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Abstra
t

Cy
li
 de�nitions in des
ription logi
s have until now been investigated

only for des
ription logi
s allowing for value restri
tions. Even for the

most basi
 language FL

0

, whi
h allows for 
onjun
tion and value restri
-

tions only, de
iding subsumption in the presen
e of terminologi
al 
y
les

is a PSPACE-
omplete problem. This report investigates subsumption in

the presen
e of terminologi
al 
y
les for the language EL, whi
h allows

for 
onjun
tion and existential restri
tions. In 
ontrast to the results for

FL

0

, subsumption in EL remains polynomial, independent of whether we

use least �xpoint semanti
s, greatest �xpoint semanti
s, or des
riptive se-

manti
s. These results are shown via a 
hara
terization of subsumption

through the existen
e of 
ertain simulation relations between nodes of the

des
ription graph asso
iated with a given 
y
li
 terminology.

1 Introdu
tion

The �rst thorough investigation of 
y
li
 terminologies in des
ription logi
s (DL)

is due to Nebel [22℄, who introdu
ed three di�erent semanti
s for su
h terminolo-

gies: least �xpoint (lfp) semanti
s, whi
h 
onsiders only the models that interpret

the de�ned 
on
epts as small as possible; greatest �xpoint (gfp) semanti
s, whi
h


onsiders only the models that interpret the de�ned 
on
epts as large as possible;

and des
riptive semanti
s, whi
h 
onsiders all models.

In [1, 2℄, subsumption w.r.t. 
y
li
 terminologies in the small DL FL

0

, whi
h al-

lows for 
onjun
tion and value restri
tions only, was 
hara
terized with the help

�
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of �nite automata. This 
hara
terization provided PSPACE de
ision pro
edures

for subsumption in FL

0

with 
y
li
 terminologies for the three types of seman-

ti
s introdu
ed by Nebel. In addition, it was shown in [1, 2℄ that subsumption

is PSPACE-hard both for gfp- and lfp-semanti
s. For des
riptive semanti
s, the

exa
t 
omplexity of the subsumption problem is still open. However, Nebel [21℄

showed that, even for a
y
li
 terminologies (where the three types of seman-

ti
s agree), subsumption in FL

0

is at least 
oNP-hard. The results for 
y
li


FL

0

-terminologies where extended by K�usters [14℄ to ALN , whi
h extends FL

0

by atomi
 negation and number restri
tions. For all three types of semanti
s,

subsumption w.r.t. 
y
li
 ALN -terminologies is PSPACE-
omplete.

S
hild's observation [23℄ that the DL ALC (whi
h extends FL

0

by full negation)

is a synta
ti
 variant of the multi-modal logi
 K opened a way for treating 
y
li


terminologies and more general re
ursive de�nitions in more expressive languages

like ALC and extensions thereof by a redu
tion to the modal mu-
al
ulus [24, 7℄.

In this setting, one 
an use a mix of the three types of semanti
s introdu
ed

by Nebel. However, the 
omplexity of the subsumption problem is EXPTIME-


omplete.

In spite of these very general results for 
y
li
 de�nitions in expressive lan-

guages, there are still good reasons to look at 
y
li
 terminologies in less ex-

pressive (in parti
ular sub-Boolean) des
ription logi
s. One reason is, of 
ourse,

the lower 
omplexity of the subsumption problem (for FL

0

and ALN PSPACE

rather than EXPTIME). In addition, the growing interest in non-standard infer-

en
es like 
omputing the least 
ommon subsumer and the most spe
i�
 
on
ept

[5, 6, 3, 4, 16, 15, 18, 17℄ has also led to a renewed interest in sub-Boolean des
rip-

tion logi
s sin
e some of these inferen
es (like the most 
ommon subsumer) make

sense only if not all Boolean operators are present. In this 
ontext, 
y
li
 de�ni-

tions 
ome into play sin
e the most spe
i�
 
on
ept of a given ABox individual

need not exit in languages allowing for number restri
tions or existential restri
-

tions. For ALN it was shown in [3℄ that the most spe
i�
 
on
ept always exists

if one allows for 
y
li
 
on
ept de�nitions with gfp-semanti
s. For languages with

existential restri
tions, another solution to the non-existen
e of most spe
i�
 
on-


epts was proposed by K�usters and Molitor [17℄. They 
onsidered the languages

EL (whi
h allows for 
onjun
tion and existential restri
tions) and ALE (whi
h

additionally allows for atomi
 negation and value restri
tions) and showed how

the most spe
i�
 
on
ept 
an be approximated there. One reason for 
hoosing

an approximation approa
h rather than an exa
t 
hara
terization of the most

spe
i�
 
on
ept using 
y
li
 de�nitions was that the impa
t of 
y
li
 de�nitions

in des
ription logi
s with existential restri
tions was largely unexplored.

This report tries to over
ome this de�
it. It 
onsiders 
y
li
 terminologies in EL

w.r.t. the three types of semanti
s introdu
ed by Nebel, and shows that the sub-

sumption problem 
an be de
ided in polynomial time in all three 
ases. This is

in stark 
ontrast to the 
ase of FL

0

, where adding 
y
li
 terminologies in
reases
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the 
omplexity of subsumption from polynomial (for 
on
ept des
riptions) to

PSPACE. The main tool used to show these results is a 
hara
terization of sub-

sumption through the existen
e of so-
alled simulation relations. There is an

interesting 
onne
tion between this 
hara
terization and the 
hara
terization of

subsumption between EL-
on
ept des
riptions given in [4℄. There it was shown

that subsumption 
orresponds to the existen
e of a homomorphism between the

des
ription trees (basi
ally the syntax trees) of the des
riptions. This showed

that subsumption between EL-
on
ept des
riptions is de
idable in polynomial

time sin
e the existen
e of a homomorphism between trees is a polynomial time

problem. Intuitively, if one goes from 
on
ept des
riptions to 
y
li
 terminolo-

gies, then one obtains a des
ription graph rather than a tree. Thus, an obvious


onje
ture would be that subsumption in EL with 
y
li
 terminologies 
an be


hara
terized through the existen
e of a homomorphism between the 
orrespond-

ing des
ription graphs. Fortunately, this 
onje
ture is not true. In fa
t, the

existen
e of a homomorphism between graphs is an NP-
omplete problem [9℄

whereas the existen
e of a simulation is a polynomial time problem [12℄. It is

only for trees that the existen
e of a simulation implies the existen
e of a homo-

morphism. Thus, the 
hara
terization of subsumption through the existen
e of

a simulation appears to be the deeper reason why subsumption of EL-
on
ept

des
riptions is polynomial.

In the next se
tion we will introdu
e the DL EL as well as 
y
li
 terminologies

and the three types of semanti
s for these terminologies. Then we will show in

Se
tion 3 how su
h terminologies 
an be translated into des
ription graphs. In

this se
tion, we will also de�ne the notion of a simulation between nodes of a

des
ription graph, and prove some useful properties of simulations. The next

three se
tions are then devoted to the 
hara
terization of subsumption in EL

w.r.t. gfp, lfp, and des
riptive semanti
s, respe
tively.

2 Cy
li
 terminologies in the DL EL

Con
ept des
riptions are indu
tively de�ned with the help of a set of 
onstru
-

tors, starting with a set N

C

of 
on
ept names and a set N

R

of role names. The


onstru
tors determine the expressive power of the DL. In this report, we restri
t

the attention to the DL EL, whose 
on
ept des
riptions are formed using the


onstru
tors top-
on
ept (>), 
onjun
tion (C u D), and existential restri
tion

(9r:C). The semanti
s of EL-
on
ept des
riptions is de�ned in terms of an in-

terpretation I = (�

I

; �

I

). The domain �

I

of I is a non-empty set of individuals

and the interpretation fun
tion �

I

maps ea
h 
on
ept name A 2 N

C

to a subset

A

I

of �

I

and ea
h role r 2 N

R

to a binary relation r

I

on �

I

. The extension of

�

I

to arbitrary 
on
ept des
riptions is indu
tively de�ned, as shown in the third


olumn of Table 1.
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name of 
onstru
tor Syntax Semanti
s


on
ept name A 2 N

C

A A

I

� �

I

role name r 2 N

R

r r

I

� �

I

��

I

top-
on
ept > �

I


onjun
tion C uD C

I

\D

I

existential restri
tion 9r:C fx 2 �

I

j 9y : (x; y) 2 r

I

^ y 2 C

I

g


on
ept de�nition A � D A

I

= D

I

Table 1: Syntax and semanti
s of EL-
on
ept des
riptions and TBox de�nitions.

A terminology (or TBox for short) is a �nite set of 
on
ept de�nitions of the form

A � D, where A is a 
on
ept name and D a 
on
ept des
ription. In addition,

we require that TBoxes do not 
ontain multiple de�nitions, i.e., there 
annot

be two distin
t 
on
ept des
riptions D

1

and D

2

su
h that both A � D

1

and

A � D

2

belongs to the TBox. Con
ept names o

urring on the left-hand side of

a de�nition are 
alled de�ned 
on
epts. All other 
on
ept names o

urring in the

TBox are 
alled primitive 
on
epts. Note that we allow for 
y
li
 dependen
ies

between the de�ned 
on
epts, i.e., the de�nition of A may refer (dire
tly or

indire
tly) to A itself. An interpretation I is a model of the TBox T i� it

satis�es all its 
on
ept de�nitions, i.e., A

I

= D

I

for all de�nitions A � D in T .

The semanti
s of (possibly 
y
li
) EL-TBoxes we have just de�ned is 
alled de-

s
riptive semanti
 by Nebel [22℄. For some appli
ations, it is more appropriate

to interpret 
y
li
 
on
ept de�nitions with the help of an appropriate �xpoint

semanti
s. Before de�ning least and greatest �xpoint semanti
s formally, let us

illustrate their e�e
t on an example.

Example 1 Assume that our interpretations are graphs where we have nodes

(elements of the 
on
ept name Node) and edges (represented by the role edge),

and we want to de�ne the 
on
ept Inode of all nodes lying on an in�nite (possibly


y
li
) path of the graph. The following is a possible de�nition of Inode:

Inode � Node u 9edge:Inode:

Now 
onsider the following interpretation of the primitive 
on
epts and roles:

�

J

:= fm

0

; m

1

; m

2

; : : :g [ fn

0

g;

Node

J

:= �

I

;

edge

J

:= f(m

i

; m

i+1

) j i � 0g [ f(n

0

; n

0

)g:

Where M := fm

0

; m

1

; m

2

; : : :g and N := fn

0

g, there are four possible ways of

extending this interpretation of the primitive 
on
epts and roles to a model of

the TBox 
onsisting of the above 
on
ept de�nition: Inode 
an be interpreted by

M [N , M , N , or ;. All these models are admissible w.r.t. des
riptive semanti
s,
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whereas the �rst is the gfp-model and the last is the lfp-model of the TBox.

Obviously, only the gfp-model 
aptures the intuition underlying the de�nition

(namely, nodes lying on an in�nite path) 
orre
tly.

It should be noted, however, that in other 
ases des
riptive semanti
s appears to

be more appropriate. For example, 
onsider the de�nitions

Tiger � Animal u 9parent:Tiger and Lion � Animal u 9parent:Lion:

With respe
t to gfp-semanti
s, the de�ned 
on
epts Tiger and Lionmust always be

interpreted as the same set whereas this is not the 
ase for des
riptive semanti
s.

1

Before we 
an de�ne lfp- and gfp-semanti
s formally, we must introdu
e some no-

tation. Let T be an EL-TBox 
ontaining the roles N

role

, the primitive 
on
epts

N

prim

, and the de�ned 
on
epts N

def

:= fA

1

; : : : ; A

k

g. A primitive interpreta-

tions J for T is given by a domain �

J

, an interpretation of the roles r 2 N

role

by binary relations r

J

on �

J

, and an interpretation of the primitive 
on
epts in

P 2 N

prim

by subsets P

J

of �

J

. Obviously, a primitive interpretation di�ers

from an interpretation in that it does not interpret the de�ned 
on
epts in N

def

.

We say that the interpretation I is based on the primitive interpretation J i�

it has the same domain as J and 
oin
ides with J on N

role

and N

prim

. For a

�xed primitive interpretation J , the interpretations I based on it are uniquely

determined by the tuple (A

I

1

; : : : ; A

I

k

) of the interpretations of the de�ned names

in N

def

. We de�ne

Int(J ) := fI j I is an interpretation based on J g:

Interpretations based on J 
an be 
ompared by the following ordering, whi
h

realizes a pairwise in
lusion test between the respe
tive interpretations of the

de�ned names: if I

1

; I

2

2 Int(J ), then

I

1

�

J

I

2

i� A

I

1

i

� A

I

2

i

for all i; 1 � i � k:

It is easy to see that �

J

is a 
omplete latti
e on Int(J ), i.e., every subset of

Int(J ) has a least upper bound (lub) and a greatest lower bound (glb). Thus,

Tarski's �xpoint theorem [25, 19℄ applies to all monotoni
 fun
tions from Int(J )

to Int(J ). This theorem states the following: if O: Int(J )! Int(J ) is a fun
tion

su
h that I

1

�

J

I

2

implies O(I

1

) �

J

O(I

2

) (monotoni
ity), then O has a �xpoint,

i.e., there is an I in Int(J ) su
h that O(I) = I. To be more pre
ise, O has also

a least �xpoint (i.e., a �xpoint smaller w.r.t. �

J

than all other �xpoints) and a

greatest �xpoint (i.e., a �xpoint larger w.r.t. �

J

than all other �xpoints).

De�nition 2 The TBox T := fA

1

� D

1

; : : : ; A

k

� D

k

g indu
es the following

fun
tion O

T ;J

on Int(J ): O

T ;J

(I

1

) = I

2

i� A

I

2

i

= D

I

1

i

holds for all i; 1 � i � k.

1

This example is similar to the \humans and horses" example used by Nebel [22℄ to illustrate

the di�eren
e between des
riptive semanti
s and gfp-semanti
s in ALN .
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Monotoni
ity of this fun
tion is an immediate 
onsequen
e of the following lemma,

whi
h 
an be proved by indu
tion on the stru
ture of EL-
on
ept des
riptions.

Lemma 3 Let D be an EL-
on
ept des
ription and I

1

; I

2

interpretations based

on the primitive interpretation J . Then I

1

�

J

I

2

implies D

I

1

� D

I

2

.

Consequently, O

T ;J

has both a least and a greatest �xpoint, and possibly other

�xpoints in-between (see Example 1). The following proposition is an immediate


onsequen
e of the de�nition of O

T ;J

.

Proposition 4 Let I be an interpretation based on the primitive interpretation

J . Then I is a �xpoint of O

T ;J

i� I is a model of T .

This shows that any primitive interpretation J 
an be extended to a model of

T . In parti
ular, there is always a greatest and a least model of T extending J .

De�nition 5 Let T be an EL-TBox. The model I of T is 
alled gfp-model (lfp-

model) of T i� there is a primitive interpretation J su
h that I 2 Int(J ) is the

greatest (least) �xpoint of O

T ;J

. Greatest (least) �xpoint semanti
s 
onsiders

only gfp-models (lfp-models) as admissible models.

We are now ready to de�ne subsumption w.r.t. the three di�erent types of se-

manti
s introdu
ed above.

De�nition 6 Let T be an EL-TBox and A;B be de�ned names

2

o

urring in

T . Then,

� A is subsumed by B w.r.t. des
riptive semanti
s (A v

T

B) i� A

I

� B

I

holds for all models I of T .

� A is subsumed by B w.r.t. gfp-semanti
s (A v

gfp;T

B) i� A

I

� B

I

holds

for all gfp-models I of T .

� A is subsumed by B w.r.t. lfp-semanti
s (A v

lfp;T

B) i� A

I

� B

I

holds for

all lfp-models I of T .

The main goal of this report is to show that all three subsumption problems

are de
idable in polynomial time. To be able to do that, we need some more

information on how least and greatest �xpoints 
an be 
onstru
ted. If the fun
tion

2

Obviously, we 
an restri
t the attention to subsumption between de�ned 
on
epts sin
e sub-

sumption between arbitrary 
on
ept des
riptions 
an be redu
ed to this problem by introdu
ing

de�nitions for the des
riptions.
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is not only monotoni
, but also downward (upward) 
ontinuous, then the greatest

(least) �xpoint 
an be 
onstru
ted by a simple !-iteration. Otherwise, we 
an

still get the �xpoints through an iteration pro
ess, but this pro
ess may need

larger ordinals than ! (see [19, 2℄ for a more detailed des
ription).

Given an in
reasing 
hain I

0

�

J

I

1

�

J

I

2

�

J

: : : of interpretations based on J ,

its least upper bound (lub) is the interpretation I based on J su
h A

I

i

=

S

j�0

A

I

j

i

holds for all i; 1 � i � k. The fun
tion O: Int(J )! Int(J ) is upward 
ontinuous

i�

O(lub(fI

j

j j � 0g)) = lub(fO(I

j

) j j � 0g):

A

ordingly, the greatest lower bound (glb) of the de
reasing 
hain I

0

�

J

I

1

�

J

I

2

�

J

: : : is the interpretation I based on J su
h A

I

i

=

T

j�0

A

I

j

i

holds for all

i; 1 � i � k. The fun
tion O: Int(J )! Int(J ) is downward 
ontinuous i�

O(glb(fI

j

j j � 0g)) = glb(fO(I

j

) j j � 0g):

Proposition 7 Let T be an EL-TBox and J a primitive interpretation. Then

O

T ;J

is upward 
ontinuous, but not ne
essarily downward 
ontinuous.

Proof. (1) Let I

0

�

J

I

1

�

J

I

2

�

J

: : : be an in
reasing 
hain in Int(J ), and let I

be its least upper bound. Upward 
ontinuity of O

T ;J

is an immediate 
onsequen
e

of the fa
t that

D

I

=

[

j�0

D

I

j

holds for all EL-
on
ept des
riptions D. This 
an in turn easily be shown by

indu
tion on the stru
ture of EL-
on
ept des
riptions.

(2) Consider the TBox T := fA � 9r:Ag, and the primitive interpretation J

with

� �

J

:= fa

0

g [ fa

i;j

j 1 � j � ig;

� r

J

:= f(a

0

; a

i;1

) j i � 1g [ f(a

i;j

; a

i;j+1

) j 1 � j < ig.

If we 
onsider r

J

as the edges of a graph with nodes �

J

, then this graph is a

tree with root a

0

, whi
h is in�nitely bran
hing. All other nodes have at most one

su

essor node. The root is the origin of in�nitely many paths, one of length 1,

one of length 2, et
. The interpretations I

�

(� � 0) based on J are now de�ned

as follows:

� A

I

�

:= fa

0

g [ fa

i;j

j i� j � �g.
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It is easy to see that I

0

�

J

I

1

�

J

I

2

�

J

: : : and that O

T ;J

(I

�

) = I

�+1

.

Consequently, I := glb(fO

T ;J

(I

�

) j � � 0g) = glb(fI

�

j � � 1g). In parti
ular,

sin
e a

0

2 A

I

�

for all � � 1, this implies a

0

2 A

I

.

On the other hand, let I

0

:= glb(fI

�

j � � 0g) and I

00

:= O

T ;J

(I

0

). Then

A

I

0

= fa

0

g, and thus A

I

00

= ; 6= A

I

.

The least and the greatest �xpoint ofO

T ;J


an be obtained by iterated appli
ation

of O

T ;J

, respe
tively starting with the least and the greatest interpretation based

on J .

De�nition 8 Let T be an EL-TBox, J a primitive interpretation, and I

top

the

greatest and I

bot

the least interpretation based on J , i.e., A

I

top

i

= �

J

and A

I

bot

i

=

; for all i; 1 � i � k. Then we de�ne for every ordinal �:

� I

"�

:= I

bot

and I

#�

:= I

top

if � = 0;

� I

"�+1

:= O

T ;J

(I

"�

) and I

#�+1

:= O

T ;J

(I

#�

);

� I

"�

:= lub(fI

"�

j � < �g and I

#�

:= glb(fI

#�

j � < �g

if � is a limit ordinal.

As usual, let ! denote the �rst in�nite ordinal (i.e., the order type of the non-

negative integers). Sin
e O

T ;J

is upward 
ontinuous, Tarski's �xpoint theorem

says that I

"!

is the least �xpoint of O

T ;J

. Sin
e O

T ;J

need not be downward


ontinuous, I

#!

need not be a �xpoint of O

T ;J

. However, Tarski's �xpoint theo-

rem says that there exists an ordinal � su
h that I

#�

is the greatest �xpoint of

O

T ;J

.

In Se
tion 6 we will also 
onsider models of T that are the greatest models below

a given interpretation I

0

.

De�nition 9 Let T be an EL-TBox, J a primitive interpretation, and I

0

an

interpretation based on J . The model I of T is 
alled I

0

-model of T i� it is

based on J and satis�es I �

J

I

0

. The greatest I

0

-model of T (if it exists) is


alled I

0

-gfp-model of T .

If I

0

is itself a model of T , then it is also the I

0

-gfp-model of T . The following

des
ribes a more general suÆ
ient 
ondition for the greatest I

0

-model of T to

exist.

Proposition 10 If O

T ;J

(I

0

) �

J

I

0

, then T has an I

0

-gfp-model based on J .

8



Proof. If I 2 Int(J ) is su
h that I �

J

I

0

, then the monotoni
ity of O

T ;J

implies

that O

T ;J

(I) �

J

O

T ;J

(I

0

) �

J

I

0

. Consequently, O

T ;J

is also an operator on

fI j I �

J

I

0

g. Sin
e it is monotoni
, it has a greatest �xpoint in this set as well,

whi
h is obviously the I

0

-gfp-model of T .

Sin
e I

0

is the greatest element of the set fI j I �

J

I

0

g, the proof of the propo-

sition shows that the I

0

-gfp-model of T 
an be obtained by iterated appli
ation

of the operator O

T ;J

, starting with I

0

.

Corollary 11 Let O

T ;J

(I

0

) �

J

I

0

. We de�ne I

#0

0

:= I

0

, I

#�+1

0

:= O

T ;J

(I

#�

0

),

and I

#�

0

:= glb(fI

#�

0

j � < �g if � is a limit ordinal. Then there exists an ordinal

� su
h that I

#�

0

is the I

0

-gfp-model of T .

3 Des
ription graphs and simulations

In this se
tion, we will show that EL-TBoxes as well as primitive interpretations


an be represented as des
ription graphs. Then, we will introdu
e the notion of a

simulation between nodes of a des
ription graph, and show some useful properties

of simulations.

3.1 Normalized EL-TBoxes

Before we 
an translate EL-TBoxes into des
ription graphs, we must normalize

the TBoxes. In the following, let T be an EL-TBox, N

def

the de�ned 
on
epts

of T , N

prim

the primitive 
on
epts of T , and N

role

the roles of T .

We say that the EL-TBox T is normalized i� A � D 2 T implies that D is of

the form

P

1

u : : : u P

m

u 9r

1

:B

1

u : : : u 9r

`

:B

`

;

for m; ` � 0, P

1

; : : : ; P

m

2 N

prim

, r

1

; : : : ; r

`

2 N

role

, and B

1

; : : : ; B

`

2 N

def

. If

m = ` = 0, then D = >.

First, we illustrate this normalization pro
ess by a typi
al example.

Example 12 Consider the EL-TBox T 
onsisting of the following 
on
ept de�-

nitions:

A

1

� P

1

u A

2

u 9r

1

:9r

2

:A

3

;

A

2

� P

2

u A

3

u 9r

2

:9r

1

:A

1

;

A

3

� P

3

u A

2

u 9r

1

:(P

1

u P

2

):

9



By introdu
ing auxiliary de�nitions, we obtain the new TBox T

0

:

A

1

� P

1

u A

2

u 9r

1

:B

1

;

B

1

� 9r

2

:A

3

;

A

2

� P

2

u A

3

u 9r

2

:B

2

;

B

2

� 9r

1

:A

1

;

A

3

� P

3

u A

2

u 9r

1

:B

3

;

B

3

� P

1

u P

2

:

This TBox is not yet normalized sin
e the de�nitions of A

1

, A

2

and A

3


ontain

de�ned 
on
epts in their top-level 
onjun
tion.

Let us �rst 
on
entrate on the de�nitions of A

2

and A

3

. The o

urren
e of A

3

in

the top-level 
onjun
tion of the de�nition of A

2

shows that A

2

is subsumed by

A

3

, and the o

urren
e of A

2

in the top-level 
onjun
tion of the de�nition of A

3

shows that A

3

is subsumed by A

2

. Thus, the 
on
epts A

2

and A

3

are equivalent

(i.e., are interpreted by the same set in all models of the TBox). In addition

A

2

(and the equivalent 
on
ept A

3

) is subsumed by P

2

u P

3

u 9r

2

:B

2

u 9r

1

:B

3

.

Thus, we 
an repla
e every o

urren
e of A

3

in T

0

by A

2

, and the de�nition of

A

2

by the in
lusion 
onstraint A

2

v P

2

u P

3

u 9r

2

:B

2

u 9r

1

:B

3

, with the obvious

semanti
s that the interpretation of A

2

must be 
ontained in the interpretation

of the 
on
ept des
ription on the right-hand side:

A

1

� P

1

u A

2

u 9r

1

:B

1

;

B

1

� 9r

2

:A

2

;

A

2

v P

2

u P

3

u 9r

2

:B

2

u 9r

1

:B

3

;

B

2

� 9r

1

:A

1

;

B

3

� P

1

u P

2

:

In order to transform this ba
k into a TBox, we must get rid of the in
lusion


onstraint. How to do this depends on the semanti
s used for 
y
li
 de�nitions.

If we use des
riptive semanti
s, then we 
an employ Nebel's approa
h [20℄ to turn

in
lusion statements into de�nitions: we introdu
e a new primitive 
on
ept

�

A

2

and repla
e A

2

v P

2

u P

3

u 9r

2

:B

2

u 9r

1

:B

3

by the de�nition

A

2

�

�

A

2

u P

2

u P

3

u 9r

2

:B

2

u 9r

1

:B

3

:

For �xpoint semanti
s, this approa
h 
annot be employed. The reason is that the

interpretation of the primitive 
on
ept

�

A

2

is �xed by the primitive interpretation,

and thus 
annot be maximized or minimized.

If we use gfp-semanti
s, then we 
an repla
e the in
lusion 
onstraint by the de�-

nition

A

2

� P

2

u P

3

u 9r

2

:B

2

u 9r

1

:B

3

:

In fa
t, this is the largest possible interpretation of A

2

that the in
lusion 
on-

straint allows.
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Finally, if we use lfp-semanti
s, then A

2

be
omes unsatis�able, i.e., A

2

is inter-

preted by the empty set in all lfp-models of the TBox together with the in
lusion


onstraint. In fa
t, the empty set is the smallest interpretation of A

2

that the

in
lusion 
onstraint allows. Consequently, all de�ned 
on
epts whose right-hand

sides 
ontain A

2

are also interpreted by the empty set in all lfp-models. The same

is true for all de�ned 
on
epts whose de�ntions 
ontain these 
on
epts, et
. For

this reason, we 
an remove from the TBox the in
lusion 
onstraint together with

all de�nitions that refer (dire
tly or indire
tly) to A

2

. (When de
iding subsump-

tion w.r.t. lfp-semanti
s, one must just keep in mind that all the 
on
epts whose

de�nitions have been removed are unsatis�able, and thus are subsumed by all the

other 
on
epts.)

For the three types of semanti
s, we thus have shown how to remove the in
lusion


onstraint. The TBoxes obtained this way still need not be in normal form sin
e

(for gfp- and des
riptive semanti
s) the de�nition of A

1

still refers to A

2

on the

top-level. However, we 
an now just repla
e the top-level A

2

in the de�nition of

A

1

by its de�ning 
on
ept des
ription. This way, we end up with a normalized

TBox. For gfp- and des
riptive semanti
s, we 
an now add a de�nition for A

3

,

whi
h just has the same right-hand side as the de�nition of A

2

.

With respe
t to gfp-semanti
s, we thus obtain the following normalized TBox

T

gfp

:

A

1

� P

1

u P

2

u P

3

u 9r

1

:B

1

u 9r

2

:B

2

u 9r

1

:B

3

;

B

1

� 9r

2

:A

2

;

A

2

� P

2

u P

3

u 9r

2

:B

2

u 9r

1

:B

3

;

B

2

� 9r

1

:A

1

;

A

3

� P

2

u P

3

u 9r

2

:B

2

u 9r

1

:B

3

;

B

3

� P

1

u P

2

;

and w.r.t. des
riptive semanti
s, we obtain the normalized TBox T

des


:

A

1

� P

1

u

�

A

2

u P

2

u P

3

u 9r

1

:B

1

u 9r

2

:B

2

u 9r

1

:B

3

;

B

1

� 9r

2

:A

2

;

A

2

�

�

A

2

u P

2

u P

3

u 9r

2

:B

2

u 9r

1

:B

3

;

B

2

� 9r

1

:A

1

;

A

3

�

�

A

2

u P

2

u P

3

u 9r

2

:B

2

u 9r

1

:B

3

;

B

3

� P

1

u P

2

:

With respe
t to lfp-semanti
s, only the de�nition

B

3

� P

1

u P

2

remains, whereas all the other de�ned 
on
epts are unsatis�able.

The normalization approa
h used in the example 
an easily be generalized to

arbitrary EL-TBoxes. Assume, without loss of generality, that the introdu
tion

11



of auxiliary de�nitions (as illustrated in Example 12) has already been done. Let

G be the graph whose nodes are the de�ned 
on
epts of the TBox, and where

there is an edge from A to B i� B o

urs in the top-level 
onjun
tion of the

de�nition of A. We write

� B � A i� there is a path in G leading from A to B,

� A

�

=

B i� A � B and B � A, and

� B � A i� B � A and not A

�

=

B.

In Example 12 we have A

2

�

=

A

3

and A

2

� A

1

.

By de�nition, � is a quasi-ordering and

�

=

is the equivalen
e indu
ed by �. On

the

�

=

-equivalen
e 
lasses, � indu
es a partial ordering:

[A℄ � [B℄ i� A � B;

where [C℄ = fC

0

j C

�

=

C

0

g.

All the 
on
epts that belong to the same

�

=

-equivalen
e 
lass are obviously in-

terpreted by the same set in all models of the TBox. We start with a minimal

equivalen
e 
lasses w.r.t. �, and treat it as illustrated with the help of A

2

and A

3

in Example 12. Then, we repla
e the o

urren
es of elements of this 
lass on the

top-level by their new de�nition, and 
ontinue with the next equivalen
e 
lass.

Sin
e only top-level o

urren
es are repla
ed, the repla
ement of de�ned 
on
epts

by their de�nitions 
annot lead to an exponential blow-up as in the general 
ase

(by using idempoten
y of u). To sum up, we have sket
hed how to prove the

following proposition:

Proposition 13 Subsumption between 
on
epts de�ned in an EL-TBox w.r.t.

lfp-, gfp, and des
riptive semanti
s 
an be redu
ed in polynomial time to sub-

sumption between 
on
epts de�ned in a normalized EL-TBox.

3.2 Des
ription graphs

In the following, we will assume without loss of generality that all TBoxes are

normalized. Normalized EL-TBoxes 
an be viewed as graphs whose nodes are

the de�ned 
on
epts, whi
h are labeled by sets of primitive 
on
epts, and whose

edges are given by the existential restri
tions. For the rest of this subse
tion,

we �x a normalized EL-TBox T with primitive 
on
epts N

prim

, de�ned 
on
epts

N

def

, and roles N

role

.

De�nition 14 An EL-des
ription graph is a graph G = (V;E; L) where

12



� V is a set of nodes;

� E � V �N

role

� V is a set of edges labeled by role names;

� L: V ! 2

N

prim

is a fun
tion that labels nodes with sets of primitive 
on
epts.

The TBox T 
an be translated into the following EL-des
ription graph G

T

=

(N

def

; E

T

; L

T

):

� the nodes of G

T

are the de�ned 
on
epts of T ;

� if A is a de�ned 
on
ept and

A � P

1

u : : : u P

m

u 9r

1

:B

1

u : : : u 9r

`

:B

`

its de�nition in T , then

{ L

T

(A) = fP

1

; : : : ; P

m

g, and

{ A is the sour
e of the edges (A; r

1

; B

1

); : : : ; (A; r

`

; B

`

) 2 E

T

.

Any primitive interpretation J = (�

J

; �

J

) 
an be translated into the following

EL-des
ription graph G

J

= (�

J

; E

J

; L

J

):

� the nodes of G

J

are the elements of �

J

;

� E

J

:= f(x; r; y) j (x; y) 2 r

J

g;

� L

J

(x) = fP 2 N

prim

j x 2 P

J

g for all x 2 �

J

.

An example of an EL-des
ription graph 
an be found in Figure 1. The translation

between EL-TBoxes (primitive interpretations) to EL-des
ription graphs works

in both dire
tions, i.e., any EL-des
ription graph 
an also be view as an EL-TBox

(primitive interpretation). For example, the EL-des
ription graph of Figure 1 
an

also be viewed as representing the following primitive interpretation J :

� �

J

:= fA

1

; A

2

; A

3

; B

1

; B

2

; B

3

g;

� P

J

1

:= fA

1

; B

3

g, P

J

2

:= fA

1

; A

2

; A

3

; B

3

g, and P

J

3

:= fA

1

; A

2

; A

3

g;

� r

J

1

:= f(A

1

; B

1

); (A

1

; B

3

); (A

2

; B

3

); (A

3

; B

3

); (B

2

; A

1

)g and

r

J

2

:= f(A

1

; B

2

); (A

2

; B

2

); (A

3

; B

2

); (B

1

; A

2

)g.
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B

3

A

1

A

2

B

2

B

1

A

3

r

1

r

1

r

2

r

1

r

1

r

2

r

2

;

r

2

r

1

fP

1

; P

2

; P

3

g fP

2

; P

3

g fP

2

; P

3

g

;

fP

1

; P

2

g

Figure 1: The EL-des
ription graph of the normalized TBox T

gfp

in Example 12.

3.3 Simulations

Simulations are binary relations between nodes of two EL-des
ription graphs that

respe
t labels and edges in the sense de�ned below.

De�nition 15 Let G

i

= (V

i

; E

i

; L

i

) (i = 1; 2) be two EL-des
ription graphs. The

binary relation Z � V

1

� V

2

is a simulation from G

1

to G

2

i�

(S1) (v

1

; v

2

) 2 Z implies L

1

(v

1

) � L

2

(v

2

); and

(S2) if (v

1

; v

2

) 2 Z and (v

1

; r; v

0

1

) 2 E

1

, then there exists a node v

0

2

2 V

2

su
h

that (v

0

1

; v

0

2

) 2 Z and (v

2

; r; v

0

2

) 2 E

2

.

We write Z: G

1

*

� G

2

to express that Z is a simulation from G

1

to G

2

.

It is easy to see that the set of all simulations from G

1

to G

2

is 
losed under

arbitrary unions. Consequently, there always exists a greatest simulation from

G

1

to G

2

. If G

1

;G

2

are �nite, then this greatest simulation 
an be 
omputed in

polynomial time. Basi
ally, one starts with

Z

0

:= f(v

1

; v

2

) 2 V

1

� V

2

j L

1

(v

1

) � L

2

(v

2

)g;

and then removes tuples if they violate (S2) until no more tuples 
an be removed.

Sin
e testing whether (S2) is violated for a given pair of nodes 
an be realized in

polynomial time and Z

0


ontains only polynomially many tuples, this pro
edures
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terminates in polynomial time, and it is easy to show that it 
omputes the greatest

simulation from G

1

to G

2

. A more eÆ
ient algorithm for 
omputing the greatest

simulation between two �nite graphs 
an be found in [12℄. Its 
omplexity is

O(mn), where m is the number of edges and n is the number of nodes of the two

graphs (assuming that m � n).

Proposition 16 Let G

1

;G

2

be two �nite EL-des
ription graphs, v

1

a node of G

1

and v

2

a node of G

2

. Then we 
an be de
ide in polynomial time whether there is

a simulation Z: G

1

*

� G

2

su
h that (v

1

; v

2

) 2 Z.

Proof. It is easy to see that there is a simulation Z: G

1

*

� G

2

su
h that (v

1

; v

2

) 2 Z

i� the greatest simulation

b

Z: G

1

*

� G

2

satis�es (v

1

; v

2

) 2

b

Z. Thus, the proposition

immediately follows from the fa
t that

b

Z 
an be 
omputed in polynomial time.

De�nition 15 also 
overs the 
ase where G

1

= G

2

. In this 
ase, the identity on the

nodes of G

1

= G

2

is a simulation. Consequently, the greatest simulation 
ontains

the identity.

We will later use the fa
t that the 
lass of all simulations is 
losed under 
ompo-

sition.

Lemma 17 Let G

1

;G

2

;G

3

be EL-des
ription graphs, and let Z

1

: G

1

*

� G

2

and

Z

2

: G

2

*

� G

3

be simulations. Then

Z

1

Æ Z

2

:= f(v; v

00

) j there exists v

0

su
h that (v; v

0

) 2 Z

1

and (v

0

; v

00

) 2 Z

2

g

is also a simulation.

4 Subsumption w.r.t. gfp-semanti
s

In the following, let T be a normalized EL-TBox with primitive 
on
epts N

prim

,

de�ned 
on
epts N

def

, and roles N

role

. In this se
tion, we will show that A v

gfp;T

B holds for two de�ned 
on
epts A;B i� there is a simulation Z: G

T

*

� G

T

su
h

that (B;A) 2 Z. As an auxiliary result we give a 
hara
terization of when an

individual of a gfp-model belongs to a de�ned 
on
ept in this model.

Proposition 18 Let J be a primitive interpretation and I the gfp-model of T

based on J . Then the following are equivalent for any A 2 N

def

and x 2 �

J

:

1. x 2 A

I

.

2. There is a simulation Z: G

T

*

� G

J

su
h that (A; x) 2 Z.
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Proof. Let G

T

= (N

def

; E

T

; L

T

) and G

J

= (�

J

; E

J

; L

J

).

(1) 2) Assume that x 2 A

I

. The relation Z � N

def

��

J

is de�ned as follows:

Z := f(B; y) 2 N

def

��

J

j y 2 B

I

g:

Sin
e x 2 A

I

, we have (A; x) 2 Z. It remains to be shown that Z satis�es (S1)

and (S2) of De�nition 15. Thus, let (B; y) 2 Z, and let

B � P

1

u : : : u P

m

u 9r

1

:B

1

u : : : u 9r

`

:B

`

be the de�nition of B in T .

(S1) Sin
e (B; y) 2 Z, we have y 2 B

I

, and thus y 2 P

I

i

= P

J

i

for i = 1; : : : ; m.

Consequently, L

T

(B) = fP

1

; : : : ; P

m

g � fP 2 N

prim

j y 2 P

J

g = L

J

(y).

(S2) Now 
onsider B

i

with (B; r

i

; B

i

) 2 E

T

. Sin
e y 2 B

I

� (9r

i

:B

i

)

I

, we know

that there exists a y

i

2 �

J

su
h that (y; y

i

) 2 r

J

i

and y

i

2 B

I

i

. But then we have

(y; r

i

; y

i

) 2 E

J

and (B

i

; y

i

) 2 Z.

(2) 1) Assume that Z: G

T

*

� G

J

is a simulation su
h that (A; x) 2 Z. Sin
e I

is the gfp-model of T based on J , there is an ordinal � su
h that I = I

#�

.

Now, we 
onsider triples (B; y; �) 
onsisting of a de�ned 
on
ept B 2 N

def

,

an individual y 2 �

J

, and an ordinal �, and show (by trans�nite indu
tion

on �) that (B; y) 2 Z implies y 2 B

I

#�

. For the triple (A; x; �) this yields

x 2 A

I

#�

= A

I

.

Assume that (B; y) 2 Z, but y 62 B

I

#�

.

Case 1: � is a limit ordinal. Then we have

B

I

#�

= B

glb(fI

#


j
<�g)

=

\


<�

B

I

#


;

and thus there exists an ordinal 
 < � su
h that (B; y) 2 Z, but y 62 B

I

#


.

However, the indu
tion assumption for the smaller ordinal 
 says that (B; y) 2 Z

implies y 2 B

I

#


.

Case 2: � is a su

essor ordinal, i.e., � = 
 + 1. Let

B � P

1

u : : : u P

m

u 9r

1

:B

1

u : : : u 9r

`

:B

`

be the de�nition of B in T . Then,

B

I

#�

= O

T ;J

(B

I

#


) = (P

1

u : : : u P

m

)

I

#


\ (9r

1

:B

1

u : : : u 9r

`

:B

`

)

I

#


= P

J

1

\ : : : \ P

J

m

\ (9r

1

:B

1

u : : : u 9r

`

:B

`

)

I

#


:

Sin
e (B; y) 2 Z implies L

T

(B) = fP

1

; : : : ; P

m

g � fP 2 N

prim

j y 2 P

J

g =

L

J

(y), we know that y 2 P

J

i

for all i = 1; : : : ; m. Consequently, y 62 B

I

#�

is due

to the fa
t that y 62 (9r

j

:B

j

)

I

#


for some j; 1 � j � `.
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Sin
e (B; y) 2 Z and (B; r

j

; B

j

) 2 E

T

, the fa
t that Z is a simulation implies

that there exists an individual y

0

2 �

J

su
h that (y; r

j

; y

0

) 2 E

J

and (B

j

; y

0

) 2

Z. This yields (y; y

0

) 2 r

J

j

(by de�nition of E

J

) and y

0

2 B

I

#


j

(by indu
tion

sin
e 
 < �). But then y 2 (9r

j

:B

j

)

I

#


, 
ontradi
ting our assumption that

y 62 (9r

j

:B

j

)

I

#


is responsible for the fa
t that y 62 B

I

#�

.

This proposition 
an now be used to prove the following 
hara
terization of sub-

sumption w.r.t. gfp-semanti
s in EL.

Theorem 19 Let T be an EL-TBox and A;B de�ned 
on
epts in T . Then the

following are equivalent:

1. A v

gfp;T

B.

2. There is a simulation Z: G

T

*

� G

T

su
h that (B;A) 2 Z.

Proof. (2) 1) Assume that the simulation Z: G

T

*

� G

T

satis�es (B;A) 2 Z. Let

J be a primitive interpretation and I the gfp-model of T based on J . We must

show that x 2 A

I

implies x 2 B

I

.

By Proposition 18, x 2 A

I

implies that there is a simulation Y : G

T

*

� G

J

su
h

that (A; x) 2 Y . But then X := Z Æ Y is a simulation from G

T

to G

J

su
h that

(B; x) 2 X. By Proposition 18, this implies x 2 B

I

.

(1) 2) Assume that A v

gfp;T

B. We 
onsider the graph G

T

, and view it as an

EL-des
ription graph of a primitive interpretation. Thus, let J be the primitive

interpretation with G

T

= G

J

, and let I be the gfp-model of T based on J .

Sin
e the identity is a simulation Id: G

T

*

� G

T

= G

J

that satis�es (A;A) 2 Id,

Proposition 18 yields A 2 A

I

. But then A v

gfp;T

B implies A 2 B

I

, and thus

Proposition 18 yields the existen
e of a simulation Z: G

T

*

� G

J

= G

T

su
h that

(B;A) 2 Z.

The theorem together with Proposition 16 shows that subsumption w.r.t. gfp-

semanti
s in EL is tra
table.

Corollary 20 Subsumption w.r.t. gfp-semanti
s in EL 
an be de
ided in polyno-

mial time.

This result is quite surprising sin
e, for the DL FL

0

(whi
h allows for 
onjun
-

tion and value restri
tions only), subsumption w.r.t. gfp-semanti
s is already

PSPACE-
omplete.
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B

A

0

r

r r

r r

; ;

;;

C

D; A

Figure 2: The EL-des
ription graph of the TBox in Example 21.

Example 21 Consider the TBox T 
onsisting of the following 
on
ept de�ni-

tions:

B � 9r:C; C � 9r:D; D � 9r:C;

A � 9r:A

0

; A

0

� 9r:D:

The EL-des
ription graph G

T


orresponding to this TBox 
an be found in Fig-

ure 2. Let V

T

= fA;A

0

; B; C;Dg denote the set of nodes of this graph. Then

Z := V �V is a simulation from G

T

to G

T

. Consequently, all the de�ned 
on
epts

in T subsume ea
h other w.r.t. gfp-semanti
s.

5 Subsumption w.r.t. lfp-semanti
s

For the sake of 
ompleteness, we also treat lfp-semanti
s in this report. It should

be noted, however, that the results of this se
tion demonstrate that lfp-semanti
s

is not interesting in EL.

Let T be an EL-TBox and G

T

the 
orresponding EL-des
ription graph. Where

A;B are nodes of G

T

, we write A

�

!

T

B to denote that there is a path in G

T

from

A to B, and A

+

!

T

B to denote that there is a non-empty path in G

T

from A to

B. We de�ne

Cy


T

:= fA j there exists a node B su
h that A

�

!

T

B

+

!

T

Bg;

i.e., Cy


T


onsists of the nodes in G

T

that 
an rea
h a 
y
li
 path in G

T

. The

following lemma is an easy 
onsequen
e of the de�nition of Cy


T

.

Lemma 22 If A 2 Cy


T

, then there exist a de�ned 
on
ept A

0

2 Cy


T

and a

role r su
h that (A; r; A

0

) is an edge in G

T

.

18



Proposition 23 Let T be an EL-TBox and A a de�ned 
on
ept in T . If A 2

Cy


T

, then A is unsatis�able w.r.t. lfp-semanti
s, i.e., A

I

= ; holds for all

lfp-models I of T .

Proof. Let J be a primitive interpretation and I the lfp-model of T based on J .

Sin
e O

T ;J

is upward 
ontinuous by Proposition 7, we know that I = I

"!

, and

thus A

I

=

S

n�0

A

I

"n

. We show by indu
tion on n that A

I

"n

= ; holds for all

n � 0, whi
h yields A

I

= ;.

(n = 0) A

I

"0

= ; by de�nition of I

"0

.

(n ! n + 1) By Lemma 22 there exists a de�ned 
on
ept A

0

2 Cy


T

and a role

r su
h that (A; r; A

0

) is an edge in G

T

. Thus, if A � D is the de�nition of A in

T , then D 
ontains the 
onjun
t 9r:A

0

in its top-level 
onjun
tion. By indu
tion,

we know that A

0I

"n

= ;, and thus A

I

"n+1

= O

T ;J

(A

I

"n

) = D

I

"n

= ;.

Sin
e all the de�ned 
on
epts in Cy


T

are unsatis�able, their de�nitions 
an be

removed from the TBox without 
hanging the meaning of the 
on
epts whose

de�nition does not refer to an element of Cy


T

. This leaves us with an a
y
li


terminology. Consequently, the only thing that 
y
li
 de�nitions 
an express

w.r.t. lfp-semanti
s in EL is unsatis�ability of a de�ned 
on
ept. However, sin
e

in EL all 
on
epts referring to an unsatis�able 
on
ept are also unsatis�able, this

does not buy us mu
h.

In Example 21, all the de�ned 
on
epts belong to Cy


T

, and thus they are all

unsatis�able w.r.t. lfp-semanti
s.

Corollary 24 Subsumption w.r.t. lfp-semanti
s in EL 
an be de
ided in polyno-

mial time.

Proof. Let T be an EL-TBox and A;B be de�ned 
on
epts in T . We want to

de
ide whether or not A v

lfp;T

B holds. Obviously, Cy


T


an be 
omputed in

polynomial time.

Case 1: A and B do not belong to Cy


T

. Let T

0

be the TBox obtained from T

by removing all the de�nitions for elements in Cy


T

. It is easy to see that T

0

is

an a
y
li
 TBox that does not 
ontain any of the 
on
ept names in Cy


T

(also

not on the right-hand side of a de�nition). Sin
e the de�nitions of A;B do not

refer to any element of Cy


T

, we have A v

lfp;T

B i� A v

lfp;T

0

B. Sin
e T

0

is

a
y
li
, lfp-semanti
s and gfp-semanti
s agree on T

0

[22℄, and thus A v

lfp;T

B i�

A v

gfp;T

0

B. By Corollary 20, A v

gfp;T

0

B 
an be de
ided in polynomial time.

Case 2: A 2 Cy


T

. Sin
e any lfp-model of T interprets A by the empty set, we


learly have A v

lfp;T

B.

Case 3: A 62 Cy


T

and B 2 Cy


T

. Then A v

lfp;T

B does not hold. To see

this it is enough to show that there is an lfp-model of T that interprets A by

19



a non-empty set. Consider the TBox T

0


onstru
ted in Case 1. Any lfp-model

of T

0


an be extended to an lfp-model of T by assigning the empty set to the

elements of Cy


T

. However, the lfp-models of T

0

are just the gfp-models of T

0

.

Now, let us view G

T

0

as the graph of a primitive interpretation J , and let I be

the gfp-model based on J . The identity on the nodes of G

T

0

is a simulation that


ontains the pair (A;A). By Proposition 18, this shows that A 2 A

I

.

6 Subsumption w.r.t. des
riptive semanti
s

Let T be an EL-TBox and G

T

the 
orresponding EL-des
ription graph. Sin
e

every gfp-model of T is a model of T , A v

T

B implies A v

gfp;T

B. Consequently,

A v

T

B implies that there is a simulation Z: G

T

*

� G

T

with (B;A) 2 Z. In the

following we will show what additional properties the simulation Z must satisfy

for the impli
ation in the other dire
tion to hold.

To get an intuition on the di�eren
e between gfp- and des
riptive semanti
s, let us


onsider Example 21. With respe
t to gfp-semanti
s, all the de�ned 
on
epts of T

are equivalent (i.e., subsume ea
h other). With respe
t to des
riptive semanti
s,

A;B;D are still equivalent, C is equivalent to A

0

, but A

0

is not equivalent to B,

and C and D are also not equivalent (in both 
ases, the 
on
epts are not even


omparable w.r.t. subsumption).

To see that C and A

0

are equivalent w.r.t. des
riptive semanti
s, it is enough to

note that the following identities hold in every model I of T :

A

0I

= (9r:D)

I

= C

I

:

A similar argument shows that B and D are equivalent. In addition, equivalen
e

of C and A

0

obviously also implies equivalen
e of A and B. The following model

of T is a 
ounterexample to the other subsumption relationships:

1. �

I

:= f
; dg;

2. r

I

:= f(
; d); (d; 
)g;

3. A

I

:= fdg, A

0I

:= f
g, C

I

:= f
g, D

I

:= fdg, B

I

:= fdg.

We will see below that the reason for A

0

and B not being equivalent is that in

the in�nite path in G

T

starting with A

0

, one rea
hes D with an odd number of

edges, whereas C is rea
hed with an even number; for the path starting with B,

it is just the opposite. In 
ontrast, the in�nite paths starting respe
tively with

A and B \syn
hronize" after a �nite number of steps.

To formalize this intuition, we must introdu
e some notation. Let T be an EL-

TBox, G

T

the 
orresponding EL-des
ription graph, and Z: G

T

*

� G

T

a simulation.
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B = B

0

r

1

! B

1

r

2

! B

2

r

3

! B

3

r

4

! � � �

Z# Z# Z# Z#

A = A

0

r

1

! A

1

r

2

! A

2

r

3

! A

3

r

4

! � � �

Figure 3: A (B;A)-simulation 
hain.

De�nition 25 The path p

1

: B = B

0

r

1

! B

1

r

2

! B

2

r

3

! B

3

r

4

! � � � is Z-simulated

by the path p

2

: A = A

0

r

1

! A

1

r

2

! A

2

r

3

! A

3

r

4

! � � � i� (B

i

; A

i

) 2 Z for all i � 0. In

this 
ase we say that the pair (p

1

; p

2

) is a (B;A)-simulation 
hain w.r.t. Z. (see

Figure 3).

Consider the TBox T and the simulation Z introdu
ed in Example 21. Then

B

r

! C

r

! D

r

! C

r

! D

r

! � � �

Z# Z# Z# Z# Z#

A

r

! A

0

r

! D

r

! C

r

! D

r

! � � �

is a (B;A)-simulation 
hain w.r.t. Z, and

B

r

! C

r

! D

r

! C

r

! D

r

! � � �

Z# Z# Z# Z# Z#

A

0

r

! D

r

! C

r

! D

r

! C

r

! � � �

is a (B;A

0

)-simulation 
hain w.r.t. Z. Note that the �rst 
hain syn
hronizes after

a �nite number of steps in the sense that there is a Z-link (in fa
t in�nitely many

in this 
ase) between the same de�ned 
on
ept. In 
ontrast, the se
ond 
hain

does not syn
hronize in this sense. We will see below that this is responsible

for the fa
t that A is subsumed by B w.r.t. des
riptive semanti
s, but A

0

is not

subsumed by B w.r.t. des
riptive semanti
s.

If (B;A) 2 Z, then (S2) of De�nition 15 implies that, for every in�nite path p

1

starting with B

0

:= B, there is an in�nite path p

2

starting with A

0

:= A su
h

that p

1

is Z-simulated by p

2

. In the following we 
onstru
t su
h a simulating

path step by step. The main point is, however, that the de
ision whi
h 
on
ept

A

n

to take in step n should depend only on the partial (B;A)-simulation 
hain

already 
onstru
ted, and not on the parts of the path p

1

not yet 
onsidered.

De�nition 26 A partial (B;A)-simulation 
hain is of the form depi
ted in Fig-

ure 4. A sele
tion fun
tion S for A;B and Z assigns to ea
h partial (B;A)-

simulation 
hain of this form a de�ned 
on
ept A

n

su
h that (A

n�1

; r

n

; A

n

) is an

edge in G

T

and (B

n

; A

n

) 2 Z.

Given a path B = B

0

r

1

! B

1

r

2

! B

2

r

3

! B

3

r

4

! � � � and a de�ned 
on
ept A su
h

that (B;A) 2 Z, one 
an use a sele
tion fun
tion S for A;B and Z to 
onstru
t a

21



B = B

0

r

1

! B

1

r

2

! � � �

r

n�1

! B

n�1

r

n

! B

n

Z# Z# Z#

A = A

0

r

1

! A

1

r

2

! � � �

r

n�1

! A

n�1

Figure 4: A partial (B;A)-simulation 
hain.

B E

C

D

E

1

E

2

A

r

r

r

r

r

r

r

r

r

; ;

;

;

;

;;

Figure 5: An EL-des
ription graph of a 
y
li
 EL-TBox.

Z-simulating path. In this 
ase we say that the resulting (B;A)-simulation 
hain

is S-sele
ted.

Example 27 Consider the EL-des
ription graph of Figure 5. Where V denotes

the set of all nodes of this graph, it is easy to see that Z := V �V is a simulation

su
h that (B;A) 2 Z. There are two sele
tion fun
tions for A;B and Z. The

fun
tion S

1

that assigns E

1

to the partial (B;A)-simulation 
hain

B

r

! E

Z#

A

and the fun
tion S

2

that assigns E

2

to this 
hain.

De�nition 28 Let A;B be de�ned 
on
epts in T , and Z: G

T

*

� G

T

a simulation

with (B;A) 2 Z. Then Z is 
alled (B;A)-syn
hronized i� there exists a sele
tion

fun
tion S for A;B and Z su
h that the following holds: for every S-sele
ted

(B;A)-simulation 
hain of the form depi
ted in Figure 3 there exists an i � 0

su
h that A

i

= B

i

.

The simulation Z of Example 27 is not (B;A)-syn
hronized. In fa
t, if we take

the sele
tion fun
tion S

1

, then the S

1

-sele
ted (B;A)-simulation 
hain indu
ed by
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the in�nite path B

r

! E

r

! D

r

! D

r

! � � � does not satisfy the 
ondition stated

in De�nition 28. If we take the sele
tion fun
tion S

2

instead, then the S

2

-sele
ted

(B;A)-simulation 
hain indu
ed by the in�nite path B

r

! E

r

! C

r

! C

r

! � � �

does not satisfy this 
ondition.

We are now ready to state our 
hara
terization of subsumption w.r.t. des
riptive

semanti
s.

Theorem 29 Let T be an EL-TBox, and A;B de�ned 
on
epts in T . Then the

following are equivalent:

1. A v

T

B.

2. There is a (B;A)-syn
hronized simulation Z: G

T

*

� G

T

su
h that (B;A) 2

Z.

As in the 
ase of gfp-semanti
s, we prove the theorem by �rst giving a 
hara
-

terization of when an individual of a model belongs to a de�ned 
on
ept in this

model. Sin
e any model I of T is itself an I-gfp-model of T , it is suÆ
ient to

formulate the 
ondition for I-gfp-models of T .

Proposition 30 Let J be a primitive interpretation, I

0

an interpretation based

on J su
h that O

T ;J

(I

0

) �

J

I

0

, and I the I

0

-gfp-model of T . Then the following

are equivalent for any A 2 N

def

and x 2 �

J

:

1. x 2 A

I

.

2. There is a simulation Z: G

T

*

� G

J

su
h that

(a) (A; x) 2 Z; and

(b) if (B; y) 2 Z then y 2 B

I

0

.

Proof. Instead of proving this result dire
tly, we will redu
e it to Proposition 18.

To this purpose, we de�ne the new TBox

T

0

:= fB � D u P

B

j B � D 2 T g;

where the P

B

are new primitive 
on
epts. Obviously, T and T

0

have the same

de�ned 
on
epts. For T

0

we de�ne the primitive interpretation J

0

as follows:

� �

J

0

:= �

J

;

� r

J

0

:= r

J

for all role names r;

� P

J

0

:= P

J

if P is a primitive 
on
ept in T ;
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� P

J

0

B

:= B

I

0

where B is a de�ned 
on
ept.

We de�ne:

� I

#0

:= I

0

and I

0#0

:= I

0

top

, where I

0

top

is the interpretation based on J

0

su
h

that B

I

0

top

= �

J

0

for all de�ned 
on
epts B;

� I

#�+1

:= O

T ;J

(I

#�

) and I

0#�+1

:= O

T

0

;J

0

(I

0#�

);

� I

#�

:= glb(fI

#�

j � < �g and I

0#�

:= glb(fI

0#�

j � < �g if � is a limit

ordinal.

Let B be a de�ned 
on
ept. We 
laim that B

I

#n

� B

I

0#n+1

� B

I

#n+1

holds for all

n � 0. Before proving this 
laim, we show that it implies the statement of the

proposition.

The 
laim obviously implies that I

#!

agrees with I

0#!

on all de�ned 
on
epts, and

thus the same is true for all larger ordinals. This implies that the I

0

-gfp-model

I of T based on J agrees on all de�ned 
on
epts with the gfp-model I

0

of T

0

based on J

0

. Consequently, x 2 A

I

i� x 2 A

I

0

.

By Proposition 18, x 2 A

I

0

is equivalent to the existen
e of a simulation Z

0

: G

T

0

*

�

G

J

0

su
h that (A; x) 2 Z

0

. The only di�eren
e between G

T

0

and G

T

is that in G

T

0

the label of ea
h node B additionally 
ontains P

B

. The only di�eren
e between

G

J

0

and G

J

is that in G

J

0

the labels of nodes may additionally 
ontain the new

primitive 
on
epts P

B

. Consequently, Z

0

is a simulation also from G

T

to G

J

. In

addition, (B; y) 2 Z

0

implies that P

B

belongs to the label of y in G

J

0

, and thus

y 2 P

J

0

B

= B

I

0

. Conversely, if Z: G

T

*

� G

J

is a simulation satisfying (2b) of the

proposition, then it is also a simulation from G

T

0

to G

J

0

.

To �nish the proof of the proposition, we show by indu
tion on n that B

I

#n

�

B

I

0#n+1

� B

I

#n+1

holds for all n � 0. Let B � D be the de�nition of B in T .

The de�nition of B in T

0

is then B � D u P

B

.

(n = 0) We have

B

I

#1

= B

O

T ;J

(I

0

)

= D

I

0

and

B

I

0#1

= B

O

T

0

;J

0

(I

0

top

)

= D

I

0

top

\ P

J

0

B

= D

I

0

top

\B

I

0

:

Monotoni
ity of the 
on
ept 
onstru
tors of EL implies that D

I

0

� D

I

0

top

and

the assumption O

T ;J

(I

0

) �

J

I

0

yields B

I

#1

= B

O

T ;J

(I

0

)

� B

I

0

= B

I

#0

. Thus,

we have B

I

#1

� D

I

0

top

and B

I

#1

� B

I

0

, whi
h taken together yields B

I

#1

�

D

I

0

top

\ B

I

0

= B

I

0#1

� B

I

0

= B

I

#0

.

(n ! n + 1) Assume that B

I

#i

� B

I

0#i+1

� B

I

#i+1

holds for all i � n. Then we

have
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1. B

I

#n+2

= D

I

#n+1

� D

I

0#n+1

by indu
tion and the monotoni
ity of the 
on-


ept 
onstru
tors of EL.

2. B

I

#n+2

� B

I

#n+1

� B

I

#n+1

� � � � � B

I

0

= P

J

0

B

sin
e I

#0

= I

0

�

J

O

T ;J

(I

0

) = I

#1

and the monotoni
ity of O

T ;J

imply I

#0

�

J

I

#1

�

J

I

#2

�

J

� � � .

3. Consequently B

I

#n+2

� D

I

0#n+1

\ P

J

0

B

= B

O

T

0

;J

0

(I

0#n+1

)

= B

I

0#n+2

.

4. Finally, B

I

0#n+2

= D

I

0#n+1

\P

J

0

B

= D

I

0#n+1

\B

I

0

� D

I

#n

\B

I

0

= B

I

#n+1

. The

in
lusion holds by indu
tion and the monotoni
ity of the 
on
ept 
onstru
-

tors of EL, and the last identity holds sin
e D

I

#n

= B

I

#n+1

� B

I

#0

= B

I

0

.

To sum up, we have shown B

I

#n+2

� B

I

0#n+2

� B

I

#n+1

, whi
h 
ompletes the

indu
tion proof.

Proof of (2)! (1) of Theorem 29

Assume that Z: G

T

*

� G

T

is a (B;A)-syn
hronized simulation su
h that (B;A) 2

Z, and let S be the sele
tion fun
tion required in the de�nition of a (B;A)-

syn
hronized simulation.

To show A v

T

B, we 
onsider an arbitrary model I of T su
h that x 2 A

I

, and

show that x 2 B

I

. Let J be the primitive interpretation on whi
h I is based.

Then I is itself the I-gfp-model of T based on J . Consequently, Proposition 30

shows that x 2 A

I

implies the existen
e of a simulation Y : G

T

*

� G

J

su
h that

(a) (A; x) 2 Y , and

(b) (C; y) 2 Y implies y 2 C

I

.

Now, assume that x 62 B

I

. Where

B � P

1

u : : : u P

m

u 9s

1

:C

1

u : : : u 9s

`

:C

`

is the de�nition of B in T , this implies that there is an index i; 1 � i � m, su
h

that x 62 P

I

i

= P

J

i

or an index j; 1 � j � ` su
h that x 62 (9s

j

:C

j

)

I

. The fa
ts

that (B;A) 2 Z and x 2 A

I

obviously imply that the �rst alternative 
annot

o

ur. Thus, there is an index j; 1 � j � ` su
h that x 62 (9s

j

:C

j

)

I

.

Consider the partial (B;A)-simulation 
hain

B = B

0

r

1

! B

1

Z#

A = A

0
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where B

1

:= C

j

and r

1

:= s

j

. The sele
tion fun
tion S yields a de�ned 
on
ept A

1

su
h that (B

1

; A

1

) 2 Z and (A

0

; r

1

; A

1

) is an edge in G

T

. Sin
e Y is a simulation

with (A

0

; x) 2 Y , this implies the existen
e of an individual x

1

2 �

J

su
h

that (x; r

1

; x

1

) is an edge in G

J

and (A

1

; x

1

) 2 Y . Thus, we have the following

situation:

B = B

0

r

1

! B

1

Z# Z#

A = A

0

r

1

! A

1

Y # Y #

x

0

r

1

! x

1

where x

0

:= x. By our assumption, x

0

2 A

I

0

nB

I

0

.

Lemma 31 x

1

2 A

I

1

nB

I

1

.

Proof. Sin
e Y is a simulation satisfying 
ondition (b) from above, Proposition 30

shows that (A

1

; x

1

) 2 Y implies x

1

2 A

I

1

.

Now, assume that x

1

2 B

I

1

= C

I

j

. Sin
e (x; r

1

; x

1

) is an edge in G

J

, we know that

(x; x

1

) 2 r

J

1

= r

I

1

. But then r

1

= s

j

yields x 2 (9s

j

:C

j

)

I

, whi
h 
ontradi
ts our


hoi
e of j.

The lemma shows that we 
an now 
ontinue with x

1

; B

1

; A

1

in pla
e of x

0

; B

0

; A

0

,

et
. This yields the following pair of simulation 
hains:

B = B

0

r

1

! B

1

r

2

! B

2

r

3

! B

3

r

4

! � � �

Z# Z# Z# Z#

A = A

0

r

1

! A

1

r

2

! A

2

r

3

! A

3

r

4

! � � �

Y # Y # Y # Y #

x

0

r

1

! x

1

r

2

! x

2

r

3

! x

3

r

4

! � � �

where x

n

2 A

I

n

n B

I

n

for all n � 0. However, the upper 
hain was 
onstru
ted

using the sele
tion fun
tion S (i.e., it is S-sele
ted), and thus there exists an index

n � 0 su
h that A

n

= B

n

. This is an obvious 
ontradi
tion to x

n

2 A

I

n

nB

I

n

. Thus,

our assumption x 2 A

I

n B

I

is refuted, whi
h 
ompletes the proof of (2) ! (1)

of Theorem 29.

Proof of (1)! (2) of Theorem 29

Assume that A v

T

B. We 
onsider the graph G

T

= (V

T

; E

T

; L

T

), and view it as

an EL-des
ription graph des
ribing a primitive interpretation. Let J denote the

primitive interpretation su
h that G

T

= G

J

.

First, we will 
onstru
t an interpretation I

0

based on J su
h that O

T ;J

(I

0

) �

J

I

0

. To this purpose, we 
onstru
t an appropriate simulation Y : G

T

*

� G

T

, and
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then de�ne for all de�ned 
on
epts C:

(�) C

I

0

:= fC

0

j (C;C

0

) 2 Y g:

We de�ne Y :=

S

n�0

Y

n

, where the relations Y

n

are de�ned by indu
tion on n:

Y

0

is the identity on the nodes of G

T

= G

J

. If Y

n

is already de�ned, then

Y

n+1

:= Y

n

[ f(C;C

0

) j (1) L

T

(C) � L

T

(C

0

);

(2) (C; r

1

; C

1

); : : : ; (C; r

`

; C

`

) are all the edges in G

T

with sour
e C, and

(3) there are edges (C

0

; r

1

; C

0

1

); : : : ; (C

0

; r

`

; C

0

`

) in G

T

su
h that (C

1

; C

0

1

) 2 Y

n

; : : : ; (C

`

; C

0

`

) 2 Y

n

g:

Lemma 32 Y is a simulation.

Proof. First, we show by indu
tion on n that all the relations Y

n

are simulations.

(n = 0) The identity is obviously a simulation.

(n ! n + 1) Assume that Y

n

is a simulation. To show that Y

n+1

is also a

simulation, assume that (C;C

0

) 2 Y

n+1

and (C; r;D) 2 E

T

. If (C;C

0

) 2 Y

n

, then

the assumption that Y

n

is a simulation yields L

T

(C) � L

T

(C

0

) and the existen
e

of a de�ned 
on
ept D

0

su
h that (D;D

0

) 2 Y

n

� Y

n+1

and (C

0

; r; D

0

) 2 E

T

.

Thus, assume that (C;C

0

) 2 Y

n+1

nY

n

. Then the de�nition of Y

n+1

yields L

T

(C) �

L

T

(C

0

) and the existen
e of a de�ned 
on
ept D

0

su
h that (D;D

0

) 2 Y

n

� Y

n+1

and (C

0

; r; D

0

) 2 E

T

.

Thus, we have shown that all Y

n

are simulations. Now, let (C;C

0

) 2 Y and

(C; r;D) 2 E

T

. Then there exists an n � 0 su
h that (C;C

0

) 2 Y

n

, and thus the

fa
t that Y

n

is a simulation yields L

T

(C) � L

T

(C

0

) and the existen
e of a de�ned


on
ept D

0

su
h that (D;D

0

) 2 Y

n

� Y and (C

0

; r; D

0

) 2 E

T

.

Now, let I

0

be the interpretation based on J de�ned by the identity (�) above.

Lemma 33 O

T ;J

(I

0

) �

J

I

0

.

Proof. Let I

1

:= O

T ;J

(I

0

), and let C be a de�ned 
on
ept whose de�nition in T

is

C � P

1

u : : : u P

m

u 9r

1

:C

1

u : : : u 9r

`

:C

`

:

Assume that C

0

2 C

I

1

. We must show that this implies C

0

2 C

I

0

, i.e., that

(C;C

0

) 2 Y .

First, note that C

0

2 C

I

1

= C

O

T ;J

(I

0

)

implies that (i) C

0

2 P

I

0

i

= P

J

i

for all

i = 1; : : : ; m, and (ii) C

0

2 (9r

j

:C

j

)

I

0

for all j = 1; : : : ; `.
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Now, (i) shows that L

T

(C) = fP

1

; : : : ; P

m

g � L

T

(C

0

). In addition, (ii) implies

that there are de�ned 
on
epts C

0

1

; : : : ; C

0

`

su
h that, for all j = 1; : : : ; `, we have

(C

0

; C

0

j

) 2 r

I

0

= r

J

(i.e., (C

0

; r

j

; C

0

j

) 2 E

T

) and C

0

j

2 C

I

0

j

(i.e., (C

j

; C

0

j

) 2 Y ).

The de�nition of Y implies that there is an n su
h that (C

j

; C

0

j

) 2 Y

n

holds for

all j = 1; : : : ; `. But then (C;C

0

) 2 Y

n+1

� Y .

By Proposition 10, the lemma implies that T has an I

0

-gfp-model based on J .

Let I denote this model.

Lemma 34 A 2 A

I

.

Proof. The simulation Y : G

T

*

� G

T

= G

J

satis�es

(a) (A;A) 2 Y (sin
e (A;A) 2 Y

0

� Y );

(b) if (C;C

0

) 2 Y then C

0

2 C

I

0

(by de�nition of I

0

).

Thus, Proposition 30 yields A 2 A

I

.

The lemma together with A v

T

B yields A 2 B

I

. Thus, Proposition 30 implies

that there exists a simulation Z: G

T

*

� G

T

= G

J

su
h that

(a) (B;A) 2 Z; and

(b) if (C;C

0

) 2 Z then C

0

2 C

I

0

.

Sin
e C

0

2 C

I

0

i� (C;C

0

) 2 Y , property (b) is equivalent to Z � Y . Thus,

(B;A) 2 Z also yields (B;A) 2 Y .

Lemma 35 Y is a (B;A)-syn
hronized simulation satisfying (B;A) 2 Y .

Proof. It remain to show that Y is (B;A)-syn
hronized. To this purpose, we

de�ne an appropriate sele
tion fun
tion S. Thus, 
onsider the following partial

(B;A)-simulation 
hain:

B = B

0

r

1

! B

1

r

2

! � � �

r

n�1

! B

n�1

r

n

! B

n

Y # Y # Y #

A = A

0

r

1

! A

1

r

2

! � � �

r

n�1

! A

n�1

Let k be minimal with (B

n�1

; A

n�1

) 2 Y

k

.

Case 1: k = 0. Then B

n�1

= A

n�1

and the sele
tion fun
tion S 
hooses A

n

:= B

n

.

Case 2: k > 0. The minimality of k implies that (B

n�1

; A

n�1

) 2 Y

k

n Y

k�1

. By

de�nition of Y

k

, the existen
e of the edge (B

n�1

; r

n

; B

n

) 2 E

T

thus implies that
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there is an A

n

su
h that (A

n�1

; r

n

; A

n

) 2 E

T

and (B

n

; A

n

) 2 Y

k�1

. The sele
tion

fun
tion S 
hooses su
h an A

n

.

It remains to be shown that the sele
tion fun
tion S really satis�es the 
ondition

stated in De�nition 28. Thus, 
onsider the following S-sele
ted (B;A)-simulation


hain:

B = B

0

r

1

! B

1

r

2

! B

2

r

3

! B

3

r

4

! � � �

Z# Z# Z# Z#

A = A

0

r

1

! A

1

r

2

! A

2

r

3

! A

3

r

4

! � � �

Let k

0

be minimal with (B

0

; A

0

) 2 Y

k

0

. If k

0

= 0, then we are done sin
e then

A

0

= B

0

. Otherwise, k

0

> 0 and then we know that (B

1

; A

1

) 2 Y

k

0

�1

. Thus, if k

1

is minimal with (B

1

; A

1

) 2 Y

k

1

, then k

0

> k

1

. If we 
ontinue this argument, then

we obtain indi
es k

0

; k

1

; k

2

; : : : where either k

i

> k

i+1

or k

i

= 0. This shows that

there exists an n su
h that k

n

= 0, and thus A

n

= B

n

.

This lemma �nishes the proof of (1)! (2) of Theorem 29.

De
iding the existen
e of a syn
hronized simulation

It remains to be shown that property (2) of Theorem 29 
an be de
ided in poly-

nomial time. Thus, let G

T

= (V

T

; E

T

; L

T

) be a �nite EL-des
ription graph, and

(B;A) 2 V

T

� V

T

be a pair of nodes. We 
onsider the simulation Y : G

T

*

� G

T

de�ned in the proof of (1) ! (2) of Theorem 29. We have shown that Y is a

(B;A)-syn
hronized simulation (see Lemma 32 and Lemma 35).

Proposition 36 The following are equivalent:

1. There exists a (B;A)-syn
hronized simulation Z satisfying (B;A) 2 Z.

2. (B;A) 2 Y .

Proof. (2)! (1) is trivial sin
e we already know that Y is a (B;A)-syn
hronized

simulation (by Lemma 32 and Lemma 35).

(1) ! (2) Let S be the sele
tion fun
tion that ensures that the simulation Z is

(B;A)-syn
hronized. We use S to 
onstru
t a tree t

S

whose paths are basi
ally

initial segments of the S-sele
ted (�nite or in�nite) (B;A)-simulation 
hains w.r.t.

Z:

� The root of t

S

is labeled with (B;A). By our assumption on Z, we have

(B;A) 2 Z.

� Let (B

0

; C

0

) be the label of a node � already 
onstru
ted. If B

0

= C

0

, then

this node is a leaf of t

S

.
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� Let (B

0

; C

0

) be the label of a node � already 
onstru
ted, and B

0

6= C

0

. By

indu
tion, we assume that the path leading to � in the tree is of the form

B = B

0

r

1

! B

1

r

2

! � � �

r

n�1

! B

n�1

= B

0

Z# Z# Z#

A = A

0

r

1

! A

1

r

2

! � � �

r

n�1

! A

n�1

= A

0

where A

1

; : : : ; A

n�1

have been sele
ted using the sele
tion fun
tion S. Now,

let (B

0

; s

1

; C

1

); : : : ; (B

0

; s

`

; C

`

) be all the edges in G

T

with sour
e B

0

. For

i = 1; : : : ; ` we 
onsider the partial (B;A)-simulation 
hain

B = B

0

r

1

! B

1

r

2

! � � �

r

n�1

! B

n�1

s

i

! C

i

Z# Z# Z#

A = A

0

r

1

! A

1

r

2

! � � �

r

n�1

! A

n�1

Let C

0

i

be the node sele
ted by S. In parti
ular, this means that (C

i

; C

0

i

) 2 Z

and (A

n�1

; s

i

; C

0

i

) 2 E

T

. Now, � obtains ` su

essor nodes in t

S

, whi
h are

respe
tively labeled with (C

1

; C

0

1

); : : : ; (C

`

; C

0

`

). In parti
ular, if ` = 0, then

� is a leaf.

We 
laim that t

S

is �nite. In fa
t, an in�nite path in t

S

would yield an in�nite

(B;A)-simulation 
hain of the form depi
ted in Figure 3 su
h that B

n

6= A

n

for

all n � 0. But this 
ontradi
ts our assumption that S is the sele
tion fun
tion

that ensures that Z is (B;A)-syn
hronized. Thus, all paths in t

S

are �nite. Sin
e

t

S

is also �nitely bran
hing, K�onig's lemma shows that t

S

is �nite.

Next, we 
laim that, if a node in t

S

is labeled with (B

0

; A

0

), then (B

0

; A

0

) 2 Y .

Sin
e (B;A) labels the root of t

S

, this yields (B;A) 2 Y , and we are done.

Let � be a node in t

S

labeled with (B

0

; A

0

). We prove (B

0

; A

0

) 2 Y by indu
tion

on the maximal distan
e of � to a leaf in t

S

.

Indu
tion base. If the maximal distan
e of � to a leaf is 0, then � is itself a leaf.

There are two 
ases to 
onsider:

1. The node � has label (B

0

; B

0

), i.e., A

0

= B

0

. But then (B

0

; A

0

) 2 Y

0

� Y .

2. The node � has label (B

0

; A

0

) with A

0

6= B

0

, but B

0

has no outgoing edges

in G

T

. Sin
e (B

0

; A

0

) 2 Z, we know that L

T

(B

0

) � L

T

(A

0

). Thus, the

de�nition of Y

1

yields (B

0

; A

0

) 2 Y

1

� Y .

Indu
tion step. Assume that the maximal distan
e of � to a leaf is not 0. In

parti
ular, this means that � is not a leaf. Let (C

1

; C

0

1

); : : : ; (C

`

; C

0

`

) be the labels

of all the su

essor nodes of � in t

S

. Consequently, there are roles s

1

; : : : ; s

`

su
h

that

1. (B

0

; s

1

; C

1

); : : : (B

0

; s

`

; C

`

) are all the edges in G

T

with sour
e B

0

;
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2. (A

0

; s

1

; C

0

1

); : : : (A

0

; s

`

; C

0

`

) are edges in G

T

;

3. (C

1

; C

0

1

); : : : ; (C

`

; C

0

`

) 2 Z.

By indu
tion, (3) implies (C

1

; C

0

1

); : : : ; (C

`

; C

0

`

) 2 Y , and thus there is an n su
h

that (C

1

; C

0

1

); : : : ; (C

`

; C

0

`

) 2 Y

n

. Sin
e (B

0

; A

0

) 2 Z also yields L

T

(B

0

) � L

T

(A

0

),

(1) and (2) thus imply (B

0

; A

0

) 2 Y

n+1

� Y .

Sin
e Y 
an obviously be 
omputed in time polynomial in the size of G

T

, this

proposition together with Theorem 29 yields the following 
orollary.

Corollary 37 Subsumption w.r.t. des
riptive semanti
s in EL 
an be de
ided in

polynomial time.

By using the te
hniques employed to de
ided Horn-SAT in linear time [8℄, it is

not hard to show that the set Y 
an a
tually be 
omputed in time quadrati
 in

the size of G

T

, and thus subsumption in EL w.r.t. des
riptive semanti
s 
an be

de
ided in quadrati
 time.

Example 38 Consider the graph G

T

depi
ted in Figure 5. The 
omputation of

Y pro
eeds as follows:

Y

0

= f(B;B); (E;E); (C;C); (D;D); (E

1

; E

1

); (E

2

; E

2

); (A;A)g;

Y

1

= Y

0

[ f(E

1

; E); (E

2

; E); (C;E

1

); (E

1

; C); (D;E

2

); (E

2

; D); (C;E); (D;E)g;

Y

2

= Y

1

[ f(A;B)g = Y

3

= Y:

Consequently, we have B v

T

A, but not A v

T

B.

An alternative way for showing the polynomiality result would be to redu
e the

existen
e of a (B;A)-syn
hronized simulation Z satisfying (B;A) 2 Z to the

strategy problem for a 
ertain two-player game with a positional winning 
on-

dition. The existen
e of a winning strategy is in this 
ase a polynomial time

problem [10, 11℄. Modulo some te
hni
alities, the game graph is the subgraph of

the Cartesian produ
t of the graph G

T

with itself whose nodes satisfy 
ondition

(S1) of De�nition 15. The winning positions for player two are the nodes (B

0

; A

0

)

where either B

0

= A

0

or B

0

has no su

essor nodes.

7 Con
lusion

We have 
hara
terized subsumption in EL w.r.t. 
y
li
 TBoxes for the three

types of semanti
s introdu
ed by Nebel [22℄. In 
ontrast to the 
ase of FL

0

,

where subsumption is no longer tra
table if one allows for 
y
li
 terminologies,
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these 
hara
terizations show that subsumption in EL w.r.t. 
y
li
 TBoxes 
an be

de
ided in polynomial time, independently of whi
h semanti
s is used.

Our main motivation for 
onsidering 
y
li
 terminologies in EL was the fa
t that

the most spe
i�
 
on
ept of an ABox individual need not exist in EL. An example

is the simple 
y
li
 ABox A := fr(b; b)g, where b has no most spe
i�
 
on
ept, i.e.,

there is no least EL-
on
ept des
ription D su
h that b is an instan
e of D w.r.t. A

[17℄. However, if one allows for 
y
li
 TBoxes with gfp-semanti
s, then the de�ned


on
ept B with B � 9r:B is su
h a most spe
i�
 
on
ept. In a yet unpublished

paper we have shown that the 
hara
terization of subsumption in EL w.r.t. gfp-

semanti
s also yields an approa
h for 
omputing the least 
ommon subsumer in

EL w.r.t. gfp-semanti
s. In addition, we have extended the 
hara
terization of

subsumption in EL w.r.t. gfp-semanti
s to the instan
e problem, and have shown

how this 
an be used to 
ompute the most spe
i�
 
on
ept.

Regarding related work, simulations and bisimulations play an important rôle in

modal logi
s (and thus also in des
ription logi
s). However, until now they have

mostly been 
onsidered for modal logi
s that are 
losed under all the Boolean

operators, and they have usually not been employed for reasoning in the logi
. A

notable ex
eption is [13℄, where bisimulation 
hara
terizations are given for sub-

Boolean DLs. However, these 
hara
terizations are used to give a formal a

ount

of the expressive power of these logi
s. They are not employed for reasoning

purposes.

The DL EL with 
y
li
 terminologies interpreted with one of the three semanti
s


onsidered in this report yields a small fragment of the modal mu-
al
ulus. For

these fragments, the subsumption problem (i.e., the question whether an impli
a-

tion between two formulae is valid) 
an still be de
ided in polynomial time. The

relationship of this result to possibly existing 
omplexity results for fragments of

the modal mu-
al
ulus still needs to be explored. At the moment, we are not

aware of any other results for su
h small fragments of the modal mu-
al
ulus.
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