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Abstract. In this paper we improve a goal-directed E-unification pro-
cedure by introducing a new rule, Cycle, for the case of collapsing equa-
tions, i.e. equations of the type z =~ v where © € Var(v). In the case
of these equations some obviously unnecessary infinite paths of infer-
ences were possible, because it was not known if the inference system
was still complete if the inferences were not allowed into positions of z
in v. Cycle does not allow such inferences and we prove that the system
is complete. Hence we prove that as in other approaches, inferences into
variable positions in our goal-directed procedure are not needed.

1 Introduction

E-unification problems appear when one has to decide or find solution to an
equation between first-order terms or a set of such equations modulo an equa-
tional theory. Preferably, we would like to have a procedure which would be able
to enumerate all possible solutions, or a set of most general ones. Alas, this prob-
lem is in general undecidable. But trying to solve such problem by brute force,
e.g. using axioms of congruence relation and Resolution, would produce an in-
finitely many useless inferences even in decidable cases. E-unification problem is
in general semi-decidable, and there exist complete semi-decision procedures to
solve it. In view of the undecidability, inventing new, better procedures for a gen-
eral F-unification, have an important practical aim: to understand the problem
to such a degree, as to be able to distinguish useful cases of decidable equational
theories. [4], [5], [6] are examples of such results.

The result presented in this paper will hopefully open a way to detect even
more decidable equational theories, because the improvement presented here for
an FE-unification procedure reduces in a dramatic way the degree of a "don’t
know” type of non-determinism involved. Namely, it prevents some unnecessary
infinite sequences of inferences, which were possible in our previous E-unification
procedure [7] in case of collapsing goal equations, i.e. the equations of type z = v,
x € Var(v). The result presented in this paper may be stated as follows: in our
goal-directed E-unification procedure, just as in some other, rival approaches,
inferences into variable position are not needed.



Most of these other E-unification procedures used nowadays are based on
Knuth-Bendix completion of an equational theory, and narrowing of goal equa-
tions. We would like to argue, that a different approach, goal-directed, with the
improvements presented in this paper is in some cases better than the former.
In contrast to the procedures based on completion, a goal-directed approach to
FE-unification consists in transforming a set of goal equations, without chang-
ing an equational theory, E. Hence the goal-directed approach is better, when
completion of F produces many equations that are unnecessary for solving a
given goal. Moreover, a goal-directed approach does not require any ordering of
terms, whereas any procedure based on completion is sensitive to a choice of
an order. Nevertheless up to now, this approach demanded some inferences into
variable positions, which generated much of a troublesome, “don’t know” kind
of non-determinism.

A goal-directed E-unification procedure was first presented by Gallier and
Snyder in [2]. Alas, they could not succeed in proving the completeness of their
system. The difficulty lay in justifying eager applications of Variable Elimination
(Fig. 1). In [8] we have finally proved that their system is in fact complete. Please,
look up [9] for the details of the proof.

In [3], Gallier and Snyder replaced eager applications of Variable Elimination
with Variable Decomposition (Fig. 1), called by them Root Imitation there, and
Root Rewriting, which is in fact our Mutate and Variable Mutate (Fig. 1). They
noticed at once three main drawbacks of this system. First, “the possibility of
rewriting variables in Root Rewriting”, second, having to solve variable-variable
equations (equations of the type z ~ y) and third, “the potential for infinite
recursion” in the Root Imitation if we have to solve an equations of the type
x &~ v and x occurs in v. (cf. [3], p. 233).

In [7], we have proved that there is really no need to bother with solving
variable-variable equations, since they can be dealt with by techniques of syn-
tactic unification after all other equations are solved.

In view of perceived difficulties, in [3], Gallier and Snyder presented a different
goal-directed inference system, namely the one based on Lazy Paramodulation
inference rule. Lazy Paramodulation has the following form:

{u~v}UG
{u1 & s1,...,up & sp,uftly ®v}UG
where {u ~ v} UG is a set of goal equations, f(s1,...,8,) & t is a renaming
of an equation in an equational theory E (f(s1,...,8n) ® t € E) and ul, =
Flur, . - up) or
{u~v}UG

{u|a 2z ultla x0v}UG

where z & ¢t € E and u|, is not a variable, (cf. [3], page 242).

This presentation corresponds to assuming that the leftmost, highest step
in a proof of uo ~ vo is at position «, where ¢ is an E-unifier of u ~ v. In
this paper, we have a different approach, i.e. we look for the rightmost step



in a proof. Apart from this, our Mutate and Variable Mutate is exactly Lazy
Paramodulation when a = e.

In fact, Gallier and Snyder conjecture, that their system is still complete if
Lazy Paramodulation is restricted so that it applies only when either o = € or
one of u, v is a variable (cf. [3], page 247).

The reader can view the result presented in our paper, as proving their con-
jecture in the context of our system with Variable Elimination eagerly applied.
we introduce a new rule, Cycle, which can be viewed as Lazy Paramodulation
with Decomposition on equations of the form = ~ v, where x occurs in v. More-
over, we don’t need Lazy Paramodulation for other equations of the form z ~ v,
because for them we use Variable Elimination eagerly.

We use a similar kind of analysis of equational proofs which enabled us also to
prove completeness of the inference system with the rule Variable Elimination
eagerly applied in [8]. We are using a similar, though simplified, definition of
paths and a new transformation on equational proofs to justify our new Cycle
rule. We use a smarter way to count paths.

The plan of the paper is the following: after preliminary definitions which
describe properties of equational proofs, we present the inference rules for a
procedure solving E-unification problems. Next we will present and explain op-
erations on equational proofs and a procedure Solve which given a solution, yields
an F-equivalent solution for a goal. Then we will prove that a new solution must
be smaller than the old one in some respect. Hence, we will define a measure
of a goal with an E-solution, which is decreasing with an inference rule of E-
unification procedure with a new Cycle rule, applied to a goal and thus enables
us to prove the completeness of our procedure.

2 Preliminaries

Reader should consult [1] for standard definitions of term, ground term, substi-
tution, ground substitution, position in a term, subterm. If ¢ is a term, and p
a position defined in this term, t[s], means a term ¢ with a subterm s at posi-
tion p. Furthermore, ¢[s1]p, . .. [sn]p, means a term ¢ with subterms s1, ..., sy, at
parallel positions py,...,pp.

We will consider equations of the form s ~ t, where s and ¢ are terms.
Throughout this paper these equations are considered to be oriented, so that
s &~ t is a different equation than ¢t ~ s. Let F be a set of equations, and u ~ v
be an equation, then we write E = u & v (or u =g v) if u & v is true in any
model containing . We call E an equational theory, and assume that E is closed
under symmetry. A goal (E-unification problem) is usually denoted by G and it
is a set of equations. F = G means that E = e for all e in G.

We will be considering ground terms as ground objects that may or may
not have the same syntactic form. In other words we will be concerned with the
occurrences of the terms more than their values. A term may be identified by
its address in a proof sequence and a position of it as a subterm in a term in the
proof. Hence the equality sign between ground terms is treated in a special way.



If u, v are ground terms, by v = v, u is understood to be an object identical with
v, whereas when syntactic equality is sufficient, it will be denoted by u == v.
Syntactic inequality will be denoted by u #= v. The difference between identity
and syntactic identity is that the first involves objects and the second involves
names.

We can say that a variable x points to its occurrences in a term u, where each
of these occurrences under some ground substitution =, is a subterm of uy at a
position a (zy = uy|,). Different occurrences of the same variables are different
objects, though they have the same syntactic form (each one is of the form ).
In order to distinguish between different occurrences of the same variable, we
will use superscript numbers, usually numbering the occurrences from left to
right in order of their appearances in an equational proof. Hence xzy!' and z+?
are different occurrences of x in a proof.

Sometimes we will want to state that some subterm has a form (or value) of
27, but is not identical to xy (hence is not pointed to by a variable z). This will
be indicated by quote marks. Hence w[“z7y”], is different from w[z7y], since in
the second term x+y actually occurs at position «, while in the first one there is
only a subterm that has the value of x.

If v is a ground substitution, 7, means the restriction of this substitution to
a variable z. Hence if v =[x = a,y — b,z — ], v =[x — a].

FE-unification problem is given as an equational theory E is a set of goal
equations G and we want to find a substitution v such that E |= Gv. v is then
called a solution. In the completeness proof of our procedure, we will assume that
there is a ground substitution v such that E |= Gy. This is sufficient in order to
show that the procedure computes a complete set of most general solutions for
G. But if such substitution 7 exists, there is a ground equational proof IT for all
equations in Gvy. We define here equational proof in a more classic way than in
[8].

Definition 1. (equational proof)

Let E be a set of equations. An equational proof of an equation u ~ v, where u
and v are ground terms, is a series of ground terms, IT = (w1, ws, ..., Wy), such
that:

1. u=wi, v =Wy,

2. for each pair (w;,w;y1) for 1 <i < (n —1), there is an equation s 8t € E
and a matcher p, such that there is a subterm w;|o of w; and a subterm
Wit1]a of Wit1, and wily = sp, wiy1]a = tp.

We can write the equational proof as
Uy = W1 Ray,s1xt1,01] W2 Rag,samcta,pa] =+ Do —1,8n 18t 1,0n_1] Wn = VY
where v and v are not necessarily ground terms, but y makes them ground.
[, si = t;, p;] indicates at what position «a; is the matching subterm, which
equation from E was used (s; = t;), and how the variables in this equation were
substituted (p). Each w; in the above sequence is called a term in the proof,
as distinct from any proper subterms of w;, which are not counted as terms



in the proof. Since an equational proof is a sequence of ground terms, we will
sometimes use the notation borrowed from that for arrays, and I7[i] will mean
the ¢’th term in I7.

Since every matcher at each step uses a renamed version of an equation
from FE, the domain of the matcher is disjoint from the domain of 4 and the
domains of matchers at all other steps in the proof, we extend ~ to v’ such that:
v =~vUp1U...Up,. From now on we will assume that v is an extended version
of itself.

For the purposes of the completeness proof in Section 6, we have to extend
v even more. We define general extension of +.

Definition 2. (general extension of 7)
Let v be a ground substitution. A general extension of v, ex(y), is defined recur-
sively as follows:

1. if v, =[x = v] and |v] =1 (v is a constant), then ex(Vz) = Yz,

2. 0f vp =[x = flvi,...,0,)], and n > 1, then let vy, = [y; — v;], for
1<i<n, and ex(yz) =72 Uea(yy,) U- - Ues(vy, ),

3. ex(y) = UzeDom(fy) ex(7z)

From now on we consider v in (II,7) as the general extension of itself.
We have 3 kinds of variables now: the variables in a goal equation u &~ wv,
called goal variables, the variables in Var(s; ~ t;), where there is a step in
IT, IT1i] ®a,s;nt,,7)) i + 1], called system variables, and variables introduced
in general extension of 7, called subterm variables.

For each of the occurrences of these variables we define orientation. Let u =~ v
be a goal equation. If x+ is an occurrence of a goal variable in u, then this zvy
has right orientation (x_zy), if v is an occurrence of a goal variable in v, then
this 2y has left orientation (aj"_ﬂy), if 7y is an occurrence of a system variable in
IT[i] ®[a;,5;nt;,7) T[4 1] and 27y occurs in IT[i], then this 2y has left orientation
(27), and if 2y occurs in IT[i + 1], then this 2y has right orientation (z7), if
a7 is a subterm variable occurrence, hence xy = yv|,, then it has the same
orientation as y-.

Y 18 a subproof in a proof IT, if there is a part of IT: II[i] R[a,,s;~t;,7]
i+ 1] Rjaigsipimtion ] Rlaisnsisnationy] 111+ k], such that for i < j <
i+k, o > aoraplla, and Eyay is il ~ i + 1)|q & -+ = II[i + k]|a
where w = IT[i]|, and w' = I[i + k]| 4-

In a subproof X~ we can distinguish internal and external variables. A
variable y is called internal in ¥, if y € Var(s ~ t), and there is a step
w; %[()[78%157’)/] Wi41 in Ew%w’-

We will use renamings of subproofs in the paper, but notice that renaming
of a subproof is a subproof in which only internal variables are renamed.

With each occurrence of a variable x7y in an equational proof, we associate a
subproof (called a subproof associated with x+), which is the longest subproof
starting with x+ and going in the direction of the orientation of zv. The ground
term at the end of the subproof associated with x is called a term associated
with v, ass(zv).



If we have a ground term w and a proof IT of the form wi ®[q, s xt;,4]
W3 Ras,somvtan] -+ lan_1,5m—1~7%n_1,7] Wny and w|z == wy, for some position 3
in w, then we can construct new equational proof IT" of the form: w[wi]s Rga, 5,711 ,4]
WWa]s R[Bas,sarmctany] + RBan—1,8n—1~tn—1,y] WWn]s. We call this construction
embedding of the proof II in the term w.We can attach a proof IT' to a given
equational proof I by embedding it into the last term of I7, if the conditions
of the definition are met. Then the new proof obtained in this way is called a
composition of IT and IT'.

We define a non-redundant equational proof as any proof IT such that there
are no two terms II[i] and II[j], with ¢ # j and II[i{] == II[j] in II, and all
proper subproofs of IT are non-redundant.

A simple procedure of cutting out loops out of subproofs in a proof allows us
to obtain a non-redundant proof from any redundant one. We call this contrac-
tion. From now on, we will assume for all the equational proofs we are going to
talk about that they are non-redundant. This property will be preserved in all
the constructions which will be defined in the paper.

Since each ground solution v for a goal G in an equational theory E is always
associated with some equational proof I which is a witness for the solution, we
will talk rather about a pair (II,+) than about 7 alone as a solution for a goal.

3 Transformation Rules

In this section we present the inference system for solving an E-unification prob-
lem in any equational theory E. Any procedure based on these rules must be
non-terminating in some cases, because the problem is in general undecidable.

In [8] we have proved that the set of rules presented in Figure 1 (with slightly
different formulation of Variable Mutate) is complete. An arbitrary selection
function selects an equation u &~ v from the set of goal equations for an inference.

Decomposition applies if both v and v are not variables and have the same
root symbol. Mutate applies if there is an equation s ~ ¢ in E, such that ¢ is
not a variable and the root symbol of ¢ is the same as root symbol of v (hence
v must not be a variable). Variable Mutate applies if there is an equation
s~ r in E and v is not a variable. If v is a variable, and u is not, then Orient
applies. Variable Elimination applies if « is a variable and u does not occur
in v. Notice that Variable Elimination is applied eagerly to such an equation,
because there is no other rule applicable in this situation. If v and v are identical
variables then Trivial deletes this equation from the goal.

If an equation of the form z = v is selected, v is not a variable and x € Var(v),
then we have a choice. Mutate applies, if s &~ t € E such that root symbols of v
and t are the same, or Variable Mutate applies, if s & 2 € E, or we can apply
Variable Decomposition.

Variable Decomposition may lead immediately to infinite sequences of infer-
ences, as in the following simple example:



Decomposition

{f(Sl,,Sn)zf(th,tn)}UG
{slztl,---,snztn}UG

where f(s1, -, 8n) = f(t1,---,tn) is selected in the goal.

Mutate
{ux f(v1,--, )} UG

{um s, ti ®v1, -, tn RV }UG

where u & f(v1,---,vn) is selected in the goal, and s = f(t1,---,tn) € E.*

Variable Mutate

{u= f(vi, -+, vn)} UG
{ux sz f(vi, -, 0n)]JUG

where s & x € F, z is a variable, and u = f(v1,---,vy) is selected in the goal.
Variable Elimination Orient
{z=v}UG {tx2}UG
{z = v} UGz — ] {r=t}UG
where z & Var(v) where zx is a variable.

and ¢ is not a variable.

Variable Decomposition (for cycle)

{ex f(t1,- -, ta)} UG
{sz(xlv"'axn)}u({xl ztlv"'vxnztn}UG)[x'_)f(xlv"'axn)]

where z is a variable, z ~ f(t1,---,tn)
Trivial
{r=z}UG
G

where z = x is selected in the goal.

“ We assume that F is closed under symmetry.

Fig. 1. E-Unification with eager Variable Elimination
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We need to break the sequence of Variable Decompositions applied to the
rightmost equation by applying Mutate or Variable Mutate, but we don’t know
when, after how many steps, we should do it. Hence at this point non-termination
of our procedure does not depend only on semi-decidability of an equational
theory, but also on properties of the inference rules.

Therefore we want to replace Variable Decomposition, Mutate and Variable
Mutate applied to collapse equations, by another rule called Cycle, which will
not lead to such immediate infinite paths of inferences. The rule is presented in
Figure 2.

Cycle

{z = vvilay - [Vkla, UG
{z = o[z1]ay - [2r]a, } UUE {M (2 = vio)} U Go

where =z = o[vi]a, * - [Vkla, is selected in the goal, =z €
Var(v[vi]a; - [Vk]ay ), €ach v; is a non-variable term, which contains
at least one occurrence of z, o = [z — v[z1]a; - [Tk]ay ]

{z=s, timv,...,th RV},

where s & f(t1,...,tn) € E;

xzs[ylﬁf(vl,...,vn)],
where s ® y € F and

Fig. 2. Cycle Rule

Cycle applies to a goal with an equation of the type = &~ v selected, where
x € Var(v). There are possibly many occurrences of = in v, hence v can be
written as v[z]g, - - - [*]g,, where B; is a position of i’th occurrence of # in v and
there are [ occurrences of z in v. All these positions are parallel to each other,
hence each §; and §; is such that £;||5;.



For each occurrence of z in v, we guess a subterm v; in v[z]g, - - - [z]g, at a
position «;, containing this  (hence a; < ;).

Hence v[z]s, - - [x]s can be represented as v[vi]a, - - [Vk]as, Where k& < I,
because we can guess a subterm v; containing more than one occurrence of x.

Cycle is a macro rule. One can view the effect of Cycle as decomposing a
part of the term, by repeated applications of the old Variable Decomposition
rule and Variable Elimination, which would allow us to obtain a solved equation
T & V[T1]ay - [Th]a, and then performing Mutate or Variable Mutate on the
equations x; &~ v; obtained by this repeated Variable Decomposition.

The application of Mutate or Variable Mutate is represented by function M in
the definition of Cycle. M returns a set of equations obtained from its argument,
by Mutate or Variable Mutate, depending on the form of equation chosen from
E. Notice that only in the context of M, Mutate or Variable Mutate is applied
to an equation of the form z ~ v.

In other words, Cycle performs Mutate or Variable Mutate at some position
defined in a given term v, while decomposing symbols at higher positions. Sub-
terms of v which do not contain = (we can call them irrelevant for z) are still
inside the term v[z1]a, - - - [Tr]a, with which z is eliminated.

Replacing Variable Decomposition, and Mutate and Variable Mutate as ap-
plied to cyclic equations by Cycle, reduces nondeterminism of our procedure.
We have only finitely many positions in v to guess. Hence e.g. in our previous
example we would have to try only two applications of Cycle.

Mutate at root symbol of v (hence we guess that v[vi]¢), s & f(t) € E:

T~ fr

TRTI TSt T
Mutate at v|1, s = f(t) € E:

TR fo

TR frir Rstr T

In another example, where x & fgx is our goal and a &~ gb is in F, we have
no choice, but to apply Mutate inside the Cycle rule at fgz|<is:

T~ fgx

TR friryRabx

4 Operations on Equational Proofs

Before proving completeness of the inference system with Cycle for general E-
unification, we have to define operations on equational proofs that can transform
such a proof into an E-equivalent equational proof. This means that if (IT,) is
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an E-solution for a goal u & v, and we obtain (II',v") by one of these operations,
then v =g 7" and (II',~") is also an E-solution for a goal u & v.
We will define here two such transformations: extending and flattening.

4.1 Extending a proof

If 2+ is an occurrence of a variable in an equational proof II, and Y~y is a
subproof associated with this occurrence, then if x has no occurrences in v, we
can extend the proof in all places where x has occurrences in IT with the sub-
proof Y. ~,. We call this operation extending equational proof with respect to
Ty ~ v. After this extension we get a new proof IT’ and a new substitution 7/,

hence we write: (IT,7) o4l (IT',~"). The formal description of the operation of
extending a proof with respect to 2y & v is the following.

Let (IT,7) be an equational proof with v an extended substitution for this proof.
Let zy be an occurrence of a variable in II, Xy~ a subproof associated in IT
with this occurrence of x and v does not contain occurrences of x.

An equational proof II' is exactly as IT with the following modifications.

For each a term w; in IT, such that w; = w;[zy*], for some occurrence of x in
II, do the following:

1. If xv* has right orientation, replace w; with the following sequence of steps:

wi[v]a ~ wi(Zil)%“z'y”) ~ wi[“x’\y”]a
where wi(E;z“m") means that a renaming of Yz a, is reversed and em-
bedded in w; at position « leftwards. Note that the renamings of internal
occurrences of variables and new occurrences of external variables in the
renaming of Xz~ have reversed orientation in the new proof.
2. If xvy has left orientation, replace w; by the sequence of steps:

13 2h !
wi[“2Y" o R wi( Xy n,) R wilv]a
where wi (X, »,,) means that a renaming of Sy is embedded in w; at
position a rightwards. The renamings of internal occurrences of variables and

new occurrences of external variables in Eimnzv preserve their orientation,
in the new proof.

Contract any non-redundant subproofs in the obtained equational proof.

The substitution ' is then defined in the following way:

'y; =[x ],

if y¥la = 27, then v, = [y = yvy[v7']al,

if z & Dom(7), z is a renaming of a variable z’ € Dom(vy), that appeared in
some X, then v, = [z = 2'7],

for any other variable u, ., = Yy;
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4.2 Flattening a proof

We can flatten an equational proof IT in the following situation.

Suppose there is a subproof X -~z in IT, where x; is a subterm variable
of zy. Hence x;v is a subterm of another occurrence of z and Y jymary 18 A
subproof of Xy, [; 4xu[zr)- We say that the proof IT is not flat at zy. Notice also
that then the length of Y ..~z must be greater than 0, because 2y cannot be
syntactically identical with its subterm.

We flatten the proof IT with respect to 27y in a recursive way:

1. extend IT with respect to xy = ;v ( i. e. (II,7) [r_iiy] (', +");
2. if there is a subproof X, 1z, in IT', flatten JI" with respect to 7'

Flattening will always terminate. The reason is that in the new proof IT',
v. = [z — z;7] and since z; was a subterm variable for zv, |zv'| < |z7].

Let us see what exactly happens when IT is extended with zv ~ x;7v. Since
x; is a subterm variable of z+, there is an occurrence of z, such that Y jymay 18
a subproof of Y1, 5 jav[zy] in 1.

At first extension changes this subproof to the subproof of the form:

i R (D prniay) & Ty[X7]) R (D aiay) R[] &
0(Seppnen, ) S [ 257

Notice that since there is a subproof X xz+ in IT, all steps in the subproof
Yl jv]av[ey] Must be at or bellow position of ;v in 27y[x;7] (or position of zy
in v[zv], which is the same «). Hence zy[z ;4] == v[z;7v]. The subproof therefore
will be contracted and will have the following form:

2y R (Tnyrmeayr) R 0[277]

The term “x;v” is 27’ in the new proof hence in fact this subproof is:

Y & (Do nsoyn) R 0[TY]

Notice that this subproof has the same length as the original X', ~yz+], but
this is not telling us anything about the length of the new equational proof,
which in fact may increase in the process of flattening in other places where x
occurs.

Nevertheless, flattening must terminate, because the term we substitute for
z in each new proof is strictly smaller than the term in the previous proof.

In the end, the subproof ¥, .~z will have to disappear, because x on the
right will have to appear at the lower position than the step in the subproof
Y ymulery] 18 taken and this will prevent the subproof associated with the zy on
the right to reach a subterm of the 27y on the left. It is obvious that if |zy| =1,
then there must be a step at the root in Xy ~yzq]-

Let us look at a simple example. Let our equational theory E be {a = fa} and
our goal G be {z =~ fz, x ~ fffa}. Let our E-unifier be v = [z — fffa,z1 —
ffa,x2 — fa,zs — a] where x1, o, x5 are subterm variables of xvy, and the
equational proof be IT ={fffa= ffffa,fffa= fffa}.

If # ~ fx is selected, IT is not flat at z72, because 272 ~ 117, (or fffa =~
ffa). Flattening will proceed in the following stages:
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1. (I1,7) [mﬂﬂ (IT',~"). Extension will first change the subproof fffa =
ffffainto ffa ~ fffa~ ffffa ~ fffa and contraction will shorten
it to ffa ~ fffa Hence II' = {ffa ~ fffa,ffa~ fffa}. v =[x —
ffa,z1 = fa,zs = al.

Still, IT" is not flat at 272, because there is a subproof z7? ~ x4/, (or
ffa= fa). ’

2. (IT',+") [zﬂﬂ (II",~"). Extension will first change the subproof ffa =
fffainto fa~ ffa~ fffa=~ ffa and contraction will shorten it to fa ~
ffa. Hence IT" = {fa= ffa,fa=~ ffax fffa}. " =[x~ fa,z1 — a].
Still, IT" is not flat at x7'"?, because there is a subproof z7"? ~ z;7", (or
fa=a).

3., 4" o2l (1", +""). Extension will first change the subproof fa =~

ffainto a ~ fa ~ ffa ~ fa and contraction will shorten it to a ~ fa.
Hence I = {a = fa,ar far ffar fffa}. " =[x — a].
Obviously, IT" is flat at z7""? and there is a step at the root in the sub-
proof of 7" ~ fx+'". Flattening ends here, but notice that IT"" has length
4, whereas IT had length 1. But notice also that the subproof a ~ fa =
ffa =~ fffa can be found in IT in a form of composition of subproofs:
237! & 197? == 1yt & 11792 == 719! & 292 == 273, We will call such
composition of subproofs a path and show that II"”' has the same set of paths
as II.

5 Solving variable in a proof

In the proof of completeness theorem, we assume that there is a solution for a
goal, hence for a given E — equational theory and G — a set of goal equations,
there is (II,7), such that E = Gv and II is an equational proof of Gy in E.

We will see that Decomposition, Mutate, Orient and Trivial preserve the
form of the solution, i.e. if one of these rules is the right rule to apply, then we
can assume that the proof of the new goal obtained by this rule is composed
of subproofs of the previous one, with the same substitution and the same set
of variables involved, i.e. the same proof (or a set of subproofs thereof) and the
same substitution are the solution of a new E-unification goal.

In contrast to this, Variable Elimination, Variable Mutate and Cycle may
change the form of assumed solution of the goal.Variable Mutate and Cycle may
change the form of a solution of the goal, because they are macro rules involving
Variable Elimination.

In order to reflect the transformations required by Variable Elimination and
Cycle, we now define a procedure Solve x in ((II,v),U) which takes as input a
solution for an F-unification goal, i.e. an equational proof and a substitution,
and a set of unsolved variables, and returns another solution E-equivalent to the
original one and a new set of unsolved variables.

In the following description,we use the notions of maximal occurrence of a
variable and an irrelevant subterm variable, which are defined now.
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Definition 3. (mazimal occurrence of a variable)

Let (I1,7) be a solution of a goal G, with a set of unsolved variables U, such that
U C Dom(y). Let x € U. An occurrence xy of x is called maximal in in IT with
respect to U, if there is no occurrence, yvy, of an unsolved variable y, such that
xy appears in Xy i, where Yyyny is a subproof associated with yry.

Definition 4. (subterm variable irrelevant for x7y)
Let (IT,7) be a solution of a goal G, and x € Dom(y), xy an occurrence of x
in I1. Let Xyyn be a subproof associated with this occurrence of x, such that v
contains some occurrences of x.

A subterm wvariable x; defined for xvy is called irrelevant for xv, if Xy, yau,
18 a subproof associated with x;y, and v; is not a subterm of v, or v; does not
contain any occurrences of x.

We call x; a mazimal irrelevant subterm variable for xv, if whenever x;y =
zjlay, for any position o # € and x; a subterm variable of x7y, x; is not irrelevant

for z~.

Let us see an example illustrating the meaning of the previous definition.

Let our E = {b~c,a~ gf(a,b)} and G = {x = f(gz,c)}.

Let IT = {f(a,b) ~ f(9f(a,b),b) ~ f(gf(a,b),c)} and y = [z = f(a,b),z1 —
a, x2 — b], where x1,z are subterm variables for z+.

Then according to the definition, x; is relevant for xy', but x5 is irrelevant.
Notice that when Cycle is applied to x ~ f(gx,c¢), we get the following goal:
{z ~ f(z1,0)} U M(z; ~ g(f(z1,c))). Hence irrelevant subterm variables are
“solved” as if automatically in Cycle.

Solve z in ((11,7),U)

Let (I1,7) be a solution of a goal G. U C Dom(7y), is a set of variables called
unsolved. x is a variable in U, such that there is at least one mazimal occurrence
of x, x7y in II. Choose an occurrence of x, xy which is mazimal in (IT,~) with
respect to U. Let Yyyno be a subproof associated with xvy.

1. If v ¢ Var(v), extend IT with X, n,, (I,7) oyl (I, ~").

Return (II',~") and U', where U' = (U —{x,x1,2a,...,2; }) U (Dom(y') —
Dom(%)), where 1, ...,z are all subterm variables defined for x7vy;

2. If x € Var(v), and there is an occurrence of x, xy* in v, such that the proof

IT is not flat at x~*, then flatten IT with respect to xv*. Let the result be
(I',).
Rename variable x with a new variable z in (II',y"), (II',¥")[x — z]. Re-
turn (IT',y")[x — 2] and U’, where U' = (U — {z,21,22,...,25}) U {z} U
(Dom(vy') — Dom(y)), where 1,...,x are subterm wvariables defined for
positions in Ty which are no more defined for zv';

3. If x € Var(v), and II is flat at all occurrences of x in v, then for each
subterm variable x; mazimal irrelevant for xvy extend IT with Xy, yn; -
Return the result, (II',y") and U' = (U — {z,21,22,...,25}) U (Dom(y") —
Dom(7)), where z1, ...,z are all subterm variables irrelevant for x~.
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Notice that by choosing maximal occurrence of z, we are making sure that no
inner variables in X, ~, are solved before . Since these variables are renamed
in the process of extension, definition of U’ would had to be somehow changed,
if we had allowed to solve those variables first.(Should these new variables in U’
be counted as solved or not?) But fortunately, we can safely restrict ourselves to
maximal occurrences of variables, since only these occurrences are playing role
in Variable Elimination. Namely, if z is going to be eliminated from an unsolved
part of a goal, G, because x ~ v € G, zy must be a maximal occurrence of z in
an equational proof of this goal.

In order to use Solve in the completeness proof, we have to show in what
sense its result, ((II',v'),U’), is smaller than its input ((I1,7),U). For this we
define paths in an equational proof.

Definition 5. (path starting with a variable occurrence, variables used in a path)
Let (IT,7) be a solution for a goal G, U a set of unsolved variables in Dom(y),
x € U and xv a given variable occurrence in IT. A path in II starting with xvy
18 a composition of subproofs, X1 --- X, defined in a recursive way:

1. if Ypymy 15 an associated subproof for xy, Xy ny 15 a path starting with xv;
2. (a) if X1+ Xy is a path in IT starting with x1v with the last term of the
form v[r, 119", Tny1 s an external variable in X nvmvlensiyt]s ond if
X1, X s a path in IT starting with x,417", and if no variable which
is used in one path appears as not used in the other, then the composition
Yy Xp X1 X ds also a path in IT starting with x1y and all variables
used in the first and second path are used in this path;
(b) if Xy --- Xy is a path in II starting with x17y and with the last term of the
form yyl|a, and if ¥ x| ~s s a subproof in IT and no variable which is
used in one path appears as not used in the other, then X1 -+ X X k| o
18 also a path in I starting with x1y and oll variables used in the first
and second path are used in the new path;

Notice that when Solve is applied to x in (II,v,U), where zv is a chosen
maximal occurrence of z and Y,y is a subproof associated with zvy, some
compositions of subproofs in IT become subproofs in II’. Since z and possibly
some of its subterm variables are not in U’, we don’t have paths starting with
these occurrences defined for IT' any more. Notice also that there are no paths
in IT', which represent the subproofs where z or some of its subterm variables
were used in extension in a different way, i.e. with different variable occurrence
and different subproof used in extension.

Consider the restriction in the definition of paths to the external variables
in Definition 5.2.2a. Notice that this restriction is just what we need in order to
account for what happens in the proof when a variable is eliminated in the goal.
Namely, if by Mutate new variables are discovered in the goal, i.e. a step in an
equational proof is being explored, then these new variables appear as external
in all subproofs represented by the unsolved equations in the goal. If u =~ v is
in the goal, the variable occurrences in uy have always opposite orientations to
those in v7y.
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We want to show that when Solve x is applied to ((II,7),U), a multiset of
lengths of paths in 1T’ defined with respect to U’, where ((II’,7"),U’) is a result
of Solve z in ((II,7),U), is smaller than the multiset of paths in IT defined with
respect to U. In order to do this, we have to be careful with the way we count
paths. Namely, if a shorter path is a common part of longer paths, we have to
count it as separate for each such longer path. In fact, since paths are linear, it is
enough to count separately occurrences of a path included in different maximal
paths. Hence we define maximal and proper paths and prove that the set of
proper paths after solving a variable does not increase.

Definition 6. (mazimal paths) Let (I1,7) be a solution for a goal, and U a set
of unsolved variables in Dom(v). Let P be the set of all paths in IT defined with
respect to U. Then M is a set of mazimal paths if M = {p € II| for no q € II,

p is a part of q}.
Now we define a set of proper paths.

Definition 7. (proper paths)
Let (IT1,v), U, P and M be as in the previous definition.

For each p € M, we define P, = {X|X is a copy of p or there is ¢ € P such
that q is a part of p and X is a copy of q}.

A set PP is a multiset of proper paths for II defined with respect to U if PP
is a multiset union of Py, for allp € M.

As an example of proper paths assume that the following subproofs are in
1T D oo [o71)s Zaayamwalen?]s eydmslyyt]s ZyrPatyr Syydets:

There will be the following maximal paths in IT:
b1 = Zzlﬂy%vl[zvl]2273%5[:[;71]2:[;’)/2%2517
P2 = Emg'yzvg[z'yz]2z73%s[y71]2y72zt1a
b3 = Exl'yzvl[z'yl]Ez*ﬁ%s[y’yl]zy'ﬂztga
P4 = Zzgﬂy%vg[zqﬂ]2273%3[3”}/1]2@1’}/3%2&2'

You can see that the subproof, which is also a path, X ,sx4,41] is repeated
in all of them. Hence a copy of this subproof will appear in Py, , Pp,, Py, Pp,-
Similarly, copy of X, yxu;[241]2243s[yy1] Will appear in P, and P,;, and so on.

P,, will consist of the copies of the following paths:
29:17%1)1[,2'71]2,2'73%8[3/71]Ey'yzztl7
Lorymvr[zv] Yeydaslyrl]s
L osmslyy ) Sy et
Lorymn 9] Verdaslyr ] Vyyiact -

We have to show that after Solve if extension applies, a multiset of lengths
of proper paths in IT’' defined with respect to the new set of unsolved variables,
U’, is not greater than the one defined for IT with respect to U.

Lemma 1. Let (II,7) be a solution for a goal, and U a set of unsolved vari-
ables in Dom(y), xvy is a mazimal occurrence of x in II, and Yy e o subproof
associated with xvy, such that case 1 of the Solve x in ((II,~),U) applies.
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Let ((II',~"),U’) be a result of Solve in this case, then each proper path
defined for IT with respect to U is a unique renaming of a path defined for IT'
with respect to U'.

Proof. Let p be a proper path defined for IT" with respect to U’. Let p starts
with y+'. Assume that p is maximal.

Assume that y € Dom(y). Then by definition of path and extension, there
is a path in IT, p/, such that p is a renaming of p’ and p’ differs from p only in
this that p does not use occurrences of x or its subterm variables any more in
places where these variable occurrences were used in p'.

If p’ is maximal in [T, then it is unique, maximal path starting with yv, and
then obviously only one path defined for II' can be a renaming of p'.

Now, if p’ is not maximal in IT, then p’ must be a part of a maximal path, ¢,
starting with z°, for some occurrence of x in II. p' is part of ¢ (p' € P,). Even
if there may be many different maximal paths starting with z+*, there is only
one such path (g) that contains p’, for otherwise p could not become maximal
in IT'. Hence p is the only renaming of p’ in IT'.

Assume now that y € Dom(v) (p is maximal in IT’). Then there is an inner
variable ¢’ in Xy, such that yy' is a renaming of y'vy. By definition of path
and extension, there must be a path in IT, p/, starting with y'v, such that pis a
renaming of p’. p’ must be either maximal or a part of a path starting with z~.
If p' is maximal, it is a unique path in IT, of which p is a renaming. If p’ is a part
of a maximal path ¢ starting with 7. (¢ must be maximal, because otherwise,
p would not become maximal in IT'.) Even if there may be many maximal paths
starting with xv, there will be only one containing p’ and there can be only one
renaming of p’ in IT'.

Now assume that p is not maximal.

In this case, p is a part of a maximal path ¢ in IT" and p € P,. Then there is
a unique (not necessarily maximal) path ¢’ in I7, such that ¢ is a renaming of ¢’
and p’ is part of ¢’. From the previous argument we know that ¢’ is unique for
g. Since ¢’ is unique, then p’ must also be unique, hence there may be only one
renaming of p' in P,.

If in Solve flattening applies, we have to prove that Solve does not increase
the set of paths in IT'.

Lemma 2. Let (I1,7) be a solution for a goal, and U a set of unsolved vari-
ables in Dom(), x7 is a mazimal occurrence of x in II, and Xgyny a subproof
associated with xvy, such that case 2 of the Solve x in ((II,7),U) applies.

Let (IT',~"),U") be a result of Solve (with flattening of II ), then each proper
path defined for II with respect to U is a unique renaming of a path defined for
II'" with respect to U'.

Proof. Let there be an occurrence 27" in v, such that IT is not flat at zv*.
Flattening of IT with respect to xy must terminate. Hence we can use in-
duction on number of extensions used in this process. Assume therefore, that

(IT',~"),U" were obtained by extension from (IT",+"),U". (II",~4") o2y
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(IT",~") where z;4" is an occurrence of subterm variable for 27", and X, iy, 4
is a subproof associated with z7"*. By induction assumption we know that for
each proper path in IT"” defined with respect to U”, there is a unique proper
path in I7, defined with respect to U.

Assume that p is a proper path defined for 1T’ with respect to U'.If p starts
with yv’, where y is not x1, then the argument from the proof of the previous
lemma applies.

Hence assume that p starts with 24’ (which is renamed 2v"). From the defini-
tion of extension and flattening, we know that z7' = z;7"”, where z; is a subterm
variable in Dom(v") for z~".

Hence by the definition of path and extension, p is a renaming of a proper
path in IT"”, p’, which starts with z;4"". The argument similar to the one used in
the proof of the previous lemma shows that p’ is a unique such path, which p is
a renaming of.

Lemma 3. Let (I1,7) be a solution for a goal, and U a set of unsolved vari-
ables in Dom(7y), xvy is a mazimal occurrence of x in II, and Yy ny o subproof
associated with xvy, such that case 3 of the Solve x in ((II,7),U) applies.

Let (IT',~"),U") be a result of Solve (with flattening of II ), then each proper
path defined for II with respect to U is a unique renaming of a path defined for
IT" with respect to U'.

Proof. Proof of this lemma is the same as that of Lemma 1, with a not that
p differs from p' in this that it does not uses occurrences of zvy or some of its
subterm variables in places where p’ had to use them. But some of the subterm
variables are still unsolved in IT'.

Now we show that actually Solve z in (IT,7),U decreases multiset of lengths
of proper paths in a new solution and hence we can take it as a measure for a
solution.

Definition 8. (measure of a solution)
Let (I1,7) be a solution of a goal, and U a set of unsolved variables in Dom(7).
Let PP be a set of proper paths defined for IT with respect to U.

The measure of the solution (II,~) with U is M((II,v),U) a multiset of
lengths of paths in PP.

Lemma 4. Let (I1,7) be a solution of a goal, and U a set of unsolved variables
in Dom(~y). Let PP be a set of proper paths defined for IT with respect to U. Let
x € U, be a variable with a mazimal occurrence xvy in II chosen in such a way
that Solve x in (II,7),U applies. Let (IT',v"),U" be a result of Solve and PP’
a set of proper paths defined for II' with respect to U'. Then M((II,v),U) >
M((IT',5/),U").

Proof. Let ¥,y~, be a subproof associated with z+ in II. If Solve applies when
a7 is chosen, we have 3 cases to consider. In the fist case, when = & Var(v),
is no longer in U’, and by Lemma 1, all paths in PP’ are renamings of unique
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paths in PP. But whereas at least one path starting with z7 is in PP, there is
no such path in PP'.

In the second case, x is replaced by z in U’. By Lemma 2, we know that
all paths in PP’ are renamings of unique paths in PP. But since 27’ is strictly
smaller than z+y, some subterm variables of zy are no longer in U'. Hence the
proper paths starting with these subterm variables will no longer be defined in
PP’

In the third case, where x € Var(v), but IT is flat at all occurrences of x in
v, by Lemma 3,we know that all paths in PP’ are renamings of unique paths in
PP. But z and possibly some subterm variables are no longer in U’, hence the
paths starting with these variable occurrences are no longer in PP,

6 Completeness

We will prove completeness of the inference system presented in Figure 3, where
M in a definition of Cycle is defined by:
{r =~ sty ®vr,...,ty & vy}, where
~ f(ty, ...t E;
M(z =~ f(v,...,un)) = s% f(t,- . tn) € B
x sy~ f(ur,...,vy)],where s~y € E

Notice that now neither Mutate nor Variable Mutate is applicable to an
equation of the type x &~ v. If such an equation is selected, Variable Elimination,
Orient, Cycle or Trivial applies and either of these rules applies eagerly.

This said, it must also be pointed out that there is a “don’t know” type non-
determinism involved in an application of Cycle, because we don’t know which
is the right place to “divide” the term on the right in a goal equation of the
type x &~ v if £ occurs in v. Nevertheless, we have only finitely many positions
to choose from.

We prove that in any equational theory E, a given goal G such that E = Go,
may be transformed by applications of rules in Figure 3 applied to equations
which are not solved, into a solved form with which we can define an E-unifier
more general than o. The solved form of an equation and of a goal is defined in
the following way.

Definition 9. (solved equation and solved goal)
Let G be a set of equations. An equation x =~ t € G is in a solved form, if x is a
variable, * & Var(t) and x & Var(G\{z =~ t}).

G is in a solved form if all equations in G are in solved form.

If G is in the solved form, then we define a substitution 65 = [z; —
t1,..., 2Ty — ty]. Obviously, 8¢ is the most general unifier of G.

If G is a set of goal equations, an inference performed on G with one of the
rules of Figure 3 is denoted by G — G’, where G’ is the result of this inference.
The transitive, reflexive closure of — is written as —.



19

Decomposition
{f(slv"'vsn)zf(tlv"'atn)}UG
{51 ztl,---,snztn}UG
where f(s1,--,8n) = f(t1,--+,tn) is selected in the goal.
Mutate
{uzf(vlv"'avn)}UG
{u=s,t1 v, ta ®p UG
where u ~ f(vi,---,vy) is selected in the goal, u is not a variable and s ~

f(t1, -+ tn) € E.

Variable Mutate

{ux f(vi, -+, vn)} UG
{ux sz f(vi, -, 0n)]JUG

where s &~ » € F, x is a variable, u is not variable and v = f(vi,---,vn) is
selected in the goal.

Variable Elimination Orient
{z=v}UG {t=~z} UG
{z = v} UGz — ] {z=t}UG
where z & Var(v) where zx is a variable.

and t is not a variable.

Cycle
{2 % V[or]ay - [0elay }U G

{2 = vfeia, - [rlag F UUS {M (2 = vio)} U Go

where x & v[vi]a; - - [Uk]a, is selected in the goal,
x € Var(v[vilay - - [Vk]a, ), €ach v; is a non-variable term, which contains at
least one occurrence of z, o = [z = v[T1]a; ** * [Tk]ay |-

Trivial
{rx=z}UG
€]

where z = z is selected in the goal.

Fig. 3. E-Unification with nice Cycle rule
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In order to prove completeness, we will need the measure of a goal G, of
which we will show that it may be decreased by application of an inference rule
if G is F-unifiable and not in solved form.

Definition 10. (measure of a goal)
Let E be an equational theory, and G, an unsolved part of a goal G', such that
there is a ground substitution v, for which E |= G'v and hence there is a solution
(IT',%) of G' and II a subproof of IT', such that (II,7) is a solution of G, and
all variables in Var(G) are unsolved in (II,7).

The measure of G' with respect to (II',v) is a 4-tuple (m,n,o,p), where
m = M(II,v), n is the length of II, o is the size of terms in Gy, p is the number
of equations in G, of the form t =~ x, where x is a variable and t is not a variable.

Notice that the measure of a goal is in fact a measure of its unsolved part.
Measures for different goals are compared with respect to lexicographic order.

Theorem 1. Let E be a set of equations, such that E |= Gv for some ground
substitution . Then there is H, a set of equations in the solved form, such that
G s H and OuVar(G)] <g 7.

Proof. If G is already in the solved form, then g <p 7.

If GG is not in solved form, then there is an unsolved part of G, which consists
of all unsolved equations in G. Only unsolved equations in G may be selected
for inference. Assume that u = v was selected for an inference. If E |= Gy, there
must be an equational proof IT of Gy. We will call (IT,v) an actual solution
of G. There must be a subproof in I, of uy = vy, Yy yxvy and uy, vy are the
extreme terms in this subproof, i.e. there is no subproof in IT at position of u~y
or vy containing X, ~yy as its proper part. It is important to show in each of
the following cases, that our rules preserve this property, since we use Solve in
justifying completeness of some of them, and Solve is defined with respect to
associated subproofs which are the subproofs of maximal length starting with
some variable occurrence in II. Hence if z ~ v is selected and Yy ayy is its
subproof in IT, we want to be sure that ¥;,~yy is a subproof associated with
27 (and hence maximal subproof starting with zv). We can also assume that all
solved variables in G are solved in IT, i.e. not in U, and all unsolved variables in
G are unsolved in IT, i,e. there are in U.

Obviously, if x & v is selected for an inference, 27y is a maximal node in IT
with respect to U.

For the proof, we have to consider all possible forms of an unsolved goal
equation u &~ v selected for an inference. We will show that in all these cases,
there is an inference rule from Figure 3, such that it is applicable to the selected
equation and this application decreases the measure for the new goal. Hence we
show that G — G’, and measure of G’ is strictly smaller than that of G. Moreover
we show that if F |= G, then also E = G'y', where v =g v/[Var(G)]. Then by
induction hypothesis G’ — H and 65 [Var(G)] <g 7. Hence also G — H and
0ulVar(@)] < 7.

Hence it is enough to consider now the following possible forms of a selected
equation in a goal.
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1. Assume that neither u nor v is a variable.
Let XY, ~vy be a subproof in IT of uy = vy.
Assume also that there is no step at the root in X, ~.. Hence v and v must
have the same root symbols.
The right rule to apply in this case is Decomposition. In the new goal
u = v is replaced by equations s; =~ ti,...,8, &~ t,. There is a subproof
in IT for each s;v & t;v, 4 € {1,...,n}, and if uy, vy were the extreme
terms in X, a0y, SiY, iy are extreme terms in the respective subproofs.
E = {s17 & t17,..., 8,7 & tpy}. The sum of the lengths of the subproofs
is equal to the length of the original subproof of uy & vy, but X, (|s;v| +
[ta]) < Juy] + o]
Let (m, n, o0, p) be the measure of the goal before Decomposition and (m',n', o', p')
after Decomposition. m' = m, n’ =n and o' < o.

2. Assume that u and v are as in case 1. Assume also that there is a step at
the root in Xyyapy-
Yuy~vy has the form: uy ~ -+ & w; R snpy] Wit1 & -+ X vy, Let us
choose i in such a way, that this is the rightmost root step in this subproof
and assume that ¢ is not a variable.
Then there is no root step between w;;1 and v7. Since the ¢’th step is at
the root position, sy = w; and ¢ty = w;41. Since there is no step at the root
between ¢y and vy, and ¢ is not a variable, t and v must have the same root
symbol and thus we can at once decompose them, obtaining possible empty
set of equations: ¢; ~ vy,...,t, & v,, such that for each i € {1,...,n},
t;v & v;y has a subproof in IT, and moreover t;7, v;y are extreme subterms
in their respective subproofs. Hence in this case Mutate is applicable, and
we see that F | {uy & sy, t1y R 017, ..., tpy R vy}
Let (m,n,o0,p) be the measure of the goal before Mutate and (m’,n’,o’,p")
after Mutate. m’ =m and n' < n.

3. Assume that v and v are the same as in case 2, but now ¢ is a variable. In
this case Variable Mutate is applicable.
As in the previous case we see that: E = uy ~ sy and F | ty ~ vy. Both
uy = sy and ty ~ vy have subproofs in IT, and Y~ is a subproof asso-
ciated with ¢v.. Solve ¢ in ((IT,v),U) gives us a new E-equivalent solution,
(II',~"), such that IT’" is an equational proof of the goal G.
Since t is a system variable used in a root step sy = tv, beside tv, t may
appear only in s7v. Hence solving ¢ does not changes subproofs of IT for
any of the other equations in the goal. Only X~y is affected. Therefore
E = ({u = s[t — v]}UG1)7" and all equations in the new goal have subproofs
in IT'. Hence we assume (II',v") as our new actual solution.
Let (m,n,o0,p) be the measure of the goal before Variable Mutate and
(m/,n',0',p') after Variable Mutate. m’ < m.

4. Assume that u is a variable z, v is not a variable and xz € Var(v), hence v
can be written as v[z]q, ... [2]a, - In this case Cycle applies eagerly.
Let Yonofala, .. [2]a, ~ D€ @ subproof in IT of a7y = v[z]a, .. [2]a, V-
Since x has an occurrence in v[z]a, . .. [7]a, 7, the subproof Yo e, . fe]a, ~
must have length greater than 0.
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(a) Assume that there is a step at the root in ¥

zyRv[z]ag - [Tla, V"

Notice that in this case, since v is not a variable, if zy is chosen in Solve
x in ((IT,7),U), then case 2 applies, because IT is flat at any occurrence
of x in v. Notice also that there are no irrelevant subterm variables for
x7. Hence the effect of Solve is just a removal of = from U.

L mv[@]ay - [ an 7 has the form: zvy &+ R w; R suty] Wit1 X 0 R
v[x]a, - - - [%]a,y- We choose ¢ in such a way, that this is the rightmost
root step in this subproof. Obviously, E |= ({z ~ s,t =~ v} U G)y and
each of these equations has a subproof in IT.

If (IT',~") is obtained by Solve, we have a set of unsolved variables U’ =
U- {x} We change our actual solution to (IT",~") = (II'[x — z,7'[z —
z]), where z is a new variable, added in Dom("), in such a way that
v =z 2v']. Now U" =U"U{z}.

Notice that this renaming of z is needed here only in order to keep
one Cycle rule for all relevant cases. Notice also that although Solve
decreased the measure for the goal under solution (I1’,4"), but since we
renamed x with a new unsolved variable in (IT"”,~"), (IT",~") has the
same multiset of paths as (I1,7) and in fact it is a renaming of it.
EE({zrz,zrst vz z]}UG[z — 2])7"” and all these equations
have subproofs in IT"”. Except for the renaming nothing can change in
II". Hence Y. nylz].,, . [2lan~ 18 just a renaming of Zoyxue)., . [2]a, v
with the same step at the root sy" ~ tv".

i. Assume that t is not variable. Since v is not a variable either and
there is no step at the root between ¢ty and v[z — z]y’, v =
f(’l}l,...,’l)n) and t = f(tl,,tn) and F |= ({tl ~ Ul,...,tn ~
v 1)y, where all of these equations have subproofs in IT"”.

This is exactly what we need because in this case M (z = v[2]a, - - [2]a,) =

{z ~s,t1 ®vy,...,t, & vy}, where {t; ® vy,...,t, & v,} is an ef-
fect of decomposing t ~ v[z]q, - - - [Z]a, -

Hence if G — G’ by Cycle, and E = G7, then E |= Gv" and
v =7"[Var(G)].

Let (m, n, 0, p) be the measure of the goal before Cycle and (m',n’, o', p’)

after Cycle. m" = m and n’ < n.

ii. Assume now that t is a variable. Then M(z =~ v[z]a, ---[2]an)
{z & s[t = v[z]ay ---[Z]an ]}
As in the previous case, we know that £ | ({z ~ 2,z ~ s,t =
flor,...,v,)7"}, where x = z is solved and all of these equations
have subproofs in IT"”, such that the respective terms are the extreme
terms of these subproofs Also if E = Gy, then also E = G|z —
z]y", where G1 = G\{z = f(v1,...,v,)}.
Since t is a system variable used in the step sy &~ ty"', then besides
tv", t may only appear in sv" in the goal. Solve ¢ in ((II",~"),U")
(case 1 applies) with ¢y" the chosen maximal occurrence of ¢, yields
an equivalent solution (II",~"") with ¢ removed from U". Notice
that we don’t need to keep the equation ¢t ~ f(vi,...,v,) in the
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goal, because t is not in the set of goal variables, and hence we don’t
need it in the solved form of G in order to define a solution.
EE({zrz,zas[t— f(vr,...,0,)]}7"} and ¢ is eliminated from
the goal. vy =g 4"".

Let (m, n, 0, p) be the measure of the goal before Cycle and (m',n’, o', p’)
after Cycle. m' < m.

(b) Now, let assume that there is no step at the root in DO E P I I
Notice that for each occurrence of = at position «; in v[z]a, ... [T]a, 7,
there must be a step at a position higher, equal or lower than «a;, because
otherwise zy would have to be syntactically identical with its subterm.

i. Assume that the proof IT is flat at all positions of z in v[z]a, - . . [#]a, V-
Hence we know that for each occurrence of z in v[z]a, .- . [Z]a, 7,
there is a subterm v; at a position 8; in v[z]q, ...[Z]a, 7, such that
there is a step in the subproof at this position and z occurs in v;.
We know also that 5, # €, because we assumed that there is no step

at the root.
Let us choose for each occurrence of x in v[x]q, ... [Z]a, 7 highest 5
for which there is such a subterm in v[x], ...[2]a, 7 and there is a

step at this position in the subproof.

Then the subproof Y eymvlt]a, - [2]a, CAL be viewed a composition

of subproofs ¥y ... Y, embedded at parallel positions, 31,..., B, of
xy.

Notice also that there must be at least one step at the root in
each of the subproofs. In Cycle, we are guessing the right positions
Bi,. .., Bk. Hence v[x]q, ... [*]a, v can be presented as v[vi]s, . - . [k]s,7-
We know that Solve z in ((I1,~),U), case 2 applies. It yields ((I1',~"),U")

with z and subterm variables irrelevant for zy solved. In IT’, Dy vl ], el

is such that 2v' = v[z1]s, ... [¥k]s, 7', Where z1,..., 2 are subterm
variables defined for subterms of zv at positions (i, ..., i respec-
tively.

It is then obvious that E |= ({x =~ v[z1]s, ---[zk]s, } U Ule{ﬂ%‘ ~
v;} U G)y'. Moreover, for each ;v ~ v;y there is a subproof ¥; in
IT" with at least one step at the root. We choose the rightmost such
step in each Y;. We know also that v; is not a variable, because the
proof IT was flat at each occurrence of x and v; contains at least one

occurrence of x. Let v; = f(v],...,v},).

Hence each such ¥; has the form 279/ & -+ & w; R[¢ snt,4] Wit1 R
-& f(vi,...,v,)7, where there are no steps at the root between

ty' = wiy1 and f(vy,... )7

Depending on whether ¢ is a variable or not, M (z; = f(v],...,v..))

yields {z; = s,t1 & v},...,tym = v}, when t = f(t1,...,ty) and

{z; ~ s[t — f(v1,...,0)] in the case where ¢ is a variable.

Here again we have to analyze both these cases separately.

If ¢ is not a variable the analysis similar to that in point 2 of this proof

!

assures us that E = M(x; =~ f(v,...,v],))7y" and each equation in

M(z; = f(vy,...,v,)) has a subproof in IT" such that it’s terms are



24

5.

extreme terms in this subproof are extreme terms of a given equation.

Now, if t is a variable, as in point 3, we change our actual solution
for the goal to (II",~") with ¢ solved, given by Solve ¢ in (II',%").
At each such step the set of lengths of proper paths is decreased.
Hence if (m,n,o,p) is the measure of the goal before Cycle and
(m/,n',0',p') after Cycle. m’ < m.
ii. Assume now that there is a position «; in v[z]q, ... [2]a, v such that
IT is not flat at z+% at this position. If 27y is chosen for Solve x in
((I1,7),U), it gives us a new, E-equivalent solution (II',4") such that
the subproof D R P ) I 7" has a step at the root.
Then the analysis of case 4.4(a)i of this proof applies and if (m, n, o, p)
is the measure of the goal before Cycle and (m’,n’, o', p') after Cycle,
m' < m.
Assume that v is a variable and w is not a variable. Then Orient applies
eagerly. Obviously, Orient preserves the set of F-unifiers for u ~ v. Let
(m,n,o0,p) be the measure of the goal before Orient and (m',n’, o', p") after
Orient. m' < m,n’ <n,o’ <oandp < p.

. Assume that z =~ v was selected for an inference and = ¢ Var(v). In this

case Variable Elimination applies eagerly.

Then E = 27y & vy and there is a subproof Xy a,+ in the proof IT such that
z7v and vy are the extreme terms of Y, ~,+ and hence this is the subproof
associated with z+y. If x is unsolved in the goal G, z is also unsolved in IT.
Solve x in (I1,7), if x is chosen as the maximal occurrence of z, yields a
new, E-equivalent solution (I7',4") with x no longer U’.

Since E |= G, also E = Gv' and (II',+') is the proof of G7'. We change the
actual solution to (IT',4’) and take it as the basis of completeness argument
of further inferences. Since zv' = vy, E E Gi[x — v]y/, where G; =
G\{z ~ v} and because of extension, all equations in this part of the goal
have subproofs in IT’.

Let (m,n,o0,p) be the measure of the goal before Variable Elimination and
(m/,n',0',p') after Variable Elimination. m' < m.

. Assume that v and v are occurrences of the same variable x. Since a non-

redundant proof of xy ~ xv has length 0, we can get rid of this equation in
the goal by eagerly applying Trivial.

Let (m,n,o0,p) be the measure of the goal before Trivial and (m/',n’,o’,p")
after Trivial. m' =m, n’ =n and o' < o.

Let us look at one more example of application of Cycle.
Let E = {c~d,gy =~ f(gy,c)} and the goal is G = {z ~ f(z,d)}.

Let IT = {f(ga7 C) %[<1>,gy%f(gy,c),[y>—>a]] f(f(gavc)v C) z[<2>,c%d,[]] f(f(ga7 C)vd)}

with v = [z — f(ga,c),y = a,z1 — ga,xo = ¢,x3 — a]. 1, T2, 3 are subterm
variables for x-y.

Since IT is not flat at 22, the construction behind the Cycle will change our

actual solution to (II',7") such that
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mn' = {ga z[e,gyzf(gy,c),[y»—)a]] f(gavc) z[<2>,c%d,[]] f(gaad)} with 7, = [x =
ga,y — a,x1 — a,z — z7y']. 21 is a subterm variable for 27" and z is additional
variable, renaming of z.

Notice that there is a step at the root in II', and thus II’ justifies the con-
clusion of Cycle: {z ~ 2} UM (z = f(z,d)) ={z =2} U{z =~ gy,z =~ gy,d =~ c}.

7 Conclusion

We have proved that the goal-directed procedure based on inference rules in
Figure 3 and an arbitrary selection function is complete.

In contrast to the proof of completeness of Gallier and Snyder’s Lazy Paramod-
ulation, we did not take a detour through a possibility of unfailing completion
of a theory E, assumption that there is a solution with a reduced substitution
for the variables in the goal and then showing that our rules can simulate the
inferences in a completed E as it is done in [3].

In the case of collapsing goal equations, Solve allows us as if to “reduce”
the F-unifier for the goal only when we need it, but this is a different kind of
reduction than the one assumed in [3].

In general our proof uses a straightforward analysis of what happens in the
realm of equational proofs if one of our inference rules is applied without even
mentioning any ordering on ground terms substituted for variables, except for
the fact that we can reduce their size measured by number of symbols if we need
this. The possibility of proving our result without taking recourse to simulating
inferences in some other system, shows also that the selection function involved
in choosing equations for inferences, may be arbitrary and thus generates only
the “don’t care” kind of non-determinism. Our system is then strongly inde-
pendent of the selection rule. The weak independence of Gallier-Snyder’s Lazy
Paramodulation follows from proofs in [10], and can be proved straightforward
by the same analysis as in our paper.

The fact that we can use a similar style of proof in [8] and here shows that this
is a robust way of looking at properties of goal-directed E-unification systems.
We believe that it will enable us to search for more cases of decidable equational
theories and efficient practical applications of E-unification.
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