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Abstra
t

Many des
ription logi
s (DLs) 
ombine knowledge representation on an abstra
t,

logi
al level with an interfa
e to \
on
rete" domains su
h as numbers and strings

with built-in predi
ates su
h as <, +, and pre�x-of. These hybrid DLs have turned

out to be quite useful for reasoning about 
on
eptual models of information systems,

and as the basis for expressive ontology languages. We propose to further extend

su
h DLs with key 
onstraints that allow the expression of statements like \US


itizens are uniquely identi�ed by their so
ial se
urity number". Based on this

idea, we introdu
e a number of natural des
ription logi
s and perform a detailed

analysis of their de
idability and 
omputational 
omplexity. It turns out that naive

extensions with key 
onstraints easily lead to unde
idability, whereas more 
areful

extensions yield NExpTime-
omplete DLs for a variety of useful 
on
rete domains.

1 Motivation

Des
ription logi
s (DLs) are a family of formalisms that allow the representation of and

reasoning about 
on
eptual knowledge in a stru
tured and semanti
ally well-understood

manner [8, 2℄. The 
entral entities for representing su
h knowledge are 
on
epts, whi
h

are 
onstru
ted from atomi
 
on
ept names (unary predi
ates) and role names (binary

relations) by means of the 
on
ept and role 
onstru
tors o�ered by a parti
ular DL. For

example, in the basi
 propositionally 
losed des
ription logi
 ALC, we 
an des
ribe a


ompany that has part-time employees but only full-time managers using the 
on
ept

Company u 9employee:Parttime u 8employee:(:Manager t :Parttime):

In this example, all upper
ase words denote 
on
ept names while the lower
ase employee

denotes a role name.

Rather than being viewed only as 
on
eptual entities in a knowledge base, 
on
epts


an, more generally, be understood as the 
entral notion in various kinds of 
lass-


entered formalisms. In the last de
ade, this observation has given rise to various

new and ex
iting appli
ations of des
ription logi
s su
h as reasoning about database


on
eptual models expressed in entity-relationship diagrams or obje
t-oriented s
hemas

and reasoning about ontologies for use in the semanti
 web, see [18, 16℄ and [6, 29, 30℄,

respe
tively. These new appli
ations have, in turn, stimulated resear
h in des
ription

logi
s sin
e the expressive power of existing DLs was insuÆ
ient for the new tasks.

One important extension of \
lassi
al" des
ription logi
s 
on
erns so-
alled 
on
rete

domains: assume, e.g., that we want to 
ontinue our example from above by equipping
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ompanies with a founding year and employees with a hiring year. Then, we may want

to des
ribe 
ompanies that were founded before 1970 and state that the hiring year of

employees is not prior to the founding year of the employing 
ompany. To do this, we

obviously need a way to talk about natural numbers (su
h as 1970) and 
omparisons

between natural numbers.

Nowadays, the standard approa
h to integrate numbers and other datatypes into

des
ription logi
s is to extend DLs with so-
alled 
on
rete domains as �rst proposed by

Baader and Hans
hke in [3℄, see also the survey [38℄. More pre
isely, a 
on
rete domain

D 
onsists of a set (su
h as the natural numbers) and predi
ates whi
h are asso
iated

with a �xed extension over this set

1

(su
h as the unary =

0

, the binary <, and the

ternary +). The integration of 
on
rete domains into, say, the des
ription logi
 ALC is

a
hieved by adding

1. so-
alled abstra
t features, whi
h are fun
tional relations;

2. so-
alled 
on
rete features, whi
h are (partial) fun
tions asso
iating values from

the 
on
rete domain (e.g., natural numbers) with logi
al obje
ts;

3. a 
on
rete domain-based 
on
ept 
onstru
tor.

The DL that is obtained by extending ALC in this way is 
alled ALC(D), where D

denotes a 
on
rete domain that 
an be viewed as a parameter to the logi
. For ex-

ample, when using a suitable 
on
rete domain D, we 
an now des
ribe the 
onstraints

formulated above: the 
on
ept

Employee u 9employer:(9foundingyear:<

1970

) u 9hiringyear; employer foundingyear:�

des
ribes an employee who is employed by a 
ompany founded before 1970 and whose

hiring year is not prior to the 
ompany's founding year. Here, the term inside parenthesis

and the third 
onjun
t are instan
es of the 
on
rete domain 
on
ept 
onstru
tor (not

to be 
onfused with the existential value restri
tion as in 9employee:Parttime), employer

is an abstra
t feature, and foundingyear and hiringyear are 
on
rete features.

Con
rete domains 
an be 
onsidered rather important in the \modern" appli
ations

of DLs mentioned above:

{ the standard way of using des
ription logi
s for reasoning about 
on
eptual database

models is to translate a given model into a DL representation and then use a

des
ription logi
 reasoning pro
edure for dete
ting in
onsisten
ies and inferring


onsequen
es of the information provided expli
itly in the model su
h as addi-

tional, impli
it 
ontainments between entities/
lasses [18℄. Sin
e most databases

store \
on
rete" data like numbers and strings, 
onstraints 
on
erning su
h data

are usually part of the 
on
eptual model and should thus also be 
aptured by the

des
ription logi
 used for reasoning. Indeed, the above example 
on
epts 
an be

viewed as the DL en
oding of 
onstraints from a database about 
ompanies and

their employees. As dis
ussed in [41℄, des
ription logi
s with 
on
rete domains are

well-suited for 
on
eptual modelling appli
ations involving 
on
rete datatypes.

1

This �xed extension is why these predi
ates are often 
alled \built-in".
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{ in the 
onstru
tion of ontologies for the semanti
 web, so-
alled 
on
rete datatypes

play a prominent role [30℄. Say, for example, that we want to 
onstru
t an ontology

whi
h 
an be used for des
ribing 
ar dealers' web pages and web servi
es. In su
h

an ontology, 
on
rete datatypes su
h as pri
es, manufa
turing years, and names of


ar models will doubtlessly be very important. To formulate this ontology using

a DL, we thus need a way to represent these 
on
rete datatypes. Consequently,

almost all DLs that have been proposed as an ontology language for the semanti


web are equipped with some form of 
on
rete domain [20, 30, 19℄.

In this paper, we propose to further extend the expressive power of des
ription logi
s

with 
on
rete domains in a way that is useful both for knowledge representation and

the two appli
ations sket
hed above. Let us des
ribe the basi
 idea, whi
h is to use


on
rete features for de�ning \key 
onstraints", using three examples:

1. Suppose that, in a knowledge representation appli
ation, we represent nationalities

by 
on
ept names su
h as US and German and, for US 
itizens, we store the so
ial

se
urity number using a 
on
rete feature ssn. Then it would be natural to state

that US 
itizens are uniquely identi�ed by their so
ial se
urity number, i.e. any

two distin
t instan
es of

Human u 9nationality:US

must have di�erent values for the ssn feature. In our extension of DLs with


on
rete domains, this 
an be expressed by using the key de�nition

(ssn keyfor Human u 9nationality:US):

2. Returning to our database about 
ompanies and employees, it 
ould be useful to

equip every employee with (i) a 
on
rete feature bran
h storing the bran
h-ID in

whi
h she is working and (ii) a 
on
rete feature id storing her personnel-ID. It

would then be natural to enfor
e that even though personnel-IDs are not unique,

the bran
h-ID together with the personnel-ID uniquely identi�es employees. We


an do this by using the n-ary key de�nition

(bran
h; id keyfor Employee):

3. In the 
ar dealers' ontology, we may assume that 
ars as well as manufa
turers

are equipped with identi�
ation numbers and that every 
ar is uniquely identi�ed

by the 
ombination of its own identi�
ation number and its manufa
turers one.

To express this, we 
ould employ an n-ary key de�nition referring to sequen
es of

features:

(id;manufa
turer id keyfor Car):

More formally, we propose to extend DLs to provide for 
on
rete domains with key

boxes, whi
h are sets of key de�nitions of the form

(u

1

; : : : ; u

n

keyfor C);
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where the u

i

are sequen
es f

1

� � � f

n

g of n abstra
t features f

1

; : : : ; f

n

followed by a

single 
on
rete feature g, and C is a 
on
ept. As the above examples illustrate, the idea

of key 
onstraints is a very natural one. Sin
e, moreover, keys play an important role

in databases and, as mentioned above, reasoning about database 
on
eptual models

is an important, 
hallenging appli
ation of des
ription logi
s, several approa
hes to

extend des
ription logi
s with keys have already been investigated [15, 17, 35℄. What

distinguishes our approa
h from existing ones, however, is the idea to use 
on
rete

domains for 
onstru
ting key 
onstraints, rather than de�ning keys on an abstra
t,

logi
al level.

The goal of this paper is to provide a 
omprehensive analysis of the e�e
ts on de-


idability and 
omputational 
omplexity of adding key boxes to des
ription logi
s with


on
rete domains. To this end, we extend the two des
ription logi
s with 
on
rete do-

mains ALC(D) and SHOQ(D) with key boxes, in this way obtaining ALCK(D) and

SHOQK(D), respe
tively. While ALC(D) 
an be viewed as the basi
 DL with 
on-


rete domains and has already been dis
ussed above, SHOQ(D) was proposed as an

ontology language in [31℄. It provides a wealth of expressive possibilities su
h as gen-

eral 
on
ept in
lusion axioms (GCIs), transitive roles, role hierar
hies, nominals, and

qualifying number restri
tions. Moreover, it o�ers a restri
ted variant of the 
on
rete

domain 
onstru
tor that disallows the use of sequen
es of features in order to avoid

unde
idability of reasoning.

The main out
ome of our investigations is that key 
onstraints 
an have a dramati


impa
t on the de
idability and 
omplexity of reasoning: for example, whereas satis�a-

bility of ALC(D)-
on
epts is known to be PSpa
e-
omplete [40℄, we are able to show

that satis�ability of ALCK(D)-
on
epts w.r.t. key boxes is, in general, unde
idable.

De
idability 
an be re
overed if we restri
t the 
on
epts used in key boxes to Boolean


ombinations of 
on
ept names, thus obtaining Boolean key boxes. Interestingly, satis�-

ability of ALCK(D)-
on
epts w.r.t. Boolean key boxes is still NExpTime-
omplete even

for very simple 
on
rete domains. In the 
ase of SHOQ(D) and SHOQK(D), the leap in


omplexity is somewhat less dramati
 sin
e SHOQ(D)-
on
ept satis�ability is already

ExpTime-
omplete: again, the addition of key boxes results in NExpTime-
omplete

reasoning problems (more details are given below).

It is interesting to note that there exists a 
lose 
onne
tion between key de�nitions

and so-
alled nominals, i.e. 
on
ept names that 
an have at most one instan
e, su
h as

Pope. Nominals are a standard means of expressivity in des
ription logi
s and some-

times appear in disguise as the \one-of" operator [14, 30℄. It is not hard to see that

key boxes 
an \simulate" nominals: if, for example, we use a 
on
rete domain based on

the natural numbers and providing unary predi
ates =

n

for equality with n 2 N, then

the key de�nition (g keyfor >), where > stands for logi
al truth, obviously makes the


on
ept 9g:=

3

behave like a nominal. For this reason, we also 
onsider ALCO(D), the

extension of ALC(D) with nominals, and ALCOK(D), the extension of ALCK(D) with

nominals.

2

Our main result 
on
erning nominals is that, although in general being of

lower expressive power than key boxes, nominals already lead to NExpTime-hardness of

reasoning if 
ombined with 
on
rete domains: there exist 
on
rete domains D su
h that

2

Note that the logi
 SHOQ(D) already provides for nominals.
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ALCO(D)-
on
ept satis�ability is NExpTime-
omplete. We should like to stress that

all NExpTime-hardness results obtained in this paper are in a

ordan
e with the obser-

vation made in [39℄, namely that the PSpa
e-upper bound for reasoning with ALC(D)

is not robust w.r.t. extensions of the logi
: there exist several \seemingly harmless"

extensions of ALC(D) (for example a
y
li
 TBoxes and inverse roles) whi
h make the


omplexity of reasoning leap from PSpa
e-
ompleteness to NExpTime-
ompleteness

for many natural 
on
rete domains.

The remainder of this paper is organized as follows:

In Se
tion 2, we formally introdu
e 
on
rete domains, key boxes, and the des
ription

logi
 ALCOK(D) together with its fragments ALCK(D) and ALCO(D). We also de�ne

Boolean key boxes and so-
alled path-free key boxes whi
h prohibit the use of sequen
es

of features inside key de�nitions. We also introdu
e unary key boxes and n-ary key

boxes in analogy to the n-ary key de�nitions used in the examples above.

Se
tion 3 is devoted to establishing lower bounds for des
ription logi
s with 
on
rete

domains, key boxes, and nominals. In Se
tion 3.1, we use a redu
tion of the Post Corre-

sponden
e Problem to prove that ALCK(D)-
on
ept satis�ability w.r.t. (non-Boolean)

key boxes is unde
idable if the 
on
rete domain D provides for the natural numbers,

a unary predi
ate for equality with zero, binary equality and inequality, and a binary

in
rementation predi
ate. We then shift our attention towards Boolean key boxes sin
e,

in Se
tion 4, we show that this restri
tion re
overs de
idability. In Se
tion 3.2, we intro-

du
e a NExpTime-
omplete variant of the domino problem and three 
on
rete domains

that are useful for the redu
tion of this problem to 
on
ept satis�ability in DLs provid-

ing for Boolean key boxes or nominals. In Se
tion 3.3, we use these 
on
rete domains

to prove that ALCK(D)-
on
ept satis�ability w.r.t. Boolean and path-free key boxes

is NExpTime-hard if D provides two unary predi
ates denoting disjoint singleton sets.

We then strengthen this result to unary key boxes, but, to 
ompensate for the weaker

key box formalism, we use more expressive 
on
rete domains. For example, it suÆ
es

that the 
on
rete domain D provides for the natural numbers, a unary predi
ate =

n

for ea
h n 2 N, and ternary addition. In Se
tion 3.4, we prove that ALCO(D)-
on
ept

satis�ability without referen
e to key boxes is already NExpTime-hard. For this result,

the strongest requirements on the 
on
rete domain are adopted: we additionally need

predi
ates su
h as multipli
ation and exponentiation. However, we are able to show

that there still exist 
on
rete domains that are 
omputationally very simple (PTime) if


onsidered in isolation, but lead to NExpTime-hardness if used with the DL ALCO(D).

The purpose of Se
tion 4 is to develop reasoning pro
edures for des
ription logi
s

with key boxes and to prove upper 
omplexity bounds mat
hing the NExpTime lower

bounds established in the previous se
tion. We start in Se
tion 4.1 with a tableau algo-

rithm that is 
apable of de
iding ALCOK(D)-
on
ept satis�ability w.r.t. Boolean key

boxes if the 
on
rete domain D is key-admissible. Intuitively, a 
on
rete domain D is

key admissible if there exists an algorithm that takes a �nite 
onjun
tion 
 of predi
ates

from D over some set of variables, de
ides whether this 
onjun
tion is satis�able, and

additionally returns information on whi
h variables must take the same values in solu-

tions of 
. We have 
hosen a tableau algorithm sin
e this type of reasoning pro
edure

has the potential to be implemented in eÆ
ient reasoners and has been shown to behave

5



well in pra
ti
e [33, 23℄. The algorithm provides us with the following upper bound:

ALCOK(D)-
on
ept satis�ability w.r.t. Boolean key boxes is in NExpTime if D is key-

admissible and the algorithm mentioned in the explanation of \key-admissible" runs

in non-deterministi
 polynomial time. In Se
tion 4.2, we devise a tableau algorithm

for SHOQK(D)-
on
ept satis�ability w.r.t. path-free key boxes whi
h might involve

non-Boolean 
on
epts. The restri
tion to Boolean 
on
epts in key boxes was ne
essary

for ALCOK(D) in order to avoid unde
idability. For SHOQK(D), this restri
tion is

not ne
essary sin
e SHOQK(D)'s 
on
rete domain 
onstru
tor is weaker than the one

provided by ALCOK(D): it does not admit the use of sequen
es of features as argu-

ments. As a by-produ
t of the 
orre
tness proof of the algorithm, we obtain a bounded

model property for SHOQK(D), whi
h implies that SHOQK(D)-
on
ept satis�ability

w.r.t. path-free key boxes is in NExpTime if D is key-admissible and the 
orresponding

algorithm runs in non-deterministi
 polynomial time.

In Se
tion 5, we summarize the results obtained and give an outlook to possible

future resear
h.

2 Des
ription Logi
s with Con
rete Domains

In the following, we introdu
e the des
ription logi
 ALCOK(D). Let us start with

de�ning 
on
rete domains:

De�nition 1 (Con
rete Domain). A 
on
rete domain D is a pair (�

D

;�

D

), where

�

D

is a set and �

D

a set of predi
ate names. Ea
h predi
ate name P 2 �

D

is asso
iated

with an arity n and an n-ary predi
ate P

D

� �

n

D

. �

Based on 
on
rete domains, we 
an now de�ne ALCOK(D)-
on
epts and key boxes.

De�nition 2 (ALCOK(D) Syntax). Let N

C

, N

O

, N

R

, N


F

be pairwise disjoint and


ountably in�nite sets of 
on
ept names, nominals, role names, and 
on
rete features.

Furthermore, we assume that N

R


ontains a 
ountably in�nite subset N

aF

of abstra
t

features. A path u is a 
omposition f

1

� � � f

n

g of n abstra
t features f

1

; : : : ; f

n

(n � 0)

and a 
on
rete feature g. Let D be a 
on
rete domain. The set of ALCOK(D)-
on
epts

is the smallest set su
h that

� every 
on
ept name and every nominal is a 
on
ept, and

� if C and D are 
on
epts, R is a role name, g is a 
on
rete feature, u

1

; : : : ; u

n

are

paths, and P 2 �

D

is a predi
ate of arity n, then the following expressions are

also 
on
epts:

:C; C uD; C tD; 9R:C; 8R:C; 9u

1

; : : : ; u

n

:P; and g":

A key de�nition is an expression

(u

1

; : : : ; u

k

keyfor C);

where u

1

; : : : ; u

k

(k � 1) are paths and C is a 
on
ept. A �nite set of key de�nitions is


alled key box. �
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As usual, we use > as abbreviation for an arbitrary propositional tautology, ? as ab-

breviation for :>, C ! D as abbreviation for :C tD, and C $ D as abbreviation for

(C ! D) u (D ! C). Throughout this paper, we will also 
onsider several fragments

of the des
ription logi
 ALCOK(D). The DL ALCO(D) is obtained from ALCOK(D)

by admitting only empty key boxes. In parti
ular, the set of ALCO(D)-
on
epts is just

the set of ALCOK(D)-
on
epts. Furthermore, by disallowing the use of nominals, we

obtain the fragment ALC(D) of ALCO(D) and ALCK(D) of ALCOK(D).

The des
ription logi
 ALCOK(D) is equipped with a Tarski-style set-theoreti
 se-

manti
s. Along with the semanti
s, we introdu
e the two standard inferen
e problems:


on
ept satis�ability and 
on
ept subsumption.

De�nition 3 (ALCOK(D) Semanti
s). An interpretation I is a pair (�

I

; �

I

), where

�

I

is a non-empty set, 
alled the domain, and �

I

is the interpretation fun
tion. The

interpretation fun
tion maps

{ ea
h 
on
ept name C to a subset C

I

of �

I

,

{ ea
h nominal N to a singleton subset N

I

of �

I

,

{ ea
h role name R to a subset R

I

of �

I

��

I

,

{ ea
h abstra
t feature f to a partial fun
tion f

I

from �

I

to �

I

, and

{ ea
h 
on
rete feature g to a partial fun
tion g

I

from �

I

to �

D

.

If u = f

1

� � � f

n

g is a path, then u

I

(d) is de�ned as g

I

(f

I

n

� � � (f

I

1

(d)) � � � ). The interpre-

tation fun
tion is extended to arbitrary 
on
epts as follows:

(:C)

I

:= �

I

n C

I

(C uD)

I

:= C

I

\D

I

(C tD)

I

:= C

I

[D

I

(9R:C)

I

:= fd 2 �

I

j There is e 2 �

I

with (d; e) 2 R

I

and e 2 C

I

g

(8R:C)

I

:= fd 2 �

I

j For all e 2 �

I

, if (d; e) 2 R

I

, then e 2 C

I

g

(9u

1

; : : : ; u

n

:P )

I

:= fd 2 �

I

j 9x

1

; : : : ; x

n

2 �

D

: u

I

i

(d) = x

i

and (x

1

; : : : ; x

n

) 2 P

D

g

(g")

I

:= fd 2 �

I

j g

I

(d) unde�nedg:

Let I be an interpretation. Then I is a model of a 
on
ept C i� C

I

6= ;. Moreover, I

satis�es a key de�nition (u

1

; : : : ; u

n

keyfor C) if, for any a; b 2 C

I

,

if, for 1 � i � n, u

I

i

(a) = u

I

i

(b), then a = b.

I is a model of a key box K i� I satis�es all key de�nitions in K. A 
on
ept C is

satis�able w.r.t. a key box K i� C and K have a 
ommon model. C is subsumed by a


on
ept D w.r.t. a key box K (written C v

K

D) i� C

I

� D

I

for all models I of K. �
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It is well-known that, in des
ription logi
s providing for negation, subsumption 
an

be redu
ed to (un)satis�ability and vi
e versa: C v

K

D i� C u :D is unsatis�able

w.r.t. K and C is satis�able w.r.t. K i� C 6v

K

?. This allows us to 
on
entrate on


on
ept satis�ability when devising 
omplexity bounds for reasoning with des
ription

logi
s: lower and upper 
omplexity bounds for 
on
ept satis�ability imply 
orresponding

bounds for 
on
ept subsumption|only for the 
omplementary 
omplexity 
lass.

If de
ision pro
edures for des
ription logi
s with 
on
rete domains are to be devised

without 
ommitting to a parti
ular 
on
rete domain, then a well-de�ned interfa
e be-

tween the de
ision pro
edure and a 
on
rete domain reasoner is needed. Usually, the


on
rete domain is required to be admissible [3, 37, 38℄:

De�nition 4 (D-
onjun
tion, admissibility). Let D be a 
on
rete domain and V a

set of variables. A D-
onjun
tion is a (�nite) predi
ate 
onjun
tion of the form


 =

^

i<k

(x

(i)

0

; : : : ; x

(i)

n

i

) : P

i

;

where P

i

is an n

i

-ary predi
ate for i < k and the x

(i)

j

are variables from V. A D-


onjun
tion 
 is satis�able i� there exists a fun
tion Æ mapping the variables in 
 to

elements of �

D

su
h that (Æ(x

(i)

0

); : : : ; Æ(x

(i)

n

i

)) 2 P

D

i

for ea
h i < k. Su
h a fun
tion is


alled a solution for 
. We say that the 
on
rete domain D is admissible i�

1. �

D


ontains a name >

D

for �

D

;

2. �

D

is 
losed under negation, i.e., for ea
h n-ary predi
ate P 2 �

D

, there is a

predi
ate P 2 �

D

of arity n su
h that P

D

= �

n

D

n P

D

;

3. satis�ability of D-
onjun
tions is de
idable.

We refer to the satis�ability of D-
onjun
tions as D-satis�ability. �

As we shall see, it sometimes makes a 
onsiderable di�eren
e w.r.t. 
omplexity and

de
idability to restri
t key boxes in various ways, for example to admit only the 
on
ept

> on the right-hand side of key de�nitions or to disallow paths of length greater than

one. Therefore, we introdu
e some useful notions.

De�nition 5 (Boolean, Path-free, Simple). A key box K is 
alled

� Boolean if all 
on
epts appearing in (key de�nitions in) K are Boolean 
ombina-

tions of 
on
ept names;

� path-free if all key de�nitions in K are of the form (g

1

; : : : ; g

n

keyfor C); where

g

1

; : : : ; g

n

2 N


F

;

� simple if it is both path-free and Boolean;

� a unary key box if all key de�nitions in K are unary key de�nitions, i.e. of the

form (u keyfor C):

8



A 
on
ept C is 
alled path-free if, in all its sub
on
epts of the form 9u

1

; : : : ; u

n

:P ,

u

1

; : : : ; u

n

are 
on
rete features. �

To emphasize that a key box must not ne
essarily be Boolean or path-free, we sometimes


all su
h a key box general. Similarly, to emphasize that a key box is not ne
essarily a

unary key box, we sometimes 
all su
h a key box n-ary key box.

3 Lower Bounds

In this se
tion, we prove lower bounds for des
ription logi
s with 
on
rete domains

whi
h provide for key boxes and/or nominals. In Se
tion 3.1, we start with showing

that the satis�ability of ALCK(D)-
on
epts w.r.t. (general) key boxes is unde
idable for

many interesting 
on
rete domains. This dis
ouraging result is relativized by the fa
t

that, in Se
tion 4.1, we shall prove that the restri
tion to Boolean key boxes re
overs

de
idability. It is thus interesting to look for lower 
omplexity bounds that apply under

this restri
tion. In preparation for this, we introdu
e in Se
tion 3.2 a NExpTime-


omplete variant of the domino problem and three 
on
rete domains that are well-

suited for redu
tions of this problem. In Se
tion 3.3, we then prove that satis�ability

of path-free ALCK(D)-
on
epts w.r.t. simple key boxes is NExpTime-hard for a large


lass of 
on
rete domains D and that, for many 
on
rete domains, this does hold even

if we restri
t ourselves to unary key boxes. Finally, we 
onsider the des
ription logi


ALCO(D) in Se
tion 3.4 and identify several 
on
rete domains su
h that ALCO(D)-


on
ept satis�ability (without key boxes!) is NExpTime-hard. As we will explain,

key boxes and nominals are 
losely related: key boxes 
an express nominals, but are

more powerful. Intuitively, key boxes 
an be used to de�ne 
on
epts that behaves like

nominals|but the number of \nominals" de�ned in this way 
annot be bounded in

advan
e by a simple synta
ti
 test.

3.1 Unde
idability of ALCK(D) with General Key Boxes

We prove that satis�ability of ALCK(D)-
on
epts w.r.t. key boxes is unde
idable for

a large 
lass of 
on
rete domains|if we allow 
omplex ALCK(D)-
on
epts to o

ur

in key de�nitions. The proof is by a redu
tion of the well-known unde
idable Post

Corresponden
e Problem [43, 27℄.

De�nition 6 (PCP). An instan
e P of the Post Corresponden
e Problem is given by

a �nite, non-empty list (`

1

; r

1

); : : : ; (`

k

; r

k

) of pairs of words over some alphabet �. A

sequen
e of integers i

1

; : : : ; i

m

, with m � 1, is 
alled a solution for P i�

`

i

1

� � � `

i

m

= r

i

1

� � � r

i

m

:

The Post Corresponden
e Problem (PCP) is to de
ide, for a given instan
e P , whether

P has a solution. �

For redu
ing the PCP, we need an appropriate 
on
rete domain. It is obviously natural

to use a 
on
rete domain based on words and 
on
atenation. We will later see that

9



Step := u

1�i�k

9f

i

:(:A u 9g:=

�

u 9`; r:6=)

u u

1�i�k

(9`; f

i

`:
on


`

i

u 9r; f

i

r:
on


r

i

)

C

P

:= 9`:=

�

u 9r:=

�

u 9R:(A u 9g:=

�

u :Step)

u Step

K

P

:= fg keyfor :Stepg

Figure 1: The ALCK(W) redu
tion 
on
ept C

P

and key box K

P

.

the results obtained for this 
on
rete domain 
arry over to other, more natural 
on-


rete domains based on numbers and arithmeti
s. The following 
on
rete domain was

introdu
ed in [39℄.

De�nition 7 (Con
rete domain W). Let � be an alphabet. The 
on
rete domain

W is de�ned by setting �

W

:= �

�

and de�ning �

W

as the smallest set 
ontaining the

following predi
ates:

� unary predi
ates word and nword with word

W

= �

W

and nword

W

= ;,

� unary predi
ates =

�

and 6=

�

with =

W

�

= f�g and 6=

W

�

= �

+

,

� a binary equality predi
ate = and a binary inequality predi
ate 6= with the obvious

interpretation, and

� for ea
h w 2 �

+

, two binary predi
ates 
on


w

and n
on


w

with


on


W

w

= f(u; v) j v = uwg and n
on


W

w

= f(u; v) j v 6= uwg:

�

It is readily 
he
ked that W satis�es Properties 1 and 2 of admissibility. In [39℄, the


omplexity of W-satis�ability is investigated.

Theorem 8. W-satis�ability is in PTime.

Thus, W is admissible. This is important sin
e our aim is to demonstrate that the

unde
idability of ALCK(W)-
on
ept satis�ability is due to the presen
e of keys, and

not due to the unde
idability of W-satis�ability.

We 
an now dis
uss the redu
tion of the PCP. A given instan
e (`

1

; r

1

); : : : ; (`

k

; r

k

)

is translated into an ALCK(D)-
on
ept and key box as shown in Figure 1. In this

�gure, f

1

; : : : ; f

k

denote abstra
t features while g, `, and r denote 
on
rete features.

The de�nition of the 
on
ept Step just serves as an abbreviation. The idea behind

the redu
tion is that a 
ommon model of C

P

and K

P

en
odes all potential solutions

10



`

r

=

�


on


r

k

f

1

f

k

`

r

r

`

f

1

f

1

f

k

f

k


on


`

k


on


`

1


on


r

1

� � �

� � � � � �

� � � � � �

=

�

R

x

9g:=

�

A

Figure 2: An example model of C

P

and K

P

.

(i.e., sequen
es that 
an be 
ompleted to a solution) for the PCP P and, moreover,

the existen
e of su
h a model guarantees that no potential solution is indeed a solution.

Models of C

P

and K

P

, su
h as the one displayed in Figure 2, have the form of an in�nite

k-ary tree whose root is 
onne
ted to an \extra node" x via the role R. Intuitively, ea
h

node of the tree represents one sequen
e of indi
es i

1

; : : : ; i

n

, its `-su

essor represents

the 
orresponding left 
on
atenation `

i

1

� � � `

i

n

, and its r-su

essor the 
orresponding

right 
on
atenation r

i

1

� � � r

i

n

. To enfor
e the existen
e of the in�nite tree, we employ

the key box K

P

: 
onsider for example the root node's f

1

-su

essor in Figure 2|let us


all this node y. Due to Line 3 of C

P

and Line 1 of Step, we have y 2 (9g:=

�

)

I

. Due

to Line 2 of C

P

, we also have x 2 (9g:=

�

)

I

and x 2 (:Step)

I

, where x is the \extra

node" mentioned above. In view of the key box K

P

, this implies that either (i) x = y

or (ii) y 2 Step

I

. It is easy to see that (i) is impossible sin
e Line 2 of C

P

and Line 1 of

Step imply that x 2 A

I

and y 2 (:A)

I

. Hen
e y 2 Step

I

and, by Line 2 of Step, y has

the appropriate f

i

-su

essors for 1 � i � n. In the same way, the 
onstru
tion of the

tree 
an be 
ontinued ad in�nitum. The se
ond line in the de�nition of Step enfor
es

that `

I

(z) = `

i

1

� � � `

i

n

and r

I

(z) = r

i

1

� � � r

i

n

for z an f

i

1

� � � f

i

n

-su

essor of the root

node. Finally, the 
on
ept 9`; r:6= in Line 1 of Step implies that `

I

(z) 6= r

I

(z) holds at

all nodes z of the tree (ex
ept for the root), whi
h implies that no potential solution is

a solution.

Sin
e the size of C

P

and K

P

is 
learly polynomial in k and the key box K

P

is a

unary key box, we obtain the following proposition.

Proposition 9. The satis�ability of ALCK(W)-
on
epts w.r.t. (general) unary key

boxes is unde
idable.

To emphasize that this unde
idability result was obtained using a very simple 
on
rete

domain, let us 
ombine Theorem 8 with Proposition 9.

Theorem 10. There exists a 
on
rete domain D su
h that D-satis�ability is in PTime

and satis�ability of ALCK(D)-
on
epts w.r.t. (general) unary key boxes is unde
idable.
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On �rst sight, the 
on
rete domain W might look arti�
ial and one may question the

relevan
e of lower bounds that have been obtained using W. However, it is straightfor-

ward to en
ode words as natural numbers and to de�ne 
on
atenation of words as rather

simple operations on the natural numbers [5℄: words w 6= � over the alphabet � of 
ardi-

nality #� 
an be interpreted as numbers written at base #�+1 where the symbol that

is the \0 digit" does never o

ur. Hen
e, we 
an use the 
orresponding natural number

(at base 10) to represent a word w and the number 0 to represent the empty word. The


on
atenation of two words v and w 
an then be expressed as vw = v � (#�+1)

jwj

+w,

where jwj denotes the length of the word w. Moreover, exponentiation 
an be expressed

as multiple multipli
ations, multipli
ation as multiple additions, and addition as mul-

tiple in
rementation (see [39℄ for details). This observation gives rise to the following

theorem:

Theorem 11. Let D be a 
on
rete domain su
h that N � �

D

, �

D


ontains a unary

predi
ate =

0

with (=

0

)

D

= f0g, binary equality and inequality predi
ates, and a binary

predi
ate in
r with in
r

D

\ f(n; x) j n 2 N and x 2 �

D

g = f(k; k + 1) j k 2 Ng. Then

satis�ability of ALCK(D)-
on
epts w.r.t. (general) unary key boxes is unde
idable.

Sin
e subsumption 
an be redu
ed to satis�ability as des
ribed in Se
tion 2, we obtain


orresponding unde
idability results for 
on
ept subsumption.

3.2 Domino Problems and Con
rete Domains

In this se
tion, we introdu
e a NExpTime-
omplete variant of the well-known, unde
id-

able domino problem [11, 36℄, and then de�ne three 
on
rete domains D

1

, D

2

, and D

3

.

These 
on
rete domains will be used in Se
tions 3.3 and 3.4 to establish lower bounds

for reasoning with ALCK(D) and Boolean key boxes, and for reasoning with ALCO(D).

In general, a domino problem is given by a �nite set of tile types. All tile types

are of the same size, ea
h type having a square shape and 
olored edges. An unlimited

number of tiles of ea
h type is available. In the NExpTime-hard variant of the domino

problem that we use, the task is to tile a 2

n+1

�2

n+1

-torus (i.e., a 2

n+1

�2

n+1

-re
tangle

whose borders are \glued" together) where neighboring edges have the same 
olor.

De�nition 12 (Domino System). A domino system D is a triple (T;H; V ), where

T � N is a �nite set of tile types and H;V � T � T represent the horizontal and

verti
al mat
hing 
onditions. Let D be a domino system and a = a

0

; : : : ; a

n�1

an initial


ondition, i.e. an n-tuple of tiles. A mapping � : f0; : : : ; 2

n+1

g � f0; : : : ; 2

n+1

g ! T is a

solution for D and a i�, for all x; y < 2

n+1

, the following holds:

{ if �(x; y) = t and �(x�

2

n+1 1; y) = t

0

, then (t; t

0

) 2 H

{ if �(x; y) = t and �(x; y �

2

n+1
1) = t

0

, then (t; t

0

) 2 V

{ �(i; 0) = a

i

for i < n.

where �

i

denotes addition modulo i. �

12



As shown in, e.g., Corollary 4.15 of [37℄, it follows from results in [13℄ that the above

variant of the domino problem is NExpTime-
omplete.

We now de�ne the 
on
rete domain D

1

whi
h will be used in the redu
tion of

the NExpTime-
omplete domino problem to ALCK(D

1

)-
on
ept satis�ability w.r.t.

Boolean key boxes.

De�nition 13 (Con
rete Domain D

1

). The 
on
rete domain D

1

is de�ned by setting

�

D

1

:= f0; 1g and �

D

1

to the (smallest) set 
ontaining the following predi
ates:

{ a unary predi
ate >

D

1

with (>

D

1

)

D

1

= �

D

1

and a unary predi
ate ?

D

1

with

(?

D

1

)

D

1

= ;;

{ unary predi
ates =

0

and =

1

with (=

i

)

D

1

= fig.

�

It is readily 
he
ked that the 
on
rete domain D

1

is admissible and that D

1

-satis�ability

is in PTime.

Proposition 14. D

1

-satis�ability is in PTime.

The se
ond 
on
rete domain D

2

will be used for a redu
tion of the NExpTime-
omplete

domino problem to ALCK(D

2

)-
on
ept satis�ability w.r.t. Boolean unary key boxes. For

this redu
tion we need to \store" ve
tors of bits in single 
on
rete domain elements.

De�nition 15 (Con
rete Domain D

2

). For every n 2 N, a fun
tion v : f0; : : : ; n�

1g ! f0; 1g is 
alled a bit ve
tor of dimension n. We use BV

n

to denote the set of all bit

ve
tors of dimension n. The 
on
rete domain D

2

is de�ned by setting �

D

2

:=

S

i>0

BV

i

and �

D

2

to the (smallest) set 
ontaining the following predi
ates:

{ a unary predi
ate >

D

2

with (>

D

2

)

D

2

= �

D

2

and a unary predi
ate ?

D

2

with

(?

D

2

)

D

2

= ;;

{ for every k; i 2 N with i < k, unary predi
ates bit0

i

k

and bit1

i

k

with

(bitn

i

k

)

D

2

= fv 2 �

D

2

j v 2 BV

k

and v(i) = ng:

Moreover, unary predi
ates bit0

i

k

and bit1

i

k

with (bitn

i

k

)

D

2

= �

D

2

n (bitn

i

k

)

D

2

.

�

It is obvious that D

2

satis�es Conditions 1 and 2 of admissibility, and, as we will see

now, an algorithm for D

2

-satis�ability is easily devised.

Proposition 16. D

2

-satis�ability is in PTime.
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Proof. Let 
 be a D

2

-
onjun
tion. We show that 
 is satis�able i� none of the following


onditions applies:

1. 
 
ontains a 
onjun
t ?

D

2

(x);

2. 
 
ontains 
onjun
ts bit0

i

k

(x) and bit1

i

k

(x);

3. 
 
ontains 
onjun
ts bitn

i

k

(x) and bitm

j

`

(x) with k 6= `;

4. 
 
ontains 
onjun
ts bitn

i

k

(x) and bitn

i

k

(x);

5. 
 
ontains 
onjun
ts bitn

i

k

(x), bit0

j

k

(x), and bit1

j

k

(x).

It is easily seen that 
 is unsatis�able if one of the 
onditions applies. Assume now that

Conditions 1 to 5 do not apply to 
 and let X be the set of variables used in 
. For

ea
h x 2 X, set t(x) = k if bitn

i

k

(x) 2 
 for some n; i 2 N.

3

If bitn

i

k

(x) =2 
 for all

n; i; k 2 N, then set t(x) = r for some r not appearing as an index �

r

to a predi
ate

in 
. The mapping t is well-de�ned sin
e 
 is �nite, Condition 3 does not apply, and the

only predi
ates available are bitn

i

k

(�), ?

D

2

(�), and >

D

2

(�). We de�ne a solution Æ for 


as follows: for ea
h x 2 X, set Æ(x) to the bit ve
tor v 2 BV

t(x)

in whi
h the i'th bit

is 1 if bit1

i

t(x)

(x) 2 
 or bit0

i

t(x)

(x) 2 
, and 0 otherwise. It remains to prove that Æ is

indeed a solution for 
:

� Let bit0

i

k

(x) 2 
. Then t(x) = k and thus Æ(x) 2 BV

k

. Sin
e Condition 2 does not

apply, we have bit1

i

k

(x) =2 
. Moreover, non-appli
ability of Condition 4 implies

bit0

i

k

(x) =2 
. By de�nition of Æ, the i'th bit of Æ(x) is thus 0.

� Let bit1

i

k

(x) 2 
. Then t(x) = k and Æ(x) 2 BV

k

. By de�nition of Æ, the i'th bit

of Æ(x) is 1.

� Let bit0

i

k

(x) 2 
. If t(x) 6= k, then Æ(x) =2 BV

k

. Thus Æ(x) 2 (bit0

i

k

)

D

2

and we are

done. If t(x) = k, then the i'th bit of Æ(x) is 1 by de�nition of Æ and thus again

Æ(x) 2 (bit0

i

k

)

D

2

.

� Let bit1

i

k

(x) 2 
. If t(x) 6= k, then Æ(x) =2 BV

k

and we are done. If t(x) = k,

then bitn

j

k

(x) 2 
 for some n; j 2 N. Sin
e Condition 5 does not apply, we thus

have bit0

i

k

(x) =2 
. Moreover, non-appli
ability of Condition 4 yields bit1

i

k

(x) =2 
.

Thus, by de�nition of Æ, the i'th bit of Æ(x) is 0.

It is obvious that the listed properties 
an be 
he
ked in polynomial time. ❏

3

We use \P (x) 2 
" as an abbreviation for \P (x) is a 
onjun
t in 
".
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The last 
on
rete domain D

3

is used in the redu
tion of the NExpTime-
omplete

domino problem to ALCO(D

3

)-
on
ept satis�ability. In this redu
tion, the 
on
rete

domain D

3

serves two main purposes: �rstly, we store the whole 2

n+1

� 2

n+1

-torus in a

single element of �

D

3

. Se
ondly, positions in the torus are addressed using elements of

�

D

3

. Thus, the set �

D

3


ontains two di�erent types of elements: \domino arrays" for

representing tori and \ve
tors" for addressing positions in domino arrays. Intuitively,

ve
tors of length n+1 
an be understood as bit ve
tors representing the binary 
oding

of numbers between 0 and 2

n+1

�1, i.e. x-positions and y-positions in the torus. Domino

arrays are then fun
tions mapping pairs of ve
tors to natural numbers (representing tile

types). However, as is dis
ussed below, it is advisable to de�ne D

3

in a slightly more

general way by admitting ve
tors of natural numbers rather than bit ve
tors.

De�nition 17 (Con
rete Domain D

3

). For every k 2 N, a fun
tion v : f0; : : : ; k �

1g ! N is 
alled a ve
tor of dimension k. We use VE

k

to denote the set of all ve
tors of

dimension k. For every k 2 N, a fun
tion k : VE

k

� VE

k

! N is 
alled a domino array

of dimension k. We use DA

k

to denote the set of all domino arrays of dimension k. The


on
rete domain D

3

is de�ned by setting �

D

3

:=

S

i>0

VE

i

[

S

i>0

DA

i

and �

D

3

to the

(smallest) set 
ontaining the following predi
ates:

� unary predi
ates >

D

3

with (>

D

3

)

D

3

= �

D

3

and ?

D

3

with (?

D

3

)

D

3

= ;;

� for every k; i 2 N with i < k, unary predi
ates pos0

i

k

and pos1

i

k

with

(posn

i

k

)

D

3

= fv 2 �

D

3

j v 2 VE

k

and v(i) = ng

and unary predi
ates pos0

i

k

and pos1

i

k

with (posn

i

k

)

D

3

= �

D

3

n (posn

i

k

)

D

3

.

� for every k; i 2 N, a predi
ate tile

i

k

of arity 3 with

(tile

i

k

)

D

3

= f(v

x

; v

y

; d) j v

x

; v

y

2 VE

k

; d 2 DA

k

; and d(v

x

; v

y

) = ig

and a predi
ate tile

i

k

of arity 3 with (tile

i

k

)

D

3

= (�

D

3

)

3

n (tile

i

k

)

D

3

.

�

The reason for using ve
tors of natural numbers rather than bit ve
tors in the de�nition

of D

3

is that we want D

3

-satis�ability to be of low 
omplexity, preferably in PTime:


onsider the D

3

-
onjun
tion

pos0

0

2

(x) ^ pos0

0

2

(y) ^ pos0

0

2

(z) ^

pos0

0

2

(v) ^ pos0

1

2

(v) ^

tile

7

2

(x; v; d) ^ tile

8

2

(y; v; d) ^ tile

9

2

(z; v; d):

If we use bit ve
tors rather than ve
tors of natural numbers, then at least two out of

the three variables x, y, and z must take the same value and thus the above 
onjun
tion

is unsatis�able. It seems unlikely that this kind of in
onsisten
y 
an be dete
ted in

polynomial time. This problem is eliminated by using ve
tors of natural numbers in the

de�nition of D

3

(but enfor
ing them to be bit ve
tors in the redu
tion): in this 
ase,

the above 
onjun
tion is 
learly satis�able. The following proposition is proved in [39℄:

Proposition 18. D

3

-satis�ability is in PTime.
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3.3 NExpTime-hardness of ALCK(D) with Boolean Key Boxes

In this se
tion, we prove two NExpTime-lower bounds for ALCK(D)-
on
ept satis�a-

bility w.r.t. Boolean key boxes by redu
ing the NExpTime-
omplete domino problem

introdu
ed in the previous se
tion. The �rst redu
tion uses the very simple 
on
rete do-

main D

1

, but depends on n-ary key de�nitions. The se
ond redu
tion uses the slightly

more 
omplex (and more unnatural) 
on
rete domain D

2

, but only needs unary key

de�nitions. As we will see, the two redu
tions yield di�erent, in
omparable results.

We �rst redu
e the NExpTime-
omplete domino problem to ALCK(D

1

)-
on
ept

satis�ability w.r.t. Boolean key boxes admitting n-ary key de�nitions. Ea
h domino

system D = (T;H; V ) with initial 
ondition a = a

0

; : : : ; a

n�1

is translated into an

ALCK(D

1

)-
on
ept C

D;a

as displayed in Figure 3. Names su
h as TreeX and TreeY

are used as abbreviations whi
h should not be 
onfused with so-
alled TBoxes (see

Se
tion 4.2 for the de�nition of TBoxes). We use 8R

i

:C as an abbreviation for the n-

fold nesting 8R: � � � 8R:C. The names xpos

i

and ypos

i

used in the �gure denote 
on
rete

features. In the de�nition of the Init 
on
ept, for ea
h n 2 N, bit

i

(n) is supposed to

denote the i'th bit of the binary representation of n. We 
laim that C

D;a

is satis�able

w.r.t. the key box

f(xpos

0

; : : : ; xpos

n

; ypos

0

; : : : ; ypos

n

keyfor >)g

i� there exists a solution for D and a. To substantiate this 
laim, let us walk through

the redu
tion and explain the various parts of the 
on
ept C

D;a

. The �rst step towards

understanding the stru
ture of models of C

D;a

(whi
h is the key to understanding the

redu
tion itself) is to note that the purpose of the �rst line of C

D;a

is to enfor
e a tree

stru
ture of depth 2(n + 1), whose leaves 
orrespond to positions in the 2

n+1

� 2

n+1

-

torus. More pre
isely, the TreeX 
on
ept guarantees that, in every model I of C

D;a

,

there exists a binary tree of depth n + 1. Moreover, the DistX

k


on
epts (there exists

one for ea
h k 2 f0; : : : ; ng) ensure that the leaves of this tree are binarily numbered

(from 0 to 2

n+1

� 1) by the 
on
ept names X

0

; : : : ;X

n

. More pre
isely, for a domain

obje
t d 2 �

I

, set

xpsn(d) = �

n

i=0

�

i

(d) � 2

i

where �

i

(d) =

�

1 if d 2 X

I

i

0 otherwise.

The TreeX and DistX 
on
epts ensure that there exist leaves of the tree d

0

; : : : ; d

2

n+1

�1

su
h that xpsn(d

i

) = i. Intuitively, this numbering represents the horizontal positions in

the 2

n+1

�2

n+1

-torus. The verti
al positions are 
oded in a similar way by the Y

0

; : : : ; Y

n


on
ept names. More spe
i�
ally, the 
on
epts TreeY, DistX, and DistY ensure that

every d

i

(i � 2

n+1

� 1) is the root of another tree, in whi
h (i) every node has the same

\X

0

; : : : ;X

n

-
on�guration" as its root node, and (ii) the leaves are numbered binarily

using the 
on
ept names Y

0

; : : : ; Y

n

(note that the TreeY 
on
ept appears in C

D;a

inside

a 8R

n+1

value restri
tion). De�ne

ypsn(d) = �

n

i=0

�

i

(d) � 2

i

where �

i

(d) =

�

1 if d 2 Y

I

i

0 otherwise.
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TreeX := 9R:X

0

u 9R::X

0

u u

i=1::n

8R

i

:(DistX

i�1

u 9R:X

i

u 9R::X

i

)

TreeY := DistX

n

u 9R:Y

0

u 9R::Y

0

u

u

i=1::n

8R

i

:(DistY

i�1

u DistX

n

u 9R:Y

i

u 9R::Y

i

)

DistX

k

:= u

i=0::k

((X

i

! 8R:X

i

) u (:X

i

! 8R::X

i

))

DistY

k

:= u

i=0::k

((Y

i

! 8R:Y

i

) u (:Y

i

! 8R::Y

i

))

TransXPos := u

i=0::n

(X

i

! 9xpos

i

: =

1

) u (:X

i

! 9xpos

i

: =

0

)

TransYPos := u

i=0::n

(Y

i

! 9ypos

i

: =

1

) u (:Y

i

! 9ypos

i

: =

0

)

Su

s := 9R

x

:(TransXPos u TransYPos) u 9R

y

:(TransXPos u TransYPos)

XSu

Ok := u

i=0::n

�

(Y

i

! 8R

x

:Y

i

) u (:Y

i

! 8R

x

::Y

i

)

�

u

k=0::n

�

u

j=0::k

X

j

�

!

�

(X

k

! 8R

x

::X

k

) u (:X

k

! 8R

x

:X

k

)

�

u

k=0::n

�

t

j=0::k

:X

j

�

!

�

(X

k

! 8R

x

:X

k

) u (:X

k

! 8R

x

::X

k

)

�

YSu

Ok := u

i=0::n

�

(X

i

! 8R

y

:X

i

) u (:X

i

! 8R

y

::X

i

)

�

u

k=0::n

�

u

j=0::k

Y

j

�

!

�

(Y

k

! 8R

y

::Y

k

) u (:Y

k

! 8R

y

:Y

k

)

�

u

k=0::n

�

t

j=0::k

:Y

j

�

!

�

(Y

k

! 8R

y

:Y

k

) u (:Y

k

! 8R

y

::Y

k

)

�

Label :=t

i2T

D

i

u u

i;j2T;i6=j

:(D

i

uD

j

)

Che
kMat
h := t

(i;j)2H

(D

i

u 8R

x

:D

j

) u t

(i;j)2V

(D

i

u 8R

y

:D

j

)

Init := u

i=0::n�1

�

�

u

j=0::n;bit

j

(i)=0

:X

j

u u

j=0::n;bit

j

(i)=1

X

j

u u

j=0::n

:Y

j

�

! D

a

i

�

C

D;a

:= TreeX u 8R

n+1

:TreeY

u 8R

2(n+1)

:(TransXPos u TransYPos u Su

s u XSu

Ok u YSu

Ok)

u 8R

2(n+1)

:(Label u Che
kMat
h u Init)

Figure 3: The ALCK(D

1

) redu
tion 
on
ept C

D;a

.

In the set of leave nodes of all the trees enfor
ed by the TreeY 
on
ept, there exists an

4

obje
t e

i;j

2 �

I

for ea
h i; j < 2

n+1

su
h that xpsn(e

i;j

) = i and ypsn(e

i;j

) = j, i.e.,

ea
h e

i;j

represents the position (i; j) in the 2

n+1

� 2

n+1

-torus.

The next step is to translate the individual bits of the numbering of the e

i;j

-
on
epts,

4

So far, we do not 
are if there is more than one su
h obje
t.
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whi
h are up to now represented by 
on
ept names, into 
on
rete domain values. This

is done by the TransXPos and TransYPos 
on
epts whi
h ensure that, for all ` � n, we

have xpos

I

`

(e

i;j

) = 0 if e

i;j

2 :X

`

, xpos

I

`

(e

i;j

) = 1 if e

i;j

2 X

`

, and similar for ypos

`

and Y

`

. Sin
e I is a model for the key box

f(xpos

0

; : : : ; xpos

n

; ypos

0

; : : : ; ypos

n

keyfor >)g;

grid positions are uniquely represented by domain elements from (TransXPosuTransYPos)

I

,

i.e., if d; e 2 (TransXPos u TransYPos)

I

su
h that xpsn(d) = xpsn(e) and ypsn(d) =

yxpsn(e), then d = e. This fa
t is used in the 
on
epts Su

s, XSu

Ok, and YSu

Ok

to enfor
e that, for the two roles R

x

and R

y

and ea
h i; j � n, the following holds:

R

I

x

\ (fe

i;j

g ��

I

) = f(e

i;j

; e

(i�

2

n+1

1);j

g

R

I

y

\ (fe

i;j

g ��

I

) = f(e

i;j

; e

i;(j�

2

n+1

1)

g:

(�)

The Su

s 
on
ept ensures that, for ea
h e

i;j

, there exists an R

x

-su

essor and an R

y

-

su

essor, and that both are in (TransXPos u TransYPos)

I

. Let d be an R

x

-su

essor of

e

i;j

. Then the XSu

Ok 
on
ept ensures that xpsn(d) = i�

2

n+1 1 and ypsn(d) = j. Before

we explain how it does this, let us note that, sin
e all e

i;j

are in (TransXPosuTransYPos)

I

and the grid positions are uniquely represented by elements of (TransXPosuTransYPos)

I

,

this implies d = e

(i�

2

n+1

1);j

whi
h shows that the upper line of (�) does indeed hold.

Let us now 
onsider the XSu

Ok 
on
ept in some more detail. It is essentially the

DL-formulation of the well-known propositional formula

n

^

k=0

(

k�1

^

j=0

x

j

= 1)! (x

k

= 1$ x

0

k

= 0) ^

n

^

k=0

(

k�1

_

j=0

x

j

= 0)! (x

k

= x

0

k

)

whi
h en
odes in
rementation modulo 2

n+1

, i.e., if t is the number (binarily) en
oded by

the propositional variables x

0

; : : : ; x

n

and t

0

is the number en
oded by the propositional

variables x

0

0

; : : : ; x

0

n

, then we have t

0

= t+1 modulo 2

n+1

, 
.f. [13℄. Taking into a

ount

the 8R

x

quanti�ers in XSu

Ok, it is readily 
he
ked that this 
on
ept has just the

desired e�e
t: to ensure that, for every R

x

-su

essor d of e

i;j

, we have xpsn(x) =

xpsn(e

(i�

2

n+1

1);j

) = i �

2

n+1
1. The explanation of YSu

Ok and how it enfor
es the

lower line of (�) is omitted sin
e it is analogous to the XSu

Ok 
ase.

It remains to ensure that every grid position is labeled with pre
isely one tile and

that the initial 
ondition as well as the horizontal and verti
al mat
hing 
onditions are

satis�ed. The tiles are represented by 
on
ept names D

i

(where i is from the set of tiles

T ) and the des
ribed tasks are a

omplished in the standard way by the 
on
epts Label,

Init, and Che
kMat
h.

It is interesting to note that the redu
tion 
on
ept is path-free and the key box

is simple, i.e., path-free and Boolean. Path-freeness of 
on
epts is often used to tame

the 
omplexity of des
ription logi
s with 
on
rete domains (although it largely sa
ri-

�
es their expressive power) [38, 7, 24, 31℄. For example, if ALC(D) is augmented

with so-
alled general TBoxes, then reasoning with arbitrary 
on
epts is unde
idable

while reasoning with path-free 
on
epts is ExpTime-
omplete if D is admissible and
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D-satis�ability is in ExpTime [37℄. This \taming approa
h" does not work in the pres-

en
e of key boxes sin
e, as we have just seen, both reasoning with arbitrary and with

path-free ALCK(D)-
on
epts is (under some natural assumptions) NExpTime-hard.

Sin
e the size of C

D;a

and of the used key box is 
learly polynomial in n, we obtain

the following proposition.

Proposition 19. The satis�ability of path-free ALCK(D

1

)-
on
epts w.r.t. simple key

boxes is NExpTime-hard.

In [40℄, it is proved that (non path-free) ALC(D)-
on
ept satis�ability is PSpa
e-


omplete if D-satis�ability is in PSpa
e. In parti
ular, it thus follows from Propo-

sition 14 that ALC(D

1

)-
on
ept satis�ability is PSpa
e-
omplete. Thus, there is a

rather dramati
 in
rease of 
omplexity if key boxes are added to ALC(D

1

). To stress

that this in
rease is due to the key boxes themselves and not to the 
omplexity of

D

1

-satis�ability, we reformulate Proposition 19:

Theorem 20. There exists a 
on
rete domain D su
h that D-satis�ability is in PTime

and satis�ability of path-free ALCK(D)-
on
epts w.r.t. simple key boxes is NExpTime-

hard.

Sin
e 
on
ept satis�ability 
an be redu
ed to 
on
ept non-subsumption as noted in Se
-

tion 2, we obtain a 
orresponding 
o-NExpTime-hardness bound for the subsumption

of path-free ALCK(D)-
on
epts w.r.t. simple key boxes.

Although, due to its very low expressivity, the 
on
rete domain D

1

itself is not very

natural for knowledge representation, it is a fragment of many 
on
rete domains that

have been proposed in the literature [5, 23, 38, 40℄. Indeed, the presented redu
tion

strategy 
an be adapted to quite many \standard" 
on
rete domains. Let us formulate

a (very weak) 
ondition that a 
on
rete domain must satisfy in order for the presented

redu
tion strategy to be appli
able.

Theorem 21. Let D be a 
on
rete domain. If there exist a; b 2 �

D

and P

1

; P

2

2 �

D

su
h that P

D

1

= fag and P

D

2

= fbg, then the satis�ability of path-free ALCK(D)-
on
epts

w.r.t. simple key boxes is NExpTime-hard.

Again, a 
orresponding 
o-NExpTime-hardness result for 
on
ept subsumption is easily

obtained.

We now present the se
ond NExpTime-hardness result for ALCK(D)-
on
ept satis-

�ability. This time, we redu
e the NExpTime-
omplete domino problem to the satis�-

ability of path-free ALCK(D

2

)-
on
epts w.r.t. simple unary key boxes. The redu
tion is

very similar to the previous one and we only dis
uss the di�eren
es. In the �rst redu
-

tion, we represented the individual bits of grid positions by individual 
on
rete features

xpos

i

and ypos

i

. This approa
h led to a n-ary key box. To repla
e it by a unary key

box, in the se
ond redu
tion, we represent entire positions in the torus (i; j) by the

bit ve
tors provided by the 
on
rete domain D

2

. The modi�ed redu
tion 
on
ept C

D;a


an be found in Figure 4, where bv denotes a 
on
rete feature and the 
on
epts TreeX,

TreeY, DistX

k

, DistY

k

, XSu

Ok, YSu

Ok, Label, Che
kMat
h, and Init are de�ned as in
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Su

s2 := 9R

x

:TransPos u 9R

y

:TransPos

TransPos := u

i=0::n

�

(X

i

! 9bv:bit1

i

2(n+1)

) u :X

i

! 9bv:bit0

i

2(n+1)

)

�

u

u

i=0::n

�

(Y

i

! 9bv:bit1

n+i+1

2(n+1)

) u :Y

i

! 9bv:bit0

n+i+1

2(n+1)

)

�

C

D;a

:= TreeX u 8R

n+1

:TreeY

u 8R

2(n+1)

:(TransPos u Su

s2 u XSu

Ok u YSu

Ok)

u 8R

2(n+1)

:(Label u Che
kMat
h u Init)

Figure 4: The ALCK(D

2

) redu
tion 
on
ept C

D;a

.

Figure 3. The translation of the position in the torus en
oded by X

0

; : : : ;X

n

; Y

0

; : : : ; Y

n

into a bit ve
tor is done by the TransPos 
on
ept in a straightforward manner. Given

what was said about the �rst redu
tion, it is not hard to see that C

D;a

is satis�able

w.r.t. the key box

f(bv keyfor >)g

i� there exists a solution for D and a. We thus obtain the following proposition.

Proposition 22. The satis�ability of path-free ALCK(D

2

)-
on
epts w.r.t. simple unary

key boxes is NExpTime-hard.

Again, we relate the NExpTime lower bound to the 
omplexity of D

2

-
omplexity, whi
h

is determined in Theorem 16.

Theorem 23. There exists a 
on
rete domain D su
h that D-satis�ability is in PTime

and the satis�ability of path-free ALCK(D)-
on
epts w.r.t. simple unary key boxes is

NExpTime-hard.

As for the previous lower bounds, we obtain a 
orresponding 
o-NExpTime-hardness

bound for 
on
ept subsumption.

Sin
e the elements of �

D

2

are bit ve
tors, the 
on
rete domain D

2


annot be 
on-

sidered a natural 
hoi
e for many appli
ation areas. But, in the redu
tion, D

2


an be

repla
ed by several natural 
on
rete domains. The 
entral observation is that we use

bit ve
tors only to inje
tively translate sequen
es of bits into values of the 
on
rete

domain, i.e., we translate sequen
es of 2(n+1) bits (represented by the 
on
ept names

X

0

; : : : ;X

n

and Y

0

; : : : ; Y

n

) into elements of �

D

2

su
h that, for distin
t sequen
es, the

results of the translation are also distin
t. Due to this restri
ted use of bit ve
tors, there

are several ways to repla
e them by natural numbers. For example, we 
ould de�ne a

new TransPos 
on
ept su
h that

s

I

2n+1

(d) = xpsn(d) + 2

n+1

ypsn(d)
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as follows:

TransPos

0

:= 9zero:=

0

u (:X

0

! 9s

0

:=

0

) u (X

0

! 9s

0

:=

1

)

u u

i=1::n

�

9t

i

:=

2

i
u

�

:X

i

! 9(s

i�1

; zero; s

i

):+

�

u

�

X

i

! 9(s

i�1

; t

i

; s

i

):+

�

�

u u

i=0::n

�

9t

n+i+1

:=

2

n+i+1
u

�

:Y

i

! 9(s

n+i

; zero; s

n+i+1

):+

�

u

�

Y

i

! 9(s

n+i

; t

n+i+1

; s

n+i+1

):+

�

�

where zero and the s

i

and t

i

denote 
on
rete features, =

k

(with k 2 N) denotes a unary

predi
ate with the obvious extension, and + denotes a ternary addition predi
ate. It

is easy to 
he
k that, whenever two obje
ts d; e 2 TransPos

I

do not agree on the

interpretation of the X

0

; : : : ;X

n

; Y

0

; : : : ; Y

n

, then s

I

2n+1

(d) 6= s

I

2n+1

(e), and thus the key

box

f(s

2n+1

keyfor >)g


an be used for the redu
tion. The size of TransPos

0

is obviously polynomial in n if the

numbers k appearing in =

k

predi
ates are 
oded in binary. We thus obtain the following

theorem:

Theorem 24. Let D be a 
on
rete domain su
h that

1. N � �

D

,

2. �

D


ontains a predi
ate =

k

with (=

k

)

D

= fng for ea
h k 2 N where the size of

(the representation of) =

k

is logarithmi
 in k, and

3. �

D


ontains a predi
ate + with (+)

D

\ f(k

1

; k

2

; x) j k

1

; k

2

2 N and x 2 �

D

g =

f(k

1

; k

2

; k

1

+ k

2

) j k

1

; k

2

2 Ng.

Then the satis�ability of path-free ALCK(D)-
on
epts w.r.t. simple unary key boxes is

NExpTime-hard.

For example, this theorem yields NExpTime-lower bounds for ALCK(D) instantiated

with the 
on
rete domains proposed in [5, 23, 38, 40℄. An alternative to adding the

addition predi
ate is to use multipli
ation to inje
tively translate sequen
es of bits into

natural numbers. More pre
isely, �x a sequen
e of distin
t prime numbers p

0

; : : : ; p

2n+1

and de�ne another version of TransPos as follows:

TransPos

00

:= 9one:=

1

u (:X

0

! 9s

0

:=

0

) u (X

0

! 9s

0

:=

1

)

u u

i=1::n

�

9t

i

:=

p

i

u

�

:X

i

! 9(s

i�1

; one; s

i

):�

�

u

�

X

i

! 9(s

i�1

; t

i

; s

i

):�

�

�

u u

i=0::n

�

9t

n+i+1

:=

p

n+i+1

u

�

:Y

i

! 9(s

n+i

; one; s

n+i+1

):�

�

u

�

Y

i

! 9(s

n+i

; t

n+i+1

; s

n+i+1

):�

�

�

where � is a ternary multipli
ation predi
ate. Sin
e the fa
torization of natural numbers

into prime numbers is unique, we 
an again use the key box

f(s

2n+1

keyfor >)g
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for the redu
tion. Moreover, it is well-known that the k'th prime is polynomial in k [21℄,

and thus the size of the 
on
ept TransPos

00

is polynomial in n even if the numbers k

in =

k

predi
ates are 
oded unarily. We thus obtain another theorem 
on
erning quite

natural 
on
rete domains:

Theorem 25. Let D be a 
on
rete domain su
h that

1. N � �

D

,

2. �

D


ontains a predi
ate =

k

with (=

k

)

D

= fkg for ea
h k 2 N, and

3. �

D


ontains a predi
ate � with (�)

D

\ f(k

1

; k

2

; x) j k

1

; k

2

2 N and x 2 �

D

g =

f(k

1

; k

2

; k

1

� k

2

) j k

1

; k

2

2 Ng.

Then the satis�ability of path-free ALCK(D)-
on
epts w.r.t. simple unary key boxes is

NExpTime-hard.

3.4 NExpTime-hardness of ALCO(D)

As we already pointed out in Se
tion 1, the relationship between 
on
rete domain keys

and nominals is rather 
lose: the latter 
an be \simulated" by the former if the 
on
rete

domain provides for predi
ates that 
an be used to uniquely des
ribe elements of �

D

.

For example, in ALCO(D

1

) the 
on
ept 9g:=

0

behaves as a nominal if we use the key

de�nition (g keyfor >). We 
an even de�ne n nominals using n single 
on
rete feature in

unary-key de�nitions. In the logi
s ALCO(D

2

) and ALCO(D

3

), a single 
on
rete feature

and unary key de�nitions are suÆ
ient to simulate an arbitrary number of nominals:

for example, in ALCK(D

2

) the 
on
ept C = 9g:bit0

0

2

u 9g:bit1

1

2

uniquely des
ribes the

bit ve
tor (0; 1) 2 BV

2

� �

D

2

, i.e., a 2 C

I

implies g

I

(a) = (0; 1). Obviously, any other

bit ve
tor (of any length!) 
an be des
ribed in a similar way. This illustrates that, for

most non-trivial 
on
rete domains D, the logi
 ALCK(D) is (at least) as expressive as

ALCO(D). Although the 
onverse does not hold, the expressive power of ALCO(D)

is still suÆ
ient to prove NExpTime-hardness of 
on
ept satis�ability, provided that a

suitable 
on
rete domain D is used. In this se
tion, we redu
e the NExpTime-
omplete

domino-problem to ALCO(D

3

)-
on
ept satis�ability.

Again, let D = (T;H; V ) be a domino system and a = a

0

; : : : ; a

n�1

an initial 
ondi-

tion. Then the redu
tion 
on
ept C

D;a

is de�ned as in Figure 5, where bvx, bvy, bvxs,

bvys, and darr denote 
on
rete features, N denotes a nominal, and the 
on
epts TreeX,

TreeY, DistX

k

, and DistY

k

are de�ned as in Figure 3. As in the previous redu
tions, we

now give a detailed explanation of the redu
tion strategy to show that C

D;a

is satis�able

i� there exists a solution for D and a.

Let I be a model for C

D;a

. To explain the stru
ture of I, whi
h is the key to

understanding the redu
tion strategy, it is 
onvenient to start with the �rst line of

C

D;a

. As in the previous redu
tions, the TreeX and TreeY 
on
epts are used to ensure

that I 
ontains a tree-shaped substru
ture of depth n + 1 whose leaf nodes are the

roots of additional trees of depth n+ 1 su
h that the set of the leafs of the latter trees


orrespond to the positions in the 2

n+1

� 2

n+1

-torus, i.e., for ea
h position, there is
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Nominal := 9f:N

XSu

 := u

k=0::n

�

u

j=0::k

X

j

�

! (X

k

$ :X

0

k

) u u

k=0::n

�

t

j=0::k

:X

j

�

! (X

k

$ X

0

k

)

YSu

 := u

k=0::n

�

u

j=0::k

Y

j

�

! (Y

k

$ :Y

0

k

) u u

k=0::n

�

t

j=0::k

:Y

j

�

! (Y

k

$ Y

0

k

)

TransXPos := u

i=0::n

�

(X

i

! 9bvx:pos1

i

2(n+1)

) u :X

i

! 9bvx:pos0

i

2(n+1)

)

�

u

i=0::n

�

(Y

i

! 9bvx:pos1

n+i+1

2(n+1)

) u :Y

i

! 9bvx:pos0

n+i+1

2(n+1)

)

�

TransYPos := u

i=0::n

�

(X

i

! 9bvy:pos1

i

2(n+1)

) u :X

i

! 9bvy:pos0

i

2(n+1)

)

�

u

i=0::n

�

(Y

i

! 9bvy:pos1

n+i+1

2(n+1)

) u :Y

i

! 9bvy:pos0

n+i+1

2(n+1)

)

�

TransXSu

 := u

i=0::n

�

(X

0

i

! 9bvxs:pos1

i

2(n+1)

) u :X

0

i

! 9bvxs:pos0

i

2(n+1)

)

�

u

i=0::n

�

(Y

i

! 9bvxs:pos1

n+i+1

2(n+1)

) u :Y

i

! 9bvxs:pos0

n+i+1

2(n+1)

)

�

TransYSu

 := u

i=0::n

�

(X

i

! 9bvys:pos1

i

2(n+1)

) u :X

i

! 9bvys:pos0

i

2(n+1)

)

�

u

i=0::n

�

(Y

0

i

! 9bvys:pos1

n+i+1

2(n+1)

) u :Y

0

i

! 9bvys:pos0

n+i+1

2(n+1)

)

�

Che
kHMat
h := t

i;j2H

(9(bvx; bvy; f Æ darr):tile

i

2(n+1)

u 9(bvxs; bvy; f Æ darr):tile

j

2(n+1)

)

Che
kVMat
h := t

i;j2V

(9(bvx; bvy; f Æ darr):tile

i

2(n+1)

u 9(bvx; bvys; f Æ darr):tile

j

2(n+1)

)

Init2 := u

i=0::n�1

�

�

u

j=0::n;bit

j

(i)=0

:X

j

u u

j=0::n;bit

j

(i)=1

X

j

u u

j=0::n

:Y

j

�

! 9(bvx; bvy; f Æ darr):tile

a

i

2(n+1)

�

C

D;a

:= TreeX u 8R

n+1

:TreeY u 8R

2(n+1)

:Nominal

u 8R

2(n+1)

:(TransXPos u TransYPos)

u 8R

2(n+1)

:(XSu

 u YSu

 u TransXSu

 u TransYSu

)

u 8R

2(n+1)

:(Init2 u Che
kHMat
h u Che
kVMat
h)

Figure 5: The ALCO(D

3

) redu
tion 
on
ept C

D;a

.

a leaf node representing it. The torus positions are binarily en
oded by the 
on
ept

names X

0

; : : : ;X

n

and Y

0

; : : : ; Y

n

and we use e

i;j

to refer to the leaf with xpsn(e

i;j

) = i

and ypsn(e

i;j

) = j (
.f. Se
tion 3.3).

As in the previous redu
tion, the numbers 
oded by X

0

; : : : ;X

n

and Y

0

; : : : ; Y

n

have

to be translated into 
on
rete domain values, whi
h is done by the TransXPos and

TransYPos 
on
epts. Note that, in 
ontrast to the ALCK(D

2

)-redu
tion, the x-position

and the y-position are not stored in the same bit ve
tor, but rather in the two distin
t

ones bvx and bvy. Also in 
ontrast to the previous redu
tion, the a
tual tiling of the
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TreeY

TreeX

...
... ... ...

TreeY TreeY

f

f

N

f

darr

Figure 6: The stru
ture of models of C

D;a

.

torus is not represented by the leaf nodes e

i;j

, but rather by a domino array: the last


onjun
t in the �rst line of C

D;a

ensures that every leaf e

i;j

is 
onne
ted via the abstra
t

feature f to the (unique) element w of �

I

that is in the extension of the nominal N . The

domain element w is asso
iated with a domino array via the 
on
rete feature darr (as

we shall see later, this is guaranteed by the Che
kHMat
h and Che
kVMat
h 
on
epts).

This domino array represents the tiling of the 2

n+1

� 2

n+1

-torus. Summing up, the

stru
ture of I is roughly as shown in Figure 6.

If the tiling is stored in a domino array, what is the purpose of the leaf node e

i;j

?

They are needed to enfor
e the initial 
ondition and the horizontal and verti
al mat
hing


ondition. Let us dis
uss the horizontal mat
hing 
ondition (the verti
al mat
hing


ondition is enfor
ed analogously): the XSu

 
on
ept is the DL reformulation of the

propositional logi
 formula for in
rementation modulo 2

n+1

dis
ussed on Page 18 and

ensures that, for ea
h e

i;j

, the 
on
ept names X

0

0

; : : : ;X

0

n

en
ode the number i�

2

n+1
1,

i.e., the horizontal position of e

i;j

's horizontal neighbor. Whereas the horizontal and

verti
al position of e

i;j

are stored in bvx(e

i;j

) and bvy(e

i;j

), we store the horizontal

position i + 1 of e

i;j

s horizontal su

essor in bvxs(e

i;j

) (whose verti
al position is j).

This translation from X

0

0

; : : : ;X

0

n

into bvxs is realized by the 
on
ept TransXSu

.

Finally, Che
kHMat
h veri�es that the tiles of the positions (i; j) and (i�

2

n+1 1; j),

whi
h are both stored in the domino array, are 
ompatible with the horizontal mat
hing


ondition. Note that Che
kHMat
h also ensures that the domain element w (with fwg =

N

I

) has a domino array atta
hed via the 
on
rete feature darr and that, for ea
h position
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of the torus, the (unique!) tile stored in the domino array is from the set T . The initial


ondition is ensured via the Init2 
on
ept in a similar way. We (again) use bit

j

(i) to

denote the j'th bit of the binary en
oding of the natural number i.

Using the above 
onsiderations, the 
orre
tness of the redu
tion is readily 
he
ked.

Moreover, the size of C

D;a

is at most polynomial in n. Note that C

D;a

is not path-free:

paths of length two appear in the 
on
epts Che
kHMat
h, Che
kVMat
h, and Label2.

Summing up, the redu
tion des
ribed yields the following result:

Proposition 26. The satis�ability of ALCO(D

3

)-
on
epts is NExpTime-hard.

Again, we relate the NExpTime lower bound to the 
omplexity of D

3

-
omplexity, whi
h

is determined in Theorem 18.

Theorem 27. There exists a 
on
rete domain D su
h that D-satis�ability is in PTime

and the satis�ability of ALCO(D)-
on
epts is NExpTime-hard.

Note that the redu
tion uses only a single nominal N . Hen
e, a single nominal is

suÆ
ient for the above hardness result. This is a dramati
 in
rease of 
omplexity sin
e

it was shown in [40℄ that satis�ability of ALC(D)-
on
epts (i.e., without nominals and

key boxes) is PSpa
e-
omplete even for 
on
rete domains with D-satis�ability being in

PSpa
e. Let us on
e more note that we obtain a 
orresponding 
o-NExpTime-hardness

bound for 
on
ept subsumption.

As in previous se
tions, we note that D

3


an be repla
ed by more natural 
on
rete

domains in the NExpTime-hardness proof presented. The idea is to represent the

whole domino array by a single natural number and then to use arithmeti
 operations

to a

ess the individual positions: a natural number k 
an be viewed as a domino array

by partitioning its binary representation into 2

n+1

� 2

n+1

= 2

2(n+1)

\se
tions" of length

dlog(#T )e, where #T denotes the 
ardinality of T . Ea
h su
h se
tion des
ribes the tile

of a single position in the torus. To a

ess the se
tions, we need ternary predi
ates div for

integer division and mod for 
omputing the remainder of a division. More pre
isely, we

repla
e TransXPos and TransYPos by the TransPos

0


on
ept from Se
tion 3.3 to translate

the two numbers en
oded by X

1

; : : : ;X

n

and Y

1

; : : : ; Y

n

into a single natural number

that is then stored in the 
on
rete feature s

2n+1

. We 
an then devise a new 
on
ept

Tile[i℄ (for ea
h i 2 T ) enfor
ing that the position identi�ed by the feature s

2n+1

is

labeled with tile i:

Tile[i℄ := 9r:=

dlog(#T )e

u 9s

2n+1

; r; r

0

:� u 9r

0

; r

00

:2

x

u 9one:=

1

u 9r; one; t:+ u 9t; t

0

:2

x

u 9f Æ torus; r

00

; u:div u 9u; t

00

; tile:mod

u 9tile:=

i

Here, r; r

0

; r

00

; t; t

0

; u; one; torus, and tile are 
on
rete features and 2

x

is a binary predi
ate

expressing exponentiation with basis 2. The torus feature is the 
ounterpart of the darr

feature in the original redu
tion, i.e., it stores the natural number that represents the

torus. Somewhat more su

in
tly, the Tile[i℄ 
on
ept states that, if N

I

= fwg, then all

elements e in its extension satisfy the equation

(torus

I

(w) div 2

s

I

2n+1

(e)�dlog(#T )e

) mod 2

dlog(#T )e

+ 1 = i:
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We 
an use the Tile[i℄ 
on
ept in the obvious way inside the Che
kHMat
h, Che
kVMat
h,

and Init2 
on
epts. The size of the resulting redu
tion 
on
ept is polynomial in n if the

numbers k appearing in =

k

predi
ates are 
oded in binary. We thus obtain the following

theorem:

Theorem 28. Let D be a 
on
rete domain su
h that N � �

D

and �

D


ontains the

following predi
ates:

1. unary =

k

with (=

k

)

D

= fng for ea
h k 2 N su
h that the size of (the representa-

tion of) =

k

is logarithmi
 in k, and

2. ternary + with (+)

D

\ f(k

1

; k

2

; x) j k

1

; k

2

2 N and x 2 �

D

g = f(k

1

; k

2

; k

1

+ k

2

) j

k

1

; k

2

2 Ng.

3. ternary � with (�)

D

\ f(k

1

; k

2

; x) j k

1

; k

2

2 N and x 2 �

D

g = f(k

1

; k

2

; k

1

� k

2

) j

k

1

; k

2

2 Ng.

4. binary 2

x

with (2

x

)

D

\ f(k; x) j k 2 N and x 2 �

D

g = f(k; 2

k

) j k 2 Ng.

5. ternary div with (div)

D

\f(k

1

; k

2

; x) j k

1

; k

2

2 N and x 2 �

D

g = f(k

1

; k

2

; k

1

div k

2

) j

k

1

; k

2

2 Ng.

6. ternary mod with (mod)

D

\ f(k

1

; k

2

; x) j k

1

; k

2

2 N and x 2 �

D

g = f(k

1

; k

2

; k

1

mod k

2

) j k

1

; k

2

2 Ng.

Then the satis�ability of ALCO(D)-
on
epts is NExpTime-hard.

4 Reasoning Pro
edures

This se
tion is devoted to developing reasoning pro
edures for des
ription logi
s with


on
rete domains, nominals, and keys. We start with devising a tableau algorithm

that de
ides the satis�ability of ALCOK(D)-
on
epts w.r.t. Boolean key boxes. This

algorithm yields a NExpTime upper 
omplexity bound mat
hing the lower bounds

established in Se
tion 3.3. Then we 
onsider the rather powerful des
ription logi


SHOQK(D). This DL, whi
h is an extension of SHOQ(D) as introdu
ed in [31, 42℄,

provides a wealth of expressive means su
h as transitive roles, role hierar
hies, nom-

inals, and qualifying number restri
tions. Moreover, SHOQK(D) is equipped with a

restri
ted variant of the 
on
rete domain 
onstru
tor and with key boxes. We develop

a tableau algorithm for de
iding the satis�ability of SHOQK(D)-
on
epts w.r.t. key

boxes. Due to the restri
tedness of SHOQK(D)'s 
on
rete domain 
onstru
tor, we 
an

even admit general rather than only Boolean key boxes. Again, the algorithm yields a

tight NExpTime upper 
omplexity bound.

4.1 A Tableau Algorithm for ALCOK(D) with Boolean Key Boxes

Tableau algorithms de
ide the satis�ability of the input 
on
ept (in our 
ase w.r.t. the

input key box) by attempting to 
onstru
t a model for it. More pre
isely, a tableau
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algorithm starts with an initial data stru
ture indu
ed by the input 
on
ept and then

repeatedly applies so-
alled 
ompletion rules to it. This rule appli
ation 
an be thought

of as attempting to 
onstru
t a model for the input 
on
ept. Finally, either the algorithm

will �nd an obvious 
ontradi
tion or it will en
ounter a situation that is 
ontradi
tion-

free and in whi
h no more 
ompletions rules are appli
able. In the former 
ase, the

input 
on
ept is unsatis�able, while it is satis�able in the latter 
ase.

If the goal is to devise a tableau algorithm for a des
ription logi
 with 
on
rete

domains without 
ommitting to a parti
ular 
on
rete domain, then an \interfa
e" be-

tween the tableau algorithm and a 
on
rete domain reasoner is needed. Usually, it

suÆ
es to assume that the 
on
rete domain is admissible, whi
h implies that there ex-

ists a pro
edure that 
an tell the tableau algorithm whether a given D-
onjun
tion is

satis�able [3, 40, 37℄. In the presen
e of keys, however, this is not enough: we do not

only need to know whether a given D-
onjun
tion is satis�able, but also whi
h vari-

ables in it must take the same value in solutions. As an example, 
onsider the 
on
rete

domain N = (N; f<

n

j n 2 Ng) and the N-
onjun
tion


 = <

2

(v

1

) ^<

2

(v

2

) ^<

2

(v

3

):

Obviously, every solution Æ for 
 satis�es

Æ(v

1

) = Æ(v

2

); Æ(v

1

) = Æ(v

3

); or Æ(v

2

) = Æ(v

3

):

This information has to be passed from the 
on
rete domain reasoner to the tableau al-

gorithm sin
e, in the presen
e of key boxes, it may have an impa
t on the stru
ture of the


onstru
ted model. For example, this information transfer reveals the unsatis�ability of

9R:A u 9R:(:A uB) u 9R:(:A u :B) u 8R:9g:<

2

w.r.t. (g keyfor >):

To formalize this requirement, we strengthen the notion of admissibility into key-

admissibility. Sin
e the tableau algorithm developed in this se
tion will be non-determin-

isti
, we formulate key-admissibility in a non-deterministi
 way.

De�nition 29 (key-admissible). A 
on
rete domain D is key-admissible i� it satis�es

the following properties:

1. �

D


ontains a name >

D

for �

D

;

2. �

D

is 
losed under negation;

3. there exists an algorithm that takes as input a D-
onjun
tion 
, returns 
lash if 
 is

unsatis�able, and otherwise non-deterministi
ally outputs an equivalen
e relation

� on the set of variables V used in 
 su
h that there exists a solution Æ for 
 with

the following property: for all v; v

0

2 V

Æ(v) = Æ(v

0

) i� v � v

0

:

Equivalen
e relations as des
ribed in Point 3 are hen
eforth 
alled 
on
rete equivalen
es.

We say that extended D-satis�ability is in NP if there exists an algorithm as above

running in polynomial time. �
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:(C uD)  :C t :D :(C tD)  :C u :D

:(9R:C)  8R::C :(8R:C)  9R::C

::C  C

:(9u

1

; : : : ; u

n

:P )  9u

1

; : : : ; u

n

:P t u

1

" t � � � t u

n

"

:(g")  9g:>

D

Figure 7: The NNF rewrite rules.

Note that this property is mu
h less esoteri
 than it seems: any 
on
rete domain that

is admissible and provides for an equality predi
ate is also key-admissible. Due to

admissibility, the presen
e of an equality predi
ate implies that an inequality predi
ate is

also available. We 
an now 
onstru
t an algorithm for extended D-satis�ability from an

algorithm for D-satis�ability: when presented with a predi
ate 
onjun
tion 
, we simply

\guess" an equivalen
e relation � on the set of variables used in 
. Then we de
ide the

(non-extended) satis�ability of the 
onjun
tion 
^

V

v�v

0

=(v; v

0

)^

V

v 6�v

0

6=(v; v

0

), return


lash if it is unsatis�able and � otherwise. The rather weak 
ondition that an equality

predi
ate should be present is satis�ed by almost all 
on
rete domains proposed in the

literature, see e.g. [38, 4, 34, 22, 9℄.

Throughout this 
hapter, we assume that any 
on
rete domain is equipped with an

equality predi
ate. This 
an we done w.l.o.g. sin
e any D-
onjun
tion using equality 
an

be translated into an equivalent one without equality by identifying variables a

ording

to the stated equalities. This assumption must not be 
onfused with what was dis
ussed

in the previous paragraph: even if the 
on
rete domain D is admissible and its set of

predi
ates is thus 
losed under negation, this assumption does not imply the presen
e

of an inequality predi
ate.

We need some more prerequisites before we 
an start the presentation of the tableau

algorithm: a 
on
ept is in negation normal form (NNF) if negation o

urs only in front

of 
on
ept names and nominals. It is easily seen that, if the 
on
rete domain D is

admissible, then every ALCOK(D)-
on
ept 
an be 
onverted into an equivalent one in

NNF by exhaustively applying the rewrite rules displayed in Figure 7. We use _:C

to denote the result of 
onverting :C to NNF. A key box is in NNF if all 
on
epts

o

urring in key de�nitions are in NNF. In what follows, we generally assume input


on
epts and key boxes to be in NNF. Let C be an ALCOK(D)-
on
ept and K a key

box. We use sub(C) to denote the set of sub
on
epts of C (in
luding C itself) and


on(K) to denote the set of 
on
epts appearing on the right-hand side of key de�nitions

in K. For a set of 
on
epts �, sub(�) denotes the set

S

C2�

sub(C). Moreover, we write


l(C;K) as abbreviation for the set

sub(C) [ sub(
on(K)) [ f _:D j D 2 sub(
on(K))g:

Let us now start the presentation of the tableau algorithm by introdu
ing the underlying

data stru
ture.

De�nition 30 (Completion System). Let O

a

and O




be disjoint and 
ountably

in�nite sets of abstra
t and 
on
rete nodes. A 
ompletion tree for an ALCOK(D)-
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on
ept C and a key box K is a �nite, labeled tree T = (V

a

; V




; E;L) with nodes V

a

[V




su
h that V

a

� O

a

, V




� O




, and all nodes from V




are leaves. The tree is labeled as

follows:

1. ea
h node a 2 V

a

is labeled with a subset L(a) of 
l(C;K);

2. ea
h edge (a; b) 2 E with a; b 2 V

a

is labeled with a role name L(a; b) o

urring

in C or K;

3. ea
h edge (a; x) 2 E with a 2 V

a

and x 2 V




is labeled with a 
on
rete feature

L(a; x) o

urring in C or K.

For a 2 V

a

, we use lev

T

(a) to denote the depth on whi
h a o

urs in T (starting with

the root node on depth 0). A 
ompletion system for an ALCOK(D)-
on
ept C and a

key box K is a tuple (T;P;�;�), where

� T = (V

a

; V




; E;L) is a 
ompletion tree for C and K,

� P is a fun
tion mapping ea
h P 2 �

D

of arity n in C to a subset of V

n




,

� � is a linear ordering of V

a

su
h that lev

T

(a) � lev

T

(b) implies a � b, and

� � is an equivalen
e relation on V




.

Let (V

a

; V




; E;L) be a 
ompletion tree. A node b 2 V

a

is an R-su

essor of a node a 2 V

a

if (a; b) 2 E and L(a; b) = R, while a node x 2 V




is a g-su

essor of a if (a; x) 2 E and

L(a; x) = g. For a path u the notion u-su

essor is de�ned in the obvious way. �

Intuitively, the relation � re
ords equalities between 
on
rete nodes that have been

found during the model 
onstru
tion pro
ess. The relation � indu
es an equivalen
e

relation �

a

on abstra
t nodes whi
h in turn yields another equivalen
e relation �




� �

on 
on
rete nodes.

De�nition 31 (�

a

and �




Relations). Let S = (T;P;�;�) be a 
ompletion system

for a 
on
ept C and a key box K with T = (V

a

; V




; E;L), and let � be an equivalen
e

relation on V

a

. For ea
h R 2 N

R

, a node b 2 V

a

is an R=�-neighbor of a node a 2 V

a

if

there exists a node 
 2 V

a

su
h that a � 
 and b is an R-su

essor of 
. Similarly, for

ea
h g 2 N


F

a node x 2 V




is a g=�-neighbor of a if there exists a node 
 2 V

a

su
h

that a � 
 and x is a g-su

essor of 
. For paths u, the notion u=�-neighbor is de�ned

in the obvious way.

We de�ne a sequen
e of equivalen
e relations �

0

a

� �

1

a

� � � � on V

a

as follows:

�

0

a

= f(a; a) 2 V

2

a

g [

f(a; b) 2 V

2

a

j there is an N 2 N

O

su
h that N 2 L(a) \ L(b)g

�

i+1

a

= �

i

a

[

f(a; b) 2 V

2

a

j there is a 
 2 V

a

and an f 2 N

aF

su
h that

a and b are f=�

i

a

-neighbors of 
g [

f(a; b) 2 V

2

a

j there is a (u

1

; : : : ; u

n

keyfor D) 2 K;

u

i

=�

i

a

-neighbors x

i

of a for 1 � i � n, and

u

i

=�

i

a

-neighbors y

i

of b for 1 � i � n

su
h that D 2 L(a) \ L(b) and x

i

� y

i

for 1 � i � ng
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Finally, set �

a

=

S

i�0

�

i

a

. Then de�ne

�




= � [ f(x; y) 2 V

2




j there is an a 2 V

a

and a g 2 N


F

su
h that

x and y are g=�

a

-neighbors of ag:

�

LetD be a key-admissible 
on
rete domain. To de
ide the satis�ability of anALCOK(D)-


on
ept C

0

w.r.t. a Boolean key box K (both in NNF), the tableau algorithm is started

with the initial 
ompletion tree

T

C

0

= (fa

0

g; ;; ;; fa

0

7! fC

0

gg)

in the initial 
ompletion system

S

C

0

= (T

C

0

;P

;

; ;; fg);

where P

;

maps ea
h P 2 �

D

o

urring in C

0

to ;. We now introdu
e an operation that

is used by the 
ompletion rules to add new nodes to 
ompletion trees.

De�nition 32 (\+" Operation). An abstra
t or 
on
rete node is 
alled fresh in a


ompletion tree T if it does not appear in T. Let S = (T;P;�;�) be a 
ompletion

system with T = (V

a

; V




; E;L). We use the following notions:

� Let a 2 V

a

, b 2 O

a

fresh in T, and R 2 N

R

. We write S + aRb to denote the


ompletion system S

0

that 
an be obtained from S by adding b to V

a

and (a; b) to

E and setting L(a; b) = R and L(b) = ;. Moreover, b is inserted into � su
h that

b � 
 implies lev

T

(b) � lev

T

(
).

� Let a 2 V

a

, x 2 O




fresh in T and g 2 N


F

. We write S + agx to denote the


ompletion system S

0

that 
an be obtained from S by adding x to V




and (a; x)

to E and setting L(a; x) = g.

When nesting the + operation, we omit bra
kets writing, e.g., S + aR

1

b + bR

2


 for

(S + aR

1

b) + bR

2


. Let u = f

1

� � � f

n

g be a path. With S + aux, where a 2 V

a

and

x 2 O




are fresh in T, we denote the 
ompletion system S

0

that 
an be obtained from

S by taking distin
t nodes b

1

; : : : ; b

n

2 O

a

whi
h are fresh in T and setting

S

0

:= S + af

1

b

1

+ � � �+ b

n�1

f

n

b

n

+ b

n

gx:

�

Stri
tly speaking, the S + aRb operation is non-deterministi
 sin
e we did not spe
ify

how pre
isely the node b is inserted into �. However, sin
e this is don't 
are non-

determinism, we will view the \+" operation as being deterministi
.

The 
ompletion rules 
an be found in Figure 8. Note that the Rt and R
h rules

are non-deterministi
, i.e., they have more than one possible out
ome (this is true don't

know non-determinism). Some further remarks on the 
ompletion rules are in order: the

upper �ve rules are well-known from existing tableau algorithms for ALC(D)-
on
ept

satis�ability (
.f. for example [37℄). Only R8 deserves a 
omment sin
e it 
onsiders
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Ru if C

1

u C

2

2 L(a) and fC

1

; C

2

g 6� L(a)

then L(a) := L(a) [ fC

1

; C

2

g

Rt if C

1

t C

2

2 L(a) and fC

1

; C

2

g \ L(a) = ;

then L(a) := L(a) [ fCg for some C 2 fC

1

; C

2

g

R9 if 9R:C 2 L(a) and there is no R=�

a

-neighbor b of a su
h that C 2 L(b),

then set S := S + aRb for a fresh b 2 O

a

and L(b) := fCg

R8 if 8R:C 2 L(a), b is an R=�

a

-neighbor of a, and C =2 L(b)

then set L(b) := L(b) [ fCg

R9
 if 9u

1

; : : : ; u

n

:P 2 L(a) and there exist no x

1

; : : : ; x

n

2 V




su
h that

x

i

is u

i

-su

essor of a for 1 � i � n and (x

1

; : : : ; x

n

) 2 P(P )

then set S := (S + au

1

x

1

+ � � � + au

n

x

n

) with x

1

; : : : ; x

n

2 O




fresh

and P(P ) := P(P ) [ f(x

1

; : : : ; x

n

)g

R
h if (u

1

; : : : ; u

n

keyfor C) 2 K and there exist x

1

; : : : ; x

n

2 V




su
h that

x

i

is u

i

=�

a

-neighbor of a for 1 � i � n and fC; _:Cg \ L(a) = ;

then set L(a) := L(a) [ fDg for some D 2 fC; _:Cg

Rp if L(b) 6� L(a) and a 2 V

a

is minimal w.r.t. � su
h that a �

a

b

then set L(a) := L(a) [ L(b)

Figure 8: Completion rules for ALCOK(D).

R=�

a

-neighbors rather than R-su

essors as usual. Intuitively, if we have a �

a

b for two

abstra
t nodes a and b of the 
ompletion tree, then a and b des
ribe the same domain

element of the 
onstru
ted model (and similarly for the �




relation on 
on
rete nodes).

Thus if a �

a

b and 
 is an R-su

essor of a, then 
 should also be an R-su

essor of

b. However, sin
e we want the 
ompletion tree to be a tree, we do not make the latter

su

essorship expli
it. To 
ompensate for this, the R8 rule talks about R=�

a

-neighbors

rather than about R-su

essors.

The lower two rules are ne
essary for dealing with key boxes. The R
h rule is a

so-
alled \
hoose rule" (
.f. [26, 33℄): intuitively, it guesses whether or not an abstra
t

node a satis�es C if there exists a key de�nition (u

1

; : : : ; u

n

keyfor C) 2 K su
h that

there are neighbors of a for all the paths u

i

. This is ne
essary sin
e both possibilities

may have rami�
ations: if a satis�es C, then it must be taken into a

ount in the


onstru
tion of the relation �

a

; if a does not satisfy C, then we must deal with the


onsequen
es of it satisfying _:C (imagine e.g. that C is >).

The Rp rule is dealing with equalities between abstra
t nodes as re
orded by the �

a

relation: sin
e a �

a

b means that a and b des
ribe the same node in the 
onstru
ted

model, their node labels should be identi
al. It suÆ
es, however, to 
hoose one repre-

sentative for ea
h equivalen
e 
lass of �

a

and make sure that this representative's node

label 
ontains the labels of all its �

a

-equivalent nodes. As representative, we use the

node that is minimal w.r.t. the ordering �, whi
h has been introdu
ed for solely this

reason. The Rp rule does the appropriate 
opying of node labels.
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de�ne pro
edure sat(S)

do

if S 
ontains a 
lash then

return unsatis�able

� := 
he
k(�

S

)


ompute �

a


ompute �




while � 6= �




if S 
ontains a 
lash then

return unsatis�able

if S is 
omplete then

return satis�able

S

0

:= the appli
ation of a 
ompletion rule to S

return sat(S

0

)

Figure 9: The ALCOK(D) tableau algorithm.

Let us now formalize what it means for a 
ompletion system to 
ontain a 
ontradi
-

tion.

De�nition 33 (Clash). Let S = (T;P;�;�) be a 
ompletion system for a 
on
ept C

and a key box K with T = (V

a

; V




;�;�). We say that the 
ompletion system S is


on
rete domain satis�able i� the 
onjun
tion

�

S

=

^

P used in C

^

(x

1

;:::;x

n

)2P(P )

P (x

1

; : : : ; x

n

) ^

^

x�




y

=(x; y)

is satis�able. S is said to 
ontain a 
lash i�

1. there is an a 2 V

a

and an A 2 N

C

su
h that fA;:Ag � L(a),

2. there are a 2 V

a

and x 2 V




su
h that g" 2 L(a) and x is g=�

a

-neighbor of a,

3. S is not 
on
rete domain satis�able.

If S does not 
ontain a 
lash, S is 
alled 
lash-free. S is 
alled 
omplete i� no 
ompletion

rule is appli
able to S. �

The tableau algorithm is des
ribed in Figure 9 in pseudo-
ode notation. In this �gure,


he
k refers to the algorithm 
omputing a 
on
rete equivalen
e for a given D-
onjun
tion

as des
ribed in De�nition 29. Let us spend a few words on the while loop. There

obviously exist 
lose relationships between the relations � and �




and the predi
ate


onjun
tion �

S

:

� � � �




(note that both �

a

and �




depend on � and are thus re
omputed in ea
h

step of the while loop);
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� the result of 
he
k(�

S

) yields a relation 
ontaining �




(and thus also �).

Using these fa
ts, one may 
he
k that, in ea
h step of the while loop, new tuples are

added to the � relation, but none are deleted (see the proof of Lemma 35 below). The

presen
e of the while loop leads to a tight 
oupling between the 
on
rete domain reasoner

and the tableau algorithm: if the 
on
rete domain reasoner �nds that two 
on
rete nodes

are equal, the tableau algorithm may use this to dedu
e (via the 
omputation of �

a

and

�




) even more equalities between 
on
rete nodes. These new equalities may then be

used by the 
on
rete domain reasoner to �nd additional ones and so forth.

A similar interplay takes pla
e in the 
ourse of several re
ursion steps: equalities

between 
on
rete nodes provided by the 
on
rete domain reasoner may make new rules

appli
able (for example Rp and R9
) whi
h 
hanges P and thus also �

S

. This may

subsequently lead to the dete
tion of more equalities between 
on
rete nodes by the


on
rete domain reasoner, and so forth. These 
onsiderations show that, in the presen
e

of keys, there exists a 
lose interplay between the 
on
rete domain reasoner and the

tableau algorithm whi
h is not needed if keys are not present: in this 
ase, it suÆ
es to

apply the 
on
rete domain satis�ability 
he
k only on
e after the 
ompletion rules have

been exhaustively applied [3℄.

We now prove termination, soundness, and 
ompleteness of the tableau algorithm,

starting with termination. We �rst need to establish a few notions and te
hni
al lemmas.

Let C be a 
on
ept and K a key box. We use jCj to denote the length of C, i.e. the

number of symbols used to write it down, and jKj to denote

P

(u

1

;:::;u

k

keyfor C)2K

jCj.

The role depth of 
on
epts is de�ned indu
tively as follows:

rd(A) = rd(N) = rd(g") = 0

rd(9u

1

; : : : ; u

n

:P ) = maxfju

i

j j 1 � i � ng � 1

rd(C uD) = rd(C tD) = maxfrd(C); rd(D)g

rd(9R:C) = rd(8R:C) = rd(C) + 1

The following series of lemmas will eventually allow us to prove termination.

Lemma 34. There is a 
onstant k su
h that, if the tableau algorithm is started on

input C

0

;K and T = (V

a

; V




; E;L) is a 
ompletion tree 
onstru
ted during the run of

the algorithm, then #V

a

� 2

jC

0

j

k

and #V




� 2

jC

0

j

k

.

Proof. Using indu
tion on the number of rule appli
ations and a 
ase distin
tion

a

ording to the applied rule, it is straightforward to show that

C 2 L(a) implies rd(C) � jC

0

j � lev

T

(a) (�)

for all 
onstru
ted 
ompletion trees T. We omit the details but note that, (1) for

treating the R
h rule, one needs to employ the fa
t that K is Boolean and thus only

adds 
on
epts of role depth 0 to node labels, and (2) for treating the Rp rule, we use

that a � b implies lev

T

(a) � lev

T

(b).

This implies an upper bound on the depth of 
onstru
ted 
ompletion trees: �rst,

only the R9 and R9
 rules generate new nodes and an appli
ation of both rules to a
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node a 2 V

a

implies L(a) 6= ; and thus lev

T

(a) � jC

0

j by (�). Se
ond, ea
h new

(abstra
t or 
on
rete) node b generated by an appli
ation of these rules to a node

a 2 V

a


learly satis�es lev

T

(b) � lev

T

(a) +max(1;mpl(C

0

)), where mpl(C

0

) denotes the

maximum length of paths in C

0

(note that 
on
epts in K may not 
ontain any paths

sin
e it is Boolean). Sin
e mpl(C

0

) � jC

0

j, the above observations imply that the depth

of 
onstru
ted 
ompletion trees is bounded by 2 � jC

0

j.

Now for the out-degree. If a node a is generated, then this is due to the appli
ation

of a rule R9 or R9
 and initially a has at most one su

essor. Let us analyze the number

of su

essors generated by later appli
ations of the rules R9 and R9
: these rules 
an

be applied at most on
e for ea
h 
on
ept 9R:C and 9u

1

; : : : ; u

n

:P appearing in a node

label. By de�nition of 
l(C

0

;K) and sin
e K is Boolean, the number of su
h 
on
epts per

node label is bounded by #sub(C

0

) � jC

0

j. Moreover, ea
h rule appli
ation 
reates at

most jC

0

j su

essors. Hen
e, the out-degree of 
onstru
ted 
ompletion trees is bounded

by jC

0

j

2

+ 1. ❏

Lemma 35. There is a 
onstant k su
h that, if the tableau algorithm is started with

C

0

;K, then, in every re
ursion step, the while loop terminates after at most 2

jC

0

j

k

steps.

Proof. Fix an argument S = (T;P;�;�) with T = (V

a

; V




; E;L) passed to the sat

fun
tion, let �

1

;�

2

; : : : be the sequen
e of 
on
rete equivalen
es 
omputed in the while

loop, and let �

1




;�

2




; : : : be the 
orresponding �




relations. We show that

�

1

( �

2

( � � � ; (�)

whi
h implies Lemma 35: by Lemma 34, there exists a 
onstant k su
h that #V




� 2

jC

0

j

k

.

Hen
e, we have #�

0

� 2

2�jC

0

j

k

whi
h, together with (�), implies that the number of

steps performed by the while loop is also bounded by 2

2�jC

0

j

k

.

Now for the proof of (�). If the while loop rea
hes the i-th step, then we had

�

i�1

6= �

i�1




after step i�1. Sin
e �

i�1

� �

i�1




by de�nition, this implies �

i�1

( �

i�1




.

By de�nition of �

S

, it is easy to see that �

i�1




� �

i

for i � 0. Hen
e �

i�1

( �

i

. ❏

Lemma 36. There is a 
onstant k su
h that, if the tableau algorithm is started with

C

0

;K, then the number of re
ursion 
alls is bounded by 2

(jC

0

j+jKj)

k

.

Proof. It obviously suÆ
es to establish an appropriate upper bound on the number of

rule appli
ations. The Ru, Rt, R9, and R9
 rules 
an be applied at most on
e for ea
h


on
ept in a node label. By Lemma 34, the number of nodes is at most exponential in

jC

0

j + jKj. Sin
e neither nodes nor 
on
epts in node labels are ever deleted, the fa
t

that node labels are subsets of 
l(C

0

;K) thus implies that the number of appli
ations

of these rules is at most exponential in jC

0

j+ jKj. The same holds for the rules R8 and

Rp, whi
h 
an be applied at most on
e for every 
on
ept C 2 
l(C

0

;K) and every pair

of (abstra
t) nodes. Finally, the number of R
h appli
ations is at most exponential in

jC

0

j+ jKj sin
e this rule 
an be applied at most on
e for every abstra
t node and every

key de�nition in K. ❏
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Termination is now an obvious 
onsequen
e of Lemmas 35 and 36.

Corollary 37 (Termination). The tableau algorithm terminates on any input.

Let us now prove soundness of the algorithm.

Lemma 38 (Soundness). If the tableau algorithm returns satis�able, then the input


on
ept C

0

is satis�able w.r.t. the input key box K.

Proof. If the tableau algorithm returns satis�able, then there exists a 
omplete and


lash-free 
ompletion system S = (T;P;�;�) for C

0

. Let T = (V

a

; V




; E;L). By

de�nition of the tableau algorithm, there is a 
ompletion system S

0

= (T;P;�;�

0

) su
h

that a 
all to 
he
k(�

S

0

) returned �. Moreover, we have � = �




in S. Thus, there exists

a solution Æ for �

S

0

su
h that

Æ(x) = Æ(y) i� x �




y: (y)

Clearly, Æ is also a solution for �

S

: sin
e the se
ond 
omponent P of S and S

0

is identi
al,

Æ is a solution for the �rst part

^

P used in C

^

(x

1

;:::;x

n

)2P(P )

P (x

1

; : : : ; x

n

)

of �

S

. Moreover, for ea
h 
onjun
t =(x; y) from the se
ond part of �

S

, we have x �




y

by de�nition of �

S

and thus Æ(x) = Æ(y) by (y).

We now use S and Æ to 
onstru
t an interpretation I by setting

�

I

= fa 2 V

a

j there is no b 2 V

a

su
h that a �

a

b and b � ag [ fwg

A

I

= fa 2 �

I

j A 2 L(a)g

N

I

=

�

fa 2 �

I

j N 2 L(a)g if there is an a 2 �

I

su
h that N 2 L(a)

fwg otherwise

R

I

= f(a; b) 2 �

I

��

I

j there are a

0

; b

0

2 V

a

su
h that a �

a

a

0

, b �

a

b

0

, and

b

0

is R-su

essor of a

0

g

g

I

= f(a; Æ(x)) 2 �

I

��

D

j x is g=�

a

-neighbor of ag

for all A 2 N

C

, N 2 N

O

, R 2 N

R

, and g 2 N


F

. We �rst show that I is well-de�ned:

� N

I

is a singleton for ea
h N 2 N

O

. For assume that there exist a; b 2 �

I

su
h

that a 6= b and N 2 L(a) \ L(b). By de�nition of �

a

, N 2 L(a) \ L(b) implies

a �

a

b. This, together with a; b 2 �

I

, yields a � b and b � a, a 
ontradi
tion.

� f

I

is fun
tional for ea
h f 2 N

aF

. For assume that there exist a; b; 
 2 �

I

su
h

that f(a; b); (a; 
)g � f

I

and b 6= 
. Then there exist a

1

; a

2

; b

0

; 


0

2 V

a

su
h that

a �

a

a

1

�

a

a

2

, b �

a

b

0

, 
 �

a




0

, b

0

is an f -su

essor of a

1

, and 


0

is an f -su

essor

of a

2

. By de�nition of �

a

, we thus have b

0

�

a




0

implying b �

a


. Sin
e b; 
 2 �

I

,

this yields b � 
 and 
 � b, a 
ontradi
tion.
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� g

I

is fun
tional for ea
h g 2 N


F

. For assume that there exist an a 2 �

I

and

x; y 2 V




su
h that f(a; Æ(x)); (a; Æ(y))g � f

I

and Æ(x) 6= Æ(y). Then x and y

are both g=�

a

-neighbors of a. By de�nition of �




, we thus have x �




y implying

Æ(x) = Æ(y) by (y), a 
ontradi
tion.

The following 
laim is 
entral for showing that I is a model for C

0

and K.

Claim: For all a 2 �

I

and C 2 
l(C

0

;K), if C 2 L(a), then a 2 C

I

.

Sin
e C

0

is in the label of the root node, the 
laim 
learly implies that I is a model for C

0

.

Moreover, we 
an use it to prove that I satis�es all key de�nitions (u

1

; : : : ; u

n

keyfor C)

in K: �x a; b 2 C

I

su
h that u

I

i

(a) = u

I

i

(b) for 1 � i � n. Non-appli
ability of R
h yields

fC; _:Cg \ L(a) 6= ;. If _:C 2 L(a), then the 
laim implies a 2 ( _:C)

I

in 
ontradi
tion

to a 2 C

I

. Thus we obtain C 2 L(a). In an analogous way, we 
an argue that C 2 L(b).

Using the 
onstru
tion of I and the fa
t that u

I

i

(a) and u

I

i

(b) are de�ned for 1 � i � n,

it is readily 
he
ked that a has an u

i

=�

a

-neighbor x

i

and b an u

i

=�

a

-neighbor y

i

for

1 � i � n. Moreover, the 
onstru
tion of I and (y) imply that x

i

�




y

i

and thus x

i

� y

i

for 1 � i � n. The above observations obviously imply that a �

a

b. Sin
e a; b 2 �

I

, we

obtain a 6� b and b 6� a by de�nition of �

I

and thus a = b.

It remains to prove the above 
laim, whi
h 
an be done by stru
tural indu
tion:

� C is a 
on
ept name or a nominal. Easy by 
onstru
tion of I.

� C = :D. Sin
e C 2 
l(C

0

;K), C is in NNF and D is a 
on
ept name. Sin
e S is


lash-free, C 2 L(a) implies D =2 L(a). Thus, a =2 D

I

by 
onstru
tion of I, whi
h

yields a 2 (:D)

I

.

� C = 9u

1

; : : : ; u

n

:P . Sin
e the R9
 rule is not appli
able, there exist x

1

; : : : ; x

n

2 V




su
h that x

i

is a u

i

-su

essor of a for 1 � i � n and (x

1

; : : : ; x

n

) 2 P(P ). Using the


onstru
tion of I and indu
tion on the length of paths, the reader may 
he
k that

this implies u

I

i

(a) = Æ(x

i

) for 1 � i � n (be 
areful to deal with abstra
t nodes that

are not in �

I

but en
ountered while following paths). Sin
e (x

1

; : : : ; x

n

) 2 P(P )

and Æ is a solution for �

S

, we have (Æ(x

1

); : : : ; Æ(x

n

)) 2 P

D

and thus a 2 C

I

.

� C = g". Sin
e S is 
lash-free, there exists no x 2 V




su
h that x is g=�

a

-neighbor

of a. Thus, by 
onstru
tion of I, there is no � su
h that (a; �) 2 g

I

.

� C = D uE or C = D tE. Straightforward using 
ompleteness and the indu
tion

hypothesis.

� C = 9R:D. Sin
e the R9 rule is not appli
able, a has an R=�

a

-neighbor b su
h

that D 2 L(b). Let b

0

be minimal w.r.t. � su
h that b �

a

b

0

. By de�nition of

I, we have (a; b

0

) 2 R

I

. Non-appli
ability of the Rp rule yields D 2 L(b

0

). By

indu
tion, we get b

0

2 D

I

and thus a 2 C

I

.

� C = 8R:D. Let (a; b) 2 R

I

. By de�nition of I, this implies that there exist

a

0

; b

0

2 V

a

su
h that a is minimal w.r.t. � and a �

a

a

0

, b is minimal w.r.t. � and

b �

a

b

0

, and b

0

is an R-su

essor of a

0

. Sin
e b

0

is 
learly an R=�

a

-neighbor of
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a, non-appli
ability of R8 yields D 2 L(b

0

), whi
h implies D 2 L(b) due to non-

appli
ability of Rp. By indu
tion, we get b 2 D

I

. Sin
e this holds independently

of the 
hoi
e of b, we obtain a 2 (8R:D)

I

.

❏

Lemma 39 (Completeness). If the input 
on
ept C

0

is satis�able w.r.t. the input key

box K, then the tableau algorithm returns satis�able.

Proof. Let I be a model of C

0

and K. We use I to \guide" the (non-deterministi
 parts

of) the algorithm su
h that it 
onstru
ts a 
omplete and 
lash-free 
ompletion system.

A 
ompletion system S = (T;P;�;�) with T = (V

a

; V




; E;L) is 
alled I-
ompatible if

there exist mappings � : V

a

! �

I

and � : V




! �

D

su
h that

(Ca) C 2 L(a)) �(a) 2 C

I

(Cb) b is an R-su

essor of a) (�(a); �(b)) 2 R

I

(C
) x is a g-su

essor of a ) g

I

(�(a)) = �(x)

(Cd) (x

1

; : : : ; x

n

) 2 P(P )) (�(x

1

); : : : ; �(x

n

)) 2 P

D

(Ce) x � y ) �(x) = �(y)

We �rst establish the following 
laim:

Claim 1: If a 
ompletion system S is I-
ompatible, then (i) a �

a

b implies �(a) = �(b)

and (ii) x �




y implies �(x) = �(y).

Proof: We show by indu
tion on i that a �

i

a

b implies �(a) = �(b) (
.f. De�nition 31),

whi
h yields (i).

� Start. If a �

0

a

b, then there exists a nominal N su
h that N 2 L(a) \ L(b). By

(Ca) we obtain �(a) 2 N

I

and �(b) 2 N

I

, whi
h yields �(a) = �(b) by de�nition

of the semanti
s.

� Step. For a �

i

a

b, we distinguish three 
ases:

1. If a �

i�1

a

b, then �(a) = �(b) by indu
tion.

2. There is a 
 2 V

a

and an f 2 N

aF

su
h that both a and b are f=�

i�1

a

-

neighbors of 
. Hen
e, there exist 


1

; 


2

2 V

a

su
h that 
 �

i�1

a




1

�

i�1

a




2

,

a is an f -su

essor of 


1

, and b is an f -su

essor of 


2

. By indu
tion, we

have �(
) = �(


1

) = �(


2

). Thus (Cb) yields f(�(
); �(a)); (�(
); �(b))g � f

I

whi
h implies �(a) = �(b) by de�nition of the semanti
s.

3. There exist (u

1

; : : : ; u

n

keyfor C) 2 K, u

i

=�

i�1

a

-neighbors x

i

of a and u

i

=�

i�1

a

-

neighbors y

i

of b for 1 � i � n su
h that C 2 L(a) \ L(b) and x

i

� y

i

for

1 � i � n. (Ca) yields a; b 2 C

I

. Using indu
tion, (Cb), and (C
), it

is straightforward to show that u

I

i

(�(a)) = �(x

i

) and u

I

i

(�(b)) = �(y

i

) for

1 � i � n. By (Ce), this implies u

I

i

(�(a)) = u

I

i

(�(b)) for 1 � i � k. Sin
e

I is a model of the key box K, this yields �(a) = �(b) by de�nition of the

semanti
s.
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Now for Part (ii) of Claim 1. If x �




y, then either x � y or there is an a 2 V

a

and a g 2 N


F

su
h that both x and y are g=�

a

-neighbors of a. In the former 
ase,

(Ce) yields �(x) = �(y). In the latter 
ase, Part (i) of the 
laim and (C
) yields

f(�(a); �(x)); (�(a); �(y))g � g

I

whi
h implies �(x) = �(y). This �nishes the proof of

Claim 1.

We 
an now show that the 
ompletion rules 
an be applied su
h that I-
ompatibility is

preserved.

Claim 2: If a 
ompletion system S is I-
ompatible and a rule R is appli
able to S,

then R 
an be applied su
h that an I-
ompatible 
ompletion system S

0

is obtained.

Proof: Let S be an I-
ompatible 
ompletion system, � and � be fun
tions satisfying

(Ca) to (Ce), and let R be a 
ompletion rule appli
able to S. We make a 
ase distin
tion

a

ording to the type of R.

Ru The rule is applied to a 
on
ept C

1

uC

2

2 L(a). By (Ca), C

1

uC

2

2 L(a) implies

�(a) 2 (C

1

u C

2

)

I

and hen
e �(a) 2 C

I

1

and �(a) 2 C

I

2

. Sin
e the rule adds C

1

and C

2

to L(a), it yields a 
ompletion system that is I-
ompatible via the same

� and � .

Rt The rule is applied to C

1

t C

2

2 L(a). C

1

t C

2

2 L(a) implies �(a) 2 C

I

1

or

�(a) 2 C

I

2

. Sin
e the rule adds either C

1

or C

2

to L(a), it 
an be applied su
h

that it yields a 
ompletion system that is I-
ompatible via the same � and � .

R9 The rule is applied to a 
on
ept 9R:C 2 L(a), generates a new R-su

essor b of a

and sets L(b) = fCg. By (Ca), we have �(a) 2 (9R:C)

I

and, hen
e, there exists a

d 2 �

I

su
h that (�(a); d) 2 R

I

and d 2 C

I

. Set �

0

:= � [ fb 7! dg. It is readily


he
ked that the resulting 
ompletion system is I-
ompatible via �

0

and � .

R8 The rule is applied to a 
on
ept 8R:C 2 L(a) and adds C to the label L(b) of an

existing R=�

a

-neighbor b of a. Hen
e, there exists an a

0

su
h that a �

a

a

0

and b

is R-su

essor of a

0

. By Part (i) of Claim 1, we have �(a) = �(a

0

). Thus, by (Ca)

we have �(a

0

) 2 (8R:C)

I

while (Cb) yields ((�(a

0

); �(b)) 2 R

I

. By de�nition of

the semanti
s, we obtain �(b) 2 C

I

and thus the resulting 
ompletion system is

I-
ompatible via � and � .

R9
 The rule is applied to a 
on
ept 9u

1

; : : : ; u

n

:P 2 L(a) with u

i

= f

(i)

1

� � � f

(i)

k

i

g

i

for

1 � i � n. The rule appli
ation generates new abstra
t nodes b

(i)

j

and x

j

for

1 � i � n and 1 � j � k

i

su
h that

{ b

(i)

1

is an f

(i)

1

-su

essor of a for 1 � i � n,

{ b

(i)

j

is an f

(i)

j

-su

essor of b

(i)

j�1

for 1 � i � n and 1 < j � k

i

,

{ x

i

is g

i

-su

essor of b

(i)

k

i

for 1 � i � n, and

{ (x

1

; : : : ; x

n

) 2 P(P ).

By (Ca), we have �(a) 2 (9u

1

; : : : ; u

n

:P )

I

. Hen
e, there exist d

(i)

j

2 �

I

for

1 � i � n and 1 � j � k

i

and �

1

; : : : ; �

n

2 �

D

su
h that
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{ (�(a); d

(i)

1

) 2 (f

(i)

1

)

I

for 1 � i � n,

{ (d

(i)

j�1

; d

(i)

j

) 2 (f

(i)

j

)

I

for 1 � i � n and 1 < j � k

i

,

{ g

I

i

(d

(i)

k

i

) = �

i

for 1 � i � n, and

{ (�

1

; : : : ; �

n

) 2 P

D

.

Set

�

0

:= �

[

1�i�n and 1�j�k

i

fb

(i)

j

7! d

(i)

j

g and �

0

:= � [

[

1�i�n

fx

i

7! �

i

g:

The resulting 
ompletion system is I-
ompatible via �

0

and �

0

.

R
h The rule is applied to an abstra
t node a and a key de�nition (u

1

; : : : ; u

n

keyfor C)

2 K and non-deterministi
ally adds either C or _:C. By de�nition of the seman-

ti
s, �(a) 2 C

I

or �(a) 2 ( _:C)

I

. Hen
e, R
h 
an be applied su
h that the

resulting 
ompletion system is I-
ompatible via � and � .

Rp The rule is applied to a 
on
ept C 2 L(a) and adds C to the label L(b) of a node

b with a �

a

b. By (Ca), we have �(a) 2 C

I

. Sin
e Claim 1 yields �(a) = �(b), it

is 
lear that the resulting 
ompletion system is I-
ompatible via � and � .

Finally, we show that I-
ompatibility implies 
lash-freeness.

Claim 3: Every I-
ompatible 
ompletion system is 
lash-free.

Proof: Let S = (T;P;�;�) be an I-
ompatible 
ompletion system. To show that S is


lash-free, we make a 
ase distin
tion:

� Assume that there exists an a 2 V

a

su
h that fA;:Ag 2 L(a) for some 
on
ept

name A. Due to (Ca), we have �(a) 2 A

I

\ (:A)

I

, a 
ontradi
tion.

� Assume that there are a 2 V

a

and x 2 V




su
h that g" 2 L(a) and x is g=�

a

-

neighbor of a. Then there exists a b 2 V

a

su
h that a �

a

b and x is g-su

essor

of b. By Claim 1, a �

a

b yields �(a) = �(b). Thus, g" 2 L(a) and (Ca) give

�(b) 2 (g")

I

. We obtain a 
ontradi
tion sin
e (C
) yields (�(b); �(x)) 2 g

I

.

� Using Properties (Cd) and (Ce) and Part (ii) of Claim 1, it is easy to 
he
k that

� is a solution for �

S

. Thus, S is 
on
rete domain satis�able.

We 
an now des
ribe the \guidan
e" of the tableau algorithm by the model I in detail:

we ensure that, at all times, the 
onsidered 
ompletion systems are I-
ompatible. This

does obviously hold for the initial 
ompletion system

S

C

0

= (T

C

0

;P

;

; ;; ;) with T

C

0

= (fa

0

g; ;; ;; fa

0

7! fCgg):

We guide the non-deterministi
 
he
k fun
tion su
h that, when given a predi
ate 
on-

jun
tion �

S

with set of variables V




� O




as input, it returns the relation � de�ned by

setting x � y i� �(x) = �(y) for all x; y 2 V . The relation � is a 
on
rete equivalen
e
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sin
e � is a solution for �

S

(see above). With this guidan
e (Ce) is obviously satis�ed af-

ter ea
h 
all to 
he
k, and the other properties are not a�e
ted by su
h a 
all. A

ording

to Claim 2, we 
an apply the 
ompletion rules su
h that I-
ompatibility is preserved.

By Corollary 37, the algorithm terminates always, hen
e also when guided in this way.

Sin
e, by Claim 3, we will not �nd a 
lash, the algorithm returns satis�able. ❏

The tableau algorithm yields de
idability and a tight upper 
omplexity bound for

ALCOK(D)-
on
ept satis�ability w.r.t. key boxes.

Theorem 40. Let D be a 
on
rete domain that is key-admissible. If extended D-

satis�ability is in NP, then ALCOK(D)-
on
ept satis�ability w.r.t. Boolean key boxes

is in NExpTime.

Proof. Corollary 37 and Lemmas 38 and 39 yield de
idability of ALCOK(D)-
on
ept

satis�ability w.r.t. Boolean key boxes. For 
omplexity, Lemma 36 provides an exponen-

tial bound on the number of re
ursion 
alls. Hen
e, it remains to show that ea
h single

re
ursion step needs at most exponential time. By Lemma 35, the while loop terminates

after at most exponentially many steps. In ea
h su
h step, we 
ompute the relations �

a

and �




, whi
h are needed for 
onstru
ting the predi
ate 
onjun
tion �

S

and for 
he
king

termination of the while loop. Sin
e, by Lemma 34, there exists an exponential bound

on the number of abstra
t and 
on
rete nodes in the 
ompletion system S, this 
an

obviously be done in exponential time. Moreover, Lemma 34 implies that the size of �

S

is at most exponential. This together with the fa
t that extended D-satis�ability is in

NP implies that the 
all to 
he
k needs at most exponential time. All remaining tasks

(
he
king for 
lashes, 
ompleteness, and rule appli
ability) 
an 
learly also be performed

in exponential time. ❏

We should note that, in the way it is presented here, the algorithm leaves quite some

room for optimizations. One possible optimization 
on
erns the \re-use" of f -su

essors

(for abstra
t features f): for example, when applying the R9 rule to a 
on
ept 9f:C 2

L(a), where a already has an f -su

essor b, we 
ould simply add C to L(b) instead of

adding a new f -su

essor 
 and re
ording that b �

a


. Another 
andidate for optimiza-

tions is the 
he
k fun
tion. Re
all that this fun
tion takes a predi
ate 
onjun
tion 


with set of variables V and non-deterministi
ally returns a 
on
rete equivalen
e, i.e., a

relation � su
h that there exists a solution Æ for 
 with v

i

� v

j

i� Æ(v

i

) = Æ(v

j

) (see

De�nition 29). It is not hard to devise an ALC(D)-
on
ept that enfor
es 
ompletion

systems to have exponentially many 
on
rete nodes by slightly adapting well-known

ALC-
on
epts that enfor
e models of exponential size [25℄. Hen
e, the size of input


onjun
tions 
 to 
he
k 
an be exponential in the size of the input 
on
ept. Now note

that, even for trivial D-
onjun
tions


 = >

D

(v

1

) ^ � � � ^ >

D

(v

k

)

with (>

D

)

D

= �

D

, there exist more than k! (i.e. fa
torial of k) distin
t 
on
rete equiv-

alen
es �. Thus, the number of possible out
omes of a 
all to the 
he
k fun
tion may

be double exponential in the size of the input 
on
ept. Considering the above example,

a natural approa
h to atta
k this problem is to require 
he
k to return only minimal
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on
rete equivalen
es: intuitively, an equivalen
e is minimal if only those variables are

equivalent whose equality is enfor
ed by the 
onjun
tion. More pre
isely, � is 
alled

minimal if there exists no 
on
rete equivalen
e �

0

su
h that (i) x �

0

y implies x � y

and (ii) there are x; y with x � y and x 6�

0

y. We 
onje
ture that restri
ting 
he
k in

this way does not destroy soundness and 
ompleteness of the tableau algorithm. How-

ever, although this de�nitely is a worthwhile optimization, it does not help to over
ome

the existen
e of double exponentially many out
omes of 
he
k in the worst 
ase|at

least not for all 
on
rete domains D: 
onsider the 
on
rete domain N from Page 27 and


onjun
tions of the form




i

= <

i

(v

1

) ^ � � � ^<

i

(v

2i

):

It is readily 
he
ked that, for ea
h i � 1, the number of minimal 
on
rete equivalen
es for




i

is exponential in i. Moreover, it is not hard to devise a 
on
ept C

i

of size logarithmi


in i that enfor
es 
ompletion systems S su
h that �

S

= 


i

. Hen
e, there are still double

exponentially many out
omes of the 
he
k fun
tion.

In the example just dis
ussed, the exponential bran
hing of 
he
k is 
learly due

to the dis
reteness of the natural numbers. Indeed, if we use a dense (and in�nite!)

stru
ture for de�ning 
on
rete domains, it seems that the restri
tion to minimal 
on
rete

equivalen
es 
an have the desired e�e
t, namely that the number of 
he
k's possible

out
omes be
omes polynomial in the size of its input and thus exponential in the size

of the input 
on
ept. For example, 
onsider the 
on
rete domain Q, whi
h is de�ned as

follows:

� �

Q

is the set Q of rational numbers;

� �

Q

provides unary predi
ates >

Q

and its negation ?

Q

, unary predi
ates =

q

and

6=

q

for ea
h q 2 Q, binary 
omparison predi
ates f<;�;=; 6=;�; >g, a ternary

addition predi
ate +, and its negation + (all with the obvious semanti
s).

It is readily 
he
ked that Q is key-admissible (note that it provides for a binary equality

predi
ate) and thus falls into our framework. We 
onje
ture that there exists only one

minimal 
on
rete equivalen
e for every Q-predi
ate 
onjun
tion 
: intuitively, it seems

possible to (indu
tively) determine a relation � on the set of variables V used in 
 su
h

that (i) x � y implies that Æ(x) = Æ(y) for every solution Æ for 
 and (ii) there exists a

solution Æ for 
 su
h that v 6� v

0

implies Æ(v) 6= Æ(v

0

). Clearly, � is a minimal 
on
rete

equivalen
e. Moreover, due to (i) it is the only one.

4.2 A Tableau Algorithm for SHOQK(D)

Although ALCOK(D) is a quite powerful DL, it la
ks several expressive means that


an be found in most state-of-the-art des
ription logi
 systems su
h as FaCT and

RACER [28, 33, 23℄. In this se
tion, we 
onsider the very expressive des
ription logi


SHOQK(D) that provides for 
on
rete domains, key boxes, and nominals, but also for

many other means of expressivity su
h as transitive roles, role hierar
hies, qualifying

number restri
tions, and general TBoxes. Modulo some details, SHOQK(D) 
an be

viewed as the extension of the DL SHOQ(D) with key boxes. SHOQK(D) was pro-

posed in [31℄ and extended in [42℄ as a tool for ontology reasoning in the 
ontext of the
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semanti
 web [12, 6℄. One very important feature of SHOQK(D) are so-
alled TBoxes,

i.e. 
on
ept equations of the form C

:

= D that are used as a \ba
kground theory" in rea-

soning. Sin
e it is well-known that 
ombining general TBoxes and the 
on
rete domain


onstru
tor easily leads to unde
idability [5, 39℄, SHOQK(D) only o�ers a path-free

variant of the 
on
rete domain 
onstru
tor|i.e. only 
on
rete features are admitted

inside this 
onstru
tor rather than paths of arbitrary length. [24, 31℄ show that this

restri
tion regains de
idability. Path-freeness of the 
on
rete domain 
onstru
tor obvi-

ously renders abstra
t features unne
essary, and thus this synta
ti
 type is not available

in SHOQK(D). Moreover, in this se
tion we restri
t ourselves to path-free key boxes.

4.2.1 The Des
ription Logi
 SHOQK(D)

Let us now de�ne SHOQK(D) in a formal way, starting with the syntax.

De�nition 41 (SHOQK(D) Syntax). A role axiom is either a role in
lusion, whi
h

is of the form R v S with R;S 2 N

R

, or a transitivity axiom Trans(R) where R 2 N

R

.

A role box R is a �nite set of role axioms. A role name R is 
alled simple if, for v* the

re
exive-transitive 
losure of the role in
lusions in R, S v* R implies Trans(S) =2 R for

all role names S. Let D be a 
on
rete domain. The set of SHOQK(D)-
on
epts is the

smallest set su
h that

� every 
on
ept name and every nominal is a 
on
ept, and

� if C and D are 
on
epts, R is a role name, S a simple role name, n and k are

natural numbers, g

1

; : : : ; g

n

are 
on
rete feature, and P 2 �

D

is a predi
ate of

arity n, then the following expressions are also 
on
epts:

:C; C uD; C tD; 9R:C; 8R:C; (> k S C); (6 k S C); 9g

1

; : : : ; g

n

:P; and g

1

":

A 
on
ept equation is an expression C

:

= D with C and D 
on
epts. A TBox is a �nite

set of 
on
ept equations. �

For SHOQK(D), we 
onsider key boxes that di�er in two aspe
t from the ones we


onsidered for ALCOK(D): in the following, we assume key boxes to be path-free, but

we admit 
omplex 
on
epts to o

ur in key de�nitions. Note that abstra
t features

and paths do no o

ur in the syntax of SHOQK(D)|as will be
ome 
lear after the

semanti
s has been de�ned, the former 
an be \simulated" by the more general number

restri
tions (6 n R C). As usual in des
ription logi
s of the SHIQ/SHOQ family, we

require role names in number restri
tions to be simple sin
e admitting arbitrary roles

yields unde
idability of reasoning [33, 31℄. If the role box R is 
lear from the 
ontext, we

will usually write Trans(R) instead of Trans(R) 2 R. We now introdu
e the semanti
s

of SHOQK(D) and the relevant reasoning problems.

De�nition 42 (SHOQK(D) Semanti
s). Interpretations I = (�

I

; �

I

) are de�ned as

in De�nition 3. The interpretation fun
tion �

I

is extended to SHOQK(D)-
on
epts as
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follows:

(:C)

I

:= �

I

n C

I

(C uD)

I

:= C

I

\D

I

(C tD)

I

:= C

I

[D

I

(9R:C)

I

:= fd 2 �

I

j fe j (d; e) 2 R

I

g \ C

I

6= ;g

(8R:C)

I

:= fd 2 �

I

j fe j (d; e) 2 R

I

g � C

I

g

(6 k R C)

I

:= fd 2 �

I

j ℄fe j (d; e) 2 R

I

g � kg

(> k R C)

I

:= fd 2 �

I

j ℄fe j (d; e) 2 R

I

g � kg

(9g

1

; : : : ; g

n

:P )

I

:= fd 2 �

I

j 9x

1

; : : : ; x

n

2 �

D

: g

I

i

(d) = x

i

and (x

1

; : : : ; x

n

) 2 P

D

g

(g")

I

:= fd 2 �

I

j g

I

(d) unde�nedg:

Let I be an interpretation. Then I satis�es a 
on
ept equation C

:

= D if C

I

= D

I

.

I is a model of a TBox T if I satis�es all 
on
ept equations in T . Similarly, I satis�es

a role in
lusion R v S if R

I

� S

I

and a transitivity axiom Trans(R) if R

I

is a transitive

relation. I is a model of a role box R if I satis�es all role in
lusions and transitivity

axioms in R.

Let T be a TBox, R a role box, and K a key box. A 
on
ept C is satis�able w.r.t.

T , R, and K i� C, T , R, and K have a 
ommon model. C is subsumed by a 
on
ept

D w.r.t. T , R, and K (written C v

T ;R;K

D) i� C

I

� D

I

for all 
ommon models I of

T , R, and K. �

Note that, due to the requirement that role names used inside number restri
tions should

be simple, existential and universal value restri
tions are no synta
ti
 sugar: in 
ontrast

to number restri
tions, they 
an be used on all roles.

It is well-known that, in many expressive des
ription logi
s, reasoning with TBoxes


an be redu
ed to reasoning without them [44, 31℄: in SHOQK(D), de
iding satis�a-

bility of a 
on
ept C w.r.t. T , R, and K is equivalent to de
iding satis�ability of the


on
ept

C u 8R:

�

u

D

:

=E2T

D $ E

�

u u

nominal N used in C, T , or K

�

9R:(N u u

D

:

=E2T

D $ E)

�

w.r.t. R

0

, K, and the empty TBox, where R is a fresh role not appearing in C, R, and

T , and

R

0

:= R[ fTrans(R)g [

[

role name S used in C, T , R, or K

fS v Rg:

Sin
e subsumption 
an be redu
ed to satis�ability as des
ribed in Se
tion 2, in the

following we will only 
onsider the satis�ability of 
on
epts w.r.t. role boxes and key

boxes, but without TBoxes. We will also generally assume role boxes R to be a
y
li
,

i.e. to satisfy the following 
ondition: for ea
h role name R, there are no role names

R

1

; : : : ; R

k

su
h that R = R

1

= R

k

and R

i

v R

i+1

2 R for 1 � i < k. It is not hard to

see that this is no restri
tion sin
e 
y
les 
an be eliminated: if R

1

; : : : ; R

k

is a 
y
le in

R, then we have R

I

1

= � � � = R

I

k

for all interpretations I. Thus we 
an simply remove
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the 
y
le from R and repla
e every o

urren
e of R

2

; : : : ; R

k

in C, R, and K with R

1

.

Moreover, we have to possibly add Trans(R

1

) if, before the 
y
le elimination, we had

Trans(R

i

) for some i with 1 � i � n.

Before we turn our attention towards the 
onstru
tion of a tableau algorithm for

SHOQK(D), let us 
omment on a few minor di�eren
es between SHOQK(D) as intro-

du
ed here and the original version of SHOQ(D) as des
ribed in [31℄. The main di�er-

en
e is that our logi
, like the extension investigated in [42℄, allows n-ary predi
ates while

Horro
ks and Sattler restri
t themselves to unary predi
ates. Moreover, SHOQ(D) as

introdu
ed in [31℄ uses 
on
rete roles rather than 
on
rete features, the di�eren
e being

that 
on
rete roles are not ne
essary fun
tional. Due to this non-fun
tionality, the orig-

inal SHOQ(D) admits two variants 9T:P and 8T:P of the 
on
rete domain 
onstru
tor

(where T is a 
on
rete role and P a unary predi
ate). In SHOQK(D), we 
an simulate

the universal variant by writing 9g:P t g" sin
e 
on
rete features g are interpreted as

partial fun
tions and, in 
ontrast to Horro
ks and Sattler, we have the unde�nedness


onstru
tor g" available. Ex
ept for the n-ary predi
ates whi
h provide important ad-

ditional expressivity, we view these deviations as minor ones sin
e they are easily seen

to not a�e
t de
idability and 
omplexity of reasoning.

4.2.2 A Tableau for SHOQK(D)

Similar to the tableau algorithm for ALCOK(D) 
on
ept satis�ability, the SHOQK(D)

algorithm will use 
ompletion systems based on 
ompletion trees as the underlying data

stru
ture. However, to simplify dealing with transitive roles and role hierar
hies, in the


orre
tness proofs, we will not establish a dire
t 
orresponden
e between the existen
e

of 
omplete and 
lash-free 
ompletion systems and the existen
e of models, but rather

employ an intermediate step involving an abstra
tion of models 
alled tableau. Intu-

itively, the main di�eren
e between 
ompletion systems and tableaux is that 
ompletion

systems 
onstru
ted by the tableau algorithm are �nite obje
ts while a tableau is po-

tentially in�nite. The main di�eren
e between tableaux and interpretations is that, in

tableaux, roles de
lared to be transitive must not ne
essarily be des
ribed by transitive

relations.

In this se
tion, we introdu
e tableaux. Let us start with dis
ussing some prelim-

inaries. As for ALCOK(D), we assume all 
on
epts and key boxes to be in negation

normal form (NNF) and use _:C to denote the NNF of :C. The NNF rewrite rules for

SHOQK(D) 
an be found in Figure 10. For a 
on
ept D, role box R, and key box K,

we de�ne


l(D;K) := sub(D) [ sub(
on(K)) [ f _:C j C 2 sub(D) [ sub(
on(K))g


l(D;R;K) := 
l(D;K) [ f8R:C j R v* S and 8S:C 2 
l(D;K)g;

where v* denotes the re
exive transitive 
losure of the role in
lusions in R. Obviously,

the 
ardinality of 
l(D;R;K) is linear in the size of D, R, and K. In what follows, we

write N

D;R;K

R

to denote the set of role names o

urring in D, R, or K, and N

D;K


F

to

denote the sets of 
on
rete features o

urring in D or K. We are now ready to de�ne

tableaux.
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:(C uD)  :C t :D :(C tD)  :C u :D

:(9R:C)  8R::C :(8R:C)  9R::C

::C  C :(g")  9g:>

D

:(> n R C)  (6 (n� 1) R C) if n � 1

:(> 0 R C)  ?

:(6 n R C)  (> (n+ 1) R C)

:(9g

1

; : : : ; g

n

:P )  9g

1

; : : : ; g

n

:P t g

1

" t � � � t g

n

"

Figure 10: The SHOQK(D) NNF rewrite rules.

De�nition 43 (Tableau). Let D be a SHOQK(D)-
on
ept in NNF, R a role box,

and K a path-free key box in NNF. A tableau T for D w.r.t. R and K is a tuple

(S

a

;S




;L; E;

e

;P) su
h that

� S

a

, S




are sets of abstra
t and 
on
rete individuals,

� L : S

a

! 2


l(D;R;K)

maps ea
h abstra
t individual to a subset of 
l(D;R;K),

� E : S

a

� S

a

! 2

N

D;R;K

R

maps pairs of abstra
t individuals to sets of roles,

�

e

: S

a

� N

D;K


F

! S




maps pairs of abstra
t individuals and 
on
rete features to


on
rete individuals,

� P maps ea
h n-ary 
on
rete predi
ate o

urring in 
l(D;R;K) to a set of n-tuples

over S




,

� there is an abstra
t individual s

0

2 S

a

su
h that D 2 L(s

0

), and

for all s; t 2 S

a

, C;C

1

; C

2

2 
l(D;R;K), R;S 2 N

D;R;K

R

, and

S

T

(s; C) := ft 2 S

a

j S 2 E(s; t) and C 2 L(t)g;

it holds that:

(T1) if C 2 L(s), then :C =2 L(s),

(T2) if C

1

uC

2

2 L(s), then C

1

2 L(s) and C

2

2 L(s),

(T3) if C

1

tC

2

2 L(s), then C

1

2 L(s) or C

2

2 L(s),

(T4) if R 2 E(s; t) and R v* S, then S 2 E(s; t),

(T5) if 8R:C 2 L(s) and R 2 E(s; t), then C 2 L(t),

(T6) if 9R:C 2 L(s), then there is some t 2 S

a

su
h that R 2 E(s; t) and C 2 L(t),

(T7) if 8S:C 2 L(s) and R 2 E(s; t) for some R v* S with Trans(R), then 8R:C 2 L(t),

(T8) if (> n S C) 2 L(s), then ℄S

T

(s; C) > n,
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(T9) if (6 n S C) 2 L(s), then ℄S

T

(s; C) 6 n,

(T10) if either (6 n S C) 2 L(s) and S 2 E(s; t) or (g

1

; : : : ; g

n

keyfor C) 2 K and

e

(t; g

i

) is de�ned for all 1 � i � n, then fC; _:Cg \ L(t) 6= ;,

(T11) if N 2 L(s) \ L(t), then s = t,

(T12) if 9g

1

; : : : ; g

n

:P 2 L(s), then there are x

1

; : : : ; x

n

2 S




with

e

(s; g

i

) = x

i

and

(x

1

; : : : ; x

n

) 2 P(P ),

(T13)

V

P used in D;K

V

(x

1

;:::;x

n

)2P(P )

P (x

1

; : : : ; x

n

) ^

V

x6=y

x 6= y is satis�able,

(T14) if (g

1

; : : : ; g

n

keyfor C) 2 K, C 2 L(s) \ L(t), and

e

(s; g

i

) =

e

(t; g

i

) for all

1 � i � n, then s = t,

(T15) if g" 2 L(s), then e(s; g) is unde�ned.

�

Note that the predi
ate 
onjun
tion in (T13) uses a binary inequality predi
ate. In

general, we do not require the 
on
rete domain D to be equipped with su
h a predi
ate

and thus this predi
ate 
onjun
tion is not ne
essarily a D-
onjun
tion. However, it

is nevertheless \safe" to use (T13) in the given form sin
e tableaux are only used in

proofs and we do not need a 
on
rete domain reasoner that is 
apable of de
iding the

satis�ability of the listed predi
ate 
onjun
tion. We now show that tableaux are an

adequate abstra
tion of models.

Lemma 44. Let D be a SHOQK(D)-
on
ept in NNF, R a role box, and K a key box

in NNF. Then D is satis�able w.r.t. R and K i� D has a tableau w.r.t. R and K.

Proof. We 
on
entrate on Properties (T10) to (T15) sin
e (T1) to (T9) are \stan-

dard" and 
an also be found in tableaux for SHIQ and SHOQ, see [33, 31℄. For the

\only-if" dire
tion, we 
onstru
t a tableau T from a 
ommon model I of D, R, and K

as follows:

S

a

:= �

I

S




:= fx 2 �

D

j g

I

(s) = x for some s 2 S

a

g

L(s) := fC 2 
l(D;R;K) j s 2 C

I

g

E(s; t) := fS 2 N

D;R;K

R

j (s; t) 2 S

I

g

e

(s; g) := g

I

(s) if g

I

(s) is de�ned

P(P ) := f(x

1

; : : : ; x

n

) 2 S

n




j (x

1

; : : : ; x

n

) 2 P

D

g:

It 
an be easily veri�ed that T is a tableau for D w.r.t. R and K: the proof that T

satis�es (T1) { (T9) is identi
al to the 
orresponding 
ases in [33, 31℄; (T10) holds

by de�nition of L; (T11) by de�nition of L and the fa
t that nominals are interpreted

as singleton sets; (T12) by de�nition of L, e, and P together with the semanti
s of


on
epts 9g

1

; : : : ; g

n

:P ; (T13) sin
e the identity fun
tion on S




is 
learly a solution

for the listed predi
ate 
onjun
tion; (T14) by de�nition of L and e together with the

semanti
s of key 
onstraints; and �nally (T15) by de�nition of L and e together with

the semanti
s of 
on
epts g".
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For the \if" dire
tion, let T = (S

a

;S




;L; E;

e

;P) be a tableau for D w.r.t. R and K

and let Æ be a solution for the predi
ate 
onjun
tion in (T13). We 
onstru
t a model

I for D as follows:

�

I

:= S

a

A

I

:= fs 2 �

I

j A 2 L(s)g

N

I

:= fs 2 �

I

j N 2 L(s)g

R

I

:=

(

S

S v* R

S 6=R

S

I

[ f(s; t) j R 2 E(s; t)g for R 2 N

R

n N


F

with not Trans(R)

f(s; t) j R 2 E(s; t)g

+

for R 2 N

R

n N


F

with Trans(R)

g

I

(s) :=

�

Æ(x) if

e

(s; g) = x

unde�ned if

e

(s; g) is unde�ned

for g 2 N


F

:

Due to (T11), the interpretation of nominals is a singleton. Moreover, the interpretation

of roles is well-de�ned sin
e role boxes are a
y
li
. The following 
laim is 
entral for

proving that I is indeed a model for C, R, and K:

Claim: For ea
h D 2 
l(D;R;K), D 2 L(s) implies s 2 D

I

.

Proof: We pro
eed by indu
tion on the stru
ture of D. For 
on
ept names A and

nominals N , the 
laim follows by de�nition of A

I

and N

I

. For the negation of 
on
ept

names A and nominals N (note that D is in NNF), we may use the de�nition of A

I

and

N

I

together with (T1). Con
eptsD of the form C

1

uC

2

and C

1

tC

2


an be treated using

(T2) and (T3) together with the indu
tion hypothesis. For existential, universal, and

number restri
tions, the proof is analogous to the one for SHIQ in [33℄. For 
on
epts of

the form D = 9g

1

; : : : g

n

:P 2 L(s), s 2 D

I

is an immediate 
onsequen
e of (T12), the

de�nition of g

I

i

, and the fa
t that (x

1

; : : : ; x

n

) 2 P(P ) implies (Æ(x

1

); : : : ; Æ(x

n

)) 2 P

D

by (T13). Finally, for 
on
epts D = g", s 2 D

I

is an immediate 
onsequen
e of the

de�nition of g

I

together with (T15). This �nishes the proof of the 
laim.

By de�nition of tableaux, there exists an s

0

2 S

a

su
h that C 2 L(s

0

). By the 
laim,

s

0

2 C

I

and thus I is a model of C.

Next, we show that I is a model of R. By de�nition of R

I

, it is obvious that

Trans(R) 2 R implies that R

I

is a transitive relation. Now let S v R 2 R. If

Trans(R) =2 R, then we have S

I

� R

I

by de�nition of R

I

. Now let Trans(R) 2 R and

(s; t) 2 S

I

. If S 2 E(s; t), then (T4) implies R 2 E(s; t), and thus (s; t) 2 E

I

. Other-

wise, there is an S

0

v* S with Trans(S

0

) 2 R and (s; t) 2 f(u; v) j S

0

2 E(u; v)g

+

. Now

(T4) together with S

0

v* R implies that f(u; v) j S

0

2 E(u; v)g � f(u; v) j R 2 E(u; v)g,

and thus Trans(R) 2 R implies that (s; t) 2 R

I

.

It remains to show that I is a model of K. To this end, let (g

1

; : : : ; g

n

keyfor D) 2 K

and s; t 2 D

I

su
h that g

I

i

(s) = g

I

i

(t) for 1 � i � n. Sin
e the predi
ate 
onjun
tion

in (T13) 
ontains expli
it inequalities for all distin
t 
on
rete individuals, this im-

plies that

e

(s; g

i

) =

e

(t; g

i

) for 1 � i � n. (T10) implies fD; _:Dg \ L(s) 6= ; and

fD; _:Dg \ L(t) 6= ;. If _:D 2 L(s), then the 
laim yields s 2 ( _:D)

I


ontradi
ting

s 2 D

I

. Thus we obtain D 2 L(s), and, in a similar way, D 2 L(t). Finally, (T14)

implies that s = t, and thus I satis�es K. ❏
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4.2.3 A Tableau Algorithm for SHOQK(D)

Lemma 44 shows that, in order to de
ide satis�ability of SHOQK(D)-
on
epts w.r.t.

role and key boxes, we may use a (tableau) algorithm that tries to 
onstru
t a tableau

for the input. In the following, we will des
ribe su
h an algorithm in detail. As in the

previous se
tion, the algorithm works on 
ompletion systems. However, in the 
ase of

SHOQK(D), the 
ore 
omponent of 
ompletion systems is a 
ompletion forest rather

than a 
ompletion tree. The reason for this is that some 
ompletion rules remove nodes

from the 
ompletion system and in this way 
an dis
onne
t one tree into two subtrees.

De�nition 45 (Completion System). Let D be a SHOQK(D)-
on
ept in NNF, R a

role box, and K a path-free key box in NNF. For ea
h 
on
ept (> n R C) 2 
l(D;R;K)

and 1 � i � n, we reserve a 
on
ept name A

nRC

i

not appearing in 
l(D;R;K) and de�ne

an extended 
losure


l

+

(D;R;K) := 
l(D;R;K) [ fA

nR


1

; : : : ; A

nR


n

j (> n R C) 2 
l(D;R;K)g;

Let O

a

and O




be disjoint and 
ountably in�nite sets of abstra
t and 
on
rete nodes. A


ompletion forest for D, R, and K is a stru
ture F = (V

a

; V




; E;L) su
h that

� V

a

� O

a

, V




� O




,

� there is a node s

0

2 V

a

su
h that D 2 L(s

0

),

� L : S

a

! 2


l

+

(D;R;K)

maps ea
h abstra
t node to a subset of 
l

+

(D;R;K),

� ea
h edge (a; b) 2 E with a; b 2 V

a

is labeled with a non-empty set of role names

L(a; b) o

urring in D, R, or K, and

� ea
h edge (a; x) 2 E with a 2 V

a

and x 2 V




is labeled with a 
on
rete feature

L(a; x) o

urring in D, R, or K.

A 
ompletion system for D, R, and K is a stru
ture S = (F;P;�




;�) su
h that

� F = (V

a

; V




; E;L) is a 
ompletion forest for D, R, and K,

� P maps ea
h n-ary 
on
rete predi
ate o

urring in 
l(D;R;K) to a set of n-tuples

in V




,

� �




is an equivalen
e relation on V




, and

� � is a linear ordering on V

a

.

A node t 2 V

a

is 
alled an R-su

essor of a node s 2 V

a

if, for some R

0

with R

0

v* R, we

have R

0

2 L(s; t). A node x 2 V




is 
alled a g-su

essor of a node s 2 V

a

if L(s; x) = g.

Finally, we write s 6

:

= t if s and t are R-su

essors of the same node and there is some

A

nRC

i

2 L(s) and A

nRC

j

2 L(t) with i 6= j. �
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Some remarks are in order here. Firstly, in 
ontrast to the ALCOK(D) 
ase, the relation

� is no longer required to respe
t the level of a node. This is due to the fa
t that (a)

we have to enfor
e termination arti�
ially anyway, and this property of � is not used to

prove termination, and (b) the level of a node might 
hange anyway sin
e a node might

be
ome a root node be
ause some 
ompletion rules will remove edges.

Se
ondly, the relation �




will be returned by the 
on
rete domain solver, and is used

to 
ompute a relation �

a

whi
h is then used by the tableau algorithm. However, we do

not need to 
ompute the relation �




from �

a

sin
e, in 
ontrast to the ALCOK(D) 
ase,

all 
on
epts and key boxes are assumed to be path-free.

Thirdly, the new 
on
ept names A

nRC

i

are introdu
ed to ensure that su

essors of a

node x introdu
ed for some (> n R C) 2 L(x) will not be merged later|neither by the


ompletion rules, nor when we 
onstru
t a tableau. Intuitively, we 
onstru
t a �nite,


y
li
 tableau for a 
omplete and 
lash-free 
ompletion system, and we re-use nodes:

sometimes, instead of having an edge to an R-su

essor y of x, we will have an edge to

\a node z similar to y". Now, if a node z 
ould be \similar" to two R-su

essor y

1

, y

2

of

x, we might not have enough R-su

essors of x to satisfy a restri
tion (> n R C) 2 L(x).

Sin
e SHOQK(D) provides for transitive roles, we need some 
y
le-dete
tion me
ha-

nism in order to guarantee termination of our algorithm: roughly spoken, if we en
ounter

a node whi
h is \similar" to an already existing one, then this node does not need to be

further explored. Speaking in terms of [33, 10℄, we employ a me
hanism 
alled subset

blo
king.

De�nition 46 (Blo
ked). Let � be the re
exive 
losure of �. A node t 2 V

a

is blo
ked

by a node s 2 V

a

if L(t) � L(s), and s � s

0

, for all s

0

with L(t) � L(s

0

). �

Note that, unlike to what is done, e.g., in [33℄, the blo
king node is not ne
essarily an

an
estor of the blo
ked node, but 
an be anywhere in the forest. This modi�
ation is

used to design a NExpTime algorithm. Moreover, blo
ked nodes may have unblo
ked

su

essors.

To de
ide the satis�ability of an ALCOK(D)-
on
ept D w.r.t. a role box R and a

path-free key box K (where D and K are in NNF), the tableau algorithm is started with

the initial 
ompletion system

S

D

= (F

D

;P

;

; ;; ;); where

F

D

= (fs

0

g; ;; ;; fs

0

7! fDgg) and

P

;

maps ea
h P 2 �

D

o

urring in D and K to ;:

Then the algorithm repeatedly applies 
ompletion rules. Before the a
tual rules are

given, we introdu
e some new notions: we use S

F

(s; C) to denote the set

ft 2 S

a

j t is an S-su

essor of s in F and C 2 L(t)g:

For s; t 2 S

a

, we write s �

a

t if one of the following 
onditions is satis�ed:

� N 2 L(s) \ L(t) for some nominal N or

� (g

1

: : : ; g

n

keyfor C) 2 K, C 2 L(s)\L(t), there are x

i

; y

i

su
h that g

i

2 E(s; x

i

)\

E(t; y

i

) and x

i

�




y

i

for 1 � i � n.
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Intuitively, two abstra
t nodes related via the �

a

relation des
ribe the same individual

in a tableau and should thus have the same label. Note that �

a

might 
hange after

ea
h rule appli
ation. However, as mentioned above, we do not use the �

a

relation to


ompute a relation �




. Intuitively, we do not need �




sin
e, if s �

a

t, then we only

\keep" the one smaller w.r.t. � and hen
e do not 
are if both s and t have a g-su

essor

for a 
on
rete feature g.

We are now ready to formulate the 
ompletion rules, whi
h are given in Figure 11.

Some abbreviations are used in the formulation of the R6 and R9
 rules (written in

itali
s), whi
h have the following meaning:

� To remove an abstra
t node s and all its in
oming and outgoing edges, remove s

from V

a

and ea
h (s; t) and (t; s) from E for all t 2 V

a

[ V




.

� Adding a g-su

essor of an abstra
t node s means doing nothing if there exists a

g-su

essor x 2 V




of s and, otherwise, adding E(s; x) = g for some x 2 V




that

does not yet o

ur in the 
ompletion forest.

� To update the relation �




, the 
on
rete domain solver is asked to de
ide the sat-

is�ability of the D-
onjun
tion

^

P used inD;K

(x

1

;:::;x

n

)2P(P )

P (x

1

; : : : ; x

n

) ^

^

x�




y

x = y

and returns, in 
ase that this 
onjun
tion is satis�able, an \updated" 
on
rete

equivalen
e �




as de�ned in De�nition 29.

Some explanation of the rules is in order. The rules Rt, R6, R9
, and R
h are non-

deterministi
, i.e., their appli
ation has more than one possible out
ome. For the R9


rule, this is true due to the update operation performed on �




using the 
on
rete domain

reasoner: as dis
ussed at the end of Se
tion 4.1, 
omputing a 
on
rete equivalen
e for

a given D-
onjun
tion may result in a high degree of non-determinism. Please note

that, in 
ontrast to ALCOK(D), we now only need to 
all the 
on
rete domain in one

rule|and not after ea
h rule appli
ation.

Next, the R�

a

rule simply takes 
are that two similar nodes s �

a

b have the same

label, i.e., if s � t, then s will possibly blo
k t (if t is not blo
ked by other nodes), and

thus L(t) is added to L(s).

The R6 rule removes a surplus R-su

essor t of a node s with (6 n R C) 2 L(s).

Sin
e the subtree below s is not removed, t's su

essor are new, additional root nodes.

This behavior is the reason why we work on a 
ompletion forest. Moreover, no other

rule removes nodes or edges and would thus yield \new" root nodes.

As in the previous se
tion, the tableau algorithm stops applying rules if it �nds an

obvious 
ontradi
tion (a \
lash") or no more 
ompletion rules are appli
able.

De�nition 47 (Clash). Let S = (F;P;�




;�) be a 
ompletion system for D, R, and

K and F = (V

a

; V




; E;L). Then S is said to 
ontain a 
lash if one of the following


onditions applies:
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Ru if C

1

u C

2

2 L(s), s is not blo
ked, and fC

1

; C

2

g 6� L(s),

then L(s) := L(s) [ fC

1

; C

2

g

Rt if C

1

t C

2

2 L(s), s is not blo
ked, and fC

1

; C

2

g \ L(s) = ;,

then L(s) := L(s) [ fCg for some C 2 fC

1

; C

2

g

R9 if 9R:C 2 L(s), s is not blo
ked, and s has no R-su

essor t with C 2 L(t)

then 
reate a new node t su
h that t

0

� t for all t

0

2 S

a

and set E(s; t) := fRg and L(t) := fCg

R> if (> n S C) 2 L(s), s is not blo
ked, and there are no n S-su

essors

t

1

; : : : ; t

n

of s with C 2 L(t

i

) and t

i

6

:

= t

j

for 1 � i < j � n,

then 
reate n new nodes t

1

; : : : ; t

n

s.t. t

0

� t

i

for 1 � i � n and all t

0

2 S

a

,

and set E(s; t

i

) := fSg and L(t

i

) := fC;A

nSC

i

g for 1 � i � n

R6 if (6 n S C) 2 L(s), s is not blo
ked, s has n+ 1 S-su

essors t

0

; : : : ; t

n

with C 2 L(t

i

) for 0 � i � n,

then 
hoose i; j su
h that t

i

� t

j

, set L(t

i

) := L(t

i

) [ L(t

j

)

and remove t

j

and all its in
oming and outgoing edges

R9
 if 9g

1

; : : : ; g

n

:P 2 L(s), s is not blo
ked, and

there are no g

i

-su

essors x

i

with (x

1

; : : : ; x

n

) 2 P(P )

then add a g

i

-su

essor of s for ea
h 1 � i � n,

for y

i

the g

i

-su

essor of s, add (y

1

; : : : ; y

n

) to P(P ), and

update �




R8 if 8R:C 2 L(s), s is not blo
ked, and

there is an R-su

essor t of s with C =2 L(t),

then L(t) := L(t) [ fCg

R8

+

if 8S:C 2 L(s), s is not blo
ked, there is some R with

Trans(R) and R v* S, and an R-su

essor t of s with 8R:C =2 L(t),

then L(t) := L(t) [ f8R:Cg

R
h if s is an S-su

essor of s

0

and (6 n S C) 2 L(s

0

) or

s has g

i

-su

essors x

i

for all 1 � i � n and (g

1

; : : : g

n

keyfor C) 2 K and

s is not blo
ked and fC; _:Cg \ L(s) = ;,

then L(s) := L(s) [ fEg for some E 2 fC; _:Cg

R�

a

if s �

a

t, L(t) 6� L(s), s � t, and s is not blo
ked,

then set L(s) := L(s) [ L(t)

Figure 11: The 
ompletion rules for SHOQK(D).

(C1) for some 
on
ept name A 2 N

C

and some node s 2 V

a

, fA;:Ag � L(s);

(C2) the D-
onjun
tion

^

P used inD;K

(x

1

;:::;x

n

)2P(P )

P (x

1

; : : : ; x

n

) ^

^

x�




y

x = y
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is not satis�able;

(C3) s 6

:

= s for some s 2 V

a

;

(C4) for some s 2 V

a

and g 2 N


F

, we have g" 2 L(s) and s has a g-su

essor.

A 
ompletion system not 
ontaining a 
lash is 
alled 
lash-free. The 
ompletion system

is 
omplete if it 
ontains a 
lash or if none of the 
ompletion rules is appli
able. �

Due to the simpli
ity of the algorithm, we refrain from des
ribing it in pseudo-
ode

notation: the algorithm starts with the initial 
ompletion system and then repeatedly

applies the 
ompletion rules. If a 
lash is dete
ted, it returns unsatis�able. If a 
omplete

and 
lash-free 
ompletion system is found, then the algorithm returns satis�able. Note

that, sin
e some of the 
ompletion rules are non-deterministi
, the algorithm is also

non-deterministi
.

We are now ready for proving termination, soundness, and 
ompleteness of the

tableau algorithm, starting with termination. In the following, we use jD;R;Kj to

denote j 
l

+

(D;R;K)j. Re
all that this number is polynomial in the size of D, R, K.

Lemma 48 (Termination). When started with a SHOQK(D) 
on
ept D in NNF, a

role box R, and a path-free key box K in NNF, the tableau algorithm terminates.

Proof. Assume that there are D, R, and K su
h that the tableau algorithm does

not terminate. This means that there is an in�nite sequen
e S

0

; S

1

; : : : of 
ompletion

systems su
h that (a) S

0

is the initial 
ompletion system S

D

and (b) S

i+1

is the result

of applying a 
ompletion rule to S

i

. This is only possible if the R9 or the R> rules

are applied in�nitely often: it is easily seen that the rules Ru, Rt, R6, R9
, R8, R8

+

,

R
h, and R�

a


an only be applied �nitely often to 
ompletion systems whose set of

abstra
t nodes V

a

does not in
rease sin
e they either add 
on
epts into node labels

(whose size is bound), they add 
on
rete nodes (whose number is bound linearly by the

number of abstra
t nodes), or they remove abstra
t nodes from the tree. Hen
e there is

a sub-sequen
e S

i

1

; S

i

2

; : : : su
h that S

i

j

is the result of applying the R9 or the R> rule

to S

i

j

�1

. Let s

i

`

be the abstra
t node to whi
h the R9 or the R> rule was applied in

S

i

`

�1

. Now, sin
e s

`

� s

k

implies that s

`

was not generated after s

k

and the number of

su

essor nodes of a node is bound, we �nd a further sub-sequen
e S

j

1

; S

j

2

; : : : satisfying

s

j

k

� s

j

k+1

.

Let L

j

be the labeling fun
tion in S

j

. Sin
e ea
h abstra
t node is labeled with a subset

L

j

of 
l

+

(D;R;K), there are nodes s

j

k

� s

j

`

with k � ` and L

j

k

(s

j

k

) = L

j

`

(s

j

`

). Now

node labels 
an only in
rease and, if a node t is removed, its label is 
onjoined to the

label of a node

^

t with

^

t � t. Thus there is a node t in the 
ompletion system S

j

`

with

t � s

j

`

and L

j

`

(s

j

`

) � L

j

`

(t). By de�nition, s

j

`

is thus blo
ked in S

j

`

, 
ontradi
ting the

assumption that the R9 or the R> rule is applied to s

j

`

in S

j

`

. ❏

Lemma 49 (Soundness). If the expansion rules 
an be applied to a SHOQK(D)


on
ept D in NNF, a role box R, and a path-free key box K su
h that they yield a


omplete and 
lash-free 
ompletion forest, then D has a tableau w.r.t. R and K.
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Proof. Let T = ((V

a

; V




; E;L);P;�




;�) be a 
omplete and 
lash-free 
ompletion

system. Clash-freeness implies the existen
e of a solution Æ for the 
on
rete predi
ates

in T satisfying Æ(x) = Æ(y) i� x �




y a

ording to De�nition 29. From T and Æ, we

de�ne a �nite tableau T = (S

a

;S




;

^

E;

^

L;

^

P) as follows:

S

a

:= fs 2 V

a

j s o

urs in T and is not blo
kedg

S




:= fÆ(x) j (s; x) 2 E(g) for some s 2 S

a

and some gg

^

L(s) := L(s) \ 
l(D;R;K)

^

E(s; t) := fS j t is an S-su

essor of s or t blo
ks an S-su

essor t

0

of sg

e

(s; g) :=

�

Æ(x) if x is a g-su

essor of s

unde�ned if x has no g-su

essor

^

P := the restri
tion of P to S




:

It remains to show that T satis�es (T1){(T14), whi
h is basi
ally a 
onsequen
e of T

being 
lash-free and 
omplete.

� (T1) is satis�ed sin
e T does not 
ontain a 
lash (C1).

� (T2) is satis�ed sin
e the Ru rule 
annot be applied, and thus C

1

u C

2

2

^

L(s)

implies C

1

; C

2

2

^

L(s).

� (T3) is satis�ed sin
e the Rt rule 
annot be applied, and thus C

1

t C

2

2

^

L(s)

implies fC

1

; C

2

g \

^

L(s) 6= ;.

� For (T4), 
onsider s; t 2 S

a

with R 2

^

E(s; t) and R v* S. Then R 2

^

E(s; t) implies

that t is or blo
ks an R-su

essor of s. By de�nition of \su

essor", t is or blo
ks

an S-su

essor of s, and thus S 2

^

E(s; t).

� For (T5), let 8R:C 2

^

L(s) and R 2

^

E(s; t). If t is an R-su

essor of s, then s not

being blo
ked implies C 2 L(t) sin
e the R8 rule 
annot be applied. If t blo
ks an

R-su

essor t

0

of s, then s not being blo
ked and the fa
t that the R8 rule 
annot

be applied yields C 2 L(t

0

), and the blo
king 
ondition implies C 2 L(t).

In both 
ases, we thus have C 2

^

L(t).

� (T6) and (T7) are satis�ed for the same reasons as (T5) with R8 repla
ed with

R9 and R8

+

.

� For (T8), 
onsider s with (> n R C) 2

^

L(s). Hen
e (> n R C) 2 L(s) and


ompleteness of T implies the existen
e of R-su

essors t

1

; : : : ; t

n

of s with C 2

L(t

i

) and t

i

6

:

= t

j

for all i 6= j. The latter implies, for ea
h i 6= j, the existen
e of

A

nRC

k

i

2 L(t

i

) and A

nRC

k

j

2 L(t

j

) with k

i

6= k

j

. For (T8) to be satis�ed, it remains

to verify that

{ no t

i


an blo
k a t

j

: if this was the 
ase, the blo
king 
ondition would imply

that fA

nRC

k

i

; A

nRC

k

j

g � L(t

i

).

{ no t 
an blo
k both t

i

and t

j

with i 6= j: similarly, this implies that

fA

nRC

k

i

; A

nRC

k

j

g � L(t).
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In ea
h 
ase, we would have a 
lash (C3), in 
ontradi
tion to T being 
lash-free.

� For (T9), 
onsider s with (6 n R C) 2

^

L(s). Hen
e (6 n R C) 2 L(s) and, sin
e

the R6 rule 
annot be applied, there are at most n R-su

essors t

i

of s. Sin
e

ea
h t

i

is either not blo
ked or blo
ked by exa
tly one other node, there are at

most n u

i

2 S

a

with R 2

^

E(s; u

i

) and C 2

^

L(u

i

).

� For (T10), let (6 n R C) 2

^

L(s) and R 2

^

E(s; t). Hen
e (6 n R C) 2 L(s) and

t either is or blo
ks an R-su

essor of s. In the �rst 
ase, non-appli
ability of the

R
h rule implies that fC; _:Cg\L(t) 6= ;. In the se
ond 
ase, fC; _:Cg\L(t

0

) 6= ;

for t

0

the R-su

essor of s blo
ked by t, and thus the blo
king 
ondition yields

fC; _:Cg \ L(t) 6= ;. In both 
ases, this implies fC; _:Cg \

^

L(t) 6= ;.

Next, 
onsider (g

1

; : : : ; g

n

keyfor C) 2 K and s su
h that e(s; g

i

) is de�ned for

ea
h i. Hen
e s has a g

i

-su

essor for ea
h i, and thus s not being blo
ked and

the non-appli
ability of the R
h imply that fC; _:Cg \

^

L(t) 6= ;.

� For (T11), 
onsider N 2

^

L(s) \

^

L(t). By de�nition, N 2 L(s) \ L(t) and thus

s �

a

t. Moreover, totality of � implies that we 
an assume without loss of

generality that s � t or s = t. Thus non-appli
ability of the R�

a

rule implies that

L(t) � L(s), and thus t not being blo
ked implies s = t.

� (T12) is satis�ed sin
e the rule R9
 
annot be applied.

� For (T13), 
lash-freeness implies the satis�ability of

^

P used in D;K

^

(x

1

;:::;x

n

)2P(P )

P (x

1

; : : : ; x

n

): (*)

By 
hoi
e of Æ, Æ(x) = Æ(y) i� x �




y, and thus (T13) is satis�ed.

� For (T14), let (g

1

; : : : ; g

n

keyfor C) 2 K, C 2

^

L(s) \

^

L(t), and e(s; g

i

) = e(t; g

i

),

for all 1 � i � n. Thus C 2 L(s) \ L(t) and, by 
hoi
e of e and Æ, we have

x

i

�




y

i

for g

i

2 E(s; x

i

) \ E(t; y

i

). Hen
e s �

a

t. Without loss of generality, we

assume that s � t or s = t. Thus non-appli
ability of the R�

a

rule implies that

L(t) � L(s), and thus t not being blo
ked implies s = t.

� (T15) is satis�ed by de�nition of T and sin
e T does not 
ontain a 
lash (C4).

❏

Lemma 50 (Completeness). If a SHOQK(D)-
on
ept D in NNF has a tableau w.r.t.

R and K, then the expansion rules 
an be applied to D, R, and K su
h that they yield

a 
omplete and 
lash-free 
ompletion forest.
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Proof. Given a tableau T = (S

a

;S




;

^

L;

^

E; e;

^

P) for D w.r.t. R and K, we 
an steer

the non-deterministi
 rules Rt, R
h, and R�

a

in su
h a way that ea
h rule appli
ation

preserves 
lash-freeness. This together with termination from Lemma 48 �nishes the

proof.

Indu
tively with the generation of new nodes, we de�ne a mapping � from nodes of

the 
ompletion tree to individuals in the tableau and 
on
rete values in su
h a way that

� L(s) \ 
l(D;R;K) �

^

L(�(s)) for ea
h s 2 S

a

,

� if t is an R-su

essor of s, then R 2

^

E(�(s); �(t)),

� if x is a g-su

essor of s, then

e

(�(x); g) = �(x), and

� if s 6

:

= t, then �(s) 6= �(t).

A mapping satisfying these three 
onditions is 
alled 
orre
t in the following. Due to

(T1) and the �rst property, we do not en
ounter a 
lash (C1). The �rst and third

property together with (T12) and (T13) ensure that a 
lash (C2) does not o

ur. A


lash (C3) 
annot o

ur due to the last property. The �rst and the third property

together with (T15) ensure that a 
lash (C4) does not o

ur.

The total mapping � is indu
tively de�ned as follows: let Æ be a solution for the

equation in (T13). Choose a node ŝ

0

with D 2

^

L(ŝ

0

), and set �(s

0

) := ŝ

0

for s

0

the

root node of the 
ompletion tree. Obviously, � is 
orre
t. We will now show that ea
h


ompletion rule 
an be applied in su
h a way that � either is still 
orre
t or that � 
an

be extended to a 
orre
t mapping.

� An appli
ation of the rule Ru preserves 
orre
tness of � due to (T2).

� Due to (T3), the rule Rt 
an be applied su
h that 
orre
tness is preserved.

� If the rule R9 adds a new node t for 9R:C 2 L(s), then 
orre
tness implies 9R:C 2

^

L(�(s)), and thus (T6) implies the existen
e of some

^

t 2 S

a

with R 2 E(�(s);

^

t)

and C 2

^

L(

^

t). Thus extending � with �(t) :=

^

t obviously yields a 
orre
t mapping.

� If the rule R> adds n nodes t

i

for (> n R C) 2 L(s), then 
orre
tness implies

(> n R C) 2

^

L(�(s)), and thus (T8) implies the existen
e of

^

t

1

; : : : ;

^

t

n

2

^

S

a

with

^

t

i

6=

^

t

j

for i 6= j, R 2 E(�(s);

^

t

i

), and C 2

^

L(

^

t

i

). Thus extending � with �(t

i

) :=

^

t

i

obviously yields a 
orre
t mapping.

� Assume that the R6 rule is appli
able to a node s with (6 n R C) 2 L(s)

and more than n R-su

essors t

i

with C 2 L(t

i

). Then 
orre
tness implies that

(6 n R C) 2

^

L(�(s)), R 2

^

E(�(s); �(t

i

)), and C 2

^

L(t

i

). Thus, by (T9), there

are i 6= j with �(t

i

) = �(t

j

). Again, 
orre
tness implies that not t

i

6

:

= t

j

and,

without loss of generality, we 
an assume that t

i

� t

j

. Hen
e applying the rule

and thereby merging L(t

j

) into L(t

i

) preserves 
orre
tness.

� For the rule R9
, � 
an be extended in a similar way: if a new g

i

-su

essor x

i

of

s is added, then extending � with �(x

i

) :=

ê

(�(s); g

i

) yields a 
orre
t �.
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� For the R8 rule, � does not need to be extended, and (T5), (T4), and the

de�nition of R-su

essors imply that 
orre
tness is preserved.

� The R8

+

rule is similar, with the only di�eren
e that (T7) takes the pla
e of

(T5).

� Due to (T10), the rule R
h 
an be applied without violating 
orre
tness.

� For R�

a

, we 
onsider two reasons for R�

a

to be appli
able:

{ N 2 L(s) \ L(t). Then 
orre
tness of � and (T11) imply that �(s) = �(t).

{ (g

1

; : : : ; g

n

keyfor C) 2 K, C 2 L(s) \ L(t), and g

i

2 E(s; x

i

) \ E(t; y

i

) and

x

i

�




y

i

for 1 � i � n. Then 
orre
tness implies that

ê

(�(s); g

i

) =

ê

(�(t); g

i

),

and thus (T14) together with the �rst property of 
orre
tness imply that

�(s) = �(t).

In both 
ases, applying R�

a

to s and t preserves 
orre
tness.

❏

As an immediate 
onsequen
e of Lemmas 44, 48, 49, and 50, the tableau algorithm

always terminates and answers \D is satis�able w.r.t. R and K" if and only if the input


on
ept D is satis�able w.r.t. the input role box R and the input key box K. Sin
e


on
ept satis�ability w.r.t. TBoxes 
an be redu
ed to 
on
ept satis�ability without

TBoxes, we obtain the following result:

Theorem 51. The tableau algorithm de
ides satis�ability of SHOQK(D) 
on
epts

w.r.t. TBoxes, role boxes, and path-free key boxes.

Sin
e 
on
ept subsumption 
an be redu
ed to 
on
ept (un)satis�ability, the algorithm


an also be used to de
ide subsumption of SHOQK(D)-
on
epts w.r.t. TBoxes, role

boxes, and path-free key boxes.

It is not hard to see that the proof of Lemma 50 together with Lemmas 44 and 48

yield a bounded model property for SHOQK(D): if a SHOQK(D)-
on
ept D is satis�-

able w.r.t. a role box R and a path-free key box K, Lemma 50 implies that the tableau

algorithm 
onstru
ts a 
omplete and 
lash-free 
ompletion forest for D, R, and K. By

the de�nition of blo
king, the number of abstra
t nodes in a 
ompletion forest that are

not blo
ked is bounded by 2

m

, where m = # 
l

+

(D;R;K) is polynomial in the size of

C, R, and K: if s 6= t 2 V

a

are abstra
t nodes in a 
ompletion forest and L(s) = L(t),

then either s blo
ks t, t blo
ks s, or they are both blo
ked by another node u. Moreover,

it is easily seen that the number of 
on
rete su

essors per abstra
t node is bounded

by the number of 
on
rete features in C, R, and K. Now, in the proof of Lemma 50,

the abstra
t nodes in a tableau 
onstru
ted from a 
omplete and 
lash-free 
ompletion

forest 
oin
ide with the nodes that are not blo
ked in the 
ompletion forest. Finally, in

the proof of Lemma 44, the interpretation domain of a model 
onstru
ted from a tableau


oin
ides with the abstra
t nodes in the tableau. Summing up, a SHOQK(D)-
on
ept

that is satis�able w.r.t. R and K has a model of size j�

I

j � 2

m

for m = # 
l

+

(D;R;K).

Thus \guessing" an interpretation with at most 2

m

nodes and then 
he
king whether

it is a model of D, R, and K is an alternative algorithm for de
iding satis�ability of
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SHOQ(D)-
on
epts w.r.t. role boxes and key boxes. Sin
e this algorithm 
an 
learly be

implemented in NExpTime, Theorem 19 implies the following tight 
omplexity bound.

Theorem 52. Satis�ability of SHOQK(D) 
on
epts w.r.t. TBoxes, role boxes, and

path-free key boxes is NExpTime-
omplete.

By the standard redu
tion of 
on
ept subsumption to 
on
ept (un)satis�ability and

vi
e versa, we obtain 
o-NExpTime-
ompleteness for SHOQK(D)-
on
ept subsump-

tion w.r.t. TBoxes, role boxes, and path-free key boxes.

5 Con
lusion

In this paper, we have identi�ed key 
onstraints as an interesting extension of des
ription

logi
s with 
on
rete domains. Starting from this observation, we introdu
ed a number

of natural des
ription logi
s and provided a 
omprehensive analysis of the de
idability

and 
omplexity of reasoning. The main observation of our investigations is that key

boxes may have dramati
 
onsequen
es on the 
omplexity of reasoning: for example, the

PSpa
e-
omplete DL ALC(D) be
omes NExpTime-
omplete if extended with Boolean

key boxes and unde
idable if extended with general key boxes. We present various

properties of 
on
rete domains and key boxes whi
h imply de
idability (NExpTime-


ompleteness) of ALC(D) and SHOQ(D) w.r.t. key boxes satisfying this property.

We sele
ted ALC(D) and SHOQ(D) as the basis for our analysis sin
e, in our

opinion, these are the most fundamental des
ription logi
s with 
on
rete domains. Going

one step further, it would be interesting to 
ombine key boxes with other extensions

of 
on
rete domains, su
h as the ones presented in [38℄ and [39℄. To name only one

possibility, the extension of both ALCOK(D) and SHOQ(D) with inverse roles seems

to be a natural idea. Note that inverse roles intera
t with several of the available means

of expressivity: while ALC with inverse roles is PSpa
e 
omplete [32℄, ALCO with

inverse roles is ExpTime-
omplete [1℄ and ALC(D) with inverse roles even NExpTime-


omplete [39℄.

Other options for future resear
h are more 
losely related to the material presented

in this paper. For example, is SHOQK(D)-
on
ept satis�ability still de
idable if we

drop the requirement of key boxes to be path-free? Moreover, we do not know the time


omplexity of the presented tableau algorithm for SHOQK(D)-
on
ept satis�ability.

If it runs in (non-deterministi
) exponential time, it would dire
tly yield Theorem 52

rather than via a bounded model property.
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