Aachen University of Technology
Research group for
Theoretical Computer Science

LTCS—Report

Adding Numbers to the SHZQ Description Logic—First
Results

Carsten Lutz

LTCS-Report 01-07

RWTH Aachen Ahornstr. 55
LuFg Theoretische Informatik 52074 Aachen
http://www-Iti.informatik.rwth-aachen.de Germany

Adding Numbers to the SHZ Q Description Logic—First
Results

Carsten Lutz
RWTH Aachen, LuFG Theoretical Computer Science
Ahornstr. 55, 52074 Aachen

April 12, 2002

Abstract

Recently, the Description Logic (DL) SHZQ has found a large number of ap-
plications. This success is due to the fact that SHZQ combines a rich expressivity
with efficient reasoning, as is demonstrated by its implementation in DL systems
such as FaCT and RACER. One weakness of SHZQ, however, limits its usability
in several application areas: numerical knowledge such as knowledge about the
age, weight, or temperature of real-world entities cannot be adequately repre-
sented. In this paper, we propose an extension of SHZQ that aims at closing this
gap. The new Description Logic Q-SHZQ, which augments SHZQ by additional,
“concrete domain” style concept constructors, allows to refer to rational numbers
in concept descriptions, and also to define concepts based on the comparison of
numbers via predicates such as < or =. We argue that this kind of expressivity is
needed in many application areas such as reasoning about the semantic web. We
prove reasoning with Q-SHZQ to be ExpTIME-complete (thus not harder than
reasoning with SHZQ) by devising an automata-based decision procedure.

1 Motivation

Description Logics (DLs) are a family of knowledge representation formalisms, which
are—apart from their classical application in KR—nowadays used in various applica-
tion areas such as reasoning about entity relationship (ER) diagrams and providing a
formal basis for the so-called semantic web [4; 5]. One of the most influential DLs pro-
posed in the last years is the SHZ Q Description Logic, whose success is based on the
following two facts: first, SHZQ is a very expressive DL providing for, e.g., transitive
roles, inverse roles, and number restrictions, but its reasoning problems are neverthe-
less decidable in EXPTIME [12]. Second, SHZQ has been implemented in e cient DL
systems such as FaCT and RACER, which can, despite the high worst-case complexity
of reasoning with SHZQ, deal surprisingly well even with huge knowledge bases [9;
6]. Although, as we just argued, SHZQ’s expressive power is one of the main rea-
sons for its success, there is still room for improvement. In particular, SHZ QO cannot
adequately represent numerical knowledge such as knowledge about the age, weight,
or temperature of real-world entities, which, as we will later discuss in more detail, is

crucial for many important applications [2; 11; 5; 15]. In this paper, we extend SHZQ
with a set of concept constructors that belong to the so-called concrete domain family
of constructors and allow a straightforward representation of numerical knowledge.

Let us view a concrete example of knowledge representation with the resulting DL,
which is called Q-SHZ Q. The concept

Grandfather M Jage.=g; M (> 20 relatives Human) M Vrelatives age, age.<

describes a Grandfather who is 91 years old, has at least 20 relatives (such constraints
are called “number restrictions”), and is older than all of these relatives. Note that we
can refer to rational numbers such as “91” and also compare numbers using predicates
such as “<”. We should like to stress that Q-SHZQ cannot only be used for toy ex-
amples like the one above, but rather is a contribution to several “serious” application
areas. Let us briefly review three examples:

(1) As described in [3; 4], reasoning about ER. diagrams is an important application
area, of Description Logics. More specifically, current proposals found in the literature
use fragments of SHZQ to encode ER diagrams. One shortcoming of this approach
can be described as follows: ER diagrams make use of so-called attributes to represent
non-relational data such as numbers and strings to be stored in the database. If SHZ Q
is used for representing ER diagrams, constraints concerning the values of attributes
cannot be expressed. To give a simple example, if there exists a relation Employee
having two attributes Birthday and Employment-date, then it cannot be expressed that
members of this relation should be born before they are employed. If Q-SHZQ is
used for representing ER diagrams, such numerical data constraints on attributes can
easily be handled. This topic is discussed in more detail in [17].

(2) In [15; 14], the Description Logic 7DL is motivated as a valuable tool for the rep-
resentation of temporal conceptual knowledge. TDL can be obtained from the well-
known DL ALC [18] by adding general TBoxes and concrete domain style concept con-
structors that allow to represent relations between rational numbers such as “=" and
“<”. Indeed, it is not hard to see that TDL is a fragment of Q-SHZ Q, but lacks much
of its expressive power such as number restrictions and inverse roles. Thus, Q-SHZQ is
also well-suited for reasoning about temporal conceptual knowledge as described in [15;
14]. Moreover, Q-SHT Q significantly extends the expressive power provided by TDL,
even in the temporal/numerical component of the logic. For example, in Q-SHZQ
one can refer to concrete time points and intervals such as 4 or [1,12] which is not

possible in TDL.

(3) A rapidly developing application area of DLs is their use as an ontology language
for the semantic web [5]. As noted in [5; 8], the representation of “concrete datatypes”
such as numbers is an important task in this context. However, in DLs such as
OIL and DAML+OIL, which have been proposed in this application area, appropriate
expressivity is either not provided or not taken into account for reasoning, which
is done by a translation into SHZQ or related DLs. In [11], Horrocks and Sattler
propose to extend SHOQ, a close relative of SHZ Q, with so-called unary concrete
domains in order to integrate concrete datatypes. However, this solution is not really
satisfying since, as is explained in more detail in [14], unary concrete domains are of

very limited expressivity. If Q-SHZQ is used as the target logic in translations of OIL
and DAML+OIL, a rather powerful means for describing numerical concrete datatypes
becomes available.

As the main result of this paper, we prove reasoning with Q-SHZQ to be decidable
in EXPTIME by devising an automata-based decision procedure. Thus, Q-SHZQ
sensibly enhances the expressive power of SHZQ without increasing the worst-case
complexity of reasoning.

2 Syntax and Semantics

In this section, we introduce the Description Logic Q-SHZQ in detail. We first give
the syntax and semantics of Q-SHZ Q-roles, then introduce some useful abbreviations,
and finally define syntax and semantics of Q-SHZ Q-concepts.

Definition 2.1 (Q-SHZQ-roles). Let Nyr, Ntr, and Ny be countably infinite and
mutually disjoint sets of regular role names, transitive role names, and abstract fea-
tures, respectively. Moreover, let Nr = N,g W Nig W Nar. The set of Q-SHZ O-roles
ROL is Nk U{R™ | R € Nr}. A role inclusion is of the form

RC S,

for R, S € ROL. A role hierarchy is a set of role inclusions.

An interpretation T = (AT,-T) consists of a set AT, called the domain of T, and a
function - which maps every role R € ROL to a subset RZ of A” x A such that, for
R € Ng, S € Nig, and f € N,f,

(z,y) € RT iff (y,x) € R7,
if (z,y) € ST and (y, 2) € SZ, then (z,2) € SZ, and

f* is functional.

An interpretation Z is a model of a role hierarchy R iff RZ C S for each RC S € R.
O

We introduce some notation to make the following considerations easier.

1. The function Inv yields the inverse of a role. More precisely, for R € ROL, we set

Inv(R) := R~ if R is a role name,
1 S8 if R=S5" for arole name S.

2. Since set inclusion is transitive and R C ST implies Inv(R)Z C Inv(S)Z, for a
role hierarchy R, we introduce E as the reflexive-transitive closure of

RU{Inv(R) CInv(S) | RC S € R}.

3. We call a role R € ROL transitive with respect to a role hierarchy R iff R is
interpreted in a transitive relation in every model of R. It is not hard to see
that this is the case iff the following predicate evaluates to true:

true if there exists a role S € Ng such that S’ & xR and
Transg (R) := R ES" for some S, S" € {S,Inv(S)}
false otherwise.

4. A role R € ROL is called simple with respect to a role hierarchy R iff Transz (.S)
does not hold for any S € ROL with S E R.

For both “E” and Transk, we omit the index if clear from the context. Note that
no transitive role is simple since E is defined as the reflezive-transitive closure. For
the same reason, we have Trans(R) for all R € Nygr. However, roles must obviously
not be in Nig in order to be transitive. For example, if R € Nig, then R~ is also
transitive. Similarly, if S € Nyg, R ¢ Ntg, S™ C R, R C S—, then R is transitive. We
are now ready to define Q-SHZ Q-concepts and their semantics.

Definition 2.2 (Q-SHZQ-concepts). Let N¢ and N be countably infinite sets
of concept names and concrete features, respectively, such that N¢, Ng, and Ncf are
mutually disjoint. A path is a sequence Ry - - - Rig consisting of roles Ry, ..., R € ROL
and a concrete feature g € Nep. A path Ry --- Ripg with {Ry,..., R} C Ny is called
feature path. The set of Q-SHZ Q-concepts is the smallest set such that

1. every concept name C' € N¢ is a concept,

2. if C and D are concepts and R € ROL, then C11D, CUD, -C,VR.C, and 9dR.C
are concepts,

3. if C'is a concept, R € ROL is simple, and n € N, then (< n R C) and (> n R C)
are concepts,

4. if u; and ug are feature paths and P € {<,<,=,#,>, >}, then Juj, us.P and
Yu1,us.P are concepts,

5. if R € ROL is simple, g1 and go are concrete features, and P € {<, <, =,#,>, >},
then dRg1, go.P and VR, g2.P are concepts, and

6. if g is a concrete feature, P € {<,<,=,%#,>,>}, and ¢ € Q, then J¢.P, is a
concept.

We use T as an abbreviation for A U —A (for some fixed A € N¢). The interpretation
function -Z of interpretations Z = (AZ,-7) maps, additionally,

e every concept C to a subset CT of AT and

e every concrete feature g to a partial function ¢” from A7 to the set of rational
numbers Q

such that

(cnD)YY = cTnD?,

(CuD)* cTu D,

AT\ C7,

(3R.C)Y = {x € AT | There is some y € AT with (z,y) € R and y € CT},
) {z € AT | For all y € AL, if (z,y) € R, then y € CT},
) {zr e AT |#{y | (z,y) € R" and y € C"} < n},
) = {zeAl|#{y] (z,y) € RT and y € CT} > n},

(30U, Uy.P)* {z € AT | There are q; € U{ and ¢z € U with q; P g2}
)
)

i
Q

N
|

<

=

Q
<
I

<

S

S
~
N
|

{z € AT | For all ¢, € U{ and ¢, € U{, we have q; P ¢}
(B9-P)" = {zeA’|g'(z) Pq}

where Uy and U, denote paths, §S denotes the cardinality of the set .S, and, for every
path U = Ry - - Ryg, U7 is defined as

{(z,q9) CAz x Q| Y1, Ygt1: T =1,
(yisyit1) € R for 1 <i <k, and ¢ (yk41) = g}

An interpretation 7 is called a model of a concept C iff CT # 0. C is called satisfiable
with respect to a role hierarchy R iff there exists a model of C' and R. A concept D
subsumes a concept C' with respect to R (written C T D) iff CZ C D7 holds for
each model Z of R. Two concepts C, D are equivalent with respect to R (written
C =g D) iff they are mutually subsuming. O

In the following sections, we show that Q-SHZ Q-concept satisfiability is decidable
in deterministic exponential time. This also yields decidability and an EXPTIME upper

complexity bound for concept subsumption and equivalence: we have (i) C Cx D iff
C M =D is unsatisfiable w.r.t. R and (ii) C =g D iff C Cg D and D Cg C.

Throughout this paper, we denote concept names by A and B, concepts by C, D,
and F, roles by P, R, and S, abstract features by f, concrete features by g, paths by
U, feature paths by u, and predicates by P.

Let us discuss the Q-SHZ Q-concept language in some more detail. Since exhaus-
tive information on SHZQ can be found in, e.g., [12], we concentrate on the addi-
tional concept constructors Uy, Us.P, VU, Us.P, and dg.F;, which, as has already
been noted, are often called “concrete domain constructors”. Concrete domains have
been introduced by Baader and Hanschke [1] as a means for representing “concrete
knowledge” such as knowledge about numbers, strings, or spatial extensions. More
precisely, Baader and Hanschke extend the basic propositionally closed DI ALC with
concrete domains, where a concrete domain D is comprised of a set called the domain
and a set of predicates with a fixed extension on this domain. However, Baader and
Hanschke do not commit themselves to a particular concrete domain, but rather view
the concrete domain as a parameter to their logic, which they call ALC(D). From
the concrete domain perspective, Q-SHZQ can be viewed as being equipped with one
particular concrete domain, whose domain are the rationals and which is equipped

with binary predicates <, <,=,#,>,> and unary predicates P, where ¢ € QQ and
Pe{<,<,=#,>>}

The paths U; and Us that may appear inside Q-SHZ Q’s binary concrete domain
constructors Uy, Us.P and YUy, Us.P are of a rather special form: either (i) U; and
U, are feature paths or (ii) U; has the form Rg; and Uy has the form go. Let us
illustrate the expressive power of these two variants of the same constructors: using
Variant (i), we can, e.g., describe people whose mother’s spouse earns more than their
father (we use parentheses for better readability):

I(mother spouse wage), (father wage).>

This example illustrates the main advantage of Variant (i): we can talk about se-
quences of features. This variant of Q-SHZQ’s binary concrete domain constructors
are precisely the concrete domain constructors offered by ALC(D) and the temporal
DL 7TDL mentioned in the introduction. The main disadvantage of Variant (i) is that,
inside paths, we may only use abstract features but no roles from N,gr. For example,
if we want to describe people having an older neighbor by the concept

J(neighbor, age), (age).>,

then “neighbor” should clearly be from N,r rather than from N,f, since otherwise we
would enforce that the described persons have at most a single neighbor. Therefore,
we need Variant (ii) of the binary concrete domain constructors to define this concept.
Note that Variant (ii) is neither provided by ALC(D) nor by TDL, but rather is a
restricted version of the concrete domain constructors defined in [7].

It is not hard to see that we could also have admitted variants dg;, Rgs.P and
Vg1, Rg.P of the binary concrete constructors since this variant is just syntactic sugar:
dg1, Rge.P is equivalent to 3Rgs, g1. P and Vg1, Rgs.P is equlvalent to VRgs,g1.P,
where P denotes the inverse of the predicate P—for example, “<” is “>” and “=” is
“="_ Obviously, the most general approach would be to allow arbitrary paths inside
the binary concrete domain constructors." The resulting logic, however, cannot easily
be handled by the EXPTIME decision procedure for concept satisfiability presented
in the remainder of this paper. Indeed, it is currently not even clear whether the
resulting logic is decidable.

It may look strange at first sight that Q-SHZ Q provides for both abstract features
and number restrictions since, as is well-known, number restrictions, transitive roles,
and role hierarchies can be used to enforce that a role R; from N,r is interpreted
functionally: just use the concept VR.(< 1 Ry T), where R € Nir, and employ the
role hierarchy to ensure that S ER for every “relevant” role S (e.g. for the roles
occurring in the concept or role hierarchy whose satisfiability is to be decided). The
reason for this redundancy is that number restrictions are, in principle, a more general
means of expressivity than abstract features, but having abstract features explicitly
available allows for a straightforward definition of Variant (i) of the concrete domain
constructors.

! Admitting arbitrary paths inside the unary concrete domain constructor is not an issue since the
concept 3Ry - - - Rpg.P; (with the obvious semantics) can be written as 3R;.--- .3Ry.3g.F,.

Note that only simple roles are allowed in Variant (ii) of the binary concrete
domain constructor. Similarly, roles used inside number restrictions are also required
to be simple. As proved in [12], the latter restriction is crucial since admitting non-
simple roles inside number restrictions yields undecidable reasoning problems. Non-
simple roles inside the binary concrete domain constructors cannot be handled by the
EXPTIME decision procedure in its current form. Again, it is as of now unknown
whether admitting them yields undecidability of reasoning.

There exist existential and universal versions of the binary concrete domain con-
structors but only an existential version of the unary concrete domain constructor. It
is not hard to see that we could also have admitted a universal version since Yg.F;
(with the obvious semantics) is clearly equivalent to Vg, g.# U 3¢.P,, where Vg, g.#
simply expresses that there exists no successor for the concrete feature g. Similarly,
the universal version of Variant (i) of the binary concrete domain constructors can be
expressed in terms of the existential version of Variant (i) of this constructor. This
does, however, not hold for Variant (ii) of the binary concrete domain constructors
since it accepts non-functional roles as arguments. For this reason, we have chosen to
include universal versions of both Variant (i) and (ii) for uniformity.

Most modern Description Logics do not only consist of a concept language but
also provide for a TBox component. Formally, a TBox is a finite set of concept
equations C' = D, where C and D are Q-SHZ Q-concepts. An interpretation Z is a
model of a TBox 7 iff it satisfies CZ = D7 for all (C' = D) € T. In the presence of
TBoxes, one is usually interested in the satisfiability of concepts w.r.t. TBoxes and
role hierarchies, where a concept C' is satisfiable w.r.t. a TBox 7 and a role hierarchy
R iff there exists a model Z of C, T, and R. However, as was shown in [10], in the
presence of role hierarchies and transitive roles it is possible to polynomially reduce
concept satisfiability w.r.t. TBoxes and role hierarchies to concept satisfiability w.r.t.
role hierarchies, only. This is done using a rather straightforward technique known
as “internalization”. Because of this, we will not explicitly consider TBoxes in this
paper. They can, however, easily be treated by internalization.

3 Preliminaries

Decidability and the EXPTIME upper complexity bound for Q-SHZ O-concept satisfi-
ability is established by devising an automata-based decision procedure. The general
idea behind this procedure is to define, for a given concept C' and role hierarchy R, a
looping tree-automaton Ac r that accepts exactly the so-called Hintikka-trees for C'
and R. These Hintikka-trees are abstractions of models of C' and R, i.e., C and R
have a model if and only if C' and R have a Hintikka-tree. The obvious advantage of
Hintikka-trees over models is that they are trees and thus amenable to tree automata
techniques. Once the automaton Acx is defined, it remains to apply the standard
emptiness test for tree automata: clearly, the language accepted by the constructed
automaton is empty iff C' is satisfiable w.r.t. R.

In this section, we introduce the basic notions underlying the decision procedure
sketched above. We start with developing a useful normal form (called path normal

form) for Q-SHZ Q-concepts, and then introduce looping tree-automata, whose the-
ory forms the basis for the decision algorithm. Finally, we define constraint graphs,
which will play an important role in representing the “numerical part” of Q-SHZ Q-
interpretations in Hintikka-trees.

3.1 Normal Forms

We start with formulating a property of role hierarchies that we will generally assume
to be satisfied in what follows:

A role hierarchy R is called admissible iff all f € Nyr are simple w.r.t. R.

Demanding admissibility of role hierarchies is closely related to requiring roles R that
appear inside number restrictions (< n R C) and (> n R C) to be simple: since
abstract features are interpreted in functional relations, they are “inherently number
restricted”, i.e., for each f € Nag, (< 1 f T) is satisfied by every domain element
in every interpretation. However, it seems that, in contrast to admitting arbitrary
roles inside number restrictions, dropping admissibility of role hierarchies does not
necessarily lead to undecidability of reasoning. Indeed, we claim that the decision
procedure presented in this paper can, in principle, be extended to also deal with
non-admissible role hierarchies. We nevertheless restrict ourselves to admissible role
hierarchies since (i) this eliminates several case distinctions in the proofs, and (ii) we
agree with Horrocks and Sattler [10] who argue that non-simple features are rather
unnatural: if f € N,f is non-simple, then there exists a role R € Ng such that Trans(R)
and R E f. Hence, R is both functional and transitive which produces strange effects:
for any interpretation Z, R may not contain any acyclic paths of length greater 1.
Hence, the concept IR.IR.T is satisfiable only in models that contain either (i) a
domain element a which is its own R-successor or (ii) two domain elements a and b,
where b is R-successor of a and of itself (the same holds for the concept IR.3R.IR.T).
To avoid such effects, which do not seem to promote writing understandable knowledge
bases, we generally require role hierarchies to be admissible.

Let us now turn our attention towards normal forms for Q-SHZ Q-concepts. We
first introduce the well-known negation normal form.

Definition 3.1 (NNF). A concept C' is in negation normal form (NNF) if negation
occurs only in front of concept names. Exhaustive application of the following rewrite
rules translates concepts to equivalent ones in NNF.

-—-C = C

-(CND) = -CuUu-D -(CuD) = -Cn-D
-(3R.C) = (VR.-(O) -(VR.C) = (3dR.-C)
-(<nRC) = (>>(n+1)R-C) —~(>nRC) = (<(n—1)R-0C)
—|(E|U1,U2.P) — VUl,UQ.? —l(VUl,UQ.P) — 3U1,U2.?

-(3¢9.P,)) = Vg,9.#U3g.P,
where P denotes the negation of predicates, e.g. “<” is “>” and “#” is “=". By
nnf(C'), we denote the result of converting C' into NNF using the above rules. Fur-
thermore, we use ~C as a shorthand for nnf(=C). &

Note that, in the —(3g.P;) case of the NNF rewrite rules, the concept Vg, g.# is
only used to express that there exists no g-successor at all. We now introduce path
normal form, which was first described in [15] in the context of the Description Logic
T DL mentioned in the introduction.

Definition 3.2 (Path Normal Form). A Q-SHZQ-concept C' is in path normal
form (PNF) iff it is in NNF and, for all subconcepts Uy, Us.P and YUy, Us.P of C,
we have either

1. Uy = g1 and Uy = g9 for some g1, g2 € Ncf or

2. Uy = Rg1 and Uy = g9 for some R € Nar UNg and g1, g2 € N¢r.
&

The following lemma, shows that we can w.l.o.g. assume Q-SHZ Q-concepts to be
in PNF.

Lemma 3.3. Satisfiability of Q-SHIQ-concepts can be polynomially reduced to sat-
isfiability of Q-SHLQ-concepts in PNF.

Proof We first define an auxiliary mapping and then use this mapping to translate
Q-SHI Q-concepts into equivalent ones in PNF. Let C be a Q-SHZQ-concept. For
every feature path uw = f1--- fog used in C, we assume that [g],[fng],.-.,[f1 " [n9]
are concrete features not used in C'. We inductively define a mapping A from concrete
paths w in C' to concepts as follows:

Mg) = T
AMfu) = Qlful, flu]l. =) 7 IfNu)

For every Q-SHZ Q-concept C, a corresponding concept p(C) is obtained by

e first replacing all subconcepts Yuy, us. P where u; = fl(i) e af,gf)gi for i € {1,2}
with

VDD Vg g A U VDD Yo, go A U Bur, . P

e and then replacing all subconcepts Juq, ug. P with J[uq], [ua].P 1 A(ur) M A(ug).

Now let C be a Q-SHZQ-concept. Using the rewriting rules from Definition 3.1, we
can convert C' into an equivalent concept C’ in NNF. It is then easy to check that
C' is satisfiable iff p(C’) is satisfiable. Moreover, p(C’) is clearly in PNF and the
translation can be done in polynomial time. a

Intuitively, Lemma 3.3 states that Variant (i) of the binary concrete domain construc-
tors discussed in the previous section can be reduced to the forms 3fgq,g2.P and
g1, g2.P. Variant (ii) of the binary concrete domain constructors does not need to
be manipulated in order to fit into the PNF scheme. Let us remark that our algo-
rithm’s need for PNF is the reason why we cannot handle arbitrary paths inside the
binary concrete domain constructors: it is an interesting exercise to check that the
constructor VU, Us.P with Uy = Ry --- R,g and Uy = S -+ S,,¢'.P can be reduced
to the forms IRgy, go.P and Jg1,g2.P if P € {<,<,=,>,>} but not if P is “#”.

3.2 Automata and Constraint Graphs

The automata used in this paper are so called looping tree-automata which can roughly
be described as Biichi tree-automata where every run is accepting [21; 19]

Definition 3.4 (Looping automaton). Let M be a set and k& > 1. A k-ary M-
tree is a mapping T : {1,...,k}* — M that labels each node « € {1,... k}* with
T(a) € M. Intuitively, the node «i is the i-th child of . We use € to denote the
empty word (corresponding to the root of the tree).

A looping automaton A = (Q, M, I,A) for k-ary M-trees is defined by a finite set
Q of states, a finite alphabet M, a subset I C @ of initial states, and a transition
relation A C Q x M x Q.
A run of A on an M-tree T is a mapping r : {1,...,k}* — Q with r(e¢) € I and

(r(a), T(a),r(al),...,r(ak)) € A

for each « € {1,...,k}*. A looping automaton accepts all those M-trees for which
there exists a run, i.e., the language L(A) of M-trees accepted by A is

L(A) :={T | there is a run of A on T'}. o

Vardi and Wolper [21] show that the emptiness problem for looping automata,
i.e., the problem to decide whether the language L(.A) accepted by a given looping
automaton A is empty, is decidable in polynomial time.

We now introduce constraint graphs. Such graphs are used to represent the “nu-
merical part” of Q-SHZ QO-interpretations in Hintikka-trees. A detailed description of
how this is done, however, is delayed until Section 4, where Hintikka trees are defined.

Definition 3.5 (Constraint graph). A constraint graph is a directed graph G =
(V,E,7), where V is a countable set of nodes,

ECVxVx{<,<,=%#>,>}
is a set of labeled edges, and
TCVx{P | Pe{<,<,=#2>and ¢ € Q}

is a node labeling function. For simplicity, we generally assume that constraint graphs
are equality closed, i.e., that we have (vy, vy, =) € E iff (v9,v1,=) € E for allvy,vy € V.

10

For a set of edges F, we use cl—(FE) to denote the equality closure of E which is defined
in the obvious way. In what follows, we sometimes write 7(v) for {P, | (v, P;) € T}.

A constraint graph G = (V, E, 1) is called satisfiable over S—where S is a set
equipped with a total ordering <—iff there exists a total mapping from V to S such
that

1. (v)Pgqforall P, € 7(v) and
2. (v1) P (v9) for all (vy,v9, P) € E.

Such a mapping is called a solution for G. <

We will see later that every Hintikka-tree T induces a constraint graph which rep-
resents the “numerical part” of the canonical interpretation described by T'. As should
be intuitively clear, these induced constraint graphs have to be satisfiable in order for
Hintikka-trees to be proper abstractions of interpretations. Since, later on, we must
define looping automata which accept exactly the Hintikka-trees for a concept C' and
role hierarchy R, such automata should be able to verify the satisfiability of (induced)
constraint graphs. This check is the main problem to be solved when developing an
automata-based decision procedure for Q-SHZ O-concept satisfiability: the induced
constraint graph and its satisfiability are “global” notions while automata work “lo-
cally”. This problem can be overcome as follows: first, we define Hintikka trees such
that their induced constraint graphs have a certain form (we will call such constraint
graphs normal); second, we formulate an adequate criterion for the satisfiability of
normal constraint graphs; and third, we show how this criterion can be verified by “lo-
cal tests” that can be performed by automata. Let us start with introducing normal
constraint graphs and the criterion for their satisfiability, which is called consistency.

Definition 3.6 (Normal, <-cycle, Consistent). Let G = (V, E, 7) be a constraint
graph. G is called normal if it satisfies the following conditions:

1. (v1,v9, P) € E implies P € {<,=},
2. (v, Py) € 7 implies P € {<,=,>},

3. for each rational number ¢ appearing in 7 and each node v € V, we have
(v,P,;) € 7 for some P € {<,=,>}.

A path @ in a normal constraint graph G is a finite non-empty sequence of nodes
vgy ...,V € V such that, for all i < k, there exists a P such that (v;,v;11,P) € E.
Such a path is also called a path from vy to vg. A path vg, ..., v is a P-path for
P e {<,=} iff (vj,vi41, P) € E for some i < k. Moreover, vy, ..., v is a strict P-path
for P € {<,=} iff (v;,v;41, P) € E for each i < k.

A cycle O in G is a path vy, ..., v; for with there exists a P such that (v, vg, P) € E.
For i < k, we use iy to denote (i + 1) mod (k + 1), i.e., i; denotes the index follow-
ing 7 in the cycle O. The index o is omitted if clear from the context. A cycle
O =wq,...,v is a <-cycle iff (v;,v;+,<) € E for some 1 with i < k.

A normal constraint graph G is consistent iff it satisfies the following conditions:

11

1. G contains no <-cycle,
2. for all v € V, there exists a ¢ € Q such that gPq’ for all Py € 7(v),

3. for all (vy,ve, P) € V, there exist g1, ¢y € Q such that

* 1 P g,
e q1 P'q for all P, € 7(v;), and

* g2 P'q for all P, € 7(vy).
&

It may appear that Property 3 of consistency is too weak since it only demands
the existence of rationals ¢q,gs for each edge between v and vy separately instead
of for all such edges simultaneously: a normal constraint graph with set of edges
{(v1,v2, <), (v1,v2,=)} is clearly unsatisfiable, but does not violate Property 3. This,
however, is compensated by Property 1 which is violated in this example.

We now show that consistency is indeed an adequate criterion for the satisfiability
of normal constraint graphs.

Theorem 3.7. A normal constraint graph G is satisfiable over Q iff G is consistent.

Proof Since the “only if” direction is trivial, we concentrate on the “if” direction.
Let G be a normal constraint graph that is consistent. We define a relation ~ on V'
by setting vy ~ vg iff v1 = v9 or there exists a strict =-path between v; and vy. Since
constraint graphs are assumed to be equality closed, ~ is an equivalence relation. For
v € V, we denote the equivalence class of v w.r.t. ~ by [v]. Define a new constraint
graph G' = (V', E', 1) as follows:

Vi =] |veV}
E' = {([v1],[v2], <) | I, vh € V such that
v] € [v1],v} € [v2], and (v, vh, <) € E}
o= 7(v")
v’ €[v]

It is not hard to check that G’ is normal. Moreover, G’ is consistent, i.e., it satisfies
Properties 1 to 3 from Definition 3.6:

1. Assume that there is a <-cycle [vg],...,[vx] in G'. Since G’ contains no “=-

edges”, we have ([v;],[v;+],<) € E' for i < k. By construction of G’, there
exist zo,..., %k, Yo,---,Yr € V such that, for i < k, we have z;,y; € [v;] and
(24, y;+, <) € E. Moreover, for i < k, it holds that either y; = z; or there exists
a strict =-path between y; and x; in G. This obviously implies that G contains
a <-cycle which contradicts the assumption that G satisfies Property 1.

2. Let [v] € V'. Since G satisfies Properties 2 and 3 of normality and Property 3
of consistency, the existence of a strict =-path from a node v; € V to a node

12

ve € V implies that 7(v1) = 7(v2). This, in turn, implies that 7(v") = 7/([v]) for
all v' € [v]. Thus, since G satisfies Property 2 of consistency, it is clear that G’
also satisfies Property 2.

3. Let ([v1],[v2], P) € E'. By definition of G’, this implies that P is “<”. By
definition of G’ there exist v} € [v1] and v} € [vs] such that (v],v), <) € E.
As in the previous case, we have 7(v') = 7/([v1]) for all v’ € [v1] and similar
for vg. Thus, 7(v]) = 7'([v1]) and 7(v}) = 7'([ve]). Since G satisfies Property 3
of consistency, it is hence clear that there exists a ¢ € @Q as required.

We now define a solution for G’. This su ces to prove the theorem since, obviously,
solutions for G’ can straightforwardly be converted into solutions for G.

Since G’ does not contain a <-cycle, F’ induces a partial order < with domain V"’
such that v; < v9 iff there exists a <-path from vy to v9 in G’. Let < be an enumeration
of all nodes v € V' such that, for all nodes v,v’, the following property is satisfied: if

e there exists a ¢ € Q such that =, € 7/(v) and
o for all ¢ € Q, we have =, ¢ 7/(v'),

then v < v'. Such an enumeration exists since V' and thus also V' is countable. The
mapping from V' to @ is constructed by induction on < such that the following
conditions are satisfied at every time during the construction: for all v, vy,vo € V', we
have that

(I) v1 < vy and (v1), (v9) defined implies (v1) < (v9) and
(IT) (v) defined implies that (v) P ¢’ for all P, € 7'(v).
For the induction start, we set
(v) =qiff =, €7'(v) forallveV'

This operation is well-defined since G’ satisfies Property 2 of consistency which im-
plies that, for every v € V', there exist no ¢1,¢q2 € @ such that ¢ # ¢ and
{=q:=¢,} C 7'(v). Moreover, (I) and (II) are satisfied:

e if v; < vy, then there exists a <-path v,...,v; from v to vg, ie. vy = vy,
v}, = vg, and (v;,vj41, <) € E' for i < k (recall that G’ contains no “=-edges”).
Let (v1) =q and (v2) =¢'. By induction on k, it is straightforward to show
that >, € 7/(v}) for 0 < i < k: for the induction start, =, € 7'(v() and the fact
that G’ satisfies Properties 2 and 3 of normality and Property 3 of consistency
yields >, € 7'(v}). The induction step is analogous. Hence, >, € 7'(vg). Since
G' satisfies Property 2 of consistency, =, € 7'(v2) and >, € 7/(v2) imply ¢ < ¢
what was to be shown.

e We make a case distinction according to the predicate P. If =, € 7'(v), then

(v) = ¢ by definition of . Now let <, € 7/(v). If (v) is defined, then there

exists some ¢’ € @Q such that =y € 7'(v). Since G' satisfies Property 2 of
consistency, we have (v) =¢' < ¢. The case >, € 7/(v) is analogous.

13

Now for the induction step. Fix a v € V' such that (v) is undefined and (v') is
defined for all v" with v < v. Define four sets as follows:

Iy = { ()]0 eV, <wvandv' <o}
Ly = {q|>;€7(v)}
I3 (= { (V)| eV,v <vandwv <0}
Iy = {q]<q€e(v)}

Moreover, set ' :=T1 Uy and I's := '3 UTy. We distinguish four cases:
1. T's and I'c are both empty. Then set (v) to some arbitrary ¢ € Q.

2. Ts =0 and T~ # . Since Q has no maximum and T is finite, there exists a
g € Q such that ¢ > max(I'c). Set (v) :=gq.

3. Ts # (and T = (. Since @ has no minimum and T's is finite, there exists a
g € Q such that ¢ < min(I's). Set (v) :=gq.

4. Ts # 0 and T # (. We will show that max(T'~) < min(T's). By density of @,
it then follows that there exists a ¢ € @ such that max(I'c) < ¢ < min(I's). We
set (v) := ¢q. To show that max(I'~) < min(T's), we need to prove that ¢; € T;
and ¢ € T'; implies ¢1 < g2 for (4,7) € {(1,3),(1,4),(2,3),(2,4) }:

e i = 1 and j = 3. Then there exist v,vy € V' such that v; < v, v9 < v,
vy < v, v < ve, q = (v1), and go = (vg2). Clearly, v1 < v and v < vy
implies v1 < vy. Since Property (I) is satisfied, we have (v1) < (v2).

e i = 1 and j = 4. Then there exists a v’ such that v' € v, v' < v, g1 = (v'),
and <, € 7'(v). Since v’ < v, there exists a <-path vg,...,v; from v’
to v, i.e., vg = v/, vp = v, and (v;,v;41,<) € E' for i < k. By induction
on k, it is straightforward to prove that <, € 7'(vg): for the induction
start, <g, € 7'(vg) and (vg_1, vk, <) € E' implies <,4, € 7'(vg_1) since G’
satisfies Properties 2 and 3 of normality and Property 3 of consistency.
The induction step is identical. Hence, <, € 7'(v'). Since G’ satisfies
Property (II) and ¢; = (v'), we thus have ¢; < ¢o.

e ; =2 and 5 = 3. Analogous to the previous case.

e ;=2 and j = 4. Then we have q; < ¢ by Property (IT).

It is straightforward to check that the induction step preserves Properties (I) and (II).
Moreover, the fact that satisfies Properties (I) and (II) clearly implies that is a
solution for G’ (again note that G’ contains no “=-edges”). a

It is interesting to note that Theorem 3.7 also holds if satisfiability over R is considered
instead of satisfiability over @ (the same proof works). However, as noted in [15],
Theorem 3.7 does not hold if satisfiability over non-dense structures such as N is
considered. We will return to this issue in Section 7.

Intuitively, every constraint graph G = (V, E,7) can be converted into a normal
one (called a normalization of G) by first specializing the relations in E and 7 such

that Conditions 1 and 2 of normality are satisfied and then augmenting 7 such that
Condition 3 holds.

14

Definition 3.8 (Normalization). A constraint graph G = (V, E, 1) is a normaliza-
tion of the constraint graph G' = (V, E', 7') iff it is normal and the following conditions
are satisfied:

1. (v1,v2, P) € E' with P € {<,=} implies (v1,v9,P) € E,

2. (v1,v9,>) € E' implies (vg,v1,<) € E,

€ E’ implies {(ve,v1, <), (v1,v2,=)} NE # 0,

(P)
(>)
3. (01,09, <) € B' implies {(v1, vy, <), (v, 09, =)} N E £ 0,
(v1,v2,>)
(#)

v1,v2,#) € E' implies {(v1, v2, <), (v2,v1, <)} NE # 0,

6. if (v, Py) € 7, then there exists a v’ € V and a P’ such that (v', P)) € 7/,

7. (v,P;) € " with P € {<,=,>} implies (v, P,) € T,

8. (v,<,) € 7" implies {(v, <), (v,=¢)} N T # 0,

9. (v,>,) € 7" implies {(v, >), (v,=4)} N7 # 0, and
10. (v, #,) € 7" implies {(v, <q), (v, >¢)} N7 # 0.

4 Defining Hintikka-trees

In this section, we define Hintikka-trees, which are, as has already been noted, ab-
stractions of canonical tree-models. Let us start with defining, for each concept C
and role hierarchy R, the set of concepts cl(C,R) that are “relevant” for deciding
whether a given interpretation is a model of C and R: for a given concept C and role
hierarchy R, we use cl(C,R) to denote the smallest set such that

1. C €cl(C,R),

2. Tecd(C,R),

3. if VR.D € cl(C,R), Trans(S), and S E R, then VS.D € cl(C,R), and

4. cl(C,R) is closed under subformulas and ~ (c.f. Definition 3.1).

Note that ficl(C,R) is polynomial in the length of C' and the number of role inclusions
in R.

Hintikka-trees are defined in several steps. We start with introducing Hintikka-
sets, which form the basis for the definition of so-called Hintikka-labels. As the name
indicates, Hintikka-labels are used as node labels in Hintikka-trees. We then define
Hintikka-tuples, which are tuples of Hintikka-labels that describe a valid label con-
figuration for a node and its direct successors in a Hintikka-tree (Hintikka-tuples will

also be rather convenient for defining looping automata that accept Hintikka-trees).
Eventually, we use Hintikka-labels and Hintikka-tuples to define Hintikka-trees.

15

Intuitively, each node « of a Hintikka-tree T' describes a domain element x of the
corresponding canonical model Z. The node label of a consists of several parts, one
of them a Hintikka-set. This Hintikka-set contains all concepts D from cl(C, R) such
that = € D7.

Definition 4.1 (Hintikka-set). Let C be a concept in PNF and R a role hierarchy.
A set U C cl(C,R) is a Hintikka-set for C and R iff it satisfies the following conditions:

(S1) if C1 N Cy € U, then {C;,C2} C VU,

(S2) if C1 LU Cy € ¥, then {C1,Co} N #(,

(S3) {A,—A} € ¥ for all concept names A € cl(C,R),
(S4) if feNyrisusedin C or R, then (<1 fT) €V,
(S5) if (<K n R D) ecl(C,R), then {D,~D} N # 0,
(S6) Tevw

Concepts of the form IR.D, (> n R D), (< n R D), and 3Rgy,g>.P may appear
either marked or unmarked in . &

The marking of concepts is a technical trick that allows us to deal with the inverse
role constructor. Intuitively, edges of a Hintikka-tree T describe role successor rela-
tionships of the corresponding canonical model Z. If 3R.D occurs in the Hintikka-set
of a node f3, then there has to exist a “witness” for this concept: either (i) there exists
a successor v of 8 such that the edge from [to 7 represents an R role relationship
and D is in the Hintikka-set of «y, or (ii) S has a predecessor «, the edge from « to
B represents an Inv(R) role relationship, and D occurs in the Hintikka-set of a. The
marking of concepts is used for bookkeeping of these two possibilities: if R.D occurs
marked in the Hintikka-set of 3, then « is a “witness” for AR.D and we do not need to
enforce the existence of a witness among (3’s successors. The marking of (> n R D),
(<n R D), and 3Rg1, g2.P concepts can be explained similarly. Hintikka-sets are one
of the components of Hintikka-labels:

Definition 4.2 (Hintikka-label). Let C be a concept in PNF and R a role hierarchy.
A Hintikka-label (V,w,V, E,T) for C and R consists of

1. a Hintikka-set ¥ for C' and R,
2. a set w C ROL of roles occurring in C or R, and

3. a constraint graph (V, E, 7) where V' C N¢g, every g € V occurs in C, and every
q appearing in 7 occurs in C.

such that
(N1) if 3g1,92.P € ¥, then ¢g1,92 € V and (g1,92,P) € E,
(N2) if Vg1,92.P € ¥ and g1,92 € V, then (g1,¢92,P) € E,

16

(N3) if 3g.P, € ¥, then g € V and (g, P,) € 7,
(N4) R € wand RES implies S € w,

(N5) if g1,92 € Va then {(gla927<)7 (gla927:)7 (92a917<)} nE ?é @, and

(N6) if g appears in C, then, for each ¢’ € V, there exists a P' € {<,=, >} such that
(9',P)) €.

The set of all Hintikka-labels for C' and R is denoted by I'c . O

Let us explain the intuition behind Hintikka-labels. If « is a node in a Hintikka-
tree T', 7 the canonical model corresponding to T', and = € Az the domain element
associated with «, then the Hintikka-label L = (¥, w,V, E, 7) of « is a description of
x in Z. More precisely, (i) the Hintikka-set WU is the set of concepts D € cl(C, R) such
that 2 € D7 (ii) w is the set of roles R € ROL such that (y,z) € R%, where y is the
domain element corresponding to the precessor § of o in T; and (iii) the constraint
graph (V, E, 7) describes the numerical successors of 2 and their relationships: if, for
some g € Neg, we have g € V, then g7 () is defined. By (N5) and (N6), (V, E,) fixes
the relationship between any two numerical successors of = as well as the relationship
between any numerical successor of z and any rational number ¢ appearing in the
input concept. By (N1), (N2), and (N3), the relationships stated by F and 7 are
“consistent” with the Hintikka-set W.

It is rather important that the constraint graph (V, E,7) fixes the relationship
between any two nodes of V: as already noted in Section 3, every Hintikka-tree T
induces a (normal) constraint graph G(T') that describes the “numerical part” of the
canonical interpretation corresponding to 7', and should thus be satisfiable. Since
G(T) is normal, by Theorem 3.7 it su ces to demand that G(T') should be consis-
tent. The complete determination of the relationships between nodes of the constraint
graphs (V, £/, 7) in Hintikka-labels will allow us to ensure the consistency of G(T') us-
ing a local condition which can be verified by looping automata. This condition is
part of the definition of Hintikka-tuples, which are introduced next.

Definition 4.3 (Tuple-graph, Hintikka-tuple). Let C be a concept in PNF and
R a role hierarchy. With bc , we denote

#{D € cl(C,R) | D =3R.E or D =3Rgy,g2.P} + > n.
(>n R C)ecl(C,R)

Let x = (Lg, ..., Lp. 5) be an bc g +1-tuple of Hintikka-labels with L; = (V;, w;, Vi, E;, ;)
for i <bcr. A constraint graph G = (V, E, 1) is a tuple-graph for x if

V. = VyU{ig|1<i<bcr andg eV}
E O EyU{(ig1,ig2, P) | 1 <i < ber and (91,92, P) € E;}
TUU{(ig:Pq) | 1 << bC,R and (gapq) € Ti}

T

such that

17

(G1) if 3Rg, ¢'.P is unmarked in Uy, then there exists an ¢ with 1 <4 < bg g such
that ig,¢g' € V, R € w;, and (ig,¢', P) € E,

(G2) if 3Ry, ¢'.P is marked in ¥; with 1 < i < bg g, then g,i¢g' € V, Inv(R) € w;,
and (g,ig’,P) € E,

(G3) if VRg,g'.P € ¥y, R € w;, g € V;, and ¢’ € Vp for some ¢ with 1 < i < be g,
then (ig,¢', P) € E, and

(G4) ifVRg,¢'.P € U;, Inv(R) € w;, g € Vi, and ¢’ € V; for some i with 1 <i < be g,
then (g,ig’, P) € E.

The tuple x is a Hintikka-tuple iff the following conditions are satisfied:

(M1) if 3R.D is unmarked in ¥g, then there exists an ¢ with 1 <i < bg g such that
Rew;and D € ¥,

(M2) if (> n R D) € Uy, then either

e (> n R D) is unmarked in ¥y and there exists a set I C {1,...,bcr} of
cardinality n such that, for each 7 € I, we have R € w; and D € ¥; or

e (> n R D) is marked in ¥, and there exists a set I C {1,...,bor} of
cardinality n — 1 such that, for each ¢ € I, we have R € w; and D € ¥;,

(M3) if 3R.D or (> n R D) is marked in ¥; with 1 < i < be g, then Inv(R) € w;
and D € ¥y,

(M4) if VR.D € Vg and R € w; with 1 <i <bcr, then D € U,
(M5) if VR.D € ¥; and Inv(R) € w; with 1 <14 < bo g, then D € Uy,
(M6) if VR.D € ¥y, S € w; with 1 <14 < b g, Trans(S), and S E R, then VS.D € ¥;,

(MT7) if VR.D € ¥; and Inv(S) € w; with 1 < i < bg g, Trans(S), and S E R, then
VS.D € ¥y,

(MB8) if (<n R D) € ¥g , then either

e (< n R D) is unmarked in ¥, and the cardinality of the set {i | 1 < i <
bor, R € w; and D € ¥;} is at most n or

e (< n R D) is marked in ¥y and the cardinality of the set {i | 1 < ¢
bor, R € w; and D € ¥;} is at most n — 1,

IA

(M9) if D € ¥y, Inv(R) € w;, and (K n R D) € ¥; for 1 <i <bcr, then (< n R D)
is marked in V;,

(M10) there exists a tuple-graph for x that has a consistent normalization.

18

Except for (M10), which refers to tuple-graphs and is the aforementioned lo-
cal condition enforcing consistency of induced constraint graphs, the properties of
Hintikka-tuples should be quite easy to understand. Before we discuss tuple graphs
and (M10) in more detail, let us introduce Hintikka-trees.

Definition 4.4 (Hintikka-tree). An bc r-ary I'c g-tree T with T'(¢) = (¥, w,, Ve, Ee, T¢)
is a Hintikka-tree for C' and R iff it satisfies the following conditions:

(T1) C e Y,
(T2) all concepts in ¥, are unmarked, and

(T3) forall @ € {1,...,bcr}", the tuple (T'(a), T'(a1),...,T(abc,r)) is a Hintikka-
tuple.

Let T be a Hintikka-tree, « € {1,...,bcr}* anode in T, and T'(a) = (¥, w,V, E, 7).
We use ¥ () to denote ¥ and wr to denote w.
&

We can now return to the discussion of Property (M10). As is apparent from
their definition, tuple-graphs are built by taking the union of all the constraint graphs
that appear as a part of the Hintikka-labels in a Hintikka-tuple. The constraint graph
G(T) induced by a Hintikka-tree T', in turn, is constructed from tuple-graphs: by
(T3), for each node « of T', the tuple

xr(a) = (T(a), T(al),..., T(abcr))

is a Hintikka-tuple. By (M10), there exists a tuple-graph Gr(«) for xr(a) which
has a consistent normalization G7.(«). Modulo some technical details, the constraint
graph G(T') induced by T can be viewed as the union of the constraint graphs G7(«)
for all nodes a of T'. Figure 1 illustrates the relationship between the various constraint
graphs involved. In the following section, we will prove that the consistency of the
normalizations G7.(«) enforced by (M10) implies consistency of the constraint graph
G(T). The hardest part of this proof is to show that G(T') satisfies Property 1 of
consistency, i.e., that it contains no <-cycle: for this proof, it is crucial that

1. the tuple-graph Gp(«) overlaps with the tuple-graph G (f8) if 8 is a successor
of in T', and

2. the constraint graphs (V, E, 7), which are part of Hintikka-tuples and thus used
to build of tuple-graphs, fix the relationship between any two elements of V' as
discussed above.

Using the fact that the constraint graphs induced by Hintikka-trees are consistent,
we can then show that Hintikka-trees are indeed proper abstractions of Q-SHZ Q-
interpretations.

19

————————————————— induced constraint graph G(T')
7777777777 tuple-graphs Gr(a) / G ()
,,,,,,,,,,,,,,, constraint graphs from Hintikka-labels

Figure 1: Hintikka-trees and constraint graphs.

5 Correctness and Complexity

In this section, we show that Hintikka-trees are proper abstractions of models, i.e., that
a concept C' and a role hierarchy R have a model iff C' and R have a Hintikka-tree. We
start with formally defining the constraint graph G(7T') induced by the Hintikka-tree T'.

Definition 5.1 (Corresponding Constraint Graph). Let T be a Hintikka-tree.
By Properties (T3) and (M10), for each node « in T', there exists a tuple-graph

Gr(a) = (Vr(a), Er(a), 7r(e))
for the Hintikka-tuple (o, al,...,abc), and Gr(a) has a consistent normalization
Gr(a) = (V7' (@), B (), 77(a)).

We define a constraint graph G(T') corresponding to T'. Its nodes have the form a|v,
where « is a node in T and v € Vp(«). More precisely, G(T') is defined as (V, E, 1),

where
V = UaE{l,...,bO,R}* {O{|'U | vE VT(O{)}
E = UaE{l,...,bo,R}*{(OAUaa|vlap) | (’U,’UI,P) € E%(a)}
U cl=({(lig, ailg, =) | ig € Vr(a)})
T = Useqi,borrilav, Py) | (v, Py) € 7p(a)}
It is not hard to see that G(T') is well defined: if ig € Vp(«), then, by definition of
tuple-graphs, we have g € Vp(ai). <&

We will use the naming conventions introduced in Definition 5.1 (i.e., Gr(a),
Vr(a), G.(a), V'(a), etc.) throughout this section. Let us now establish a lemma
that will be central for showing soundness, i.e., for showing that the existence of a
Hintikka-tree for C and R implies the existence of a model of C' and R.

20

Lemma 5.2. For every Hintikka-tree T, the corresponding constraint graph G(T) is
satisfiable.

Proof By Theorem 3.7, it su ces to show that G(T') is normal and consistent. We
start with normality, i.e., we show that the the corresponding Properties 1 to 3 from
Definition 3.6 are satisfied:

1. Property 1 is satisfied by construction of G(T') since all constraint graphs G.(c)
are normal.

2. Property 2 is satisfied for the same reasons.

3. Let (a|v, Py) € 7 and o/|v € V. We need to show that there exists a predicate
P* € {<,=,>} such that (/|v, P}) € 7. By definition of G(T), v € Vr(a),
v' € Vp(d!), and (v, Py) € 7}(«v). By Property 6 of normalizations, there exists
av" € Vr(a) and a P" such that (v, P}/) € 7r(a). By definition of tuple-graphs
and Hintikka-labels, this implies that ¢ occurs in C. Since v’ € Vr(a'), we can
distinguish two cases by definition of tuple-graphs:

e v/ = gforsome g € Neg. Theno' € Vp(a'), (N6), and the fact that ¢ occurs
in C imply that there exists a P* € {<,=, >} such that (v', P;) € 7(¢/). By
Property 7 of normalizations, this implies (v', P;) € 77(a/). By definition
of G(T), we have (o/|v', Py) € 7.

o v/ = ig for some 7 € {1,...,bcr} and g € Ner. Then v’ € Vp(a/) and
the definition of tuple-graphs implies g € Vp(a'i). By (IN6), and the fact
that g occurs in C, this yields the existence of a P* € {<,=, >} such that
(9, Py) € T(ai). By definition of tuple-graphs, this implies (ig, P;) € 7(a).
Property 7 of normalizations yields (ig, P;) € 77:(c). By definition of G(T)
and since v’ = ig, we obtain (o/|v', P;) € 7.

We now show that G(T) is consistent, i.e., that it satisfies the corresponding Proper-
ties 1 to 3 from Definition 3.6. We start with the simpler Properties 2 and 3:

2. Let alv € V. We need to show that there exists a ¢ € Q such that ¢P¢' for all
P, € 7(a|v). Since G7(a) is normal and consistent, Theorem 3.7 implies that it
is also satisfiable. Let be a solution for G.(«) and set ¢ := (v). We show that
q is as required. Let Py € 7(a|v). By definition of G(T'), we have v € V(o)
and (v, Py) € 7}}(c). Since is a solution for G/}.(c), we clearly have (v)Pg¢'.

3. Let ajq|vy, anlve € V and (ai|vy, ag|ve, P) € E. We need to show that there
exist g1, g2 € Q such that g1 P qo, g1 P' q for all P} € 7(a1]v1), and go P’ g for all
P, € 7(az|vz). By definition of G(T), we can make a case distinction as follows:

e a; =, v1,v9 € Vp(ay), and (v1,ve, P) € El(a). Since G:(1) is normal
and consistent, Theorem 3.7 implies that it is also satisfiable. Let be a
solution for G7.(a) and set ¢; := (v1) and g2 := (v2). We show that
¢1 and go are as required. Since (vi,v9, P) € E}.(a1) and is a solution
for G7.(a), we clearly have g; P go. Now let P, € 7(a;|v;) with ¢ € {1,2}.

21

By definition of G(T'), we have (v;, P;) € 7}(a1). Since is a solution for
G7.(av1), this clearly implies ¢; P g.

[43

o oy = aii, v1 =19, v2 = g, P is “=", and ig € Vp(ay). Since G%(aq) is
normal and consistent, Theorem 3.7 implies that it is also satisfiable. Let
be a solution for G7.(a) and set g := g2 := (ig). We show that ¢; and ¢»
are as required. Clearly, q; P g is satisfied. Let P, € 7(a1|v) = 7(ulig).
By definition of G(T), we have (ig, P;) € 7f(ay). Since is a solution for
G (an), we have g1 P'q. Now let P, € 7(az|vz) = 7(azilg). By definition
of G(T'), we have (g, P;) € 7.(1i). In the following, we show that this im-
plies (ig, P;) € 74+(v1), which is clearly su cient to prove that go P’ q since
g2 = (ig) and is a solution for G7.(;). By Property 6 of normaliza-
tions and definition of tuple-graphs and Hintikka-tuples, (g, P;) € 77 (1)
implies that ¢ occurrs in C. Since g € Vp(aii), this together with (IN6)
implies that there exists a P* € {<,=,>} such that (g, P;) € 77(cz17). By
Property 7 of normalizations, we obtain (g, Py) € 7f(a1). Since G7.(aqi)
is normal and consistent, (g, P;) € 77 (a1i) and (g, P;) € 74:(17) implies
P' = P*. Thus, (g, P;) € 7r(a1i), which implies (ig, P;) € 71(a1) by defini-
tion of tuple-graphs and Hintikka-tuples and Property 7 of normalizations.

43

e o = agl, v = ig, v1 =g, P is “=", and ig € Vp(ay). Analogous to the
previous case.

To show that G(T') is consistent and thus satisfiable over @, it remains to prove that
Property 1 is satisfied. Assume to the contrary that G(T') contains a <-cycle and that
O = aglvg, ..., an|v, is the <-cycle in G(T') with minimal length. Fix a ¢ < n such
that

for each 7 with i <n and each 8 € {1,...,bor}", we have a; # auf3, (%)

i.e., there exist no «; in O such that «y; is a true prefix of «; (such a t exists since
O is of finite length). Since O is a <-cycle, there exists an s < n such that we have
(as|vg, ag+|vg+, <) € E. We make a case distinction and derive a contradiction in
either case.

e ay # ay. Define a sequence of nodes O' from O by deleting all nodes «;|v; with
a; = ag. O is non-empty since a; # a;. We show that O’ is a <-cycle in G(T)
which is a contradiction to the minimality of O. Let O" = ajlv, ..., a),|v,,. By
definition of G(T'), the fact that (as|vs, ag+|vg+, <) € E implies ag+ = a;5. Since
as £ oy, aglvg and ag+|vg+ are in O’ and it remains to show that O' is a cycle
in G(T), i.e., for all i < m, we have (aj|v}, o, |vl,, P) € E for some P € {<,=}.
Let ojlv; and o, |v), be nodes in O'. If these two nodes are already neighbor
nodes in O, we are obviously done. Hence, assume that this is not the case. By
construction of O, this implies the existence of a path

alvl, oqlvl, ... oglvk, a;+\v;+

in G(T) of length at most n. Since o; # a; and o), # «a, by construction of
G(T) and by (*), we have that

22

1. thereexistsa g € {1,...,bcr}* anda j € {1,...,bcr} such that oy = 3
and o = o}y = f3,

2. vj = jg, vi =g, v; =4, and v, = jg' for some g,g" € Ncr, and

3. (Blig,Bilg,=) € E and (Bljg', Bilg',=) € E.

By definition of G(T'), Point 3 implies jg, 79" € Vr(8). By (N5), and Property 1
of normalizations, this implies that either

(a) (jg,79',P) € Ep(B) N EL(B) for some P € {<,=} or
(b) (jg's49,<) € Er(B) N EL(B).

First assume that (a) holds. Together with Point 1 and 2 and the definition
of G(T), (jg,79', P) € E}(B) obviously implies (ojlv;, ol |vl,, P) € E and we
are done. Moreover, case (b) leads to a contradiction, i.e., it cannot occur: by
definition of tuple-graphs, (j¢',jg, <) € Er(B) implies (¢',g,<) € Er(Bj). By
Property 1 of normalizations, we thus have (¢', g, <) € EJ.(87). By definition of
G(T) and Point 1 and 2, this implies that (aq|v}, au|v, <) € E. Hence, the path
aivl, ..., a|v) is a <-cycle in G(T') of length at most » — 2 which contradicts
the minimality of O.

as = ay. We first show that there exists a node «,|v, in O such that a, # «.
For suppose that no such node exists. Then, by definition of G(T'), vg,...,v,
is a <-cycle in G%.(ay). This, however, contradicts the fact that G7.(a;) is
consistent. Hence, we may conclude the existence of an «, as above. Define a
sequence of nodes O' from O by deleting all nodes «;|v; with a; # ap. O is
non-empty since oy = ;. Moreover, O is shorter than O due to the existence
of a,. We show that O' is a <-cycle in G(T') which is a contradiction to the
minimality of O. Let O' = ay|v], ..., a|v),. By definition of G(T'), the fact that
(as|vs, g+ |vg+, <) € E implies o+ = a5 = . Hence, it remains to show that
O' is a cycle in G(T), i.e., that, for all i < m, we have (oy|vj, as|v}y, P) € E for
some P € {<,=}.

Let aq|v; and oy|vl, be nodes in O'. If these two nodes are already neighbor
nodes in O, we are obviously done. Hence, assume that this is not the case. By
construction of O, this implies the existence of a path

at|vg7 0491F|Ui‘a sy O‘::|U;'7 at|v'§+

in G(T) of length at most n such that o # a4 for 1 <4 < z. By construction
of G(T) and by (x), we have that
1. thereexistsa g € {1,...,bcr}*anda j € {1,...,bc R} such that oy = §j
and o] = o = f3,
2. v; =g, v = jg, v; = jg', and v, = ¢’ for some g,g" € Ner, and
3. (Blig, Bilg, =) € E and (Bljg’, Bilg’,=) € E.

By definition of G(T') and by Point 3, both jg and j¢' are nodes in Vp(3). By
(N5) and Property 1 of normalizations, this implies that either

23

(a) (jg',j9. <) € Er(B) N ER(B) or
(b) (49:49's P) € Er(B) N Ef(B) for some P € {<,=}.

Case (a) cannot occur: together with Point 1 and 2 and the definition of
G(T), (49',79.<) € EL(B) implies (ak|vi,af|vi,<) € E. Hence, the path
aflvy, ..., aklvs is a <-cycle in G(T') of length at most n — 2 which contra-
dicts the minimality of O. Hence, assume that (b) holds. By definition of
tuple-graphs, (jg,749', P) € Er(B3) implies (g9,¢', P) € Er(8j). By Property 7
of normalizations, this, in turn, implies (g,¢', P) € EZ(87). By construction of
G(T) and Point 1 and 2, we thus obtain (a|v;, oy |v};, P) € E what was to be

shown.
d

We can now prove soundness.

Lemma 5.3. If there exists a Hintikka-tree for a concept C' in PNF and a role hier-
archy R, then C' is satisfiable w.r.t. R.

Proof Let C be a concept, R a role hierarchy, and bc as in Definition 4.3. More-
over, let T' be a Hintikka-tree for C and R. By Lemma 5.2, the corresponding con-
straint graph G(T') = (V. E,) is satisfiable and thus has a solution . For each
R € ROL, set

E(R) ={(a,pB) | B=ciand R € wr(B)} U{(c,8) | @« = pi and Inv(R) € wr(a)}.

We define an interpretation Z = (Az,-T) as follows:

Az = {l,...,bcr}"
AT = {a| A€ Tp(a)} forall A€ Oy
RY = &R)U lJ &@)" forall ReNg
P & R,Trans(P)
g¢ = {(a,z)|alg €V and (alg) =z} for all g € NcF.

Before we show that Z is well-defined, we establish a claim:
Claim 1: If R € ROL is simple, then R = £(R).

Proof: If R € Ng is simple, then R? = &(R) is an immediate consequence of the
definition of RZ. Now let R = S~ be simple with S € Ng. Then it is readily checked
that (S7)T = (ST)~ =&£(5)” = &£(S7).

We now show that Z is well-defined:

e For all R € N, R? is transitive. Let {(a,f1),(a2,82)} C RT where B; =
ay. Then, for each i € {1,2}, either (i) (ay, ;) € E(R) or (ii) there exists
a role P; such that P; E R, Trans(P;), and (o;,3;) € E(P;)T. In Case (ii),
(a;, Bi) € E(P;)T implies (o, ;) € E(R)T by (N4) and definition of £. Hence,
{(a1, 1), (a2, B2)} C E(R)T which obviously implies (a1, 32) € E(R)T. Since
R ER and Trans(R), we have £(R)™ C RT and thus (a1, 82) € RZ.

24

e For all f € Nur, fZ is functional. For assume to the contrary that, for some
f € Nag, we have {(a, B1), (o, B2)} C fT with B; # Bo. By assumption (c.f.
Section 3.1), f is simple. Thus, Claim 1, the non-emptyness of fZ, and the
definition of £ and of Hintikka-tuples imply that f occurs in C or R. Moreover,
Claim 1 clearly implies that {(«, 1), (a,B2)} € £(f). By (S4) and since f
occurs in C or R, we have (< 1 f T) € Up(a). We distinguish two cases: either
there exists a j € {1,2} such that a = ;i and Inv(f) € wr(a) (for some 7) or
(ii) no such j exists. In Case (i), (< 1 f T) is marked in U7 () by (S6) and
(M9). Thus, by (M8) and (S6) there exists no i such that f € wp(ai). Since T
is a tree, this is a contradiction to the fact that («, 5¢) € E(f), where £ € {1,2}
such that £ # j. In Case (ii), there clearly exist ¢; and iy such that §; = ai;
and f € wp(B;) for j € {1,2}. Since 1 # f2, we have i1 # ip. This, however, is
a contradiction to (M8), (S6), and the fact that (<1 f T) € Up(a).

e For all g € N¢r, g7 is obviously functional.

We now prove that 7 is a model of R. Hence, let R C S and («,8) € RZ. Then
either (i) (o,) € £(R) or (ii) there exists a role P such that P E R, Trans(P), and

(o, B) € E(P)*. In Case (i), the definition of £, (N4), and R E S yields (o,) € £(S) C S7.
In Case (ii), we clearly have P E S and thus (o, 3) € ST by definition of ST.

It remains to prove that there exists an a € Az such that a € CT. To do this, we
prove the following claim:

Claim 2: D € Up(«) implies o € DT for all @« € Az and D € cl(C, R).

Proof: The claim is proved by induction on the norm || - || of concepts D which is
defined inductively as follows:

1A = ||~4]] .~ 0for A € N
|Gy Col| = |[CL U Cy| = 1+||Ch]] +[|Co|
|I3R.D|| := [[VR.D|| = 1+||D|
[(>n RD)|| = [(KnRD)|| = 1+]|D]|
||Fui, us.P|| = ||Vui,u2.P|| = 0
[13Rg1,92.P|| = [[VRg1,92.P|| = 0
[3g9.Pll = 0

First for the induction start, which splits into several subcases:
e D is a concept name. Immediate by definition of Z.

e D = —FE. Since C is in NNF and by definition of cl(), D is in NNF. Hence, F is
a concept name. By definition of Z and since ¥p(«a) is a Hintikka-set and thus
satisfies (S3), we have a € (-E)7.

e D =3U;,U,.P. We distinguish three subcases:

1. Uy = g1 and Us = ¢go. By (N1) and definition of tuple-graphs, we have
91,92 € Vr(a) and (g1, 92, P) € Ep(a). By Properties 1 to 5 of normaliza-
tions, this implies that there exists a P’ € {<,=} such that ¢; P'qy implies

25

q1Pgy for all gi,q2 € Q and (g1,92, P') € El(a). By definition of G(T),
91,92 € Vr(a) and (g1,92,P') € El(a) implies that a|g;,a/gs € V and
(alg1,alga, P') € E. By definition of Z, we have gf(a) = (alg;) and
gZ(a) = (alg). Since is a solution for G(T) and (a|g1)P' (algs) im-
plies (algy)P (a|gs), this yields o € (3gy, g2.P).

2. Uy = Rg1, Uy = g9, and IRgy, go.P is unmarked in Up(«). By (G1) and
since IRgy, g2. P is unmarked, there exists an 4 such that ig;, g € Vp(a),
R € wr(ai), and (ig1,g9,P) € Er(a). By Properties 1 to 5 of normal-
izations, this implies that there exists a P’ € {<,=} such that ¢ P'qo
implies q; Pgy for all ¢1,¢q2 € Q and (ig1, g2, P') € Ef (). By definition
of G(T), ig1, g2 € Vr(e) and (ig1, g2, P') € El(«) yields a|ig1, a|go € V and
(aligy, a|ge, P') € E. Moreover, ig; € Vp(«) implies (aligy, ailg;, =) € E.
By definition of Z and since R € wr(ai), we have (a,ai) € RZ, gf (ai) =

(ailg1), and gZ(a) = (a|ge). Since (aligr,ailgi,=) € E and is a so-
lution for G(T), we have (ailgi) = (aligi). Together with (a, ai) € RT
and g (ai) = (wilgy), this yields (aligi) € (Rg1)*(a). Moreover, since

is a solution for G(T') and («|ig1, @|ga, P') € E, we have (aligi)P’ (a|g2),
which implies (aligi)P (a|g2). Summingup, (aligi) € (Rg1)%(a), g% (a) =

(alg2), and (aligi)P (alge) yields a € (3Rg1, g2.P)~.

3. U1 = Rg1, Us = g9, and IRgy,g2.P is marked in ¥Up(a). By (T2),
there exists a 3 such that a = pi. By (G2), we have g1,igs € Vr(B),
Inv(R) € wr(a), and (g1,i92, P) € Vr(5). By Properties 1 to 5 of nor-
malizations, this implies that there exists a P’ € {<,=} such that ¢ P'go
implies ¢ Pgy for all q1,¢q2 € Q and (g1,ig2, P') € E7(5). By definition
of G(T), g1,ig2 € Vr(B) and (g1,ig2, P') € E7(f) implies that B|g1, Bliga € V
and (B|g1, Blige, P') € E. By definition of Z and since Inv(R) € wr(a),
we have (a,6) € RE, g7(B) = (Blgr), and g&(e) = (algs). This im.
plies (B]g91) € (Rg1)¥(a). By definition of G(T), igs € Vr(B) implies
(Bliga, |ga, =) € E. Since is a solution for G(T), we thus have gZ(a) =

(Bliga). Moreover, since (S8|g1,08liga, P') € E and is a solution for
G(T), we have (8g1)P' (Bligs) which implies (8lg1)P (ligs). Sum-
ming up, (Blg1) € (Rg1)*(a), g5(a) = (Blig2), and (Blg1)P (Bliga)
yields o € (3Rgy, g2.P)*.

e D =VU;,Uy.P. Two subcases can be distinguished:

1. Uy = g1 and Uy = go. If g¥ () or gZ(a) is undefined, then « € (Vg1, g2.P)*
is trivially satisfied. Hence assume that gZ(a) and gZ(a) are defined. By
definition of Z, this implies that a|g; € V, ¢f(a) = (a|g1), alga € V,
and gZ(a) = (alg2). By definition of G(T), algi,algs € V implies
91,92 € Vp(a). By (N2) and construction of tuple-graphs, we thus have
(91,92, P) € Ep(a). By Properties 1 to 5 of normalizations, there ex-
ists a P’ € {<,=} such that ¢;P'qs implies ¢q; Pgo for all q1,q2 € @
and (g1,92, P') € EZ(c). The latter implies that («|gi,a|gs, P') € E.
Since s a solution for G(T'), we thus have (a|gi)P’ (a|g2) which yields

26

(alg1)P (clgs). Together g7 () = (alg1) and g2 (o) = (alg2), we obtain
a € (Yg1,92.P)T.

2. Uy = Rgy and Uy = go. Let 21 € (Rg1)? () and z9 € g2 (). By definition
of Z, we have a|go € V and zo = («|g2). Since, by definition of Q-SHZ Q-
concepts, R is simple, Claim 1 and the definition of £ implies that one of
the following two cases applies:

— There exists an i € {1,...,bcr} such that ailg; € V, R € wy(o)
and 1 = (ai|g1). By deﬁnltlon of G(T), ailgi,alga € V implies g1 €
Vr(ai) and g2 € Vr(a). By (G3), we thus have (ig1, g2, P) € Er(a).
By Properties 1 to 5 of normalizations, there exists a P’ € {<,=}
such that ¢ P'go implies q1 Pqy for all ¢1,q0 € Q and (ig1, g2, P') €
Ef(a). The latter implies (aligi,alge, P') € E. By definition of
G(T), ig1 € Vp(a) implies (alig, @ilgi,=) € E. Since is a solu-
tion for G(T) and z1 = («i|g1), this yields z; = (alig1). More-
over, since (aligi,alge, P') € E, we have (aligi)P' (a|g2) implying

(arig1)P (cr|g2). Hence, 21 Pxo.

— There exists a § such that o = i, Blg1 € V, Inv(R) € wp(«a), and
z1 = (Blg1). By definition of G(T), B|g1,alga € V implies g1 € Vp(5)
and g9 € Vp(a). By (G4), we thus have (g1,i92) € Er(8). By Prop-
erties 1 to 5 of normalizations, there exists a P’ € {<,=} such that
q1P'qy implies g1 Pgy for all q1,q2 € Q and (91,192, P') € E7(5). The
latter implies (8|g1, Blige, P') € E. By definition of G(T'), igs € Vir(B)
implies (f|igs, a|ga,=) € E. Since is a solution for G(T) and zo =

(a|g2), this yields zo = (f|ig2). Moreover, since (8|g1, 8lig2, P') € E,
we have (8|g1)P' (Blige) implying (8|g1)P (Blig2). Hence, z1Pxs.
Since this holds independently of the choice of z; and z9, we have a €
(VRgl,gg.P)I.

e D = 3g.P,. By (N3), this implies g € Vr(«) and (g,P,;) € 7r(a). By Prop-
erties 7 to 10 of normalizations, there exists a P’ € {<,=,>} such that ¢’ P'q
implies ¢' P g for all ¢ € Q, and (g, P;) € 74:(a). By definition of G(T'), we have
alg € V and (alg, P}) € 7. By definition of Z, a|g € V implies g* (o) = (ag).
Since is a solution for G(T') and (alg, P;) € 7, we have (alg) P'q, which
implies (a|g) P ¢. Summing up, we obtain « € (3g.P,)%.

For the induction step, we make a case distinction according to the topmost operator
in D. Assume D € ¥p(a).

e D=CMCyor D= CUC,. Straightforward by (S1) and (S2) of Hintikka-sets
and by induction hypothesis.

e D =3R.E. We can distinguish two cases:

1. D is unmarked in ¥ («). By (M1), there exists an ¢ such that R € wp(ai)
and F € Ur(ai). By definition of R, we have (o, ai) € RT. By induction,
we obtain «i € EZ. Thus, o € DZ.

27

2. D is marked in Up(a). By (T2), there exists a § such that « = i. By
(M3), we have Inv(R) € wi(a) and E € U (B). By definition of RZ, we
have (o, 3) € RT. By induction, we obtain 8 € EZ. Thus, o € D~.

e D =VR.E. Let (o, 8) € RT. By definition of R, one of the following to cases
applies:

1. (o, B) € E(R). By definition of &, this implies that there exists an ¢ such
that either (i) S = ai and R € wr(f) or (ii) a = Bi and Inv(R) € wr ().
In Subcase (i), (M4) yields E € Up(8). In Subcase (ii), (M5) yields

FE € \IJT(B)
2. there exists a role P such that P E R, Trans(P), and («, 3) € £(P)". Then
there exist «ap, ..., such that @ = ag, 8 = o, and (@, ;1) € E(P) for

i < k. If k = 1, then the definition of £ and (N4) yields (a, 8) € £(R) and
we can continue as in Case 1. Hence assume k£ > 1. Using the fact that
VR.E € Up(ap), the definition of £, (M6), and (MT), it is readily checked
that VP.E € Up(«;) for all ¢ with 0 < 7 < k. As in Case 1, we may now use
the fact that VP.E € Up(ay_1), the definition of £, (M4), and (M5) to
show that E € Up(ay) = ¥7(B). By induction, we obtain 8 € ET. Since
this holds independently of the choice of 3, we conclude o € DZ.

e D= (>n R FE). First assume that D is unmarked in Up(«). By (M2), there
exists a set 1 C {l,...,bcr} of cardinality n such that, for each i € I, we
have R € wr(ai) and E € Up(ai). By definition of RZ, we have (o, i) € R
for every i € I. By induction, we obtain «i € ET for every i € I. Thus,
#{B | (o, 8) € RT and B € ET} > n and o € D~.

Now assume that D is marked in Up(a). By (M2), there exists a set I C
{1,...,bcr} of cardinality n — 1 such that, for each i € I, we have R € wy (o)
and E € Ur(ai). By (T2), there exists a such that « = pi. By (M3),
we have Inv(R) € wr(a) and E € Up(B). The definition of R implies that
(o, i) € RT for every i € I and (o, 8) € RT. By induction, we obtain ai € E*
for every i € I and 8 € ET. Since, clearly, B # «i for all i € I, we thus have
#{B | (o, 8) € R and B € ET} > n and conclude a € DZ.

e D= (<n RE). Since R is simple by definition of Q-SHZ Q-concepts, Claim 1
yields RT = £(R), i.e., the set {# | (o, B) € RT and B € ET}, whose cardinality
we must show to be at most n, can be written as the union of the following two
sets:

S = {ai| R € wr(ai) and ai € E}

Sy = {B|a=pi, Inv(R) € wr(a), and B € ET}.
First assume that D is unmarked in ¥ (). By (M9), this implies that either
(i) a = ¢, (ii) Inv(R) ¢ wr(@) or (iii) £ ¢ Vr(8) where o = i. In all three
cases, So is empty: this is obviously true for (i) and (ii); in Case (iii), (S5) yields
~E € ¥r(pB), and by induction, we obtain 8 € (~E)T implying 8 ¢ EZ. By
(MS8), #S; is bounded by n: (M8) yields

#{ci | R € wr(ai) and E € Up(ai)} < n. (+)

28

Now assume that {57 is greater than the cardinality of the set in the inequal-
ity () which implies that there exists an i such that E ¢ Up(ai) but i € ET.
By (S5), E ¢ V(i) yields ~FE € ¥p(ai). From the induction hypothesis, we
obtain ai € (~E)Z, a contradiction. We thus conclude that #5; is bounded by n
which yields o € D,

Now assume that D is marked in ¥p(«). Since T is a tree, we have §S2 < 1. Simi-
lar to the unmarked case, we can use (M8) and (S5) to deduce that §S; < n — 1.
We thus conclude #{f | (o, 8) € RT and 8 € EZ} < n and a € DZ.

This completes the proof of the claim. Since C' € ¥p(e), it is an immediate conse-
quence of Claim 2 that Z is a model of C. a

We now prove completeness.

Lemma 5.4. If a concept C in PNF is satisfiable w.r.t. a role hierarchy R, then there
exrists a Hintikka-tree for C' and R.

Proof Let C be a concept, R a role hierarchy, and be z as in Definition 4.3. More-
over, let Z be a model of C' and R, i.e., Z is an interpretation such that there exists
an Troot € A7 with Zreer € CF and we have RT C ST for all RC S € R.

Before we define a Hintikka-tree T' for C' and R, we introduce two auxiliary func-
tions: (i) for every z € Az U {@} and y € Az, we set Z(z,y) = (V,w,V,E, 1),
where

¥ = {Ded(C,R)|yec D}

V = {g €N |goccurrs in C and g*(y) defined}

Y { {R| R occurs in C or R and (z,y) € RT} ifz #@
T 0 otherwise

E = {(91,92,P) | 91,92 € V and g{ (y) P g5 (y)}

7 = {(9,P;) | g €V, qoccurs in C, and ¢ (y) P q}.

(ii) for every x € Az, we fix a set W (z) C Az of witnesses such that
1. if z € (3R.D)?, then there exists a y € W (z) such that (z,3) € R and y € D7,

2. if # € (> n R D)%, then there exists a subset {yo,...,yn_1} C W (z) such that
(z,y;) € R and y; € DT for i <k,

3. ifz € (< n R D)L, then #{y € W(x) | (z,y) € RT and y € DT} < n,

4. if x € (3Rg1, g2.P)*, then there exists a y € W (z) such that (z,y) € RT and
g1 (y) P g3 (), and
5. the cardinality of W (z) is at most bc z.

Using the semantics of Q-SHZ Q-concepts and the definition of b z, it is not hard to
check that, for every z € Az, such a set of witnesses does indeed exist.

We now inductively define a Hintikka-tree 7" for C' and R, i.e., an bg g-ary I'c -
tree that satisfies (T1) to (T3). To simplify the construction of 7', along with T we

29

define a mapping 7 from {1,...,bcr}* to Az that keeps track of the correspondence
between nodes in T and elements of Az.

For the induction start, set

m(€) = Troot

T(e) = Z(Q, Zro0t)

where all concepts are unmarked in Up(e). Now for the induction step. Let a €
{1,...,bcr}* be a word of minimal length such that 7(«) is defined and 7 (o)
is undefined for all ¢ € {1,...,bor}. Set S := W(n(a)) if m(a) = Zroot and
S :=W(n(a)) \ {n(p)} if @« = pi. Moreover, let S = {z1,...,z,}. Then do the
following;:

1. For all ¢ < n, set n(ai) := z; and T(wi) := I(m(),x;). A concept IR.E,
(€ m R E),or (>n R FE)is marked in ¥p(ai) iff Inv(R) € wr(ai) and
E € Ur(a). A concept IRg,g2.P is marked in Up(wi) iff Inv(R) € wr(oi)
and g7 (m(a)) P g% (z;).

2. For all 4 with n < i < bor, set m(ai) := Zroot and T'(ai) := T(Q, zro0r). All
concepts are unmarked in ¥p(wi).

Clearly, T' is a b, g-ary tree. To show that T is a Hintikka-tree for C' and R, we need
to prove that T" is a I'c g-tree and that (T1) to (T3) are satisfied. To show that T is
a I'cr-tree, in turn, we must prove that every node label is a Hintikka-label: clearly,
if T(a) = (¥, w,V, E,7) for some node a, then w is a set of roles occurring in C' or R
and (V, E,T) is a constraint graph as required by Definition 4.3. It thus remains to
show that ¥ is a Hintikka-set for C' and R, i.e., that it satisfies (S1) to (S6), and
that T'(«) satisfies (N1) to (N6). Both tasks, however, are trivial using the definition
of Z(z,y).

It thus remains to show that (T1) to (T3) are satisfied. This is easy for (T1) and
(T2) using the definition of T'(¢). In order to show that (T3) is satisfied, we have
to prove that, for all @ € {1,...,bcr}*, the tuple (T'(a),T(cl),...,T(abcr)) is a
Hintikka-tuple, i.e., that it satisfies conditions (M1) to (M10). Before we do this, let
us state two properties that can easily be seen to hold by considering the definitions
of Z(-,+), T, and m:

(a) forall a € {1,...,bcr}*, we have Uy (o) = {D | D € cl(C,R) and 7(a) € DT};

(b) for all wi € {1,...,bcr}*, we have wr(ai) = {R occurrs in C' or R and
(m(a), m(ci)) € RT}.

We now show that conditions (M1) to (M10) are satisfied.

(M1) Let 3R.D € Ur(a). By (a), we have n(a) € (3R.D)%. Thus, by Property 1
of W (-), there exists a y € W (n(a)) such that (w(c),y) € R and y € DT. If
JR.D is unmarked in ¥r(a), then we either have (i) m(a) = Zroot (induction
start or Case 2 of the induction step) or (ii) there exists a 3 such that o = i
and we have either Inv(R) ¢ wr(a) or D ¢ Up(f5). In Case (i), we clearly

30

have y € S = W(n(«)) during the induction step generating successors for .
In Case (ii), we have (m(a),7(8)) ¢ RZ or m(B) ¢ D by (b) and (a). This
implies y # 7(3) and thus we have y € S during the induction step generating
successors for « in both Case (i) and (ii). Hence, by construction of T' there
exists an ¢ € {1,...,bor} such that 7(ai) =y, R € wr(ai), and D € Yy (o).

(M2) Let (> n R D) € Up(a). By (a), we have n(a) € (>n R D)*. Thus, by
Property 2 of W(-), there exists a subset {yo,...,yn—1} C W(n(a)) such that
(m(a),y;) € RT and y; € D? for i < k. We can distinguish two cases:

1. (> n R D) is unmarked in ¥r(a). Then we have either (i) m(a) = Zo0r OF
(ii) there exists a /8 such that o = i and we have either R ¢ wr(«) or D ¢
Ur (). Similar to the (M1) case, in both cases we have {yg,...,yn—1} C S
during the induction step generating successors for a. By construction of T',
this clearly implies

t{i € {1,...,bcr}" | R € wr(ai) and D € Up(ai)} > n

as required.

2. (> n R D) is marked in ¥y (). Then there exists a g € {1,...,bcor}"
such that Inv(R) € wr(a) and D € ¥p(f). Since we may or may not have
w(B) € W(r(«)), it is easy to see that

Hy € S| (n(a),y) € RF and y; € D'} € {n —1,n}

during the induction step generating successors for a. By construction of T',
we thus have

t{i € {1,...,bcr}" | R € wr(ai) and D € Up(ai)} >n—1
as required.
(M3) Immediate from the construction of 7'

(M4) Let YR.D € ¥p(a) and R € wr(ai) for some i € {1,...,bcr}*. By (a)
and (b), this implies () € (VR.D)? and (7(a),n(ai)) € RT. By Q-SHIQ
semantics, we have 7(ai) € DT. Again by (a), we obtain D € ¥y (ai).

(M5) Let VR.D € ¥p(a) and Inv(R) € wp(a). Since wr(a) # 0, there exist
and ¢ such that @« = fi. By (a) and (b), VR.D € ¥r(a) and Inv(R) € wr(@)
implies 7(a) € (VR.D)? and (7(a),7(B)) € RE. By Q-SHIQ semantics, we
have 7(8) € DT. Again by (a), we obtain D € Up(3).

(M6) Let YR.D € ¥p(a), S € wr(ai) with 1 <4 < bg g, Trans(S), and S ER. We
show that m(ai) € (VS.D)T which, by (a), implies VS.D € U (ai) what needs
to be shown. To this end, assume (7(ci),z) € ST. By (b), S € wr(ai) implies
(r(a), 7(ai)) € ST. Since Trans(S) holds, together with (w(ai),z) € ST this
implies (7(a),z) € ST C RE. By (a), VR.D € U (a) implies 7(a) € (VR.D)L.
By Q-SHZQ semantics, we obtain z € DT. Since this holds independently of
the choice of =, we conclude (i) € (VS.D)L.

31

(M7) Let VR.D € Up(a) and Inv(S) € wr(a), Trans(S), and S E R. Since wr(a) # 0,
there exist § and 4 such that « = gi. We show that 7(3) € VS.D which, by (a),
implies VS.D € U7(f) what needs to be shown. Hence, assume (7(3),z) € ST.
By (b), Inv(S) € wr(e) implies (m(a),n(8)) € ST. Since Trans(S) holds,
together with (w(8),z) € ST this implies (7(a),z) € ST C RZ. By (a),
VR.D € Up(a) implies 7(a) € (VR.D).. By Q-SHIQ semantics, we ob-
tain z € D?. Since this holds independently of the choice of z, we conclude
n(B) € (VS.D)~.

(M8) Let (< n R D) € Up(a). By (a), we have 7(a) € (< n R D)*. Thus, Prop-
erty 3 of W(n(a)) yields K < n, where

K :={y e W(r(a)) | (v(a),y) € R* and y € D*} < n.
We make a case distinction as follows:

1. (< n R D) is unmarked in ¥p(a). We clearly have S C W (nw(«)) during
the induction step generating successors for a. This obviously implies

{y € S| (n(a),y) € R and y € D} C K.
It is easy to check that this, together with §K < n, implies
t{i e {1,...,bcr | R € wr(ai) and D € Up(ai)} <n

as required.

2. (< n R D) is marked in ¥7(«). Then there exists a § € {1,...,bcr}"
such that Inv(R) € wr(ai) and D € Up(B). First assume 7(8) € K. This
implies that we have

{y €S| (r(a),y) € R and y € DT} = K\ {n(B)}

during the induction step generating successors for ae. Together with K < n,
we obtain

t{i e {1,...,bcr | R € wr(ai) and D € ¥p(ai)} <n

as required. Now assume 7(8) ¢ K. Since Inv(R) € wp(«wi) and D € ¥p(f),
we have (m(a),n(8)) € R? and w(B) € DT by (a) and (b). Since () €
(<Kn RD)F and 7(8) ¢ K, Q-SHIQ semantics implies that 1K < n
Moreover, w(f) ¢ K implies

{ye S| (r(a),y) e R andy € D'} = K

during the induction step generating successors for ae. Together with K < n,
this yields

t{i e {1,...,bcr | R € wr(ai) and D € Up(ai)} <n

as required.

32

(M9) Immediate from the construction of T'.

(M10) Let T'(a) = (¥o, wo, Vo, Eo, 70) and let T'(ci) = (¥, w;, Vi, B, 1) for 1 <i < be r.
We first establish the following claim:

Claim: if 3Rgy, g2.P appears unmarked in Wg, then there existsani € {1,...,bcr}
such that g1 € Vi, g2 € Vo, R € w; and ¢f (7(ai)) P g% (7(a)).

Proof: Assume that 3Rgy, go.P appears unmarked in ¥y. By (a), we have w(a) €
(3Rg1,go.P)t. Thus, by Property 4 of W (-), there exists a y € W (n(a)) such
that (r(a),y) € R and g (y) P g3 (n(a)) (implying that ¢f (y) and ¢ (()) are
defined). By definition of T, 3Rgy, g2. P appearing unmarked in ¥ implies that
either (i) m(a) = oot Or (ii) there exists a § such that o = (i and we have
either Inv(R) ¢ wp or g (n(B)) P g4 (m(a)) does not hold. In Case (i), we clearly
have y € S = W(n(«)) during the induction step generating successors for a.
In Case (ii), (b) implies that ((a),7(8)) ¢ RT or g (7(B)) P g% (n(a)) does not
hold. This implies y # 7(f) and thus we have y € S during the induction step
generating successors for « in both Case (i) and (ii). Hence, there exists an
i € {1,...,bor} such that 7(ai) = y, R € w;, and g7 (n(ci)) P g% (n(c)). More-
over, since g7 (y) and gZ (m(c)) are defined, the construction of 7" and definition
of Z(-,-) implies that g; € V; and g2 € Vj.

For each 3Rgi, go. P appearing unmarked in W, the i € {1,...,bcr} provided
by the claim is denoted by A(3Rg1, g2.P).
We define a constraint graph G = (V, E, 1) as follows:

V o= VWU{ig|1<i<bcr and g€ V;}

E = FUEyU{(ig1,ig2,P) |1 <i <becr and (91,92, P) € E;}

T TUU{(Zgan)‘]-SZSbC,R and (ga-Pq)GTi}

where F' is defined in the following way:

F = {(ig1,92,P) | 3Rg1, g2.P appears unmarked in ¥y and A(3Rg1,g2.P) =i}
U {(g1,792, P) | 3Rg1, g2.P appears marked in U;}
U {(ig1,92, P) | VRg1,92.P € V¢, R € w;, g1 € V;, and g3 € Vj}
U {(g1,i92, P) | VRg1,92.P € ¥;,Inv(R) € w;, g1 € Vi, and g2 € V;}

It is not hard to verify that G is well-defined, i.e., that (i) if 3Rg, go.P appears
unmarked in ¥y and A(3Rg,92.P) = i, then igy, g0 € V, and (ii) if IRgy, g2.P
appears marked in ¥;, then g1,igs € V: for (i), we just need to use the above
claim, and for (ii), it su ces to refer to the way in which concepts inside node
labels are marked during the construction of T. Moreover, it is readily checked
that G is a tuple-graph for (T'(c), T'(1),...,T(abcr)): V, E, and 7 are clearly
of the form described in Definition 4.3 and it is not hard to verify that (G1) to
(G4) are satisfied (use the above Claim for (G1) and the way in which concepts
inside node labels are marked for (G2)). To show that (M10) is satisfied, it thus

33

remains to show that G has a consistent normalization. However, since it is easily
seen that every solution for a constraint graph induces a consistent normalization
of this constraint graph, it su ces to show that G itself is consistent.

Define a mapping from V to QQ as follows:
(9) := g"(n(a)) and (ig) := ¢* (m(cv)).

We show that 1is a solution for G:

e Let (v,P;) € 7. Then either (i) v = g for some g € N or (ii) v = ig
for some i € {1,...,bcr} and g € N¢r. In Case (i), we have (g, P;) € 79
by definition of G. By construction of T and definition of Z(-,-), this
implies g7 (7(a)) P q. By definition of , we thus have (g) Pq. Similarly,
in Case (ii) we have (g, P,) € 7; which implies g7 (m(i)) P q and thus

(ig) P q.

e Let (vy,v9, P) € E. By definition of G, we can distinguish the following
cases:

1. v1 = g1 and v9 = g9 for some ¢1,92 € N¢p. By definition of G, we
have (g1,g92, P) € Vy. By construction of T' and definition of Z(-,),
this implies g7 (7()) P g2 (7(c)). Hence, (g1) P (g2).

2. v = ig; and vy = igy for some i € {1,...,bcr} and g1, 92 € Ncr.
Then we have (g1, g2, P) € V; and can continue as in the previous case.

3. v; =1ig; and vy = gp for some i € {1,...,bcr} and g1,92 € Ncr. By
construction of F', we can distinguish two subcases:

— there exists some concept 3Rgy, go.P such that IRg;, go. P appears
unmarked in ¥y and A(3Rg1,g2.P) = i. By the above Claim, we
have g7 (r(ai)) P g% (n(a)) which clearly implies (ig1) P (g2).

— VRg1,99.P € ¥y, R € w;, g1 € V;,and go € V. By (a), VRg1,92.P € ¥y
implies 7(a) € (VRg1,g2.P)T. By construction of T' and defini-
tion of Z(-,-), R € w; implies (7(a), 7(ai)) € R, g1 € V; implies
that g7 (m(i)) is defined, and go € V; implies that g (m(a)) is
defined. Thus ¢f (m(ai)) P g2 (7()) by Q-SHTZQ semantics and

(ig1) P (g2) by definition of .

4. v; = g1 and vy = igy for some i € {1,...,bcr} and gi,92 € Ncg. By
construction of F', we can distinguish two subcases:

— there exists some concept IRgi, gs.P that appears marked in U;.
By construction of T' (in particular the marking of concepts in node
labels), we have Inv(R) € w; and g7 (7(a)) P g3 (n(ai)). Tt remains
to refer to the definition of .

— VRg1,92.P € V;, Inv(R) € w;, g1 € Vp, and g2 € V;. By (a),
VRgi,g2.P € ¥; implies m(ci) € (VRgi,g2.P)%. By construction
of T and definition of Z(-,-), Inv(R) € w; implies (7w (ai), 7(a)) €
RZ, g1 € Vp implies that g7 (m(«)) is defined, and g5 € V; implies
that g2 (m(ci)) is defined. Thus ¢f (7()) P g2 (7(cvi)) by Q-SHIQ
semantics and (g1) P (ige) by definition of .

u

34

6 Defining Looping Automata

To prove decidability of Q-SHZ Q-concept satisfiability, it remains to define a looping
automaton Acr for each concept C and role hierarchy R such that Acr accepts
exactly the Hintikka-trees for C' and R. Using the notion of Hintikka-tuples from
Definition 4.3, this is rather straightforward.

Definition 6.1. Let C' be a concept in PNF, R be a role hierarchy, and bcr be as
in Definition 4.3. The looping automaton Acg = (Q, M, A, T) is defined as follows:

e Q:=M:=T¢cp
e [={(V,w,V,E,7) € Q| C € ¥ and all concepts in ¥ are unmarked}.
o A C QP»¥2such that (L,L', Ly,...,Lp,) € A iff

L =L"and

(L,L1,..., Ly) is a Hintikka-tuple.
&

As a consequence of the following lemma and Lemmas 5.3 and 5.4, we can re-
duce satisfiability of concepts (in PNF) w.r.t. role hierarchies to the emptiness of the
language accepted by looping automata.

Lemma 6.2. T is a Hintikka-tree for C and R iff T € L(Acr).

Proof Let C be a concept, R a role hierarchy, and bc as in Definition 4.3.
For the “if” direction, let r be a run of Az on T'. By definition of runs and of A,
we have
r(a) =T(a) for all a € {1,...,bcr}".

Hence, it remains to be shown that r is a Hintikka-tree for C' and R, which is straight-
forward: (i) by definition of @), is a ' g-tree; (ii) since, by definition of runs, r(e) € I,
(T1) and ('T2) are satisfied; and (iii) by definition of runs and of A, (T3) is satisfied.

Now for the “only if” direction. It is straightforward to check that T itself is
a run of Acg on T: (i) by definition of Hintikka-trees and Acr, T(o) € Q for
all @ € {1,...,bcr}"; (ii) by (T1), (T2), and definition of I, we have T'(e¢) € I;
(iii) by (T3) and by definition of A, we have (T'(a),T(a),T(cv1),...,T(ag)) € A for
allaE{l,...,bC,R}*. u

It is an immediate consequence of Lemmas 3.3, 5.3, 5.4, and 6.2 and the decidability
of the emptiness problem of looping automata [21] that satisfiability of Q-SHZQ-
concepts w.r.t. role hierarchies is decidable. However, the presented automata-based
algorithm additionally provides us with a tight complexity bound if the numbers
inside number restrictions are assumed to be encoded unarily. We use |C| to denote
the length of the concept C and |R| to denote the number of role inclusions in the
role hierarchy R.

35

Theorem 6.3. If numbers inside number restrictions are encoded unarily, then sat-
isfiability of Q-SHZLQ-concepts w.r.t. role hierarchies is EXPTIME-complete.

Proof The lower bound is an immediate consequence of the fact that SHZ O-concept
satisfiability is ExPT1ME-hard [20]. For the upper bound, we need to show that the size
of Ac r is exponential in |C| + |R|, which clearly implies that Acz can be computed
in exponential time. Indeed, if this is established, we can use Lemmas 3.3, 5.3, 5.4,
and 6.2 together with the fact that the emptiness problem for looping automata Ac
is in PTIME [21] to conclude that satisfiability of Q-SHZQ-concepts w.r.t. role hi-
erarchies can be decided in deterministic exponential time. Hence, let us investigate
the size of Acr = (Q, M, A, I). It is straightfoward to verify that the cardinality of
cl(C,R) is quadratic in |C|+ |R|. Hence, using the definition of A¢ z, Hintikka-labels,
and Hintikka-sets, it is not hard to check that the cardinality of Q and M are expo-
nential in |C| 4+ |R|. Again by definition of Ac z, this implies that the cardinalities of
I and A are also exponential in |C| + |R|. Hence, the size of Acr is exponential in
IC| + |R]. QO

Since subsumption can be reduced to (un)satisfiability, Q-SHZ Q-concept subsump-
tion w.r.t. role hierarchies is also EXPTIME-complete.

7 Future Work

In this paper, we have presented the Description Logic Q-SHZQ, which extends the
well-known DL SHZQ with several concrete domain concept constructors that allow
to represent numerical knowledge, such as knowledge about the age, weight, or height
of real-world entities. As argued in the introduction, Q-SHZQ is a contribution to
several interesting application areas. However, we regard the results presented in
this paper only as a first step: first, it is currently unknown whether some of the
restricting assumptions made in the definition of Q-SHZQ are really necessary to
ensure decidability of reasoning; second, to make Q-SHZQ usable for applications,
there still remains work to be done such as finding a tableau-style algorithm or devising
an algorithm for finite model reasoning. More precisely, we would like to complete the
research on Q-SHZQ by the following investigations:

(1) To make Q-SHZQ available for use in applications, modern DL systems like FaCT
and RACER, which are implementations of the SHZQ Description Logic, need to
be extended to Q-SHZQ. Unfortunately, the results presented in this paper can-
not immediately be used to do this: the afore mentioned DL systems are based
on tableau-style algorithms while the decision procedure described in this paper is
automata-based. Hence, it would be interesting to devise a tableau-based algorithm
for Q-SHIQ-concept satisfiability. As discussed in [13] in the context of TDL, the
automata-based algorithm presented in this paper can provide important information
(i.e., a “regular model property”) for this task.

(2) If Q-SHIQ is to be used for reasoning about ER diagrams as sketched in the
introduction, one is usually not interested in the satisfiability of concepts in arbitrary
models, but rather in the satisfiability in finite models [3]. These two problems do not

36

coincide since SHZQ, and hence also Q-SHZQ, lacks the finite model property [10].
Thus, it is worthwile to investigate the decidability and complexity of finite model
reasoning with Q-SHZQ.

(3) For some applications, it is desirable to refer to natural numbers instead of rational
numbers. As a simple example, consider the concept

I(left-neighbor numchild).=4 M 3(left-neighbor numchild), (numchild).<
M 3(right-neighbor numchild).=3 M 3(numchild), (right-neighbor numchild).<,

where numchild is a concrete feature representing the number of children. Clearly,
the above concept should be unsatisfiable. In Q-SHZQ, however, this concept is
satisfiable since, in a model, the number of children of the described person may e.g.
be 2.5. Tt would thus be interesting to add a concept constuctor dg.nat to Q-SHZQ
expressing that the filler of the concrete feature g is a natural number. If the extended
logic is decidable, then at least it seems to require some serious modifications of the
presented decision procedure: as noted in [15] in the context of 7DL, Theorem 3.7
does not hold if the satisfiability of constraint graphs over non-dense structures such
as N is considered. However, if Q-SHZQ is extended with an dg.nat constructor, then
concepts of the resulting logic can clearly be used to describe constraint graphs all of
whose nodes are labeled with the nat predicates. This means that, effectively, we have
to decide satisfiability of these constraint graphs over IN.

(2) In the current version of Q-SHZQ, the syntactic form of paths U; and Uj inside
the constructors 3Uy, Us. P and YUy, Us. P is restricted. Can we allow arbitrary paths
here without losing decidability? Our feeling is that we can, and that the resulting
logic is still in EXPTIME, but a proof is yet to be found.

(3) In this paper, we have disallowed the use of transitive roles inside the construc-
tors ARg1,go.P and VR1g1, g>.P. What happens w.r.t. decidability and complexity if
transitive roles are admitted?

(4) The EXPTIME upper bound established in this paper requires numbers inside
number restrictions to be coded unarily. Does the upper bound still apply if binary
coding of numbers is assumed? Note that, in [20], Tobies describes an automata-based
decision procedure to show EXPTIME-completeness of reasoning with the Description
Logic ALC QTh with binary coding of numbers. Since ALC QTb is rather closely related
to SHZQ, one could think that a straightforward combination of Tobies’ techniques
with the ones presented in the current paper yields an EXPTIME upper bound for
Q-SHZQ with binary coding of numbers. However, it seems that there are some
intricate interactions between Tobies’ approach to handle number restricions and our
way to deal with the “numerical part” of Q-SHZQ.

It is interesting to note that the expressive power provided by Q-SHZQ is in many
aspects already on the “border” to undecidability. This concerns the SHZ Q-part of
the logic (recall that admitting non-simple roles inside number restrictions destroys
decidability) as well as the numerical part. For example, it seems rather unlikely that
any kind of arithmetics can be added to Q-SHZQ without losing decidability. More
precisely, it follows from results in [16; 14] that the addition of a concept constructor
expressing the addition of two numbers already yields undecidability of reasoning.

37

Acknowledgements
I would like to thank Ulrike Sattler for helpful comments.

References

[1]

3]

F. Baader and P. Hanschke. A scheme for integrating concrete domains into
concept languages. In Proceedings of the Twelfth International Joint Conference
on Artificial Intelligence (IJCAI-91), pages 452-457, Sydney, Australia, 1991.

F. Baader and P. Hanschke. Extensions of concept languages for a mechani-
cal engineering application. In Proceedings of the 16th German AI-Conference
(GWAI-92), volume 671 of Lecture Notes in Computer Science, pages 132-143.
Springer-Verlag, 1992.

D. Calvanese. Unrestricted and Finite Model Reasoning in Class-Based Repre-
sentation Formalisms. Dottorato di ricerca in informatica, Universita degli Studi
di Roma “La Sapienza”, Italia, 1996.

D. Calvanese, M. Lenzerini, and D. Nardi. Description logics for conceptual
data modeling. In J. Chomicki and G. Saake, editors, Logics for Databases and
Information Systems, pages 229-263. Kluwer Academic Publisher, 1998.

D. Fensel, I. Horrocks, F. van Harmelen, S. Decker, M. Erdmann, and M. Klein.
OIL in a nutshell. In Proceedings of the Furopean Knowledge Acquisition Con-
ference (EKAW 2000), volume 1937 of Lecture Notes In Artificial Intelligence.
Springer-Verlag, 2000.

V. Haarslev and R. Moller. High performance reasoning with very large knowledge
bases: A practical case study. In B. Nebel, editor, Proceedings of the Seventeenth
International Joint Conference on Artificial Intelligence (IJCAI’01), pages 161
166. Morgan-Kaufmann, 2001.

P. Hanschke. Specifying role interaction in concept languages. In W. Nebel,
Bernhard; Rich, Charles; Swartout, editor, Proceedings of the Third International
Conference on Principles of Knowledge Representation and Reasoning (KR’92),
pages 318-329. Morgan Kaufmann, 1992.

I. Horrocks and P. Patel-Schneider. The generation of DAMLAOIL. In C. Goble,
D. L. McGuinness, R. Moller, and P. F. Patel-Schneider, editors, Proceedings of
the International Workshop in Description Logics 2001 (DL2001), number 49 in
CEUR-WS (http://ceur-ws.org/), pages 30-35, 2001.

I. Horrocks and P. F. Patel-Schneider. Optimising description logic subsumption.
Journal of Logic and Computation, 9(3):267-293, 1999.

I. Horrocks and U. Sattler. A description logic with transitive and inverse roles
and role hierarchies. Journal of Logic and Computation, 9(3), 1999.

38

[11]

[12]

[13]

I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(D) description logic.
In B. Nebel, editor, Proceedings of the Seventeenth International Joint Conference
on Artificial Intelligence (IJCAI'01), pages 199-204. Morgan-Kaufmann, 2001.

I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for very expressive
description logics. Logic Journal of the IGPL, 8(3):239-264, 2000.

C. Lutz. Interval-based temporal reasoning with general TBoxes. LTCS-Report
00-06, LuFG Theoretical Computer Science, RWTH Aachen, Germany, 2000. See
http://www-lti.informatik.rwth-aachen.de/Forschung/Reports.html.

C. Lutz. The Complexity of Reasoning with Concrete Domains. PhD thesis,
Teaching and Research Area for Theoretical Computer Science, RWTH Aachen,
2001.

C. Lutz. Interval-based temporal reasoning with general TBoxes. In B. Nebel,
editor, Proceedings of the Seventeenth International Joint Conference on Artificial
Intelligence (IJCAT’01), pages 89-94. Morgan-Kaufmann, 2001.

C. Lutz. NExpTime-complete description logics with concrete domains. In
R. Goré, A. Leitsch, and T. Nipkow, editors, Proceedings of the First Inter-
national Joint Conference on Automated Reasoning (IJCAR’01), number 2083
in Lecture Notes in Artifical Intelligence, pages 45-60. Springer-Verlag, 2001.

C. Lutz. Reasoning about entity relationship diagrams with constraints on at-
tributes. Submitted to the 2002 Workshop on Description Logics, 2002.

M. Schmidt-Schaufl and G. Smolka. Attributive concept descriptions with com-
plements. Artificial Intelligence, 48(1):1-26, 1991.

W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science, chapter 4, pages 133-191. Elsevier Science
Publishers B. V., 1990.

S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge
Representation. PhD thesis, RWTH Aachen, 2001.

M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logic of
programs. Journal of Computer and System Sciences, 32:183-221, 1986.

39

