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Abstract

Cyclic definitions in description logics have until now been investigated
only for description logics allowing for value restrictions. Even for the
most basic language F Ly, which allows for conjunction and value restric-
tions only, deciding subsumption in the presence of terminological cycles
is a PSPACE-complete problem. This report investigates subsumption in
the presence of terminological cycles for the language £L£, which allows
for conjunction and existential restrictions. In contrast to the results for
F Ly, subsumption in ££ remains polynomial, independent of whether we
use least fixpoint semantics, greatest fixpoint semantics, or descriptive se-
mantics. These results are shown via a characterization of subsumption
through the existence of certain simulation relations between nodes of the
description graph associated with a given cyclic terminology.

1 Introduction

The first thorough investigation of cyclic terminologies in description logics (DL)
is due to Nebel [22], who introduced three different semantics for such terminolo-
gies: least fixpoint (Ifp) semantics, which considers only the models that interpret
the defined concepts as small as possible; greatest fixpoint (gfp) semantics, which
considers only the models that interpret the defined concepts as large as possible;
and descriptive semantics, which considers all models.

In [1, 2], subsumption w.r.t. cyclic terminologies in the small DL F Ly, which al-
lows for conjunction and value restrictions only, was characterized with the help
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of finite automata. This characterization provided PSPACE decision procedures
for subsumption in FLy with cyclic terminologies for the three types of seman-
tics introduced by Nebel. In addition, it was shown in [1, 2] that subsumption
is PSPACE-hard both for gfp- and lfp-semantics. For descriptive semantics, the
exact complexity of the subsumption problem is still open. However, Nebel [21]
showed that, even for acyclic terminologies (where the three types of seman-
tics agree), subsumption in FL, is at least coNP-hard. The results for cyclic
F Ly-terminologies where extended by Kiisters [14] to ALN, which extends F L,
by atomic negation and number restrictions. For all three types of semantics,
subsumption w.r.t. cyclic ALN-terminologies is PSPACE-complete.

Schild’s observation [23] that the DL ALC (which extends F L, by full negation)
is a syntactic variant of the multi-modal logic K opened a way for treating cyclic
terminologies and more general recursive definitions in more expressive languages
like ALC and extensions thereof by a reduction to the modal mu-calculus [24, 7].
In this setting, one can use a mix of the three types of semantics introduced
by Nebel. However, the complexity of the subsumption problem is EXPTIME-
complete.

In spite of these very general results for cyclic definitions in expressive lan-
guages, there are still good reasons to look at cyclic terminologies in less ex-
pressive (in particular sub-Boolean) description logics. One reason is, of course,
the lower complexity of the subsumption problem (for FL, and ALN PSPACE
rather than EXPTIME). In addition, the growing interest in non-standard infer-
ences like computing the least common subsumer and the most specific concept
[5, 6, 3,4, 16, 15, 18, 17] has also led to a renewed interest in sub-Boolean descrip-
tion logics since some of these inferences (like the most common subsumer) make
sense only if not all Boolean operators are present. In this context, cyclic defini-
tions come into play since the most specific concept of a given ABox individual
need not exit in languages allowing for number restrictions or existential restric-
tions. For ALN it was shown in [3] that the most specific concept always exists
if one allows for cyclic concept definitions with gfp-semantics. For languages with
existential restrictions, another solution to the non-existence of most specific con-
cepts was proposed by Kiisters and Molitor [17]. They considered the languages
EL (which allows for conjunction and existential restrictions) and ALE (which
additionally allows for atomic negation and value restrictions) and showed how
the most specific concept can be approximated there. One reason for choosing
an approximation approach rather than an exact characterization of the most
specific concept using cyclic definitions was that the impact of cyclic definitions
in description logics with existential restrictions was largely unexplored.

This report tries to overcome this deficit. It considers cyclic terminologies in €L
w.r.t. the three types of semantics introduced by Nebel, and shows that the sub-
sumption problem can be decided in polynomial time in all three cases. This is
in stark contrast to the case of FL,, where adding cyclic terminologies increases



the complexity of subsumption from polynomial (for concept descriptions) to
PSPACE. The main tool used to show these results is a characterization of sub-
sumption through the existence of so-called simulation relations. There is an
interesting connection between this characterization and the characterization of
subsumption between &L-concept descriptions given in [4]. There it was shown
that subsumption corresponds to the existence of a homomorphism between the
description trees (basically the syntax trees) of the descriptions. This showed
that subsumption between &L-concept descriptions is decidable in polynomial
time since the existence of a homomorphism between trees is a polynomial time
problem. Intuitively, if one goes from concept descriptions to cyclic terminolo-
gies, then one obtains a description graph rather than a tree. Thus, an obvious
conjecture would be that subsumption in ££ with cyclic terminologies can be
characterized through the existence of a homomorphism between the correspond-
ing description graphs. Fortunately, this conjecture is not true. In fact, the
existence of a homomorphism between graphs is an NP-complete problem [9]
whereas the existence of a simulation is a polynomial time problem [12]. Tt is
only for trees that the existence of a simulation implies the existence of a homo-
morphism. Thus, the characterization of subsumption through the existence of
a simulation appears to be the deeper reason why subsumption of £.L-concept
descriptions is polynomial.

In the next section we will introduce the DL £L£ as well as cyclic terminologies
and the three types of semantics for these terminologies. Then we will show in
Section 3 how such terminologies can be translated into description graphs. In
this section, we will also define the notion of a simulation between nodes of a
description graph, and prove some useful properties of simulations. The next
three sections are then devoted to the characterization of subsumption in ££
w.r.t. gfp, lfp, and descriptive semantics, respectively.

2 Cyclic terminologies in the DL £L£

Concept descriptions are inductively defined with the help of a set of construc-
tors, starting with a set N¢ of concept names and a set Ng of role names. The
constructors determine the expressive power of the DL. In this report, we restrict
the attention to the DL £L, whose concept descriptions are formed using the
constructors top-concept (T), conjunction (C' M D), and existential restriction
(3r.C). The semantics of £L-concept descriptions is defined in terms of an in-
terpretation T = (A%,-T). The domain A” of 7 is a non-empty set of individuals
and the interpretation function -Z maps each concept name A € N to a subset
AT of AT and each role r € Ng to a binary relation r* on AZ. The extension of
L to arbitrary concept descriptions is inductively defined, as shown in the third
column of Table 1.



name of constructor ‘ Syntax ‘ Semantics

concept name A € N A AT C AT
role name r € N r rt C AT x AT
top-concept T AT
conjunction cnbD ctnD?
existential restriction | Ir.C | {zx € AT |Ty: (v,y) e rf Ay e CT}
| concept definition | A=D | AT = D? |

Table 1: Syntax and semantics of £L-concept descriptions and TBox definitions.

A terminology (or TBox for short) is a finite set of concept definitions of the form
A = D, where A is a concept name and D a concept description. In addition,
we require that TBoxes do not contain multiple definitions, i.e., there cannot
be two distinct concept descriptions Dy and D, such that both A = D; and
A = D, belongs to the TBox. Concept names occurring on the left-hand side of
a definition are called defined concepts. All other concept names occurring in the
TBox are called primitive concepts. Note that we allow for cyclic dependencies
between the defined concepts, i.e., the definition of A may refer (directly or
indirectly) to A itself. An interpretation Z is a model of the TBox T iff it
satisfies all its concept definitions, i.e., AT = D7 for all definitions A = D in T.

The semantics of (possibly cyclic) £L£-TBoxes we have just defined is called de-
scriptive semantic by Nebel [22]. For some applications, it is more appropriate
to interpret cyclic concept definitions with the help of an appropriate fixpoint
semantics. Before defining least and greatest fixpoint semantics formally, let us
illustrate their effect on an example.

Example 1 Assume that our interpretations are graphs where we have nodes
(elements of the concept name Node) and edges (represented by the role edge),
and we want to define the concept Inode of all nodes lying on an infinite (possibly
cyclic) path of the graph. The following is a possible definition of Inode:

Inode = Node M Jdedge.Inode.

Now consider the following interpretation of the primitive concepts and roles:

A7 = {mg,my,ma,...} U {ng},
Node” := AT,
edgej = {(mi,miH) | 7 2 0} U {(no,no)}.

Where M := {mg,my,ma,...} and N := {ng}, there are four possible ways of
extending this interpretation of the primitive concepts and roles to a model of
the TBox consisting of the above concept definition: Inode can be interpreted by
MUN, M, N, or (). All these models are admissible w.r.t. descriptive semantics,
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whereas the first is the gfp-model and the last is the Ifp-model of the TBox.
Obviously, only the gfp-model captures the intuition underlying the definition
(namely, nodes lying on an infinite path) correctly.

It should be noted, however, that in other cases descriptive semantics appears to
be more appropriate. For example, consider the definitions

Tiger = Animal ' dparent. Tiger and Lion = Animal M Jdparent.Lion.

With respect to gfp-semantics, the defined concepts Tiger and Lion must always be
interpreted as the same set whereas this is not the case for descriptive semantics.!

Before we can define Ifp- and gfp-semantics formally, we must introduce some no-
tation. Let 7 be an ££-TBox containing the roles N,,., the primitive concepts
Nprim, and the defined concepts Ngep := {Ay,..., Ax}. A primitive interpreta-
tions J for T is given by a domain A7, an interpretation of the roles r € N,y
by binary relations 77 on A7, and an interpretation of the primitive concepts in
P € Ny by subsets PY of A7. Obviously, a primitive interpretation differs
from an interpretation in that it does not interpret the defined concepts in Ng;.
We say that the interpretation Z is based on the primitive interpretation J iff
it has the same domain as J and coincides with J on Ny, and Np.;p,. For a
fixed primitive interpretation 7, the interpretations Z based on it are uniquely
determined by the tuple (Af, ..., A7) of the interpretations of the defined names
in Ng.p. We define

Int(J) :={Z | T is an interpretation based on [J}.

Interpretations based on J can be compared by the following ordering, which

realizes a pairwise inclusion test between the respective interpretations of the
defined names: if 71,7, € Int(J), then

T, =5 T, iff AT C AP foralli,1 <i<k.

It is easy to see that <7 is a complete lattice on Int(J), i.e., every subset of
Int(J) has a least upper bound (lub) and a greatest lower bound (glb). Thus,
Tarski’s fizpoint theorem [25, 19] applies to all monotonic functions from Int(J)
to Int(J). This theorem states the following: if O: Int(J) — Int(J) is a function
such that Z; <7 Z, implies O(Z;) =7 O(Z) (monotonicity), then O has a fizpoint,
i.e., there is an Z in Int(J) such that O(Z) = Z. To be more precise, O has also
a least fixpoint (i.e., a fixpoint smaller w.r.t. <7 than all other fixpoints) and a
greatest fixpoint (i.e., a fixpoint larger w.r.t. <7 than all other fixpoints).

Definition 2 The TBox 7 := {A; = Dy,..., Ay = Dy} induces the following
function O7 7 on Int(J): Or.7(T,) = T, iff A7 = D* holds for all 4,1 < i < k.

!This example is similar to the “humans and horses” example used by Nebel [22] to illustrate
the difference between descriptive semantics and gfp-semantics in ALN .



Monotonicity of this function is an immediate consequence of the following lemma,
which can be proved by induction on the structure of £.L-concept descriptions.

Lemma 3 Let D be an EL-concept description and Iy, Ty interpretations based
on the primitive interpretation J. Then I, =7 I, implies D™t C D2,

Consequently, O 7 has both a least and a greatest fixpoint, and possibly other
fixpoints in-between (see Example 1). The following proposition is an immediate
consequence of the definition of Or 7.

Proposition 4 Let T be an interpretation based on the primitive interpretation
J. Then T is a fizpoint of Ot 7 iff T is a model of T .

This shows that any primitive interpretation [J can be extended to a model of
7. In particular, there is always a greatest and a least model of T extending 7.

Definition 5 Let 7 be an ££-TBox. The model Z of T is called gfp-model (Ifp-
model) of T iff there is a primitive interpretation J such that Z € Int(J) is the
greatest (least) fixpoint of Or 7. Greatest (least) fizpoint semantics considers
only gfp-models (Ifp-models) as admissible models.

We are now ready to define subsumption w.r.t. the three different types of se-
mantics introduced above.

Definition 6 Let 7 be an ££-TBox and A, B be defined names? occurring in
7. Then,

e A is subsumed by B w.r.t. descriptive semantics (A C B) iff AT C B
holds for all models Z of T.

e A is subsumed by B w.r.t. gfp-semantics (A C,p, 7 B) iff A7 C B” holds
for all gfp-models Z of T.

e A issubsumed by B w.r.t. Ifp-semantics (4 T, 7+ B) iff A C B* holds for
all Ifp-models Z of T.

The main goal of this report is to show that all three subsumption problems
are decidable in polynomial time. To be able to do that, we need some more
information on how least and greatest fixpoints can be constructed. If the function

2Obviously, we can restrict the attention to subsumption between defined concepts since sub-
sumption between arbitrary concept descriptions can be reduced to this problem by introducing
definitions for the descriptions.



is not only monotonic, but also downward (upward) continuous, then the greatest
(least) fixpoint can be constructed by a simple w-iteration. Otherwise, we can
still get the fixpoints through an iteration process, but this process may need
larger ordinals than w (see [19, 2] for a more detailed description).

Given an increasing chain Zy <7 Z; <7 Z, <7 ... of interpretations based on 7,
its least upper bound (lub) is the interpretation Z based on J such A} = J;, Ain
holds for all 7,1 <4 < k. The function O: Int(J) — Int(J) is upward continuous
iff

O(lub({Z; | j 2 0})) = Wb({O(Z;) | j = 0}).
Accordingly, the greatest lower bound (glb) of the decreasing chain Zy =7 77 » 7

T, = ... is the interpretation Z based on J such A7 = Nj>o AZ»Ij holds for all
i,1 < i < k. The function O: Int(J) — Int(J) is downward continuous iff

O(glb({Z; | j = 0})) = glb({O(Z;) | j = 0}).

Proposition 7 Let T be an £EL-TBox and J a primitive interpretation. Then
Or 7 1s upward continuous, but not necessarily downward continuous.

Proof. (1) Let Zy <7 77 <7 Zy =7 ... be an increasing chain in Int(J), and let Z
be its least upper bound. Upward continuity of Or 7 is an immediate consequence
of the fact that
D' =| D%
Jjz0
holds for all £L-concept descriptions D. This can in turn easily be shown by
induction on the structure of £L-concept descriptions.

(2) Consider the TBox 7 := {A = 3r.A}, and the primitive interpretation J
with

® Aj = {O,O}U{CLZ'J | 1 S] SZ},

o 17 = {(CLU,CLLI) | 7> 1} U {(ai,j,amﬂ) | 1< ] < Z}

If we consider 77 as the edges of a graph with nodes A7, then this graph is a
tree with root ag, which is infinitely branching. All other nodes have at most one
successor node. The root is the origin of infinitely many paths, one of length 1,
one of length 2, etc. The interpretations Z, (¥ > 0) based on J are now defined
as follows:

o Alv .= {CLU} U {ai,j | Z—] > I/}.



It is easy to see that Zyp =7 Z; =7 I =7 ... and that Oy 7(Z,) = Z,41.
Consequently, Z := ¢glb({Or.7(Z,) | v > 0}) = glb({Z, | v > 1}). In particular,
since ag € A for all v > 1, this implies ag € AZ.

On the other hand, let Z' := ¢lb({Z, | v > 0}) and Z” := O7 7(Z'). Then
AT = {ay}, and thus AT" = () # AT, O

The least and the greatest fixpoint of O 7 can be obtained by iterated application
of Or 7, respectively starting with the least and the greatest interpretation based

on J.

Definition 8 Let 7 be an ££-TBox, J a primitive interpretation, and Z,, the

greatest and Zy,; the least interpretation based on 7, i.e., AZ»I“”’ =AY and Afb"t =
(0 for all 4,1 <4 < k. Then we define for every ordinal o:

o I =Ty, and T** := T, if a = 0;
o 71t .= O ;(Z1) and T+*+! .= O 7 (T%);
o T := ub({Z" | B < a} and %" :== glb({T** | B < a}

if o is a limit ordinal.

As usual, let w denote the first infinite ordinal (i.e., the order type of the non-
negative integers). Since Or 7 is upward continuous, Tarski’s fixpoint theorem
says that Z™ is the least fixpoint of Or 7. Since O 7 need not be downward
continuous, Z** need not be a fixpoint of Or 7. However, Tarski’s fixpoint theo-
rem says that there exists an ordinal o such that 7+ is the greatest fixpoint of

Or 7.

In Section 6 we will also consider models of 7 that are the greatest models below
a given interpretation Z.

Definition 9 Let 7 be an ££-TBox, J a primitive interpretation, and Zy an
interpretation based on 7. The model Z of T is called Zy-model of T iff it is
based on J and satisfies T <7 Zy. The greatest Zy-model of T (if it exists) is
called Zy-gfp-model of T.

If 7, is itself a model of T, then it is also the Zy-gfp-model of 7. The following
describes a more general sufficient condition for the greatest Zg-model of T to
exist.

Proposition 10 If Or 7(Zy) <7 Iy, then T has an Zy-gfp-model based on J.



Proof. If T € Int(J) is such that Z <7 Z,, then the monotonicity of O7 7 implies
that Or 7(Z) <7 O1.7(Zy) =<7 Zy. Consequently, Or 7 is also an operator on
{Z | Z <7 Zy}. Since it is monotonic, it has a greatest fixpoint in this set as well,
which is obviously the Zy-gfp-model of 7. O

Since Zy is the greatest element of the set {Z | Z <7 Zy}, the proof of the propo-
sition shows that the Zy-gfp-model of T can be obtained by iterated application
of the operator O 7, starting with Z,.

Corollary 11 Let Oy 7(Ty) <5 Ty. We define I," == Ty, T3*™" == Or 7 (TL%),
and I1* == gb({ZL° | B < o} if av is a limit ordinal. Then there exists an ordinal
a such that T3* is the To-gfp-model of T .

3 Description graphs and simulations

In this section, we will show that £L-TBoxes as well as primitive interpretations
can be represented as description graphs. Then, we will introduce the notion of a
simulation between nodes of a description graph, and show some useful properties
of simulations.

3.1 Normalized £L-TBoxes

Before we can translate ££-TBoxes into description graphs, we must normalize
the TBoxes. In the following, let 7 be an £L-TBox, N4 the defined concepts
of T, Nyrim the primitive concepts of 7, and N,y the roles of 7.

We say that the £L£-TBox T is normalized iff A = D € T implies that D is of
the form
P1|_|...|_|Pm|_|E|T’l.Bl|_|...|_|E|T[.Bg,

for m,0 >0, Pi,..., Py € Nppim, T1,...,7¢ € Nygte, and By, ..., By € Ngy. If
m=/_(=0, then D=T.

First, we illustrate this normalization process by a typical example.

Example 12 Consider the ££-TBox T consisting of the following concept defi-
nitions:

Al P1 1 A2 1 3T1.E‘T2.A3,
A2 P2 1 A3 M 37“2.37“1.141,
A3 = P3|_|A2|_|E|T1.(P1|_|P2).



By introducing auxiliary definitions, we obtain the new TBox 7"

Al = P1|_|A2|_|E|T1.Bl,

B, = dry.As,
Ay = P, A3 3ry.Bs,
By, = dr. Ay,
As = P3N Ay 3dr.Bs,
By = PnNp,.

This TBox is not yet normalized since the definitions of A;, A and A; contain
defined concepts in their top-level conjunction.

Let us first concentrate on the definitions of A5 and A;. The occurrence of As in
the top-level conjunction of the definition of A, shows that A, is subsumed by
Az, and the occurrence of A, in the top-level conjunction of the definition of As
shows that Aj is subsumed by As. Thus, the concepts A; and Az are equivalent,
(i.e., are interpreted by the same set in all models of the TBox). In addition
A, (and the equivalent concept A3) is subsumed by P M P3 M 3ry.By M 3ry.Bs.
Thus, we can replace every occurrence of Az in 7' by A,, and the definition of
As by the inclusion constraint As & P, M Py M 3dry. By M dry. B3, with the obvious
semantics that the interpretation of A, must be contained in the interpretation
of the concept description on the right-hand side:

Al = P1 M A2 1 EITl.Bl,

By = dry. A,
Ay T Py P3N dry.By M 3r.Ba,
B, = dr Ay,
B; = PNk,

In order to transform this back into a TBox, we must get rid of the inclusion
constraint. How to do this depends on the semantics used for cyclic definitions.
If we use descriptive semantics, then we can employ Nebel’s approach [20] to turn
inclusion statements into definitions: we introduce a new primitive concept A,
and replace Ay © P, M P3 M 3dry.By M dry.B3 by the definition

A2 = AQ Il P2 M P3 1 ElT’Q.BQ 1 E‘Tl.Bg.

For fixpoint semantics, this approach cannot be employed. The reason is that the
interpretation of the primitive concept A, is fixed by the primitive interpretation,
and thus cannot be maximized or minimized.
If we use gfp-semantics, then we can replace the inclusion constraint by the defi-
nition

Ay = Py, Py dry. By M 3r.Bs.
In fact, this is the largest possible interpretation of A, that the inclusion con-
straint allows.

10



Finally, if we use [fp-semantics, then Ay becomes unsatisfiable, i.e., A, is inter-
preted by the empty set in all Ifp-models of the TBox together with the inclusion
constraint. In fact, the empty set is the smallest interpretation of A, that the
inclusion constraint allows. Consequently, all defined concepts whose right-hand
sides contain A, are also interpreted by the empty set in all Ifp-models. The same
is true for all defined concepts whose defintions contain these concepts, etc. For
this reason, we can remove from the TBox the inclusion constraint together with
all definitions that refer (directly or indirectly) to As. (When deciding subsump-
tion w.r.t. lfp-semantics, one must just keep in mind that all the concepts whose
definitions have been removed are unsatisfiable, and thus are subsumed by all the
other concepts.)

For the three types of semantics, we thus have shown how to remove the inclusion
constraint. The TBoxes obtained this way still need not be in normal form since
(for gfp- and descriptive semantics) the definition of A; still refers to A, on the
top-level. However, we can now just replace the top-level A in the definition of
A; by its defining concept description. This way, we end up with a normalized
TBox. For gfp- and descriptive semantics, we can now add a definition for A,
which just has the same right-hand side as the definition of A,.

With respect to gfp-semantics, we thus obtain the following normalized TBox

Tafp.
Al = P1|_|P2|_|P3|_|E|7’1.Bl|_|E|T2.BQ|_|E|7’1.Bg,

By = dry. A,
Ay = P, P31 3dry.By M 3dry.Bs,
By, = dri. Ay,
A3 = P, P3N 3ry. By M 3ry.Bs,
B; = P NPy,

and w.r.t. descriptive semantics, we obtain the normalized TBox 7 %

A, = PNA,NP,N PN 3r,.B; M 3ry.By M 3r,.Bs,
By = dry. A,

Ay = Ay PN Py 3ry.By M 3r,. By,

By, = dri. Ay,

A; = Ay PN Py 3ry.By M 3r,. By,

By = PNk

With respect to lfp-semantics, only the definition
B3 = P1 M P2

remains, whereas all the other defined concepts are unsatisfiable.

The normalization approach used in the example can easily be generalized to
arbitrary £L£-TBoxes. Assume, without loss of generality, that the introduction
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of auxiliary definitions (as illustrated in Example 12) has already been done. Let
G be the graph whose nodes are the defined concepts of the TBox, and where
there is an edge from A to B iff B occurs in the top-level conjunction of the
definition of A. We write

e B < A iff there is a path in G leading from A to B,
e AZ Biff A< Band B < A, and
e B<Aiff B< A and not A X B.

In Example 12 we have Ay = A3 and Ay < A;.

By definition, < is a quasi-ordering and = is the equivalence induced by <. On
the =-equivalence classes, < induces a partial ordering:

A< [B] iff A< B,

where [C] ={C"| C = C'}.

All the concepts that belong to the same =-equivalence class are obviously in-
terpreted by the same set in all models of the TBox. We start with a minimal
equivalence classes w.r.t. <, and treat it as illustrated with the help of A, and As
in Example 12. Then, we replace the occurrences of elements of this class on the
top-level by their new definition, and continue with the next equivalence class.

Since only top-level occurrences are replaced, the replacement of defined concepts
by their definitions cannot lead to an exponential blow-up as in the general case
(by using idempotency of M). To sum up, we have sketched how to prove the
following proposition:

Proposition 13 Subsumption between concepts defined in an EL-TBox w.r.t.
Ifp-, gfp, and descriptive semantics can be reduced in polynomial time to sub-
sumption between concepts defined in a normalized £ L-TBox.

3.2 Description graphs

In the following, we will assume without loss of generality that all TBoxes are
normalized. Normalized £L-TBoxes can be viewed as graphs whose nodes are
the defined concepts, which are labeled by sets of primitive concepts, and whose
edges are given by the existential restrictions. For the rest of this subsection,
we fix a normalized ££-TBox 7 with primitive concepts Npin,, defined concepts
Niges, and roles Nge.

Definition 14 An EL-description graph is a graph G = (V, E, L) where
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e 1 is a set of nodes;
e CV X Ny XV is a set of edges labeled by role names;

o L:V — 2Nrim ig a function that labels nodes with sets of primitive concepts.

The TBox T can be translated into the following & L-description graph Gy =
(Ndefa ETv LT>:
e the nodes of Gr are the defined concepts of T;

e if Ais a defined concept and
AEP1|_|...|_|Pm|_|E|’I“1.Bl|_|...|_|E|T4.Bg

its definition in 7, then
— Ly(A) ={P,...,P,}, and
— A is the source of the edges (A,ry, By),...,(A,r, By) € Er.

Any primitive interpretation J = (A7,-7) can be translated into the following
& L-description graph G; = (A7, E;, Ls):

e the nodes of G are the elements of A7;

o By :={(x.ry) | (v,y) €7}

o Ly(x)={P € Nppj, | v € P} for all z € A7.
An example of an £ L-description graph can be found in Figure 1. The translation
between £L-TBoxes (primitive interpretations) to £L-description graphs works
in both directions, i.e., any £ L-description graph can also be view as an £ £-TBox

(primitive interpretation). For example, the £ L-description graph of Figure 1 can
also be viewed as representing the following primitive interpretation J:

L4 Aj = {AlaAZaA?nBlaBZaBS};

) Plj = {Al, Bg}, P2‘7 = {141,1427143,B3}7 a,nd Péj = {Al,AQ,Ag};

L] T’{ = {(Alv Bl>, (Al, Bg), (AQ, B3>, (A3, Bg), (BQ, Al)} and
ry = {(Ay, By), (Ay, By), (A3, By), (By, Ay)}.

13
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Figure 1: The £L£-description graph of the normalized TBox 797 in Example 12.

3.3 Simulations

Simulations are binary relations between nodes of two £ L-description graphs that
respect labels and edges in the sense defined below.

Definition 15 Let G; = (V;, E;, L;) (i = 1,2) be two £ L-description graphs. The

binary relation Z C Vi x V5 is a simulation from Gy to G, iff

(S1) (v1,v2) € Z implies Li(v1) C Ly(vy); and

(S2) if (vy,v2) € Z and (vy,7,v]) € Ey, then there exists a node v} € V5 such
that (v}, v)) € Z and (vy, 7, vh) € Es.

We write Z: G ~ G, to express that Z is a simulation from G; to Gs.

It is easy to see that the set of all simulations from G; to Gy is closed under
arbitrary unions. Consequently, there always exists a greatest simulation from
g1 to Go. If Gy, Gy are finite, then this greatest simulation can be computed in
polynomial time. Basically, one starts with

Zy = {(v1,v2) € Vi x Vo | Li(v1) C Lo(v2)},

and then removes tuples if they violate (S2) until no more tuples can be removed.
Since testing whether (S2) is violated for a given pair of nodes can be realized in
polynomial time and Z, contains only polynomially many tuples, this procedures

14



terminates in polynomial time, and it is easy to show that it computes the greatest
simulation from G; to G5. A more efficient algorithm for computing the greatest
simulation between two finite graphs can be found in [12]. Tts complexity is
O(mn), where m is the number of edges and n is the number of nodes of the two
graphs (assuming that m > n).

Proposition 16 Let G, Gy be two finite £L-description graphs, vi a node of Gy
and vy a node of Go. Then we can be decide in polynomial time whether there is
a simulation Z: Gy ~ Gy such that (vy,v3) € Z.

Proof. 1t is easy to see that there is a simulation Z: G; ~ g2 such that (vy,v5) € Z
iff the greatest simulation Z: G ~ G satlsﬁes (v1,v9) € 7. Thus, the proposition

immediately follows from the fact that 7 can be computed in polynomial time.
([l

Definition 15 also covers the case where G; = G,. In this case, the identity on the
nodes of G; = G5 is a simulation. Consequently, the greatest simulation contains
the identity.

We will later use the fact that the class of all simulations is closed under compo-
sition.

Lemma 17 Let Gi,Go, Gy be £L-description graphs, and let Zi: Gy ~ Gy and
Za: Ga ~ Gg be simulations. Then
Zy 0 Zy == {(v,v") | there exists v' such that (v,v") € Zy and (v',v") € Zy}

18 also a simulation.

4 Subsumption w.r.t. gfp-semantics

In the following, let 7 be a normalized ££-TBox with primitive concepts N,
defined concepts N s, and roles N,,. In this section, we will show that A T,
B holds for two defined concepts A, B iff there is a simulation Z: Gy ~ G such
that (B, A) € Z. As an auxiliary result we give a characterization of when an
individual of a gfp-model belongs to a defined concept in this model.

Proposition 18 Let J be a primitive interpretation and T the gfp-model of T
based on J. Then the following are equivalent for any A € Ngp and v € A7

1. x € AT,

2. There is a simulation Z: Gr ~ Gz such that (A,x) € Z.
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P’/’OOf. Let QT = (Ndefa ET,LT) and gj = (AJ,EJ, Lj)
(1=2) Assume that x € A%. The relation Z C Ny.; x A7 is defined as follows:
Z :={(B,y) € Ngey x A | y € B*}.

Since x € AT, we have (A,x) € Z. It remains to be shown that Z satisfies (S1)
and (S2) of Definition 15. Thus, let (B,y) € Z, and let

BEPlﬂHPmﬂzlrlBlﬂﬂE‘TgB[

be the definition of B in 7.

(S1) Since (B,y) € Z, we have y € BY, and thus y € Pf = P/ fori=1,...,m.
Consequently, Ly(B) = {Py,...,Pn} C{P € Nppim, | y € P7} = L4 (y).

(S2) Now consider B; with (B,r;, B;) € Er. Since y € BY C (Ir;.B;)%, we know
that there exists a y; € A7 such that (y,y;) € 7/ and y; € BZ. But then we have
(yar’iayi) € E.7 and (Blayz) € Z.

(2=1) Assume that Z: G ~ G is a simulation such that (A,xz) € Z. Since T
is the gfp-model of 7 based on 7, there is an ordinal « such that Z = Z+°.

Now, we consider triples (B,y,[3) consisting of a defined concept B € Ny,
an individual y € A7, and an ordinal 3, and show (by transfinite induction
on ) that (B,y) € Z implies y € BT For the triple (A, x, ) this yields
re AT = AT,

Assume that (B,y) € Z, but y ¢ BT".
Case 1: (B is a limit ordinal. Then we have
BIY — pab({THv<p}) — ﬂ BIM,
7<B

and thus there exists an ordinal v < § such that (B,y) € Z, but y ¢ BT".
However, the induction assumption for the smaller ordinal  says that (B,y) € Z
implies y € BT,

Case 2: (B is a successor ordinal, i.e., =+ 1. Let
BEPl|_|...|_|Pm|_|E|T1.B1|_|...|_|E|’I“[.B[
be the definition of B in 7. Then,

B =07,(B™") = (PN...NP)"" N (3r.B,1...03r.B)""
= P7n...nPIN@r.Bn...N 3B,

Since (B,y) € Z implies Ly(B) = {P1,...,Pn} C{P € Npim | y € P7} =
Lz (y), we know that y € P for all i = 1,...,m. Consequently, y & BT is due
to the fact that y ¢ (3r;.B;)%"" for some j,1 < j < (.
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Since (B,y) € Z and (B,rj, B;) € Er, the fact that Z is a simulation implies
that there exists an individual y' € A7 such that (y,r;,y') € E7 and (B;,y') €
Z. This yields (y,y') € r7 (by definition of E;) and y' € B]-IM (by induction
since v < (). But then y € (E!Tj.Bj)IM, contradicting our assumption that
y ¢ (Elrj.Bj)IM is responsible for the fact that y ¢ BZ". O

This proposition can now be used to prove the following characterization of sub-
sumption w.r.t. gfp-semantics in £L.

Theorem 19 Let T be an EL-TBox and A, B defined concepts in T. Then the
following are equivalent:

1. A ngp,']— B.

2. There is a simulation Z: Gy ~ Gy such that (B, A) € Z.

Proof. (2=-1) Assume that the simulation Z: G5 ~ G satisfies (B, A) € Z. Let
J be a primitive interpretation and Z the gfp-model of 7 based on [J. We must
show that # € AT implies x € B~.

By Proposition 18, # € AT implies that there is a simulation Y: Gy ~ G such
that (A,z) € Y. But then X := Z oY is a simulation from G7 to G7 such that
(B,r) € X. By Proposition 18, this implies x € B~.

(1=2) Assume that A C,r, 7 B. We consider the graph Gr, and view it as an
& L-description graph of a primitive interpretation. Thus, let 7 be the primitive
interpretation with Gy = G 7, and let Z be the gfp-model of T based on 7.

Since the identity is a simulation Id: Gy ~ Gy = G that satisfies (A, A) € Id,
Proposition 18 yields A € A%. But then A C s, 7 B implies A € B, and thus
Proposition 18 yields the existence of a simulation Z: Gy ~ G7 = G7 such that
(B,A) e Z. O

The theorem together with Proposition 16 shows that subsumption w.r.t. gfp-
semantics in £L is tractable.

Corollary 20 Subsumption w.r.t. gfp-semantics in EL can be decided in polyno-
maal time.

This result is quite surprising since, for the DL F L, (which allows for conjunc-
tion and value restrictions only), subsumption w.r.t. gfp-semantics is already
PSPACE-complete.
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Figure 2: The &L-description graph of the TBox in Example 21.

Example 21 Consider the TBox 7T consisting of the following concept defini-
tions:

B =3r.C, C=3r.D, D=3arC,

A=3arA, A =3rD.
The £L-description graph Gy corresponding to this TBox can be found in Fig-
ure 2. Let V3 = {A, A’, B,C, D} denote the set of nodes of this graph. Then
Z =V xV is a simulation from Gy to Gy. Consequently, all the defined concepts
in 7 subsume each other w.r.t. gfp-semantics.

5 Subsumption w.r.t. Ifp-semantics

For the sake of completeness, we also treat Ifp-semantics in this report. It should
be noted, however, that the results of this section demonstrate that lfp-semantics
is not interesting in £L.

Let 7 be an ££-TBox and G7 the corresponding & L-description graph. Where
A, B are nodes of Gy, we write A =7 B to denote that there is a path in G from

Ato B,and A i>T B to denote that there is a non-empty path in G from A to
B. We define

Cycy := {A | there exists a node B such that A 5 B g B},

i.e., Cycy consists of the nodes in Gr that can reach a cyclic path in Gp. The
following lemma is an easy consequence of the definition of Cycy.

Lemma 22 If A € Cycy, then there exist a defined concept A" € Cycy and a
role r such that (A,r, A") is an edge in Gr.
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Proposition 23 Let T be an EL-TBox and A a defined concept in T. If A €
Cycy, then A is unsatisfiable w.r.t. Ifp-semantics, i.e., A* = (0 holds for all
Ifp-models T of T .

Proof. Let J be a primitive interpretation and Z the Ifp-model of 7 based on 7.
Since O 7 is upward continuous by Proposition 7, we know that Z = 7', and
thus A7 = |J,.,A%7". We show by induction on n that AT = § holds for all
n > 0, which yields AT = 0.

(n = 0) AT® = @ by definition of Z1°.

(n = n+1) By Lemma 22 there exists a defined concept A" € Cyc, and a role
r such that (A,r, A’) is an edge in Gr. Thus, if A = D is the definition of A in
T, then D contains the conjunct Ir.A’ in its top-level conjunction. By induction,
we know that A7 = (), and thus A" = Oy ;(AT") = DT = ). O

Since all the defined concepts in Cycs are unsatisfiable, their definitions can be
removed from the TBox without changing the meaning of the concepts whose
definition does not refer to an element of Cyc,. This leaves us with an acyclic
terminology. Consequently, the only thing that cyclic definitions can express
w.r.t. lfp-semantics in ££ is unsatisfiability of a defined concept. However, since
in £L all concepts referring to an unsatisfiable concept are also unsatisfiable, this
does not buy us much.

In Example 21, all the defined concepts belong to Cycs, and thus they are all
unsatisfiable w.r.t. 1Ifp-semantics.

Corollary 24 Subsumption w.r.t. lfp-semantics in EL can be decided in polyno-
meal time.

Proof. Let T be an £L£-TBox and A, B be defined concepts in 7. We want to
decide whether or not A Ty, 7 B holds. Obviously, Cycs can be computed in
polynomial time.

Case 1: A and B do not belong to Cycy. Let T’ be the TBox obtained from 7
by removing all the definitions for elements in Cycy. It is easy to see that 7" is
an acyclic TBox that does not contain any of the concept names in Cycy (also
not on the right-hand side of a definition). Since the definitions of A, B do not
refer to any element of Cyc,, we have A Cyp, 7 B iff A Ty, v B. Since 7' is
acyclic, lfp-semantics and gfp-semantics agree on 7' [22], and thus A T, 7 B iff
A Cypp 1 B. By Corollary 20, A T, 77 B can be decided in polynomial time.

Case 2: A € Cycy. Since any lfp-model of T interprets A by the empty set, we
clearly have A Ty, 7 B.

Case 3: A & Cycy and B € Cycy. Then A Ty 7 B does not hold. To see
this it is enough to show that there is an Ifp-model of 7 that interprets A by
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a non-empty set. Consider the TBox 7' constructed in Case 1. Any Ifp-model
of 7' can be extended to an Ifp-model of T by assigning the empty set to the
elements of Cyc,. However, the lfp-models of 7' are just the gfp-models of 7.
Now, let us view G+ as the graph of a primitive interpretation [J, and let Z be
the gfp-model based on [J. The identity on the nodes of G7 is a simulation that
contains the pair (A, A). By Proposition 18, this shows that A € AT, O

6 Subsumption w.r.t. descriptive semantics

Let 7 be an £L£-TBox and Gy the corresponding & L-description graph. Since
every gfp-model of 7 is a model of 7, A Ty B implies A C s, 7+ B. Consequently,
A C7 B implies that there is a simulation Z: Gr ~ Gy with (B, A) € Z. In the
following we will show what additional properties the simulation Z must satisfy
for the implication in the other direction to hold.

To get an intuition on the difference between gfp- and descriptive semantics, let us
consider Example 21. With respect to gfp-semantics, all the defined concepts of T
are equivalent (i.e., subsume each other). With respect to descriptive semantics,
A, B, D are still equivalent, C' is equivalent to A’, but A’ is not equivalent to B,
and C' and D are also not equivalent (in both cases, the concepts are not even
comparable w.r.t. subsumption).

To see that C' and A’ are equivalent w.r.t. descriptive semantics, it is enough to
note that the following identities hold in every model Z of T

AT = (3r.D)F = 7.

A similar argument shows that B and D are equivalent. In addition, equivalence
of C" and A’ obviously also implies equivalence of A and B. The following model
of T is a counterexample to the other subsumption relationships:

1. AT :={c,d};

2. 1t = {(c,d). (d,c)};

3. AT :={d}, A" :={c}, CF .= {c}, D* := {d}, B* := {d}.
We will see below that the reason for A’ and B not being equivalent is that in
the infinite path in Gz starting with A’, one reaches D with an odd number of
edges, whereas (' is reached with an even number; for the path starting with B,

it is just the opposite. In contrast, the infinite paths starting respectively with
A and B “synchronize” after a finite number of steps.

To formalize this intuition, we must introduce some notation. Let 7 be an £L-
TBox, Gy the corresponding £ L-description graph, and Z: G- ~ G7 a simulation.
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B =B &% B 3% B, & B &
AN Z| Z| Z|
A - AO g Al g A2 g A3

Figure 3: A (B, A)-simulation chain.

bythe pathpZ: A=A gAl 3142 31433 IH(BZ,Al) € Zforalli>0. In
this case we say that the pair (p1, po) is a (B, A)-simulation chain w.r.t. Z. (see
Figure 3).

Definition 25 The path p;: B = By = By = B, 2 By B - is Z-simulated
A

Consider the TBox 7 and the simulation Z introduced in Example 21. Then

B % ¢ % D &% ¢ &% D S
Al 7 A Al Al
A S5 A 5 D 4S5 ¢ 5% DS

is a (B, A)-simulation chain w.r.t. Z, and

B 5 ¢ 5 p &% ¢ 5 D 5
Al A A Al A
A S5 b S ¢ 5 DS o S

is a (B, A’)-simulation chain w.r.t. Z. Note that the first chain synchronizes after
a finite number of steps in the sense that there is a Z-link (in fact infinitely many
in this case) between the same defined concept. In contrast, the second chain
does not synchronize in this sense. We will see below that this is responsible
for the fact that A is subsumed by B w.r.t. descriptive semantics, but A’ is not
subsumed by B w.r.t. descriptive semantics.

If (B,A) € Z, then (S2) of Definition 15 implies that, for every infinite path p;
starting with B, := B, there is an infinite path p, starting with A, := A such
that p; is Z-simulated by p,. In the following we construct such a simulating
path step by step. The main point is, however, that the decision which concept
A, to take in step n should depend only on the partial (B, A)-simulation chain
already constructed, and not on the parts of the path p; not yet considered.

Definition 26 A partial (B, A)-simulation chain is of the form depicted in Fig-
ure 4. A selection function S for A, B and Z assigns to each partial (B, A)-
simulation chain of this form a defined concept A,, such that (A, _1,7,, Ay) is an
edge in Gr and (B,, A,) € Z.

Given a path B = By = B; =3 By 3 By 4 ... and a defined concept A such
that (B, A) € Z, one can use a selection function S for A, B and Z to construct a
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Figure 4: A partial (B, A)-simulation chain.
D=
/ T
T : T~
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r @ g

Figure 5: An &£L-description graph of a cyclic ££-TBox.

Z-simulating path. In this case we say that the resulting (B, A)-simulation chain
is S-selected.

Example 27 Consider the £L-description graph of Figure 5. Where V' denotes
the set of all nodes of this graph, it is easy to see that Z := V x V is a simulation
such that (B, A) € Z. There are two selection functions for A, B and Z. The
function S; that assigns E; to the partial (B, A)-simulation chain

B L FE
A
A

and the function S that assigns Fs to this chain.

Definition 28 Let A, B be defined concepts in T, and Z: G ~ G5 a simulation
with (B, A) € Z. Then Z is called (B, A)-synchronized iff there exists a selection
function S for A, B and Z such that the following holds: for every S-selected
(B, A)-simulation chain of the form depicted in Figure 3 there exists an i > 0
such that A; = B;.

The simulation Z of Example 27 is not (B, A)-synchronized. In fact, if we take
the selection function Sy, then the Si-selected (B, A)-simulation chain induced by
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the infinite path B = F - D 5 D 5 ... does not satisfy the condition stated
in Definition 28. If we take the selection function S5 instead, then the Ss-selected
(B, A)-simulation chain induced by the infinite path B > E 5 C 5 C 5 --.
does not satisfy this condition.

We are now ready to state our characterization of subsumption w.r.t. descriptive
semantics.

Theorem 29 Let T be an EL-TBozx, and A, B defined concepts in T. Then the
following are equivalent:

1. AC+ B.
2. There is a (B, A)-synchronized simulation Z: Gr ~ Gy such that (B, A) €
Z.

As in the case of gfp-semantics, we prove the theorem by first giving a charac-
terization of when an individual of a model belongs to a defined concept in this
model. Since any model Z of T is itself an Z-gfp-model of T, it is sufficient to
formulate the condition for Z-gfp-models of 7.

Proposition 30 Let J be a primitive interpretation, Ly an interpretation based
on J such that O 7(Zy) =7 Ly, and I the Iy-gfp-model of T. Then the following
are equivalent for any A € Ngoy and v € A7 :

1. x € AT
2. There is a simulation 7Z: Gy ~ G 7 such that

(a) (A,x) € Z; and
(b) if (B,y) € Z then y € B,

Proof. Instead of proving this result directly, we will reduce it to Proposition 18.
To this purpose, we define the new TBox

T :={B=DnNPz|B=D¢cT}

where the Pg are new primitive concepts. Obviously, 7 and 7' have the same
defined concepts. For T’ we define the primitive interpretation 7' as follows:

o A7 :=A7:
e 7 := 17 for all role names r;

e P7 .= PJ if P is a primitive concept in T
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o PJ := B%™ where B is a defined concept.
We define:
o 7W =7, and Z"° := 7! . where 7!

top 1op 18 the interpretation based on J' such
that BTr = A7 for all defined concepts B;

o Ttotl .= O 7 (Z%*) and T := O 7 (TH);

o TV := glb({T¥ | B < a} and TM® := glb({Z" | B < a} if a is a limit
ordinal.

Let B be a defined concept. We claim that BT D BT > BT"*" holds for all
n > 0. Before proving this claim, we show that it implies the statement of the
proposition.

The claim obviously implies that 7+ agrees with Z* on all defined concepts, and
thus the same is true for all larger ordinals. This implies that the Zy-gfp-model
T of T based on J agrees on all defined concepts with the gfp-model Z' of T’
based on J'. Consequently, z € AT iff x € AT,

By Proposition 18, z € AT is equivalent to the existence of a simulation Z': G ~
G such that (A, x) € Z'. The only difference between G7+ and G is that in G
the label of each node B additionally contains Pg. The only difference between
G and Gz is that in G4 the labels of nodes may additionally contain the new
primitive concepts Pg. Consequently, 7' is a simulation also from Gy to G7. In
addition, (B,y) € Z' implies that P belongs to the label of  in G, and thus
y € PJ = B™. Conversely, if Z: G; ~ G is a simulation satisfying (2b) of the
proposition, then it is also a simulation from G to G;.

To finish the proof of the proposition, we show by induction on n that BT

)
BT o BT holds for all n > 0. Let B = D be the definition of B in 7.
The definition of B in 7" is then B = D M Pkg.

(n = 0) We have

BT = BOTs@) = ph and

BIIU — BO7.7Top) — DTtep N Pg' — D%op N BTo,

Monotonicity of the concept constructors of £ implies that DT C D%er and
the assumption Or 7(Zy) < Ty yields BT = BOT.s(To) ¢ BT = BT, Thus,
we have BT C D% and BT C B, which taken together vields BT C
D% 0 BT = BT"' C BT = BT,

(n — n + 1) Assume that BT D BT > BT"" holds for all i < n. Then we
have
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1. BT = D™ C DT by induction and the monotonicity of the con-
cept constructors of £L.

2. BT ¢ BT C BT C ... € B® = PJ since TM = T, =5
Or.7(Zy) = I*" and the monotonicity of O 7 imply Z%° = ; TH =, T¥ = ;

3. Consequently BZ™** € DI 0 pJ" = BOr.or(T"H) — gT+"*?

4. Finally, BT = D™""'npPJ" = DT nB%™ C D" NB%™ = BT""". The
inclusion holds by induction and the monotonicity of the concept construc-
tors of ££, and the last identity holds since DT = BT"""" C BT* = BT,

To sum up, we have shown BT"™ C BT""" C BT which completes the
induction proof. O

Proof of (2) — (1) of Theorem 29

Assume that Z: G- ~ G7 is a (B, A)-synchronized simulation such that (B, A) €
Z, and let S be the selection function required in the definition of a (B, A)-
synchronized simulation.

To show A Cs B, we consider an arbitrary model Z of T such that # € AZ, and
show that € BZ. Let J be the primitive interpretation on which Z is based.
Then 7 is itself the Z-gfp-model of 7 based on 7. Consequently, Proposition 30
shows that o € AT implies the existence of a simulation Y: G ~ G such that

(a) (A,z) €Y, and

(b) (C,y) € Y implies y € C*.

Now, assume that o ¢ BZ. Where
BEPIHHPmHHSlclﬂﬂE‘SgC[

is the definition of B in 7, this implies that there is an index 7,1 <14 < m, such
that * ¢ PZ = P or an index j,1 < j < ¢ such that x ¢ (35;.C;)%. The facts
that (B,A) € Z and x € A* obviously imply that the first alternative cannot
occur. Thus, there is an index j, 1 < j < ¢ such that = & (3s;.C;)7.

Consider the partial (B, A)-simulation chain
B = By & B

Z
A:AU
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where B; := Cj and 1, := s;. The selection function S yields a defined concept A,
such that (B, A;) € Z and (Ag, 71, A1) is an edge in Gr. Since Y is a simulation
with (Ap,z) € Y, this implies the existence of an individual z; € AZ such
that (z,7, 1) is an edge in G7 and (Ay,z1) € Y. Thus, we have the following
situation:
B = B, & B
AN AN
A = AO g Al
Y] Y]
o g T

where 1o := x. By our assumption, zy € AZ \ BZ.
Lemma 31 z, € AT\ BE.

Proof. Since Y is a simulation satisfying condition (b) from above, Proposition 30
shows that (A;,z1) € Y implies v, € A7

Now, assume that z; € Bf = C7F. Since (x,71, 1) is an edge in Gz, we know that
(z,21) € r{ = rI. But then r, = s; yields x € (3s;.C;)%, which contradicts our
choice of j. O

The lemma shows that we can now continue with x1, By, A; in place of xq, By, Ag,
etc. This yields the following pair of simulation chains:

B =B % B 2 B, & By &
Zl Zl Zl Zl

A = Ay B 4 B 4, B 4, B
Yl Yl Yl Yl
To B o B oa, B oy B

where z,, € AL\ BE for all n > 0. However, the upper chain was constructed
using the selection function S (i.e., it is S-selected), and thus there exists an index
n > 0such that A, = B,. This is an obvious contradiction to x, € AZ\ BZ. Thus,
our assumption x € AT\ BT is refuted, which completes the proof of (2) — (1)
of Theorem 29.

Proof of (1) — (2) of Theorem 29

Assume that A Ty B. We consider the graph G = (Vr, Er, L7), and view it as
an & L-description graph describing a primitive interpretation. Let J denote the
primitive interpretation such that Gr = G 7.

First, we will construct an interpretation Zy based on J such that Or 7(Zy) <7
Zy. To this purpose, we construct an appropriate simulation Y: Gr ~ G7, and
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then define for all defined concepts C":
(x) Ch.={C"|(C,C")eY}.

We define Y := |, -, Y, where the relations Y, are defined by induction on n:
Y} is the identity on the nodes of G = G ;. If Y, is already defined, then

Yo =Y, U{(C.C") | (1) Ly (C) C Lr(C),
(2) (C,r1,Ch), ..., (Cyre, Cp) are all the edges in Gr
with source C', and
(3) there are edges (C',r1,CY),...,(C", 1y, C}) in Gr
such that (C1,CY) € Yy, ..., (Cy, () €Y, .

Lemma 32 Y is a simulation.

Proof. First, we show by induction on n that all the relations Y,, are simulations.
(n = 0) The identity is obviously a simulation.

(n — n + 1) Assume that Y, is a simulation. To show that Y, is also a
simulation, assume that (C',C") € Y,,41 and (C,r, D) € Er. If (C,C") € Y,, then
the assumption that Y, is a simulation yields Ly (C) C Ly (C") and the existence
of a defined concept D" such that (D,D') € Y, C Y, and (C',r,D’) € ET.

Thus, assume that (C, C') € Y,,11\Y,. Then the definition of Y,, 1 yields L+(C) C
L7(C") and the existence of a defined concept D’ such that (D, D’) € Y,, C Y, 4
and (C',r,D") € Er.

Thus, we have shown that all Y, are simulations. Now, let (C,C") € Y and
(Cyr,D) € E. Then there exists an n > 0 such that (C,C") € Y},, and thus the
fact that Y}, is a simulation yields L (C') C Ly (C") and the existence of a defined
concept D' such that (D,D’) € Y,, CY and (C',r,D') € E. O

Now, let Z; be the interpretation based on J defined by the identity (x) above.
Lemma 33 07'7‘7(1'0) jj Io-

Proof. Let T, := O1 7(Zy), and let C' be a defined concept whose definition in 7
is
C’EPll_II_IPmI_IHHCII_II_IEIWCZ

Assume that C" € C*'. We must show that this implies ¢’ € C%0, i.e., that
(C,C") eY.

First, note that C' € 07t = C97.7T0) implies that (i) C' € PP = P7 for all
i=1,...,m,and (i) C" € (Ir;.C;)% forall j=1,...,0.
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Now, (i) shows that Ly(C) = {Py,...,P,} C Ly(C"). In addition, (ii) implies
that there are defined concepts C1,...,C} such that, for all j =1,...,(, we have
(C',Ch) e ro =77 (ie, (C',r;,C) € Er) and C} € CT° (ie., (C;,Cl) € Y).
The definition of Y~ implies that there is an n such that (Cj, C}) € Y, holds for
all j =1,...,(. But then (C,C") €Y,,1 CY. O

By Proposition 10, the lemma implies that 7 has an Zy-gfp-model based on 7.
Let Z denote this model.

Lemma 34 A € AL,

Proof. The simulation Y: Gy ~ Gy = G satisfies
(a) (A, A) €Y (since (A,A) €Y, CY);
(b) if (C,C") € Y then C" € C* (by definition of Zp).
Thus, Proposition 30 yields A € AZ. O

The lemma together with A T B yields A € BZ. Thus, Proposition 30 implies
that there exists a simulation 7: Gy ~ Gy = G such that

(a) (B,A) € Z; and
(b) if (C,C") € Z then C" € C%o.

Since C' € C™ iff (C,C") € Y, property (b) is equivalent to Z C Y. Thus,
(B, A) € Z also yields (B, A) € Y.

Lemma 35 Y is a (B, A)-synchronized simulation satisfying (B, A) € Y.

Proof. Tt remain to show that Y is (B, A)-synchronized. To this purpose, we
define an appropriate selection function S. Thus, consider the following partial
(B, A)-simulation chain:

B =B &% B & ... >3 B, I3 B,
Y] Y] Y]
A= A B 4 B3 0054,

Let k be minimal with (B, 1, A, 1) € Y.

Case 1: k = 0. Then B,,_; = A,_ and the selection function S chooses A,, := B,
Case 2: k > 0. The minimality of & implies that (B,_1, An_1) € Y% \ Yi_1. By
definition of Y}, the existence of the edge (B,_1, 7y, By) € E7 thus implies that
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there is an A, such that (A, 1,7, An) € Er and (B, A,) € Yr_1. The selection
function S chooses such an A,,.

It remains to be shown that the selection function S really satisfies the condition
stated in Definition 28. Thus, consider the following S-selected (B, A)-simulation
chain:

B =B % B 2% B, & By &

AN A A AN

A:AOgAlgAQgAgg
Let ko be minimal with (By, Ag) € Yi,. If ko = 0, then we are done since then
Ag = By. Otherwise, kg > 0 and then we know that (By, Ay) € Yy,_1. Thus, if &
is minimal with (By, A1) € Y,, then ko > ky. If we continue this argument, then

we obtain indices kg, k1, ks, ... where either k; > k; 1 or k; = 0. This shows that
there exists an n such that £, = 0, and thus A, = B,,. O

This lemma finishes the proof of (1) — (2) of Theorem 29.

Deciding the existence of a synchronized simulation

[t remains to be shown that property (2) of Theorem 29 can be decided in poly-
nomial time. Thus, let G- = (Vr, Er, L7) be a finite £ L-description graph, and
(B, A) € Vi x Vi be a pair of nodes. We consider the simulation Y: Gr ~ Gr
defined in the proof of (1) — (2) of Theorem 29. We have shown that Y is a
(B, A)-synchronized simulation (see Lemma 32 and Lemma 35).

Proposition 36 The following are equivalent:

1. There exists a (B, A)-synchronized simulation 7 satisfying (B, A) € Z.
2. (B,A) €Y.

Proof. (2) — (1) is trivial since we already know that Y is a (B, A)-synchronized
simulation (by Lemma 32 and Lemma 35).

(1) — (2) Let S be the selection function that ensures that the simulation Z is
(B, A)-synchronized. We use S to construct a tree tg whose paths are basically

initial segments of the S-selected (finite or infinite) (B, A)-simulation chains w.r.t.
Z:

e The root of tg is labeled with (B, A). By our assumption on 7, we have
(B,A) e Z.

e Let (B',C’) be the label of a node & already constructed. If B’ = C’, then
this node is a leaf of tg.
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e Let (B',C") be the label of a node x already constructed, and B’ # C'. By
induction, we assume that the path leading to x in the tree is of the form

B =B % B & ... "3 B, =B
AN A AN
A= A B A B .04 = A
where Ay, ..., A,_1 have been selected using the selection function S. Now,
let (B',s1,C1),...,(B',sp,Cy) be all the edges in G with source B’. For
i=1,...,0 we consider the partial (B, A)-simulation chain
B =B % B 2% ... % B, %
A A A
A= A B A B .05 4,

Let C! be the node selected by S. In particular, this means that (C;, C}) € Z
and (A,_1, s;, C!) € Er. Now, k obtains ¢ successor nodes in tg, which are
respectively labeled with (Cy,CY), ..., (Cy, C}). In particular, if ¢ = 0, then
Kk is a leaf.

We claim that tg is finite. In fact, an infinite path in t5 would yield an infinite
(B, A)-simulation chain of the form depicted in Figure 3 such that B,, # A, for
all n > 0. But this contradicts our assumption that S is the selection function
that ensures that Z is (B, A)-synchronized. Thus, all paths in tg are finite. Since
ts is also finitely branching, Konig’s lemma shows that tg is finite.

Next, we claim that, if a node in tg is labeled with (B’, A’), then (B', A’) € Y.
Since (B, A) labels the root of tg, this yields (B, A) € Y, and we are done.

Let x be a node in tg labeled with (B’, A"). We prove (B’, A’) € Y by induction
on the maximal distance of k to a leaf in tg.

Induction base. If the maximal distance of k to a leaf is 0, then k is itself a leaf.
There are two cases to consider:
1. The node « has label (B', B'), i.e., A’ = B’. But then (B, A") € Y; C Y.

2. The node « has label (B’ A") with A’ # B’, but B’ has no outgoing edges
in Gr. Since (B, A") € Z, we know that Ly(B’') C Ly(A’). Thus, the
definition of Y] yields (B, A") € Y; C Y.

Induction step. Assume that the maximal distance of x to a leaf is not 0. In
particular, this means that  is not a leaf. Let (Cy,CY), ..., (Cr, C}) be the labels
of all the successor nodes of k in tg. Consequently, there are roles sq,..., s, such
that

1. (B',s1,Ch),...(B' s, Cy) are all the edges in Gy with source B’;

30



2. (A')51,C)),... (A, s,C)) are edges in Gr;
3. (C1,CY),...,(Co,CY) € Z.

By induction, (3) implies (Cy,C}),...,(Cy, Cy) € Y, and thus there is an n such
that (C1,CY),...,(Cy, C)) € Y,. Since (B, A") € Z also yields Ly(B') C Ly(A'),
(1) and (2) thus imply (B, A") € YV, CY. O

Since Y can obviously be computed in time polynomial in the size of G7, this
proposition together with Theorem 29 yields the following corollary.

Corollary 37 Subsumption w.r.t. descriptive semantics in EL can be decided in
polynomial time.

By using the techniques employed to decided Horn-SAT in linear time [8], it is
not hard to show that the set Y can actually be computed in time quadratic in
the size of G7, and thus subsumption in ££ w.r.t. descriptive semantics can be
decided in quadratic time.

Example 38 Consider the graph Gr depicted in Figure 5. The computation of
Y proceeds as follows:

YE) = {(BaB)a(EaE)a(CaC)v(D7D>a(ElaEl)a(EZaEZ)a(AaA)};
YVI = YbU{(E17E>7(E27E>7(07E1>7(E170>7(D7E2>7(E27D>7(07E>7(D7E>};
Y, = iU{(4,B)}=Y; =Y

Consequently, we have B = A, but not A C+ B.

An alternative way for showing the polynomiality result would be to reduce the
existence of a (B, A)-synchronized simulation Z satisfying (B, A) € Z to the
strategy problem for a certain two-player game with a positional winning con-
dition. The existence of a winning strategy is in this case a polynomial time
problem [10, 11]. Modulo some technicalities, the game graph is the subgraph of
the Cartesian product of the graph G; with itself whose nodes satisfy condition
(S1) of Definition 15. The winning positions for player two are the nodes (B’, A")
where either B’ = A’ or B’ has no successor nodes.

7 Conclusion

We have characterized subsumption in ££ w.r.t. cyclic TBoxes for the three
types of semantics introduced by Nebel [22]. In contrast to the case of FL,,
where subsumption is no longer tractable if one allows for cyclic terminologies,
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these characterizations show that subsumption in ££ w.r.t. cyclic TBoxes can be
decided in polynomial time, independently of which semantics is used.

Our main motivation for considering cyclic terminologies in £L£ was the fact that
the most specific concept of an ABox individual need not exist in ££. An example
is the simple cyclic ABox A := {r(b,b)}, where b has no most specific concept, i.e.,
there is no least £ L-concept description D such that b is an instance of D w.r.t. A
[17]. However, if one allows for cyclic TBoxes with gfp-semantics, then the defined
concept B with B = dr.B is such a most specific concept. In a yet unpublished
paper we have shown that the characterization of subsumption in ££ w.r.t. gfp-
semantics also yields an approach for computing the least common subsumer in
EL w.r.t. gfp-semantics. In addition, we have extended the characterization of
subsumption in £L£ w.r.t. gfp-semantics to the instance problem, and have shown
how this can be used to compute the most specific concept.

Regarding related work, simulations and bisimulations play an important réle in
modal logics (and thus also in description logics). However, until now they have
mostly been considered for modal logics that are closed under all the Boolean
operators, and they have usually not been employed for reasoning in the logic. A
notable exception is [13], where bisimulation characterizations are given for sub-
Boolean DLs. However, these characterizations are used to give a formal account
of the expressive power of these logics. They are not employed for reasoning
purposes.

The DL £L£ with cyclic terminologies interpreted with one of the three semantics
considered in this report yields a small fragment of the modal mu-calculus. For
these fragments, the subsumption problem (i.e., the question whether an implica-
tion between two formulae is valid) can still be decided in polynomial time. The
relationship of this result to possibly existing complexity results for fragments of
the modal mu-calculus still needs to be explored. At the moment, we are not
aware of any other results for such small fragments of the modal mu-calculus.
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