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Abstract

Ontologies based on Description Logic (DL) represent gen-
eral background knowledge in a terminology (TBox) and the
actual data in an ABox. DL systems can then be used to
compute consequences (such as answers to certain queries)
from an ontology consisting of a TBox and an ABox. Since
both human-made and machine-learned data sets may con-
tain errors, which manifest themselves as unintuitive or ob-
viously incorrect consequences, repairing DL-based ontolo-
gies in the sense of removing such unwanted consequences
is an important topic in DL research. Most of the repair ap-
proaches described in the literature produce repairs that are
not optimal, in the sense that they do not guarantee that only
a minimal set of consequences is removed. In a series of pa-
pers, we have developed an approach for computing optimal
repairs, starting with the restricted setting of an EL instance
store, extending this to the more general setting of a quanti-
fied ABox (where some individuals may be anonymous), and
then adding a static EL TBox.
Here, we extend the expressivity of the underlying DL con-
siderably, by adding nominals, inverse roles, regular role in-
clusions and the bottom concept to EL, which yields a frag-
ment of the well-known DL Horn-SROIQ. The ideas un-
derlying our repair approach still apply to this DL, though
several non-trivial extensions are needed to deal with the new
constructors and axioms. The developed repair approach can
also be used to treat unwanted consequences expressed by
certain conjunctive queries or regular path queries, and to
handle Horn-ALCOI TBoxes with regular role inclusions.

1 Introduction
Description Logics (DLs) (Baader et al. 2017) are a promi-
nent family of logic-based knowledge representation for-
malisms, which offer a good compromise between expres-
siveness and the complexity of reasoning and are the for-
mal basis for the Web ontology language OWL.1 The palette
of well-investigated DLs with optimized reasoning support
goes from the inexpressive and tractable DLs of the EL and
DL-Lite families (Baader, Brandt, and Lutz 2005; Calvanese
et al. 2007), on which the OWL 2 profiles OWL 2 EL and
OWL 2 QL are based, all the way up to the N2ExpTime-
complete DL SROIQ (Horrocks, Kutz, and Sattler 2006;
Kazakov 2008), which is the DL underlying OWL 2. The

1https://www.w3.org/TR/owl2-overview/

consequence-based reasoning approach developed for the
EL family (Baader, Brandt, and Lutz 2005) can be extended
to Horn fragments of more expressive DLs, which yields
practical “pay as you go” reasoning procedures for these
fragments, though they are no longer tractable (Kazakov
2009; Ortiz, Rudolph, and Šimkus 2010).

Like all large human-made digital artefacts, the ontolo-
gies employed in applications often contain errors, and this
problem is only exacerbated if parts of the ontology (e.g.,
the data) are automatically generated using inexact methods
based on information retrieval or machine learning. Errors
are usually detected when reasoning finds an inconsistency
or generates consequences that are unintuitive or obviously
wrong in the application domain. For the developers of a
DL-based ontology it is often quite hard to see how the on-
tology needs to be modified such that the unwanted conse-
quences no longer follow from the repaired ontology, but as
few as possible other consequences are lost.

Classical DL repair approaches based on axiom pinpoint-
ing compute maximal subsets of the ontology that do not
have the unwanted consequences (Parsia, Sirin, and Kalyan-
pur 2005; Schlobach et al. 2007; Baader and Suntisrivara-
porn 2008). Such repairs depend on the syntactic form
of the ontology: if a certain fact is expressed by a sin-
gle strong axiom rather than an equivalent set of weaker
ones, then too many consequences may be lost when re-
moving this strong axiom. To overcome this problem, more
fine-grained approaches for repairing DL-based ontologies
have been developed (Horridge, Parsia, and Sattler 2008;
Lam et al. 2008; Du, Qi, and Fu 2014; Troquard et al. 2018;
Baader et al. 2018). These approaches are, however, still
not optimal since they apply some restrictions on how the
ontology can be changed, based on its syntactic form. In
particular, they usually do not add new objects to the ABox.

To see why new objects may be needed to achieve op-
timality, assume that the ABox contains the information
that Kim, who is rich and famous, is Ann’s child, ex-
pressed by the assertions Famous(KIM ), Rich(KIM ), and
child(ANN ,KIM ), and that we want to remove the conse-
quence ∃child .(Rich ⊓ Famous)(ANN ). If we decide to
keep the assertion that Kim is Ann’s child, then we need to
remove either Rich(KIM ) or Famous(KIM ). However, if
we decide that this Kim is not Ann’s child after all, sim-
ply removing the role assertion child(ANN ,KIM ) would
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also remove implied consequences for Ann. This can be
avoided by adding the assertions child(ANN , x), Rich(x),
child(ANN , y), and Famous(y), where x and y are anony-
mous individuals, which are formally represented in a quan-
tified ABox (qABox) by existentially quantified variables.
This example illustrates the main idea underlying the opti-
mal repair approach introduced in (Baader et al. 2020): the
use of quantified ABoxes and the construction of appropriate
anonymous copies of individuals. The main technical prob-
lem to solve in (Baader et al. 2020) was to find out which
copies with what properties are needed to achieve optimal-
ity. This work dealt with an input ontology consisting only
of a qABox, and assumed that the unwanted consequences
are instance relationships C(a) for EL concepts C.

In (Baader et al. 2021a), we extended this approach to
a setting where, in addition to the qABox, the ontology
contains an EL TBox, which is assumed to be correct,
and thus cannot be changed during repair. To add conse-
quences implied by the TBox, we saturate the qABox by
using the concept inclusions as rewrite rules before repair-
ing the qABox. If, in our example, the TBox contained
the concept inclusion Celebrity ⊑ Rich ⊓ Famous and the
ABox contained Celebrity(KIM ) rather than Rich(KIM )
and Famous(KIM ), then saturation would add the latter two
assertions. If then Celebrity(KIM ) is removed in the repair,
these two consequences can still be preserved. However,
when repairing the saturated qABox, care must be taken that
the TBox cannot re-introduce assertions that have been re-
moved by the repair. For example, in the case where the
unwanted consequence is Rich(KIM ), it is not enough to
remove this assertion from the saturated qABox: one also
needs to remove Celebrity(KIM ) since together with the
TBox it implies Rich(KIM ). The problem with saturation
is that, in the presence of cyclic concept inclusions, such as
Rich ⊑ ∃child .Rich , it may not terminate. This is not just
a problem of our repair approach, but may prevent the exis-
tence of optimal repairs (see Example 9 below). In (Baader
et al. 2021a), two approaches are considered to overcome
this problem. On the one hand, one can restrict the attention
to TBoxes that are cycle-restricted as introduced in (Baader,
Borgwardt, and Morawska 2012). On the other hand, if one
is only interested in answers to instance queries, one can
apply a weaker saturation operation, called IQ-saturation,
which always terminates for EL.

In this paper, we extend the expressivity of the DL used
to formulate the TBox and the unwanted consequences con-
siderably, by adding nominals, inverse roles, role inclusion
axioms, and the bottom concept to EL. To obtain a decid-
able DL and guarantee the existence of optimal repairs, we
restrict the set of role inclusion axioms to being regular, as
in the DL SROIQ. In addition, we first consider the case
without the bottom concept, and only later deal with the ad-
ditional problems caused by the fact that bottom may cause
the ontology to become inconsistent. Computability of the
set of optimal repairs and the fact that this set covers all re-
pairs (in the sense that every repair is entailed by an opti-
mal one) follows from a “small repair” property, which can
be shown using an adaptation of the well-known filtration
technique (Baader et al. 2017). However, even disregarding

the impracticality of an algorithm that computes the opti-
mal repairs by looking at all qABoxes up to a certain size
bound, this does not lead to a viable methods for choos-
ing an appropriate optimal repair since it would require the
knowledge engineer to choose among exponentially many
repairs of exponential size. In contrast, the canonical re-
pairs (which cover all optimal repairs) constructed by our
extension of the repair approach in (Baader et al. 2021a) are
characterized by so-called repair seeds, which are of poly-
nomial size. The knowledge engineer can choose among
these by answering a polynomial number of instance queries
(i.e., queries about which instance relationships hold in the
application domain).

The added expressivity generates new challenges, which
require non-trivial adaptations of our approach for construct-
ing canonical repairs. Since nominals in the TBox can imply
equality between individuals, we extend qABoxes by equal-
ity assertions, to be able to represent such consequences
in the saturated qABox, and we also must repair unwanted
equalities. We deal with role inclusion axioms and inverse
roles by using finite automata, which can represent the in-
finitely many implied role inclusions in a finite way. Tech-
nically, this is where we make use of the restriction to reg-
ular sets of role inclusion axioms. To handle inconsistency
caused by bottom, we consider not only “local” unwanted
consequences of the form C(a), but also “global” ones of
the form ∃{x}.{C(x)}. If, in our example, the TBox addi-
tionally says that rich and poor are disjoint, using the con-
cept inclusion Poor ⊓ Rich ⊑ ⊥ , and the qABox states that
Ann has an (anonymous) child that is a poor celebrity, then
the entailed inconsistency can be repaired by preventing the
consequence ∃{x}.{(Poor ⊓ Rich)(x)}.

The added expressivity also allows us to specify in-
teresting kinds of unwanted consequences other than in-
stance relationships. On the one hand, we can deal with
regular reachability queries, which are similar to regular
path queries (Calvanese, Eiter, and Ortiz 2009). On the
other hand, we can also treat certain kinds of conjunctive
queries. The problem of repairing w.r.t. conjunctive queries
to qABoxes has already been considered, in the guise of
achieving compliance for relational datasets with labelled
nulls, in (Grau and Kostylev 2019). However, this work
does not allow for background TBoxes, and the notion of
optimality used there is different from ours since it restricts
the possible changes to the qABox to a sequence of certain
anonymization operations. Finally, our repair approach can
also deal with Horn-ALCOI-TBoxes together with sets of
regular role inclusion axioms.

This extended version of the conference submission con-
tains all technical details. We use roman numbers for the
additional lemmas and propositions.

2 Preliminaries
First, we introduce the DL ELROI employed to formulate
terminological background knowledge, and the quantified
ABoxes with equalities used to represent the data. Then
we describe how such an ABox can be saturated w.r.t. the
terminological knowledge, and finally define regular sets of



role inclusions and show how to represent them using finite
automata.

2.1 The Description Logic ELROI
The DL ELROI extends EL with (complex) role inclu-
sions (R), nominals (O), and inverse roles (I). Let Σ be
a signature, i.e., a disjoint union of finite, non-empty sets
ΣI, ΣC, and ΣR of individual names, concept names, and
role names, respectively. A role is either a role name or an
inverse role r− for some role name r ∈ ΣR. For a role R
we write R− to denote r− if R = r is a role name and r
if R = r− is an inverse role. Concept descriptions C of
ELROI are constructed using the grammar rule

C ::= ⊤ | A | {a} | C ⊓ C | ∃R.C,

where A ranges over concept names, a over individual
names, and R over roles. An atom is a concept name A, a
nominal {a}, or an existential restriction ∃R.C. Each con-
cept description C is a conjunction of atoms, with ⊤ cor-
responding to the empty conjunction. We denote the set of
these atoms as Conj(C).

A concept inclusion (CI) is of the form C ⊑ D for con-
cept descriptions C,D, and a role inclusion (RI) is of the
form ε ⊑ S or R1◦· · ·◦Rn ⊑ S for roles R1, . . . , Rn, S and
n ≥ 1. In the following, when we write R1 ◦ · · · ◦Rn ⊑ S,
we assume that n ≥ 0, where R1 ◦ · · · ◦Rn for n = 0 stands
for ε. A TBox is a finite set of CIs, an RBox is a finite set
of RIs, and a pair (T ,R) consisting of a TBox T and an
RBox R is called a terminology. A concept assertion C(a)
is a shorthand for the CI {a} ⊑ C, and a role assertion
r(a, b) abbreviates {a} ⊑ ∃r.{b}. Furthermore, r−(a, b)
means r(b, a).

The semantics of ELROI is defined based on inter-
pretations, where an interpretation I of the signature Σ
consists of a non-empty set Dom(I), the domain, and an
interpretation function ·I that maps each individual name a
to an element aI of Dom(I), each concept name A to a
subset AI of Dom(I), and each role name r to a binary
relation rI over Dom(I). We do not adopt the unique
name assumption, i.e., aI = bI is allowed for distinct in-
dividual names a, b. The interpretation of an inverse role
is (r−)I := { (γ, δ) | (δ, γ) ∈ rI }, and the interpreta-
tion CI of a concept description C is recursively defined as
⊤I := Dom(I), {a}I := {aI}, (C⊓D)I := CI ∩DI , and
(∃R.C)I := { δ | (δ, γ) ∈ RI for some γ ∈ CI }.

The CI C ⊑ D holds in I (denoted I |= C ⊑ D)
if CI ⊆ DI , and the RI R1 ◦ · · · ◦ Rn ⊑ S holds
in I (denoted I |= R1 ◦ · · · ◦ Rn ⊑ S) if (R1 ◦ · · · ◦
Rn)

I ⊆ SI , where εI := { (δ, δ) | δ ∈ Dom(I) }
and (R1 ◦ · · · ◦ Rn)

I := { (δ0, δn) | (δ0, δ1) ∈ RI1 , . . . ,
(δn−1, δn) ∈ RIn for some δ1, . . . , δn−1 ∈ Dom(I) }. The
interpretation I is a model of a TBox T (RBox R) if every
CI in T (RI in R) holds in I. This is written as I |= T
(I |= R). We say that the terminology (T ,R) entails a CI
or RI α (written (T ,R) |= α) if α holds in every model
of T and R. In case (T ,R) |= C ⊑ D we say that C is
subsumed by D w.r.t. (T ,R), and may write C ⊑T ,R D to
express this.

Note that other interesting axioms concerning roles can
be expressed using RIs and inverse roles. Reflexivity, tran-
sitivity, and symmetry of r can respectively be enforced by
the RIs ε ⊑ r, r ◦ r ⊑ r, and r ⊑ r−, and domain re-
strictions Dom(r) ⊑ C are expressible as ∃r.⊤ ⊑ C while
range restrictions Ran(r) ⊑ C can be expressed by CIs
∃r−.⊤ ⊑ C.

This last observation shows that subsumption in ELROI
is actually undecidable since it was shown in (Baader, Lutz,
and Brandt 2008) that subsumption in EL w.r.t. RIs and
range restrictions is undecidable. We will avoid this prob-
lem by imposing a restriction on RBoxes (see Section 2.4).

2.2 Quantified ABoxes with Equalities
Quantified ABoxes were first introduced in (Baader et al.
2020), but they were also considered, as relational datasets
with labelled nulls, in (Grau and Kostylev 2019), and their
existentially quantified variables correspond to the “anony-
mous individuals” in the OWL 2 standard. Also, as ex-
plained in (Baader et al. 2020), quantified ABoxes are ba-
sically the same as Boolean conjunctive queries. Here, we
extend this notion by allowing for equality assertions, but for
simplicity still use the name “quantified ABoxes” for the ex-
tended formalism. Equality assertions are used to represent
implied equality between individuals; e.g., the CI {a} ⊑ {b}
implies that a and b must always be interpreted by the same
element of the domain.

Let Σ be a signature. A quantified ABox (qABox) ∃X.A
over Σ consists of a finite set X of variables, which is dis-
joint with Σ, and a matrix A, which is a finite set of concept
assertions A(u), role assertions r(u, v), and equality asser-
tions a ≡ b, where A ∈ ΣC, r ∈ ΣR, u, v ∈ ΣI ∪ X ,
and a, b ∈ ΣI. An object name of ∃X.A is either an ele-
ment of ΣI or a variable in X . We denote the set of these
objects as Obj(∃X.A). If X is empty, then we sometimes
drop the quantifier ∃ ∅. We do not allow equality assertions
involving variables since otherwise each qABox can be nor-
malized into a qABox without them.

The interpretation I is a model of ∃X.A (written I |=
∃X.A) if there is a variable assignment Z : X → Dom(I)
such that the augmented interpretation I[Z] that additionally
maps each variable x to Z(x) is a model of the matrix A,
i.e., uI[Z] ∈ AI for each A(u) ∈ A, (uI[Z], vI[Z]) ∈ rI for
each r(u, v) ∈ A, and aI = bI for each a ≡ b ∈ A. Given a
terminology (T ,R) and qABoxes ∃X.A and ∃Y.B, we say
that ∃X.A entails ∃Y.B w.r.t. (T ,R) (written ∃X.A |=T ,R

∃Y.B) if every model of ∃X.A and (T ,R) is also a model
of ∃Y.B. If both the TBox T and the RBox R are empty,
then we omit the suffix “w.r.t. (T ,R)” and write |= instead
of |=T ,R. Similar simplifications are made if one of them is
empty.

For qABoxes without equality assertions, it was shown
in (Baader et al. 2020) that entailment can be characterized
using homomorphisms. In our extended setting, we need to
adapt the definition of a homomorphism between qABoxes.
To this purpose, we consider the equivalence relation ≈∃X.A
on Obj(∃X.A) induced by the equality assertions in ∃X.A,
which is defined as the reflexive, symmetric, transitive clo-
sure of the relation { (a, b) | a ≡ b ∈ A }. We sometimes



write ≈ for ≈∃X.A if the qABox is clear from the context,
and denote the equivalence classes by [u]∃X.A. Since there
are no equality assertions involving variables, each equiva-
lence class of a variable is a singleton set.

Definition 1. A homomorphism h from a qABox ∃X.A to a
qABox ∃Y.B is a mapping h : Obj(∃X.A) → Obj(∃Y.B)
that satisfies the following conditions:

(Hom1) a ≈∃X.A b implies h(a) ≈∃Y.B h(b) for all indi-
vidual names a, b.

(Hom2) h(a) = a for each individual name a.
(Hom3) For each concept assertion A(t) ∈ A, there is an

object name v such that v ≈∃Y.B h(t) and A(v) ∈ B.
(Hom4) For each role assertion r(t, u) ∈ A, there are ob-

ject names v, w such that v ≈∃Y.B h(t), w ≈∃Y.B h(u),
and r(v, w) ∈ B.

Based on this notion of homomorphism, entailment be-
tween qABoxes with equality assertions can now be charac-
terized as follows.

Proposition 2. The qABox ∃X.A is entailed by the qABox
∃Y.B iff there exists a homomorphism from ∃X.A to ∃Y.B.

Proof. We first show the if direction. Therefore fix a ho-
momorphism h from ∃X.A to ∃Y.B and further let I be a
model of ∃Y.B, i.e., there is a variable assignment Z : Y →
Dom(I) such that the augmented interpretation I[Z] is a
model of the matrix B. We are going to prove that I is a
model of ∃X.A as well.

We define the variable assignment W : X → Dom(I)
where W(x) := h(x)I[Z] for each x ∈ X , and first prove
that tI[W] = h(t)I[Z] holds for each object name t of
∃X.A.

• If t is a variable, then tI[W] = W(t) = h(t)I[Z].

• If t is an individual, then h(t) = t and thus tI[W] = tI =
h(t)I = h(t)I[Z].

Next, we show that the augmented interpretation I[W] is a
model of the matrix A.

1. Consider a concept assertion A(t) in A; we must show
that tI[W] ∈ AI . Since h is a homomorphism, Con-
dition (Hom3) in Definition 1 yields an object name v
such that v ≈∃Y.B h(t) and A(v) ∈ B. Since I[Z]
is a model of B, it follows that vI[Z] ∈ AI as well as
h(t)I[Z] = vI[Z]. We conclude that tI[W] = vI[Z] and
thus tI[W] ∈ AI .

2. Let r(t, u) be a role assertion in A; we must show that
(tI[W], uI[W]) ∈ rI . As h is a homomorphism, we infer
with Condition (Hom4) in Definition 1 that there is an
object name v and there is an object name w such that
v ≈∃Y.B h(t) and w ≈∃Y.B h(u) and r(v, w) ∈ B. Since
I[Z] is a model of B, we obtain that (vI[Z], wI[Z]) ∈ rI ,
and further that h(t)I[Z] = vI[Z] and h(u)I[Z] = wI[Z].
It follows that tI[W] = vI[Z] and uI[W] = wI[Z], and so
we conclude that (tI[W], uI[W]) ∈ rI .

3. Assume that a ≡ b is an equality assertion in A; we must
show that aI = bI . Specifically, it holds that a ≈∃X.A b.
With h being a homomorphism, Condition (Hom1) yields
that h(a) ≈∃Y.B h(b). Since I is a model of ∃Y.B, it
follows that h(a)I = h(b)I , and thus that aI = bI by
Condition (Hom2).

We continue with proving the only-if direction. For this
purpose, assume that ∃Y.B entails ∃X.A. We define the
canonical model I∃Y.B as follows.

Dom(I∃Y.B) := Obj(∃Y.B)/≈

·I∃Y.B :


a 7→ [a]≈

A 7→ { [u]≈ | A(u) ∈ B }
r 7→ { ([u]≈, [v]≈) | r(u, v) ∈ B }

The canonical variable assignment is Z∃Y.B : y 7→ [y]≈.
We are going to show that I∃Y.B[Z∃Y.B] is a model of B,

which immediately implies that that I∃Y.B is a model of
∃Y.B. Beforehand, note that tI∃Y.B[Z∃Y.B] = [t]≈ for each
object name t of ∃Y.B.

• Consider a concept assertion A(u) in B. Then [u]≈ ∈
AI∃Y.B is satisfied where [u]≈ equals uI∃Y.B[Z∃Y.B]. Thus,
I∃Y.B[Z∃Y.B] |= A(u).

• If B contains a role assertion r(u, v), then ([u]≈, [v]≈)
is in the extension rI∃Y.B . Furthermore, we have
uI∃Y.B[Z∃Y.B] = [u]≈ and vI∃Y.B[Z∃Y.B] = [v]≈. It fol-
lows that I∃Y.B[Z∃Y.B] |= r(u, v).

• Now let a ≡ b be an equality assertion in B. We infer that
a ≈ b must be satisfied, i.e., [a]≈ = [b]≈ holds. Since
aI∃Y.B = [a]≈ and bI∃Y.B = [b]≈ are satisfied, we con-
clude that I∃Y.B |= a ≡ b.

We infer that I∃Y.B is a model of ∃X.A as well, i.e.,
there exists a variable assignment W : X → Dom(I∃Y.B)
such that I∃Y.B[W] |= A. We define a mapping
h : Obj(∃X.A) → Obj(∃Y.B) by h(a) := a for each in-
dividual name a and by choosing h(x) ∈ W(x) for each
variable x ∈ X . Each latter choice is possible since the
value W(x) is an equivalence class and is thus non-empty,
i.e., such a mapping h indeed exists. We first prove that
h(t) ∈ tI∃Y.B[W] holds for each object name t of ∃X.A.

• If t is a variable, then h(t) ∈ W(t) = tI∃Y.B[W].

• If t is an individual, then h(t) = t ∈ [t]≈ = tI∃Y.B[W].

Next, we are going to show that h is a homomorphism.

(Hom1) Consider an individual a and an individual b such
that a ≈∃X.A b; we must show that h(a) ≈∃Y.B h(b).
Since I∃Y.B is a model of ∃X.A, it holds that aI∃Y.B =
bI∃Y.B . Due to h(a) ∈ aI∃Y.B and h(b) ∈ bI∃Y.B , we infer
that h(a) ≈∃Y.B h(b).

(Hom2) For each individual name a, the very definition en-
sures that h(a) equals a.



(Hom3) Let A(t) be a concept assertion in A; we must
show that there is an object v such that v ≈∃Y.B h(t)
and A(v) ∈ B. Since I∃Y.B[W] is a model of A, it holds
that tI∃Y.B[W] ∈ AI∃Y.B . Due to the very definition of
I∃Y.B, we infer that there is an object v in the equivalence
class tI∃Y.B[W] such that A(v) ∈ B. As h(t) is an element
of the equivalence class tI∃Y.B[W] as well, it follows that
v ≈∃Y.B h(t) as needed.

(Hom4) Consider a role assertion r(t, u) in A; we must
show that there is an object v and there is an object w
such that v ≈∃Y.B h(t) and w ≈∃Y.B h(u) and r(v, w) ∈
B. With I∃Y.B[W] being a model of A, it follows that
(tI∃Y.B[W], uI∃Y.B[W]) ∈ rI∃Y.B . According to the very
definition of I∃Y.B, there must exist an object v in the
equivalence class tI∃Y.B[W] as well as an object w in the
equivalence class uI∃Y.B[W] such that r(v, w) ∈ B. Since
h(t) ∈ tI∃Y.B[W], we infer that v ≈∃Y.B h(t), and it simi-
larly follows that w ≈∃Y.B h(u).

As in the case of qABoxes without equality assertions,
this provides us with an NP decision procedure for entail-
ment. NP-hardness already holds without equality assertions
(Baader et al. 2020).

We often need to consider the matrix A of a quantified
ABox ∃X.A alone, without the quantifier prefix. We can
view A to be an “ordinary” ABox without quantifiers (or
equivalently as a qABox with empty quantifier prefix) by ex-
tending the signature to Σ ∪X , where variables are treated
as individuals. This allows us to evaluate entailment expres-
sions like A |= C(x), where C is a concept description and
x ∈ X , using interpretations and models for the extended
signature. The following result provides us with a recursive
characterization of such an entailment.

Corollary I. Let ∃X.A be a quantified ABox, u an ob-
ject name of ∃X.A, and C an ELROI concept description.
Then the matrix A entails the concept assertion C(u) iff the
following conditions are fulfilled:

1. For each concept name A ∈ Conj(C), there is an object
name u′ such that u ≈∃X.A u′ and A(u′) ∈ A.

2. For each nominal {a} ∈ Conj(C), it holds that
u ≈∃X.A a.

3. For each existential restriction ∃R.D ∈ Conj(C),
there are object names u′, v such that u ≈∃X.A u′,
R(u′, v) ∈ A, and A |= D(v).

Furthermore, A entails the role assertion r(u, v) iff there
are object names u′, v′ such that u ≈∃X.A u′, v ≈∃X.A v′,
and r(u′, v′) ∈ A. Finally, A entails the equality assertion
u ≡ v iff u ≈∃X.A v.

Taking into account that each ELROI concept assertion
C(a) can be translated into an equivalent qABox, by exhaus-
tively applying the first three rules in Figure 1 to {C(a)},
this corollary is an easy consequence of Proposition 2. Sim-
ilarly, ∃{x}.{C(x)} (where C is an ELROI concept de-
scription) denotes the qABox obtained from it by exhaustive
application of these three rules.

By induction on C we further obtain the following lemma.

Conjunction Rule. If B contains the assertion
(C1 ⊓ · · · ⊓ Cn)(t) for n ̸= 1, then remove it from B
and add the assertions C1(t), . . . , Cn(t) to B.

Existential Restriction Rule. If B contains the assertion
∃R.C(t), then remove it from B, add a fresh variable y
to Y , and add the assertions R(t, y) and C(y) to B.

Nominal Rule. If B contains the assertion {a}(t), then
remove it from B and, if t is an individual name, then
add the equality t ≡ a to B; otherwise replace every
occurrence of t in B by a and remove t from Y .

Concept Inclusion Rule. If T contains the CI C ⊑ D
and B entails the concept assertion C(t), but not D(t),
then add the concept assertion D(t) to B.

Role Inclusion Rule. If R contains the RI
R1 ◦ · · · ◦Rn ⊑ S and B entails the role asser-
tions R1(t0, t1), . . . , Rn(tn−1, tn), but not S(t0, tn),
then add the role assertion S(t0, tn) to B.

Figure 1: The saturation rules are exhaustively applied to a qABox
∃Y.B w.r.t. a terminology (T ,R), starting with ∃Y.B := ∃X.A
for an input qABox ∃X.A.

Lemma II. Consider qABoxes ∃X.A, ∃Y.B, an object
name u of ∃X.A, and an ELROI concept C. If A |= C(u)
and h is a homomorphism from ∃X.A to ∃Y.B, then
B |= C(h(u)).

2.3 Saturation
The purpose of saturation is to extend a given qABox ∃X.A
with enough consequences derived using the terminology
(T ,R) such that entailment from ∃X.A w.r.t. (T ,R) is the
same as entailment from its saturation satT ,R(∃X.A) =
∃Y.B w.r.t. the empty terminology. The rules in Figure 1
extend the CQ-saturation rules in (Baader et al. 2021a) such
that nominals, inverse roles, and RIs are taken into account.
Note that, during saturation, the matrix B may contain com-
plex concept assertions, but after termination all concept as-
sertions are again restricted to concept names. The seman-
tics of qABoxes with complex concept assertions is defined
in the obvious way.

In general, application of the saturation rules need not ter-
minate, already in the EL setting considered in (Baader et al.
2021a). But there the restriction to cycle-restricted TBoxes
guarantees termination (in exponential time), where an EL
TBox T is cycle-restricted if there is no concept C and
roles r1, . . . , rn (n ≥ 1) such that C ⊑T ∃ r1. · · · ∃ rn.C.
For ELROI terminologies, the RBox may cause non-
termination even if the TBox is cycle-restricted.

Example 3. Consider the ELROI TBox T := {A ⊑ ∃r.⊤,
∃s.⊤ ⊑ ∃s.A}, the RBox R := {r ⊑ s}, and the qABox
∃∅.A with A := {A(a)}. The TBox T is cycle-restricted
and saturation of ∃∅.A with (T , ∅) terminates after a has
received an r-successor x1. However, w.r.t. (T ,R), the role
inclusion rule makes x1 also an s-successor of a. The con-
cept inclusion rule then adds an s-successor y1 of a and the
assertion A(y1). But now y1 receives an r-successor x2,



which becomes an s-successor of y1, etc.

Since our repair approach works on saturated qABoxes, it
can only be applied in the presence of terminologies (T ,R)
that are terminating in the following sense.

Definition 4. The terminology (T ,R) is terminating if, for
each qABox ∃X.A, there is a finite sequence of applications
of the saturation rules in Figure 1 to ∃X.A resulting in a
qABox to which no more rule applies. We then denote this
qABox as satT ,R(∃X.A) and call it the saturation of ∃X.A
w.r.t. (T ,R).

We refrain here from giving our own decidable sufficient
condition for termination of a terminology (T ,R). Instead,
we point out that one can translate the concept inclusions
in T and the role inclusions in R into a set of existential
rules, and that saturation then corresponds to applying the
so-called chase. One can thus try to use one of the nu-
merous acyclicity conditions guaranteeing chase termination
proposed in the database and rules communities (see, e.g.,
(Grau et al. 2013)) to show termination of (T ,R). The satu-
ration obtained in case of termination has the following im-
portant property.

Theorem 5. Let (T ,R) be a terminating terminology and
∃X.A a quantified ABox. Then, for every qABox ∃Z.C, the
following statements are equivalent:

1. ∃X.A |=T ,R ∃Z.C.
2. satT ,R(∃X.A) |= ∃Z.C.
3. There is a homomorphism from ∃Z.C to satT ,R(∃X.A).

Proof. The proof is similar to the one of Theorem 2 in
(Baader et al. 2021a; Baader et al. 2021b), but uses Proposi-
tion 2 instead of Proposition 2 in (Baader et al. 2020). Ad-
ditionally, we provide a direct proof below.

The equivalence of Statements 2 and 3 follows from
Proposition 2. We now show that Statement 2 implies State-
ment 1. So consider a model I of ∃X.A and (T ,R). By an
induction along the sequence of rule applications that pro-
duces satT ,R(∃X.A) from ∃X.A, it can be proven that I is
a model of each intermediate qABox and so of the final sat-
uration too. Using the assumption satT ,R(∃X.A) |= ∃Z.C,
it follows that I is a model of ∃Z.C.

It remains to show that Statement 1 implies Statement 2.
For this purpose, assume that ∃X.A |=T ,R ∃Z.C. Recall
that the canonical model I∃Y.B of a qABox ∃Y.B is defined
within the proof of Proposition 2, and it is shown that ∃Y.B
entails ∃X.A iff I∃Y.B is a model of ∃X.A. The latter is
useful for this proof.

Specifically, we will show that the canonical model of the
saturation satT ,R(∃X.A) is a model of ∃X.A and (T ,R).
Due to the assumption, it is also a model of ∃Z.C, and we
conclude that satT ,R(∃X.A) entails ∃Z.C.

Denote by I the canonical model of satT ,R(∃X.A),
which is a model of satT ,R(∃X.A). Theorem 5 yields that
∃X.A is entailed by the saturation, and so I is also a model
of ∃X.A.

In order to prove that I is a model of the terminol-
ogy (T ,R), we additionally consider the canonical vari-
able assignment Z of satT ,R(∃X.A), cf. the proof of

Proposition 2. Then the augmented interpretation I[Z] is
the canonical model of the matrix of satT ,R(∃X.A), and
uI[Z] = [u]≈ holds for each object u of the saturation.

Let C ⊑ D be a concept inclusion in T and assume
[u]≈ ∈ CI . It follows that uI[Z] ∈ CI , i.e., I[Z] is a
model of C(u) (seen as a qABox). We infer that the matrix
of satT ,R(∃X.A) entails C(u). Since the concept inclusion
rule is not applicable, the matrix of satT ,R(∃X.A) entails
D(u) as well. So I[Z] is a model of D(u), which yields that
[u]≈ ∈ DI .

Let R1◦· · ·◦Rn ⊑ S be a role inclusion in R, and assume
([u0]≈, [u1]≈) ∈ RI1 , . . . , ([un−1]≈, [un]≈) ∈ RIn. So I[Z]
is a model of the qABox {R1(u0, u1), . . . , Rn(un−1, un)},
and we infer that the latter qABox is entailed by the ma-
trix of satT ,R(∃X.A). Since the role inclusion rule is not
applicable, the matrix of satT ,R(∃X.A) must also entail
S(u0, un). It follows that I[Z] is a model of S(u0, un),
i.e., ([u0]≈, [un]≈) ∈ SI .

In (Baader et al. 2021a), a different kind of saturation,
called IQ-saturation, was introduced, which always termi-
nates (in polynomial time). Using IQ-saturation in the repair
process was shown to be sufficient if one is only interested
in instance queries. However, due to the presence of inverse
roles in ELROI , it is easy to see that finite IQ-saturations
cannot always work.

Example III. Consider the qABox {A(a)} and the TBox
{A ⊑ ∃r.A}. In EL, the IQ-saturation is ∃{x}.{A(a),
r(a, x), A(x), r(x, x)}. In ELROI , however, it cannot be
the IQ-saturation since it entails the ELROI concept asser-
tion ∃r.∃r−.A(a) that is not entailed by the given qABox
and TBox.

Moreover, assume that ∃X.A was a finite IQ-saturation
in ELROI . It would need to entail the concept assertion
∃rn.A(a) for each n ≥ 0, but could not contain an infinite
r-chain starting from a. So there would be an r-cycle reach-
able from a on an r-path, but thus ∃X.A would entail the
concept assertion ∃rm.∃r−.A(a) for some m ≥ 0, which
yields a contradiction since this assertion is not entailed by
the above qABox and TBox.

2.4 Regular RBoxes
As pointed out at the end of Section 2.1, subsumption is
undecidable in ELROI if arbitrary RBoxes are allowed.
In (Baader, Lutz, and Brandt 2008), tractability of EL++

is ensured by restricting the interaction between range re-
strictions and RIs. Since, in our setting, range restrictions
are expressed using inverse roles and CIs, it is not clear
how to adapt this solution. Instead, we use the regularity
restriction imposed in (Horrocks, Kutz, and Sattler 2006;
Kazakov 2008) to make SROIQ decidable, which is re-
quired by our repair approach anyway.

Definition 6. An RBox R is regular if, for each role R, the
language LR(R) := { S1 · · ·Sn | S1 ◦ · · · ◦ Sn ⊑R R } is
regular. The sublogic of ELROI that only supports regular
RBoxes is denoted by ELRregOI.

Since ELRregOI is a fragment of Horn-SROIQ, it in-
herits the complexity upper-bound of 2ExpTime (Ortiz,



Rudolph, and Šimkus 2010). The exact complexity of sub-
sumption in ELRregOI is open, with the best lower-bound
of ExpTime inherited from ELI (Baader, Lutz, and Brandt
2008). Additionally, the former implies that ELRregOI is
itself a Horn-DL and thus has the universal model property:
for each quantified ABox ∃X.A and for each (not necessar-
ily terminating) terminology (T ,R), there is an interpreta-
tion (the universal model) that is a model of exactly those
quantified ABoxes that are entailed by ∃X.A and (T ,R).

To the best of our knowledge, it is not known whether
RBox regularity is decidable. Decidability of the closely
related regularity problem for pure context-free grammars
has been open for a long time (Maurer, Salomaa, and
Wood 1980). The below lemma specifically shows that
each language LR(R) can be described by such a pure
grammar. However, there exist syntactic restrictions that
guarantee regularity (Horrocks, Kutz, and Sattler 2006;
Kazakov 2010), and if these restrictions apply then one can
effectively construct (exponentially large) finite automata
accepting the regular languages LR(R).

Lemma IV. Let R be an RBox and consider the pure gram-
mar GR over the alphabet Σ±R with production rules{

R → S1 · · ·Sn,

R− → S−n · · ·S−1

∣∣∣∣∣ S1 ◦ · · · ◦ Sn ⊑ R ∈ R
}
.

It holds that S1 ◦ · · · ◦ Sn ⊑R R iff R ∗→GR S1 · · ·Sn.

Proof. We start with the if direction. So assume that R ∗→
S1 · · ·Sn, i.e., there is a finite sequence of applications of
the production rules that generates S1 · · ·Sn from R. This
means that, for W0 := R and Wm := S1 · · ·Sn, there are
words W1, · · · ,Wm−1 ∈ (Σ±R )

∗ such that, for each index
i ∈ {1, . . . , n}, there is a production rule Ri → Si

1 · · ·Si
ni

and there are words W←i−1,W
→
i−1 ∈ (Σ±R )

∗ such that
Wi−1 = W←i−1R

iW→i−1 and Wi = W←i−1S
i
1 · · ·Si

ni
W→i−1.

Consider some index i ∈ {1, . . . , n}. The production rule
Ri → Si

1 · · ·Si
ni

is used to derive Wi from Wi−1. Thus, the
RBox R contains the role inclusion Si

1 ◦ · · · ◦ Si
ni

⊑ Ri or
it contains the role inclusion (Si

ni
)− ◦ · · · ◦ (Si

1)
− ⊑ (Ri)−.

In both cases it follows that R entails the former RI and
thus also entails the RI Wi ⊑ Wi−1,2 where we write
R1 · · ·Rk for R1 ◦ · · · ◦Rk for roles R1, . . . , Rk ∈ Σ±R .
By induction over i ∈ {1, . . . , n} we conclude that R

entails the RI Wn ⊑ W0, which equals S1◦· · ·◦Sn ⊑ R.
We proceed with proving the only-if direction. For this

purpose, assume that S1 ◦ · · · ◦Sn ⊑ R is entailed by R. We
construct a sequence of interpretations as follows.

1. Initialize I0 with Dom(I0) := {0, 1, . . . , n} and let all
extensions be empty except that SI0i := {(i − 1, i)} for
each index i ∈ {1, . . . , n}.

0 1 2 · · · n
S1 S2 S3 Sn

2Formally, we say that R entails R1 ◦ · · · ◦Rm ⊑ S1 ◦ · · · ◦Sn

if (R1 ◦ · · · ◦Rm)I ⊆ (S1 ◦ · · · ◦ Sn)
I for each model I of R.

2. Saturate the sequence by means of the role inclusions in
R, that is, exhaustively apply the following rule:
If U1 ◦ · · · ◦ Um ⊑ T is a role inclusion in R, and
d0, . . . , dm ∈ Dom(Ik) such that (di−1, di) ∈ UIki for
each index i ∈ {1, . . . ,m}, but (d0, dm) ̸∈ T Ik ,
then define the next interpretation Ik+1 as Ik, but add
(d0, dm) to T Ik+1 .

d0 d1 d2 · · · dm
U1 U2 U3 Um

T

Since Instruction 2 does not introduce fresh domain ele-
ments, the saturation must be finished after finitely many
steps, say ℓ steps, i.e., the above rule is not applicable any-
more to Iℓ. Furthermore, we thus simply write Dom(I) for
the domain of each interpretation in the sequence. Due to In-
struction 1 we have that (0, n) ∈ (S1◦· · ·◦Sn)

I0 , and due to
Instruction 2 the last interpretation Iℓ is a model of the RBox
R. By construction of the sequence I0, . . . , Iℓ we further
have SIk ⊆ SIk+1 for each role S ∈ Σ±R and for each index
k ∈ {0, . . . , ℓ−1}. It follows that (0, n) ∈ (S1 ◦ · · · ◦Sn)

Iℓ

and (0, n) ∈ RIℓ .
For each index k ∈ {0, . . . , ℓ}, we define the language

Words(Ik) :=
{
R1 · · ·Rh

∣∣∣∣∣ R1, . . . , Rh ∈ Σ±R and

(0, n) ∈ (R1 ◦ · · · ◦Rh)
Ik

}
.

Note that Words(I0) = {S1 · · ·Sn} and R ∈ Words(Iℓ).
Claim. Assume that U1 ◦ · · · ◦ Um ⊑ T is the role in-
clusion used to construct Ik+1 from Ik. For each W ∈
Words(Ik+1), there is some V ∈ Words(Ik) such that V
can be obtained from W by a finite number of applica-
tions of the production rules T → U1 · · ·Um and T− →
U−m · · ·U−1 .

Proof of the claim. Consider a word W = R1 · · ·Rh ∈
Words(Ik+1), i.e., there are domain elements e0, . . . , eh ∈
Dom(I) such that e0 = 0, eh = n, and (ej−1, ej) ∈ R

Ik+1

j

for each index j ∈ {1, . . . , h}.
For the saturation step which produces Ik+1 from Ik by

means of the role inclusion U1 ◦ · · · ◦ Um ⊑ T , there
must exist domain elements d0, . . . , dm ∈ Dom(I) such
that (dj−1, dj) ∈ UIkj for each index j ∈ {1, . . . ,m},
and the extensions of all roles do not differ between Ik and
Ik+1, with the exception T Ik+1 = T Ik ⊎ {(d0, dm)}. It
follows that (d0, dm) ∈ (U1 ◦ · · · ◦ Um)Ik and further that
(dm, d0) ∈ (U−m ◦ · · · ◦ U−1 )Ik .

Now define the word V := V1 · · ·Vh where

Vj :=


U1 · · ·Um if Rj = T and (ej−1, ej) = (d0, dm)

U−m · · ·U−1 if Rj = T− and (ej−1, ej) = (dm, d0)

Rj otherwise

for each index j ∈ {1, . . . , h}. By construction, V can be
obtained from W by a finite number of applications of the
production rules T → U1 · · ·Um and T− → U−m · · ·U−1



(specifically, the number of rule applications is bounded by
h). Next, we show that (ej−1, ej) ∈ ( Vj)

Ik for each index
j ∈ {1, . . . , h}.

(a) Let Rj = T and (ej−1, ej) = (d0, dm), i.e., Vj =
U1 · · ·Um. Since (d0, dm) ∈ (U1 ◦ · · · ◦ Um)Ik , we infer
that (ej−1, ej) ∈ ( Vj)

Ik .
(b) Assume Rj = T− and (ej−1, ej) = (dm, d0), i.e., Vj =

U−m · · ·U−1 . From (dm, d0) ∈ (U−m◦· · ·◦U−1 )Ik it follows
that (ej−1, ej) ∈ ( Vj)

Ik .
(c) In the remaining case, we have Vj = Rj , and Rj ̸= T

or (ej−1, ej) ̸= (d0, dm), and Rj ̸= T− or (ej−1, ej) ̸=
(dm, d0).

(i) If Rj ̸= T and Rj ̸= T−, then RIkj = R
Ik+1

j and thus

(ej−1, ej) ∈ R
Ik+1

j implies (ej−1, ej) ∈ ( Vj)
Ik .

(ii) Now let Rj ̸= T , Rj = T−, and (ej−1, ej) ̸=
(dm, d0). From Rj = T− and T Ik+1 = T Ik ⊎
{(d0, dm)} it follows that RIk+1

j = RIkj ⊎ {(dm, d0)}.

Since (ej−1, ej) ∈ R
Ik+1

j and (ej−1, ej) ̸= (dm, d0)

we infer that (ej−1, ej) ∈ RIkj , and thus (ej−1, ej) ∈
( Vj)

Ik .
(iii) The case where Rj = T , Rj ̸= T−, and (ej−1, ej) ̸=

(d0, dm) is similar to the last case.
(iv) The remaining case where Rj = T and Rj = T− is

impossible.

We conclude by induction that (0, n) = (e0, eh) ∈ ( V )Ik ,
i.e., V ∈ Words(Ik).

Since R ∈ Words(Iℓ) and Words(I0) = {S1 · · ·Sn}, it
follows from the above claim by induction that S1 · · ·Sn can
be obtained from R by a finite number of applications of the
production rules.

Let R be a regular RBox, and for each role R, let AR =
(QR,Σ

±
R , iR,∆R, FR) be a finite automaton (with set of

states QR, the alphabet Σ±R of all roles, initial state iR,
transition relation ∆R, and set of final states FR) accepting
LR(R), i.e., such that L(AR) = LR(R). We assume with-
out loss of generality (but in the worst-case paid for by an-
other exponential blowup) that each automaton AR is deter-
ministic, i.e., for each state q and role S, there is at most one
state p such that (q, S, p) ∈ ∆R. In addition, we assume that
AR does not contain states that are unreachable from the ini-
tial state (only reachable states) or from which no final state
can be reached (no dead states), and further that the sets QR

for different R are pairwise disjoint and are all disjoint with
the signature Σ. Specifically, determinacy of the automata
is needed for technical reasons when we are later concerned
with constructing repairs, cf. Lemma XXVI. For each state
q ∈ QR, the automaton AR(q) := (QR,Σ

±
R , q,∆R, FR) is

obtained from AR by replacing the initial state iR with q.
We will use existential restrictions of the form ∃q.C for
q ∈ QR as abbreviations for the (possibly infinite) disjunc-
tion

⊔{ ∃S1. · · · ∃Sn.C | S1 · · ·Sn ∈ L(AR(q)) }, i.e., in
each interpretation I, (∃q.C)I is defined to be⋃

{ (∃S1. · · · ∃Sn.C)I | S1 · · ·Sn ∈ L(AR(q)) }.

If q is a final state, then (∃q.C)I equals

CI ∪
⋃

{ (∃R.∃p.C)I | (q,R, p) is a transition },
and otherwise

⋃{ (∃R.∃p.C)I | (q,R, p) is a transition }.
Entailment for such existential restrictions can be character-
ized as follows.
Lemma 7. Given a qABox ∃X.A, an object t of it, a ter-
minology (T ,R) with regular R, ELROI concept descrip-
tions C,D, and a state q. Then the following holds:

1. A |=T ,R ∃q.C(t) iff there is a word S1 · · ·Sn ∈
L(AR(q)) such that A |=T ,R ∃S1. · · · ∃Sn.C(t),

2. D ⊑T ,R ∃q.C iff there is a word S1 · · ·Sn ∈ L(AR(q))
such that D ⊑T ,R ∃S1. · · · ∃Sn.C.

Proof. The first claim follows easily by using the universal
model of ∃X.A and (T ,R) (Ortiz, Rudolph, and Šimkus
2011). The second reasoning problem can be transformed
into the first: it is easy to verify that D ⊑T ,R ∃q.C iff
{D(a)} |=T ,R ∃q.C(a), where a is an individual not oc-
curring in C, D, or T .

If the terminology is terminating, we can decide whether
the conditions for entailment stated in Lemma 7 hold. Basi-
cally, to check whether A |=T ,R ∃q.C(t) holds, we simply
need to find an accepting run of the automaton AR(q) such
that the accepted word corresponds to a path in the saturation
satT ,R(∃X.A) that starts with t and ends with an instance
of C. This boils down to a reachability test in the product of
the automaton with the saturation.
Proposition V. Let (T ,R) be terminating and consider a
state q ∈ QR. It holds that A |=T ,R ∃q.C(t) iff L(B) ̸= ∅
where the finite automaton B := (Q,Σ±R , i,∆, F ) has the
following components:
Q := Obj(∃Y.B)×QR

i := (t, iR)

∆ := {((u, q), R, (v, p)) |R(u, v) ∈ B and (q,R, p) ∈∆R }
F := { (u, f) | B |= C(u) and f ∈ FR }
where ∃Y.B := satT ,R(∃X.A).

Next, we show that the existential restrictions ∃R.C and
∃iR.C have the same behavior if the whole terminology is
taken into account.
Lemma VI. A |=T ,R ∃R.C(t) iff A |=T ,R ∃iR.C(t).

Proof. The only-if direction follows from ∃R.C ⊑∅
∃iR.C. Regarding the if direction, let A |=T ,R ∃iR.C(t).
By Lemma 7 there is a word S1 · · ·Sn ∈ L(AR(iR)) such
that A |=T ,R ∃S1. · · · ∃Sn.C(t). Since AR(iR) = AR, it
follows that S1 ◦ · · · ◦ Sn ⊑R R, and so we conclude that
A |=T ,R ∃R.C(t).

What’s more, it is possible to prove that A |=R ∃R.C(t)
iff A |= ∃iR.C(t), but this is not needed for our purposes.

Given a state p ∈ QR and a state q ∈ QR, we write p ≤ q
if L(AR(p)) ⊆ L(AR(q)). The next lemma is easy to prove.
Lemma VII. The following statements hold:

1. If A |=T ,R ∃p.C(t) and p ≤ q, then A |=T ,R ∃q.C(t).
2. If D ⊑T ,R ∃p.C and p ≤ q, then D ⊑T ,R ∃q.C.



3 Optimal and Canonical Repairs
In this section, we first extend the notion of an (optimal) re-
pair, as introduced in (Baader et al. 2021a), to the more ex-
pressive DL ELROI and a setting where the repair request,
which describes which consequences are to be removed, also
contains global unwanted consequences. For regular sets of
role inclusions, we show that every repair is entailed by a re-
pair containing a bounded number of individuals. From this,
we derive that the set of optimal repairs can effectively be
computed and covers all repairs. Then, we extend the con-
struction of canonical repairs of (Baader et al. 2021a) from
EL to ELRregOI. The set of canonical repairs can effec-
tively be computed, covers all repairs and thus contains all
optimal repairs, and a repair seed determining such a canon-
ical repair can be chosen by answering a polynomial number
of instance queries. Throughout the section, we assume (un-
less specified otherwise) that ∃X.A is a quantified ABox, T
an ELROI TBox, R a regular RBox, all defined over the
same signature Σ, and that (T ,R) is terminating.

Definition 8. A repair request P is a union of a finite set
Ploc of ELROI concept assertions, the local request, and of
a finite set Pglo of ELROI concept descriptions, the global
request. A repair of ∃X.A for P w.r.t. (T ,R) is a quantified
ABox ∃Y.B that fulfills the following properties:

(Rep1) ∃X.A |=T ,R ∃Y.B,
(Rep2) ∃Y.B ̸|=T ,R C(a) for each C(a) ∈ Ploc,
(Rep3) ∃Y.B ̸|=T ,R ∃{x}.{D(x)} for each D ∈ Pglo.

This repair is optimal if there is no repair ∃Z.C such that
∃Z.C |=T ,R ∃Y.B, but ∃Y.B ̸|=T ,R ∃Z.C. We say that a
set of repairs S covers all repairs if every repair is entailed
w.r.t. (T ,R) by a repair in S.

Obviously, ∃X.A has a repair for P w.r.t. (T ,R) iff the
terminology alone does not imply any of the unwanted con-
sequences in P , since then the empty ABox is a repair. The
restriction to terminating terminologies and regular RBoxes
is needed to ensure that any repair problem has a finite set
of optimal repairs covering all repairs. The proof of Propo-
sition 2 in (Baader et al. 2018) contains an example with
non-terminating terminology where there is no optimal re-
pair, though there is a repair. However, in this proof it is
only shown that there cannot be an optimal repair that is an
ABox. While this proof can be adapted to deal also with
qABoxes, we present here a modified example with exactly
one optimal repair, which however does not cover all repairs.

Example 9. Assume that T := {A ⊑ ∃r.A, ∃r.A ⊑ A},
R := ∅, A := {A(a), B(a)}, and P := {(A⊓B)(a)}. Then
∃{x}.{A(a), A(x), B(x)} is an optimal repair of ∃∅.A for
P w.r.t. (T ,R). However, there are also repairs in which the
concept assertion B(a) is retained, and A(a) is removed. To
see that there cannot be an optimal repair containing B(a),
first note that A together with T does not imply the existence
of any role cycle, and thus no repair can contain such a cy-
cle. Consequently, for an optimal repair ∃Y.B containing
B(a), there is an upper bound n on the length of role chains
starting from a. Adding r(a, y1), r(y2, y3), . . . , r(yn, yn+1)
for fresh existentially quantified variables y1, . . . , yn+1 to

∃Y.B then yields a new repair that strictly implies ∃Y.B,
which contradicts the assumed optimality of this repair.

The following example shows that non-regularity of the
RBox may prevent all repairs from being covered by a finite
set of repairs.

Example 10. The RBox R := {r− ◦ s ◦ r ⊑ s} is not regu-
lar since LR(s) = {(r−)isri | i ≥ 0} is a context-free lan-
guage over the alphabet {r−, s, r} known to be non-regular.
Together with the TBox T := {∃s.A ⊑ A, ∃s.B ⊑ B},
this RBox yields a terminating terminology. Consider the
ABox A := {r(a, a), s(a, a), A(a), B(a)} and the repair re-
quest P = Pglo := {A ⊓ B}. It is not hard to see that, for
each n ≥ 1, the qABox ∃Xn.An is a repair of ∃∅.A for P
w.r.t. (T ,R), where Xn := {x1, . . . , xn} and

An := { r(a, x1), r(x1, x2), . . . , r(xn−1, xn),
s(a, a), s(x1, x1), . . . , s(xn, xn),
A(a), A(x1), A(x2), . . . , A(xn−1), B(xn) }.

Assume that S is a finite set of repairs of ∃∅.A for P w.r.t.
(T ,R) that covers all repairs, and let n be larger than the
maximal number of objects occurring in the elements of
S. Without loss of generality we assume that the elements
of S are saturated w.r.t. (T ,R). Then there must exist a
repair ∃Y.B in S such that there is a homomorphism h
from ∃Xn.An to ∃Y.B. Since B contains less than n ob-
jects, there must be i, j with 1 ≤ i < j ≤ n such that
h(xi) = h(xj). Consequently, h(xn) is reachable from
h(a) with the role r both in n steps and in m < n steps,
where m = n − (j − i). Since h(xm) is also reachable in
m steps from h(a) and s(h(a), h(a)) must be in B, the fact
that ∃Y.B is saturated implies that s(h(xn), h(xm)) must
belong to B. Since A(xm) ∈ An yields A(h(xm)) ∈ B, this
implies that A(h(xn)) ∈ B. However, since B(xn) ∈ An

also yields B(h(xn) ∈ B, this contradicts our assumption
that ∃Y.B is a repair for P .

3.1 The Small Repair Property
If we restrict the attention to terminating terminologies with
regular RBoxes R, then we can show that the repairs of
a certain bounded size cover all repairs. For an ELROI
TBox T and a repair request P , let Sub(T ,P) denote
the set of concept descriptions occurring in T and P and
Atoms(T ,P) the set of atoms in this set. To take the RBox
into account, we introduce the set of R-extended atoms
AtomsR(T ,P), which is obtained from Atoms(T ,P) by
replacing each ∃R.C ∈ Atoms(T ,P) with the existential
restrictions ∃q.C, where q ranges over QR (i.e., the set of
states of the automaton for LR(R)).

Proposition 11. Let (T ,R) be a terminating ELROI ter-
minology with regular RBox, P an ELROI repair request,
∃X.A a (w.l.o.g) saturated qABox with m objects, and
n := |Atoms(T ,P) ∪ AtomsR(T ,P)|. Then every repair
of ∃X.A for P w.r.t. (T ,R) is entailed w.r.t. (T ,R) by a
repair that contains at most m·2n objects.

This proposition can be shown by adapting the well-
known filtration technique, e.g., used in (Baader et al. 2017)
to prove the finite model property for ALC. Let ∃Y.B be



a repair of ∃X.A for P w.r.t. (T ,R), and assume without
loss of generality that it is saturated. Since ∃X.A entails
every repair and is also assumed to be saturated, there is a
homomorphism h from ∃Y.B to ∃X.A. For each object u
of ∃Y.B, we define its type by3

Type(u) :=

{
C

∣∣∣∣ C ∈ Atoms(P, T ) ∪ AtomsR(P, T )

and B |= C(u)

}
and define the equivalence relation ∼ on these objects as

u ∼ v iff Type(u) = Type(v) and h(u) = h(v).

Obviously, ∼ has at most m·2n equivalence classes [u]∼.
The filtration ∃Z.C has these equivalence classes as ob-
jects, with the class [a]∼ standing for the individual a.4 The
classes inherit their concept and role assertions from the
ones of their elements in B. Specifically, ∃Z.C has the fol-
lowing components:

1. the variable set Z consists of all equivalence classes [y]∼
for variables y ∈ Y such that [y]∼ ∩ ΣI = ∅,

2. we identify each individual name a with the equivalence
class [a]∼,

3. the matrix contains the following assertions:
• A([u]∼) ∈ C if A(u′) ∈ B for some u′ ∼ u,
• r([u]∼, [v]∼) ∈ C if r(u′, v′) ∈ B for some u′ ∼ u and

some v′ ∼ v,
• [u]∼ ≡ [v]∼ ∈ C if a ≡ b ∈ B where a ∈ [u]∼ ∩ ΣI

and b ∈ [v]∼ ∩ ΣI.
Recall from Section 2.2 that ≈∃Y.B is the reflexive, sym-
metric, transitive closure of the equality assertions in B, and
analogously for ∃Z.C. It follows that [u]∼ ≈∃Z.C [v]∼ iff
u ∼ v or a ≈∃Y.B b where a ∈ [u]∼ ∩ΣI and b ∈ [v]∼ ∩ΣI.

In Lemma VIII we will show, for all C ∈ Atoms(T ,P)∪
AtomsR(T ,P) and for all u ∈ Obj(∃Y.B), that

C |= C([u]∼) iff B |= C(u).

Since ∃Y.B is a saturated repair, this implies that its filtra-
tion ∃Z.C is saturated w.r.t. T and does not entail (w.r.t. T )
any of the unwanted consequences specified by P . The fil-
tration ∃Z.C need not be saturated w.r.t. R, but we will show
in Lemma IX that its saturation w.r.t. R does not entail ad-
ditional instance relationships for atoms in Atoms(T ,P) ∪
AtomsR(T ,P). This implies that, also w.r.t. (T ,R), the fil-
tration does not entail any of the unwanted consequences in
P . Finally, it is easy to check that u 7→ [u]∼ is a homo-
morphism from the repair ∃Y.B to the filtration ∃Z.C, and
that [u]∼ 7→ h(u) is a homomorphism from ∃Z.C to the in-
put qABox ∃X.A (independence of representatives follows
from the very definition of ∼). Thus, the filtration ∃Z.C is a
repair with at most m·2n objects that entails ∃Y.B.
Lemma VIII. Type∃Y.B(u) = Type∃Z.C([u]∼).

3In order to distinguish types w.r.t. different qABoxes, we
sometimes add the respective qABox as subscript and write
Type∃Y.B(u) instead.

4Since h satisfies Condition (Hom2), h(a) ̸= h(b) holds for
each two individuals a and b, and thus every equivalence class w.r.t.
∼ contains at most one individual.

Proof. The proof is by induction on C.

• Assume that Type∃Z.C([u]∼) contains the concept name
A, i.e., the matrix C entails A([u]∼). With Corollary I it
follows that C must contain A([ū]∼) for some [ū]∼ ≈∃Z.C
[u]∼, and thus the above definition of the filtration yields
that there is some u′ ∼ ū with A(u′) ∈ B. The latter
implies that Type∃Y.B(u

′) contains A. Since ū and u′ are
equivalent, they specifically have the same type and so A
is also contained in Type∃Y.B(ū).
– If ū ∼ u, then it immediately follows that A ∈
Type∃Y.B(u).

– Otherwise, there are individuals ā ∈ [ū]∼ ∩ ΣI and
a ∈ [u]∼ ∩ ΣI such that ā ≈∃Y.B a. We infer from
ā ∼ ū, ā ≈∃Y.B a, and a ∼ u that Type∃Y.B(ū) =
Type∃Y.B(ā) = Type∃Y.B(a) = Type∃Y.B(u), and
thus A ∈ Type∃Y.B(u).

Conversely, assume that A ∈ Type∃Y.B(u), i.e., the ma-
trix B entails A(u), from which we infer by means of
Corollary I that A(ū) must be contained in B for some
ū ≈∃Y.B u. Since ū ∼ ū holds, the above definition of the
filtration immediately implies that A([ū]∼) is in the ma-
trix C. Furthermore, ū ≈∃Y.B u implies [ū]∼ ≈∃Z.C [u]∼,
and thus A ∈ Type∃Z.C([u]∼).

• Next, we are concerned with the case where C is a nom-
inal {a}. First let {a} ∈ Type∃Z.C([u]∼). It follows
that [a]∼ ≈∃Z.C [u]∼, and so there is an individual name
b ∈ [u]∼ ∩ ΣI where a ≈∃Y.B b. We infer that {a} is in
Type∃Y.B(b), and also in Type∃Y.B(u) since b ∼ u.
Regarding the opposite direction, let {a} ∈ Type∃Y.B(u).
It follows that a ≈∃Y.B u and u must be an individual
name. The definition of the filtration yields [a]∼ ≈∃Z.C
[u]∼, and so we obtain that {a} ∈ Type∃Z.C([u]∼).

• Assume that C is an existential restriction ∃R.D.
If ∃R.D ∈ Type∃Y.B(u), then by Corollary I
there is ū ≈∃Y.B u such that R(ū, v) ∈ B and
Conj(D) ⊆ Type∃Y.B(v). The induction hypothesis
yields Conj(D) ⊆ Type∃Y.B([v]∼). According to the def-
inition of the filtration we further have R([ū]∼, [v]∼) ∈
C, and so ∃R.D ∈ Type∃Z.C([ū]∼). From ū ≈∃Y.B
u we infer that [ū]∼ ≈∃Z.C [u]∼ and thus ∃R.D ∈
Type∃Z.C([u]∼).
Conversely, assume ∃R.D ∈ Type∃Z.C([u]∼). So there
is [ū]∼ ≈∃Z.C [u]∼ where R([ū]∼, [v]∼) ∈ C and
Conj(D) ⊆ Type∃Z.C([v]∼), cf. Corollary I. By induction
hypothesis we obtain Conj(D) ⊆ Type∃Y.B(v). Further-
more, we have R(u′, v′) ∈ B for some u′ ∼ ū and some
v′ ∼ v, and thus ∃R.D ∈ Type∃Y.B(ū).
– If ū ∼ u, then it immediately follows that ∃R.D ∈

Type∃Y.B(u).
– Otherwise there is an individual name ā ∼ ū and an

individual name a ∼ u where ā ≈∃Y.B a. Then
Type∃Y.B(ū) = Type∃Y.B(ā) = Type∃Y.B(a) =
Type∃Y.B(u), which implies ∃R.D ∈ Type∃Y.B(u).

• Last, let ∃q.C ∈ Type∃Z.C([u]∼), i.e., C |= ∃q.C([u]∼).
So there is a word S1 · · ·Sn ∈ L(AR(q)) such that C |=
∃S1. · · · ∃Sn.C([u]∼). According to Corollary I there are



role assertions S1([v0]∼, [w1]∼), S2([v1]∼, [w2]∼), . . . ,
Sn([vn−1]∼, [wn]∼) in C such that
– [u]∼ ≈∃Z.C [v0]∼,
– [wi]∼ ≈∃Z.C [vi]∼ for each index i ∈ {1, . . . , n− 1},
– and C |= C([wn]∼).
S1 · · ·Sn ∈ L(AR(q)) implies that there are transitions
(q0, S1, q1), . . . , (qn−1, Sn, qn) where q0 = q and qn is fi-
nal. Furthermore, Conj(C) ⊆ Type∃Z.C([wn]∼), and the
induction hypothesis yields Conj(C) ⊆ Type∃Y.B(wn),
and thus ∃qn.C ∈ Type∃Y.B(wn).
We show by induction along the above transitions that
∃q0.C ∈ Type∃Y.B(v0). Consider an index i, start-
ing with the largest one, n, and then in decreasing or-
der. Since Si([vi−1]∼, [wi]∼) is in the filtration ma-
trix C, there is a role assertion Si(v̄i−1, w̄i) in B where
v̄i−1 ∼ vi−1 and w̄i ∼ wi. We thus infer from
∃qi.C ∈ Type∃Y.B(wi) that first ∃qi.C ∈ Type∃Y.B(w̄i),
then ∃qi−1.C ∈ Type∃Y.B(v̄i−1), and thus ∃qi−1.C ∈
Type∃Y.B(vi−1). We continue with a case distinction why
[wi−1]∼ ≈∃Z.C [vi−1]∼ holds.
– If wi−1 ∼ vi−1, then it directly follows that ∃qi−1.C ∈
Type∃Y.B(wi−1).

– Otherwise, there are individual names ai−1 ∼ vi−1
and bi−1 ∼ wi−1 where ai−1 ≈∃Y.B bi−1.
Then the types Type∃Y.B(vi−1), Type∃Y.B(ai−1),
Type∃Y.B(bi−1), and Type∃Y.B(wi−1) are equal, and
we obtain ∃qi−1.C ∈ Type∃Y.B(wi−1) as well.

We have shown that ∃q.C ∈ Type∃Y.B(v0). With a sim-
ilar case distinction on [u]∼ ≈∃Z.C [v0]∼ as above, we
infer ∃q.C ∈ Type∃Y.B(u).
It remains to show the converse direction. Consider
∃q.C ∈ Type∃Y.B(u). So there is a word S1 · · ·Sn ∈
L(AR(q)) and role assertions S1(v0, w1), S2(v1, w2),
. . . , Sn(vn−1, wn) in B such that
– u ≈∃Y.B v0,
– wi ≈∃Y.B vi for each index i ∈ {1, . . . , n− 1},
– and Conj(C) ⊆ Type∃Y.B(wn).
Furthermore, S1 · · ·Sn ∈ L(AR(q)) implies that there
are transitions (q0, S1, q1), . . . , (qn−1, Sn, qn) where
q0 = q and qn is final.
According to the definition of the filtration, its ma-
trix C contains the role assertions S1([v0]∼, [w1]∼),
S2([v1]∼, [w2]∼), . . . , Sn([vn−1]∼, [wn]∼), and it further
holds that [u]∼ ≈∃Z.C [v0]∼ and [wi]∼ ≈∃Z.C [vi]∼ for
each index i ∈ {1, . . . , n − 1}. The induction hypothe-
sis yields Conj(C) ⊆ Type∃Z.C([wn]∼). By induction, it
follows that ∃q.C ∈ Type∃Z.C([u]∼).

Let ∃Z.C′ be the R-saturation of the filtration ∃Z.C.

Lemma IX. Type∃Y.B(u) = Type∃Z.C′([u]∼)

Proof. We show the claim by an induction along the se-
quence of applications of the RI Rule. Therefore let C =:
C0 → C1 → · · · → Cn := C′ be the sequence of ma-
trices such that Ci+1 is obtained from Ci by one applica-
tion of the RI Rule. Note that applying the RI Rule does
not introduce new objects or new equality assertions, i.e.,

∃Z.C, ∃Z.C′, and all qABoxes ∃Z.Ci in the sequence have
the same equivalence relation on objects, which we simply
denote as ≈∃Z.C .

The induction base follows from Lemma VIII.
Assume that Ci+1 is produced from Ci by applying the RI

Rule for R1◦· · ·◦Rn ⊑ S at ([v]∼, [w]∼), i.e., there are role
assertions R1([x0]∼, [y1]∼), . . . , Rn([xn−1]∼, [yn]∼) in Ci
where

• [x0]∼ ≈∃Y.C [v]∼,
• [xj ]∼ ≈∃Y.C [yj ]∼ for each index j ∈ {1, . . . , n− 1},
• and [yn]∼ ≈∃Y.C [w]∼,

and the new assertion S([v]∼, [w]∼) is added to the matrix,
yielding Ci+1.

It is easy to see that Type∃Z.Ci([u]∼) is always a subset of
Type∃Z.Ci+1

([u]∼), and so the induction hypothesis yields
that Type∃Y.B(u) ⊆ Type∃Z.Ci+1

([u]∼).
In the opposite direction, we show by induction on C that

C ∈ Type∃Z.Ci+1
([u]∼) implies C ∈ Type∃Y.B(u).

The only interesting cases are where C is an existential
restriction involving the role S or an automaton concept such
that the new role assertion S([v]∼, [w]∼) is used to entail
that C has [u]∼ as an instance w.r.t. Ci+1.

• Assume Ci+1 |= ∃S.D([u]∼). According to Corollary I
there is a role assertion S([v′]∼[w

′]∼) in Ci+1 such that
[u]∼ ≈∃Z.C [v′]∼ and Conj(D) ⊆ Type∃Z.Ci+1

([w′]∼).
The inner induction hypothesis yields that Conj(D) ⊆
Type∃Y.B(w

′). We have already seen above that
Type∃Y.B(w

′) ⊆ Type∃Z.Ci([w
′]∼), and thus Conj(D) ⊆

Type∃Z.Ci([w
′]∼).

If this role assertion is not the new one, it also con-
tained in Ci. It then immediately follows that ∃S.D ∈
Type∃Z.Ci([v

′]∼). Since [u]∼ ≈∃Z.C [v
′]∼, the latter type

is equal to Type∃Z.Ci([u]∼). Thus the outer induction hy-
pothesis yields ∃S.D ∈ Type∃Y.B(u).
Now assume that S([v′]∼[w′]∼) equals the new role as-
sertion, i.e., v ∼ v′ and w ∼ w′. Since R1 ◦ · · · ◦Rn ⊑ S
is an RI in the RBox, the automaton for S contains transi-
tions (q0, R1, q1), (q1, R2, q2), . . . , (qn−1, Rn, qn) where
q0 = iS is the initial state and qn is a final state. From
Conj(D) ⊆ Type∃Z.Ci([w]∼) and w ∼ xn we infer that
∃qn.D ∈ Type∃Z.Ci([xn]∼).
We now consider each index j in decreasing
order, starting with n. Since Ci contains the
role assertion Rj([xj−1]∼, [xj ]∼), it holds that
∃qj .D ∈ Type∃Z.Ci([xj ]∼) implies ∃qj−1.D ∈
Type∃Z.Ci([xj−1]∼).
By induction we obtain ∃q0.D ∈ Type∃Z.Ci([x0]∼),
and thus q0 = iS and x0 ∼ v implies ∃iS .D ∈
Type∃Z.Ci([v]∼). With [u]∼ ≈∃Z.C [v]∼ we conclude that
the latter type equals Type∃Z.Ci([u]∼).
The outer induction hypothesis yields ∃iS .D ∈
Type∃Y.B(u). Since ∃Y.B is saturated w.r.t. (T ,R), we
obtain by Lemma VI that ∃S.D ∈ Type∃Y.B(u).

• The case where C = ∃S−.D is similar.



• Now let C = ∃q.D ∈ Type∃Z.Ci+1
([u]∼), i.e.,

there is a word S1 · · ·Sm ∈ L(AR(q)) such that
Ci+1 |= ∃S1. · · · ∃Sm.D([u]∼). By Corollary I there are
role assertions S1([v0]∼, [w1]∼), S2([v1]∼, [w2]∼), . . . ,
Sm([vm−1]∼, [wm]∼) in Ci+1 where
– [u]∼ ≈∃Z.C [v0]∼,
– [wj ]∼ ≈∃Z.C [vj ]∼ for each index j ∈ {1, . . . ,m− 1},
– and Conj(D) ⊆ Type∃Z.Ci+1

([wm]∼).

The inner induction hypothesis yields Conj(D) ⊆
Type∃Y.B(wm) and with Type∃Y.B(wm) ⊆
Type∃Z.Ci([wm]∼) we infer that Conj(D) ⊆
Type∃Z.Ci([wm]∼).
In the sequence of role assertions S1([v0]∼, [w1]∼),
S2([v1]∼, [w2]∼), . . . , Sm([vm−1]∼, [wm]∼), which are
all in the matrix Ci+1, we replace
– each occurrence of the new role assertion
S([v]∼, [w]∼) by the subsequence R1([x0]∼, [y1]∼),
. . . , Rn([xn−1]∼, [yn]∼), and

– each occurrence of the inverse new role as-
sertion S−([w]∼, [v]∼) by the subsequence
R−n ([yn]∼, [xn−1]∼), . . . , R−1 ([y1]∼, [x0]∼).

We so obtain a sequence of role assertions in the ma-
trix Ci, say S′1([v

′
0]∼, [w

′
1]∼), S′2([v

′
1]∼, [w

′
2]∼), . . . ,

S′ℓ([v
′
ℓ−1]∼, [w

′
ℓ]∼), where

– [v0]∼ ≈∃Z.C [v
′
0]∼,

– [w′j ]∼ ≈∃Z.C [v
′
j ]∼ for each index j ∈ {1, . . . , ℓ− 1},

– and [w′ℓ]∼ ≈∃Z.C [wm]∼.
Since S1 · · ·Sm ∈ L(AR(q)), the RBox R contains the
role inclusion R1 ◦ · · · ◦ Rn ⊑ S, and the automaton
AR is deterministic, it then further holds that S′1 · · ·S′ℓ ∈
L(AR(q)), and so there are transitions (q0, S

′
1, q1), . . . ,

(qℓ−1, S
′
ℓ, qℓ) where q0 = q and qℓ is final.

From Conj(D) ⊆ Type∃Z.Ci([wm]∼) and [w′ℓ]∼ ≈∃Z.C
[wm]∼ it follows that ∃qℓ.D ∈ Type∃Z.Ci([w

′
ℓ]∼). By

induction, it follows that ∃q0.D ∈ Type∃Z.Ci([v
′
0]∼).

Due to q0 = q and [u]∼ ≈∃Z.C [v′0]∼ we get ∃q.D ∈
Type∃Z.Ci([u]∼). The outer induction yields ∃q.D ∈
Type∃Y.B(u).

Since, for a fixed signature and up to renaming of vari-
ables, there are only finitely many qABoxes containing at
most m·2n objects, we can effectively construct the set of
optimal repairs of ∃X.A for P w.r.t. (T ,R) by enumerating
these qABoxes, then removing the ones that are not repairs,
and finally removing from the remaining set the elements
that are strictly entailed by an other element.

Theorem 12. Let ∃X.A be a qABox, (T ,R) a terminating
ELROI terminology with regular RBox whose associated
automata can effectively be computed, and P an ELROI re-
pair request. Then the set of all optimal repairs of ∃X.A for
P w.r.t. (T ,R) can, up to equivalence, effectively be com-
puted, and every repair is entailed by an optimal repair.

The following example shows that the “automata atoms”
in AtomsR(T ,P) are needed for the filtration.

Example 13. Assume that T := ∅, R := {r ◦ r ⊑ s}, A :=
{r(a, b), r(b, c), s(a, c)}, and P := {∃s.⊤(a)}. The qABox
∃{x}.{r(a, b), r(x, c)} is a (saturated) repair of ∃∅.A for P
w.r.t. (T ,R). If we used only Atoms(T ,P) = {∃s.⊤} for
the filtration, then the objects b and x would be identified
since they behave the same w.r.t. this concept in the repair.
Thus, [a]∼ would have [x]∼ = [b]∼ as r-successor in the fil-
tration, which in turn would have [c]∼ as r-successor. This
shows that the filtration would have ∃s.⊤(a) as a conse-
quence, and thus would not be a repair. The regular language
LR(s) = {rr, s} is accepted by a deterministic automaton
with three states, q0, q1, q2, where q0 is initial and q2 is fi-
nal, r-transitions from q0 to q1 and from q1 to q2, and an
s-transition from q0 to q2. Since the object x belongs to
∃q1.⊤, but b does not, they are not identified in the filtration
that takes the concepts in AtomsR(T ,P) = {∃qi.⊤ | 0 ≤
i ≤ 2} into account.

3.2 Repair Types and Repair Seeds
Instead of blindly searching for optimal repairs among the
very large set of “small” repairs, we now show how the con-
siderably smaller set of canonical repairs, which contains all
optimal repairs, can be constructed from repair seeds. Such
a repair seed is of polynomial size, and it basically specifies
which atoms in Atoms(T ,P) ∪ AtomsR(T ,P) need to be
removed for each individual.

From now on, we assume that ∃Y.B is the saturation of
∃X.A w.r.t. (T ,R). Our canonical repairs will actually be
computed from ∃Y.B. This guarantees that no consequences
are lost which would, in the original qABox ∃X.A, only
follow from removed assertions but which cannot partici-
pate in violating the repair request. As mentioned in the
introduction, to achieve optimality, it is not sufficient to re-
move assertions from this qABox. We must also generate
anonymous copies of its objects. Basically, these copies
are induced by pairs (u,K) where u is an object in B and
K ⊆ AtomsR(T ,P) is a set of atoms C such that u is an in-
stance of C in ∃Y.B. Putting an atom into K means that the
copy of u induced by (u,K) should not be an instance of C.

Recall that Conj(C) is the set of all top-level conjuncts
of a concept description C. The set ConjR(C) is ob-
tained from Conj(C) by replacing each existential restric-
tion ∃R.D ∈ Conj(C) with ∃iR.D.5 We will use the fol-
lowing mapping ( · )R from atoms to R-extended atoms:
(A)R := A for concept names, ({a})R := {a} for nom-
inals, and (∃R.D)R := ∃iR.D for existential restrictions.
We further set (∃q.D)R := ∃q.D if q is a state. With that,
we have ConjR(C) = { (D)R | D ∈ Conj(C) }.

The sets K used to construct copies of u must be repair
types for u.

Definition 14. Let u be an object name of ∃Y.B. A repair
type for u is a set K ⊆ AtomsR(T ,P) satisfying:

(RT1) If C ∈ K, then B |= C(u).
(RT2) If D ∈ Sub(T ,P)∪AtomsR(T ,P) with B |= D(u)

and C ∈ K with D ⊑T ,R C, then ConjR(D) ∩ K ̸= ∅.
(RT3) If E ∈ Pglo and B |= E(u), then ConjR(E)∩K ̸= ∅.

5Recall that iR is the initial state of the automaton AR.



The first condition says that only concept assertions that
really hold for u need to be removed. The second condition
ensures that concept assertions that are removed for u can-
not be reintroduced by the terminology. The third condition
has the effect that no copy can be an instance of a concept
description that occurs in the global request. Each two indi-
vidual names a and b with a ≈∃Y.B b have the same repair
types.

Note that Condition (RT2) could also be formulated with-
out taking the R-extended atoms in AtomsR(T ,P) into ac-
count. The canonical repairs will then still have enough
structure such that Theorem 16 can be proven. Specifi-
cally, the R-extended atoms in AtomsR(T ,P) would then
also not need to be considered in Definition XIII and Lem-
mas XXIII and XXIV, and the second condition in Defini-
tion XVI would not be necessary.

In the canonical repairs, one of the copies of each individ-
ual will stand for this individual, whereas the other copies
are variables. In addition, some individuals that are equal
w.r.t. ∃Y.B may no longer be equal in the repair. The repair
seed makes these decisions explicit.
Definition 15. A repair seed S consists of an equivalence
relation ≈S on Obj(∃Y.B) that is a refinement of ≈∃Y.B
(i.e., ≈S ⊆ ≈∃Y.B) and of a function that maps each equiv-
alence class [a]S of an individual a w.r.t. ≈S to a repair type
S[a]S for a, such that the following conditions are fulfilled:
(RS1) If C(a) ∈ Ploc and B |= C(a), then ConjR(C) ∩
S[a]S ̸= ∅.

(RS2) If a, b are individuals and {a} ∈ Atoms(T ,P), then
{a} ∈ S[b]S iff a ≈∃Y.B b and a ̸≈S b.
The first condition guarantees that the repair induced by

the seed satisfies the local request. The second condition en-
sures that the decision made by the seed that two individuals
should no longer be equal is respected in the repair.
Example X. We choose the TBox {A ⊑ {b}}, the empty
RBox, the (saturated) qABox {a ≡ b, A(a)}, and the repair
request {{a}(b)}. The individuals a and b are equivalent.
So we have two choices for a refinement: either a ≈S b or
a ̸≈S b. In the former case, there is only one equivalence
class {a, b}. Condition (RS1) would require that S{a,b} con-
tains {a}, which violates Condition (RS2).

Now consider the latter case, where {a} and {b} are
the equivalence classes of a repair seed. Condition (RS1)
enforces {a} ∈ S{b}, and thus Condition (RS2) requires
{b} ∈ S{a}. With Condition (RT2) we further get A ∈ S{a}.
The latter ensures that a is specifically repaired for A and
thus inference with the TBox and RBox cannot restore the
equality a ≡ b.

Computing a refinement of the equivalence relation
≈∃Y.B according to the unwanted equalities expressed in the
repair request has a strong connection to a well-known prob-
lem in graph theory. First of all, we can construct an undi-
rected graph (V,E) in which the vertices are the objects of
∃Y.B and where two objects are joined by an edge if they
are equivalent w.r.t. ≈∃Y.B. Since ≈∃Y.B is transitive, the
graph (V,E) must be a disjoint union of cliques. Specifi-
cally, each clique represents an equivalence class. Now for

each unwanted equality expressed by the repair request, we
remove the corresponding edge in the graph (V,E), which
can be seen as a request to split an equivalence class into
smaller classes. In order to construct a refinement of ≈∃Y.B
that adheres to the unwanted equalities, we compute a clique
cover of the modified graph (V,E), which is a partition of
the vertex set V into cliques of (V,E). The cliques are then
the refined equivalence classes.

Such a clique cover is called minimum clique cover if
there is no clique cover that partitions V into fewer cliques.
The clique cover number of (V,E) is the number of cliques
in a minimum clique cover. The problem consisting of all
pairs ((V,E), n) where (V,E) has a clique cover number
not exceeding n is NP-complete (Karp 1972). It follows that
computing a minimum clique cover is NP-hard. Clearly, the
coarsest refinements correspond to the minimum clique cov-
ers. While a coarsest refinement might be desirable to retain
as many equalities as possible, there is always a trade-off to
retaining other consequences.

Given a repair seed S , the copies of objects u have ≈S -
equivalence classes [u]S as first component.6 We write such
a copy, consisting of an equivalence class [u]S and a repair
type K for u as ⟨⟨[u]S ,K⟩⟩, and call it the K-copy of u. The
role assertions between these copies are determined by the
next definition.
Definition XI. Given copies ⟨⟨[u]S ,K⟩⟩ and ⟨⟨[v]S ,L⟩⟩,
we write ⟨⟨[u]S ,K⟩⟩ r−→ ⟨⟨[v]S ,L⟩⟩, and occasionally also
⟨⟨[v]S ,L⟩⟩ r−−−→ ⟨⟨[u]S ,K⟩⟩, if the following conditions hold:
(RA1) B |= r(u, v).
(RA2) For each ∃q.C ∈ K, if there is a transition (q, r, p) in

some automaton AR such that B |= ∃p.C(v), then there
is a state p′ ∈ QR such that p ≤ p′ and ∃p′.C ∈ L.7

(RA3) For each ∃q.C ∈ K, if there is a transition (q, r, f)
in some automaton AR for a final state f and B |= C(v),
then ConjR(C) ∩ L ̸= ∅.

(RA4) For each ∃q.C ∈ L, if there is a transition (q, r−, p)
in some automaton AR such that B |= ∃p.C(u), then
there is a state p′ ∈ QR such that p ≤ p′ and ∃p′.C ∈ K.

(RA5) For each ∃q.C ∈ L, if there is a transition (q, r−, f)
in some automaton AR for a final state f and B |= C(u),
then ConjR(C) ∩ K ̸= ∅.
The first condition says that ⟨⟨[v]S ,L⟩⟩ can only be an

r-successor of ⟨⟨[u]S ,K⟩⟩ if v is an r-successor of u in the
saturation. The other four conditions require that fillers of
existential restrictions in the two repair types are propagated
between each other, ensuring that in the repair the copies
will not be instances of these existential restrictions.

To see why this works, reconsider Proposition V
and Lemma VI. Specifically, since ∃Y.B is saturated w.r.t.
(T ,R), it holds that B |= ∃R.C(t) iff B |= ∃iR.C(t),
where iR is the initial state of the automaton AR. This
means that, if we want to ensure that an object t is no in-
stance of ∃R.C, it suffices to modify it such that it is no
instance of ∃iR.C anymore. For this reason, we add in

6For variables x, their equivalence class is the singleton set {x}.
7Recall that, for states p and q in QR, we write p ≤ q if

L(AR(p)) ⊆ L(AR(q)).



Conditions (RT3) and (RS1) the atom ∃iR.C to the repair
type (instead of ∃R.C). Furthermore, by synchronously
traversing the transitions and the role assertions, we have
B |= ∃q.C(u) iff one of the following statements is fulfilled:
• There is a transition (q,R, p) and there is an an object v

such that B |= R(u, v) and B |= ∃p.C(v).
• There is a transition (q,R, f) where f is a final state and

there is an object v such that B |= R(u, v) and B |= C(v).
So to make an object u no instance of ∃q.C, we must modify
each R-successor of u such that it is no instance of ∃p.C for
each transition (q,R, p), see Conditions (RA2) and (RA4).
At the same time, each R-successor of u must not be an
instance of C for each transition (q,R, f) where f is a final
state, see Conditions (RA3) and (RA5).

In contrast to the case for EL, not every repair seed in-
duces a repair, as illustrated by the next example.
Example XII. Consider the qABox {r(a, b), B(b)} and the
TBox {{a} ⊑ ∃r.B, B ⊑ {b}}. The qABox is already sat-
urated. For the repair request {B(b)}, there is the repair seed
with S[a]S = ∅ and S[b]S = {B} (which is the only one), but
no repair exists since the TBox already entails B(b).

To characterize the repair seeds that do induce repairs, we
need to introduce the following notions.
Definition XIII. Let K be a repair type for u. The residual
of K w.r.t. u is defined as

K+(u) :=

D

∣∣∣∣∣∣∣
D ∈ Sub(T ,P) ∪ AtomsR(T ,P),

B |= D(u), and

D ̸⊑T ,R C for all C ∈ K

 .

Intuitively, K+(u) contains the subconcepts D of which
the copy ⟨⟨[u]S ,K⟩⟩ should still be an instance after the repair.
Lemma XIV. Let K be a repair type for u. For each C ∈
Sub(T ,P) ∪ AtomsR(T ,P) where B |= C(u), we have
either C ∈ K+(u) or ConjR(C) ∩ K ̸= ∅.

Proof. Consider a concept C in Sub(T ,P) ∪
AtomsR(T ,P). If C is not in the residual K+(u),
then there is some atom D in the repair type K such that
C ⊑T ,R D. Condition (RT2) in Definition 14 enforces that
ConjR(C) ∩ K ̸= ∅.

It remains to show that the two conditions are mutually
exclusive. Assume that both would hold. From ConjR(C)∩
K ̸= ∅ it would follow that there is a top-level conjunct
E ∈ Conj(C) such that (E)R ∈ K. Since C ⊑∅ E ⊑∅
(E)R, it would follow that C ⊑T ,R D for some D ∈ K,
i.e., C ̸∈ K+(u), a contradiction.

Lemma XV. Each residual is closed under subsumers w.r.t.
T , i.e., for each C ∈ K+(u) and for each D ∈ Sub(T ,P)
where C ⊑T D, it holds that D ∈ K+(u).

Proof. Consider two concepts C ∈ K+(u) and D ∈
Sub(T ,P) such that C ⊑T D. From C ∈ K+(u) it
follows by Definition 14 that B |= C(u). Since B is T -
saturated, C ⊑T D implies B |= D(u). Now consider some
atom E ∈ K; we must show that D ̸⊑T ,R E. Assuming
the contrary would immediately yield the contradiction that
C ⊑T ,R E — this cannot hold as C ∈ K+(u).

Definition XVI. Let S be a repair seed and consider a sub-
set Γ of

{ ⟨⟨[a]S ,S[a]S ⟩⟩ | a ∈ ΣI }

∪

 ⟨⟨[a]S ,K⟩⟩

∣∣∣∣∣∣
a ∈ ΣI, K is a repair type for a, and
{b} ∈ K for each {b} ∈ AtomsR(T ,P)

where ∃Y.B |= a ≡ b


∪ { ⟨⟨[x]S ,K⟩⟩ | x ∈ Y and K is a repair type for x }.
We say that Γ is saturated if the following conditions are
fulfilled for each ⟨⟨[v]S ,L⟩⟩ ∈ Γ:
(S1) for each ∃R.C ∈ L+(v), there is some ⟨⟨[w]S ,M⟩⟩ ∈
Γ such that ⟨⟨[v]S ,L⟩⟩ R−→ ⟨⟨[w]S ,M⟩⟩ and C ∈ M+(w),

(S2) for each ∃q.C ∈ L+(v), there is some R1 · · ·Rn ∈
L(AR(q)) and ⟨⟨[w1]S ,M1⟩⟩, . . . , ⟨⟨[wn]S ,Mn⟩⟩ ∈ Γ
such that ⟨⟨[v]S ,L⟩⟩ R1−−→ ⟨⟨[w1]S ,M1⟩⟩ R2−−→ · · · Rn−−→
⟨⟨[wn]S ,Mn⟩⟩ and C ∈ M+

n (wn).
The whole set in the above definition contains all copies

that, at least in principle, would make sense in a repair. First
of all, these are the copies ⟨⟨[a]S ,S[a]S ⟩⟩ that will stand for
the individual names. However, we must not consider copies
⟨⟨[a]S ,K⟩⟩ where the repair type K does not ensure that in-
ference with the TBox and RBox cannot restore equality
with a; the remaining ones are in the second part. Since
equalities can never involve variables, it is unproblematic to
consider copies of variables (those in the third part).

To see that, in the second part, we cannot replace the con-
dition ∃Y.B |= a ≡ b with a ≈S b, recall that the resid-
ual K+(a) should contain all subconcepts that are still sat-
isfied by the copy ⟨⟨[a]S ,K⟩⟩ in the repair. If we would now
have the situation where the saturation ∃Y.B entails a ≡ b
but the repair seed S is chosen such that a ̸≈S b, and fur-
ther the nominal {b} is in AtomsR(T ,P), then with the re-
placed condition we would allow a copy ⟨⟨[a]S ,K⟩⟩ where
the repair type K does not contain {b}— but then the resid-
ual K+(a) could contain {b}, which means that the copy
⟨⟨[a]S ,K⟩⟩ would be identified with b, which is represented
by ⟨⟨[b]S ,S[b]S ⟩⟩. This could lead to undesired effects. The
proof of Lemma XXIV gives a more sophisticated answer.

The notion of saturatedness is closely connected to the no-
tion of a residual. Recall that we want each copy ⟨⟨[v]S ,L⟩⟩
to be an instance of all concepts in the residual L+(v). In
order to ensure this, we require above that each existential
restriction ∃R.C in L+(v) has a witness, which is an R-
successor ⟨⟨[w]S ,M⟩⟩ where C ∈ M+(w), and similarly
for each automaton concept ∃q.C in L+(v).

It is easy to see that each union of saturated sets is satu-
rated. We infer that there is a largest saturated set.
Definition XVII. The largest saturated set is denoted by
Ω(S), and we call its elements the admissible copies.

The set Ω(S) can be computed by starting with the whole
set in the above definition and then subsequently deleting
copies that violate the saturatedness condition. Repair seeds
should only assign repair types S[a]S to individuals a such
that the resulting copies ⟨⟨[a]S ,S[a]S ⟩⟩ are admissible.
Definition XVIII. Let S be a repair seed. We say that S is
admissible if it additionally satisfies the following condition:



(RS3) ⟨⟨[a]S ,S[a]S ⟩⟩ ∈ Ω(S) for each a ∈ ΣI.

This restriction ensures that instance relationships for ex-
istential restrictions in the residual remain satisfied in the re-
pair. Of course, a repair seed S is admissible iff there exists a
saturated set containing ⟨⟨[a]S ,S[a]S ⟩⟩ for each individual a.

Example XIX. Fix the TBox {B ⊑ {b}, ∃r.B ⊑ A}, the
empty RBox, the (saturated) qABox {A(a), r(a, b), B(b)},
and the repair request {B(b)}. There are no equalities in the
qABox and thus each equivalence class is a singleton. It
follows that the equivalence relation ≈S in a repair seed S
is the reflexive relation on {a, b}. A particular repair seed
is now obtained with the mappings S[a]S := ∅ and S[b]S :=
{B}. We are going to show that S is not admissible.

Consider the copy ⟨⟨[a]S ,S[a]S ⟩⟩; the residual S+
[a]S (a)

contains the atom ∃r.B. For each saturated subset Γ con-
taining ⟨⟨[a]S ,S[a]S ⟩⟩, there must thus be a copy ⟨⟨[b]S ,K⟩⟩
such that ⟨⟨[a]S ,S[a]S ⟩⟩ r−→ ⟨⟨[b]S ,K⟩⟩ and the residual K+(b)
contains B. (As b is the only r-successor of a, the copy
⟨⟨[a]S ,S[a]S ⟩⟩ cannot have other r-successors). Since the re-
pair type S[b]S contains B, its residual w.r.t. b cannot contain
B. Now consider another repair type K for b that satisfies the
condition in Definition XVI, i.e., it must contain the nominal
{b}. With Condition (RT2) it follows that K must also con-
tain B, and thus the residual K+(b) cannot contain B either.
So there does not exist a saturated subset Γ that contains
⟨⟨[a]S ,S[a]S ⟩⟩.

In contrast, the repair seed S ′ where S ′[a]S′ := {∃r.B}
and S ′[b]S′ := {B} is admissible.

Furthermore, if we exchange the CI B ⊑ {b} with
{b} ⊑ B, then there is no repair seed at all. In particular,
Condition (RS1) would enforce B ∈ S ′′[b]S′′ and so Condi-
tion (RT2) would further require {b} ∈ S ′′[b]S′′ , which con-
tradicts Condition (RS2).

Compared to the EL case in (Baader et al. 2021a), we
needed to impose further substantial conditions on the seeds
that induce the repairs. However, this is only a conserva-
tive extension: if the quantified ABox ∃X.A does not con-
tain equalities, the TBox T as well as the repair request P
are formulated in EL, and the RBox R is empty, then each
repair seed is admissible. The proof of the if direction of
Lemma XII in (Baader et al. 2021b) specifically shows that,
for each repair seed S , the set Ω(S) consists of all ⟨⟨[t]S ,K⟩⟩
where t is an object of ∃Y.B and K is a repair type for t.

3.3 Canonical Repairs
We are now ready to define the repairs induced by admis-
sible repair seeds. As in (Baader et al. 2021a), we call the
repairs obtained this way “canonical.” Recall that ∃Y.B de-
notes the saturation of ∃X.A w.r.t. the terminating terminol-
ogy (T ,R).

Definition XX. Let S be an admissible repair seed. The
canonical repair of ∃X.A for P w.r.t. (T ,R) induced by S
is defined as the qABox repT ,R(∃X.A,S) := ∃Z.C that is
constructed as follows:

(CR1) Add each admissible copy ⟨⟨[u]S ,K⟩⟩ ∈ Ω(S) to Z,
except if u is an individual and K = S[u]S .

(CR2) Add the concept assertion A(⟨⟨[u]S ,K⟩⟩) to C for
each ⟨⟨[u]S ,K⟩⟩ ∈ Ω(S) where B |= A(u) and A ̸∈ K.

(CR3) Add the role ass. r(⟨⟨[u]S ,K⟩⟩, ⟨⟨[v]S ,L⟩⟩) to C for all
⟨⟨[u]S ,K⟩⟩, ⟨⟨[v]S ,L⟩⟩ ∈ Ω(S) s.t. ⟨⟨[u]S ,K⟩⟩ r−→ ⟨⟨[v]S ,L⟩⟩.

(CR4) For each equivalence class [a]S where a ∈ ΣI,
• choose a representative a′ ∈ [a]S ,
• replace each occurrence of ⟨⟨[a]S ,S[a]S ⟩⟩ in C with a′,
• and add the equality assertion a′ ≡ b to C for each

individual b ∈ [a]S \ {a′}.
Afterwards, we treat ⟨⟨[a]S ,S[a]S ⟩⟩ and a′ as synonyms.

In the remainder of this section we are going to prove sev-
eral technical lemmas that hold for canonical repairs. There-
fore assume that S is an admissible repair seed and that
∃Z.C is the canonical repair of ∃X.A for P w.r.t. (T ,R)
induced by S . Further recall that ∃Y.B is the saturation of
∃X.A w.r.t. (T ,R).

We begin with proving some rather simple conse-
quences of the interplay between Instructions (CR2), (CR3),
and (CR4).

Lemma XXI. The following statements hold.

1. For each individual a and for each individual b, the fol-
lowing are equivalent:

(a) C |= a ≡ b

(b) C |= ⟨⟨[a]S ,S[a]S ⟩⟩ ≡ b

(c) ⟨⟨[a]S ,S[a]S ⟩⟩ ≡ b ∈ C or ⟨⟨[a]S ,S[a]S ⟩⟩ = b.
(d) a ≈S b

(e) a ≈∃Z.C b

2. For each concept name A and for each individual a, the
following are equivalent:

(a) C |= A(a)

(b) C |= A(⟨⟨[a]S ,S[a]S ⟩⟩)
(c) A(⟨⟨[a]S ,S[a]S ⟩⟩) ∈ C

3. For each role name r, for each individual a, and for each
individual b, the following are equivalent:

(a) C |= r(a, b)

(b) C |= r(⟨⟨[a]S ,S[a]S ⟩⟩, ⟨⟨[b]S ,S[b]S ⟩⟩)
(c) r(⟨⟨[a]S ,S[a]S ⟩⟩, ⟨⟨[b]S ,S[b]S ⟩⟩) ∈ C

Proof. 1. Statements 1a and 1b are equivalent since either
⟨⟨[a]S ,S[a]S ⟩⟩ equals a (namely if a was chosen as the rep-
resentative of [a]S in Instruction (CR4)) or the matrix C
contains the equality assertion ⟨⟨[a]S ,S[a]S ⟩⟩ ≡ a by In-
struction (CR4). Statements 1a and 1e are equivalent by
Corollary I. Furthermore, Statements 1b to 1d are equiva-
lent by Instruction (CR4).

2. Recall that either the chosen representative ⟨⟨[a]S ,S[a]S ⟩⟩
equals a or C contains ⟨⟨[a]S ,S[a]S ⟩⟩ ≡ a by Instruc-
tion (CR4). It follows that Statements 2a and 2b are equiv-
alent. It is further trivial that Statement 2c implies State-
ment 2b.
Now assume that the matrix C entails the concept asser-
tion A(⟨⟨[a]S ,S[a]S ⟩⟩). According to Corollary I there is
an object u′ of ∃Z.C such that ⟨⟨[a]S ,S[a]S ⟩⟩ ≈∃Z.C u′

and A(u′) ∈ C. The latter concept assertion A(u′) must



have been added to C by Instruction (CR2), i.e., u′ must
be of the form ⟨⟨[u]S ,K⟩⟩.
Since no variable can occur in an equality assertion,
⟨⟨[u]S ,K⟩⟩ must be a synonym of an individual. Due to
Instruction (CR4), the equivalence class of the represen-
tative ⟨⟨[a]S ,S[a]S ⟩⟩ does not contain other synonyms than
itself. We conclude that ⟨⟨[a]S ,S[a]S ⟩⟩ equals ⟨⟨[u]S ,K⟩⟩,
which yields that C contains A(⟨⟨[a]S ,S[a]S ⟩⟩).

3. The last claim can be proven in a similar manner as the
second claim.

Next, we show that each canonical repair is entailed by the
input qABox ∃X.A w.r.t. (T ,R). According to Theorem 5
it therefore suffices to prove that a homomorphism from the
canonical repair ∃Z.C to the saturation ∃Y.B exists.

Lemma XXII. Each mapping h where h(a) := a for each
individual name a ∈ ΣI and h(⟨⟨[u]S ,K⟩⟩) ∈ [u]∃Y.B for
each variable ⟨⟨[u]S ,K⟩⟩ ∈ Z is a homomorphism from
∃Z.C to ∃Y.B, and there is at least one such mapping.

Proof. Consider a mapping h as above. Since ≈S is a re-
finement of ≈∃Y.B, each equivalence class [u]S is a subset
of [u]∃Y.B and thus the choice of each value h(⟨⟨[u]S ,K⟩⟩)
is independent of the representative of [u]S , i.e., h is well-
defined. There is at least one such mapping as equivalence
classes are never empty.

(Hom1) Consider an individual a and an individual b where
a ≈∃Z.C b. According to Lemma XXI the equivalence
relations ≈∃Z.C and ≈S are equal on individuals, and so
we obtain a ≈S b. According to Definition 15, ≈S is a
refinement of ≈∃Y.B and thus a ≈∃Y.B b. Since h(a) = a
and h(b) = b, we conclude that h(a) ≈∃Y.B h(b).

(Hom2) By the very definition of h, it holds that h(a) = a
for each individual a.

(Hom3) Consider a concept assertion A(⟨⟨[u]S ,K⟩⟩) in C,
which can only have been created by Instruction (CR2).
It follows that B entails the concept assertion A(u) and
so Corollary I yields an object u′ ≈∃Y.B u such that
A(u′) ∈ B. With h(⟨⟨[u]S ,K⟩⟩) ∈ [u]∃Y.B we infer that
u′ ≈∃Y.B h(⟨⟨[u]S ,K⟩⟩).

(Hom4) Consider a role assertion r(⟨⟨[u]S ,K⟩⟩, ⟨⟨[v]S ,L⟩⟩)
in C, which can only have been introduced by Instruc-
tion (CR3). Due to Definition XI it follows that B en-
tails the role assertion r(u, v) and thus Corollary I yields
an object u′ ≈∃Y.B u as well as an object v′ ≈∃Y.B v
such that r(u′, v′) ∈ B. Since h(⟨⟨[u]S ,K⟩⟩) ∈ [u]∃Y.B
and h(⟨⟨[v]S ,K⟩⟩) ∈ [v]∃Y.B, we conclude that u′ ≈∃Y.B
h(⟨⟨[u]S ,K⟩⟩) and v′ ≈∃Y.B h(⟨⟨[v]S ,K⟩⟩).

The following lemma is key to proving correctness of the
repairs. Specifically, it shows that each copy ⟨⟨[u]S ,K⟩⟩ is no
instance of each atom in the repair type K.

Lemma XXIII. For each copy ⟨⟨[u]S ,K⟩⟩ ∈ Ω(S) and for
each atom C ∈ Atoms(T ,P)∪AtomsR(T ,P), it holds that
(C)R ∈ K implies C ̸|= C(⟨⟨[u]S ,K⟩⟩).

Proof. We show the claim by induction over C.

1. Consider a concept name A that is contained in K. By In-
struction (CR2) we obtain A(⟨⟨[u]S ,K⟩⟩) ̸∈ C. According
to Lemma XXI it follows that C ̸|= A(⟨⟨[u]S ,K⟩⟩).

2. Consider a nominal {a} that is contained in K. We start
with the case where ⟨⟨[u]S ,K⟩⟩ is no synonym of an indi-
vidual name, i.e., either u is a variable of ∃Y.B or the
repair type K is not equal to S[u]S . Since in Instruc-
tion (CR4) of Definition XX we only add to C equalities
involving individual names, C cannot entail ⟨⟨[u]S ,K⟩⟩ ≡
a. It follows that C ̸|= {a}(⟨⟨[u]S ,K⟩⟩).
In the remaining case, assume that ⟨⟨[u]S ,K⟩⟩ is a syn-
onym of the individual name b and thus u must be an
individual such that u ≈S b and the repair type K must
be equal to S[u]S , cf. Instruction (CR4). It follows that
{a} ∈ S[b]S and so Condition (RS2) in Definition 15
yields a ̸≈S b. We infer with Lemma XXI that the equal-
ity a ≡ b is not entailed by C, and so we conclude that
C ̸|= {a}(⟨⟨[u]S ,K⟩⟩).

3. Consider an existential restriction ∃R.C such that
(∃R.C)R = ∃iR.C is contained in K. We need to prove
that C does not entail ∃R.C(⟨⟨[u]S ,K⟩⟩). According to
Corollary I, it suffices to show that, for each role assertion
in C with the role R where the object in first position is
equivalent to ⟨⟨[u]S ,K⟩⟩, the object in second position is no
instance of the filler C. Due to Instruction (CR3), the ob-
jects in both positions can only be in Ω(S). Furthermore,
within its equivalence class ⟨⟨[u]S ,K⟩⟩ is the only element
in Ω(S). We thus need to consider only ⟨⟨[u]S ,K⟩⟩ in first
position.
So, let R(⟨⟨[u]S ,K⟩⟩, ⟨⟨[v]S ,L⟩⟩) be a role assertion in C,
i.e., ⟨⟨[u]S ,K⟩⟩ R−→ ⟨⟨[v]S ,L⟩⟩ holds by Instruction (CR3).
We will show that C does not entail C(⟨⟨[v]S ,L⟩⟩).
Since R ⊑R R, there is a transition (iR, R, f) towards
a final state f . By Condition (RA3) or (RA5) in Defi-
nition XI (depending on whether R is an inverse role or
not) it follows that ConjR(C) ∩ L ̸= ∅, i.e., there is a
top-level conjunct D of C where (D)R ∈ L. As the role
depth of D is smaller than the role depth of C, we can
apply the induction hypothesis and so obtain that C does
not entail D(⟨⟨[v]S ,L⟩⟩). It follows that C cannot entail
C(⟨⟨[v]S ,L⟩⟩) either.

4. Last, consider an automaton concept ∃q.C in K. We show
that C ̸|= ∃R1. · · · ∃Rn.C(⟨⟨[u]S ,K⟩⟩) for each word
R1 · · ·Rn ∈ L(AR(q)). Consider such a word; there are
transitions (q0, R1, q1), (q1, R2, q2), . . . , (qn−1, Rn, qn)
where q0 = q and qn is final. If there is no copy ⟨⟨[v]S ,L⟩⟩
where ⟨⟨[u]S ,K⟩⟩ R1−−→ · · · Rn−−→ ⟨⟨[v]S ,L⟩⟩, then the entail-
ment can obviously not hold, cf. Corollary I. Otherwise, it
is a finger exercise to show by induction and using Defi-
nition XI that either B ̸|= C(v) or ConjR(C) ∩ L ̸= ∅
must hold. By Lemma XXII the former implies C ̸|=
C(⟨⟨[v]S ,L⟩⟩), and by induction hypothesis the latter im-
plies C ̸|= C(⟨⟨[v]S ,L⟩⟩) as well.

Next, we prove that the residual of each copy consists ex-
actly of those subconcepts the copy is an instance of w.r.t. the
canonical repair. It will be used to show that each canonical
repair is already saturated w.r.t. the concept inclusions in T .



Lemma XXIV. For each copy ⟨⟨[u]S ,K⟩⟩ ∈ Ω(S) and for
each concept description D ∈ Sub(T ,P)∪AtomsR(T ,P),
it holds that D ∈ K+(u) iff C |= D(⟨⟨[u]S ,K⟩⟩).

Proof. We first show the only-if direction. Therefore con-
sider an admissible copy ⟨⟨[u]S ,K⟩⟩ and a concept D con-
tained in the residual K+(u). Recall from Definition XIII
that the latter implies B |= D(u) and D ̸⊑T ,R C for each
C ∈ K. We prove C |= D(⟨⟨[u]S ,K⟩⟩) by induction over D.

• The case D = ⊤ is trivial.
• Let D = A be a concept name. It follows that B en-

tails the assertion A(u), and further that K does not con-
tain A (otherwise we get the immediate contradiction
D ⊑T ,R A ∈ K). According to Instruction (CR2), the
matrix C contains the concept assertion A(⟨⟨[u]S ,K⟩⟩) and
so it must also be entailed.

• Assume that D = {a} is a nominal. We conclude that
B entails the equality u ≡ a, and that K does not con-
tain {a}. Since no variables occur in equalities, u must
be an individual. Since ⟨⟨[u]S ,K⟩⟩ is an admissible copy,
it follows from Definition XVI that either K = S[u]S or
{b} ∈ K for each nominal {b} ∈ Atoms(T ,P) where
∃Y.B |= u ≡ b. So {a} ̸∈ K implies K = S[u]S .
It further follows that {a} ̸∈ S[u]S , i.e., a ≈S u by
Condition (RS2) of Definition 15. An application of
Lemma XXI shows that C |= a ≡ u. Furthermore,
C contains the equality assertion ⟨⟨[u]S ,K⟩⟩ ≡ u by In-
struction (CR4) or ⟨⟨[u]S ,K⟩⟩ equals u (i.e., u is the cho-
sen representative of [u]S ). We conclude that C entails
a ≡ ⟨⟨[u]S ,K⟩⟩, i.e., C |= {a}(⟨⟨[u]S ,K⟩⟩).

• If D is a conjunction, then the claim easily follows by an
application of the induction hypothesis for each top-level
conjunct of D.

• Consider an existential restriction D = ∃R.E in the
residual K+(u). According to Definition XVI there is
some admissible copy ⟨⟨[v]S ,L⟩⟩ ∈ Ω(S) such that E ∈
L+(v) and ⟨⟨[u]S ,K⟩⟩ R−→ ⟨⟨[v]S ,L⟩⟩. From the former we
infer by an application of the induction hypothesis that C
entails E(⟨⟨[v]S ,L⟩⟩), and the latter implies that C con-
tains the role assertion R(⟨⟨[u]S ,K⟩⟩, ⟨⟨[v]S ,L⟩⟩), cf. In-
struction (CR3) in Definition XX. We conclude that C en-
tails ∃R.E(⟨⟨[u]S ,K⟩⟩).

• Last, assume that D = ∃q.E is an automaton concept
in the residual K+(u). Definition XVI implies that there
is a word R1 · · ·Rn ∈ L(AR(q)) and there is an ad-
missible copy ⟨⟨[v]S ,L⟩⟩ ∈ Ω(S) where E ∈ L+(v)
and ⟨⟨[u]S ,K⟩⟩ R1−−→ · · · Rn−−→ ⟨⟨[v]S ,L⟩⟩. By induc-
tion hypothesis the former implies C |= E(⟨⟨[v]S ,L⟩⟩),
and the latter means that the matrix C contains an
R1 · · ·Rn-chain of role assertions from ⟨⟨[u]S ,K⟩⟩ to
⟨⟨[v]S ,L⟩⟩. From this we infer with Corollary I that C |=
∃R1. · · · ∃Rn.E(⟨⟨[u]S ,K⟩⟩), and finally Lemma 7 yields
that C |= ∃q.E(⟨⟨[u]S ,K⟩⟩).

It remains to prove the if direction. First of all, C |=
D(⟨⟨[u]S ,K⟩⟩) implies B |= D(u) by Lemmas II and XXII,
and additionally by Lemma 7 if D is an automaton concept.

Now assume that D were not in the residual K+(u), i.e., ac-
cording to Definition XIII there would be some atom C ∈ K
such that D ⊑T ,R C. By Condition (RT2) in Definition 14 it
would follow that ConjR(D) ∩ K ̸= ∅. Then Lemma XXIII
would yield the contradiction that C ̸|= D(⟨⟨[u]S ,K⟩⟩).  

After the two structural lemmas our next steps will be to
prove that, firstly, each canonical repair is saturated w.r.t. T
and, secondly, each canonical repair is saturated w.r.t. R.

Lemma XXV. The concept inclusion rule from Figure 1 is
not applicable to ∃Z.C.

Proof. Consider a concept inclusion C ⊑ D in T as well as
an object name ⟨⟨[u]S ,K⟩⟩ of ∃Z.C. Assume that C entails
C(⟨⟨[u]S ,K⟩⟩). Then Lemma XXIV yields that the residual
K+(u) contains C. Since T contains C ⊑ D, Lemma XV
implies that the residual K+(u) contains D as well. An ap-
plication of Lemma XXIV yields that C |= D(⟨⟨[u]S ,K⟩⟩),
i.e., the concept inclusion rule is not applicable to ⟨⟨[u]S ,K⟩⟩
for C ⊑ D.

The concept inclusion rule is also not applicable to an in-
dividual name a since otherwise it would be applicable to
the admissible copy ⟨⟨[a]S ,S[a]S ⟩⟩.
Lemma XXVI. The role inclusion rule from Figure 1 is not
applicable to ∃Z.C.

Proof. Consider a role inclusion S1 ◦ · · · ◦ Sn ⊑ R in
the RBox R, and further let ⟨⟨[u0]S ,K0⟩⟩ S1−→ ⟨⟨[u1]S ,K1⟩⟩,
. . . , ⟨⟨[un−1]S ,Kn−1⟩⟩ Sn−−→ ⟨⟨[un]S ,Kn⟩⟩. We show that
⟨⟨[u0]S ,K0⟩⟩ R−→ ⟨⟨[un]S ,Kn⟩⟩. We consider the case where
R is a role name, otherwise the proof of Condition (RA2)
becomes the proof of Condition (RA4) and vice versa, and
accordingly for Conditions (RA3) and (RA5).

(RA1) We infer from the assumption that the saturation
∃Y.B must entail the role assertion Si(ui−1, ui) for each
index i ∈ {1, . . . , n}, cf. Instruction (CR3) and Defini-
tion XI. It follows that ∃Y.B entails the role assertion
R(u0, un) since it is R-saturated.

(RA2) Consider an existential restriction ∃q0.C ∈ K0 as
well as a transition (q0, R, p) where B |= ∃p.C(un). We
must prove that there is a state p′ such that p ≤ p′ and
∃p′.C ∈ Kn.

1. Specifically, let T be a role such that p ∈ QT . Since
the finite automaton AT does not contain unreachable
states, there must be some word x such that AT reaches
q0 from its initial state iT when reading x. Further-
more, as AT does not contain dead states, there must
be some word y such that AT reaches one of its final
states from p when reading y. We conclude that AT

accepts the word xRy, and thus R entails xRy ⊑ T .
Since R contains the role inclusion S1 ◦ · · · ◦ Sn ⊑ R,
it follows that R entails xS1 · · ·Sny ⊑ T .
Due to determinacy of AT , the accepting run for
xS1 · · ·Sny must reach q0 from iT after read-
ing the prefix x, and we have S1 · · ·Sny ∈
L(AR(q0)). So there must be (unique) transitions
(q0, S1, p

0
1), (p01, S2, p

0
2), . . . , (p0n−1, Sn, p

0
n), where

y ∈ L(AR(p
0
n)). Due to determinacy this holds for



all y, and so we have L(AR(p)) ⊆ L(AR(p
0
n)), i.e.,

p ≤ p0n.
With Lemma VII we infer from B |= ∃p.C(un)
that B |= ∃p0n.C(un). By induction it follows
that B |= ∃p01.C(u1), namely due to the transitions
(p01, S2, p

0
2), . . . , (p0n−1, Sn, p

0
n) and the role assertions

S2(u1, u2), . . . , Sn(un−1, un).
From ⟨⟨[u0]S ,K0⟩⟩ S1−→ ⟨⟨[u1]S ,K1⟩⟩, ∃q0.C ∈ K0, the
transition (q0, S1, p

0
1), and B |= ∃p01.C(u1), we infer

with Condition (RA2) or (RA4) in Definition XI (de-
pending on whether S1 is a role name or an inverse
role) that there is some state q1 such that p01 ≤ q1 and
∃q1.C ∈ K1.

2. We continue with an induction over i ∈ {1, . . . , n}, for
which the induction base is above. The whole induction
is visualized in Figure 2.
Since pi−1i ≤ qi, we infer that the role lan-
guage {Si+1 · · ·Sn} ◦ L(AR(p

i−1
n )) is a subset of

L(AR(qi)). Due to determinacy of AR, there are
transitions (qi, Si+1, p

i
i+1), (pii+1, Si+2, p

i
i+2), . . . ,

(pin−1, Sn, p
i
n) such that L(AR(pi−1n )) ⊆ L(AR(p

i
n)),

i.e., where pi−1n ≤ pin.
With Lemma VII we infer from B |= ∃pi−1n .C(un)
that B |= ∃pin.C(un). By induction it follows
that B |= ∃pii+1.C(ui+1), using the transitions
(pii+1, Si+2, p

i
i+2), . . . , (pin−1, Sn, p

i
n) and the role as-

sertions Si+2(ui+1, ui+2), . . . , Sn(un−1, un).
From ⟨⟨[ui]S ,Ki⟩⟩ Si+1−−−→ ⟨⟨[ui+1]S ,Ki+1⟩⟩, ∃qi.C ∈
Ki, the transition (qi, Si+1, p

i
i+1), and B |=

∃pii+1.C(ui+1), we infer from Condition (RA2)
or (RA4) in Definition XI (depending on whether Si+1

is a role name or an inverse role) that there is some state
qi+1 such that pii+1 ≤ qi+1 and ∃qi+1.C ∈ Ki+1.

3. Specifically, Kn contains ∃qn.C. Furthermore, it holds
that p ≤ p0n ≤ p1n ≤ · · · ≤ pn−1n ≤ qn and so we are
done.

(RA3) Consider an existential restriction ∃q0.C ∈ K0 as
well as a transition (q0, R, f) where f is a final state and
B |= C(un). We need to show that ConjR(C) ∩ Kn ̸= ∅.
From the assumption we get that R ∈ L(AR(q0)).
Similarly as above we conclude that S1 · · ·Sn ∈
L(AR(q0)), and we can find a sequence of states
q1, . . . , qn and p1, . . . , pn such that (qi−1, Si, pi) is a tran-
sition, and Si+1 · · ·Sn ∈ L(AR(pi)), and pi ≤ qi, and
∃qi.C ∈ Ki for each index i. In particular, we have
∃qn−1.C ∈ Kn−1, and (qn−1, Sn, pn) is a transition, and
ε ∈ L(AR(pn)). The latter implies that pn must be a final
state. By means of Condition (RA3) or (RA5) in Defini-
tion XI (depending on whether R is a role name or an in-
verse role) it follows that ConjR(C)∩Kn ̸= ∅ as needed.

(RA4), (RA5) The remaining two conditions can be proved
similarly.

We close this section with our first proposition, namely
that each canonical repair is in fact a repair.
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Figure 2: The induction that yields a state qn such that p ≤ qn and
∃qn.C ∈ Kn

Proposition XXVII. For each admissible repair seed S , the
canonical repair induced by S is a repair of ∃X.A for P
w.r.t. (T ,R).

Proof. Let ∃Z.C be the canonical repair induced by an ad-
missible repair seed S . We are going to verify that it satisfies
the three conditions in Definition 8.

(Rep1) We infer ∃Y.B |= ∃Z.C from Lemma XXII
and Proposition 2. Thus, Theorem 5 yields that
∃X.A |=T ,R ∃Z.C.

(Rep2) Consider an unwanted concept assertion C(a) ∈
Ploc. We need to show that ∃Z.C ̸|=T ,R C(a). According
to Lemmas XXV and XXVI neither the concept inclusion
rule nor the role inclusion rule from Figure 1 is applicable
to the canonical repair ∃Z.C, i.e., it equals its saturation
w.r.t. T and R. By Theorem 5 it thus suffices to prove
that ∃Z.C ̸|= C(a).
If B ̸|= C(a), then C ̸|= C(a) by Lemma XXII. Other-
wise, assume B |= C(a). By Condition (RS1) in Def-
inition 15 we have ConjR(C) ∩ S[a]S ̸= ∅. Thus
Lemma XXIII yields that C ̸|= C(⟨⟨[a]S ,S[a]S ⟩⟩). If in In-
struction (CR4) we chose a as the representative of [a]S ,
then a and ⟨⟨[a]S ,S[a]S ⟩⟩ are synonyms and it thus follows
that C ̸|= C(a). Otherwise, C contains the equality asser-
tion ⟨⟨[a]S ,S[a]S ⟩⟩ ≡ a and we conclude that C ̸|= C(a).

(Rep3) Let C ∈ Pglo; we must show that ∃Z.C ̸|=T ,R

∃{x}.{C(x)}. Similarly as above, it suffices to prove that
∃Z.C ̸|= ∃{x}.{C(x)}. According to Proposition 2, this
is satisfied if no object of ∃Z.C is an instance of C.
Consider an admissible copy ⟨⟨[u]S ,K⟩⟩, i.e., K is a repair
type for u. If B ̸|= C(u), then Lemma XXII implies that
C ̸|= C(⟨⟨[u]S ,K⟩⟩). Otherwise, due to Condition (RT3)
it holds that ConjR(C) ∩ K ̸= ∅, and so Lemma XXIII
yields that C ̸|= C(⟨⟨[u]S ,K⟩⟩).



Finally, also no individual b can be an instance of C as
otherwise the admissible copy ⟨⟨[b]S ,S[b]S ⟩⟩ would be an
instance of C, which contradicts the above.

3.4 Proof of Completeness
Our second proposition formulates completeness of the
canonical repairs in the sense that each repair is entailed by
a canonical one. A brief summary of the proof is as fol-
lows. Assume that ∃W.D is a repair of ∃X.A for P w.r.t.
(T ,R), which is w.l.o.g. saturated. So there is a homomor-
phism h from ∃W.D to the saturation of ∃X.A. For each
object name t of ∃W.D, we define a set F(t) that consists
of all atoms of which t is no instance w.r.t. (the matrix of)
the repair ∃W.D but of which h(t) is an instance w.r.t. (the
matrix of) the saturation of ∃X.A, and then we show that
F(t) is a repair type for h(t). An admissible repair seed
S is then obtained by defining its equivalence relation by
a ≈S b iff a ≈∃W.D b, and by defining S[a]S as F(a) for
each individual name a. Finally, we prove that the mapping
t 7→ ⟨⟨[h(t)]S ,F(t)⟩⟩ is a homomorphism from the repair
∃W.D to the canonical repair induced by S .

In principle, this means that we gather together objects of
the repair ∃W.D that are mapped by h to the same object and
that do not satisfy the same atoms. However, we obtain the
canonical repair not by filtration of ∃W.D, but it is instead
directly constructed from the saturation of ∃X.A and the
admissible repair seed S as per Definitions XI and XX.

Within the below completeness proof we need the next
lemma, which shows that each atom E and its correspond-
ing R-extended atom (E)R have the same instances in the
saturation ∃Y.B of ∃X.A.

Lemma XXVIII. Let ∃Y.B be saturated w.r.t. (T ,R). For
each atom E ∈ Atoms(T ,P)∪AtomsR(T ,P) and for each
object t of ∃Y.B, it holds that B |= E(t) iff B |= (E)R(t).

Proof. The claim is trivial if E is a concept name, a nom-
inal, or an automaton concept. For an existential restric-
tion it follows from Lemma VI since ∃Y.B is saturated w.r.t.
(T ,R).

Proposition XXIX. Each repair is entailed by a canoni-
cal repair. Specifically, for each repair ∃W.D of ∃X.A
for P w.r.t. (T ,R), there is an admissible repair seed S such
that the induced canonical repair repT ,R(∃X.A,S) entails
∃W.D.

Proof. Consider a repair ∃W ′.D′ of ∃X.A. Further let
∃W.D be the saturation of ∃W ′.D′. We are going to
show that there exists an admissible repair seed S such
that repT ,R(∃X.A,S) entails ∃W.D. Since ∃W.D entails
∃W ′.D′, it then follows that repT ,R(∃X.A,S) also entails
∃W ′.D′ as claimed.

Since ∃W ′.D′ is a repair, it holds that ∃X.A |=T ,R

∃W ′.D′. Furthermore, we infer with Theorem 5 that
∃W ′.D′ |=T ,R ∃W.D. It follows that ∃X.A |=T ,R

∃W.D. Recall that ∃Y.B is the saturation of ∃X.A and thus
Theorem 5 yields that ∃Y.B |= ∃W.D. With an application
of Proposition 2 we infer that there exists a homomorphism
h from ∃W.D to ∃Y.B.

We subdivide the remainder of the proof into three steps,
indicated with bold roman numbers.

I. For each object name t of ∃W.D, we define

F(t) :=

{
C

∣∣∣∣ C ∈ AtomsR(T ,P), D ̸|= C(t),

and B |= C(h(t))

}
.

We verify that each F(t) is a repair type for h(t), by check-
ing the three conditions in Definition 14.

(RT1) We already have by definition that B |= C(h(t)) for
each atom C ∈ F(t).

(RT2) Let C ∈ F(t) and D ∈ Sub(T ,P)∪AtomsR(T ,P)
where D ⊑T ,R C and B |= D(h(t)). From C ∈ F(t)
we infer that D ̸|= C(t). Since ∃W.D is saturated w.r.t.
(T ,R), it follows that D ̸|=T ,R C(t). Thus D ⊑T ,R C
implies that D ̸|=T ,R D(t).
It follows that D ̸|= D(t) and so there is a top-level con-
junct E ∈ Conj(D) such that D ̸|= E(t). According to
Lemma XXVIII we obtain that D ̸|= (E)R(t).
Of course, B must entail E(h(t)). Thus Lemma XXVIII
yields that B |= (E)R(h(t)). Summing up, we can con-
clude that F(t) contains (E)R.

(RT3) Consider a concept C ∈ Pglo where B |= C(h(t)).
Since ∃W.D satisfies Condition (Rep3) in Definition 8, it
follows that D ̸|= C(t). So there is a top-level conjunct
D ∈ Conj(C) such that D ̸|= D(t). Lemma XXVIII
yields that D ̸|= (D)R(t), and Lemma XXVIII implies
that B |= (D)R(h(t)). We conclude that F(t) contains
(D)R.

II. Next, we show that S is an admissible repair seed,
where ≈S is defined as the binary relation { (a, b) | a, b ∈
ΣI and a ≈∃W.D b } ∪ { (x, x) | x ∈ Y } on Obj(∃Y.B),
and where S[a]S := F(a) for each individual a. We do so by
verifying the conditions in Definitions 15 and XVIII.

Since ≈∃W.D is an equivalence relation, it follows that
also ≈S is one. We must show that ≈S is a refinement of
≈∃Y.B. Therefore let a ≈S b, i.e., a ≈∃W.D b by definition
of ≈S and so ∃W.D |= a ≡ b by Corollary I. Since ∃Y.B |=
∃W.D, it follows that ∃Y.B |= a ≡ b and thus a ≈∃Y.B b
by Corollary I.

We further prove that the mapping S is well-defined. As-
sume a ≈S b. Then both ∃W.D and ∃Y.B entail the equal-
ity a ≡ b. Condition (Hom2) in Definition 1 further yields
h(a) = a and h(b) = b. It follows that F(a) = F(b).

(RS1) Let C(a) ∈ Ploc where B |= C(a). Since ∃W.D is
a repair, it holds that D ̸|=T ,R C(a). We infer that D ̸|=
C(a). So there must be a top-level conjunct E ∈ Conj(C)
such that D ̸|= E(a). An application of Lemma XXVIII
yields that D ̸|= (E)R(a).
From B |= C(a) we infer by means of Lemma XXVIII
that B |= (E)R(a). We conclude that F(a) contains
(E)R, and so ConjR(C) ∩ S[a]S is not empty.

(RS2) Recall that we must show the following: for each in-
dividual a such that {a} ∈ Atoms(T ,P) and for each



individual b, it holds that {a} ∈ S[b]S iff a ≈∃Y.B b but
a ̸≈S b.

{a} ∈ S[b]S

iff {a} ∈ F(b)

iff D ̸|= {a}(b) and B |= {a}(h(b))
iff D ̸|= {a}(b) and B |= {a}(b)
iff D ̸|= a ≡ b and B |= a ≡ b

iff a ̸≈∃W.D b and a ≈∃Y.B b

iff a ̸≈S b and a ≈∃Y.B b

The statements are equivalent since S[b]S = F(b), by def-
inition of F , by Condition (Hom2) (i.e., h(b) = b), since
the concept assertion {a}(b) is equivalent to the equality
assertion a ≡ b, by Corollary I, and finally by definition
of ≈S .

(RS3) Consider the set
Γ := { ⟨⟨[h(t)]S ,F(t)⟩⟩ | t is an object name of ∃W.D }.
First of all, we prove that Γ is a subset of the whole
set defined in Definition XVI. This is obvious for pairs
⟨⟨[h(a)]S ,F(a)⟩⟩ for individuals a as well as for pairs
⟨⟨[h(t)]S ,F(t)⟩⟩ where h(t) is a variable, since no special
restrictions are then imposed in Definition XVI. Now, let
⟨⟨[h(t)]S ,F(t)⟩⟩ ∈ Γ where h(t) = a is an individual, and
F(t) ̸= S[a]S . We must show that F(t) contains each
nominal {b} in AtomsR(T ,P) where ∃Y.B |= a ≡ b.
Since we have defined the repair seed S by S[a]S := F(a),
it follows that t ̸= a. By Condition (Hom2), t must be a
variable. Since qABoxes do not contain equalities involv-
ing variables, we infer that D ̸|= {b}(t). Furthermore,
∃Y.B |= a ≡ b implies B |= {b}(h(t)), and so F(t)
contains {b}.
As next step, we are going to prove that Γ is saturated,
cf. Definition XVI. For this purpose, we first prove the
following three statements:
(α) If t ≈∃W.D t′, then ⟨⟨[h(t)]S ,F(t)⟩⟩ =
⟨⟨[h(t′)]S ,F(t′)⟩⟩.
If t is a variable, then t ≈∃W.D t′ implies t = t′ as no
variables can occur in equalities. Then h(t) = h(t′)
and F(t) = F(t′).
Otherwise, t as well as t′ must be an individual, which
implies h(t) = t and h(t′) = t′ by Condition (Hom2)
and we further infer from t ≈∃W.D t′ that t ≈S t′,
i.e., h(t) ≈S h(t′). Furthermore, t ≈∃W.D t′ im-
plies h(t) ≈∃Y.B h(t′) by Condition (Hom1), and thus
F(t) = F(t′).

(β) If D contains the role assertion R(t, u), then
⟨⟨[h(t)]S ,F(t)⟩⟩ R−→ ⟨⟨[h(u)]S ,F(u)⟩⟩.
We only treat the case where R is a role name. If R is an
inverse role instead, then we can simply swap the proof
of Condition (RA2) and the proof of Condition (RA4),
and likewise for Conditions (RA3) and (RA5).
(RA1) By Condition (Hom4), the assumption
R(t, u) ∈ D implies that there are object names
v, w such that v ≈∃Y.B h(t), w ≈∃Y.B h(u), and
R(v, w) ∈ B. Corollary I yields that B entails
R(h(t), h(u)).

(RA2) Now let ∃q.D ∈ F(t) and consider a transition
(q,R, p) where B |= ∃p.D(h(u)). We need to show
that there is a state p′ such that p ≤ p′ and ∃p′.D ∈
F(u).
From ∃q.D ∈ F(t) it follows that D ̸|= ∃q.D(t).
Recall that D contains the role assertion R(t, u).
Due to the transition (q,R, p), we infer that D ̸|=
∃p.D(u). We conclude that ∃p.D is in the repair
type F(u).

(RA3) Now let ∃q.D ∈ F(t) and consider a transition
(q,R, f) where f is a final state and B |= D(h(u)).
We need to show that ConjR(D) ∩ F(u) ̸= ∅.
From ∃q.D ∈ F(t) it follows that D ̸|= ∃q.D(t).
Recall that D contains the role assertion R(t, u).
Due to the transition (q,R, f) where f is final, we
infer that D ̸|= D(u). It follows that there must
exist a top-level conjunct E ∈ Conj(D) such that
D ̸|= E(u). By Lemma XXVIII we infer that
D ̸|= (E)R(u), where (E)R ∈ ConjR(D). Since
B |= D(h(u)), it follows that by Lemma XXVIII
that B |= (E)R(h(u)). Summing up, we conclude
that (E)R is in the repair type F(u).

(RA4), (RA5) The other two conditions that treat ex-
istential restrictions ∃q.D ∈ F(u) and transitions
(q,R−, p) can be proved similarly.

(γ) If D |= C(u) where C ∈ Sub(T ,P), then C ∈
F(u)+(h(u)).

Using the homomorphism h, we conclude that B |=
C(h(u)) by Lemma II. Now consider an atom D ∈
F(u); we must show that C ̸⊑T ,R D. Assuming
the contrary would yield that D |=T ,R D(u), and
with ∃W.D being (T ,R)-saturated we could infer that
D |= D(u)— a contradiction since D ∈ F(u) implies
the contrary.

We now verify that the conditions in Definition XVI are
fulfilled.

(S1) Consider a copy ⟨⟨[h(t)]S ,F(t)⟩⟩ in Γ and let ∃R.C
be in the residual F(t)+(h(t))— we need to show
that there is a copy ⟨⟨[h(u)]S ,F(u)⟩⟩ in Γ such that
⟨⟨[h(t)]S ,F(t)⟩⟩ R−→ ⟨⟨[h(u)]S ,F(u)⟩⟩ and the residual
F(u)+(h(u)) contains C.
We first show that D |= ∃R.C(t). Assume the
contrary. Then Lemma XXVIII would imply D ̸|=
∃iR.C(t). Furthermore, we could infer from ∃R.C ∈
F(t)+(h(t)) that B |= ∃R.C(h(t)) and ∃R.C ̸⊑T ,R

D for each D ∈ F(t), and the former would im-
ply B |= ∃iR.C(h(t)) by Lemma XXVIII. It would
follow that the repair type F(t) contains the atom
∃iR.C, which would produce a contradiction since
∃R.C ⊑T ,R ∃iR.C.
According to Corollary I, we can now infer that there is
an object t′ and there is an object u where t ≈∃W.D t′

and R(t′, u) ∈ D and D |= C(u). Statement α yields
⟨⟨[h(t)]S ,F(t)⟩⟩ = ⟨⟨[h(t′)]S ,F(t′)⟩⟩, Statement β
shows that ⟨⟨[h(t′)]S ,F(t′)⟩⟩ R−→ ⟨⟨[h(u)]S ,F(u)⟩⟩, and
Statement γ yields that the residual F(u)+(h(u)) con-
tains C.



(S2) Now consider a copy ⟨⟨[h(t)]S ,F(t)⟩⟩ in Γ and an
automaton concept ∃q.C in the residual F(t)+(h(t)).
We must show that there is a copy ⟨⟨[h(u)]S ,F(u)⟩⟩
in Γ and a word R1 · · ·Rn ∈ L(AR(q)) such that
⟨⟨[h(t)]S ,F(t)⟩⟩ R1−−→ · · · Rn−−→ ⟨⟨[h(u)]S ,F(u)⟩⟩ and
C ∈ F(u)+(h(u)).
Since ∃q.C is in the residual F(t)+(h(t)), it follows
that B |= ∃q.C(h(t)) and also that ∃q.C is not in the
repair type F(t). We infer that D |= ∃q.C(t).
According to Lemma 7 there is a role word R1 · · ·Rn ∈
L(AR(q)) with D |= ∃R1. · · · ∃Rn.C(t). Corollary I
further yields role assertions R1(t0, u1), R2(t1, u2),
. . . , Rn(tn−1, un) in D such that

• t ≈∃W.D t0,
• ti ≈∃W.D ui for each index i ∈ {1, . . . , n− 1},
• and D |= C(un).
With Statements α, β, and γ we obtain that

• ⟨⟨[h(t)]S ,F(t)⟩⟩ = ⟨⟨[h(t0)]S ,F(t0)⟩⟩,
• ⟨⟨[h(ti)]S ,F(ti)⟩⟩ = ⟨⟨[h(ui)]S ,F(ui)⟩⟩ for each i ∈
{1, . . . , n− 1},

• ⟨⟨[h(ti−1)]S ,F(ti−1)⟩⟩ Ri−−→ ⟨⟨[h(ui)]S ,F(ui)⟩⟩ for
each i ∈ {1, . . . , n},

• and C ∈ F(un)
+(h(un)).

With defining u := un, the claim follows.
Since Γ is saturated, it is a subset of Ω(S). Furthermore,
Γ contains ⟨⟨[a]S ,S[a]S ⟩⟩ = ⟨⟨[h(a)]S ,F(a)⟩⟩ for each in-
dividual a, and so S is admissible.

III. It remains to show that there is a homomorphism from
∃W.D to the canonical repair induced by S , which we
denote by ∃Z.C. We are going to verify that the map-
ping k where k(a) := a for each individual a and k(x) :=
⟨⟨[h(x)]S ,F(x)⟩⟩ for each variable x is a homomorphism.

(Hom1) Consider an individual a and an individual b where
a ≈∃W.D b. We need to prove that k(a) ≈∃Z.C k(b).
The precondition a ≈∃W.D b implies a ≈S b and thus
a ≈∃Z.C b by Lemma XXI. Due to k(a) = a and k(b) =
b, we conclude that k(a) ≈∃Z.C k(b).

(Hom2) We already have by definition that k(a) = a for
each individual a.

(Hom3) Consider a concept assertion A(t) in D. By Con-
dition (Hom3) there is an object v such that v ≈∃Y.B h(t)
and B contains A(v), i.e., B entails A(h(t)). Furthermore,
D entails A(t), and so the repair type F(t) cannot con-
tain A by the very definition of F . We infer that the ma-
trix C contains the concept assertion A(⟨⟨[h(t)]S ,F(t)⟩⟩),
cf. Instruction (CR2).

(Hom4) Last, assume that r(t, u) is a role assertion
in D. Statement β shows that ⟨⟨[h(t)]S ,F(t)⟩⟩ r−→
⟨⟨[h(u)]S ,F(u)⟩⟩. Due to Instruction (CR3) in Defini-
tion XX it follows that the matrix C contains the role as-
sertion r(⟨⟨[h(t)]S ,F(t)⟩⟩, ⟨⟨[h(u)]S ,F(u)⟩⟩).

The next theorem summarizes our results in Lem-
mas XXV and XXVI and Propositions XXVII and XXIX.

Theorem 16. For every admissible repair seed S , the in-
duced canonical repair repT ,R(∃X.A,S) can effectively
be computed, is saturated w.r.t. (T ,R), and is a repair
of ∃X.A for P w.r.t. (T ,R). Conversely, every repair of
∃X.A for P w.r.t. (T ,R) is entailed by such a canonical
repair.

As an easy consequence of this theorem we obtain that
the set of canonical repairs induced by the admissible re-
pair seeds contains (up to equivalence) every optimal re-
pair. Since all admissible repair seeds can effectively be
generated, Theorem 12 can also be obtained as a corol-
lary to this theorem. Even in the case without a terminol-
ogy, not all canonical repairs need to be optimal (Baader et
al. 2020), but we expect even the non-optimal ones to be
quite good w.r.t. preserving consequences. One advantage
of canonical repairs is that each one can be characterized
by a polynomial-size repair seed, which can be generated
by the knowledge engineers by making a polynomial num-
ber of decisions based on their domain knowledge. Another
advantage is that the optimized approach for generating a
canonical repair from a repair seed introduced in (Baader et
al. 2021a) for EL can be extended to ELROI . More de-
tails on these advantages can be found in the following two
sections.

Finally note that, if the input qABox does not contain in-
dividual names and the terminology alone does not imply
any of the unwanted consequences in the repair request, then
there is exactly one repair seed, namely where the equiva-
lence relation ≈S equals ≈∃Y.B and where each repair type
S[a]S is empty, and thus there is a unique optimal repair.

Alternative proof of Theorem 12. Proposition XXIX shows
that each repair is entailed by a canonical repair, and Propo-
sition XXVII shows that each canonical repair is in fact a
repair as per Definition 8. Since only finitely many repair
seeds exist, there are only finitely many canonical repairs.
Now let R be the set of all canonical repairs that are not
strictly entailed by another canonical repair. It then follows
that each repair is entailed by a can. repair in R. To see
this, assume the contrary, i.e., there was a repair ∃Y.B that
is not entailed by a canonical repair in R. Then Proposi-
tion XXIX would yield a canonical repair ∃Z.C that entails
∃Y.B, which means that ∃Z.C is not in R. But then, due to
the very definition of R, there would be a can. repair ∃Z ′.C′
in R that entails ∃Z.C, and thus also entails ∃Y.B — a con-
tradiction.

Furthermore, R is the set of all optimal repairs, up to
equivalence. We verify this by showing that the contrary im-
plies a contradiction. Therefore consider an optimal repair
∃Y.B that is not equivalent to a can. repair in R. According
to the above, there is a canonical repair ∃Z.C in R where
∃Z.C |= ∃Y.B. Now optimality would imply that ∃Z.C and
∃Y.B are equivalent — a contradiction.

In order to compute the set R, we first need to compute
all admissible seed functions, then the induced canonical re-
pairs, and finally filter out the non-optimal ones.

1. Since the saturation is finite, the set AtomsR(T ,P) is fi-
nite, and the instance problem and the subsumption prob-



lem are decidable, we can enumerate all repair types in
finite time. From the repair types we can then construct
all possible repair seeds. Checking the so obtained finitely
many repair seeds for admissibility terminates as well.

2. Given an admissible repair seed, the induced can. repair
can be constructed in finite time.

3. Since the entailment problem for qABoxes is decidable,
see Proposition 2, we can effectively filter out the non-
optimal can. repairs.

3.5 Interactive Selection of a Canonical Repair in
Polynomial Time

A qABox and a repair request P as input usually do not
determine a unique optimal repair. The source of non-
determinism are conjunctions that are either directly in P
or imply a concept in P . In the worst case, there may even
be exponentially many optimal repairs. As a result, it is im-
practical to compute all these repairs first, and then expect
the knowledge engineer or domain expert (called user in the
following) to choose a suitable one. We have seen that each
canonical repair computed by our approach is induced by
a polynomial-size repair seed. To construct an appropriate
repair with reasonable effort, the corresponding repair seed
should be identified by interacting with the user. This means
that the users should utilize their domain knowledge to de-
termine which repair is constructed, rather than to select one
from all possible optimal repairs. However, Definition 15 is
probably too technical to specify such a seed directly based
on it, and even if the user would be able to do so, there would
be the remaining problem that not every repair seed is admis-
sible, i.e., the user-defined seed might not induce a repair.
As an alternative, we introduce the notion of a repair tem-
plate, which basically describes which consequences should
not be removed by the repair.

Repair Templates Such a template is an ordinary ABox,
which may contain only assertions of particular forms, as de-
fined below. By exploiting a correspondence between seeds
and templates, we show that every (optimal) canonical repair
is induced by a polynomial-size repair template.
Definition XXX. Let ∃X.A be a qABox, (T ,R) a termi-
nology, and P a repair request. A repair template of ∃X.A
for P w.r.t. (T ,R) is an (ordinary) ABox B that, firstly, is a
repair of ∃X.A for P w.r.t. (T ,R) as per Definition 8 and,
secondly, only contains assertions of the following forms:
• equality assertions a ≡ b where a, b ∈ ΣI,
• concept assertions E(a) where E ∈ AtomsR(T ,P) and
a ∈ ΣI, but E is not an automaton concept ∃q.F ,

• concept assertions ∃R1. · · · ∃Rn.F (a) where ∃q.F ∈
AtomsR(T ,P) and R1 · · ·Rn ∈ L(AR(q)) and a ∈ ΣI.
The Completeness Proof (see Proposition XXIX) shows

in a constructive way that every repair, and thus also each
repair template, induces an admissible repair seed. Specifi-
cally, given a repair template B,8 the induced repair seed SB

8More precisely, we would first need to transform a repair tem-
plate B into an equivalent qABox ∃Y.B′ by means of the first three
saturation rules in Figure 1. According to Definition XXX, this
qABox is also a repair of ∃X.A for P w.r.t. (T ,R).

is defined as follows:

• a ≈SB b iff the saturation of B w.r.t. (T ,R) entails a ≡ b,

• for each individual name a, the repair type (SB)[a](SB)

consists of all atoms C ∈ AtomsR(T ,P) such that the
saturation of ∃X.A entails C(a) but the saturation of B
does not entail C(a).

We say that a canonical repair is induced by B if it is induced
by SB.

Lemma XXXI. Each canonical repair, and specifically ev-
ery optimal one, is induced by a polynomial-size repair tem-
plate.

Proof. Consider the canonical repair induced by the admis-
sible repair seed S . We define the ABox BS as follows.

• Add the equality assertion a ≡ b to BS if the canonical
repair repT ,R(∃X.A,S) entails it and a ̸= b.

• Add the concept assertion E(a) to BS if
repT ,R(∃X.A,S) entails it and E is in AtomsR(T ,P),
but is no automaton concept.

• If ∃q.F is an automaton concept in AtomsR(T ,P) such
that repT ,R(∃X.A,S) entails ∃q.F (a), then choose an
arbitrary shortest role word R1 · · ·Rn ∈ L(AR(q)) and
add the concept assertion ∃R1. · · · ∃Rn.F (a) to BS .

It is easy to verify that BS is a repair template,
namely because it is entailed by the canonical repair
repT ,R(∃X.A,S). Furthermore, BS has polynomial size
for the following reasons:

• Each individual name in the canonical repair
repT ,R(∃X.A,S) is also contained in the satura-
tion satT ,R(∃X.A), and must thus be contained in the
input qABox ∃X.A or in the terminology (T ,R). It
follows that BS can contain at most polynomially many
equality assertions a ≡ b.

• Due to the last point and since the set AtomsR(T ,P) is
polynomial in the size of the repair request P , the TBox
T , and the automata for R, it follows that BS can contain
at most polynomially many concept assertions.

• For each automaton concept ∃q.F and each individual
name a, further note that we choose at most one short-
est role word R1 · · ·Rn in the language L(AR(q)) and
add the assertion ∃R1. · · · ∃Rn.F (a) to BS . Since the
role word is a shortest one, the according accepting run
in AR(q) cannot contain each state more than once, and
so the length of R1 · · ·Rn is bounded by the number of
states in QR, where q ∈ QR.

In order to show that the canonical repair
repT ,R(∃X.A,S) is induced by BS , we prove that
the repair seeds S and SBS are the same.

We first show that the equivalence relations ≈S and ≈SBS
are the same. Consider two individual names a and b.

• If a ≈S b, then repT ,R(∃X.A,S) |= a ≡ b and thus
a ≡ b ∈ BS , which implies a ≈SBS

b.



• Conversely, assume a ≈SBS
b, i.e., BS |=T ,R a ≡ b.

By definition, we have repT ,R(∃X.A,S) |= BS .
According to Lemmas XXV and XXVI each canon-
ical repair is saturated w.r.t. (T ,R), and we infer
that repT ,R(∃X.A,S) |= a ≡ b. By Corollary I
and Lemma XXI we conclude that a ≈S b.

Next, we prove that the repair type S[a]S is a subset
of (SBS )[a](SBS ) . For this purpose, consider an atom C
in S[a]S . Lemma XXIII yields that the canonical repair
induced by S does not entail C(a). It follows that the
above defined repair template BS does not entail C(a) w.r.t.
(T ,R). (To see this, assume the contrary, i.e., BS |=T ,R

C(a). With repT ,R(∃X.A,S) |= BS it would follow
that repT ,R(∃X.A,S) |=T ,R C(a). Since canonical re-
pairs are saturated for the underlying terminology, see Lem-
mas XXV and XXVI, we would infer the contradiction that
repT ,R(∃X.A,S) |= C(a).) Furthermore, the saturation
of ∃X.A entails C(a) since S[a]S satisfies Condition (RT1).
According to the above definition of the repair seed SBS ,
we immediately conclude that the repair type (SBS )[a](SBS )

contains C.
It remains to show that also (SBS )[a](SBS ) is a subset of

S[a]S . Therefore let C ∈ (SBS )[a](SBS ) , i.e., ∃X.A |=T ,R

C(a) and BS ̸|=T ,R C(a).

• If C is no automaton concept, then the latter implies that
the canonical repair repT ,R(∃X.A,S) does not entail
C(a) as otherwise C(a) would be contained in the repair
template BS .

• Now let C = ∃q.D be an automaton concept. If
the canonical repair repT ,R(∃X.A,S) would entail
∃q.D(a), then the repair template BS would contain
an assertion ∃R1. · · · ∃Rn.D(a) for some role word
R1 · · ·Rn ∈ L(AR(q)), and thus BS would entail
∃q.D(a), a contradiction.

In both cases, it follows that repT ,R(∃X.A,S) does not en-
tail C(a). By Lemma XXIV the residual S+

[a]S (a) does not
contain C, which means that S[a]S must contain an atom D
where C ⊑T ,R D, cf. Definition XIII. As S[a]S fulfills Con-
dition (RT2), we conclude that C ∈ S[a]S .

User Interaction We have seen that each optimal repair
can be described by a repair template of polynomial size.
Next, we explain how this fact can be used to determine a
unique repair by interacting with the user. Deciding whether
an assertion of the form a ≡ b or E(a) holds in the applica-
tion domain is delegated to the user. For this purpose, these
assertions are enumerated in a suitable order. The user is
presented with each assertion, one after another, and needs
to accept, reject, or ignore it. The accepted assertions are
collected in the repair template and the rejected assertions
are added to the repair request. It is then guaranteed that the
induced canonical repair entails all accepted assertions and
does not entail any rejected assertion. We will show that the
canonical repair obtained this way is unique if the user has
not ignored a question.

Note that the user does not need to check each single as-
sertion. If an assertion already follows from previously ac-
cepted assertions, it must be accepted as well. Furthermore,
an assertion must be rejected if that assertion together with
all previously accepted assertions would violate the repair
request or would entail a previously rejected assertion. Only
the remaining assertions need to be decided by the user.

To describe this approach in more detail, we fix a qABox
∃X.A, a terminating ELROI terminology (T ,R) with reg-
ular RBox, and an ELROI repair request P . We assume
that a repair exists, i.e., the terminology alone does not en-
tail any assertion in the request. Initially let B be the empty
repair template and Q := P be the original repair request.
By interacting with the user, we will now enlarge both sets.
The invariant is that B is always a repair of ∃X.A for Q
w.r.t. (T ,R).

For each assertion α that is of the form a ≡ b or E(a)
where a, b ∈ ΣI and E ∈ AtomsR(T ,P) and that is
entailed by ∃X.A w.r.t. (T ,R), ask the user whether α
holds in the underlying domain of interest. The user can
either accept, reject, or ignore α. In case of acceptance
α is added to B — except if E is an automaton concept
∃q.F , then the user must additionally choose a preferably
short role word R1 · · ·Rn ∈ L(AR(q)) and the assertion
∃R1. · · · ∃Rn.F (a) is instead added to B9 — and in case of
rejection α is added to Q.

In order to fulfill the invariant, α must be accepted if it
already follows from the current repair template B. Further-
more, α must be rejected if B∪{α} would violate the current
repair request Q. The user simply need not be asked if such
an assertion α is under consideration.

Note that the above iteration can never reach a deadlock.
To see this assume that the current repair template B and
the current repair request Q satisfy the invariant, i.e., B is a
repair of ∃X.A for Q w.r.t. (T ,R). Now, let α be the next
assertion to be decided by the user, i.e., α does not follow
from B and B ∪ {α} entails no assertion in Q. The user
can freely choose to accept, ignore, or reject α. Since no
assertion in Q follows from B ∪ {α}, the user can safely
accept α, by which it is added to B. It is guaranteed that
the enlarged repair template B ∪ {α} is a repair of ∃X.A
for the repair request Q w.r.t. the terminology. Since B does
not entail α, the user can also safely reject α, by which it
is added to Q. The repair template B is then still a repair
of ∃X.A for the enlarged repair request Q ∪ {α} w.r.t. the
terminology. Ignoring α does not enlarge B or Q and is thus
unproblematic for the invariant.

Lemma XXXII. If the user does not ignore any assertion,
then the obtained canonical repair is unique.

Proof. Assume that, after the user has answered all ques-
tions without ignoring any assertions, we have obtained the
repair template B and the (enlarged) repair request Q. Fur-
ther let S and S ′ be admissible repair seeds such that the in-
duced canonical repairs entail every assertion in B but none
in Q. We first show that the equivalence relations ≈S and

9It would also suffice to automatically choose an arbitrary short-
est role word R1 · · ·Rn ∈ L(AR(q)).



≈S′ are equal and then show that, for each individual name
a, the repair type S[a]S coincides with the repair type S ′[a]S′ .

Consider an equality assertion a ≡ b. If it was accepted, it
is entailed by B and thus also by every canonical repair for Q
that entails B. Otherwise, it is contained in Q, and thus is not
entailed by any canonical repair for Q that entails B. Thus,
the equivalence relation on objects is uniquely determined.

Consider an atom C in the repair type S[a]S .
Lemma XXIII yields that the canonical repair induced
by S does not entail C(a). It follows that also the repair
template B does not entail C(a), which means that the
user did not accept the assertion C(a) and it was also not
entailed by previously accepted assertions. Since the user
did not ignore any assertion, she or he must have rejected
C(a) and so the (enlarged) repair request Q contains C(a).
Now recall that C is an atom, and thus Condition (RS1)
implies that also the other repair type S ′[a]S′ contains C. The
converse subset inclusion follows in the same manner.

3.6 Optimized Repairs, which have Exponential
Size only in the Worst Case

Canonical repairs are always of exponential size, measured
in the size of the TBox, the repair request, and the automata
for the RBox. It is thus often impractical to compute them
in their full form. Similar to the case of EL (Baader et al.
2021a), most canonical repairs are equivalent to a consider-
ably smaller sub-qABox, and the objects of this sub-qABox
can be enumerated using a rule-based approach.

Assume that the input consists of a qABox ∃X.A, a ter-
minology (T ,R), and a repair request P . Further let S be
an admissible repair seed and denote by ∃Y.B the canonical
repair induced by S . A sub-qABox equivalent to it must at
least contain all individual names, which includes all syn-
onyms ⟨⟨[a]S ,S[a]S ⟩⟩ where a is an individual, and all copies
⟨⟨[u]S ,K⟩⟩ where K is a minimal repair type for u10 such that
⟨⟨[u]S ,K⟩⟩ ∈ Ω(S). The former are needed as otherwise no
homomorphism can exist due to Condition (Hom2), and the
latter are needed since these are the copies with the fewest
modifications and can thus not be homomorphically mapped
to a copy with more modifications.

Starting from this set, we try to define a homomorphism
from ∃Y.B to the sub-qABox induced by it.11 Since all
individuals are already there, all equality assertions in the
canonical repair are also contained in this sub-qABox. If
we now map each individual to itself and map each ad-
missible copy ⟨⟨[u]S ,K⟩⟩ in the canonical repair to the syn-
onym ⟨⟨[u]S ,S[u]S ⟩⟩ if u is an individual and S[u]S ⊆ K,
and otherwise to ⟨⟨[u]S ,L⟩⟩ where L is a minimal repair type
for u such that L ⊆ K and ⟨⟨[u]S ,L⟩⟩ ∈ Ω(S), then also
the concept assertions in the full canonical repair are prop-
erly treated, and the so defined mapping satisfies Condi-
tions (Hom1), (Hom2), and (Hom3). It might, however, be
that Condition (Hom4) is not fulfilled, i.e., there is a role as-

10That is, K is a repair type for u and no strict subset of K is a
repair type for u.

11Formally: the sub-qABox of ∃Y.B induced by a subset W ⊆
Obj(∃Y.B) has the same variables and its matrix consists of all
assertions in B that involve only objects in W .

sertion r(⟨⟨[u]S ,K⟩⟩, ⟨⟨[v]S ,L⟩⟩) in ∃Y.B the image of which
is not a role assertion in the induced sub-qABox. We call
such a role assertion a defect and show in the following how
all defects can be resolved one by one, namely by extending
the set of objects that induce the sub-qABox and by modify-
ing the mapping from ∃Y.B to it.

Besides the set ΣI of all individuals, which con-
tains all synonyms ⟨⟨[a]S ,S[a]S ⟩⟩, let Y0 consist of all
copies ⟨⟨[u]S ,K⟩⟩ where K is a minimal repair type for u
such that ⟨⟨[u]S ,K⟩⟩ ∈ Ω(S). We define the mapping
h0 : Obj(∃Y.B) → ΣI ∪ Y0 as follows:

• h0(a) := a for each individual name a,

• if a is an individual and S[a]S ⊆ K, then h0(⟨⟨[a]S ,K⟩⟩) :=
⟨⟨[a]S ,S[a]S ⟩⟩,12

• otherwise, if u is no individual or S[u]S ̸⊆ K, then
h0(⟨⟨[u]S ,K⟩⟩) := ⟨⟨[u]S ,L⟩⟩ where L is a minimal repair
type for u such that L ⊆ K and ⟨⟨[u]S ,L⟩⟩ ∈ Ω(S).

Starting with h0 and Y0, we will construct finite sequences of
mappings h0, h1, h2, . . . , hn and of sets Y0, Y1, Y2, . . . , Yn

such that the following conditions are satisfied:

1. Each mapping hi is of type Obj(∃Y.B) → ΣI ∪ Yi.

2. hi(a) = a for each individual name a,

3. For each copy ⟨⟨[u]S ,K⟩⟩, there is a repair type Ki for u
such that hi(⟨⟨[u]S ,K⟩⟩) = ⟨⟨[u]S ,Ki⟩⟩ and Ki ⊆ K.

4. If hi(⟨⟨[u]S ,K⟩⟩) = ⟨⟨[u]S ,Ki⟩⟩ and hi+1(⟨⟨[u]S ,K⟩⟩) =
⟨⟨[u]S ,Ki+1⟩⟩, then Ki ⊆ Ki+1.

5. Yi ⊆ Ω(S) and Yi ⊆ Yi+1 for each index i.

6. The last mapping hn is a homomorphism from the canon-
ical repair ∃Y.B to the sub-qABox induced by ΣI ∪ Yn.

A defect of a mapping hi is a role assertion
r(⟨⟨[u]S ,K⟩⟩, ⟨⟨[v]S ,L⟩⟩) in the canonical repair ∃Y.B such
that r(hi(⟨⟨[u]S ,K⟩⟩), hi(⟨⟨[v]S ,L⟩⟩)) is not in ∃Y.B, i.e.,
⟨⟨[u]S ,K⟩⟩ r−→ ⟨⟨[v]S ,L⟩⟩ holds but hi(⟨⟨[u]S ,K⟩⟩) r−→
hi(⟨⟨[v]S ,L⟩⟩) does not hold.

If hi has no defects, then it is a homomorphism (see
the below proof) and no next mapping needs to be con-
structed. Otherwise, let r(⟨⟨[u]S ,K⟩⟩, ⟨⟨[v]S ,L⟩⟩) be the de-
fect. We define the subsequent mapping hi+1 by case dis-
tinction why hi(⟨⟨[u]S ,K⟩⟩) r−→ hi(⟨⟨[v]S ,L⟩⟩) does not hold.
Assume that ⟨⟨[u]S ,Ki⟩⟩ := hi(⟨⟨[u]S ,K⟩⟩) and ⟨⟨[v]S ,Li⟩⟩ :=
hi(⟨⟨[v]S ,L⟩⟩).
(RA2) Assume that there is an extended atom ∃q.C in Ki

and a transition (q, r, p) such that B |= ∃p.C(v), but there
is no state p′ with p ≤ p′ and ∃p′.C ∈ Li.
Since Ki is a subset of K and ⟨⟨[u]S ,K⟩⟩ r−→ ⟨⟨[v]S ,L⟩⟩
holds, we have ∃p′.C ∈ L for some state p′ ≥ p. Now
let Li+1 be a minimal repair type for v such that Li ∪
{∃p′.C} ⊆ Li+1 ⊆ L and ⟨⟨[v]S ,Li+1⟩⟩ ∈ Ω(S). Further
define Yi+1 := Yi∪{⟨⟨[v]S ,Li+1⟩⟩} and hi+1 := hi except
hi+1(⟨⟨[v]S ,L⟩⟩) := ⟨⟨[v]S ,Li+1⟩⟩.
12Note that, if ⟨⟨[a]S ,S[a]S ⟩⟩ and a′ have been selected as syn-

onyms in the construction of the canonical repair as per Defini-
tion XX, then we do not accidentally overwrite the previous as-
signment h0(a

′) := a′ here.



(RA3) Next, consider the case where Ki contains an ex-
tended atom ∃q.C and there is a transition (q, r, f) to a
final state f such that B |= C(v), but ConjR(C)∩Li = ∅.
From Ki ⊆ K and ⟨⟨[u]S ,K⟩⟩ r−→ ⟨⟨[v]S ,L⟩⟩ we infer that
there is an extended atom D ∈ ConjR(C) ∩ L. Let
now Li+1 be a minimal repair type for v that fulfills
Li ∪ {D} ⊆ Li+1 ⊆ L and ⟨⟨[v]S ,Li+1⟩⟩ ∈ Ω(S). Then
define Yi+1 := Yi∪{⟨⟨[v]S ,Li+1⟩⟩} and hi+1 := hi except
hi+1(⟨⟨[v]S ,L⟩⟩) := ⟨⟨[v]S ,Li+1⟩⟩.

(RA4), (RA5) are analogous to (RA2) and (RA3).

We show that the last mapping hn, which has no defects,
is a homomorphism from the canonical repair ∃Y.B to the
sub-qABox induced by the objects in ΣI ∪ Yn.

(Hom2) Consider an individual a. If it does not have a syn-
onym, then hi(a) = a holds for all i since such values
hi(a) are never changed, and so hn(a) = a.
Otherwise, assume that the individual a′ and ⟨⟨[a]S ,S[a]S ⟩⟩
are synonyms. We have defined h0(⟨⟨[a]S ,S[a]S ⟩⟩) as
⟨⟨[a]S ,S[a]S ⟩⟩. The above Invariants 3 and 4 yield that
S[a]S ⊆ Ki ⊆ S[a]S for hi(⟨⟨[a]S ,S[a]S ⟩⟩) =: ⟨⟨[a]S ,Ki⟩⟩,
i.e., we have not accidentally violated the invariant that
hi(a

′) is mapped to a′. We conclude that hn(a
′) = a′.

(Hom1) Since the set ΣI∪Yn contains all individual names,
the matrix of the induced sub-qABox contains the same
equality assertions as the canonical repair. Thus the rela-
tion ≈∃Y.B coincides with the relation ≈ for the induced
sub-qABox.

(Hom3) Consider a concept assertion A(⟨⟨[u]S ,K⟩⟩) in the
canonical repair, i.e., A(u) is in the saturation of the input
qABox and A ̸∈ K. Due to Invariant 3, we have Kn ⊆ K
where hn(⟨⟨[u]S ,K⟩⟩) =: ⟨⟨[u]S ,Kn⟩⟩. It follows that A ̸∈
Kn, i.e., A(⟨⟨[u]S ,Kn⟩⟩) is in the canonical repair as well
and thus also in the induced sub-qABox.

(Hom4) Let r(⟨⟨[u]S ,K⟩⟩, ⟨⟨[v]S ,L⟩⟩) be a role asser-
tion in the canonical repair ∃Y.B. Since hn

is free of defects, ∃Y.B also contains the image
r(hn(⟨⟨[u]S ,K⟩⟩), hn(⟨⟨[v]S ,L⟩⟩)). According to the above
inductive construction, the two objects hn(⟨⟨[u]S ,K⟩⟩) and
hn(⟨⟨[v]S ,L⟩⟩) are in ΣI ∪ Yn, and thus the induced sub-
qABox contains the latter role assertion.

The above approach can also be understood as a compres-
sion technique for canonical repairs. Specifically, the com-
pressed repair is obtained as the image of the constructed
homomorphism hn. It is, however, impractical to shrink re-
pairs in this way, simply because the mappings are defined
on the set of all objects of the canonical repair, which are ex-
ponentially many. As an alternative, it suffices to construct
a subset of the objects that induces a sub-qABox to which a
homomorphism exists — similar as done above.

We therefore employ the following rules, that are exhaus-
tively applied, starting with the set ΣI ∪ Y0 from above.

Object Rule 2. If ⟨⟨[u]S ,K⟩⟩ and ⟨⟨[v]S ,L⟩⟩ are in ΣI ∪ Yi,
the role assertion r(u, v) is in B, the extended atom ∃q.C
is in K, there is the transition (q, r, p), and B |= C(v), but
∃p′.C ̸∈ L for each state p′ where p ≤ p′, then do the

following:13

Initialize Yi+1 as Yi, and then add the object ⟨⟨[v]S ,L′⟩⟩ for
each minimal repair type L′ for v such that L ⊆ L′ and
∃p′.C ∈ L′ for some state p′ ≥ p and ⟨⟨[v]S ,L′⟩⟩ ∈ Ω(S),
but ⟨⟨[v]S ,L′⟩⟩ ̸∈ ΣI ∪ Yi.

Object Rule 3. If ⟨⟨[u]S ,K⟩⟩ and ⟨⟨[v]S ,L⟩⟩ are in ΣI ∪ Yi,
the role assertion r(u, v) is in B, the extended atom ∃q.C
is in K, there is the transition (q, r, f) where f is a final
state, and B |= C(v), but ConjR(C)∩L = ∅, then do the
following:
Initialize Yi+1 as Yi, and then add the object ⟨⟨[v]S ,L′⟩⟩ for
each minimal repair type L′ for v such that L ⊆ L′ and
D ∈ L′ for some D ∈ ConjR(C) and ⟨⟨[v]S ,L′⟩⟩ ∈ Ω(S),
but ⟨⟨[v]S ,L′⟩⟩ ̸∈ ΣI ∪ Yi.

Object Rule 4. If ⟨⟨[u]S ,K⟩⟩ and ⟨⟨[v]S ,L⟩⟩ are in ΣI ∪ Yi,
the role assertion r(u, v) is in B, the extended atom ∃q.C
is in L, there is the transition (q, r−, p), and B |= C(u),
but ∃p′.C ̸∈ K for each state p′ where p ≤ p′, then do the
following:
Initialize Yi+1 as Yi, and then add the object ⟨⟨[u]S ,K′⟩⟩
for each minimal repair type K′ for u such that K ⊆ K′
and ∃p′.C ∈ K′ for some state p′ ≥ p and ⟨⟨[u]S ,K′⟩⟩ ∈
Ω(S), but ⟨⟨[u]S ,K′⟩⟩ ̸∈ ΣI ∪ Yi.

Object Rule 5. If ⟨⟨[u]S ,K⟩⟩ and ⟨⟨[v]S ,L⟩⟩ are in ΣI ∪ Yi,
the role assertion r(u, v) is in B, the extended atom ∃q.C
is in L, there is the transition (q, r−, f) where f is a final
state, and B |= C(u), but ConjR(C)∩K = ∅, then do the
following:
Initialize Yi+1 as Yi, and then add the object ⟨⟨[u]S ,K′⟩⟩
for each minimal repair type K′ for u such that K ⊆ K′
and D ∈ K′ for some D ∈ ConjR(C) and ⟨⟨[u]S ,K′⟩⟩ ∈
Ω(S), but ⟨⟨[u]S ,K′⟩⟩ ̸∈ ΣI ∪ Yi.

The final set ΣI∪Yn, to which none of the above rules is ap-
plicable, is large enough to induce a sub-qABox to which a
homomorphism from the full canonical repair exists. Specif-
ically, Object Rule i ensures that there are no defects that
violate Condition (RAi) for each i ∈ {2, 3, 4, 5}.

Last, to get even smaller repairs, one could first apply the
above rules exhaustively to determine an equivalent first sub-
qABox, say ∃Y ′.B′, and then use the step-by-step approach
to construct a homomorphism from ∃Y ′.B′ to a second sub-
qABox (which is often feasible since the first sub-qABox
∃Y ′.B′ does not have exponential size anymore). The im-
age of this homomorphism is a sub-qABox of the canonical
repair that can be even smaller than ∃Y ′.B′, since it only
contains those copies to which the homomorphism maps.

4 Extensions and Applications
In this section we present several extensions to the repair
framework. Section 4.1 shows how inconsistencies can be
repaired that come into play when the bottom concept ⊥ is
added. Section 4.2 deals with repair requests formulated as
conjunctive queries. Finally, Section 4.3 briefly mentions
additional extensions that cannot be presented in detail here.

13The rule is not applicable if Yi+1 would be equal to Yi, and
similarly for the other rules.



4.1 Adding the Bottom Concept and Repairing
Inconsistencies

The DL ELROI(⊥) (ELRregOI(⊥)) extends ELROI
(ELRregOI) with the bottom concept ⊥, which is always in-
terpreted as the empty set. If ⊥ is available in the TBox, then
qABoxes may become inconsistent w.r.t. terminologies. We
call the quantified ABox ∃X.A consistent w.r.t. a terminol-
ogy (T ,R) if there is a model of ∃X.A and (T ,R), and
inconsistent otherwise. For instance, the qABox {A(a)} is
inconsistent w.r.t. the TBox {A ⊑ ⊥}

Since any concept assertion (qABox) is entailed w.r.t.
(T ,R) by a qABox that is inconsistent w.r.t. (T ,R), any
non-empty repair request to an inconsistent qABox requires
us also to get rid of the inconsistency. In addition, the defi-
nition of what is a repair needs to be revised since (Rep1) is
trivially satisfied in case ∃X.A is inconsistent w.r.t. (T ,R).
Any qABox ∃Y.B satisfying (Rep2) and (Rep3) is thus a re-
pair, even if ∃Y.B is completely unrelated to ∃X.A. Hence,
there cannot be an optimal repair since we can always extend
a given repair by adding completely unrelated assertions.

Fortunately, in ELROI(⊥) we can divide the TBox into
a positive and an “unsatisfiable” part, where the unsatisfi-
able part plays a rôle when an inconsistency is derived, but
has no effect otherwise. To be more precise, consider an
ELROI(⊥) TBox T . Since each concept containing ⊥ is
equivalent to ⊥, we can assume without loss of generality
that each concept description occurring in T is either ⊥ or
does not contain ⊥ as a subconcept. After removing tauto-
logical CIs ⊥ ⊑ C, it follows that T is a disjoint union of
a TBox T+ in which ⊥ does not occur (the positive part)
and of a TBox T⊥ containing only CIs of the form C ⊑ ⊥
where C does not contain ⊥ (the unsatisfiable part). We
can characterize inconsistency by means of this partitioning
of T , and show that T⊥ is only relevant for causing an in-
consistency.

Proposition 17. The following holds for every ELROI(⊥)
terminology (T ,R):

1. The quantified ABox ∃X.A is inconsistent w.r.t. (T ,R)
iff there is a CI C ⊑ ⊥ in T⊥ such that ∃X.A |=T+,R

∃{x}.{C(x)}.
2. If ∃X.A is consistent w.r.t. (T ,R), then ∃X.A |=T ,R

∃Y.B iff ∃X.A |=T+,R ∃Y.B.

Proof. 1. To prove the if direction, assume that there is a CI
C ⊑ ⊥ in T⊥ such that ∃X.A |=T+,R ∃{x}.{C(x)}.
We must show that ∃X.A is inconsistent w.r.t. (T ,R).
Assume to the contrary that I is a model of ∃X.A and
(T ,R). Then I is a model of ∃X.A and (T+,R), and
thus it satisfies ∃{x}.{C(x)}, i.e., there is an element d ∈
Dom(I) such that d ∈ CI . This shows that I does not
satisfy the CI C ⊑ ⊥, which contradicts our assumption
that I is a model of T .
To show the only-if direction, assume that ∃X.A is in-
consistent w.r.t. (T ,R). Since ∃X.A is consistent w.r.t.
(T+,R), there is a universal model Iu of ∃X.A and
(T+,R) (Ortiz, Rudolph, and Šimkus 2011), i.e., a model
that satisfies exactly those qABoxes that are entailed by
∃X.A w.r.t. (T+,R). By our inconsistency assumption,

Iu cannot be a model of T⊥, and thus there is a CI C ⊑ ⊥
in T⊥ that is not satisfied by Iu, i.e., CIu ̸= ⊥Iu = ∅.
This show that there is an element d ∈ Dom(Iu) such that
d ∈ CIu , and thus I satisfies ∃{x}.{C(x)}. Universality
of Iu then yields ∃X.A |=T+,R ∃{x}.{C(x)}.

2. The if direction is trivial since T+ is a subset of T . To
prove the only-if direction, we assume that ∃X.A |=T ,R

∃Y.B. Let Iu be the universal model of ∃X.A and
(T+,R) (Ortiz, Rudolph, and Šimkus 2011). Accord-
ing to Proposition 17, it holds that ∃X.A ̸|=T+,R

∃{x}.{C(x)} for each C ⊑ ⊥ ∈ T⊥, and thus Iu
does not satisfy any of the qABoxes ∃{x}.{C(x)} for
C ⊑ ⊥ ∈ T⊥. This implies that CIu = ∅ for each
C ⊑ ⊥ ∈ T⊥, and thus Iu is also a model of (T ,R).
Now the assumption ∃X.A |=T ,R ∃Y.B yields that Iu
is a model of ∃Y.B. By universality of Iu we can thus
conclude that ∃X.A |=T+,R ∃Y.B.

Motivated by the second statement of this proposition, we
now use T+ rather than T in (Rep1), and of course addition-
ally require the repair to be consistent. Also note that it does
not make sense to use ⊥ in the repair request.

Definition 18. Consider a qABox ∃X.A, an ELROI repair
request P , and an ELROI(⊥) terminology (T ,R). An in-
consistency repair of ∃X.A for P w.r.t. (T ,R) is a qABox
∃Y.B such that

(IRep1) ∃X.A |=T+,R ∃Y.B
(IRep2) ∃Y.B is consistent w.r.t. (T ,R),
(IRep3) ∃Y.B ̸|=T ,R C(a) for each C(a) ∈ Ploc, and
(IRep4) ∃Y.B ̸|=T ,R ∃{x}.{D(x)} for each D ∈ Pglo.

This inconsistency repair is optimal if it is not strictly en-
tailed by another inconsistency repair w.r.t. (T ,R).

Due to the second statement in Proposition 17, the no-
tion of an inconsistency repair coincides with that of a re-
pair as introduced in Definition 8 if ∃X.A is consistent w.r.t.
(T ,R). If ∃X.A is inconsistent w.r.t. (T ,R), then the first
statement in Proposition 17 shows that (IRep2) can be en-
forced by extending the global request with the concepts C
for which C ⊑ ⊥ ∈ T⊥. Given a repair request P , we
denote the extended request obtained this way as PT⊥ .

Theorem 19. Consider a qABox ∃X.A, an ELROI re-
pair request P , and an ELROI(⊥) terminology (T ,R). If
(T ,R) is inconsistent, then there are no inconsistency re-
pairs of ∃X.A w.r.t. (T ,R). Otherwise, the (optimal) in-
consistency repairs of ∃X.A for P w.r.t. (T ,R) coincide
with the (optimal) repairs of ∃X.A for PT⊥ w.r.t. (T+,R).

Proof. It is easy to see that each inconsistency repair of
∃X.A for P w.r.t. (T ,R) is a repair of ∃X.A for P⊥ w.r.t.
(T+,R), cf. Definitions 8 and 18.

Now we show the opposite direction. Let ∃Y.B be a repair
of ∃X.A for P⊥ w.r.t. (T+,R).

(IRep1) Since ∃Y.B satisfies Condition (Rep1), it also sat-
isfies Condition (IRep1).



(IRep2) Since the global part of P⊥ contains C for
each concept inclusion C ⊑ ⊥ in the unsatisfiable
part T⊥, Condition (Rep3) implies that ∃Y.B ̸|=T+,R

∃{x}.{C(x)} for each such C. Proposition 17 yields that
∃Y.B is consistent w.r.t. (T ,R), i.e., Condition (IRep2)
is fulfilled.

(IRep3) Consider a concept assertion D(a) in the local re-
quest Ploc. In order to verify Condition (IRep3) we must
show that ∃Y.B ̸|=T ,R D(a). According to Condi-
tion (Rep2) and since D(a) is also in the local part of P⊥,
it holds that ∃Y.B ̸|=T+,R D(a). With Proposition 17 we
conclude that ∃Y.B ̸|=T ,R D(a).

(IRep4) It remains to show Condition (IRep4). Assume
that E ∈ Pglo. Then E is also in the global part of
P⊥, and so Condition (Rep3) yields that ∃Y.B ̸|=T+,R

∃{x}.{E(x)}. By means of Proposition 17 we infer that
∃Y.B ̸|=T ,R ∃{x}.{E(x)}.

Finally, Proposition 17 shows that the optimal repairs co-
incide.

If R is regular and (T+,R) is terminating, then we can
apply the approach described in the previous section to com-
pute all optimal inconsistency repairs.

Adding the Unique Name Assumption In this paper, we
do not make the unique name assumption, which requires
aI ̸= bI for distinct individual names a, b. However, in the
presence of nominals and bottom, we can enforce that two
individuals are interpreted by different elements using the
CI {a} ⊓ {b} ⊑ ⊥. Thus, our repair approach also works if
the unique name assumption is made.

4.2 Repairs for Conjunctive Queries
Until now, we have only allowed the use of ELROI concept
queries in the repair request. We now extend this to con-
junctive queries (CQs). More precisely, we employ Boolean
conjunctive queries (BCQs), i.e., CQs without answer vari-
ables. This is in line with the fact that we only considered
concept queries where the answer variable was either instan-
tiated with an individual or existentially quantified. In (Grau
and Kostylev 2019), CQs with answer variables are em-
ployed in the policy (which corresponds to our repair re-
quest), with the meaning that such a CQ should not have
any answer tuple in the repair. This can clearly be expressed
using the finitely many BCQs obtained by instantiating the
answer variables with all answer tuples. As already men-
tioned above, BCQs and qABoxes are merely syntactic vari-
ants of each other (Baader et al. 2020). For this reason, we
avoid introducing BCQs formally and use qABoxes instead.

Definition 20. A qABox repair request P is a finite set of
qABoxes. Given a qABox ∃X.A, a terminology (T ,R),
and a qABox repair request P , a repair of ∃X.A for P w.r.t.
(T ,R) is a qABox ∃Y.B that satisfies

(CQRep1) ∃X.A |=T ,R ∃Y.B, and
(CQRep2) ∃Y.B ̸|=T ,R ∃Z.C for each ∃Z.C ∈ P .

It is optimal if it is not strictly entailed by another repair.

Since both concept assertions C(a) and global repair re-
quests ∃{x}.{C(x)} for ELROI concept descriptions C
can be rewritten into equivalent qABoxes, using the first
three rules in Figure 1, the repair requests and repairs in-
troduced in Definition 8 are a special case of the qABox
repair requests and repairs introduced here. We will now
investigated under what conditions a rewriting in the other
direction is possible.
Definition 21. An ELROI rewriting of the qABox ∃Z.C
is an ELROI concept description C such that ∃Z.C and
∃{x}.{C(x)} are equivalent.

By adapting the notion of c-acyclicity introduced
in (Alexe et al. 2011), we can give (effectively checkable)
conditions characterizing the existence of such a rewriting.
Basically, the qABox is translated into an appropriate undi-
rected graph, and the condition for c-acyclicity says that ev-
ery cycle must contain an individual.

Given a qABox ∃X.A, we define the undirected graph
G∃X.A := (V,E) where the vertex set V consists of all
equivalence classes [t]∃X.A for objects t ∈ Obj(∃X.A), and
the edge set E contains an undirected edge {[t], [u]} between
[t] and [u] if there are representatives t′ ∈ [t] and u′ ∈ [u]
that occur together in a role assertion in A, i.e.,

E := { {[t], [u]} | R(t′, u′) ∈ A for some t′ ∈ [t], u′ ∈ [u] }.
A path is of the form [t0] → [t1] → · · · → [tℓ] where
{[tj−1], [tj ]} is an edge in E for each j ∈ {1, . . . , ℓ}, and
we call [t0] its source, [tℓ] its target, and ℓ its length. We call
∃X.A connected if the graph G∃X.A is connected, i.e., if for
each two vertices [t] and [u], there is a path with source [t]
and target [u]. The qABox ∃X.A is c-acyclic if
• every cycle in the graph G∃X.A contains a vertex [a] for

an individual a, where a cycle is a path with same source
and target that has non-zero length (i.e., also loops {[t]}
are cycles), and

• each two variables x, y ∈ X occur together in at most one
role assertion in A.

We further define an edge labeling L by14

L([t], [u]) := {R |R(t′, u′) ∈ A for some t′ ∈ [t], u′ ∈ [u]}.
Specifically, L([t], [u]) consists of all labels when the undi-
rected edge {[t], [u]} is treated as a directed edge from [t] to
[u]. It thus holds that L([u], [t]) = {R− | R ∈ L([t], [u]) }.

It follows that, for each c-acyclic qABox ∃X.A, we have
L([x], [y]) ≤ 1 for all variables x, y ∈ X , but there is no
such restriction for label sets L([t], [u]) where t or u is an
individual (or both).

Furthermore, we need the notion of a core, which is
a qABox such that each endomorphism on it is bijective.
Each qABox ∃X.A has a computable and (up to renam-
ing) unique core to which it is equivalent (Hell and Nešetřil
1992). It will be denoted in the following as core(∃X.A).
Example XXXIII. Consider the qABox ∃{x, y}.{r(a, b),
s(b, b), B(b), r(a, x), B(x), s(x, y), B(y), s(y, x)}. It is
equivalent to the sub-qABox {r(a, b), s(b, b), B(b)} due to

14Recall that r−(t, u) stands for r(u, t).



the homomorphism that sends a to a and sends the other ob-
jects b, x, y to b. The latter qABox is the core since it is itself
not equivalent to a proper sub-qABox.
Example XXXIV. The qABox ∃{x, y}.{r(a, x), B(x),
r(a, y), B(y)} has two cores, namely ∃{x}.{r(a, x), B(x)}
and ∃{y}.{r(a, y), B(y)}, which are equivalent.

The next proposition characterizes when ELROI rewrit-
ings exist.
Proposition 22. A qABox has an ELROI rewriting iff its
core is connected and c-acyclic.

Proof. Assume that the ELROI concept description C is
a rewriting of ∃X.A, which means that ∃X.A is equiva-
lent to the qABox ∃Y.B obtained from ∃{x}.{C(x)} by ex-
haustively applying the first three rules from Figure 1, where
w.l.o.g. we apply the Nominal Rule with lowest priority. Ob-
viously, the latter qABox is connected.

Further recall that new variables are only introduced by
applications of the Existential Restriction Rule. Let ∃Y ′.B′
be the intermediate qABox obtained by exhaustive applica-
tions of the Conjunction Rule and the Existential Restric-
tion Rule, but before the Nominal Rules is applied for the
first time. Then ∃Y ′.B′ is connected, it is tree-shaped (with
root x) and thus acyclic, and each two variables occur in at
most one role assertion together. Now the final qABox ∃Y.B
is obtained by exhaustively applying the Nominal Rule to
∃Y ′.B′, which might identify several variables by replacing
them with one individual (or rather: with individuals from
the same equivalence class). Each resulting cycle in G∃Y.B
must thus contain an equivalence class represented by indi-
vidual, i.e., ∃Y.B is c-acyclic. It follows that also the core of
∃Y.B is connected and c-acyclic. Since ∃X.A and ∃Y.B are
equivalent and cores are unique up to renaming of variables,
we conclude that also the core of ∃X.A must be connected
and c-acyclic.

Conversely, assume that a qABox has a connected
c-acyclic core ∃X.A, to which it is equivalent. As first step,
we transform the undirected graph G∃X.A = (V,E) into a
tree. The ELROI rewriting of ∃X.A is afterwards obtained
from this tree.

The tree will be constructed inductively, namely as the
final element of a sequence of trees T0, T1, . . . where
Ti−1 ⊂ Ti for each index i, and every tree Ti is a prefix-
closed15 set of (directed) paths in the graph G∃X.A.

We choose an arbitrary vertex [t0] from V and then set
T0 := {[t0]} and F0 := ∅. Afterwards, we apply the fol-
lowing two rules as often as possible, where the first rule
has higher precedence. In a nutshell, the strategy is to al-
ways first to try to unravel at variables, and only if this is not
possible to unravel at individuals.

Variable Rule. If there is a path p ∈ Ti with target [x] for
some variable x ∈ X and there is a vertex [t] such that
{[x], [t]} ∈ E \ Fi, then define:

Ti+1 := Ti ∪ { p → [u] | {[x], [u]} ∈ E \ Fi }
15A set of paths is prefix-closed if it also contains all prefixes of

each path in it.

Fi+1 := Fi ∪ { {[x], [u]} | {[x], [u]} ∈ E \ Fi }
Individual Rule. If there is a path p ∈ Vi with target [a] for

some individual a ∈ ΣI and there is a vertex [t] such that
{[a], [t]} ∈ E \ Fi, then define:

Ti+1 := Ti ∪ {p → [t]}
Fi+1 := Fi ∪ {{[x], [t]}}

After no rule is applicable, say after n iterations, denote
by T the final tree Tn and likewise let F := Fn. Since the
graph (V,E) is connected and neither of the two rules can
be applied to T and F , it holds that F = E. It follows that
all edges in E are represented in the tree T , i.e., for each
edge {[t], [u]} in E, there is a path p in T such that

• either target(p) = [t] and p → [u] is in T ,
• or target(p) = [u] and p → [t] is in T .

Next, we show the following claim.

Claim. For each vertex [x] where x is a variable in X , there
is a unique path p ∈ T with target [x].

In order to prove the claim, assume that p1 and p2 are
distinct paths in T , where w.l.o.g. p1 has been created before
p2. Further let p be the longest common prefix of p1 and p2.
We continue with a case distinction.

1. In the first case, assume that p1 is a prefix of p2. We infer
a contradiction, since after applying the Variable Rule to
p1 there are no edges involving [x] left over in E \Fi, i.e.,
afterwards the path p2 could not have been constructed
anymore.

[t0] [x] [x]
p1 p2 − p1

Conversely, p2 cannot be a prefix of p1, since p1 has been
created before p2.

2. Now let p1 ̸= p ̸= p2, and further assume that the target
of p is [y] for a variable y in X . Then there is a cycle
involving [x] and [y]. Due to c-acyclicity, there is an indi-
vidual a such that [a] is the target of a path q where either
p < q < p1 or p < q < p2.16

[t0] [y] [x]
p

p1 − p

p2 − p

If q < p1, then p2 must have a prefix q′ with target [a′] for
some individual a′, since otherwise p2 would have been
created before p1. In both cases, p2 has a prefix q′′ of
which the last element is of the form [a′′] for some indi-
vidual a′′. But this means that the Variable Rule is first
applied to p1 before the Individual Rule can be applied to
q′′, and thus afterwards there are no edges involving [x]
left over, i.e., the path p2 cannot exist.

16We write p < q if p is a strict prefix of q.



3. In the last case, we have p1 ̸= p ̸= p2 and there is an
individual a such that [a] is the target of p. Thus, before
another successor can be added to p, yielding a prefix of
p2, the Variable Rule is applied to p1, and after that there
are no edges involving [x] left over, which could be used
to construct the path p2, i.e., p2 does not exist.

[t0] [a] [x]
p

p1 − p

p2 − p

From the final tree T , we construct the concept C := C[t0]

where the concepts Cp for paths p ∈ T are recursively de-
fined as follows:

• If target(p) = [a] for an individual a, then let

Cp :=
l

{ {b} | b ∈ [a] }

⊓
l

{A | A(b) ∈ A for some b ∈ [a] }

⊓
l

{Dp→[t] | p → [t] ∈ T }

where

Dp→[t] := ∃R1.(Cp→[t] ⊓ ∃R−2 .{a} ⊓ · · · ⊓ ∃R−n .{a})
for some arbitrary enumeration {R1, . . . , Rn} of the label
set L([a], [t]). The construction is illustrated below for a
successor p → [t].

[a]

[t]

· · ·R1 Rn
⇝

Cp

Cp→[t]

{a} · · ·

· · ·

{a}

R1 R−2
R−n

Firstly, we choose an arbitrary role R1 from L([a], [t])
and add to Cp the existential restriction ∃R1.Cp→[t]. Sec-
ondly, we add to the filler of this existential restriction the
atoms ∃R−i .{a} for each remaining role Ri in L([a], [t]).
Since Cp also contains the nominal {a}, each such atom
∃R−i .{a} essentially represents that Cp→[t] is also an
Ri-successor of Cp.

• If otherwise target(p) = [x] for a variable x, then define17

Cp :=
l

{A | A(x) ∈ A}

⊓
l

{Dp→[t] | p → [t] ∈ T }

where Dp→[y] := ∃R.Cp→[y] for {R} = L([x], [y]),18

and

Dp→[b] := ∃R1.Cp→[b] ⊓ ∃R2.{b} ⊓ · · · ⊓ ∃Rn.{b}
17Recall that then [x] = {x}.
18Recall that L([x], [y]) ≤ 1 for variables x and y, due to

c-acyclicity. But since [x] is the target of p and p → [y] is in T ,
this label set L([x], [y]) cannot be empty.

for some arbitrary enumeration {R1, . . . , Rn} of the label
set L([x], [b]). Specifically for successors p → [b] of the
second kind, the constructing is depicted below.

[x]

[b]

· · ·R1 Rn
⇝

Cp

Cp→[b] {b} · · ·

· · ·

{b}

R1
R2

Rn

We choose a role R1 from the label set L([x], [b]) and add
to Cp the existential restriction ∃R1.Cp→[b]. We further
add to Cp the atom ∃Ri.{b} for each remaining role Ri

in L([x], [b]). Since the nominal {b} is also a top-level
conjunct of Cp→[b], every atom ∃Ri.{b} essentially ex-
presses that Cp→[b] is also an Ri-successor of Cp.

Now, during the expansion of ∃{x}.{C(x)} by means of
the first three rules from Figure 1, we always choose y as
the successor variable when the Existential Restriction Rule
is applied to an assertion ∃R.Cp→[y](u) where y ∈ X , i.e.,
the assertion is replaced by R(u, y) and Cp→[y](y). This is
possible since the above claim holds. In essence, the tree T
is recreated during the expansion but with all paths ending
with the same individual class [a] identified as one of the
individuals in [a]. In the end, the identical mapping is the
homomorphism from ∃X.A to the expansion. By means of
Proposition 2 we conclude that ∃{x}.{C(x)} entails ∃X.A.

It remains to show the opposite entailment. By an in-
duction on the tree T , starting at the leafs, it is easy
to show that ∃X.A entails Cp(t) for each p ∈ T and
for each t ∈ target(p). It follows that ∃X.A entails
∃{x}.{C[t0](x)}, which equals ∃{x}.{C(x)}.

The proof of the if-direction is constructive in the sense
that it shows how the rewriting can be computed. Thus, if
all qABoxes in a given qABox repair request are ELROI
rewritable, then we can reduce qABox repair to ELROI re-
pair.

Example 23. As an example of a qABox that is not
c-acyclic we consider ∃{x, y}.{r(a, x), s(x, y), s(y, x)}. It
has a cycle from x to y and then back that does not in-
volve an individual. It is not ELROI rewritable since
an ELROI concept could only enforce going back from
y to the predecessor x if one of them were an individual
whose name can be used in the concept. In contrast, the
qABox ∃{y}.{s(a, y), s(y, a)}, which is c-acyclic, has the
ELROI rewriting {a} ⊓ ∃s.∃s.{a}. Note that the qABox
∃{x, y}.{s(x, y), r(x, y)} is also not c-acyclic. Again, an
ELROI concept cannot enforce that there is a joint s- and
r-successor of x. The qABox ∃{y}.{s(a, y), r(a, y)} has
the ELROI rewriting ∃r−.{a} ⊓ ∃s−.{a}.
Example XXXV. The qABox in Example XXXIII is con-
nected and not c-acyclic, but its core is c-acyclic. Thus it
is ELROI rewritable, namely into the concept description
{a} ⊓ ∃r.({b} ⊓B ⊓ ∃s.{b}).



Example XXXVI. The qABox ∃{x, y}.{A(x), B(y)} is
core and c-acyclic but not connected. It has no ELROI
rewriting. If the universal role u would be available, which
is always interpreted as the full binary relation on the domain
of each interpretation, then a rewriting would be A ⊓ ∃u.B.

Considering Proposition 22, one might think that non-
connectedness of core(∃Z.C) for ∃Z.C ∈ P could be an
impediment to reducing qABox repair to ELROI repair.
However, this is not the case: it is sufficient that all con-
nected components of core(∃Z.C) are ELROI rewritable.
To be more precise, let H(P) be the set of all hitting sets of
{CoCo(core(∃Z.C)) | ∃Z.C ∈ P and∃X.A |=T ,R ∃Z.C },
where the operator CoCo yields the set of connected compo-
nents of an input qABox.

Lemma 24. ∃Y.B is a repair of ∃X.A for P w.r.t. (T ,R)
iff there is a hitting set H in H(P) such that ∃Y.B is a repair
of ∃X.A for H w.r.t. (T ,R).

Proof. The lemma follows easily from the following two ob-
servations:

• Each qABox ∃Z.C in P is equivalent to its core, and so
∃Y.B |= ∃Z.C iff ∃Y.B |= core(∃Z.C).

• ∃Y.B |= core(∃Z.C) iff ∃Y.B entails all connected com-
ponents of core(∃Z.C).

According to our previous considerations, we can com-
pute the optimal repairs for such a hitting set H if each com-
ponent in H has an ELROI rewriting. The elements of H
are connected components of the cores of the elements of
P . Since such a core is c-acyclic iff all its connected com-
ponents are so, it is thus sufficient to require that the cores
of the elements of P are c-acyclic. Under this assumption,
the set of all optimal repairs of ∃X.A for P w.r.t. (T ,R)
is then obtained by collecting the optimal repairs of ∃X.A
for H w.r.t. (T ,R) for all hitting set H in H(P), and then
removing elements from this set that are strictly entailed by
other elements.

Theorem 25. Let ∃X.A be a qABox, (T ,R) a terminat-
ing terminology with a regular RBox whose associated au-
tomata can effectively be computed, and P be a qABox re-
pair request. Then the set of all optimal repairs of ∃X.A for
P w.r.t. (T ,R) can be effectively computed if core(∃Z.C) is
c-acyclic for all qABoxes ∃Z.C in P . In addition, each re-
pair is then entailed by an optimal repair.

Without restrictions on the qABoxes in the repair request,
the set of optimal repairs need not cover all repairs in the
sense stated in the theorem, even if the qABox to be repaired
is an ABox and the terminology is empty. In fact, it follows
from (Nešetřil and Tardif 2000, Corollary 3.5) that the ABox
{r(a, a)} has no optimal repair for the repair request consist-
ing of the qABox ∃{x}.{r(x, x)}. But the empty ABox is a
repair, which is thus not entailed by an optimal one.

To be more precise, (Nešetřil and Tardif 2000, Corol-
lary 3.5) considers relational structures without constants,
partially ordered by the homomorphism order: for such
structures A and B, we write A ≤ B if there is a homo-
morphism from A to B, and we write A < B if A ≤ B and

B ̸≤ A. Obviously, each qABox without individual names is
a relational structure without constants. It is shown that, if A
and B are such structures, where A is connected and core but
not acyclic and where B < A, then there exists a structure C
in between, i.e., B < C < A.

Translating the latter statement to qABoxes yields the fol-
lowing. If ∃X.A and ∃Y.B are qABoxes in which no in-
dividual names occur, ∃X.A is core and connected but not
acyclic, and ∃Y.B is strictly entailed by ∃X.A, then there
exists a qABox ∃Z.C without individuals that is strictly en-
tailed by ∃X.A and that strictly entails ∃Y.B.

Now if a qABox ∃X.A is both the input qABox to be re-
paired and is the only qABox in the repair request, then the
repairs are exactly those qABoxes that are strictly entailed
by ∃X.A. Thus it follows from the above that, if ∃X.A
is core and connected but contains a cycle, then ∃X.A has
no optimal repairs for the repair request {∃X.A} w.r.t. the
empty terminology, using the fact that then ∃X.A must
strictly entail the empty qABox. An example for such a
qABox is ∃X.A := ∃{x}.{r(x, x)}, as above.

To see that also the ABox {r(a, a)} has no optimal repair
for the repair request {∃{x}.{r(x, x)}}, assume that ∃Y.B
is a repair. Let ∃Z.C be obtained from ∃Y.B by replacing
each occurrence of the individual name a by a fresh variable
xa. It then follows that ∃Z.C is a repair of ∃{x}.{r(x, x)}
for {∃{x}.{r(x, x)}}. The above yields a repair ∃Z ′.C′ of
∃{x}.{r(x, x)} for {∃{x}.{r(x, x)}} that strictly entails
∃Z.C, and so there is a homomorphism h from ∃Z.C to
∃Z ′.C′.

Now let ∃Y ′.B′ be obtained from ∃Z ′.C′ by replacing
each occurrence of h(xa) with the individual name a. It
is obvious that {r(a, a)} entails ∃Y ′.B′. Furthermore, the
matrix B′ cannot contain an r-loop as otherwise C′ would
contain an r-loop, which contradicts the fact that ∃Z ′.C′
does not entail ∃{x}.{r(x, x)}. Thus ∃Y ′.B′ does not en-
tail ∃{x}.{r(x, x)}, and so it is a repair of {r(a, a)} for
{∃{x}.{r(x, x)}}.

It remains to show that ∃Y ′.B′ strictly entails ∃Y.B,
which implies that ∃Y.B is no optimal repair of the ABox
{r(a, a)} for the repair request {∃{x}.{r(x, x)}}. Since
∃Y.B is an arbitrary such repair, {r(a, a)} has no optimal
repairs for {∃{x}.{r(x, x)}}.

1. We show that there is a homomorphism from ∃Y.B to
∃Y ′.B′. Define the mapping k := h, except k(a) := a
and k(t) := a if h(t) = h(xa).

(a) If r(y, z) ∈ B where y ̸= a and z ̸= a, then r(y, z) ∈ C
and y ̸= xa and z ̸= xa. We infer r(h(y), h(z)) ∈ C′.

• If h(y) = h(xa) and h(z) = h(xa), then ∃Z ′.C′
would entail ∃{x}.{r(x, x)}, a contradiction.

• If h(y) = h(xa) and h(z) ̸= h(xa), then k(y) = a,
k(z) = h(z), and B′ contains the role assertion
r(a, h(z)), which equals r(k(y), k(z)).

• The case where h(y) ̸= h(xa) and h(z) = h(xa) is
analogous.

• If h(y) ̸= h(xa) and h(z) ̸= h(xa), then k(y) =
h(y), k(z) = h(z), and B′ contains the role assertion
r(h(y), h(z)), which equals r(k(y), k(z)).



(b) If r(a, z) ∈ B where z ̸= a, then r(xa, z) ∈ C where
z ̸= xa. We infer r(h(xa), h(z)) ∈ C′.

• If h(z) = h(xa), then ∃Z ′.C′ would entail
∃{x}.{r(x, x)}, a contradiction.

• If h(z) ̸= h(xa), then k(a) = a, k(z) = h(z), and
B′ contains the role assertion r(a, h(z)), which equals
r(k(a), k(z)).

(c) Role assertions r(y, a) ∈ B where y ̸= a can be treated
analogously.

(d) The role assertion r(a, a) cannot be in B, as otherwise
∃Y.B would entail ∃{x}.{r(x, x)}.

2. Assume that there is a homomorphism ℓ from ∃Y ′.B′ to
∃Y.B. We show that the mapping ℓ′ := ℓ except where
ℓ′(h(xa)) := a would then be a homomorphism from
∃Z ′.C′ to ∃Z.C, yielding a contradiction.

(a) If r(y, z) ∈ C′ where y ̸= h(xa) and z ̸= h(xa), then
also B′ contains the role assertion r(y, z). Thus B con-
tains r(ℓ(y), ℓ(z)), which equals r(ℓ′(y), ℓ′(z)).

(b) If r(y, z) ∈ C′ where y = h(xa) and z ̸= h(xa),
then B′ contains the role assertion r(a, z). Thus B con-
tains r(ℓ(a), ℓ(z)), which equals r(ℓ′(y), ℓ′(z)) since
ℓ′(y) = ℓ′(h(xa)) = a = ℓ(a).

(c) Role assertions r(y, z) ∈ C′ where y ̸= h(xa) and z =
h(xa) can be treated analogously.

(d) C′ cannot contain a role assertion r(y, z) where y =
h(xa) and z = h(xa), since otherwise C′ would contain
an r-loop and so ∃Z ′.C′ would entail ∃{x}.{r(x, x)}.

Finally, we conclude that we cannot extend our optimal
repair framework to fully support existential self-restrictions
∃r.Self in the repair request, namely since such a concept is
equivalent to the qABox ∃{x}.{r(x, x)}. Specifically, we
could still deal with assertions ∃r.Self(a) as these could be
translated to ∃r.{a}(a), but such a translation is impossi-
ble if an existential self-restriction occurs in a conjunction
without nominals.

4.3 Further Extensions
The repair framework developed in this paper can also be
used to deal with regular path expressions in the repair
request, Horn-ALCOI TBoxes, and qABoxes that have a
static part that must not be changed. The basic idea is to
create an ELROI terminology over an extended signature
that is a conservative extension of the input terminology, and
in which such extensions can be expressed. Our repair ap-
proach is then applied w.r.t. this terminology. However, the
repairs obtained this way may still contain names not occur-
ring in the original signature, and thus these additional sym-
bols need to be removed from these repairs appropriately.

We illustrate this for the case of regular path expres-
sions, which are regular expressions over the alphabet of
all roles. In repair requests, the concepts may now con-
tain such expressions in place of roles. The semantics is
defined by interpreting union, concatenation, and Kleene-
star in the regular expressions as union, composition, and
reflexive-transitive closure of binary relations, and the empty
word as the identity relation. For example, the concept as-
sertion (∃r∗.{b})(a) ∈ P then says that, in the repair, there

should not be an (empty or non-empty) r-path from a to b.
To express the regular expression r∗, we introduce a new
role name ⌈r∗⌉ and extend the RBox with the RIs ε ⊑ ⌈r∗⌉,
r ⊑ ⌈r∗⌉, and ⌈r∗⌉ ◦ ⌈r∗⌉ ⊑ ⌈r∗⌉. In the repair request,
we now use ⌈r∗⌉ in place of r∗. A repair computed for this
modified request may still contain the new name ⌈r∗⌉, but
we can simply remove all assertions containing it to obtain
a repair in the original signature.

If a part of the given qABox is known to be correct, one
may want to keep this part static when repairing (i.e., the
repair should still imply this static part). Since our TBoxes
are static and concept and role assertions can be expressed
using nominals, the idea is now to move the static part of the
qABox to the TBox. However, to express assertions involv-
ing variables, the signature needs to be extended by adding
these variables as individual names.

More details on how to deal with these two extensions
and on how Horn-ALCOI TBoxes can be expressed will be
presented in the following.

First of all, the definition of an inconsistency repair (Def-
inition 18) is changed by additionally taking the static data
into account. In particular, we assume that the input qABox,
which is to be repaired, is a union of the refutable part
∃X.A and the static part ∃Xs.As. The latter must not be
changed.

For technical reasons but w.l.o.g., we assume that each
two quantified ABoxes have disjoint sets of variables. Then
the union ∃X1.A1 ∪ ∃X2.A2 of two qABoxes is defined
as ∃(X1 ∪ X2).(A1 ∪ A2). Each model of ∃X1.A1 and
∃X2.A2 is a model of the union, and vice versa.

The terminology (T ,R) now consists of a Horn-
ALCOI TBox T and a regular RBox R. At the same
time, we will additionally support regular path expressions
(RPEs) that can be used in place of roles, but only within the
repair request P . We will formally introduce Horn-ALCOI
and RPEs later when we show how they can be translated
into ELROI .

Definition XXXVII. An SI-repair of ∃X.A ∪ ∃Xs.As for
P w.r.t. (T ,R) is a quantified ABox ∃Y.B over Σ such that

(SIRep1) (∃X.A ∪ ∃Xs.As) |=T ,R ∃Y.B,
(SIRep2) (∃Y.B ∪ ∃Xs.As) is consistent w.r.t. (T ,R),
(SIRep3) (∃Y.B ∪ ∃Xs.As) ̸|=T ,R C(a) for each C(a) ∈
Ploc, and

(SIRep4) (∃Y.B∪∃Xs.As) ̸|=T ,R ∃{x}.{D(x)} for each
D ∈ Pglo.

Additionally, ∃Y.B is optimal if there is no other SI-repair
∃Z.C such that (∃Z.C∪∃Xs.As) |=T ,R ∃Y.B but (∃Y.B∪
∃Xs.As) ̸|=T ,R ∃Z.C.

In the above definition, we denote by a repair only the
modified version of the refutable part ∃X.A. In applications
one should obviously return it together with the static part,
i.e., return ∃Y.B ∪ ∃Xs.As.

In the remainder of this section we will explain how the
static data ∃Xs.As, the terminology (T ,R), and the repair
request P (all over a signature Σ) can be transformed, one by
one, into an ELRregOI(⊥) terminology (T #,R#) and an



ELROI repair request P# (over an extended signature Σ#)
such that the SI-repairs can be obtained as Σ-restrictions of
the inconsistency repairs for P# w.r.t. (T #,R#).

All transformations follow a similar pattern, namely the
input I (over signature ΣI) will be ΣI-inseparable to the
output O (over the extended signature ΣO) in the following
sense:

1. Each model of I can be extended to a model of O.19

2. For each model of O, the ΣI-restriction is a model of I.

Transforming the TBox A Horn-ALCOI TBox consists
of finitely many concept inclusions of the form E ⊑ F
where E and F are built by the following grammar rules.

E ::= ⊥ | ⊤ | A | {a} | E ⊓ E | E ⊔ E | ∃R.E

F ::= ⊥ | ⊤ | A | ¬A | {a} | ¬{a}
| F ⊓ F | ¬E ⊔ F | ∃R.F | ∀R.F

This extends the definition given in (Jung et al. 2020) with
nominals. It is easy to see that each ELROI(⊥) TBox is
also a Horn-ALCOI TBox, but the converse is not true.
However, each Horn-ALCOI TBox can be transformed
into an inseparable ELROI(⊥) TBox using fresh concept
names. As auxiliary signature, let Γ consist of all concept
names ⌊F ⌋ where F is constructed by means of the second
grammar rule. The given Horn-ALCOI TBox T over Σ is
now transformed into an ELROI(⊥) TBox ⌊T ⌋ over Σ∪Γ
as follows.

Initialize ⌊T ⌋ as T . Firstly, we replace each left-hand side
by a disjunction of disjunction-free concepts by exhaustively
applying the following equivalence-preserving rule.

∃R.(E1 ⊔ E2) ⇝ ∃R.E1 ⊔ ∃R.E2

Secondly, we split up the so obtained concept inclusions by
the following equivalence-preserving rule.

E1 ⊔ · · · ⊔ En ⊑ F ⇝ E1 ⊑ F, . . . , En ⊑ F

Thirdly, we transform the right-hand sides as follows.

E ⊑ F1 ⊓ · · · ⊓ Fn ⇝ E ⊑ F1, . . . , E ⊑ Fn

E ⊑ ¬A ⇝ E ⊓A ⊑ ⊥
E ⊑ ¬{a} ⇝ E ⊓ {a} ⊑ ⊥

E1 ⊑ ¬E2 ⊔ F ⇝ E1 ⊓ E2 ⊑ F

E ⊑ ∃R.F ⇝ E ⊑ ∃R.⌊F ⌋, ⌊F ⌋ ⊑ F

E ⊑ ∀R.F ⇝ ∃R−.E ⊑ F

We also need to deconstruct concept inclusions E ⊑ ∃R.F
since the filler F need not be an ELROI concept descrip-
tion. Only for this purpose we introduced the auxiliary con-
cept names ⌊F ⌋. Of course, one would not need to apply the
second-last rule if F is already in ELROI . Finally, note that
after the second-last rule has produced a concept inclusion
⌊F ⌋ ⊑ F , then all of the above transformation rules must be
applied to it, starting with transforming its left-hand side.
Lemma XXXVIII. For each quantified ABox ∃X.A over
Σ, the following statements hold:

19By an extension we mean an interpretation that only differs in
that it defines extensions of the additional symbols.

1. Each interpretation over Σ that is a model of ∃X.A,
∃Xs.As, T , and R can be extended to an interpretation
over Σ∪Γ that is a model of ∃X.A, ∃Xs.As, ⌊T ⌋, and R.

2. For each interpretation I over Σ ∪ Γ that is a model of
∃X.A, ∃Xs.As, ⌊T ⌋, and R, the Σ-restriction I↾Σ is a
model of ∃X.A, ∃Xs.As, T , and R.

Proof. Consider a model I (over Σ) that is a model of
∃X.A, ∃Xs.As, T , and R. We extend it to an interpreta-
tion J over Σ ∪ Γ by additionally defining ⌊F ⌋J := F I

for each ⌊F ⌋ ∈ Γ. Since ∃X.A, ∃Xs.As, and R are de-
fined over Σ, and I and J coincide on Σ, also J must be
a model of these. It remains to show that J is a model of
the transformed TBox ⌊T ⌋. We do so by an induction along
the applications of the above rules. All except the second-
last rule are equivalence preserving, i.e., the replaced con-
cept inclusion is equivalent to its replacement. The only
interesting case is where a concept inclusion E ⊑ ∃R.F
is replaced with E ⊑ ∃R.⌊F ⌋ and ⌊F ⌋ ⊑ F . Due to the
choice ⌊F ⌋J = F I , it follows that I |= E ⊑ ∃R.F implies
J |= E ⊑ ∃R.⌊F ⌋ and J |= ⌊F ⌋ ⊑ F , and we are done.

Regarding the second statement, let I be a model (over
Σ ∪ Γ) of ∃X.A, ∃Xs.As, ⌊T ⌋, and R. Then the Σ-
restriction I↾Σ is still a model of ∃X.A, ∃Xs.As, and R
as these are all defined over Σ. We prove the I↾Σ is a model
of the original TBox T by an induction backwards along
the applications of the above rules. Again, we only need to
take special care of the second-last rule since the others are
equivalence preserving. So assume that E ⊑ ∃R.F is re-
placed by E ⊑ ∃R.⌊F ⌋ and ⌊F ⌋ ⊑ F . Of course, if I |=
E ⊑ ∃R.⌊F ⌋ and I |= ⌊F ⌋ ⊑ F , then I |= E ⊑ ∃R.F
holds as well. In the end, I |= ⌊T ⌋ implies I |= T , and
since T is defined over Σ, it follows that I↾Σ |= T .

Transforming the Static qABox Recall that the static
data comes in form of a quantified ABox ∃Xs.As. We sim-
ply transform it into a TBox Ts over the extended signature
Σ ∪Xs as follows.

Ts := { {u} ⊑ A | A(u) ∈ As }
∪ { {u} ⊑ ∃r.{v} | r(u, v) ∈ As }
∪ { {u} ⊑ {v} | u ≡ v ∈ As }

Lemma XXXIX. For each quantified ABox ∃X.A over Σ,
the following statements hold:

1. Each interpretation over Σ ∪ Γ that is a model of ∃X.A,
∃Xs.As, ⌊T ⌋, and R can be extended to an interpretation
over Σ∪Γ∪Xs that is a model of ∃X.A, ⌊T ⌋∪Ts, and R.

2. For each interpretation I over Σ∪Γ∪Xs that is a model
of ∃X.A, ⌊T ⌋∪Ts, and R, the (Σ∪Γ)-restriction I↾Σ∪Γ
is a model of ∃X.A, ∃Xs.As, ⌊T ⌋, and R.

Proof. Assume that I is an interpretation over Σ ∪ Γ that is
a model of ∃X.A, ∃Xs.As, ⌊T ⌋, and R. Specifically, there
is a variable assignment Z : Xs → Dom(I) such that the
augmented interpretation I[Z] is a model of the matrix As.
We now extend I to an interpretation J over Σ∪Γ∪Xs by
additionally defining xJ := Z(x) for each x ∈ Xs. Since
uI[Z] = uJ holds for each object u ∈ ΣI ∪ Xs, we infer



from I[Z] |= As that J |= Ts. Furthermore, J is a model
of ∃X.A, ⌊T ⌋, and R since these are all defined over Σ∪Γ
and I and J coincide on Σ ∪ Γ.

Next, we show the second statement. Let I be a model
(over Σ ∪ Γ ∪ Xs) of ∃X.A, ⌊T ⌋ ∪ Ts, and R. We define
the variable assignment Z : Xs → Dom(I) by Z(x) := xI

for each x ∈ Xs. It then holds that xI↾Σ∪Γ[Z] = xI for
every object x ∈ Xs, and thus I |= Ts implies I↾Σ∪Γ[Z] |=
As, i.e., I↾Σ∪Γ |= ∃Xs.As. Since ∃X.A, ⌊T ⌋, and R are
defined over Σ ∪ Γ, it follows that the restriction I↾Σ∪Γ is
also a model of these.

Transforming the Regular Path Expressions in the Re-
pair Request A regular path expression is a regular path
expression over roles. On the one hand, the Z-family of
description logics (Calvanese, Eiter, and Ortiz 2009) allows
to use them in place of roles. On the other hand, so-called
conjunctive two-way regular path queries (C2RPQs) (Ortiz,
Rudolph, and Šimkus 2011) extend the formalism of con-
junctive queries by allowing binary atoms involving regular
path expressions. In order to support the specification of un-
wanted consequences in a more expressive way, we extend
the notion of a repair request accordingly.

A regular path expression (RPE) ρ is built with the gram-
mar rule

ρ ::= r | r− | ε | ρ+ ρ | ρ ◦ ρ | ρ∗

where r ranges over all role names in Σ. For each interpreta-
tion I, the semantics are extended by (σ + τ)I := σI ∪ τI ,
(σ ◦ τ)I := σI ◦ τI , and (σ∗)I is defined as the reflex-
ive, transitive closure of σI . Now, ELROI(RE) concept
descriptions are defined like ELROI concept descriptions
but can additionally use regular path expressions in place of
roles. The repair request P is now built from ELROI(RE)
concept descriptions and ELROI(RE) concept assertions.
We will explain in the following how we can deal with it
within our repair framework.

Assume that Λ consists of the role names ⌈ρ⌉ for all
RPEs ρ occurring in the repair request P (including sub-
expressions). We are going to construct an RBox RRE over
the extended signature Σ ∪ Λ such that its union with R is
a conservative extension of R. Specifically, RRE consists of
the following role inclusions:

• ε ⊑ ⌈ε⌉
• r ⊑ ⌈r⌉ and r− ⊑ ⌈r−⌉ for each role name r in P
• ⌈σ⌉ ⊑ ⌈σ+τ⌉ and ⌈τ⌉ ⊑ ⌈σ+τ⌉ for each RPE σ+τ in P
• ⌈σ⌉ ◦ ⌈τ⌉ ⊑ ⌈σ ◦ τ⌉ for each RPE σ ◦ τ in P
• ε ⊑ ⌈σ∗⌉, ⌈σ⌉ ⊑ ⌈σ∗⌉, and ⌈σ∗⌉ ◦ ⌈σ∗⌉ ⊑ ⌈σ∗⌉ for each

RPE σ∗ in P .

The RBox RRE is ≺-regular as per the definition in (Hor-
rocks, Kutz, and Sattler 2006), and thus it is a regular RBox.
Furthermore, for each regular RBox R, the union R ∪RRE
is regular as well.

Lemma XL. For each quantified ABox ∃X.A over Σ, the
following statements hold:

1. Each interpretation I over Σ ∪ Γ ∪Xs that is a model of
∃X.A, ⌊T ⌋ ∪ Ts, and R can be extended to an interpre-
tation J over Σ ∪ Γ ∪Xs ∪ Λ that is a model of ∃X.A,
⌊T ⌋ ∪ Ts, and R ∪ RRE such that ρI = ⌈ρ⌉J for each
RPE ρ occurring in P .

2. For each interpretation I over Σ ∪ Γ ∪ Xs ∪ Λ that is a
model of ∃X.A, ⌊T ⌋∪Ts, and R∪RRE, the (Σ∪Γ∪Xs)-
restriction I↾Σ∪Γ∪Xs

is a model of ∃X.A, ⌊T ⌋, and R.

Proof. Let I be an interpretation over Σ ∪ Γ ∪Xs that is a
model of ∃X.A, ⌊T ⌋ ∪ Ts, and R. Its extension J addi-
tionally maps each new role name ⌈ρ⌉ in Λ to ⌈ρ⌉J := ρI .
Since I and J coincide on Σ∪Γ∪Xs and ∃X.A, ⌊T ⌋∪Ts,
and R are all defined over Σ ∪ Γ ∪ Xs, the extension J is
still a model of these. It is a finger exercise to show that J
is a model of RRE, namely by an induction on the RPE ρ.

• The claim is obvious for the base cases where ρ = ε,
ρ = r, or ρ = r−.

• Now let ρ = σ + τ . It holds that

⌈σ⌉J ∪ ⌈τ⌉J = σI ∪ τI = (σ + τ)I = ⌈σ + τ⌉J .
So J is a model of ⌈σ⌉ ⊑ ⌈σ + τ⌉ and ⌈τ⌉ ⊑ ⌈σ + τ⌉.

• Assume that ρ = σ ◦ τ . We have

⌈σ⌉J ◦ ⌈τ⌉J = σI ◦ τI = (σ ◦ τ)I = ⌈σ ◦ τ⌉J .
It follows that J is a model of ⌈σ⌉ ◦ ⌈τ⌉ ⊑ ⌈σ ◦ τ⌉.

• The last case is where ρ = σ∗. Since (σ∗)I is reflexive,
we obtain

εJ = { (δ, δ) | δ ∈ Dom(I) } ⊆ (σ∗)I = ⌈σ∗⌉J

and thus J is a model of ε ⊑ ⌈σ∗⌉.
Since (σ∗)I is a closure of σI , we infer that

⌈σ⌉J = σI ⊆ (σ∗)I = ⌈σ∗⌉J

and so ⌈σ⌉ ⊑ ⌈σ∗⌉ is valid in J .
As (σ∗)I is transitive, it follows that

⌈σ∗⌉J ◦ ⌈σ∗⌉J = (σ∗)I ◦ (σ∗)I ⊆ (σ∗)I = ⌈σ∗⌉J

and hence J is a model of ⌈σ∗⌉ ◦ ⌈σ∗⌉ ⊑ ⌈σ∗⌉.

Regarding the second claim, assume that I is an inter-
pretation over Σ ∪ Γ ∪ Xs ∪ Λ that is a model of ∃X.A,
⌊T ⌋ ∪ Ts, and R ∪ RRE. It immediately follows that the
restriction I↾Σ∪Γ∪Xs

is a model of ∃X.A, ⌊T ⌋ ∪ Ts, and R
since these are all defined over Σ ∪ Γ ∪Xs.

The next lemma shows that the semantics of the RPEs is
properly encoded within the RBox RRE. We will need this
fact later.
Lemma XLI. R1 · · ·Rn ∈ L(ρ) iff R1◦· · ·◦Rn ⊑RRE ⌈ρ⌉.

Proof. According to Lemma IV, R1 ◦ · · · ◦ Rn ⊑RRE ⌈ρ⌉
iff the word R1 · · ·Rn can be deduced from ⌈ρ⌉ by means
of the production rules induced by RRE. It is a finger ex-
ercise to show by induction on the RPE ρ that R1 · · ·Rn is
deducible from ⌈ρ⌉ iff R1 · · ·Rn ∈ L(ρ). For the only-if
direction note that inverses of role names ⌈σ⌉ will never be
produced from ⌈ρ⌉.



Transforming the repairs Now let T # := ⌊T ⌋ ∪ Ts and
R# := R ∪ RRE. Furthermore, the transformed repair re-
quest P# is obtained from P be replacing each occurrence
of a RPE ρ by the new role name ⌈ρ⌉,20 and likewise we
define C# for each ELROI(RE) concept C. All three
are defined over the extended signature Σ# := Σ ∪ Γ ∪
Xs∪Λ. We obtain the following lemma by combining Lem-
mas XXXVIII–XL.
Lemma XLII. For each quantified ABox ∃X.A over Σ, the
following statements hold:

1. Each interpretation I over Σ that is a model of ∃X.A,
∃Xs.As, T , and R can be extended to an interpretation
J over Σ# that is a model of ∃X.A, T #, and R# such
that δ ∈ (C#)J implies δ ∈ CI for each ELROI(RE)
concept C.

2. For each interpretation I over Σ# that is a model of
∃X.A, T #, and R#, the Σ-restriction I↾Σ is a model
of ∃X.A, ∃Xs.As, T , and R such that δ ∈ CI↾Σ implies
δ ∈ (C#)I for each ELROI(RE) concept C.

Proof. Let I be a model (over Σ) of ∃X.A, ∃Xs.As, T , and
R. According to Lemmas XXXVIII–XL, I can be extended
to a model J (over Σ#) of ∃X.A, T #, and R# such that
ρI = ⌈ρ⌉J holds for each RPE occurring in P .

The additional claim, namely that δ ∈ (C#)J implies δ ∈
CI , is shown by induction on C. It is only interesting to treat
the case C = ∃ρ.D. Let δ ∈ (C#)J , i.e., there is a domain
element γ such that (δ, γ) ∈ ⌈ρ⌉J and γ ∈ (D#)J . The
induction hypothesis implies that γ ∈ DI , and we further
know that ⌈ρ⌉J = ρI holds. It follows that δ ∈ CI .

Regarding the second statement, consider a model I (over
Σ#) of ∃X.A, T #, and R#. By Lemmas XXXVIII–XL,
the Σ-restriction I↾Σ is a model of ∃X.A, ∃Xs.As, T , and
R.

We prove the additional claim, namely that δ ∈ CI↾Σ im-
plies δ ∈ (C#)I , by induction on C. The only interesting
case is where C = ∃ρ.D is an existential restriction involv-
ing a RPE. The assumption δ ∈ CI↾Σ yields a domain ele-
ment γ such that (δ, γ) ∈ ρI↾Σ and γ ∈ DI↾Σ . By induction
hypothesis we obtain that γ ∈ (D#)I . It remains to show
that (δ, γ) ∈ ⌈ρ⌉I .

From (δ, γ) ∈ ρI↾Σ it follows that (δ, γ) ∈ ρI , i.e.,
there are roles R1, . . . , Rn such that R1 · · ·Rn ∈ L(ρ) and
(δ, γ) ∈ (R1 ◦ · · · ◦ Rn)

I . By Lemma XLI we infer that
R1 ◦ · · ·Rn ⊑RRE ⌈ρ⌉. Since I specifically is a model of
RRE, we conclude that (δ, γ) ∈ ⌈ρ⌉I .

The following corollary to Lemma XLII mediates be-
tween the two repair notions in Definitions 18 and XXXVII.
Corollary XLIII. For each quantified ABox ∃Y.B over Σ,
the following statements hold:

1. ∃Y.B satisfies (SIRep1) iff ∃Y.B satisfies (IRep1):
For each qABox ∃X.A over Σ, it holds that (∃X.A ∪
∃Xs.As) |=T ,R ∃Y.B iff ∃X.A |=T #,R# ∃Y.B.
20We could alternatively support existential restrictions ∃ρ.C

in the repair request, where ρ is an RPE, by constructing a finite
automation Aρ that accepts the language L(ρ) and then replacing
∃ρ.C by ∃iρ.C, where iρ is the initial state in Aρ.

2. ∃Y.B satisfies (SIRep2) iff ∃Y.B satisfies (IRep2):
(∃Y.B ∪ ∃Xs.As) is consistent w.r.t. (T ,R) iff ∃Y.B is
consistent w.r.t. (T #,R#).

3. ∃Y.B satisfies (SIRep3) iff ∃Y.B satisfies (IRep3):
For each concept assertion C(a) ∈ Ploc, it holds that
(∃Y.B ∪ ∃Xs.As) |=T ,R C(a) iff ∃Y.B |=T #,R#

C#(a).
4. ∃Y.B satisfies (SIRep4) iff ∃Y.B satisfies (IRep4):

For each concept description D ∈ Pglo, it holds
that (∃Y.B ∪ ∃Xs.As) |=T ,R ∃{x}.{D(x)} iff
∃Y.B |=T #,R# ∃{x}.{D#(x)}.

Due to the extended signature Σ#, an inconsistency repair
for P# w.r.t. (T #,R#) can contain symbols that are not in
the original signature Σ and that should hence be removed
before the final repair is returned. For this purpose, we de-
fine the notion of the Σ-restriction of a quantified ABox.

In principle, we only need to remove assertions using con-
cept names or role names not in Σ, and further make every
individual in Xs ⊆ Σ# a variable. However, the latter is
not so straightforward since we must also resolve equality
assertions involving such now variables.

Definition XLIV. Let ∃Z.C be a quantified ABox over Σ#.
The restriction (∃Z.C)↾Σ := ∃W.D is obtained as follows:

1. Firstly, let W := Z ∪Xs.
2. Secondly, choose a representative t[x] of each equivalence

class [x]∃Z.C where x ∈ Xs as follows:
(a) If [x]∃Z.C contains an individual a ∈ ΣI, then let

t[x] := a.21

(b) Otherwise [x]∃Z.C is a subset of Xs, and then choose
t[x] as an arbitrary element of [x]∃Z.C .22

3. Thirdly, populate the matrix D as follows:
(a) Copy over the concept assertions and role assertions

from C to D, but only those involving concept names
and role names in Σ and further replace every occur-
rence of an object x ∈ Xs with t[x].

(b) For each individual a ∈ ΣI, let {a1, . . . , an} be an enu-
meration of [a]∃Z.C\Xs, and add the equality assertions
a1 ≡ a2, . . . , an−1 ≡ an to D.

Next, we show that the Σ-restriction (∃Z.C)↾Σ is the most
specific qABox that is defined over the signature Σ and is
entailed by ∃Z.C.

Lemma XLV. For each quantified ABox ∃Z.C over Σ#, the
following statements hold:

1. (∃Z.C)↾Σ is entailed by ∃Z.C.
2. For each quantified ABox ∃Y.B over Σ, it holds that

∃Z.C |= ∃Y.B iff (∃Z.C)↾Σ |= ∃Y.B.

Proof. 1. The identical mapping on ΣI ∪ Xs ∪ Z is a ho-
momorphism h from (∃Z.C)↾Σ to ∃Z.C, as we have only
merged some objects.

21This means that all variables in [x]∩Xs will be identified with
the individual a.

22This means that all variables in [x] ⊆ Xs will be identified
with one of them.



(Hom2) h(a) = a is fulfilled by definition for every indi-
vidual a.

(Hom1) Let a ≈(∃Z.C)↾Σ b. According to Defini-
tion XLIV, there must be an equivalence class [c]∃Z.C
containing a and b. It follows that a ≈∃Z.C b.

(Hom3) Consider a concept assertion A(t) in the matrix
of (∃Z.C)↾Σ. Then either A(t) itself is in C, or A(x)
is in C where x has been replaced by t, i.e., t = t[x].
In the latter case, we have t[x] ≈∃Z.C x, and so we are
done.

(Hom4) Role assertions can be treated similarly, by case
distinction on whether the objects in it have been re-
placed.

2. The if direction follows from the first statement. Regard-
ing the only-if direction, assume that ∃Z.C |= ∃Y.B, i.e.,
there is a homomorphism h from ∃Y.B to ∃Z.C by Propo-
sition 2. We define a mapping h′ by h′(a) := a for each
individual a ∈ ΣI and

h′(y) :=

{
h(y) if h(y) ∈ ΣI ∪ Z

t[h(y)] otherwise, i.e., if h(y) ∈ Xs

for each variable y ∈ Y .
(α) The definition of h′ yields h(t) ≈∃Z.C h′(t) for each

object t.
• If t is an individual, then h(t) = t = h′(t).
• Otherwise, if h(t) ∈ ΣI ∪ Z, then h(t) = h′(t).
• In the remaining case, where h(t) ∈ Xs, we have
h′(t) = t[h(t)] where t[h(t)] ∈ [h(t)]∃Z.C . It follows
that h′(t) ≈∃Z.C h(t).

(β) We further show that, for all objects u, v of (∃Z.C)↾Σ,
u ≈∃Z.C v implies u ≈(∃Z.C)↾Σ v. We first get that u
and v are in the same equivalence class w.r.t. ∃Z.C.

• If one of them is a variable in Z, then u = v since vari-
ables cannot occur in equality assertions. The conclu-
sion u ≈(∃Z.C)↾Σ v is then trivial.

• Now assume that one of them is an object in Xs. Since
it occurs in (∃Z.C)↾Σ, its equivalence class (w.r.t.
∃Z.C) must be a subset of Xs (otherwise it would have
been replaced by an individual in the restriction). But
then u and v have been replaced by the same object,
which means that they must be equal (as both occur in
the restriction). It follows that u ≈(∃Z.C)↾Σ v.

• In the remaining case, both are individuals in ΣI.
From u ≈∃Z.C v we infer that u, v ∈ [a]∃Z.C \ Xs

for an individual a. Definition XLIV ensures that
u ≈(∃Z.C)↾Σ v.

It is now easy to verify that h′ is a homomorphism from
∃Y.B to (∃Z.C)↾Σ.
(Hom2) With h fulfilling (Hom2), we obtain that h′(a) =
h(a) = a for every individual a.

(Hom1) Let a ≈∃Y.B b. Since h satisfies (Hom1), we
have a ≈∃Z.C b. It follows that a, b ∈ [a]∃Z.C \ Xs,
and according to Definition XLIV we conclude that
a ≈(∃Z.C)↾Σ b.

(Hom3) Consider a concept assertion A(t) in B. Since
∃Y.B is defined over Σ, we have A ∈ Σ. As h satisfies

(Hom3), there is an object v such that v ≈∃Z.C h(t)
and A(v) ∈ C. We make a case distinction.

• If v ∈ Xs, then the restriction (∃Z.C)↾Σ contains
A(t[v]), and we have v ≈∃Z.C t[v] (by choice of
t[v] in Definition XLIV). It follows that t[v] ≈∃Z.C
h(t). We have seen above in Observation α that
h(t) ≈∃Z.C h′(t) holds, and so we conclude that
t[v] ≈∃Z.C h′(t). Since t[v] and h′(t) both occur in
the restriction, we conclude from the above Observa-
tion β that t[v] ≈(∃Z.C)↾Σ h′(t).

• Otherwise, if v ∈ ΣI ∪ Z, then the restriction
(∃Z.C)↾Σ also contains A(v). Since h(t) ≈∃Z.C h

′(t)
holds by Observation α, it follows that v ≈∃Z.C h

′(t).
Since v and h′(t) both occur in the restriction, we con-
clude from the above Observation β that v ≈(∃Z.C)↾Σ
h′(t).

(Hom4) Each role assertion in B can be treated in a simi-
lar way, by means of case distinction on both objects in
the role assertion that h yields in C and using the above
Observations α and β.

Using Corollary XLIII and the notion of Σ-restrictions,
we can now formulate the following important proposition
that shows how the SI-repairs and the inconsistency repairs
for the transformed input correspond to each other.

Proposition XLVI. The following statements hold.

1. Each SI-repair of ∃X.A ∪ ∃Xs.As for P w.r.t. (T ,R) is
an inconsistency repair of ∃X.A for P# w.r.t. (T #,R#).

2. For each inconsistency repair of ∃X.A for P# w.r.t.
(T #,R#), its Σ-restriction is an SI-repair of ∃X.A ∪
∃Xs.As for P w.r.t. (T ,R).

Proof. Regarding the first claim, let ∃Y.B be an SI-repair of
∃X.A ∪ ∃Xs.As for P w.r.t. (T ,R).

(IRep1) We infer from Condition (SIRep1) that (∃X.A ∪
∃Xs.As) |=T ,R ∃Y.B. An application of Corol-
lary XLIII yields ∃X.A |=T #,R# ∃Y.B.

(IRep2) Since ∃Y.B fulfills Condition (SIRep2), its union
with ∃Xs.As must be consistent w.r.t. (T ,R). With
Corollary XLIII we infer that ∃Y.B is also consistent
w.r.t. (T #,R#).

(IRep3) Consider a concept assertion C#(a) ∈ P#
loc, i.e.,

C(a) ∈ Ploc. Due to Condition (SIRep3), it holds that
(∃Y.B ∪ ∃Xs.As) ̸|=T ,R C(a). By Corollary XLIII it
follows that ∃Y.B ̸|=T #,R#

C#(a).

(IRep4) Consider a concept description D# ∈ P#
glo, i.e.,

D ∈ Pglo. By Condition (SIRep4) we infer that (∃Y.B ∪
∃Xs.As) ̸|=T ,R ∃{x}.{D(x)}. By Corollary XLIII it
follows that ∃Y.B ̸|=T #,R# ∃{x}.{D#(x)}.

We conclude that ∃Y.B is an inconsistency repair of ∃X.A
for P# w.r.t. (T #,R#).

We proceed with the second claim. Therefore let ∃Z.C be
an inconsistency repair of ∃X.A for P# w.r.t. (T #,R#).
We verify that the Σ-restriction (∃Z.C)↾Σ is an SI-repair of
∃X.A ∪ ∃Xs.As for P w.r.t. (T ,R).



(SIRep1) Condition (IRep1) yields that ∃X.A |=T #,R#

∃Z.C. We further know from Lemma XLV that ∃Z.C |=
(∃Z.C)↾Σ, which together with the former implies that
∃X.A |=T #,R#

(∃Z.C)↾Σ. With Corollary XLIII we
conclude that (∃X.A ∪ ∃Xs.As) |=T ,R (∃Z.C)↾Σ.

(SIRep2) We infer from Condition (IRep2) that ∃Z.C is
consistent w.r.t. (T #,R#). According to Lemma XLV
we have ∃Z.C |= (∃Z.C)↾Σ and so the restriction
(∃Z.C)↾Σ is consistent w.r.t. (T #,R#) as well. By
Corollary XLIII it follows that (∃Z.C)↾Σ ∪ ∃Xs.As is
consistent w.r.t. (T ,R).

(SIRep3) Consider a concept assertion C(a) in the lo-
cal request Ploc, i.e., C#(a) is in the transformed lo-
cal request P#

loc. By Condition (IRep3) it holds that
∃Z.C ̸|=T #,R#

C#(a). Since ∃Z.C |= (∃Z.C)↾Σ
holds by Lemma XLV, we infer that (∃Z.C)↾Σ ̸|=T #,R#

C#(a). By means of Corollary XLIII it follows that
((∃Z.C)↾Σ ∪ ∃Xs.As) ̸|=T ,R C(a).

(SIRep4) For each concept D in the global request Pglo, the
proof is as above when C(a) is replaced by ∃{x}.{D(a)}
but uses Condition (IRep4).

Proposition XLVII. Each SI-repair of ∃X.A ∪ ∃Xs.As

for P w.r.t. (T ,R) is entailed by the Σ-restriction of
some optimal inconsistency repair of ∃X.A for P# w.r.t.
(T #,R#).

Proof. Consider an SI-repair ∃Y.B of ∃X.A ∪ ∃Xs.As for
P w.r.t. (T ,R). According to the first statement of Proposi-
tion XLVI, ∃Y.B is also an inconsistency repair of ∃X.A for
P# w.r.t. (T #,R#). By Theorem 19 and Proposition XXIX
there is an optimal inconsistency repair ∃Y ′.B′ of ∃X.A
for P# w.r.t. (T #,R#), where ∃Y ′.B′ |= ∃Y.B. Now
the second statement of Proposition XLVI yields that the Σ-
restriction (∃Y ′.B′)↾Σ is an SI-repair of ∃X.A ∪ ∃Xs.As

for P w.r.t. (T ,R). Since (∃Y ′.B′)↾Σ and ∃Y.B are both
defined over Σ, we infer from ∃Y ′.B′ |= ∃Y.B by means of
Lemma XLV that also (∃Y ′.B′)↾Σ |= ∃Y.B.

Moreover, we obtain the following corollary.

Corollary XLVIII. Each optimal SI-repair of ∃X.A ∪
∃Xs.As for P w.r.t. (T ,R) is equivalent to the Σ-restric-
tion of some optimal inconsistency repair of ∃X.A for P#

w.r.t. (T #,R#).

In the end, it follows from Theorems 12 and 19 and Propo-
sition XLVII that the set of all optimal SI-repairs can effec-
tively be computed and covers all SI-repairs, given that the
translated terminology terminates and automata recognizing
the role languages induced by the translated RBox can ef-
fectively be constructed.

Theorem XLIX. Consider a quantified ABox ∃X.A ∪
∃Xs.As where ∃Xs.As is static, an ELROI(RE) re-
pair request P , and a terminology (T ,R) where T is a
Horn-ALCOI TBox and R is a regular RBox such that
((T #)+,R#) is terminating and automata for R# can be
effectively constructed. Each SI-repair of ∃X.A ∪ ∃Xs.As

for P w.r.t. (T ,R) is entailed by an optimal SI-repair. More-
over, the set of all optimal SI-repairs can effectively be com-
puted (up to equivalence).

4.4 Further Expressivity
We have already seen at the end of Section 4.2 that the pres-
ence of existential self-restrictions ∃r.Self in the repair re-
quest can prevent the existence of optimal repairs, even if the
terminology is terminating and the RBox is regular. The fol-
lowing example shows that also functional roles can make
optimal repair impossible. Thus, it seems to be impossible
to extend our optimal repair framework to the full language
of Horn-SROIQ.
Example L. Assume that f is a functional role. Further con-
sider the ABox {f(a, a)} and the repair request {∃f.⊤(a)}.
For each number n ≥ 0, the qABox ∃Xn.An defined as

∃{x1, . . . , xn}.{f(xn, xn−1), . . . , f(x2, x1), f(x1, a)}
is then a repair.

Now assume that there is a finite set S of repairs that
covers all repairs, and let the number n be greater than
the number of objects of each repair in S. So there must
be a repair ∃Y.B in S that entails ∃Xn.An, i.e., there
is a homomorphism h from ∃Xn.An to ∃Y.B. Since n
exceeds the number of objects in ∃Y.B, there are indices
i, j ∈ {1, . . . , n} where i < j such that h(xi) = h(xj).
Since the matrix An contains the role assertions f(xi, xi−1)
and f(xj , xj−1), where we treat x0 as the individual name
a, it follows that in the other matrix B the object h(xi) has
f -successors h(xi−1) and h(xj−1). Since f is functional,
we infer h(xi−1) = h(xj−1).

By induction, we obtain h(x0) = h(xj−i). Now xj−i still
has the f -successor xj−i−1, but h(x0) = h(a) = a does not
have an f -successor because ∃Y.B is a repair and thus does
not entail ∃f.⊤(a). This means that, although An contains
the role assertion f(xj−i, xj−i−1), the other matrix B does
not contain the role assertion f(h(xj−i), h(xj−i−1)) due to
h(xj−i) = a, a contradiction.

5 Conclusion
We have shown that the approaches for computing optimal
repairs developed in our previous work can be extended to a
considerably more expressive DL, which covers most of the
DL EL++ underlying the OWL 2 EL profile, but also has
inverse roles. Our main result is that, in this setting, optimal
repairs can effectively be computed and cover all repairs in
the sense that every repair is entailed by an optimal one. In
addition, we have demonstrated that this repair approach can
deal with several other interesting repair problems.

The paper actually provides two proofs of the main result,
one based on showing a small repair property by filtration,
and another one based on the construction of canonical re-
pairs. We believe the second approach to be more useful
in practice. In fact, when repairing a given quantified ABox
w.r.t. an ELROI terminology, first computing all optimal re-
pairs and then expecting the knowledge engineer to choose
an appropriate one among (potentially) exponentially many
exponentially large optimal repairs does not appear to be



a practically viable repair approach. Since our canonical
repairs are determined by polynomially large repair seeds,
such a repair can be chosen by making polynomially many
decisions regarding certain instance relationships. Once a
repair seed is chosen, the induced canonical repair is always
exponentially large. However, by adapting the optimized re-
pair approach of (Baader et al. 2021a) to our more expressive
language, we can obtain considerably smaller optimized re-
pairs.
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