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Abstract

In two previous reports we have investigated both standard and non-
standard inferences in the presence of terminological cycles for the descrip-
tion logic £ L, which allows for conjunctions, existential restrictions, and the
top concept. Regarding standard inference problems, it was shown there
that the subsumption problem remains polynomial for all three types of
semantics usually considered for cyclic definitions in description logics, and
that the instance problem remains polynomial for greatest fixpoint seman-
tics. Regarding non-standard inference problems, it was shown that, w.r.t.
greatest fixpoint semantics, the least common subsumer and the most spe-
cific concept always exist and can be computed in polynomial time, and
that, w.r.t. descriptive semantics, the least common subsumer need not
exist.

The present report is concerned with two problems left open by this
previous work, namely the instance problem and the problem of comput-
ing most specific concepts w.r.t. descriptive semantics, which is the usual
first-order semantics for description logics. We will show that the instance
problem is polynomial also in this context. Similar to the case of the least
common subsumer, the most specific concept w.r.t. descriptive semantics
need not exist, but we are able to characterize the cases in which it ex-
ists and give a decidable sufficient condition for the existence of the most
specific concept. Under this condition, it can be computed in polynomial
time.

*Partially supported by the DFG under grant BA 1122/4-3.



1 Introduction

Early description logic (DL) systems allowed the use of value restrictions (Vr.C'),
but not of existential restrictions (Ir.C'). Thus, one could express that all children
are male using the value restriction Vchild.Male, but not that someone has a son
using the existential restriction dchild.Male. The main reason was that, when
clarifying the logical status of property arcs in semantic networks and slots in
frames, the decision was taken that arcs/slots should be read as value restrictions
(see, e.g., [12]). Once one considers more expressive DLs allowing for full negation,
existential restrictions come in as the dual of value restrictions [14]. Thus, for
historical reasons, DLs that allow for existential, but not for value restrictions,
were until recently mostly unexplored.

The recent interest in such DLs has at least two reasons. On the one hand,
there are indeed applications where DLs without value restrictions appear to be
sufficient. For example, SNOMED, the Systematized Nomenclature of Medicine
[7, 16, 15] employs the DL £L, which allows for conjunctions, existential restric-
tions, and the top concept. On the other hand, non-standard inferences in DLs
[11], like computing the least common subsumer, often make sense only for DLs
that do not allow for full negation. Thus, the decision of whether to use DLs
with value restrictions or with existential restrictions becomes again relevant in
this context.

Non-standard inferences were introduced to support building and maintaining
large DL knowledge bases. For example, computing the most specific concept
of an individual and the least common subsumer of concepts can be used in
the bottom-up construction of description logic (DL) knowledge bases. Instead
of defining the relevant concepts of an application domain from scratch, this
methodology allows the user to give typical examples of individuals belonging to
the concept to be defined. These individuals are then generalized to a concept by
first computing the most specific concept of each individual (i.e., the least concept
description in the available description language that has this individual as an
instance), and then computing the least common subsumer of these concepts (i.e.,
the least concept description in the available description language that subsumes
all these concepts). The knowledge engineer can then use the computed concept
as a starting point for the concept definition.

The most specific concept (msc) of a given ABox individual need not exist in
languages allowing for existential restrictions or number restrictions. For the
DL ALN (which allows for conjunctions, value restrictions, and number restric-
tions), it was shown in [5] that the most specific concept always exists if one adds
cyclic concept definitions with greatest fixpoint semantics. If one wants to use
this approach for the bottom-up construction of knowledge bases, then one must
also be able to solve the standard inferences (the subsumption and the instance
problem) and to compute the least common subsumer in the presence of cyclic



concept definitions. Thus, in order to adapt the approach also to the DL £L, the
impact on both standard and non-standard inferences of cyclic definitions in this
DL had to be investigated first.

The report [1] considers cyclic terminologies in €L w.r.t. the three types of se-
mantics (greatest fixpoint, least fixpoint, and descriptive semantics) introduced
by Nebel [13], and shows that the subsumption problem can be decided in poly-
nomial time in all three cases. This is in stark contrast to the case of DLs with
value restrictions. Even for the small DL F Ly (which allows for conjunctions and
value restrictions only), adding cyclic terminologies increases the complexity of
the subsumption problem from polynomial (for concept descriptions) to PSPACE
[2, 3]. The main tool in the investigation of cyclic definitions in £L is a charac-
terization of subsumption through the existence of so-called simulation relations,
which can be computed in polynomial time [9]. The results in [1] also show that
cyclic definitions with least fixpoint semantics are not interesting in ££. For this
reason, all the extensions of these results mentioned below are concerned with
greatest fixpoint (gfp) and descriptive semantics only.

The characterization of subsumption in ££ w.r.t. gfp-semantics through the exis-
tence of certain simulation relations on the graph associated with the terminology
is used in [4] to characterize the least common subsumer via the product of this
graph with itself. This shows that, w.r.t. gfp semantics, the lcs always exists,
and the binary lcs can be computed in polynomial time. (The n-ary les may
grow exponentially even in £L£ without cyclic terminologies [6].) For cyclic termi-
nologies in £L with descriptive semantics, the les need not exist. In [4], possible
candidates P, (k > 0) for the lcs are introduced, and it is shown that the lcs
exists iff one of these candidates is the lcs. In addition, a sufficient condition for
the existence of the lcs is given, and it is shown that, under this condition, the
lcs can be computed in polynomial time.

In [4], the characterization of subsumption w.r.t. gfp-semantics is also extended to
the instance problem in ££. This is then used to show that, w.r.t. gfp-semantics,
the instance problem in ££ can be decided in polynomial time and that the msc
in £L always exists, and can be computed in polynomial time.

Given the positive results for gfp-semantics regarding both standard inferences
(subsumption and instance) and non-standard inferences (lcs and msc), one might
be tempted to restrict the attention to gfp-semantics. However, existing DL sys-
tems like FaCT [10] and RACER [8] allow for terminological cycles (even more
general inclusion axioms), but employ descriptive semantics. In some cases it
may be desirable to use a semantics that is consistent with the one employed
by these systems even if one works with a DL that is considerably less expres-
sive than then one available in them. For example, non-standard inferences that
support building DL knowledge bases are often restricted to rather inexpressive
DLs (either because they do not make sense for more expressive DLs or because
they can currently only be handled for such DLs). Nevertheless, it may be de-



sirable that the result of these inferences (like the msc or the lcs) is again in a
format that is accepted by systems like FaCT and RACER. This is not the case if
the msc algorithm produces a cyclic terminology that must be interpreted with
gfp-semantics.

The subsumption problem and the problem of computing least common sub-
sumers in £L w.r.t cyclic terminologies with descriptive semantics have already
been tackled in [1] and [4]. In the present report we address the instance problem
and the problem of computing the most specific concept in this setting. We will
show that the instance problem is polynomial also in this context. Unfortunately,
the most specific concept w.r.t descriptive semantics need not exist, but—similar
to the case of the least common subsumer—we are able to characterize the cases
in which it exists and give a decidable sufficient condition for the existence of the
most specific concept. Under this condition, it can be computed in polynomial
time.

In the next section, we introduce £L with cyclic terminologies as well the msc.
Then we recall the important definitions and results from [1] and [4]. Section 4
formulates and proves the new results for the instance problem, and Section 5
does the same for the msc.

2 Cyclic terminologies and most specific con-
cepts in £L

Concept descriptions are inductively defined with the help of a set of construc-
tors, starting with a set Ng of concept names and a set Ngi of role names. The
constructors determine the expressive power of the DL. In this report, we restrict
the attention to the DL £L£, whose concept descriptions are formed using the
constructors top-concept (T), conjunction (C'M D), and existential restriction
(3r.C). The semantics of £L-concept descriptions is defined in terms of an in-
terpretation T = (AT,-T). The domain A% of 7 is a non-empty set of individuals
and the interpretation function -Z maps each concept name A € N to a subset
AT of AT and each role r € Ny to a binary relation »* on AZ. The extension of
L to arbitrary concept descriptions is inductively defined, as shown in the third
column of Table 1.

A terminology (or TBox for short) is a finite set of concept definitions of the form
A = D, where A is a concept name and D a concept description. In addition,
we require that TBoxes do not contain multiple definitions, i.e., there cannot
be two distinct concept descriptions Dy and D, such that both A = D; and
A = D, belongs to the TBox. Concept names occurring on the left-hand side of
a definition are called defined concepts. All other concept names occurring in the
TBox are called primitive concepts. Note that we allow for cyclic dependencies



name of constructor ‘ Syntax ‘ Semantics

concept name A € N A AT C AT
role name r € Ny r rt C AT x AT
top-concept T AT
conjunction cnbD ctnpD?
existential restriction Ir.C [ {zeAT|y: (v,y) ert Ay e Ct}
| concept definition | A=D | AT = D? |
individual name a € N; a al ¢ AT
concept assertion A(a) at € AF
role assertion r(a,b) (at,0F) e rt

Table 1: Syntax and semantics of £L-concept descriptions, TBox definitions, and
ABox assertions.

between the defined concepts, i.e., the definition of A may refer (directly or
indirectly) to A itself. An interpretation Z is a model of the TBox T iff it
satisfies all its concept definitions, i.e., AT = D7 for all definitions A = D in T.

An ABoz is a finite set of assertions of the form A(a) and r(a,b), where A is
a concept name, r is a role name, and a,b are individual names from a set Nj.
Interpretations of ABoxes must additionally map each individual name a € Ny
to an element a of AT. An interpretation Z is a model of the ABox A iff it
satisfies all its assertions, i.e., aZ € AT for all concept assertions A(a) in A and
(aZ,bF) € rT for all role assertions 7(a,b) in A. The interpretation Z is a model
of the ABox A together with the TBox 7 iff it is a model of both 7 and A.

The semantics of (possibly cyclic) ££-TBoxes we have defined above is called
descriptive semantic by Nebel [13]. For some applications, it is more appropriate
to interpret cyclic concept definitions with the help of an appropriate fixpoint
semantics. However, in this report we restrict our attention to descriptive seman-
tics (see [1, 4] for definitions and results concerning cyclic terminologies in £L£
with fixpoint semantics).

We are now ready to define the subsumption and the instance problem w.r.t.
descriptive semantics.

Definition 1 Let 7 be an ££-TBox and A an £L£-ABox, let C, D be concept
descriptions (possibly containing defined concepts of 7), and a an individual
name occurring in A. Then,

e (' is subsumed by D w.r.t. descriptive semantics (C' T D) iff C* C D*
holds for all models Z of 7.

e a is an instance of C' w.r.t. descriptive semantics (A =1 C(a)) iff ¥ € CT
holds for all models Z of T together with A.



On the level of concept descriptions, the most specific concept of a given ABox
individual a is the least concept description E (of the DL under consideration)
that has a as an instance. An extensions of this definition to the level of (possibly
cyclic) TBoxes is not completely trivial. In fact, assume that a is an individual
in the ABox A and that 7 is a TBox. It should be obvious that taking as the
msc of a the least defined concept A in T such that A =7 A(a) is too weak since
the les would then strongly depend on what kind of defined concepts are already
present in 7. However, a second approach (which might look like the obvious
generalization of the definition of the msc in the case of concept descriptions) is
also not quite satisfactory. We could say that the msc of a is the least concept
description C' (possibly using defined concepts of 7) such that A =7 C(a). The
problem is that this definition does not allow us to use the expressive power of
cyclic definitions when constructing the msc.

To avoid this problem, we allow the original TBox to be extended by new defi-
nitions when constructing the msc. We say that the TBox 73 is a conservative
extension of the TBox 7y iff 71 C T3 and 77 and 73 have the same primitive con-
cepts and roles. Thus, 7> may contain new definitions A = D, but then D does
not introduce new primitive concepts and roles (i.e., all of them already occur
in 77), and A is a new concept name (i.e., A does not occur in 77). The name
“conservative extension” is justified by the fact that the new definitions in 75 do
not influence the subsumption relationships between defined concepts in 7; (see
[4] for the proof).

Lemma 2 Let 71,75 be EL-TBoxes such that Ty is a conservative extension of
Ti, and let A, B be defined concepts in T; (and thus also in T5). Then A Ty B
iff ACy, B.

Definition 3 Let 7; be an ££-TBox and A an ££-ABox containing the individ-
ual name a, and let 75 be a conservative extension of 7; containing the defined
concept E.!' Then E in 73 is a most specific concept of a in A and T; w.r.t.
descriptive semantics (msc) iff the following two conditions are satisfied:

1. .A ):7’2 E(a)

2. If 73 is a conservative extension of 75 and F' a defined concept in 73 such
that A =7, F(a), then E Cr, F.

In the case of concept descriptions, the msc is unique up to equivalence. In the
presence of (possibly cyclic) TBoxes, this uniqueness property also holds (though
its formulation is more complicated).

"Without loss of generality we assume that the msc is given by a defined concept rather
than a concept description since one can always introduce an appropriate definition for the
description.



Proposition 4 Let Ty be an EL-TBox and A an £L-ABox containing the indi-
vidual name a. Assume that Ty and T, are conservative extensions of Ty such
that

e the defined concept E in Ty is an msc of a in A and Ty,
e the defined concept E' in T, is an msc of a in A and Ty;

e the sets of newly defined concepts in respectively T and T, are disjoint.

Where T3 := T U T, we have E =7, E'.

3 Characterizing subsumption in ££ with cyclic
definitions

In this section, we recall the characterizations of subsumption w.r.t. descriptive
semantics developed in [1]. To this purpose, we must represent TBoxes by de-
scription graphs, and introduce the notion of a simulation on description graphs.

3.1 Description graphs and simulations

Before we can translate £L£-TBoxes into description graphs, we must normalize
the TBoxes. In the following, let 7 be an £L£-TBox, N the defined concepts of
T, Nprim the primitive concepts of 7, and Ny, the roles of 7. We say that the
EL-TBox T is normalized iff A = D € T implies that D is of the form

P1|_|...|_|Pm|_|E|T1.Bl|_|...|_|E|’I“[.Bg,

for m,0 > 0, Pi,..., Py € Nppim, 71,70 € Nygte, and By, ..., By € Ngy. If
m=1/(=0, then D=T.

As shown in [1], one can (without loss of generality) restrict the attention to nor-
malized TBox. In the following, we thus assume that all TBoxes are normalized.
Normalized £L-TBoxes can be viewed as graphs whose nodes are the defined
concepts, which are labeled by sets of primitive concepts, and whose edges are
given by the existential restrictions. For the rest of this section, we fix a normal-
ized £L-TBox T with primitive concepts Ny, defined concepts Ng.r, and roles
Nrole-

Definition 5 An £L-description graph is a graph G = (V, E, L) where

e V/ is a set of nodes;



e FCV x Ny xV is aset of edges labeled by role names;

o L:V — 2Nrim ig a function that labels nodes with sets of primitive concepts.

The TBox T can be translated into the following £L-description graph Gr =
(Ndefa ETv LT>:

e the nodes of G are the defined concepts of T

e if A is a defined concept and A= P, M...MP,MN3Ar.ByM...M3r.By its
definition in 7, then

— Lr(A)={Py,...,P,}, and
— A is the source of the edges (A,ry, By),..., (A, By) € Er.

Simulations are binary relations between nodes of two £ L-description graphs that
respect labels and edges in the sense defined below.

Definition 6 Let G; = (V;, E;, L;) (i = 1,2) be two £L-description graphs. The
binary relation Z C Vi x V5 is a simulation from Gy to G, iff

(S1) (vy,v2) € Z implies Ly(vy) C Ly(v2); and

(S2) if (vy,v2) € Z and (vy,7,v}) € Ej, then there exists a node v} € V5 such
that (v}, v)) € Z and (vy, 7, vh) € Es.

We write Z: G; ~ G, to express that Z is a simulation from G; to Gs.

It is easy to see that the set of all simulations from G; to Gy is closed under
arbitrary unions. Consequently, there always exists a greatest simulation from
g1 to Go. If Gy, Gy are finite, then this greatest simulation can be computed in
polynomial time [9]. As an easy consequence of this fact, the following proposition
is proved in [1].

Proposition 7 Let Gi, Gy be two finite £L-description graphs, v1 a node of Gy
and vy a node of Go. Then we can decide in polynomial time whether there is a
simulation Z: Gy ~ Gy such that (vy,v9) € Z.
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Figure 2: A partial (B, A)-simulation chain.

3.2 Subsumption w.r.t. descriptive semantics

W.r.t. gfp-semantics, A is subsumed by B iff there is a simulation Z: Gr ~ Gr
such that (B, A) € Z (see [1]). W.r.t. descriptive semantics, the simulation Z
must satisfy some additional properties for this equivalence to hold. To define
these properties, we must introduce some notation.

Definition 8 The path p;: B = By = B, = B, =% By &% ... in Gy is Z-
simulated by the path pp: A=Ay 2> Ay B3 A, B A3 B .. in G iff (B, 4) € Z
for all 4 > 0. In this case we say that the pair (p1, ps) is a (B, A)-simulation chain
w.r.t. Z (see Figure 1).

If (B,A) € Z, then (S2) of Definition 6 implies that, for every infinite path p;
starting with By := B, there is an infinite path p, starting with A, := A such
that p; is Z-simulated by ps. In the following we construct such a simulating
path step by step. The main point is, however, that the decision which concept
A, to take in step n should depend only on the partial (B, A)-simulation chain
already constructed, and not on the parts of the path p; not yet considered.

Definition 9 A partial (B, A)-simulation chain is of the form depicted in Fig-
ure 2. A selection function S for A, B and Z assigns to each partial (B, A)-
simulation chain of this form a defined concept A,, such that (A, _1,7r,, A,) is an
edge in Gr and (B,, A,) € Z.

Given a path B = By = B; =3 By -3 By =% ... and a defined concept A such
that (B, A) € Z, one can use a selection function S for A, B and Z to construct a
Z-simulating path. In this case we say that the resulting (B, A)-simulation chain
is S-selected.



Definition 10 Let A, B be defined concepts in 7, and Z: G ~ G5 a simulation
with (B, A) € Z. Then Z is called (B, A)-synchronized iff there exists a selection
function S for A, B and Z such that the following holds: for every infinite S-
selected (B, A)-simulation chain of the form depicted in Figure 1 there exists an
i > 0 such that A; = B;.

We are now ready to state the characterization of subsumption w.r.t. descriptive
semantics proved in [1].

Theorem 11 Let T be an EL-TBox, and A, B defined concepts in T. Then the
following are equivalent:

1. AC; B.

2. There is a (B, A)-synchronized simulation Z: Gy ~ Gy such that (B, A) €
Z.

In [1] it is also proved that, for a given ££-TBox T and defined concepts A, B in T,
the existence of a (B, A)-synchronized simulation Z: Gy ~ Gy with (B, A) € Z
can be decided in polynomial time, which shows that the subsumption w.r.t.
descriptive semantics in £L is tractable.

The proof of Theorem 11 in [1] depends on an appropriate characterization of
when an individual in a model belongs to a defined concept in this model. This
characterization will also be useful when proving our results for the instance
problem in Section 4. Before we can formulate this characterization, we need to
introduce some notation.

3.3 Primitive interpretations and Zy-gfp-models

Let 7 be an ££-TBox containing the roles N, the primitive concepts Npim,, and
the defined concepts Nyep := {A1,..., Ax}, and let A be an £L-ABox containing
the individual names N;,,. A primitive interpretations J for T and A is given
by a domain A7, an interpretation of the roles r € N, by binary relations
on A7 an interpretation of the primitive concepts P € Ny by subsets P7 of
A7, and interpretation of the individual. Obviously, a primitive interpretation
differs from an interpretation in that it does not interpret the defined concepts
in Ngs. Any primitive interpretation can be translated into an &£L-description
graph (where we do not represent the interpretation of individual names):

Definition 12 The primitive interpretation J = (A7, -7) is translated into the
& L-description graph G7 = (A7, E;, Ly):

10



e the nodes of G are the elements of A7;

o By ={(x,ry) | (v.y) er’}

o Ly(x)={P € Nppipy, | v € P} for all z € A7.

We say that the interpretation Z is based on the primitive interpretation J iff it
has the same domain as J and coincides with J on Nyge, Nppim, and Ny,q. For a
fixed primitive interpretation 7, the interpretations Z based on it are uniquely de-
termined by the tuple (AT,..., AT) of the interpretations of the defined concepts
in Nger. We define

Int(J) :={Z | Z is an interpretation based on [J}.

Interpretations based on J can be compared by the following ordering, which

realizes a pairwise inclusion test between the respective interpretations of the
defined concepts: if Zy,Z, € Int(J), then

T, <s T, iff A" C AP foralli,1<i<Fk.

It is easy to see that < induces a complete lattice on Int(J), i.e., every subset
of Int(J) has a least upper bound (lub) and a greatest lower bound (glb). Thus,
Tarski’s fizpoint theorem [17] applies to all monotonic functions from Int(J) to

Int (7).

Definition 13 The ££-TBox T := {A; = Dy,..., A, = D;} induces the fol-
lowing function O7 7 on Int(J): O 7(T)) = I, iff A7 = D!* holds for all
i1<i<k.

Monotonicity of this function is an easy consequence of the fact that the concept
constructors of £L are all monotonic (see [1] for details). It is also an immediate
consequence of the definition of O7 7 that any interpretation Z based on [J is a
fixpoint of O7 7 iff 7 is a model of 7. Greatest (least) fixpoint semantics restricts
the attention to models that are greatest (least) fixpoints of Or 7 (which exist
by Tarski’s fixpoint theorem).

In the context of descriptive semantics, it is sometimes convenient to consider
models of 7 that are the greatest models below a given interpretation Z;.

Definition 14 Let 7 be an ££-TBox, J a primitive interpretation, and Z, an
interpretation based on 7. The model Z of T is called Zy-model of T iff it is
based on J and satisfies T <7 Zy. The greatest Zy-model of T (if it exists) is
called Zy-gfp-model of T.

11



If 7, is itself a model of T, then it is also the Zy-gfp-model of 7. The following
proposition (whose proof can be found in [1]) describes a more general sufficient
condition for the greatest Zy-model of T to exist.

Proposition 15 If Or 7(Zy) <7 Iy, then T has an Zy-gfp-model based on J.

We are now ready to give the announced characterization of when an individual
of a model belongs to a defined concept in this model (see [1] for the proof). Since
any model Z of T is itself an Z-gfp-model of T, it is sufficient to formulate the
condition for Z-gfp-models of T.

Proposition 16 Let J be a primitive interpretation, Iy an interpretation based
on J such that Or 7(Zy) 27 Ty, and T the Ly-gfp-model of T. Then the following
are equivalent for any A € Ngoy and x € A7 :

1. x € AT,
2. There is a simulation Z: Gy ~ G 7 such that

(a) (A,x) € Z; and
(b) if (B,y) € Z then y € B%.

4 The instance problem

Assume that 7 is an ££-TBox and A an ££-ABox. In the following, we assume
that 7 is fixed and that all instance problems for A are considered w.r.t. this
TBox. In this setting, A can be translated into an £/L-description graph G4 by
viewing A as a graph and extending it appropriately by the graph G; associated
with 7. The idea is then that the characterization of the instance problem should
be similar to the statement of Theorem 11: the individual a is an instance of A
in A and T iff there is an (A, a)-synchronized simulation Z: Gy ~ G4 such that
(A,a) € Z.2

The formal definition of the £L-description graph G4 associated with the ABox
A and the TBox T given below was also used in [4] to characterize the instance
problem in £L£ w.r.t. gfp-semantics.

Definition 17 Let 7 be an ££-TBox, A an £L£-ABox, and Gy = (Vr, Er, L)
be the £ L-description graph associated with 7. The £L-description graph G4 =
(Va, E4, L) associated with A and 7 is defined as follows:

2The actual characterization of the instance problem turns out to be somewhat more com-
plex, but for the moment the above is sufficient to gives the right intuition.

12



e the nodes of G4 are the individual names occurring in A together with the
defined concepts of T, i.e.,

V4 :=VrU{a|ais an individual name occurring in A};

e the edges of G4 are the edges of G, the role assertions of A, and additional
edges linking the ABox individuals with defined concepts:

E4 = EU{(a,rb)]|r(ab) e A} U
{(a,r,B) | A(a) € A and (A,r,B) € E};

e if u € V4 is a defined concept, then it inherits its label from Gr, i.e.,
La(u) == L(u) ifue Vy;

otherwise, u is an ABox individual, and then its label is derived from the
concept assertions for v in A. In the following, let P denote primitive and
A denote defined concepts.

La(u):={P|Pu)e AyU ] L(A) ifueVy\Vr.
A(u)eA

Before we can characterize the instance problem via the existence of certain sim-
ulation relations from Gy to G4, we must characterize under what conditions a
model of 7 is a model of A. Before we can formulate this characterization we
must introduce one more notation.

Definition 18 Let [J be a primitive interpretation and G; the £L-description
graph associated with 7. We say that the simulation Z: G4 ~ G respects ABox
individuals iff

{z|(a,2) € Z} = {a”}

for all individual names a occurring in A.

Since the primitive interpretation 7 interprets the primitive concepts and roles
as well as the individual names, the question whether an interpretation Z based
on J satisfies a role assertion r(a,b) (a concept assertion P(a) for a primitive
concept P) or not depends only on J. Thus, it makes sense to say that a primi-
tive interpretation satisfies a role assertion or a concept assertion for a primitive
concept.

Lemma 19 If there exists a simulation Z: G4 ~ G that respects ABox individ-
uals, then J satisfies all role assertions r(a,b) € A and all concept assertions
P(a) € A where P is a primitive concept.

13



A proof of this lemma is included in the proof of (2 =- 1) of Proposition 45 in [4].

Proposition 20 Let T be an EL-TBox, A an ABox, J a primitive interpreta-
tion, Iy an interpretation based on [J such that

[ ] O’T,J(IO> jj IO and
e B(b) € A implies b € B,

and I the Ty-gfp-model of T. Then the following are equivalent:

1. T is a model of A.

2. There is a simulation Z: G4 ~ G that respects ABox individuals and sat-
isfies
(B,y) € Z =y c B™

for all defined concepts B in T and all elements y € A7.

Proof. (2 = 1) Assume that a simulation Z: G4 ~ G satisfying the properties
stated in (2) of the proposition is given. We must show that Z satisfies all the
assertions in A.

For role assertions and concept assertions involving primitive concepts, this is the
case by Lemma 19.

Thus, assume that A(a) is a concept assertion in 4 where A is a defined concept.
We use Proposition 16 to show that a/ = aZ € AZ. Thus, we need to find a
simulation Y: G ~ G such that (A4,a”) € Y and (B,y) € Y implies y € B
for all defined concepts B in 7. We define the relation Y as follows:

Y :={(A,a”)} U{(B,2) | (B,7) € Z where B is a defined concept in T7}.

Thus, Y is the restriction of Z to the nodes of G, extended by the tuple (A4, a”).
The fact that Y is a simulation relation (i.e., satisfies (S1) and (S2) of Definition 6)
can be shown as in the proof of (2 = 1) of Proposition 45 in [4]. In addition,
we have (A,a”) € Y by definition of Y. Finally, assume that (B,y) € Y. If
(B,y) € Z, then y € B% follows from our assumption on Z. It remains to be
shown that (A,a”) € Y implies a7/ € A%. Since A(a) € A, this is the case by
our assumption on Z;.

(1 = 2) Assume that Z is a model of A. In particular, this implies that a7 =
a® € AT holds for all concept assertions A(a) € A. If A is a defined concept, then
Proposition 16 implies the existence of simulation relations Z4(,: Gr ~ Gz such
that

o (A,aj) S ZA(a) and
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° (B,y) € ZA(a) =y € BT,

Let Y be the union of these simulations, i.e.,
V= | Zaw.
(a)eA

Then Y is a simulation relation that satisfies (A, a”) € Y for all concept assertions
A(a) € A where A is a defined concept. In addition, if B is a defined concept
in 7 and y € A7, then (B,y) € Y implies that (B,y) € Z4(,) for some concept
assertion A(a) € A, and thus y € B%.

We define the relation Z as follows:
7 =Y U{(a,a”) | a is an individual name occurring in A}.

By definition, Z respects ABox individuals, and it satisfies (B,y) € Z = y € B
since Y satisfies this property. Thus, it remains to be shown that 7 is a simulation
from G4 to G7. This can be shown as in the proof of (1 = 2) of Proposition 45
in [4]. O

In the remainder of this section, we will us this proposition to prove correctness
of the following characterization of the instance problem.

Theorem 21 Let T be an EL-TBox, A an EL-ABozx, A a defined concept in T
and a an individual name occurring in A. Then the following are equivalent:

1. A ):7' A(a)
2. There is a simulation Z: Gy ~ G4 such that

e (Aa) € Z.
o 7 is (B,u)-synchronized for all (B,u) € Z.

Proof of (2 = 1) of Theorem 21

Assume that there is a simulation 7: Gy ~ G 4 satisfying the two properties stated
in (2) of the theorem. We must show A =7 A(a), i.e., if Z is a model of T and
A, then af € AT

Thus, let Z be a model of 7 and A, and let 7 be the primitive interpretation on
which 7 is based. If we define Z, := Z, then

e 7, is a model of A, and thus B(b) € A implies b7 € B”;
e Or 7(Zy) =7 Iy (in fact, Or,7(Zy) = I since Zy is a model of T);
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e 7 is the Zy-gfp-model of T.

Thus, the prerequisites for Proposition 20 are satisfied, and the fact that 7 is a
model of A yields a simulation Y: G4 ~ G that respects ABox individuals and
satisfies (B,y) € Y = y € B for all defined concepts B and elements 3y of A7.
The composition X := Z oY is a simulation from G7 to G7 (see Lemma 17 in
[1]). By Proposition 16, to show a? € AZ, it is sufficient to show that

(a) (A4,a%) € X; and
(b) (B,y) € X implies y € B = B~.

Property (a) holds since we know that (A4,a) € Z and the fact that Y respects
ABox individuals implies that (a,a”) € Y.

The proof of property (b) is similar to the proof of (2 = 1) of Theorem 29 in
[1]. Since there are, however, subtle differences, we include a detailed proof of
property (b) for the sake of completeness. Thus, assume that (B,y) € X, i.e.,
there is a node u in G4 such that (B,u) € Z and (u,y) € Y. We must show that
this implies y € BZ.

Assume to the contrary that y ¢ BY. Where
BEPIHHPmHHSlclﬂﬂE‘SgC[

is the definition of B in 7, this implies that there is an index 7,1 < i < m, such

that y ¢ PZ = P or an index j, 1 < j < { such that y & (3s;.C;).

The facts that (B,u) € Z and (u,y) € Y obviously imply that P; € Ly (B) C
L4(u) C Lz(y), and thus the first alternative cannot occur. Consequently, there
is an index j,1 < j < ¢ such that y & (3s;.C;)7.

Since (B,u) € Z, we know that Z is (B, u)-synchronized. Let S be the corre-
sponding selection function. Consider the partial (B, u)-simulation chain

B = B, & B
7l
U = U
where By := C; and ry := s;. Then S yields a node u; in G4 such that (By,uy) €
Z and (ug,r1,uy) is an edge in G4. Since Y is a simulation with (ug,y) € Y, this

implies the existence of an individual y; € A7 such that (y,r1,1) is an edge in
G (ie., (y,y1) € rY) and (uy, 1) € Y. Thus, we have the following situation:

B = By & B

A A
u = U g U1
Y] Y]
y = Y = n
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where yo := y. Thus, y = yo & (35;.0;)F = (Ir1.B1)T and (y,y1) € r{ = r¥ imply
that Y1 ¢ BII.

This shows that we can now continue with By, uy,y; in place of By, ug, yo, etc.
This yields the following pair of infinite simulation chains:

B =B &% B &% B B B &
AR AR AR AR

U = U g U1 g (%) g us g
Yl Y| Y| Y|
Yo - Y = Y2 = Ys -

where y, ¢ BL for all n > 0. However, the upper chain was constructed using the
selection function S (i.e., it is S-selected), and thus there exists an index n > 0
such that B, = u,. But then we have (B,,y,) € Y, which implies y, € B by
our assumptions on Y. Thus, our original assumption y ¢ B is refuted, which
completes the proof that property (b) holds, and thus the proof of (2 — 1) of
Theorem 11.

Proof of (1 = 2) of Theorem 21

Assume that A =7 A(a). The £L-description graph G4 can be viewed as the
graph of a primitive interpretation. Thus, let J be this primitive interpretation
(i.e., G4 = G7) where each individual a in A interprets itself (i.e., e’ = a). First,
we construct an interpretation Z, based on [J that satisfies the prerequisites of
Proposition 20, i.e.,

® 07'7‘7(1'0) jj IO and
e B(b) € A implies b7 € B,
The construction of Z, is similar to the one done in the proof of (1 = 2) of

Theorem 29 in [1]. In order to define Zy, we introduce an appropriate simulation
Y: Gr ~ G4 = Gz, and then define for all defined concepts B of T:

() BT :={u|(B,u)eY).
We define Y := UnZO Y,, where the relations Y,, are defined by induction on n:
Yo :={(B, B) | B is a defined concept in T} U {(B,b) | B(b) € A}.
If Y, is already defined, then

Vet i= Yo UL(Cru) | (1) Ly(C) € La(u)
(2) (C,ry,Ch), ..., (C,re,Cy) are all the edges in Gy
with source C', and
(3) there are edges (u,ry,u1), ..., (u,reue) in G4
such that (Ci,u1) € Yo, ..., (Crup) €Y, .
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Lemma 22 Y s a stmulation.

Proof. We show by induction on n that all the relations Y;, are simulations. Since
the set of all simulations from Gr to G4 is closed under arbitrary unions, this
implies that Y is a simulation.

(n = 0) For (B, B) € Yy, properties (S1) and (S2) of Definition 6 are satisfied
since Gr is a subgraph of G 4. Now, assume that (B,b) € Yy, i.e., B(b) € A.

(S1) If P € Ly(B), then B(b) € A yields P € L4(b).

(S2) If (B,r,B') € Er, then B(b) € A yields (b,r, B") € E4. In addition, we
have (B',B') € Y.

(n — n+1) The induction step is identical to the corresponding step in the proof
of Lemma 32 in [1]. O

Now, let Zy be the interpretation based on J defined by the identity (x) above.
Lemma 23 Or 7(Zy) =7 L.

The proof of this lemma is identical to the proof of Lemma 33 in [1].

Lemma 24 B(b) € A implies b7 € B™.

Proof. By definition of Y, B(b) € A yields (B,b) € Y, and thus 0¥ = b € B by
definition of Zj. O

In the following, let Z be the Zy-gfp-model of T .
Lemma 25 7 is a model of A.

Proof. Because of the previous two lemmas, 7, satisfies the prerequisites of
Proposition 20. Thus, it is sufficient to show that there exists a simulation
7: G~ Gr = G4 that respects ABox individuals and satisfies

(B,u) € Z = u € BY
for all defined concepts B in T and all elements u € A7. We define Z as follows:
Z =Y U{(a,a) | ais an individual in A}.

The relation Z is a simulation. In fact, for tuples from Y, (S1) and (S2) are
satisfied since Y is a simulation. For tuples (a,a) € Z (where a is an individual
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in A), (S1) is trivially satisfied. To show (S2), assume that (a,r,u) € E4. Then
it is enough to show that (u,u) € Z. If w is an individual in A, then (u,u) € Z
by definition of Z. If u is a defined concept in T, then (u,u) € Yo CY C Z.

By its definition, Z respects ABox individuals. In addition, if B is a defined
concept in T, then (B,u) € Z implies (B,u) € Y, and thus u € B, O

Lemma 26 a = a” € AL.

Proof. Since we have assumed that A =7 A(a), this is an immediate consequence
of the fact that Z is a model of A. O

The next lemma completes the proof of (1 = 2) of Theorem 21.

Lemma 27 The simulation Y: G ~ G4 satisfies
(i) (A,a) €Y.
(11) Y is (B, u)-synchronized for all (B,u) € Y.

Proof. (i) By Proposition 16, a = a/ € AT implies that there exists a simulation
X: Gr ~ Gz = G4 such that

e (A a)€ X,
o if (B,y) € X then y € B%.

In particular, the two properties of X imply that a € A%, and thus (4,a) € Y
by the definition of Zj.

(ii) Assume that (B,u) € Y. To show that Y is (B, u)-synchronized, we define
an appropriate selection function S. Thus, consider the following partial (B, u)-
simulation chain:

B =B % B 3. B, 2B,
Yl Yl Y|
o= uyg S owp B IS,

Let k be minimal with (B, 1, u, 1) € Yj.

Case 1: k =0. If B,,_1 = u,,_1, then the selection function S chooses u,, := B,,.
Otherwise, B,,_1(u,_1) € A, and thus (B,,_1, B,) € Er implies (u,_1, B,) € F4.
Consequently, the selection function can again choose wu, := B,. In both cases
we have (B, B,) € Yo C Y.
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Case 2: k > 0. The minimality of k implies that (B, 1,u, 1) € Y; \ Yi_1. By
definition of Y}, the existence of the edge (B, 1,7, B,) € E7 thus implies that
there is an w, such that (u,_1,7,, u,) € E4 and (B, uy) € Yji_1. The selection
function S chooses such an u,,.

It remains to be shown that the selection function S really satisfies the condition
stated in Definition 10.> Thus, consider the following infinite S-selected (B, u)-
simulation chain:

B =B &3 B 3% B, & B &
Y] Y] Y] Y]
U = U g U1 g (%) 3 us g

Let ko be minimal with (By, ug) € Yi,. If kg = 0, then we are done (see below).
Otherwise, kg > 0 and then we know that (By, uy) € Yy,_1. Thus, if & is minimal
with (By,u1) € Y, then ky > k. If we continue this argument, then we obtain
indices kg, k1, ko, . .. where either k; > k;; 1 or k; = 0. This shows that there exists
an n such that k, = 0. Thus, either B,, = u, (in which case we are done), or
By, (uy,) € A. In the second case, the definition of the selection function S yields
Bn+1 = Up+1- u

The complexity of the instance problem

In order to show that the instance problem is tractable, it remains to be shown
that the existence of a synchronized simulation relation satisfying the conditions
stated in (2) of Theorem 21 can be decided in polynomial time.

Corollary 28 The instance problem w.r.t. descriptive semantics in EL can be
decided in polynomial time.

Obviously, the simulation Y defined in the proof of (1 = 2) of Theorem 21 can
be computed in polynomial time. Thus, the above corollary is an immediate
consequence of the following proposition.

Proposition 29 The following are equivalent:
1. There exists a simulation Z satisfying the conditions stated in (2) of Theo-

rem 21.

2. The simulation Y defined in the proof of (1 = 2) of Theorem 21 satisfies
(Aya) €Y.

3Definition 10 actually states this condition for simulations from G7 to Gs. It is, however,
obvious that this can be extended to simulations from G7 to G 4.
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Proof. First, assume that there exists a simulation Z satisfying the conditions
stated in (2) of Theorem 21. Then Theorem 21 yields A =7 A(a). But then the
proof of (1 = 2) of Theorem 21 shows that (A,a) € Y (see (i) of Lemma 27).

Second, assume that (A,a) € Y. The proof of (ii) of Lemma 27 shows that Y is
(B, u)-synchronized for all (B,u) € Y, and thus Y satisfies the conditions stated
in (2) of Theorem 21. O

A stronger version of Theorem 21
Proposition 29 also allows us to strengthen the formulation of Theorem 21. This
stronger version will be useful in the next section.

Let Z: G ~ G4 be a simulation. Recall that a selection function S for B, u and
Z assigns to each partial (B, u)-simulation chain

B =B % B & ... 5 B, I3 B,
71zl 7l
o= uy S w3 o 3 g,y

a node u, such that (u, 1,7,,u,) is an edge in Gy and (B,,u,) € Z.

Definition 30 We call a selection function S nice iff it satisfies the following two
conditions:

1. It is memoryless, i.e., its result u,, depends only on B, _1, uy_1, 7y, By, and
not on the other parts of the partial (B, u)-simulation chain.

2. If B,_1 = u,,_1, then its result u,, is just B,,.

The simulation relation 7 is called strongly (B, u)-synchronized iff there exists a
nice selection function S for B,u and Z such that the following holds: for every
infinite S-selected (B, u)-simulation chain

B = By &% B 2 B, & By &
A A A A
u = U g Uq 3 U9 g Uus

there exists an 2 > 0 such that u; = B;.
The following corollary is an immediate consequence of Proposition 29 since the
simulation Y defined in the proof of (1 = 2) of Theorem 21 is strongly (B, u)-

synchronized for all (B,u) € Y (see the definition of the selection function S in
the proof of Lemma 27).
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Corollary 31 Let T be an EL-TBoz, A an EL-ABozx, A a defined concept in T
and a an individual name occurring in A. Then the following are equivalent:

1. A ):7' A(a)
2. There is a simulation Z: Gy ~ G4 such that

o (A,a) € Z.
o 7 is strongly (B, u)-synchronized for all (B,u) € Z.

As shown in [4], strongly (B, u)-synchronized simulations satisfy the following
property:

Lemma 32 Let T be an EL-TBox, A an EL-ABozx, and G4 the £L-description
graph corresponding to A and T, as introduced in Definition 17. Assume that T
contains n defined concepts, and that G4 contains m nodes. If Z: Gr ~ G4 is
strongly (B, u)-synchronized with nice selection function S, then for any infinite
S-selected (B, u)-simulation chain of the form depicted in Definition 30 there
exists k < mn such that Bj, = uy,.

The proof of this lemma is very similar to the proof of Lemma 27 in [4].

5 The most specific concept

In this section, we will first show that the most specific concept w.r.t. descriptive
semantics need not exist. Then, we will show that the most specific concept w.r.t.
gfp-semantics (see [4]) coincides with the most specific concept w.r.t. descriptive
semantics iff the ABox satisfies a certain acyclicity condition. This yields a suf-
ficient condition for the existence of the msc, which is, however, not a necessary
one. We will then characterize the cases in which the msc exists. Unfortunately,
it is not yet clear how to turn this characterization into a decision procedure for
the existence of the msc.

5.1 The msc need not exist

Theorem 33 Let T, =0 and A= {r(a,a)}. Then a does not have an msc in A
and Ty.

Proof. Assume to the contrary that 75 is a conservative extension of 7; such
that the defined concept E in 75 is an msc of a. Let G4 be the £L-description
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graph corresponding to A and 77, as introduced in Definition 17. Since a is an
instance of E, there is a simulation Z: G, ~ G4 such that (E,a) € Z and 7 is
(B, u)-synchronized for all (B,u) € Z.

Since T; = (), there is no edge in G4 from a to a defined concept in 75. Thus, the
fact that Z is (F,a)-synchronized implies that there cannot be an infinite path
in G, (and thus G,4) starting with E. Consequently, there is an uppers-bound
no on the length of the paths in Gz, (and thus G4) starting with E.

Now, consider the TBox
Tz={F,=3rF,,...,Fi =3rFy, F, =T}

It is easy to see that T3 is a conservative extension of 75 (where we assume
without loss of generality that Fy, ..., F,, are concept names not occurring in 75)
and that A =7, Fy,(a). Since E is an msc of a, this implies that E Tz, F,. Thus,
there is an (F,, E')-synchronized simulation Y: Gz, ~ Gz, such that (F,,E) € Y.
However, for n > ng, the path

F, 5 Fpq 55 F

cannot be simulated by a path starting from E. O

5.2 A sufficient condition for the existence of the msc

Let 71 be an ££-TBox and A an £L£-ABox containing the individual name a. Let
Ga = (Vy, E4, Ly) be the £L-description graph corresponding to A and Ty, as
introduced in Definition 17.

We can view G4 as the £L-description graph of an ££-TBox 75, i.e., let T; be the
TBox such that G4 = Gr,. It is easy to see that 75 is a conservative extension of
7. By the definition of G4, the defined concepts of 75 are the defined concepts
of T together with the individual names occurring in A. To avoid confusion we
will denote the defined concept in 75 corresponding to the individual name b in

A by Cb.

In [4] it is shown that, w.r.t. gfp-semantics, the defined concept C, in 7T is the
most specific concept of a in A and 7;. We will show in this subsection that, w.r.t.
descriptive semantics, this is the case iff the ABox satisfies a certain acyclicity
condition.

Proposition 34 The defined concept Cy in Ty is the msc of a in A and Ty iff
A =7, Cula).

Proof. The direction from left to right is obvious.
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WA

Figure 3: The &£/L-description graph Q A

To show the direction from right to left, assume that A =7, C,(a). We must
show that the second condition in Definition 3 is also satisfied. Thus, assume
that 73 is a conservative extension of 7 and that F' is a defined concept in T3
such that A =7 F(a). Let G4 be the £L-description graph corresponding to
A and T3, as introduced in Definition 17. By Theorem 21, A =7, F(a) implies
that there is a simulation Z: Gy, ~ G4 such that (F,a) € Z and (B,u) € Z for a
defined concept B of T3 implies that Z is (B, u)-synchronized.

We must show that C, C7, F. By Theorem 11, it is enough to show that there
is an (F, C,)-synchronized simulation Y: G, ~ G, such that (F,C,) € Y.

To define Y, first note that the set of nodes of QA consists of the nodes of G,
and the individuals occurring in A. Also note that 73 extends 75, and that Gr,
in principle also contains the individuals occurring in A. However, we assume
without loss of generality that the individual names b in 7 have been renamed
into concept names Cj. The definition of G4 is illustrated in Figure 3. The
arrows indicate that there may be edges from one subgraph into the other. The
inner oval marked with A indicates the ABox A as used within Gr,. There, the
individual name a is renamed into C,, (and an analogous renaming is done for the
other individual names).

The simulation Y is defined as follows:

Y = {(u,v) € Z]|visanodeof G} U
{(u,Cy) | (u,b) € Z and b is an individual name in A}.

Since (F,a) € Z, we have (F,C,) € Y. The proof of Lemma 49 in [4] shows that
Y is a simulation relation. It remains to be shown that Y is (F, C,)-synchronized.
This means that we must define an appropriate selection function S such that all
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infinite S-selected (F, C,)-simulation chains satisfy the synchronization property.
Basically, S is induced by the selection function S” that ensures that 7: G, ~ G A
is (F, a)-synchronized. To be more precise, consider the partial (F, C,)-simulation
chain
F = F 5 R
Yl
Ca — CU

Then there exists a corresponding partial (F, a)-simulation chain
F =F 5% F
A

a = U

The selection function S’ yields a node u; such that (ug, 1, u;) is an edge in GAA
and (Fy,u;) € Z. The node u; is either an individual in A or a defined concept
in 7 (see Figure 3).

e If u; = by is an individual in A, then S selects Cy := C,,. We have that
(Cy,r1,Cy,) is an edge in G, and (Fy,Ch,) € Y.

e If u; = C is a defined concept in 77 (and thus a node of Gz, ), then S selects
Cy. We have that (C,,7,CY) is an edge in Gz, and (F},C) € Y.

Now, consider the partial S-selected (F,C,)-simulation chain

F = F % 3 ... 3 F , I3 F,
Y] Y] Y]
c, = C 3 ¢ B ... 5% ¢

By induction, we may assume that there is a corresponding partial S’-selected
(F, a)-simulation chain

F=F 3% 2 ... 5 F, 3 F
A A Z\
a = wuy 2 owp B ooy,

where

e u; = q; is an individual in A, in which case C; = C,,, or

e u; is a defined concept in 77, in which case C; = u; and all u; fori < j <n
are also defined concepts in 7;.

The selection function S’ yields a node u,, such that (u,_1, r,, u,) is an edge in C?A
and (Fy,u,) € Z. The node u, is either an individual in A or a defined concept
in 7;. We can now proceed as in the case n = 1 above, i.e.,
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e If u, = b, is an individual in A, then S selects C, . In this case u, 1 is an
ABox individual b, ; and C,, 1 = C, _,. We have that (Cy, _,, 7, Cp,) is
an edge in G, and (F,,C, ) €Y.

e Ifu, = C, is a defined concept in 77 (and thus a node of Gz, ), then S selects
C,. Tt is easy to see that (C,,_1,7,,C,) is an edge in G, and (F,,C,) € Y.

Now, consider an infinite S-selected (F, C,)-simulation chain:

F =FKR 3% 1R 2R3 R 3
Yl Yl Yl Yl
Ca - CO g Cl g 02 g 03 g

Then there is a corresponding infinite S’-selected (F, a)-simulation chain

3

F = F, &% F R B3 B 5
Zl Zl Zl Zl

a = Uy g U1 3 U2 g us g
where

e u; = q; is an individual in A, in which case C; = C,,, or

e u; is a defined concept in 77, in which case C; = u; and all u; for ¢ < j are
also defined concepts in 7.

Since Z is (F,a)-synchronized, there is an ¢ > 0 such that F; = u;. Since F; is
a node in Gr,, this implies that u; is a node in G7,. However, this can only be
the case if u; is a defined concept in 7;, in which case C; = u;. Thus, we have
F; = C;, which shows that Y is (F, C,)-synchronized. O

Next, we show that A 7, C,(a) holds iff A does not contain a cycle that is
reachable from a.

Definition 35 The ABox A is called a-acyclic iff there are no n > 1 and indi-
viduals ag, ay,...,a, and roles ry,...,r, such that

® a = ag,
e ri(a; 1,a;) € Afor 1 <i<nmn,

e there is a j,0 < j < n such that a; = a,.
Proposition 36 A =7, C.(a) iff A is a-acyclic.
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Figure 4: The & /L-description graph Ga.

Proof. First, assume that A }=7, Cy(a). Let G4 be the £L-description graph
corresponding to A and 7, as introduced in Definition 17 (see Figure 4). By
Theorem 21, there is a simulation Z: Gy, ~ G4 such that

e (Cy,a) € Z.
e 7 is (B, u)-synchronized for all (B,u) € Z.

If there is a cycle in A that is reachable from a, then there are individuals a, ao, . . .
and roles ry, 7y, ... such that

Co =5 Cay 3 Coy =3 Coy —5 -+

is an infinite path in G4 = G7,. Since Z is (C,, a)-synchronized, this path can be
simulated by a path in G 4 starting with a such that the synchronization property
is satisfied. However, this cannot be the case since from a one can reach only
defined concepts in 77, and thus none of the concepts C,,.

Second, assume that A is a-acyclic. In order to show A f=7; Cu(a) we define a
simulation Z: G, ~ G4 and show that it satisfies the properties stated in (2) of
Theorem 21:

Z = {(C,b) | bis reachable in A from a} U
{(C,C) | C is a defined concept in T }.
Since a is trivially reachable from a, we have (C,,a) € Z. In addition, it is easy

to see that Z is a simulation. Thus it remains to be shown that Z is (B, u)-
synchronized for all (B, u) € Z.

If (B,u) = (C,C) for a defined concept C' in Ty, then this is obvious since Z is
the identity on defined concepts in 7;.

If (B,u) = (Cy,b) for an individual b that is reachable in A from a, then any
infinite path starting with C, must eventually lead to a defined concept in 7. In
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Figure 5: The £L-description graph G 4 in the proof of Proposition 38.

fact, otherwise there is an infinite (and thus cyclic) path in A starting with b.
Since b is reachable from a, this contradicts our assumption that A is a-acyclic.
Now, we can again use the fact that Z is the identity on defined concepts in 7i.
|

Given 7 and an a-acyclic ABox A, the graph G4 can obviously be computed in
polynomial time, and thus the msc can in this case be computed in polynomial
time.

Theorem 37 Let T, be an EL-TBox and A an EL-ABox containing the indi-
vidual name a such that A is a-acyclic. Then the msc of a in Ty and A always
exists, and it can be computed in polynomial time.

The a-acyclicity of A is thus a sufficient condition for the existence of the msc.
The following example shows that this is not a necessary condition.

Proposition 38 Let Ty = {B = 3r.B} and A = {r(a,a), B(a)}. Then B in T,
is the msc of a in A and Ty.

Proof. The instance relationship A |7, B(a) is trivially true since B(a) € A.
Now, assume that 73 is a conservative extension of 7;, and that the defined
concept F' in T3 satisfies A =7, F(a). Let G4 be the £L-description graph
corresponding to A and T3, as introduced in Definition 17 (see Figure 5). Since
A E7, F(a), there is a simulation Z: G, ~ G4 such that (F,a) € Z and Z is
(C, u)-synchronized for all (C,u) € Z.
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We must show that B Cp, F, i.e., there is an (F, B)-synchronized simulation
Y: Gr, ~ Gr, such that (F, B) € Y. We define Y as follows:

Y = {(u,v) ]| (u,v) € Z and v is a defined concept in 73} U
{(u, B) | (u,a) € Z}.

Since (F,a) € Z we have (F,B) € Y. Next, we show that Y is a simulation.

(S1) is trivially satisfied since 77 (and thus also 73) does not contain primitive
concepts. Consequently, all node labels are empty.

(S2) Let (u,v) € Y and (u,r,v) be an edge in Gz,.*

First, assume that v is a defined concept in 73 and (u,v) € Z. Since Z is a
simulation, there exists a node v’ in G4 such that (v,r,v') is an edge in G4 and
(u',v") € Z. By the definition of G4, this implies that also v’ is a defined concept
in 73, and thus (v, r,2’) is an edge in G, and (v/,v") € Y.

Second, assume that v = B and (u,a) € Z. Since Z is a simulation, there exists
a node v in G4 such that (a,r,v’) is an edge in G4 and (v/,v") € Z. Since there
are only two edges with source a in G4, we know that v = a or v/ = B. If
v' = B, then v’ is a defined concept in 73, and thus (v,r,v") is an edge in Gr,
and (u/,v") € Y. If v/ = a, then (B,r, B) is an edge in Gr, and (u/,a) € 7 yields
(W,B) €Y.

Thus, we have shown that Y is indeed a simulation from Gr, to Gr,. It remains
to be shown that it is (F, B)-synchronized. Since (B, r, B) is the only edge in G,
with source B, the selection function always chooses B. Thus, it is enough to
show that any infinite path starting with F' in G7, eventually leads to B. This is
an easy consequence of the fact that 7 is (F, a)-synchronized and that the only
node in Gz, reachable in G4 from a is B. O

Since the ABox A in Proposition 38 is obviously not a-acyclic, a-acyclicity of A
is not a necessary condition for the existence of the msc.

Corollary 39 There exists an EL-TBox T, and an EL-ABox A containing the
individual name a such that the msc of a in T, and A exists, even though A is
not a-acyclic.

5.3 Characterizing when the msc exists

The example that demonstrates the non-existence of the msc given above (see
Theorem 33) shows that cycles in the ABox are problematic. However, Propo-
sition 38 shows that not all cycles cause problems. Intuitively, the reason for

4Since r is the only role occurring in 77, it is also the only role occurring in the conservative
extension 73 of 7.
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some cycles being harmless is that they can be simulated by cycles in the TBox.
For this reason, it is not really necessary to have them in G4. In order to make
this more precise, we will introduce acyclic versions gﬁ{” of G4, where cycles are
unraveled into paths up to depth k starting with a (see Definition 40 below).
When viewed as the £L-description graph of an ££-TBox, this graph contains a
defined concept that corresponds to the individual a. Let us call this concept Pj.
We will show below that the msc of a exists iff there is a £ such that P, is the
msc.” Unfortunately, it is not clear how this condition can be decided.

Definition 40 Let 7; be a fixed £L£-TBox with associated £ L-description graph
G, = Vi, Ez, Ly), A an EL-ABox, a a fixed individual in A, and & > 0. Then
the graph gﬁf) := (Vi, By, L) is defined as follows:

Vi = Vy U{a®} U {b" | b is an individual in A and 1 < n < k},
where a” and 0" are new individual names;

Ek = ET1 U
{0, ™) [r(be) € AW e Vi \ Vi) U
{(bi,T,B) | A(b) € Aabl € Vi \ VTla (A,T,B) € ETl};
If u is a node in V7, then
Ly(u) := L, (u);
and if u =b" € Vj, \ V7, then
Li(u) :={P | P(b) e AU ] Lp(4)

A(b)e A

where P denotes primitive and A denotes defined concepts.

As an example, consider the TBox 77 and the ABox A introduced in Proposi-
tion 38. The corresponding graph gf) is depicted in Figure 6 (where the empty
node labels are omitted).

Let E(k) be the £L£-TBox corresponding to gi{“). In this TBox, a° is a defined
concept, which we denote by P;. For example, the TBox corresponding to the
graph gﬁ? depicted in Figure 6 consists of the following definitions (where nodes
corresponding to individuals have been renamed®):

P,o=3rAinar.B, Ay =3Ir.A,N3Ir.B, Ay =3r.B, B=3r.B.

Lemma 41 A =_w Py(a)
2
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Figure 6: The &/L-description graph gﬁ? of the example in Proposition 38.

Figure 7: The £/L-description graph G4 in the proof of Lemma 41.

Proof. Let G4 be the £L-description graph corresponding to A and E(k)

introduced in Definition 17 (see Figure 7). We must show that there is a simu-

lation Z: G ~ G4 such that (P, a) € Z and Z is (B, u)-synchronized for all
2

(B,u) € Z. We define the relation Z as follows:
Z ={("b) | be Vp\V5}U{(C,C) | C is a defined concept in 7y }.

By definition of Z, (a° a) € Z. Since P is simply our name for a” in QTZ(k), this
shows that (Py,a) € Z. It is straightforward to show that 7 is a simulation. In
addition, every infinite path in QT(k) must eventually lead to a node in G7,. Since
Z is the identity on these nodes, the synchronization property obviously follows.

O

What we want to show next is that every concept that has a as an instance also
subsumes P, for an appropriate k. To make this more precise, assume that 75
is a conservative extension of 77, and that F' is a defined concept in 75 such
that A =7, F(a). Let G, = (V, Egy, L7;) and G4 be the £L-description graph
corresponding to A and Tz, as introduced in Definition 17. Then A =7, F(a)

5This result is similar to the characterization of the existence of the lcs w.r.t. descriptive
semantics given in [4].
6This renaming is admissible since these nodes cannot occur on cycles
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implies that there is a simulation Y: Gy, ~ G4 such that (F,a) € Y and Y is
(B, u)-synchronized for all (B,u) € Y.

By Corollary 31 we may assume without loss of generality that the selection func-
tions that ensure synchronization are nice, i.e., Y is strongly (B, u)-synchronized
for all (B,u) € Y. Consequently, if k& = |V,|m where m is the number of nodes
of G4, then Lemma 32 shows that the selection functions ensure synchronization
after less than k steps.

In the following, let k := |Vy|m where m is the number of nodes of G4 (i.e.,
|Vr| plus the number of individual names occurring in A). In order to have
a subsumption relationship between P, and F', both must “live” in the same
TBox. For this, we simply take the union 73 of 7;(k) and 75. Note that we
may assume without loss of generality that the only defined concepts that E(k)
and 75 have in common are the ones from 7;. In fact, none of the new defined
concepts in E(k) (i.e., the elements of Vj \ V) lies on a cycle, and thus we
can rename them without changing the meaning of these concepts. (Note that
the characterization of subsumption given in Theorem 11 implies that only for
defined concepts occurring on cycles their actual names are relevant.) Thus, 73

is a conservative extension of both 7;(k) and 7.
Lemma 42 If k := |V |m, then P, Cp, F.

Proof. We need an (F, Py)-synchronized simulation Z: G, ~ Gr, such that
(F, P.) € Z. We define the relation Z as follows:

7 = {(u,b") | uis anodein Gr, and 0" € V; \ V5, with (u,b) €Y} U
{(u,v) | wis a node in Gz, and v € V with (u,v) € Y'}.

The proof that Z is indeed an (F, P;)-synchronized simulation such that (F, P;) €
Z is similar to the proof of Lemma 30 in [4]. We give it here for the sake of
completeness.

By definition of Z, (F,a) € Y implies (F, P;) € Z since P}, stands for a® € V;,\ V.
In order to show that Z is (F, Py)-synchronized, we must define an appropriate
selection function S. Thus, consider the following partial (F, Py, )-simulation chain:

F=F3%FR 2 ... 5 F, %F
A A
Po=a = wy, % w, 2 ... 5w,

Since T3 is a conservative extension of 73, the nodes F; are all nodes in Gr,. In
addition, since 73 is a conservative extension of 7;( ), the nodes w; are all nodes
of gﬁ{‘”, i.e., elements of V.
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First, assume that w, 1 belongs to Vi \ V5 (and thus also the other nodes w;).
It is easy to see that this implies that w; = b! for some individual b; of A (i =
1,...,n —1). The definition of Z yields (F;,b;) € Y for i =1,...,n — 1. Thus,
we have the following partial simulation chain:

F=F23%pn 23 ... 3 p,55%F
Y] Y] Y]
a = bo g bl 3 R TSI bTL*l

Since Y is (F, a)-synchronized, the corresponding selection function yields a node
wy, of Gz, such that (F,,w,) € Y and (b, 1,7, w,) is an edge in G4. By the
definition of G4, this implies that w, is a node in V3 or an individual name in

A.

Case 1: wy, € V.
In this case, there is also an edge (b}, 7,,w,) in G, and the selection function
chooses w,,.

Case 2: w,, = b, is an individual name in A.

If n <k, then 0% € V,, \ Vi, and we have (F,,0") € Z and (! 1,7,,b") is an
edge in gﬁ{“), and thus also in G7,. Thus the selection function chooses b'. The
case n > k cannot occur. In fact, our choice of k& together with the fact that we
have assumed (without loss of generality) that Y is strongly (F,a)-synchronized
yields F,, 1 = b, 1 (Lemma 32). However, this cannot be the case since F, ; is
a defined concept in 75 whereas b,,_; is an individual name in A.

Now, assume that w,_; € Vy. But then (F,_i,w,_1) € Y by the definition of
Z. If i is minimal such that w; € V7, then we can assume (by induction) that
there are individuals by, ...,b;_; in A such that w; = b}, ..., w;_; = bﬁj and the
following is a partial simulation chain w.r.t. Y:

F 5 prp 2 ... '8 g, 5 F ' 0 Fp N F
Y] Y] Y] Y] Y]
a g b1 g s Ti—_>1 bi—l Q w; Ti—+>1 s Tn—_>1 Wp—1

The selection function that ensures that Y is (F,a)-synchronized yields a node
wy, in Gr, such that (w, 1,7, w,) is an edge in Gz, and (F,,w,) € Y. Since
wp—1 € Vy and T3 is a conservative extension of 7y, this implies w, € V7.
Consequently, (F,,w,) € Y also yields (F,,w,) € Z. Thus, the selection function
S chooses w,,.

To show that Z is (F, Py)-synchronized, we consider the following infinite S-
selected (F, Py)-synchronization chain

F = F 5 F 3 F 83 F 3
Z| Z| AN Z|
Pk = Wy g w1 3 wa g ws g
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Since any path in gﬁ{” has length at most k, we know that there exists a minimal
i < k such that w; € V. Thus, there are individuals b,...,b;_; in A such that

wy =bl,.. . wi o = bﬁj and the following is an infinite simulation chain w.r.t.
Y:

F &5 p 2 ... 8 5 F 3%, 3

Y| Y| Y| Y| Y|

a g b1 3 R Ti;>1 bi—l T% w; Tii>1 Wi41 T#

According to our definition of S, this simulation chain is selected w.r.t. the selec-
tion function that ensures that Y is (F, a)-synchronized. Thus, there is an index
j > i such that F; = w; (note that j < ¢ is not possible). O

In the following, we assume without loss of generality that the TBoxes E(k)
(k > 0) are renamed such that they share only the defined concepts of 7;. For
example, in addition to the upper index describing the level of a node in V} \ Vp

we could add a lower index k. Thus, b} denotes a node on level n in gﬁ{“).

As a consequence of the two lemmas shown above, we can prove that an msc of
a must be equivalent to one of the concepts P;.

Theorem 43 Let T; be an EL-TBox, A an EL-ABoz, and a an individual in A.
Then there exists an msc of a in A and Ti iff there is a k > 0 such that P, in
7;(k) is the msc of a in A and Ty.

The proof of this theorem is very similar to the proof of Theorem 31 in [4]. The
proofs of the following lemma and corollary are also basically identical to the
proofs of Lemma 32 and Corollary 33 in [4].

Lemma 44 Let T := E(k) U 7;(“1). Then Pyi1 Cr P
Corollary 45 Py is the msc of a iff it is equivalent to Pyy; for all i > 1.

As an example, consider the TBox 77 and the ABox A introduced in Proposi-
tion 38 (see also Figure 6). It is easy to see that in this case P, is equivalent to
P, for all £ > 1, and thus Py is the msc of ¢ in 7; and A.

6 Conclusion

Computing the least common subsumer (lcs) and the most specific concept (msc)
are important steps in the bottom-up construction of DL knowledge bases. In DLs
with existential restrictions, the most specific concept of a given ABox individual
need not exist. In [4] we have shown that allowing for cyclic definitions with
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greatest fixpoint (gfp) semantics in the DL £L£ overcomes this problem: in this
setting, the most specific concept exists and can be computed in polynomial
time. But then subsumption and the lcs operation must also be considered w.r.t.
cyclic definitions with gfp-semantics. In [1] we have shown that the subsumption
problem remains polynomial if one allows for cyclic definitions in ££, and in
[4] we have shown that, w.r.t. gfp-semantics, the lcs always exists, and that the
binary lcs can be computed in polynomial time.

Because of these positive results regarding gfp-semantics one might think that
this should be the semantics of choice for cyclic definitions in ££. However, the
problem is that gfp-semantics is not employed by any of the modern DL systems
allowing for cycles. In order to be compatible with these systems, one would
need to employ descriptive semantics. Subsumption is also polynomial w.r.t.
descriptive semantics [1], and we have shown in the present report that the same
is true for the instance problem.

For the les (which was treated in [4]) and the msc (which was treated in the present
report), descriptive semantics is not that well-behaved: the lcs and the msc need
not exist in general. In addition, we were only able to give decidable sufficient
conditions for their existence. If these conditions apply, then the lcs/msc can be
computed in polynomial time. Although we were able to characterize the cases in
which the les/msc exists, and show how the les/msc looks like in these cases, it is
not clear how to decide this necessary and sufficient condition for the existence
of the les/msc. Thus, one of the main open problems is the question how to
give a decidable characterization of the cases in which the les/msc exists, and to
determine whether it can then be computed in polynomial time.
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