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Abstra
t. In this paper we improve a goal-dire
ted E-uni�
ation pro-


edure by introdu
ing a new rule, Cy
le, for the 
ase of 
ollapsing equa-

tions, i.e. equations of the type x � v where x 2 V ar(v). In the 
ase

of these equations some obviously unne
essary in�nite paths of infer-

en
es were possible, be
ause it was not known if the inferen
e system

was still 
omplete if the inferen
es were not allowed into positions of x

in v. Cy
le does not allow su
h inferen
es and we prove that the system

is 
omplete. Hen
e we prove that as in other approa
hes, inferen
es into

variable positions in our goal-dire
ted pro
edure are not needed.

1 Introdu
tion

E-uni�
ation problems appear when one has to de
ide or �nd solution to an

equation between �rst-order terms or a set of su
h equations modulo an equa-

tional theory. Preferably, we would like to have a pro
edure whi
h would be able

to enumerate all possible solutions, or a set of most general ones. Alas, this prob-

lem is in general unde
idable. But trying to solve su
h problem by brute for
e,

e.g. using axioms of 
ongruen
e relation and Resolution, would produ
e an in-

�nitely many useless inferen
es even in de
idable 
ases. E-uni�
ation problem is

in general semi-de
idable, and there exist 
omplete semi-de
ision pro
edures to

solve it. In view of the unde
idability, inventing new, better pro
edures for a gen-

eral E-uni�
ation, have an important pra
ti
al aim: to understand the problem

to su
h a degree, as to be able to distinguish useful 
ases of de
idable equational

theories. [4℄, [5℄, [6℄ are examples of su
h results.

The result presented in this paper will hopefully open a way to dete
t even

more de
idable equational theories, be
ause the improvement presented here for

an E-uni�
ation pro
edure redu
es in a dramati
 way the degree of a "don't

know" type of non-determinism involved. Namely, it prevents some unne
essary

in�nite sequen
es of inferen
es, whi
h were possible in our previous E-uni�
ation

pro
edure [7℄ in 
ase of 
ollapsing goal equations, i.e. the equations of type x � v,

x 2 V ar(v). The result presented in this paper may be stated as follows: in our

goal-dire
ted E-uni�
ation pro
edure, just as in some other, rival approa
hes,

inferen
es into variable position are not needed.
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Most of these other E-uni�
ation pro
edures used nowadays are based on

Knuth-Bendix 
ompletion of an equational theory, and narrowing of goal equa-

tions. We would like to argue, that a di�erent approa
h, goal-dire
ted, with the

improvements presented in this paper is in some 
ases better than the former.

In 
ontrast to the pro
edures based on 
ompletion, a goal-dire
ted approa
h to

E-uni�
ation 
onsists in transforming a set of goal equations, without 
hang-

ing an equational theory, E. Hen
e the goal-dire
ted approa
h is better, when


ompletion of E produ
es many equations that are unne
essary for solving a

given goal. Moreover, a goal-dire
ted approa
h does not require any ordering of

terms, whereas any pro
edure based on 
ompletion is sensitive to a 
hoi
e of

an order. Nevertheless up to now, this approa
h demanded some inferen
es into

variable positions, whi
h generated mu
h of a troublesome, \don't know" kind

of non-determinism.

A goal-dire
ted E-uni�
ation pro
edure was �rst presented by Gallier and

Snyder in [2℄. Alas, they 
ould not su

eed in proving the 
ompleteness of their

system. The diÆ
ulty lay in justifying eager appli
ations of Variable Elimination

(Fig. 1). In [8℄ we have �nally proved that their system is in fa
t 
omplete. Please,

look up [9℄ for the details of the proof.

In [3℄, Gallier and Snyder repla
ed eager appli
ations of Variable Elimination

with Variable De
omposition (Fig. 1), 
alled by them Root Imitation there, and

Root Rewriting, whi
h is in fa
t our Mutate and Variable Mutate (Fig. 1). They

noti
ed at on
e three main drawba
ks of this system. First, \the possibility of

rewriting variables in Root Rewriting", se
ond, having to solve variable-variable

equations (equations of the type x � y) and third, \the potential for in�nite

re
ursion" in the Root Imitation if we have to solve an equations of the type

x � v and x o

urs in v. (
f. [3℄, p. 233).

In [7℄, we have proved that there is really no need to bother with solving

variable-variable equations, sin
e they 
an be dealt with by te
hniques of syn-

ta
ti
 uni�
ation after all other equations are solved.

In view of per
eived diÆ
ulties, in [3℄, Gallier and Snyder presented a di�erent

goal-dire
ted inferen
e system, namely the one based on Lazy Paramodulation

inferen
e rule. Lazy Paramodulation has the following form:

fu � vg [G

fu

1

� s

1

; : : : ; u

n

� s

n

; u[t℄

�

� vg [G

where fu � vg [ G is a set of goal equations, f(s

1

; : : : ; s

n

) � t is a renaming

of an equation in an equational theory E (f(s

1

; : : : ; s

n

) � t 2 E) and uj

�

=

f(u

1

; : : : ; u

n

) or

fu � vg [G

fuj

�

� x u[t℄

�

� vg [G

where x � t 2 E and uj

�

is not a variable, (
f. [3℄, page 242).

This presentation 
orresponds to assuming that the leftmost, highest step

in a proof of u� � v� is at position �, where � is an E-uni�er of u � v. In

this paper, we have a di�erent approa
h, i.e. we look for the rightmost step
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in a proof. Apart from this, our Mutate and Variable Mutate is exa
tly Lazy

Paramodulation when � = �.

In fa
t, Gallier and Snyder 
onje
ture, that their system is still 
omplete if

Lazy Paramodulation is restri
ted so that it applies only when either � = � or

one of u, v is a variable (
f. [3℄, page 247).

The reader 
an view the result presented in our paper, as proving their 
on-

je
ture in the 
ontext of our system with Variable Elimination eagerly applied.

we introdu
e a new rule, Cy
le, whi
h 
an be viewed as Lazy Paramodulation

with De
omposition on equations of the form x � v, where x o

urs in v. More-

over, we don't need Lazy Paramodulation for other equations of the form x � v,

be
ause for them we use Variable Elimination eagerly.

We use a similar kind of analysis of equational proofs whi
h enabled us also to

prove 
ompleteness of the inferen
e system with the rule Variable Elimination

eagerly applied in [8℄. We are using a similar, though simpli�ed, de�nition of

paths and a new transformation on equational proofs to justify our new Cy
le

rule. We use a smarter way to 
ount paths.

The plan of the paper is the following: after preliminary de�nitions whi
h

des
ribe properties of equational proofs, we present the inferen
e rules for a

pro
edure solving E-uni�
ation problems. Next we will present and explain op-

erations on equational proofs and a pro
edure Solve whi
h given a solution, yields

an E-equivalent solution for a goal. Then we will prove that a new solution must

be smaller than the old one in some respe
t. Hen
e, we will de�ne a measure

of a goal with an E-solution, whi
h is de
reasing with an inferen
e rule of E-

uni�
ation pro
edure with a new Cy
le rule, applied to a goal and thus enables

us to prove the 
ompleteness of our pro
edure.

2 Preliminaries

Reader should 
onsult [1℄ for standard de�nitions of term, ground term, substi-

tution, ground substitution, position in a term, subterm. If t is a term, and p

a position de�ned in this term, t[s℄

p

means a term t with a subterm s at posi-

tion p. Furthermore, t[s

1

℄

p

1

: : : [s

n

℄

p

n

means a term t with subterms s

1

; : : : ; s

n

at

parallel positions p

1

; : : : ; p

n

.

We will 
onsider equations of the form s � t, where s and t are terms.

Throughout this paper these equations are 
onsidered to be oriented, so that

s � t is a di�erent equation than t � s. Let E be a set of equations, and u � v

be an equation, then we write E j= u � v (or u =

E

v) if u � v is true in any

model 
ontaining E. We 
all E an equational theory, and assume that E is 
losed

under symmetry. A goal (E-uni�
ation problem) is usually denoted by G and it

is a set of equations. E j= G means that E j= e for all e in G.

We will be 
onsidering ground terms as ground obje
ts that may or may

not have the same synta
ti
 form. In other words we will be 
on
erned with the

o

urren
es of the terms more than their values. A term may be identi�ed by

its address in a proof sequen
e and a position of it as a subterm in a term in the

proof. Hen
e the equality sign between ground terms is treated in a spe
ial way.
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If u; v are ground terms, by u = v, u is understood to be an obje
t identi
al with

v, whereas when synta
ti
 equality is suÆ
ient, it will be denoted by u == v.

Synta
ti
 inequality will be denoted by u 6== v. The di�eren
e between identity

and synta
ti
 identity is that the �rst involves obje
ts and the se
ond involves

names.

We 
an say that a variable x points to its o

urren
es in a term u, where ea
h

of these o

urren
es under some ground substitution 
, is a subterm of u
 at a

position � (x
 = u
j

�

). Di�erent o

urren
es of the same variables are di�erent

obje
ts, though they have the same synta
ti
 form (ea
h one is of the form x
).

In order to distinguish between di�erent o

urren
es of the same variable, we

will use supers
ript numbers, usually numbering the o

urren
es from left to

right in order of their appearan
es in an equational proof. Hen
e x


1

and x


2

are di�erent o

urren
es of x in a proof.

Sometimes we will want to state that some subterm has a form (or value) of

x
, but is not identi
al to x
 (hen
e is not pointed to by a variable x). This will

be indi
ated by quote marks. Hen
e w[\x
"℄

�

is di�erent from w[x
℄

�

sin
e in

the se
ond term x
 a
tually o

urs at position �, while in the �rst one there is

only a subterm that has the value of x
.

If 
 is a ground substitution, 


x

means the restri
tion of this substitution to

a variable x. Hen
e if 
 = [x 7! a; y 7! b; z 7! 
℄, 


x

= [x 7! a℄.

E-uni�
ation problem is given as an equational theory E is a set of goal

equations G and we want to �nd a substitution 
 su
h that E j= G
. 
 is then


alled a solution. In the 
ompleteness proof of our pro
edure, we will assume that

there is a ground substitution 
 su
h that E j= G
. This is suÆ
ient in order to

show that the pro
edure 
omputes a 
omplete set of most general solutions for

G. But if su
h substitution 
 exists, there is a ground equational proof � for all

equations in G
. We de�ne here equational proof in a more 
lassi
 way than in

[8℄.

De�nition 1. (equational proof)

Let E be a set of equations. An equational proof of an equation u � v, where u

and v are ground terms, is a series of ground terms, � = (w

1

; w

2

; : : : ; w

n

), su
h

that:

1. u = w

1

, v = w

n

,

2. for ea
h pair (w

i

; w

i+1

) for 1 � i � (n� 1), there is an equation s � t 2 E

and a mat
her �, su
h that there is a subterm w

i

j

�

of w

i

and a subterm

w

i+1

j

�

of w

i+1

, and w

i

j

�

= s�, w

i+1

j

�

= t�.

We 
an write the equational proof as

u
 = w

1

�

[�

1

;s

1

�t

1

;�

1

℄

w

2

�

[�

2

;s

2

�t

2

;�

2

℄

: : : �

[�

n�1

;s

n�1

�t

n�1

;�

n�1

℄

w

n

= v


where u and v are not ne
essarily ground terms, but 
 makes them ground.

[�

i

; s

i

� t

i

; �

i

℄ indi
ates at what position �

i

is the mat
hing subterm, whi
h

equation from E was used (s

i

� t

i

), and how the variables in this equation were

substituted (�). Ea
h w

i

in the above sequen
e is 
alled a term in the proof,

as distin
t from any proper subterms of w

i

, whi
h are not 
ounted as terms
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in the proof. Sin
e an equational proof is a sequen
e of ground terms, we will

sometimes use the notation borrowed from that for arrays, and � [i℄ will mean

the i'th term in � .

Sin
e every mat
her at ea
h step uses a renamed version of an equation

from E, the domain of the mat
her is disjoint from the domain of 
 and the

domains of mat
hers at all other steps in the proof, we extend 
 to 


0

su
h that:




0

= 
 [�

1

[ : : :[�

n

. From now on we will assume that 
 is an extended version

of itself.

For the purposes of the 
ompleteness proof in Se
tion 6, we have to extend


 even more. We de�ne general extension of 
.

De�nition 2. (general extension of 
)

Let 
 be a ground substitution. A general extension of 
, ex(
), is de�ned re
ur-

sively as follows:

1. if 


x

= [x 7! v℄ and jvj = 1 (v is a 
onstant), then ex(


x

) = 


x

,

2. if 


x

= [x 7! f(v

1

; : : : ; v

n

)℄, and n � 1, then let 


y

i

= [y

i

7! v

i

℄, for

1 � i � n, and ex(


x

) = 


x

[ ex(


y

1

) [ � � � [ ex(


y

n

),

3. ex(
) =

S

x2Dom(
)

ex(


x

)

From now on we 
onsider 
 in (�; 
) as the general extension of itself.

We have 3 kinds of variables now: the variables in a goal equation u � v,


alled goal variables, the variables in V ar(s

i

� t

i

), where there is a step in

� , � [i℄ �

[�;s

i

�t

i

;
)℄

� [i + 1℄, 
alled system variables, and variables introdu
ed

in general extension of 
, 
alled subterm variables.

For ea
h of the o

urren
es of these variables we de�ne orientation. Let u � v

be a goal equation. If x
 is an o

urren
e of a goal variable in u, then this x


has right orientation (

!

x
), if x
 is an o

urren
e of a goal variable in v, then

this x
 has left orientation (

 

x
), if x
 is an o

urren
e of a system variable in

� [i℄ �

[�

i

;s

i

�t

i

;
℄

� [i+1℄ and x
 o

urs in � [i℄, then this x
 has left orientation

(

 

x
), and if x
 o

urs in � [i + 1℄, then this x
 has right orientation (

!

x
), if

x
 is a subterm variable o

urren
e, hen
e x
 = y
j

�

, then it has the same

orientation as y
.

�

w�w

0

is a subproof in a proof � , if there is a part of � : � [i℄ �

[�

i

;s

i

�t

i

;
℄

� [i+ 1℄ �

[�

i+1

;s

i+1

�t

i+1

;
℄

� � � �

[�

i+k

;s

i+k

�t

i+k

;
℄

� [i+ k℄, su
h that for i � j �

i + k, �

j

� � or �

k

jj�, and �

w�w

0

is � [i℄j

�

� � [i + 1℄j

�

� � � � � � [i + k℄j

�

where w = � [i℄j

�

and w

0

= � [i+ k℄j

�

.

In a subproof �

w�w

0

we 
an distinguish internal and external variables. A

variable y is 
alled internal in �

w�w

0

if y 2 V ar(s � t), and there is a step

w

i

�

[�;s�t;
℄

w

i+1

in �

w�w

0

.

We will use renamings of subproofs in the paper, but noti
e that renaming

of a subproof is a subproof in whi
h only internal variables are renamed.

With ea
h o

urren
e of a variable x
 in an equational proof, we asso
iate a

subproof (
alled a subproof asso
iated with x
), whi
h is the longest subproof

starting with x
 and going in the dire
tion of the orientation of x
. The ground

term at the end of the subproof asso
iated with x
 is 
alled a term asso
iated

with x
, ass(x
).
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If we have a ground term w and a proof � of the form w

1

�

[�

1

;s

1

�t

1

;
℄

w

2

�

[�

2

;s

2

�t

2

;
℄

: : : �

[�

n�1

;s

n�1

�t

n�1

;
℄

w

n

, and wj

�

== w

1

, for some position �

in w, then we 
an 
onstru
t new equational proof�

0

of the form: w[w

1

℄

�

�

[��

1

;s

1

�t

1

;
℄

w[w

2

℄

�

�

[��

2

;s

2

�t

2

;
℄

: : : �

[��

n�1

;s

n�1

�t

n�1

;
℄

w[w

n

℄

�

. We 
all this 
onstru
tion

embedding of the proof � in the term w.We 
an atta
h a proof �

0

to a given

equational proof � by embedding it into the last term of � , if the 
onditions

of the de�nition are met. Then the new proof obtained in this way is 
alled a


omposition of � and �

0

.

We de�ne a non-redundant equational proof as any proof � su
h that there

are no two terms � [i℄ and � [j℄, with i 6= j and � [i℄ == � [j℄ in � , and all

proper subproofs of � are non-redundant.

A simple pro
edure of 
utting out loops out of subproofs in a proof allows us

to obtain a non-redundant proof from any redundant one. We 
all this 
ontra
-

tion. From now on, we will assume for all the equational proofs we are going to

talk about that they are non-redundant. This property will be preserved in all

the 
onstru
tions whi
h will be de�ned in the paper.

Sin
e ea
h ground solution 
 for a goal G in an equational theory E is always

asso
iated with some equational proof � whi
h is a witness for the solution, we

will talk rather about a pair (�; 
) than about 
 alone as a solution for a goal.

3 Transformation Rules

In this se
tion we present the inferen
e system for solving an E-uni�
ation prob-

lem in any equational theory E. Any pro
edure based on these rules must be

non-terminating in some 
ases, be
ause the problem is in general unde
idable.

In [8℄ we have proved that the set of rules presented in Figure 1 (with slightly

di�erent formulation of Variable Mutate) is 
omplete. An arbitrary sele
tion

fun
tion sele
ts an equation u � v from the set of goal equations for an inferen
e.

De
omposition applies if both u and v are not variables and have the same

root symbol. Mutate applies if there is an equation s � t in E, su
h that t is

not a variable and the root symbol of t is the same as root symbol of v (hen
e

v must not be a variable). Variable Mutate applies if there is an equation

s � x in E and v is not a variable. If v is a variable, and u is not, then Orient

applies. Variable Elimination applies if u is a variable and u does not o

ur

in v. Noti
e that Variable Elimination is applied eagerly to su
h an equation,

be
ause there is no other rule appli
able in this situation. If u and v are identi
al

variables then Trivial deletes this equation from the goal.

If an equation of the form x � v is sele
ted, v is not a variable and x 2 V ar(v),

then we have a 
hoi
e.Mutate applies, if s � t 2 E su
h that root symbols of v

and t are the same, or Variable Mutate applies, if s � x 2 E, or we 
an apply

Variable De
omposition.

Variable De
omposition may lead immediately to in�nite sequen
es of infer-

en
es, as in the following simple example:
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De
omposition

ff(s

1

; � � � ; s

n

) � f(t

1

; � � � ; t

n

)g [G

fs

1

� t

1

; � � � ; s

n

� t

n

g [ G

where f(s

1

; � � � ; s

n

) � f(t

1

; � � � ; t

n

) is sele
ted in the goal.

Mutate

fu � f(v

1

; � � � ; v

n

)g [G

fu � s; t

1

� v

1

; � � � ; t

n

� v

n

g [G

where u � f(v

1

; � � � ; v

n

) is sele
ted in the goal, and s � f(t

1

; � � � ; t

n

) 2 E.

a

Variable Mutate

fu � f(v

1

; � � � ; v

n

)g [G

fu � s[x 7! f(v

1

; � � � ; v

n

)℄g [G

where s � x 2 E, x is a variable, and u � f(v

1

; � � � ; v

n

) is sele
ted in the goal.

Variable Elimination Orient

fx � vg [ G

fx � vg [G[x 7! v℄

ft � xg [ G

fx � tg [ G

where x 62 V ar(v) where x is a variable.

and t is not a variable.

Variable De
omposition (for 
y
le)

fx � f(t

1

; � � � ; t

n

)g [ G

fx � f(x

1

; � � � ; x

n

)g [ (fx

1

� t

1

; � � � ; x

n

� t

n

g [ G)[x 7! f(x

1

; � � � ; x

n

)℄

where x is a variable, x � f(t

1

; � � � ; t

n

)

Trivial

fx � xg [G

G

where x � x is sele
ted in the goal.

a

We assume that E is 
losed under symmetry.

Fig. 1. E-Uni�
ation with eager Variable Elimination
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x � fx

x � fx

1

x

1

� fx

1

.

.

.

We need to break the sequen
e of Variable De
ompositions applied to the

rightmost equation by applying Mutate or Variable Mutate, but we don't know

when, after how many steps, we should do it. Hen
e at this point non-termination

of our pro
edure does not depend only on semi-de
idability of an equational

theory, but also on properties of the inferen
e rules.

Therefore we want to repla
e Variable De
omposition, Mutate and Variable

Mutate applied to 
ollapse equations, by another rule 
alled Cy
le, whi
h will

not lead to su
h immediate in�nite paths of inferen
es. The rule is presented in

Figure 2.

Cy
le

fx � v[v

1

℄

�

1

� � � [v

k

℄

�

k

g [ G

fx � v[x

1

℄

�

1

� � � [x

k

℄

�

k

g [

S

k

i=1

fM(x

i

� v

i

�)g [G�

where x � v[v

1

℄

�

1

� � � [v

k

℄

�

k

is sele
ted in the goal, x 2

V ar(v[v

1

℄

�

1

� � � [v

k

℄

�

k

), ea
h v

i

is a non-variable term, whi
h 
ontains

at least one o

urren
e of x, � = [x 7! v[x

1

℄

�

1

� � � [x

k

℄

�

k

℄.

M(x � f(v

1

; : : : ; v

n

)) =

8

>

>

>

<

>

>

>

:

fx � s; t

1

� v

1

; : : : ; t

n

� v

n

g;

where s � f(t

1

; : : : ; t

n

) 2 E;

x � s[y 7! f(v

1

; : : : ; v

n

)℄;

where s � y 2 E and

Fig. 2. Cy
le Rule

Cy
le applies to a goal with an equation of the type x � v sele
ted, where

x 2 V ar(v). There are possibly many o

urren
es of x in v, hen
e v 
an be

written as v[x℄

�

1

� � � [x℄

�

l

, where �

i

is a position of i'th o

urren
e of x in v and

there are l o

urren
es of x in v. All these positions are parallel to ea
h other,

hen
e ea
h �

i

and �

j

is su
h that �

i

jj�

j

.
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For ea
h o

urren
e of x in v, we guess a subterm v

i

in v[x℄

�

1

� � � [x℄

�

k

at a

position �

i

, 
ontaining this x (hen
e �

i

� �

i

).

Hen
e v[x℄

�

1

� � � [x℄

�

l


an be represented as v[v

1

℄

�

1

� � � [v

k

℄

�

k

, where k � l,

be
ause we 
an guess a subterm v

i


ontaining more than one o

urren
e of x.

Cy
le is a ma
ro rule. One 
an view the e�e
t of Cy
le as de
omposing a

part of the term, by repeated appli
ations of the old Variable De
omposition

rule and Variable Elimination, whi
h would allow us to obtain a solved equation

x � v[x

1

℄

�

1

� � � [x

k

℄

�

k

and then performing Mutate or Variable Mutate on the

equations x

i

� v

i

obtained by this repeated Variable De
omposition.

The appli
ation of Mutate or Variable Mutate is represented by fun
tionM in

the de�nition of Cy
le. M returns a set of equations obtained from its argument

by Mutate or Variable Mutate, depending on the form of equation 
hosen from

E. Noti
e that only in the 
ontext of M , Mutate or Variable Mutate is applied

to an equation of the form x � v.

In other words, Cy
le performs Mutate or Variable Mutate at some position

de�ned in a given term v, while de
omposing symbols at higher positions. Sub-

terms of v whi
h do not 
ontain x (we 
an 
all them irrelevant for x) are still

inside the term v[x

1

℄

�

1

� � � [x

k

℄

�

k

with whi
h x is eliminated.

Repla
ing Variable De
omposition, and Mutate and Variable Mutate as ap-

plied to 
y
li
 equations by Cy
le, redu
es nondeterminism of our pro
edure.

We have only �nitely many positions in v to guess. Hen
e e.g. in our previous

example we would have to try only two appli
ations of Cy
le.

Mutate at root symbol of v (hen
e we guess that v[v

1

℄

�

), s � f(t) 2 E:

x � fx

x � x

1

x

1

� s t � x

1

Mutate at vj

1

, s � f(t) 2 E:

x � fx

x � fx

1

x

1

� s t � x

1

In another example, where x � fgx is our goal and a � gb is in E, we have

no 
hoi
e, but to apply Mutate inside the Cy
le rule at fgxj

<1>

:

x � fgx

x � fx

1

x

1

� a b � x

1

4 Operations on Equational Proofs

Before proving 
ompleteness of the inferen
e system with Cy
le for general E-

uni�
ation, we have to de�ne operations on equational proofs that 
an transform

su
h a proof into an E-equivalent equational proof. This means that if (�; 
) is
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an E-solution for a goal u � v, and we obtain (�

0

; 


0

) by one of these operations,

then 
 =

E




0

and (�

0

; 


0

) is also an E-solution for a goal u � v.

We will de�ne here two su
h transformations: extending and 
attening.

4.1 Extending a proof

If x
 is an o

urren
e of a variable in an equational proof � , and �

x
�v

is a

subproof asso
iated with this o

urren
e, then if x has no o

urren
es in v, we


an extend the proof in all pla
es where x has o

urren
es in � with the sub-

proof �

x
�v

. We 
all this operation extending equational proof with respe
t to

x
 � v. After this extension we get a new proof �

0

and a new substitution 


0

,

hen
e we write: (�; 
)

[x!v℄

�! (�

0

; 


0

). The formal des
ription of the operation of

extending a proof with respe
t to x
 � v is the following.

Let (�; 
) be an equational proof with 
 an extended substitution for this proof.

Let x
 be an o

urren
e of a variable in �, �

x
�v

a subproof asso
iated in �

with this o

urren
e of x and v does not 
ontain o

urren
es of x.

An equational proof �

0

is exa
tly as � with the following modi�
ations.

For ea
h a term w

i

in �, su
h that w

i

= w

i

[x


k

℄, for some o

urren
e of x in

�, do the following:

1. If x


k

has right orientation, repla
e w

i

with the following sequen
e of steps:

w

i

[v℄

�

� w

i

(�

0

v�\x
"

) � w

i

[\x
"℄

�

where w

i

(�

0

v�\x
"

) means that a renaming of �

\x
"�v

is reversed and em-

bedded in w

i

at position � leftwards. Note that the renamings of internal

o

urren
es of variables and new o

urren
es of external variables in the

renaming of �

\x
"�v

have reversed orientation in the new proof.

2. If x
 has left orientation, repla
e w

i

by the sequen
e of steps:

w

i

[\x
"℄

�

� w

i

(�

0

\x
"�v

) � w

i

[v℄

�

where w

i

(�

0

\x
"�v

) means that a renaming of �

\x
"�v

is embedded in w

i

at

position � rightwards. The renamings of internal o

urren
es of variables and

new o

urren
es of external variables in �

0

\x
"�v

preserve their orientation

in the new proof.

Contra
t any non-redundant subproofs in the obtained equational proof.

The substitution 


0

is then de�ned in the following way:




0

x

= [x 7! v℄,

if y
j

�

= x
, then 


0

y

= [y 7! y
[x


0

℄

�

℄,

if z 62 Dom(
), z is a renaming of a variable z

0

2 Dom(
), that appeared in

some �

0

x
�v

, then 


0

z

= [z 7! z

0


℄,

for any other variable u, 


0

u

= 


u

;
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4.2 Flattening a proof

We 
an 
atten an equational proof � in the following situation.

Suppose there is a subproof �

x

j


�x


in � , where x

j

is a subterm variable

of x
. Hen
e x

j


 is a subterm of another o

urren
e of x and �

x

j


�x


is a

subproof of �

x
[x

j


℄�v[x
℄

. We say that the proof � is not 
at at x
. Noti
e also

that then the length of �

x

j


�x


must be greater than 0, be
ause x
 
annot be

synta
ti
ally identi
al with its subterm.

We 
atten the proof � with respe
t to x
 in a re
ursive way:

1. extend � with respe
t to x
 � x

j


 ( i. e. (�; 
)

[x!x

j


℄

�! (�

0

; 


0

));

2. if there is a subproof �

x

j




0

�x


0

in �

0

, 
atten �

0

with respe
t to x


0

.

Flattening will always terminate. The reason is that in the new proof �

0

,




0

x

= [x 7! x

j


℄ and sin
e x

j

was a subterm variable for x
, jx


0

j < jx
j.

Let us see what exa
tly happens when � is extended with x
 � x

j


. Sin
e

x

j

is a subterm variable of x
, there is an o

urren
e of x, su
h that �

x

j


�x


is

a subproof of �

x
[x

j


℄�v[x
℄

in � .

At �rst extension 
hanges this subproof to the subproof of the form:

\x

j


" � (�

\x

j


"�\x
"

) � \x
[x

j


℄" � v(�

\x

j


"�\x
"

) � v[\x
"℄ �

v(�

\x
"�\x

j


"

) � v[\x

j


"℄

Noti
e that sin
e there is a subproof �

x

j


�x


in � , all steps in the subproof

�

x
[x

j


℄�v[x
℄

must be at or bellow position of x

j


 in x
[x

j


℄ (or position of x


in v[x
℄, whi
h is the same �). Hen
e x
[x

j


℄ == v[x

j


℄. The subproof therefore

will be 
ontra
ted and will have the following form:

\x

j


" � (�

\x

j


"�\x
"

) � v[\x

j


"℄

The term \x

j


" is x


0

in the new proof hen
e in fa
t this subproof is:

x


0

� (�

\x

j


"�\x
"

) � v[x


0

℄

Noti
e that this subproof has the same length as the original �

x
�v[x
℄

, but

this is not telling us anything about the length of the new equational proof,

whi
h in fa
t may in
rease in the pro
ess of 
attening in other pla
es where x

o

urs.

Nevertheless, 
attening must terminate, be
ause the term we substitute for

x in ea
h new proof is stri
tly smaller than the term in the previous proof.

In the end, the subproof �

x

j


�x


will have to disappear, be
ause x on the

right will have to appear at the lower position than the step in the subproof

�

x
�v[x
℄

is taken and this will prevent the subproof asso
iated with the x
 on

the right to rea
h a subterm of the x
 on the left. It is obvious that if jx
j = 1,

then there must be a step at the root in �

x
�v[x
℄

.

Let us look at a simple example. Let our equational theoryE be fa � fag and

our goal G be fx � fx; x � fffag. Let our E-uni�er be 
 = [x 7! fffa; x

1

7!

ffa; x

2

7! fa; x

3

7! a℄ where x

1

; x

2

; x

3

are subterm variables of x
, and the

equational proof be � = ffffa � ffffa; fffa = fffag.

If x � fx is sele
ted, � is not 
at at x


2

, be
ause x


2

� x

1


, (or fffa �

ffa). Flattening will pro
eed in the following stages:
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1. (�; 
)

[x 7!x

1


℄

�! (�

0

; 


0

). Extension will �rst 
hange the subproof fffa �

ffffa into ffa � fffa � ffffa � fffa and 
ontra
tion will shorten

it to ffa � fffa. Hen
e �

0

= fffa � fffa; ffa � fffag. 


0

= [x 7!

ffa; x

1

7! fa; x

2

7! a℄.

Still, �

0

is not 
at at x


02

, be
ause there is a subproof x


02

� x

1




0

, (or

ffa � fa).

2. (�

0

; 


0

)

[x 7!x

1




0

℄

�! (�

00

; 


00

). Extension will �rst 
hange the subproof ffa �

fffa into fa � ffa � fffa � ffa and 
ontra
tion will shorten it to fa �

ffa. Hen
e �

00

= ffa � ffa; fa � ffa � fffag. 


00

= [x 7! fa; x

1

7! a℄.

Still, �

00

is not 
at at x


002

, be
ause there is a subproof x


002

� x

1




00

, (or

fa � a).

3. (�

00

; 


00

)

[x 7!x

1




00

℄

�! (�

000

; 


000

). Extension will �rst 
hange the subproof fa �

ffa into a � fa � ffa � fa and 
ontra
tion will shorten it to a � fa.

Hen
e �

000

= fa � fa; a � fa � ffa � fffag. 


000

= [x 7! a℄.

Obviously, �

000

is 
at at x


0002

and there is a step at the root in the sub-

proof of x


000

� fx


000

. Flattening ends here, but noti
e that �

000

has length

4, whereas � had length 1. But noti
e also that the subproof a � fa �

ffa � fffa 
an be found in � in a form of 
omposition of subproofs:

x

3




1

� x

2




2

== x

2




1

� x

1




2

== x

1




1

� x


2

== x


3

. We will 
all su
h


omposition of subproofs a path and show that �

000

has the same set of paths

as � .

5 Solving variable in a proof

In the proof of 
ompleteness theorem, we assume that there is a solution for a

goal, hen
e for a given E { equational theory and G { a set of goal equations,

there is (�; 
), su
h that E j= G
 and � is an equational proof of G
 in E.

We will see that De
omposition, Mutate, Orient and Trivial preserve the

form of the solution, i.e. if one of these rules is the right rule to apply, then we


an assume that the proof of the new goal obtained by this rule is 
omposed

of subproofs of the previous one, with the same substitution and the same set

of variables involved, i.e. the same proof (or a set of subproofs thereof) and the

same substitution are the solution of a new E-uni�
ation goal.

In 
ontrast to this, Variable Elimination, Variable Mutate and Cy
le may


hange the form of assumed solution of the goal.Variable Mutate and Cy
le may


hange the form of a solution of the goal, be
ause they are ma
ro rules involving

Variable Elimination.

In order to re
e
t the transformations required by Variable Elimination and

Cy
le, we now de�ne a pro
edure Solve x in ((�; 
); U) whi
h takes as input a

solution for an E-uni�
ation goal, i.e. an equational proof and a substitution,

and a set of unsolved variables, and returns another solution E-equivalent to the

original one and a new set of unsolved variables.

In the following des
ription,we use the notions of maximal o

urren
e of a

variable and an irrelevant subterm variable, whi
h are de�ned now.
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De�nition 3. (maximal o

urren
e of a variable)

Let (�; 
) be a solution of a goal G, with a set of unsolved variables U , su
h that

U � Dom(
). Let x 2 U . An o

urren
e x
 of x is 
alled maximal in in � with

respe
t to U , if there is no o

urren
e, y
, of an unsolved variable y, su
h that

x
 appears in �

y
�t

, where �

y
�t

is a subproof asso
iated with y
.

De�nition 4. (subterm variable irrelevant for x
)

Let (�; 
) be a solution of a goal G, and x 2 Dom(
), x
 an o

urren
e of x

in �. Let �

x
�v

be a subproof asso
iated with this o

urren
e of x, su
h that v


ontains some o

urren
es of x.

A subterm variable x

i

de�ned for x
 is 
alled irrelevant for x
, if �

x

i


�v

i

is a subproof asso
iated with x

i


, and v

i

is not a subterm of v, or v

i

does not


ontain any o

urren
es of x.

We 
all x

i

a maximal irrelevant subterm variable for x
, if whenever x

i


 =

x

j

j

�


, for any position � 6= � and x

j

a subterm variable of x
, x

j

is not irrelevant

for x
.

Let us see an example illustrating the meaning of the previous de�nition.

Let our E = fb � 
; a � gf(a; b)g and G = fx � f(gx; 
)g.

Let� = ff(a; b) � f(gf(a; b); b) � f(gf(a; b); 
)g and 
 = [x 7! f(a; b); x

1

7!

a; x

2

7! b℄, where x

1

; x

2

are subterm variables for x
.

Then a

ording to the de�nition, x

1

is relevant for x


1

, but x

2

is irrelevant.

Noti
e that when Cy
le is applied to x � f(gx; 
), we get the following goal:

fx � f(x

1

; 
)g [M(x

1

� g(f(x

1

; 
))). Hen
e irrelevant subterm variables are

\solved" as if automati
ally in Cy
le.

Solve x in ((�; 
); U)

Let (�; 
) be a solution of a goal G. U � Dom(
), is a set of variables 
alled

unsolved. x is a variable in U , su
h that there is at least one maximal o

urren
e

of x, x
 in �. Choose an o

urren
e of x, x
 whi
h is maximal in (�; 
) with

respe
t to U . Let �

x
�v

be a subproof asso
iated with x
.

1. If x 62 V ar(v), extend � with �

x
�v

, (�; 
)

[x!v℄

�! (�

0

; 


0

).

Return (�

0

; 


0

) and U

0

, where U

0

= (U �fx; x

1

; x

2

; : : : ; x

k

g) [ (Dom(


0

)�

Dom(
)), where x

1

; : : : ; x

k

are all subterm variables de�ned for x
;

2. If x 2 V ar(v), and there is an o

urren
e of x, x


k

in v, su
h that the proof

� is not 
at at x


k

, then 
atten � with respe
t to x


k

. Let the result be

(�

0

; 


0

).

Rename variable x with a new variable z in (�

0

; 


0

), (�

0

; 


0

)[x 7! z℄. Re-

turn (�

0

; 


0

)[x 7! z℄ and U

0

, where U

0

= (U � fx; x

1

; x

2

; : : : ; x

k

g) [ fzg [

(Dom(


0

) � Dom(
)), where x

1

; : : : ; x

k

are subterm variables de�ned for

positions in x
 whi
h are no more de�ned for z


0

;

3. If x 2 V ar(v), and � is 
at at all o

urren
es of x in v, then for ea
h

subterm variable x

i

maximal irrelevant for x
 extend � with �

x

i


�v

i

.

Return the result, (�

0

; 


0

) and U

0

= (U � fx; x

1

; x

2

; : : : ; x

k

g) [ (Dom(


0

)�

Dom(
)), where x

1

; : : : ; x

k

are all subterm variables irrelevant for x
.
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Noti
e that by 
hoosing maximal o

urren
e of x, we are making sure that no

inner variables in �

x
�v

are solved before x. Sin
e these variables are renamed

in the pro
ess of extension, de�nition of U

0

would had to be somehow 
hanged,

if we had allowed to solve those variables �rst.(Should these new variables in U

0

be 
ounted as solved or not?) But fortunately, we 
an safely restri
t ourselves to

maximal o

urren
es of variables, sin
e only these o

urren
es are playing role

in Variable Elimination. Namely, if x is going to be eliminated from an unsolved

part of a goal, G, be
ause x � v 2 G, x
 must be a maximal o

urren
e of x in

an equational proof of this goal.

In order to use Solve in the 
ompleteness proof, we have to show in what

sense its result, ((�

0

; 


0

); U

0

), is smaller than its input ((�; 
); U). For this we

de�ne paths in an equational proof.

De�nition 5. (path starting with a variable o

urren
e, variables used in a path)

Let (�; 
) be a solution for a goal G, U a set of unsolved variables in Dom(
),

x 2 U and x
 a given variable o

urren
e in �. A path in � starting with x


is a 
omposition of subproofs, �

1

� � ��

n

, de�ned in a re
ursive way:

1. if �

x
�v

is an asso
iated subproof for x
, �

x
�v

is a path starting with x
;

2. (a) if �

1

� � ��

n

is a path in � starting with x

1


 with the last term of the

form v[x

n+1




k

℄, x

n+1

is an external variable in �

x

n


�v[x

n+1




k

℄

, and if

�

0

1

; : : : ; �

0

m

is a path in � starting with x

n+1




i

, and if no variable whi
h

is used in one path appears as not used in the other, then the 
omposition

�

1

� � ��

n

�

0

1

� � ��

0

m

is also a path in � starting with x

1


 and all variables

used in the �rst and se
ond path are used in this path;

(b) if �

1

� � ��

n

is a path in � starting with x

1


 and with the last term of the

form y
j

�

, and if �

y


k

j

�

�s

is a subproof in � and no variable whi
h is

used in one path appears as not used in the other, then �

1

� � ��

n

�

y


k

j

�

�s

is also a path in � starting with x

1


 and all variables used in the �rst

and se
ond path are used in the new path;

Noti
e that when Solve is applied to x in (�; 
; U), where x
 is a 
hosen

maximal o

urren
e of x and �

x
�v

is a subproof asso
iated with x
, some


ompositions of subproofs in � be
ome subproofs in �

0

. Sin
e x and possibly

some of its subterm variables are not in U

0

, we don't have paths starting with

these o

urren
es de�ned for �

0

any more. Noti
e also that there are no paths

in �

0

, whi
h represent the subproofs where x or some of its subterm variables

were used in extension in a di�erent way, i.e. with di�erent variable o

urren
e

and di�erent subproof used in extension.

Consider the restri
tion in the de�nition of paths to the external variables

in De�nition 5.2.2a. Noti
e that this restri
tion is just what we need in order to

a

ount for what happens in the proof when a variable is eliminated in the goal.

Namely, if by Mutate new variables are dis
overed in the goal, i.e. a step in an

equational proof is being explored, then these new variables appear as external

in all subproofs represented by the unsolved equations in the goal. If u � v is

in the goal, the variable o

urren
es in u
 have always opposite orientations to

those in v
.
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We want to show that when Solve x is applied to ((�; 
); U), a multiset of

lengths of paths in �

0

de�ned with respe
t to U

0

, where ((�

0

; 


0

); U

0

) is a result

of Solve x in ((�; 
); U), is smaller than the multiset of paths in � de�ned with

respe
t to U . In order to do this, we have to be 
areful with the way we 
ount

paths. Namely, if a shorter path is a 
ommon part of longer paths, we have to


ount it as separate for ea
h su
h longer path. In fa
t, sin
e paths are linear, it is

enough to 
ount separately o

urren
es of a path in
luded in di�erent maximal

paths. Hen
e we de�ne maximal and proper paths and prove that the set of

proper paths after solving a variable does not in
rease.

De�nition 6. (maximal paths) Let (�; 
) be a solution for a goal, and U a set

of unsolved variables in Dom(
). Let P be the set of all paths in � de�ned with

respe
t to U . Then M is a set of maximal paths if M = fp 2 � j for no q 2 �,

p is a part of qg.

Now we de�ne a set of proper paths.

De�nition 7. (proper paths)

Let (�; 
), U , P and M be as in the previous de�nition.

For ea
h p 2 M , we de�ne P

p

= f�j� is a 
opy of p or there is q 2 P su
h

that q is a part of p and � is a 
opy of qg.

A set PP is a multiset of proper paths for � de�ned with respe
t to U if PP

is a multiset union of P

p

, for all p 2M .

As an example of proper paths assume that the following subproofs are in

� : �

x

1


�v

1

[z


1

℄

, �

x

2


�v

2

[z


2

℄

, �

z


3

�s[y


1

℄

, �

y


2

�t

1

, �

y


3

�t

2

.

There will be the following maximal paths in � :

p

1

= �

x

1


�v

1

[z


1

℄

�

z


3

�s[y


1

℄

�

y


2

�t

1

,

p

2

= �

x

2


�v

2

[z


2

℄

�

z


3

�s[y


1

℄

�

y


2

�t

1

,

p

3

= �

x

1


�v

1

[z


1

℄

�

z


3

�s[y


1

℄

�

y


3

�t

2

,

p

4

= �

x

2


�v

2

[z


2

℄

�

z


3

�s[y


1

℄

�

y


3

�t

2

.

You 
an see that the subproof, whi
h is also a path, �

z


3

�s[y


1

℄

is repeated

in all of them. Hen
e a 
opy of this subproof will appear in P

p

1

; P

p

2

; P

p

3

; P

p

4

.

Similarly, 
opy of �

x

1


�v

1

[z


1

℄

�

z


3

�s[y


1

℄

will appear in P

p

1

and P

p

3

, and so on.

P

p

1

will 
onsist of the 
opies of the following paths:

�

x

1


�v

1

[z


1

℄

�

z


3

�s[y


1

℄

�

y


2

�t

1

;

�

x

1


�v

1

[z


1

℄

�

z


3

�s[y


1

℄

;

�

z


3

�s[y


1

℄

�

y


2

�t

1

;

�

x

1


�v

1

[z


1

℄

; �

z


3

�s[y


1

℄

; �

y


2

�t

1

.

We have to show that after Solve if extension applies, a multiset of lengths

of proper paths in �

0

de�ned with respe
t to the new set of unsolved variables,

U

0

, is not greater than the one de�ned for � with respe
t to U .

Lemma 1. Let (�; 
) be a solution for a goal, and U a set of unsolved vari-

ables in Dom(
), x
 is a maximal o

urren
e of x in �, and �

x
�v

a subproof

asso
iated with x
, su
h that 
ase 1 of the Solve x in ((�; 
); U) applies.
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Let ((�

0

; 


0

); U

0

) be a result of Solve in this 
ase, then ea
h proper path

de�ned for � with respe
t to U is a unique renaming of a path de�ned for �

0

with respe
t to U

0

.

Proof. Let p be a proper path de�ned for �

0

with respe
t to U

0

. Let p starts

with y


0

. Assume that p is maximal.

Assume that y 2 Dom(
). Then by de�nition of path and extension, there

is a path in � , p

0

, su
h that p is a renaming of p

0

and p

0

di�ers from p only in

this that p does not use o

urren
es of x or its subterm variables any more in

pla
es where these variable o

urren
es were used in p

0

.

If p

0

is maximal in � , then it is unique, maximal path starting with y
, and

then obviously only one path de�ned for �

0


an be a renaming of p

0

.

Now, if p

0

is not maximal in � , then p

0

must be a part of a maximal path, q,

starting with x


i

, for some o

urren
e of x in � . p

0

is part of q (p

0

2 P

q

). Even

if there may be many di�erent maximal paths starting with x


i

, there is only

one su
h path (q) that 
ontains p

0

, for otherwise p 
ould not be
ome maximal

in �

0

. Hen
e p is the only renaming of p

0

in �

0

.

Assume now that y 62 Dom(
) (p is maximal in �

0

). Then there is an inner

variable y

0

in �

x
�v

, su
h that y


0

is a renaming of y

0


. By de�nition of path

and extension, there must be a path in � , p

0

, starting with y

0


, su
h that p is a

renaming of p

0

. p

0

must be either maximal or a part of a path starting with x
.

If p

0

is maximal, it is a unique path in � , of whi
h p is a renaming. If p

0

is a part

of a maximal path q starting with x
. (q must be maximal, be
ause otherwise,

p would not be
ome maximal in �

0

.) Even if there may be many maximal paths

starting with x
, there will be only one 
ontaining p

0

and there 
an be only one

renaming of p

0

in �

0

.

Now assume that p is not maximal.

In this 
ase, p is a part of a maximal path q in �

0

and p 2 P

q

. Then there is

a unique (not ne
essarily maximal) path q

0

in � , su
h that q is a renaming of q

0

and p

0

is part of q

0

. From the previous argument we know that q

0

is unique for

q. Sin
e q

0

is unique, then p

0

must also be unique, hen
e there may be only one

renaming of p

0

in P

q

.

If in Solve 
attening applies, we have to prove that Solve does not in
rease

the set of paths in �

0

.

Lemma 2. Let (�; 
) be a solution for a goal, and U a set of unsolved vari-

ables in Dom(
), x
 is a maximal o

urren
e of x in �, and �

x
�v

a subproof

asso
iated with x
, su
h that 
ase 2 of the Solve x in ((�; 
); U) applies.

Let ((�

0

; 


0

); U

0

) be a result of Solve (with 
attening of �), then ea
h proper

path de�ned for � with respe
t to U is a unique renaming of a path de�ned for

�

0

with respe
t to U

0

.

Proof. Let there be an o

urren
e x


k

in v, su
h that � is not 
at at x


k

.

Flattening of � with respe
t to x
 must terminate. Hen
e we 
an use in-

du
tion on number of extensions used in this pro
ess. Assume therefore, that

(�

0

; 


0

); U

0

were obtained by extension from (�

00

; 


00

); U

00

. (�

00

; 


00

)

[x 7!x

i




00

℄

�!
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(�

0

; 


0

) where x

i




00

is an o

urren
e of subterm variable for x


00

, and �

x


00k

�x

i




00

is a subproof asso
iated with x


00k

. By indu
tion assumption we know that for

ea
h proper path in �

00

de�ned with respe
t to U

00

, there is a unique proper

path in � , de�ned with respe
t to U .

Assume that p is a proper path de�ned for �

0

with respe
t to U

0

.If p starts

with y


0

, where y is not x

1

, then the argument from the proof of the previous

lemma applies.

Hen
e assume that p starts with z


0

(whi
h is renamed x


0

). From the de�ni-

tion of extension and 
attening, we know that z


0

= x

i




00

, where x

i

is a subterm

variable in Dom(


00

) for x


00

.

Hen
e by the de�nition of path and extension, p is a renaming of a proper

path in �

00

, p

0

, whi
h starts with x

i




00

. The argument similar to the one used in

the proof of the previous lemma shows that p

0

is a unique su
h path, whi
h p is

a renaming of.

Lemma 3. Let (�; 
) be a solution for a goal, and U a set of unsolved vari-

ables in Dom(
), x
 is a maximal o

urren
e of x in �, and �

x
�v

a subproof

asso
iated with x
, su
h that 
ase 3 of the Solve x in ((�; 
); U) applies.

Let ((�

0

; 


0

); U

0

) be a result of Solve (with 
attening of �), then ea
h proper

path de�ned for � with respe
t to U is a unique renaming of a path de�ned for

�

0

with respe
t to U

0

.

Proof. Proof of this lemma is the same as that of Lemma 1, with a not that

p di�ers from p

0

in this that it does not uses o

urren
es of x
 or some of its

subterm variables in pla
es where p

0

had to use them. But some of the subterm

variables are still unsolved in �

0

.

Now we show that a
tually Solve x in (�; 
); U de
reases multiset of lengths

of proper paths in a new solution and hen
e we 
an take it as a measure for a

solution.

De�nition 8. (measure of a solution)

Let (�; 
) be a solution of a goal, and U a set of unsolved variables in Dom(
).

Let PP be a set of proper paths de�ned for � with respe
t to U .

The measure of the solution (�; 
) with U is M((�; 
); U) a multiset of

lengths of paths in PP .

Lemma 4. Let (�; 
) be a solution of a goal, and U a set of unsolved variables

in Dom(
). Let PP be a set of proper paths de�ned for � with respe
t to U . Let

x 2 U , be a variable with a maximal o

urren
e x
 in � 
hosen in su
h a way

that Solve x in (�; 
); U applies. Let (�

0

; 


0

); U

0

be a result of Solve and PP

0

a set of proper paths de�ned for �

0

with respe
t to U

0

. Then M((�; 
); U) >

M((�

0

; 


0

); U

0

).

Proof. Let �

x
�v

be a subproof asso
iated with x
 in � . If Solve applies when

x
 is 
hosen, we have 3 
ases to 
onsider. In the �st 
ase, when x 62 V ar(v), x

is no longer in U

0

, and by Lemma 1, all paths in PP

0

are renamings of unique
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paths in PP . But whereas at least one path starting with x
 is in PP , there is

no su
h path in PP

0

.

In the se
ond 
ase, x is repla
ed by z in U

0

. By Lemma 2, we know that

all paths in PP

0

are renamings of unique paths in PP . But sin
e z


0

is stri
tly

smaller than x
, some subterm variables of x
 are no longer in U

0

. Hen
e the

proper paths starting with these subterm variables will no longer be de�ned in

PP

0

.

In the third 
ase, where x 2 V ar(v), but � is 
at at all o

urren
es of x in

v, by Lemma 3,we know that all paths in PP

0

are renamings of unique paths in

PP . But x and possibly some subterm variables are no longer in U

0

, hen
e the

paths starting with these variable o

urren
es are no longer in PP

0

.

6 Completeness

We will prove 
ompleteness of the inferen
e system presented in Figure 3, where

M in a de�nition of Cy
le is de�ned by:

M(x � f(v

1

; : : : ; v

n

)) =

8

>

>

<

>

>

:

fx � s; t

1

� v

1

; : : : ; t

n

� v

n

g;where

s � f(t

1

; : : : ; t

n

) 2 E;

x � s[y 7! f(v

1

; : : : ; v

n

)℄;where s � y 2 E

Noti
e that now neither Mutate nor Variable Mutate is appli
able to an

equation of the type x � v. If su
h an equation is sele
ted, Variable Elimination,

Orient, Cy
le or Trivial applies and either of these rules applies eagerly.

This said, it must also be pointed out that there is a \don't know" type non-

determinism involved in an appli
ation of Cy
le, be
ause we don't know whi
h

is the right pla
e to \divide" the term on the right in a goal equation of the

type x � v if x o

urs in v. Nevertheless, we have only �nitely many positions

to 
hoose from.

We prove that in any equational theory E, a given goal G su
h that E j= G�,

may be transformed by appli
ations of rules in Figure 3 applied to equations

whi
h are not solved, into a solved form with whi
h we 
an de�ne an E-uni�er

more general than �. The solved form of an equation and of a goal is de�ned in

the following way.

De�nition 9. (solved equation and solved goal)

Let G be a set of equations. An equation x � t 2 G is in a solved form, if x is a

variable, x 62 V ar(t) and x 62 V ar(Gnfx � tg).

G is in a solved form if all equations in G are in solved form.

If G is in the solved form, then we de�ne a substitution �

G

= [x

1

7!

t

1

; : : : ; x

n

7! t

n

℄. Obviously, �

G

is the most general uni�er of G.

If G is a set of goal equations, an inferen
e performed on G with one of the

rules of Figure 3 is denoted by G! G

0

, where G

0

is the result of this inferen
e.

The transitive, re
exive 
losure of ! is written as

�

!.
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De
omposition

ff(s

1

; � � � ; s

n

) � f(t

1

; � � � ; t

n

)g [G

fs

1

� t

1

; � � � ; s

n

� t

n

g [ G

where f(s

1

; � � � ; s

n

) � f(t

1

; � � � ; t

n

) is sele
ted in the goal.

Mutate

fu � f(v

1

; � � � ; v

n

)g [G

fu � s; t

1

� v

1

; � � � ; t

n

� v

n

g [G

where u � f(v

1

; � � � ; v

n

) is sele
ted in the goal, u is not a variable and s �

f(t

1

; � � � ; t

n

) 2 E.

Variable Mutate

fu � f(v

1

; � � � ; v

n

)g [G

fu � s[x 7! f(v

1

; � � � ; v

n

)℄g [G

where s � x 2 E, x is a variable, u is not variable and u � f(v

1

; � � � ; v

n

) is

sele
ted in the goal.

Variable Elimination Orient

fx � vg [ G

fx � vg [G[x 7! v℄

ft � xg [ G

fx � tg [ G

where x 62 V ar(v) where x is a variable.

and t is not a variable.

Cy
le

fx � v[v

1

℄

�

1

� � � [v

k

℄

�

k

g [G

fx � v[x

1

℄

�

1

� � � [x

k

℄

�

k

g [

S

k

i=1

fM(x

i

� v

i

�)g [G�

where x � v[v

1

℄

�

1

� � � [v

k

℄

�

k

is sele
ted in the goal,

x 2 V ar(v[v

1

℄

�

1

� � � [v

k

℄

�

k

), ea
h v

i

is a non-variable term, whi
h 
ontains at

least one o

urren
e of x, � = [x 7! v[x

1

℄

�

1

� � � [x

k

℄

�

k

℄.

Trivial

fx � xg [G

G

where x � x is sele
ted in the goal.

Fig. 3. E-Uni�
ation with ni
e Cy
le rule
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In order to prove 
ompleteness, we will need the measure of a goal G, of

whi
h we will show that it may be de
reased by appli
ation of an inferen
e rule

if G is E-uni�able and not in solved form.

De�nition 10. (measure of a goal)

Let E be an equational theory, and G, an unsolved part of a goal G

0

, su
h that

there is a ground substitution 
, for whi
h E j= G

0


 and hen
e there is a solution

(�

0

; 
) of G

0

and � a subproof of �

0

, su
h that (�; 
) is a solution of G, and

all variables in V ar(G) are unsolved in (�; 
).

The measure of G

0

with respe
t to (�

0

; 
) is a 4-tuple (m;n; o; p), where

m =M(�; 
), n is the length of �, o is the size of terms in G
, p is the number

of equations in G, of the form t � x, where x is a variable and t is not a variable.

Noti
e that the measure of a goal is in fa
t a measure of its unsolved part.

Measures for di�erent goals are 
ompared with respe
t to lexi
ographi
 order.

Theorem 1. Let E be a set of equations, su
h that E j= G
 for some ground

substitution 
. Then there is H, a set of equations in the solved form, su
h that

G

�

�! H and �

H

[V ar(G)℄ �

E


.

Proof. If G is already in the solved form, then �

G

�

E


.

If G is not in solved form, then there is an unsolved part of G, whi
h 
onsists

of all unsolved equations in G. Only unsolved equations in G may be sele
ted

for inferen
e. Assume that u � v was sele
ted for an inferen
e. If E j= G
, there

must be an equational proof � of G
. We will 
all (�; 
) an a
tual solution

of G. There must be a subproof in � , of u
 � v
, �

u
�v


and u
, v
 are the

extreme terms in this subproof, i.e. there is no subproof in � at position of u


or v
 
ontaining �

u
�v


as its proper part. It is important to show in ea
h of

the following 
ases, that our rules preserve this property, sin
e we use Solve in

justifying 
ompleteness of some of them, and Solve is de�ned with respe
t to

asso
iated subproofs whi
h are the subproofs of maximal length starting with

some variable o

urren
e in � . Hen
e if x � v is sele
ted and �

x
�v


is its

subproof in � , we want to be sure that �

x
�v


is a subproof asso
iated with

x
 (and hen
e maximal subproof starting with x
). We 
an also assume that all

solved variables in G are solved in � , i.e. not in U , and all unsolved variables in

G are unsolved in � , i,e. there are in U .

Obviously, if x � v is sele
ted for an inferen
e, x
 is a maximal node in �

with respe
t to U .

For the proof, we have to 
onsider all possible forms of an unsolved goal

equation u � v sele
ted for an inferen
e. We will show that in all these 
ases,

there is an inferen
e rule from Figure 3, su
h that it is appli
able to the sele
ted

equation and this appli
ation de
reases the measure for the new goal. Hen
e we

show that G! G

0

, and measure of G

0

is stri
tly smaller than that of G. Moreover

we show that if E j= G
, then also E j= G

0




0

, where 
 =

E




0

[V ar(G)℄. Then by

indu
tion hypothesis G

0

�

�! H and �

H

[V ar(G)℄ �

E


. Hen
e also G

�

�! H and

�

H

[V ar(G)℄ �

E


.

Hen
e it is enough to 
onsider now the following possible forms of a sele
ted

equation in a goal.
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1. Assume that neither u nor v is a variable.

Let �

u
�v


be a subproof in � of u
 � v
.

Assume also that there is no step at the root in �

u
�v


. Hen
e u and v must

have the same root symbols.

The right rule to apply in this 
ase is De
omposition. In the new goal

u � v is repla
ed by equations s

1

� t

1

; : : : ; s

n

� t

n

. There is a subproof

in � for ea
h s

i


 � t

i


, i 2 f1; : : : ; ng, and if u
, v
 were the extreme

terms in �

u
�v


, s

i


, t

i


 are extreme terms in the respe
tive subproofs.

E j= fs

1


 � t

1


; : : : ; s

n


 � t

n


g. The sum of the lengths of the subproofs

is equal to the length of the original subproof of u
 � v
, but �

n

i=1

(js

i


j+

jt

i


j) < ju
j+ jv
j.

Let (m;n; o; p) be the measure of the goal before De
omposition and (m

0

; n

0

; o

0

; p

0

)

after De
omposition. m

0

= m, n

0

= n and o

0

< o.

2. Assume that u and v are as in 
ase 1. Assume also that there is a step at

the root in �

u
�v


.

�

u
�v


has the form: u
 � � � � � w

i

�

[�;s�t;
℄

w

i+1

� � � � � v
. Let us


hoose i in su
h a way, that this is the rightmost root step in this subproof

and assume that t is not a variable.

Then there is no root step between w

i+1

and v
. Sin
e the i'th step is at

the root position, s
 = w

i

and t
 = w

i+1

. Sin
e there is no step at the root

between t
 and v
, and t is not a variable, t and v must have the same root

symbol and thus we 
an at on
e de
ompose them, obtaining possible empty

set of equations: t

1

� v

1

; : : : ; t

n

� v

n

, su
h that for ea
h i 2 f1; : : : ; ng,

t

i


 � v

i


 has a subproof in � , and moreover t

i


, v

i


 are extreme subterms

in their respe
tive subproofs. Hen
e in this 
ase Mutate is appli
able, and

we see that E j= fu
 � s
; t

1


 � v

1


; : : : ; t

n


 � v

n


g.

Let (m;n; o; p) be the measure of the goal before Mutate and (m

0

; n

0

; o

0

; p

0

)

after Mutate. m

0

= m and n

0

< n.

3. Assume that u and v are the same as in 
ase 2, but now t is a variable. In

this 
ase Variable Mutate is appli
able.

As in the previous 
ase we see that: E j= u
 � s
 and E j= t
 � v
. Both

u
 � s
 and t
 � v
 have subproofs in � , and �

t
�v


is a subproof asso-


iated with t
.. Solve t in ((�; 
); U) gives us a new E-equivalent solution,

(�

0

; 


0

), su
h that �

0

is an equational proof of the goal G.

Sin
e t is a system variable used in a root step s
 � t
, beside t
, t may

appear only in s
. Hen
e solving t does not 
hanges subproofs of � for

any of the other equations in the goal. Only �

u
�v


is a�e
ted. Therefore

E j= (fu � s[t 7! v℄g[G

1

)


0

and all equations in the new goal have subproofs

in �

0

. Hen
e we assume (�

0

; 


0

) as our new a
tual solution.

Let (m;n; o; p) be the measure of the goal before Variable Mutate and

(m

0

; n

0

; o

0

; p

0

) after Variable Mutate. m

0

< m.

4. Assume that u is a variable x, v is not a variable and x 2 V ar(v), hen
e v


an be written as v[x℄

�

1

: : : [x℄

�

n

. In this 
ase Cy
le applies eagerly.

Let �

x
�v[x℄

�

1

:::[x℄

�

n




be a subproof in � of x
 � v[x℄

�

1

: : : [x℄

�

n


.

Sin
e x has an o

urren
e in v[x℄

�

1

: : : [x℄

�

n


, the subproof�

x
�v[x℄

�

1

:::[x℄

�

n




must have length greater than 0.
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(a) Assume that there is a step at the root in �

x
�v[x℄

�

1

:::[x℄

�

n




.

Noti
e that in this 
ase, sin
e v is not a variable, if x
 is 
hosen in Solve

x in ((�; 
); U), then 
ase 2 applies, be
ause � is 
at at any o

urren
e

of x in v. Noti
e also that there are no irrelevant subterm variables for

x
. Hen
e the e�e
t of Solve is just a removal of x from U .

�

x
�v[x℄

�

1

:::[x℄

�

n




has the form: x
 � � � � � w

i

�

[�;s�t;
℄

w

i+1

� � � � �

v[x℄

�

1

: : : [x℄

�

n


. We 
hoose i in su
h a way, that this is the rightmost

root step in this subproof. Obviously, E j= (fx � s; t � vg [ G)
 and

ea
h of these equations has a subproof in � .

If (�

0

; 


0

) is obtained by Solve, we have a set of unsolved variables U

0

=

U�fxg. We 
hange our a
tual solution to (�

00

; 


00

) = (�

0

[x 7! z; 


0

[x 7!

z℄), where z is a new variable, added in Dom(


00

), in su
h a way that




00

z

= [z 7! x


0

℄. Now U

00

= U

0

[ fzg.

Noti
e that this renaming of x is needed here only in order to keep

one Cy
le rule for all relevant 
ases. Noti
e also that although Solve

de
reased the measure for the goal under solution (�

0

; 


0

), but sin
e we

renamed x with a new unsolved variable in (�

00

; 


00

), (�

00

; 


00

) has the

same multiset of paths as (�; 
) and in fa
t it is a renaming of it.

E j= (fx � z; z � s; t � v[x 7! z℄g[G[x 7! z℄)


00

and all these equations

have subproofs in �

00

. Ex
ept for the renaming nothing 
an 
hange in

�

00

. Hen
e �

z
�v[z℄

�

1

:::[z℄

�

n




00

is just a renaming of �

x
�v[x℄

�

1

:::[x℄

�

n




,

with the same step at the root s


00

� t


00

.

i. Assume that t is not variable. Sin
e v is not a variable either and

there is no step at the root between t


00

and v[x 7! z℄


00

, v =

f(v

1

; : : : ; v

n

) and t = f(t

1

; : : : ; t

n

) and E j= (ft

1

� v

1

; : : : ; t

n

�

v

n

g)


00

, where all of these equations have subproofs in �

00

.

This is exa
tly what we need be
ause in this 
aseM(z � v[z℄

�

1

: : : [z℄

�

n

) =

fz � s; t

1

� v

1

; : : : ; t

n

� v

n

g, where ft

1

� v

1

; : : : ; t

n

� v

n

g is an ef-

fe
t of de
omposing t � v[z℄

�

1

: : : [z℄

�

n

.

Hen
e if G ! G

0

by Cy
le, and E j= G
, then E j= G


00

and


 = 


00

[V ar(G)℄.

Let (m;n; o; p) be the measure of the goal before Cy
le and (m

0

; n

0

; o

0

; p

0

)

after Cy
le. m

0

= m and n

0

< n.

ii. Assume now that t is a variable. Then M(z � v[z℄

�

1

: : : [z℄

�

n

) =

fz � s[t! v[z℄

�

1

: : : [z℄

�

n

℄g.

As in the previous 
ase, we know that E j= (fx � z; z � s; t �

f(v

1

; : : : ; v

n

)


00

g, where x � z is solved and all of these equations

have subproofs in �

00

, su
h that the respe
tive terms are the extreme

terms of these subproofs. Also if E j= G

1


, then also E j= G

1

[x 7!

z℄


00

, where G

1

= Gnfx � f(v

1

; : : : ; v

n

)g.

Sin
e t is a system variable used in the step s


00

� t


00

, then besides

t


00

, t may only appear in s


00

in the goal. Solve t in ((�

00

; 


00

); U

00

)

(
ase 1 applies) with t


00

the 
hosen maximal o

urren
e of t, yields

an equivalent solution (�

000

; 


000

) with t removed from U

000

. Noti
e

that we don't need to keep the equation t � f(v

1

; : : : ; v

n

) in the
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goal, be
ause t is not in the set of goal variables, and hen
e we don't

need it in the solved form of G in order to de�ne a solution.

E j= (fx � z; z � s[t 7! f(v

1

; : : : ; v

n

)℄g


000

g and t is eliminated from

the goal. 
 =

E




000

.

Let (m;n; o; p) be the measure of the goal before Cy
le and (m

0

; n

0

; o

0

; p

0

)

after Cy
le. m

0

< m.

(b) Now, let assume that there is no step at the root in �

x
�v[x℄

�

1

:::[x℄

�

n




.

Noti
e that for ea
h o

urren
e of x at position �

i

in v[x℄

�

1

: : : [x℄

�

n


,

there must be a step at a position higher, equal or lower than �

i

, be
ause

otherwise x
 would have to be synta
ti
ally identi
al with its subterm.

i. Assume that the proof� is 
at at all positions of x in v[x℄

�

1

: : : [x℄

�

n


.

Hen
e we know that for ea
h o

urren
e of x in v[x℄

�

1

: : : [x℄

�

n


,

there is a subterm v

l

at a position �

l

in v[x℄

�

1

: : : [x℄

�

n


, su
h that

there is a step in the subproof at this position and x o

urs in v

l

.

We know also that �

l

6= �, be
ause we assumed that there is no step

at the root.

Let us 
hoose for ea
h o

urren
e of x in v[x℄

�

1

: : : [x℄

�

n


 highest �

l

for whi
h there is su
h a subterm in v[x℄

�

1

: : : [x℄

�

n


 and there is a

step at this position in the subproof.

Then the subproof �

x
�v[x℄

�

1

:::[x℄

�

n





an be viewed a 
omposition

of subproofs �

1

: : : �

k

embedded at parallel positions, �

1

; : : : ; �

k

, of

x
.

Noti
e also that there must be at least one step at the root in

ea
h of the subproofs. In Cy
le, we are guessing the right positions

�

1

; : : : ; �

k

. Hen
e v[x℄

�

1

: : : [x℄

�

n


 
an be presented as v[v

1

℄

�

1

: : : [v

k

℄

�

k


.

We know that Solve x in ((�; 
); U), 
ase 2 applies. It yields ((�

0

; 


0

); U

0

)

with x and subterm variables irrelevant for x
 solved. In�

0

,�

x


0

�v[v

1

℄

�

1

:::[v

k

℄

�

k




0

is su
h that x


0

= v[x

1

℄

�

1

: : : [x

k

℄

�

k




0

, where x

1

; : : : ; x

k

are subterm

variables de�ned for subterms of x
 at positions �

1

; : : : ; �

k

respe
-

tively.

It is then obvious that E j= (fx � v[x

1

℄

�

1

: : : [x

k

℄

�

k

g [

S

k

i=1

fx

i

�

v

i

g [ G)


0

. Moreover, for ea
h x

i


 � v

i


 there is a subproof �

i

in

�

0

with at least one step at the root. We 
hoose the rightmost su
h

step in ea
h �

i

. We know also that v

i

is not a variable, be
ause the

proof � was 
at at ea
h o

urren
e of x and v

i


ontains at least one

o

urren
e of x. Let v

i

= f(v

0

1

; : : : ; v

0

m

).

Hen
e ea
h su
h �

i

has the form x


0

� � � � � w

i

�

[�;s�t;


0

℄

w

i+1

�

� � � � f(v

0

1

; : : : ; v

0

m

)


0

, where there are no steps at the root between

t


0

= w

i+1

and f(v

0

1

; : : : ; v

0

m

)


0

.

Depending on whether t is a variable or not, M(x

i

� f(v

0

1

; : : : ; v

0

m

))

yields fx

i

� s; t

1

� v

0

1

; : : : ; t

m

� v

0

m

g, when t = f(t

1

; : : : ; t

m

) and

fx

i

� s[t 7! f(v

1

; : : : ; v

m

)℄ in the 
ase where t is a variable.

Here again we have to analyze both these 
ases separately.

If t is not a variable the analysis similar to that in point 2 of this proof

assures us that E j= M(x

i

� f(v

0

1

; : : : ; v

0

m

))


0

and ea
h equation in

M(x

i

� f(v

0

1

; : : : ; v

0

m

)) has a subproof in �

0

su
h that it's terms are
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extreme terms in this subproof are extreme terms of a given equation.

Now, if t is a variable, as in point 3, we 
hange our a
tual solution

for the goal to (�

00

; 


00

) with t solved, given by Solve t in (�

0

; 


0

).

At ea
h su
h step the set of lengths of proper paths is de
reased.

Hen
e if (m;n; o; p) is the measure of the goal before Cy
le and

(m

0

; n

0

; o

0

; p

0

) after Cy
le. m

0

< m.

ii. Assume now that there is a position �

i

in v[x℄

�

1

: : : [x℄

�

n


 su
h that

� is not 
at at x


i

at this position. If x
 is 
hosen for Solve x in

((�; 
); U), it gives us a new, E-equivalent solution (�

0

; 


0

) su
h that

the subproof �

x


0

�v[x℄

�

1

:::[x℄

�

n




0

has a step at the root.

Then the analysis of 
ase 4.4(a)i of this proof applies and if (m;n; o; p)

is the measure of the goal before Cy
le and (m

0

; n

0

; o

0

; p

0

) after Cy
le,

m

0

< m.

5. Assume that v is a variable and u is not a variable. Then Orient applies

eagerly. Obviously, Orient preserves the set of E-uni�ers for u � v. Let

(m;n; o; p) be the measure of the goal before Orient and (m

0

; n

0

; o

0

; p

0

) after

Orient. m

0

� m;n

0

� n; o

0

� o and p

0

< p.

6. Assume that x � v was sele
ted for an inferen
e and x 62 V ar(v). In this


ase Variable Elimination applies eagerly.

Then E j= x
 � v
 and there is a subproof �

x
�v


in the proof � su
h that

x
 and v
 are the extreme terms of �

x
�v


and hen
e this is the subproof

asso
iated with x
. If x is unsolved in the goal G, x is also unsolved in � .

Solve x in (�; 
), if x
 is 
hosen as the maximal o

urren
e of x, yields a

new, E-equivalent solution (�

0

; 


0

) with x no longer U

0

.

Sin
e E j= G
, also E j= G


0

and (�

0

; 


0

) is the proof of G


0

. We 
hange the

a
tual solution to (�

0

; 


0

) and take it as the basis of 
ompleteness argument

of further inferen
es. Sin
e x


0

= v


0

, E j= G

1

[x 7! v℄


0

, where G

1

=

Gnfx � vg and be
ause of extension, all equations in this part of the goal

have subproofs in �

0

.

Let (m;n; o; p) be the measure of the goal before Variable Elimination and

(m

0

; n

0

; o

0

; p

0

) after Variable Elimination. m

0

< m.

7. Assume that u and v are o

urren
es of the same variable x. Sin
e a non-

redundant proof of x
 � x
 has length 0, we 
an get rid of this equation in

the goal by eagerly applying Trivial.

Let (m;n; o; p) be the measure of the goal before Trivial and (m

0

; n

0

; o

0

; p

0

)

after Trivial. m

0

= m, n

0

= n and o

0

< o.

Let us look at one more example of appli
ation of Cy
le.

Let E = f
 � d; gy � f(gy; 
)g and the goal is G = fx � f(x; d)g.

Let� = ff(ga; 
) �

[<1>;gy�f(gy;
);[y 7!a℄℄

f(f(ga; 
); 
) �

[<2>;
�d;[℄℄

f(f(ga; 
); d)g

with 
 = [x 7! f(ga; 
); y 7! a; x

1

7! ga; x

2

7! 
; x

3

7! a℄. x

1

; x

2

; x

3

are subterm

variables for x
.

Sin
e � is not 
at at x


2

, the 
onstru
tion behind the Cy
le will 
hange our

a
tual solution to (�

0

; 


0

) su
h that
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�

0

= fga �

[�;gy�f(gy;
);[y 7!a℄℄

f(ga; 
) �

[<2>;
�d;[℄℄

f(ga; d)g with 


0

= [x 7!

ga; y 7! a; x

1

7! a; z 7! x


0

℄. x

1

is a subterm variable for x


0

and z is additional

variable, renaming of x.

Noti
e that there is a step at the root in �

0

, and thus �

0

justi�es the 
on-


lusion of Cy
le: fx � zg [M(z � f(z; d)) = fx � zg [ fz � gy; z � gy; d � 
g.

7 Con
lusion

We have proved that the goal-dire
ted pro
edure based on inferen
e rules in

Figure 3 and an arbitrary sele
tion fun
tion is 
omplete.

In 
ontrast to the proof of 
ompleteness of Gallier and Snyder's Lazy Paramod-

ulation, we did not take a detour through a possibility of unfailing 
ompletion

of a theory E, assumption that there is a solution with a redu
ed substitution

for the variables in the goal and then showing that our rules 
an simulate the

inferen
es in a 
ompleted E as it is done in [3℄.

In the 
ase of 
ollapsing goal equations, Solve allows us as if to \redu
e"

the E-uni�er for the goal only when we need it, but this is a di�erent kind of

redu
tion than the one assumed in [3℄.

In general our proof uses a straightforward analysis of what happens in the

realm of equational proofs if one of our inferen
e rules is applied without even

mentioning any ordering on ground terms substituted for variables, ex
ept for

the fa
t that we 
an redu
e their size measured by number of symbols if we need

this. The possibility of proving our result without taking re
ourse to simulating

inferen
es in some other system, shows also that the sele
tion fun
tion involved

in 
hoosing equations for inferen
es, may be arbitrary and thus generates only

the \don't 
are" kind of non-determinism. Our system is then strongly inde-

pendent of the sele
tion rule. The weak independen
e of Gallier-Snyder's Lazy

Paramodulation follows from proofs in [10℄, and 
an be proved straightforward

by the same analysis as in our paper.

The fa
t that we 
an use a similar style of proof in [8℄ and here shows that this

is a robust way of looking at properties of goal-dire
ted E-uni�
ation systems.

We believe that it will enable us to sear
h for more 
ases of de
idable equational

theories and eÆ
ient pra
ti
al appli
ations of E-uni�
ation.
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