1995.

9. F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The 
omplexity of 
on
ept

languages. Information and Computation, 134(1):1{58, 1997.

10. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge.

MIT Press, 1995.

11. L. Farinas Del Cerro and E. Orlowska. DAL-a logi
 for data analysis. Theoreti
al

Computer S
ien
e, 36(2-3):251{264, 1985.

12. M. J. Fis
her and R. E. Ladner. Propositional modal logi
 of programs. In Confer-

en
e re
ord of the ninth annual ACM Symposium on Theory of Computing, pages

286{294. ACM Press, 1977.

13. M. J. Fis
her and R. E. Ladner. Propositional dynami
 logi
 of regular programs.

J. Comput. Syst. S
i., 18:194{211, 1979.



27

14. G. D. Gia
omo and M. Lenzerini. Boosting the 
orresponden
e between des
ription

logi
s and propositional dynami
 logi
s. In Pro
eedings of the Twelfth National

Conferen
e on Arti�
ial Intelligen
e (AAAI'94). Volume 1, pages 205{212. AAAI

Press, 1994.

15. D. Harel. Dynami
 logi
. In D. M. Gabbay and F. Guenthner, editors, Handbook

of Philosophi
al Logi
, Volume II, pages 496{604. D. Reidel Publishers, 1984.

16. D. Kozen. Results on the propositional �-
al
ulus. In M. Nielsen and E. M.

S
hmidt, editors, Automata, Languages and Programming, 9th Colloquium, volume

140 of Le
ture Notes in Computer S
ien
e, pages 348{359. Springer-Verlag, 1982.

17. M. Lange. A lower 
omplexity bound for propositional dynami
 logi
 with interse
-

tion. In R. A. S
hmidt, I. Pratt-Hartmann, M. Reynolds, and H. Wansing, editors,

Advan
es in Modal Logi
 Volume 5. King's College Publi
ations, 2005.

18. M. Lange and C. Lutz. 2-ExpTime lower bounds for propositional dynami
 logi
s

with interse
tion. 2005. Submitted.

19. C. Lutz and U. Sattler. Mary likes all 
ats. In F. Baader and U. Sattler, editors,

Pro
eedings of the 2000 International Workshop in Des
ription Logi
s (DL2000),

number 33 in CEUR-WS (http://
eur-ws.org/), pages 213{226, 2000.

20. F. Massa

i. De
ision pro
edures for expressive des
ription logi
s with role interse
-

tion, 
omposition and 
onverse. In B. Nebel, editor, Pro
eedings of the seventeenth

International Conferen
e on Arti�
ial Intelligen
e (IJCAI-01), pages 193{198, San

Fran
is
o, CA, Aug. 4{10 2001. Morgan Kaufmann Publishers, In
.

21. V. Pratt. Considerations on 
oyd-hoare logi
. In FOCS: IEEE Symposium on

Foundations of Computer S
ien
e (FOCS), 1976.

22. K. D. S
hild. A 
orresponden
e theory for terminologi
al logi
s: Preliminary report.

In J. Mylopoulos and R. Reiter, editors, Pro
eedings of the Twelfth International

Joint Conferen
e on Arti�
ial Intelligen
e (IJCAI-91), pages 466{471. Morgan

Kaufmann, 1991.


