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parameters or the window operator are widely used, to the best of our knowl-

edge, omplexity results for this lass of logis have never been obtained. In this

paper, we lose the gap and determine the omplexity of the satis�ability and

validity problems for many Boolean Modal Logis. In the �rst part of this pa-

per (Setions 2 and 3), we investigate the logi K

!

(K with a ountably in�nite

number of aessibility relations) enrihed with negation of modal parameters

and show that the afore mentioned inferene problems are ExpTime-omplete

using an automata-theoreti approah. We then demonstrate the generality of

our approah by extending this result to the logi (K

!


 K4

!

)

:

, i.e., to the

fusion of K

!

with K4

!

enrihed with negation on relations. In the seond part

of this paper (Setions 4 and 5), we add other Boolean operators on roles. In

doing so, one has the hoie to either restrit negation to atomi relations or to

allow for full negation of relations.

We give a omplete list of omplexity results for the logis obtained in this

way, the entral result being that the ombination of (atomi) negation with

intersetion yields a logi whose inferene problems are NExpTime-omplete.

The lower bound is obtained by a redution of a NExpTime-omplete variant of

the domino problem. The mentioned result obviously implies that full Boolean

Modal Logi K

:;\;[

!

is also NExpTime-omplete. However, the lower bound

ruially depends on the number of relations to be unbounded. Inspired by this

observation, in Setion 5, we supplement our result by showing that, for any

�xed �nite number of relations, full Boolean Modal Logi is ExpTime-omplete.

The upper bound is proved by a redution to multi-modalK (with �nitely many

relations) enrihed with the universal modality.

To omplete our investigation, in Setion 6 we show that K

!

with union and

intersetion of roles and without negation is of the same omplexity as pureK

!

,

i.e., PSpae-omplete. Summing up, we thus have tight omplexity bounds for

K

!

extended with any ombination of Boolean operators on roles.

2 Preliminaries

In this setion, we de�ne syntax and semantis of K

:

!

and disuss some model-

and omplexity-theoreti properties of this logi.

De�nition 1 Given a ountably in�nite set of propositional variables � and

a ountably in�nite set of atomi modal parameters R

1

; R

2

; : : :, the set of K

:

!

-

formulae is the smallest set that

� ontains the propositional variables in �,

� is losed under boolean onnetives ^, _, and :, and

� if it ontains ', then it also ontains hR

i

i', [R

i

℄', h:R

i

i', and [:R

i

℄'

for i � 1.

The set of K

:

!

-modal parameters is the smallest set ontaining all atomi modal

parameters and their negations (i.e., expressions of the form :R

i

).
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The semantis of K

:

!

-formulae is given by Kripke strutures

M = hW;�;R

1

;R

2

; : : :i;

whereW is a set of worlds, � is a mapping from the set of propositional variables

into sets of worlds (i.e., for eah p 2 �, �(p) is the set of worlds in whih p holds),

and R

i

is a binary relation on the worlds W , the so-alled aessibility relation

for the atomi modal parameter R

i

.

The semantis is then given as follows, where, for a K

:

!

-formula ', a Kripke

strutureM, and a world w 2W ; the expressionM; w j= ' is read as \' holds

in M in world w".

M; w j= p

i

i� w 2 �(p

i

) for p 2 �

M; w j= '

1

^ '

2

i� M; w j= '

1

and M; w j= '

2

M; w j= '

1

_ '

2

i� M; w j= '

1

or M; w j= '

2

M; w j= :' i� M; w 6j= '

M; w j= hR

i

i' i� there exists w

0

2W with (w;w

0

) 2 R

i

and M; w

0

j= '

M; w j= [R

i

℄' i� for all w

0

2W , if (w;w

0

) 2 R

i

; then M; w

0

j= '

M; w j= h:R

i

i' i� there exists w

0

2W with (w;w

0

) 62 R

i

and M; w

0

j= '

M; w j= [:R

i

℄' i� for all w

0

2W , if (w;w

0

) 62 R

i

; then M; w

0

j= '

A K

:

!

-formula ' is satis�able i� there is a Kripke struture M with a set of

worlds W and a world w 2 W suh that M; w j= '. Suh a struture is alled

a model of '. Two K

:

!

-formulae ' and  are equivalent (written ' �  ) i�

M; w j= ' () M; w j=  for all Kripke strutures M with set of worlds W

and worlds w 2 W . Let R be a modal parameter. We write M; (w;w

0

) j= R

to express that (i) (w;w

0

) 2 R

i

if R is an atomi modal parameter R

i

and (ii)

(w;w

0

) =2 R

i

if R = :R

i

for an atomi modal parameter R

i

.

▲

Throughout this paper, we denote modal parameters by R and S. For the

sake of brevity, we will often omit the word \modal" when talking about modal

parameters. As usual, we write '!  for :'_ and '$  for ('!  )^( !

'). The semantis of the window operator disussed in the introdution an

formally be de�ned as follows:

M; w j=

R

i

' i� for all w

0

2 W , if M; w

0

j= '; then (w;w

0

) 2 R

i

Obviously, we have

R

i

' � [:R

i

℄:', and, hene, the window operator is avail-

able in K

:

!

.

It is not hard to see that satis�ability ofK

:

!

-formulae is ExpTime-hard and in

NExpTime: (i) satis�ability of K

u

-formulae, whereK

u

is uni-modalK enrihed

with the universal modality, an be redued to the satis�ability of K

:

!

-formulae:

Just replae

� every ourrene of [u℄' by [R℄' ^ [:R℄' and

� every ourrene of hui' by hRi' _ h:Ri'

3



where [u℄ and hui denote the universal modality, and R is an arbitrary atomi

modal parameter. This translation may learly lead to an exponential blowup

in the formula. However, in the lass of formulae used to prove the ExpTime-

hardness of K

u

[25℄, [u℄ ours only one, and hui does not our. In this ase,

the translation is linear, and, thus, satis�ability of K

:

!

-onepts is ExpTime-

hard; (ii) when using the standard translation of modal formulae into �rst order

formulae (see, e.g, [5, 3℄), K

:

!

-formulae are translated to �rst-order formulae

with at most 2 variables. Sine L

2

, the two-variable fragment of �rst-order logi,

is deidable in NExpTime [15℄, this implies that satis�ability of K

:

!

-formulae

is also in NExpTime. However, these two omplexity bounds are obviously not

tight. One main ontribution of this paper is to give an ExpTime-algorithm for

the satis�ability of K

:

!

-formulae, thus tightening the omplexity bounds.

For devising a satis�ability algorithm, it is interesting to know what kind of

models need to be onsidered. In [10℄, it is proved that K

:

!

has the �nite model

property. K

:

!

does not have the tree model property sine, e.g., the formula

p^ [:R℄:p has no tree model. However, we will show that there exists a one-to-

one orrespondene between models and so-alled Hintikka-trees whih we then

use to deide satis�ability (and thus validity) of K

:

!

-formulae. We do this by

building, for eah K

:

!

-formula ', a looping automaton A

'

whih aepts the

empty (tree-) language i� ' is unsatis�able. Hene we introdue trees, looping

automata, and the language they aept here.

De�nition 2 Let M be a set and k � 1. A k-ary M-tree is a mapping

T : f1; : : : ; kg

�

7! M that labels eah node � 2 f1; : : : ; kg

�

with T (�) 2 M .

Intuitively, the node �i is the i-th hild of �. We use � to denote the empty

word (orresponding to the root of the tree).

A looping automaton A = (Q;M; I;�) for k-aryM -trees is de�ned by a set

Q of states, an alphabet M , a subset I � Q of initial states, and a transition

relation � � Q�M �Q

k

.

A run of A on an M -tree T is a mapping r : f1; : : : ; kg

�

7! Q with

(r(�); T (�); r(�1); : : : ; r(�k)) 2 �

for eah � 2 f1; : : : ; kg

�

:

A looping automaton aepts all those M -trees for whih a run exists, i.e.,

the language L(A) of M -trees aepted by A is

L(A) = fT j There is a run from A on Tg:

▲

Sine looping automata are speial B�uhi automata, emptiness of their language

an e�etively be tested using the well-known (quadrati) emptiness test for

B�uhi-automata [26℄. However, for looping tree automata, this algorithm an

be speialized into a simpler (linear) one.

4



3 Negation of Modal Parameters

We show that satis�ability of K

:

!

-formulae is deidable in exponential time.

For this purpose, we �rst abstrat from models of K

:

!

-formulae to Hintikka-

trees, and then show how to onstrut a looping automaton that aepts exatly

Hintikka-trees.

Notation: We assume all formulae to be in negation normal form (NNF), i.e.,

negation ours only in front of atomi parameters and propositional variables.

Eah formula an easily be transformed into an equivalent one in NNF by push-

ing negation inwards, employing de Morgan's law and the duality between [R℄

and hRi and between [:R℄ and h:Ri. We use �' to denote the NNF of :'.

Sine we treat modalities with negated and unnegated modal parameters

symmetrially, we introdue the notion

h

�

Ri' =

�

h:Ri' if R is atomi,

hSi' if R = :S for some atomi parameter S

and analogously [

�

R℄'.

Let l(') denote the set of ''s subformulae and the NNFs of their negations,

i.e.,

l(') := f j  is a subformula of ' or

 = �� for a subformula � of 'g:

We assume that diamond-formulae hRi in l(') are linearly ordered, and

that

D

(i) yields the i-th diamond-formula in l(').

De�nition 3 (Hintikka-set and Hintikka-tree)

Let ' be a K

:

!

-formula and k the number of diamond-formulae in l(').

A set 	 � l(') is a Hintikka-set i� it satis�es the following onditions:

(H1) if '

1

^ '

2

2 	, then f'

1

; '

2

g � 	,

(H2) if '

1

_ '

2

2 	, then f'

1

; '

2

g \	 6= ;,

(H3) f ;

�

 g 6� 	 for all K

:

!

-formulae  .

A k-ary 2

l(')

-tree T is a Hintikka-tree for ' i� T (�) is a Hintikka-set for

eah node � in T , and T satis�es, for all nodes �; � 2 f1; : : : ; kg

�

, the following

onditions:

(H4) ' 2 T (�),

(H5) if fhRi ; [R℄ �

1

; : : : ; [R℄ �

m

g � T (�) and

D

(i) = hRi ,

then f ; �

1

; : : : ; �

m

g � T (�i)

(H6) if

D

(i) 62 T (�), then T (�i) = ;,

(H7) if [R℄ � 2 T (�), then � 2 T (�), �� 2 T (�), or T (�) = ;,

5



(H8) if f[R℄ �; [

�

R℄ g � T (�) and �� 2 T (�), then  2 T (�).

For (H5), (H7), and (H8), reall that R denotes atomi parameters and also

negations of atomi parameters.

Lemma 4 A K

:

!

-formula ' is satis�able i� ' has a Hintikka-tree.

Proof: Let ' be a K

:

!

-formula and let there be k diamond-formulae in l(').

\(" Let T be a Hintikka-tree for '. We de�ne a Kripke struture M =

hW;�;R

1

; : : :i as follows:

W = f� 2 f1; : : : ; kg

�

j T (�) 6= ;g

�(p) = f� j p 2 T (�)g for all p 2 �

R

i

= f(�; �) j � = �j and E(j) = hR

i

i 2 T (�)g [

f(�; �) j [:R

i

℄ 2 T (�) and

�

 2 T (�)g

To show that there exists a w 2 W suh that M; w j= ', we �rst prove the

following laim:

Claim:  2 T (�) implies M; � j=  for all � 2W and  2 l(').

The laim is proved by indution over the struture of  . The indution start,

i.e., the ase that  is a propositional variable, is an immediate onsequene

of the de�nition of M. For the indution step, we make a ase distintion

aording to the topmost operator in  . Assume  2 T (�).

�  = :�. Sine ' is in NNF (by the de�nition of Hintikka-sets and l),

� is a propositional variable. By de�nition of M and sine T (�) is a

Hintikka-set and thus satis�es (H3), we have M; � j= :�.

�  = '

1

^ '

2

or  = '

1

_ '

2

. Straightforward by (H1) and (H2) of

Hintikka-sets and by indution hypothesis.

�  = hRi � = E(j) for a j with 1 � j � k. First assume that R = R

i

,

i.e., R is atomi. By de�nition of R

i

, we have (�; �j) 2 R

i

. By (H5),

hR

i

i � 2 T (�) implies � 2 T (�j). By indution, M; �j j= �, and, hene,

M; � j= hR

i

i �.

Now assume that R = :R

i

for an atomi parameter R

i

. We show that

(�; �j) =2 R

i

, for, if we have done this, M; � j= hRi � follows as in the

previous ase (where R is atomi). Assume to the ontrary that (�; �j) 2

R

i

. Then, by de�nition of R

i

, we have either

1. E(j) = hR

i

i �

0

2 T (�), or

2. [:R

i

℄ �

0

2 T (�) and ��

0

2 T (�j)

6



where �

0

2 l('). In the �rst ase, we have a ontradition to the assump-

tion E(j) = h:R

i

i �. In the seond ase, we have fh:R

i

i �; [:R

i

℄ �

0

g �

T (�) whih, by (H5), implies f�; �

0

g � T (�j). Sine we also know that

��

0

2 T (�j), we obtain a ontradition to (H3) of Hintikka-sets and on-

lude that (�; �j) =2 R

i

.

�  = [R℄ �. First assume that R = R

i

, i.e., R is atomi, and �x a � suh

that (�; �) 2 R

i

. By de�nition of R

i

, we have to distinguish two ases:

1. � = �j and E(j) = hR

i

i �

0

2 T (�), or

2. [:R

i

℄ �

0

2 T (�) and ��

0

2 T (�)

In the �rst ase, we have fhR

i

i �

0

; [R

i

℄ �g � T (�) whih, by (H5), implies

f�; �

0

g � T (�j). By indution, we obtain M; � j= �. In the seond ase,

we have f[R

i

℄ �; [:R

i

℄ �

0

g � T (�) and ��

0

2 T (�). By (H8), we have

� 2 T (�), and, by indution, M; � j= �. Sine this holds independently of

the hoie of �, we onlude M; � j= [R

i

℄ �.

Now assume that R = :R

i

for an atomi parameter R

i

. Fix a � suh that

(�; �) =2 R

i

. Sine � 2 W , we have that T (�) 6= ;. Hene, by (H7), we

have � 2 T (�) or �� 2 T (�). However, �� 2 T (�) would imply (�; �) 2 R

i

by de�nition of R

i

, whih is a ontradition to our hoie of �. Hene we

dedue � 2 T (�). By indution, we obtain M; � j= �. Sine this holds

independently of the hoie of �, we onlude M; � j= [:R

i

℄ �.

This ompletes the proof of the laim. Sine ' 2 T (�) by (H4), it is an imme-

diate onsequene of the laim that M is a model of '.

\)" LetM = hW;�;R

1

; : : :i be a model of ', i.e., there exists a w

0

2 W with

M; w

0

j= '. We de�ne a Hintikka-tree for ' (i.e., a Hintikka-set label T (�) for

eah � 2 f1; : : : ; kg

�

) that satis�es (H4) to (H8). To do this, we indutively

de�ne a mapping � from f1; : : : ; kg

�

to W [ f?g in suh a way that

T (�) =

�

f 2 l(') j M; �(�) j=  g if �(�) 6= ?

; otherwise

(�)

For the indution start, set

�(�) := w

0

T (�) := f 2 l(') j M; w

0

j=  g

Now for the indution step. Let � 2 f1; : : : ; kg

�

suh that �(�) is already

de�ned, and let i 2 f1; : : : ; kg. We make a ase distintion as follows:

1. �(�) 6= ? and E(i) = hRi 2 T (�). By (�), we have M; �(�) j= hRi 

whih implies the existene of a world w 2W suh thatM; (�(�); w) j= R

and M; w j=  . Choose suh a w and de�ne �(�i) := w and T (�i) :=

f� 2 l(') j M; w j= �g.

7



2. if �; i do not math the above ase, set �(�i) = ? and T (�i) = ;.

By de�nition, T and � satisfy (�). We need to prove that the k-ary 2

l(')

-tree

T just de�ned is a Hintikka-tree for '. From the semantis of K

:

!

and the

de�nition of l, it is lear that T (�) is a Hintikka-set for eah � 2 f1; : : : ; kg

�

.

Hene, it remains to show that T satis�es (H4) to (H8).

(H4) Satis�ed by de�nition of T (see indution start).

(H5) Let fhRi ; [R℄ �

1

; : : : ; [R℄ �

m

g � T (�) and E(i) = hRi . By (�), we have

�(�) 6= ? and M; �(�) j= hRi ^ [R℄ �

1

^ � � � ^ [R℄ �

m

. By de�nition of

� (indution step, �rst ase), we have �(�i) = w for some w 2 W , with

M; (�(�); w) j= R, andM; w j=  . Moreover, the semantis ofK

:

!

implies

M; w j= �

1

^ � � � ^ �

m

, and, by (�), we thus have f ; �

1

; : : : ; �

m

g � T (�i).

(H6) Satis�ed by de�nition of T (see indution step, seond ase).

(H7) Let [R℄ 2 T (�) and �x a � 2 f1; : : : ; kg

�

. If �(�) = ?, then we have

T (�) = ; by (�) and (H7) is satis�ed. If �(�) 6= ?, then �(�) 2 W and

we have either M; �(�) j=  or M; �(�) j=

�

 . Again, (�) implies that

(H7) is satis�ed.

(H8) Assume f[R℄ �; [

�

R℄ g � T (�) and �� 2 T (�). By (�), we have M; �(�) j=

[R℄ � ^ [

�

R℄ and M; �(�) j= ��. This implies M; (�(�); �(�)) j=

�

R sine

1. we have either M; (�(�); �(�)) j= R or M; (�(�); �(�)) j=

�

R and

2. M; (�(�); �(�)) j= R is not possible sine M; �(�) j= [R℄ � and

M; �(�) j= ��.

Hene, due to the semantis of K

:

!

, we have M; �(�) j=  , whih, by (�),

implies  2 T (�).

❏

Thus, we have that Hintikka-trees are appropriate abstrations of models of

K

:

!

-formulae. Hintikka-trees enjoy the nie property that they are trees, and we

an thus de�ne, for a K

:

!

-formula ', a tree-automaton A

'

that aepts exatly

the Hintikka-trees for '.

De�nition 5 For a K

:

!

-formula ' with k diamond-formulae in l('), the loop-

ing automaton A

'

= (Q; 2

l(')

;�; I) is de�ned as follows:

� Let P = ff[R℄ ; [

�

R℄ �g j [R℄ ; [

�

R℄ � 2 l(')g;

S = f[R℄ j [R℄ 2 l(')g;

Q is the set of all those elements (	; p; s) of

f	 2 2

l(')

j 	 is a Hintikka-setg � 2

P

� 2

S

satisfying the following onditions:

1. if f[R℄ �; [

�

R℄ g 2 p and �� 2 	, then  2 	,

8



2. if [R℄ � 2 s, then 	 = ; or f�; ��g \	 6= ;,

3. if [R℄ � 2 	, then [R℄ � 2 s, and

4. if f[R℄ �; [

�

R℄ g � 	, then f[R℄ �; [

�

R℄ g 2 p.

� I = f(	; p; s) j ' 2 	g.

� ((	; p; s);	

0

; (	

1

; p

1

; s

1

); : : : ; (	

k

; p

k

; s

k

)) 2 � i�

	 = 	

0

; p

i

= p; s

i

= s for all 1 � i � k; and

if

D

(i) = hRi 2 	, then  2 	

i

and � 2 	

i

for eah [R℄ � 2 	 and

if

D

(i) = hRi 62 	, then 	

i

= ;:

▲

Note that, sine A

'

is a looping automata, every run is aepting. As a

onsequene of the following lemma and Lemma 4, we an redue satis�ability

ofK

:

!

-formulae to the emptyness of the language aepted by looping automata.

Lemma 6 T is a Hintikka-tree for a K

:

!

-formula ' i� T 2 L(A

'

).

Proof: Let ' be a K

:

!

-formula and k, A

'

as in De�nition 5.

\)" Let T be Hintikka-tree for '. We prove that there is an aepting run

of A

'

on T . First, de�ne

p := ff[R℄ ; [

�

R℄ �g j There is a node � in T with f[R℄ ; [

�

R℄ �g � T (�)g

s := f[R℄ j There is a node � in T with [R℄ 2 T (�)g

Next, we show that r(�) = (T (�); p; s) is an aepting run of A

'

on T . By

de�nition, r is de�ned for eah � 2 f1; : : : ; kg

�

. We have to show that, for eah

node � in T , r satis�es the following three onditions.

(i) r(�) 2 Q. Let � be a node in T . Sine T is a Hintikka-tree, T (�)

is a Hintikka-set. It remains to prove that (T (�); p; s) satis�es the four

properties of states Q in De�nition 5.

1. If f[R℄ �; [

�

R℄ g 2 p, then there is some node � with f[R℄ �; [

�

R℄ g �

T (�). Hene if, additionally, �� 2 T (�), then (H8) ensures that

 2 T (�).

2. If [R℄ � 2 s, then there is some node � with [R℄ � 2 T (�), and (H7)

ensures that T (�) = ;, � 2 T (�), or �� 2 T (�).

3. & 4. are saties�ed by de�nition of p and s.

(ii) r(�) 2 I . Sine T is a Hintikka-tree for ', (H4) ensures that ' 2 T (�),

hene r(�) = (T (�); p; s) 2 I .

(iii) ((T (�); p; s); T (�); (T (�1); p; s); : : : ; (T (�

k

); p; s)) 2 �. There are only

two onditions to prove: Firstly, if

D

(i) = hRi 2 T (�), then (H5)

ensures that  2 T (�i) and, for eah [R℄ � 2 T (�), (H5) ensures that

� 2 T (�i).

Seondly, if

D

(i) = hRi 62 T (�), then (H6) ensures that T (�i) = ;.

9



\(" Let T 2 L(A

'

) and r be an aepting run of A

'

on T . We prove that T

is a Hintikka-tree for '.

� By de�nition of A

'

, T is a k-ary 2

l(')

-tree, and r(�) = (	

�

; p

�

; s

�

)

implies 	

�

= T (�) by de�nition of �. Hene, by de�nition of Q, eah

node in T is labelled with a Hintikka-set. Let r(�) = (T (�); p; s). Then,

by de�nition of �, for eah node �, we have p

�

= p and s

�

= s.

� Let r(�) = (	

�

; p; s), then ' 2 	

�

by de�nition of I and, sine 	

�

= T (�),

we have that T satis�es (H4).

� For (H5), let fhRi ; [R℄ �

1

; : : : ; [R℄ �

m

g � T (�) and

D

(i) = hRi . Again,

we have r(�) = (T (�); p; s), and r(�i) = (T (�i); p; s). Sine r is a run of

A

'

on T , we have

((T (�); p; s); T (�); (T (�1); p; s); : : : ; (T (�k); p; s)) 2 �;

whih implies f ; �

1

; : : : ; �

m

g � T (�i) by De�nition of �, and thus T

satis�es (H5).

� T satis�es (H6) due to the last impliation in the de�nition of � and

sine r(�) = (T (�); p; s).

� For (H7), let [R℄ � 2 T (�). Sine r(�) = (T (�); p; s) and, due to 3. in

the de�nition of Q, we have [R℄ � 2 s. Then, for a node �, we have

r(�) = (T (�); p; s), and, due to 2. in the de�nition of Q, T (�) = ; or

f�; ��g \ T (�) 6= ;.

� For (H8), let f[R℄ �; [

�

R℄ g � T (�) and �� 2 T (�). Sine r(�) = (T (�); p; s)

and, due to 4. in the de�nition of Q, we have f[R℄ �; [

�

R℄ g 2 p. Now

r(�) = (T (�); p; s) and, due to 1. in the de�nition of Q, we have  2 T (�).

Summing up, A

'

aepts eah Hintikka-tree for ' and, vie versa, eah

Hintikka-tree for ' is aepted by A

'

. ❏

What is the size of looping automata A

'

= (Q

'

;M

'

; I

'

;�

'

)? Obviously,

the ardinality of l(') is linear in the length of '. Hene, by de�nition of

A

'

, the ardinality of Q

'

and M

'

are exponential in the length of '. Again

by de�nition of A

'

, this implies that the ardinalities of I

'

and �

'

are also

exponential in the length of '. Hene, the size of A

'

is exponential in the

length of '. This fat together with Lemma 4, Lemma 6, and the fat that

emptiness of the language aepted by a looping automaton A

'

an be tested

in time polynomial in the size of A

'

, we have that satis�ability of K

:

!

-formulae

is in ExpTime. In Setion 2, we already noted that satis�ability of K

:

!

-formulae

is ExpTime-hard, and, hene, we obtain the following theorem:

Theorem 7 Satis�ability of K

:

!

-formulae is ExpTime-omplete.
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3.1 (K

!


K4

!

)

:

is also in ExpTime

In this setion, we show that the same tehnique as in the previous setion an

be used to prove that (K

!


K4

!

)

:

, i.e., the fusion of K

!

with K4

!

extended

with the negation of modal parameters, is also in ExpTime.

(K

!


K4

!

)

:

provides two disjoint sets of atomi modal parametersR

1

; R

2

; : : :

and S

1

; S

2

; : : : , where the latter are alled transitive modal parameters. The syn-

tax of (K

!


K4

!

)

:

is the same as the one of K

:

!

exept that, in (K

!


K4

!

)

:

,

transitive modal parameters may be used anywhere were modal parameters are

allowed in K

:

!

. For the semantis, we restrit Kripke strutures to those where

aessibility relations S

i

orresponding to transitive atomi parameters S

i

are

transitive.

Again, w.l.o.g., we assume that ' is in NNF.

De�nition 8 A (K

!


K4

!

)

:

-Hintikka-tree is a Hintikka-tree as in De�nition 3

extended by the following two onditions:

1

(H5b) if, for a transitive parameter S

i

, we have fhS

i

i ; [S

i

℄ �

1

; : : : ; [S

i

℄ �

m

g �

T (�) and

D

(i) = hS

i

i , then f ; �

1

; : : : ; �

m

; [S

i

℄ �

1

; : : : ; [S

i

℄ �

m

g � T (�i)

(H8b) if, for a transitive parameter S

i

, we have f[S

i

℄ ; [:S

i

℄ �g � T (�) and

�� 2 T (�), then f[S

i

℄ ;  g � T (�).

▲

We an now \lift" Lemma 4 to the (K

!


K4

!

)

:

ase.

Lemma 9 A (K

!


K4

!

)

:

-formula ' is satis�able i� ' has a (K

!


K4

!

)

:

-

Hintikka-tree.

Proof: The proof is analogous to the one for Lemma 4. Let ' be a (K

!


K4

!

)

:

-

formula and let there be k diamond-formulae in l(').

\(" Let T be a Hintikka-tree for '. For eah S 2 fR

1

; : : : ; S

1

; : : : g, de�ne

relations K

S

as follows:

K

S

= f(�; �) j E(j) = hSi 2 T (�) and � = �jg [

f(�; �) j [:S℄ 2 T (�) and

�

 2 T (�)g

Based on the relationsK

S

, we de�ne a Kripke strutureM = hW;�;R

1

; : : : ;S

1

; : : :i

as follows:

W = f� 2 f1; : : : ; kg

�

j T (�) 6= ;g

�(p) = f� j p 2 T (�)g for all p 2 �g

R

i

= K

R

i

for all i � 1

S

i

= K

+

S

i

for all i � 1

1

Note that \R" in De�nition 3 now denotes both standard and transitive modal parameters

and negations thereof.
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where K

+

denotes the transitive losure of the relation K. As for K

:

!

, the \only

if" diretion is now an immediate onsequene of the following laim:

Claim:  2 T (�) implies M; � j=  for all � 2W and  2 l(').

The laim is proved by indution over the struture of  . The indution start

and all but one ase in the indution step are idential to the K

:

!

ase and omit-

ted here. The only interesting ase is the following (note that the omplement

of a transitive relation does not need to be transitive, hene we need to onsider

only the positive ase here):

�  = [S

i

℄ � for a transitive atomi parameter S

i

with orresponding a-

essibility relation S

i

. Fix a � with (�; �) 2 S

i

. We need to show that

M; � j= �. By de�nition of M, there exists a sequene 

1

; : : : ; 

r

with

r � 2 suh that

{ (

`

; 

`+1

) 2 K

S

i

for 1 � ` < r, and

{ 

1

= � and 

r

= �.

We show that [S

i

℄ � 2 T (

`

) implies [S

i

℄ � 2 T (

`+1

) for eah 1 � ` < r.

By de�nition of K

S

i

, we have to distinguish two ases:

1. 

`+1

= 

`

j and E(j) = hS

i

i �

0

2 T (

`

), or

2. [:S

i

℄ �

0

2 T (

`

) and ��

0

2 T (

`+1

)

In the �rst ase, we have fhS

i

i �

0

; [S

i

℄ �g � T (

`

) whih, by (H5b), implies

f�; �

0

; [S

i

℄ �g � T (

`

j). In the seond ase, we have f[S

i

℄ �; [S

i

℄ �

0

g � T (

`

)

and ��

0

2 T (

`+1

). By (H8b), we have f[S

i

℄ �; �g � T (

`+1

).

Hene [S

i

℄ � 2 T (

r�1

) beause [S

i

℄ � 2 T (

1

). We an then use the same

arguments as in the proof of Lemma 4 to show that � 2 T (

r

), and thus

we have M; 

r

j= � by indution.

\(" Let M = hW;�;R

1

; : : : ;S

1

; : : :i be a model of ', i.e., there exists a

w

0

2 W with M; w

0

j= '. De�ne a Hintikka-tree T based onM as in the proof

of Lemma 4. We need to show that T satis�es the additional properties (H5b)

and (H8b).

(H5b) Let fhS

i

i ; [S

i

℄ �

1

; : : : ; [S

i

℄ �

m

g � T (�) and E(i) = hS

i

i for a transi-

tive parameter S

i

. By (�), we have �(�) 6= ? and M; �(�) j= hS

i

i ^

[S

i

℄ �

1

^ � � � ^ [S

i

℄ �

m

. By de�nition of � (indution step, �rst ase), we

have �(�i) = w for a w with M; (�(�); w) j= S

i

, and M; w j=  . By

semantis of (K

!


K4

!

)

:

, we also have M; w j= �

1

^ � � � ^ �

m

.

Now let w

0

2 W suh that M; (�(�i); w

0

) j= S

i

. Sine S

i

is transitive,

we have M; (�(�); w

0

) j= S

i

and hene M; w

0

j= �

1

^ � � � ^ �

m

. Sine

this holds independently of the hoie of w

0

, we have that M; �(�i) j=

[S

i

℄ �

1

^ � � � ^ [S

i

℄ �

m

.

Summing up and applying (�), we obtain f ; �

1

; : : : ; �

m

; [S

i

℄ �

1

; : : : ; [S

i

℄ �

m

g �

T (�i).
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(H8b) Assume f[S

i

℄ ; [:S

i

℄ �g � T (�) and �� 2 T (�) for a transitive param-

eter S

i

. By (�), we have M; �(�) j= [S

i

℄ ^ [:S

i

℄ � and M; �(�) j= ��.

Analogously to the orresponding ase in the proof of Lemma 4, we de-

due M; (�(�); �(�)) j= S

i

and M; �(�) j=  . As in the ase (H5b), we

obtain M; � j= [S

i

℄ , and, by (�), we onlude f ; [S

i

℄ g � T (�).

❏

It remains to onstrut a looping automaton that aepts exatly the Hintikka-

trees for a given (K

!


K4

!

)

:

-formula '. This onstrutions is a simple exten-

sion of the one forK

:

!

-formulae with the approriate translations of the additional

properties (H5b) and (H8b). More preisely, the onstrution is the same as

the one in De�ntion 5, with an additional �fth ondition in the de�nition of Q

as a translation of (H8b), and an additional impliation in the de�nition of �

as a translation of (H5b).

De�nition 10 For a (K

!


K4

!

)

:

-formula ' with k diamond-formulae in l('),

the looping automaton A

'

= (Q; 2

l(')

;�; I) is de�ned as follows:

� Let P = ff[R℄ ; [

�

R℄ �g j [R℄ ; [

�

R℄ � 2 l(')g;

S = f[R℄ j [R℄ 2 l(')g;

Q is the set of all those elements (	; p; s) of

f	 2 2

l(')

j 	 is a Hintikka-setg � 2

P

� 2

S

satisfying the following onditions:

1. if f[R℄ �; [

�

R℄ g 2 p and �� 2 	, then  2 	,

2. if [R℄ � 2 s, then 	 = ; or f�; ��g \	 6= ;,

3. if [R℄ � 2 	, then [R℄ � 2 s,

4. if f[R℄ �; [

�

R℄ g � 	, then f[R℄ �; [

�

R℄ g 2 p, and

5. if f[S

i

℄ ; [:S

i

℄ �g 2 p and �� 2 	 for a transitive parameter S

i

, then

f ; [S

i

℄ g 2 	.

� I = f(	; p; s) j ' 2 	g.

� ((	; p; s);	

0

; (	

1

; p

1

; s

1

); : : : ; (	

k

; p

k

; s

k

)) 2 � i�

	 = 	

0

; p

i

= p; s

i

= s for all 1 � i � k; and

if

D

(i) = hRi 2 	, then  2 	

i

and � 2 	

i

for eah [R℄ � 2 	

if

D

(i) = hS

i

i 2 	 for a transitive parameter S

i

, then [S

i

℄ � 2 	

i

for eah [S

i

℄ � 2 	 and

if

D

(i) = hRi 62 	, then 	

i

= ;:

▲
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With the remarks above, the proof of the following lemma is ompletely

analogous to the one of Lemma 6, and thus omitted.

Lemma 11 T is a Hintikka-tree for a (K

!


K4

!

)

:

-formula ' i� T 2 L(A

'

).

Analogously to Theorem 7, we obtain the following theorem:

Theorem 12 Satis�ability of (K

!


K4

!

)

:

-formulae is ExpTime-omplete.

4 Adding Intersetion and Union of Modal Pa-

rameters

In this setion, we investigate the omplexity of adding intersetion and union

of modal parameters to the logi K

:

!

. In doing this, one has the hoie to either

restrit the appliability of negation to atomi modal parameters or allowing

for full negation w.r.t. modal parameters. In the latter ase, adding union is

obviously equivalent to adding intersetion or both.

We start with the smallest extension, i.e., we add either intersetion or union

on modal parameters while restriting negation to atomi parameters.

De�nition 13 A K

(:);[

!

-formula (K

(:);\

!

-formula) is a K

:

!

-formula

whih, additionally, allows for modal parameters of the form S

1

[ � � � [ S

k

(S

1

\ � � � \ S

k

), where eah S

i

is an atomi or a negated atomi parameter.

The semantis of the new modal operators is de�ned as follows:

M; w j= hS

1

[ � � � [ S

k

i' i� 9w

0

2W with M; (w;w

0

) j= S

i

for

some i 2 f1; : : : ; kg and M; w

0

j= '

M; w j= [S

1

[ � � � [ S

k

℄' i� 8w

0

2W , if M; (w;w

0

) j= S

i

for

some i 2 f1; : : : ; kg; then M; w

0

j= '

M; w j= hS

1

\ � � � \ S

k

i' i� 9aw

0

2W with M; (w;w

0

) j= S

i

for all 1 � i � k and M; w

0

j= '

M; w j= [S

1

\ � � � \ S

k

℄' i� 8w

0

2W , if M; (w;w

0

) j= S

i

for all 1 � i � k; then M; w

0

j= '

▲

Let us �rst investigate the logi K

(:);[

!

. It is not hard to see that

[S

1

[ � � � [ S

k

℄' � [S

1

℄' ^ � � � ^ [S

k

℄' and

hS

1

[ � � � [ S

k

i' � hS

1

i' _ � � � _ [S

k

℄';

i.e., satis�ability of K

(:);[

!

-formulae an be redued to satis�ability of K

:

!

-

formulae. However, this naive redution might lead to an exponential blow-up

of the formula. In order to avoid this blow-up, we an proeed as follows to

transform a K

(:);[

!

-formula  into an equivalent K

:

!

-formula

b

 whose length is

14



linear in the length of  : As the �rst step, reursively apply the following substi-

tutions to  from the inside to the outside (i.e., no union on modal parameters

ours in ')

[S

1

[ � � � [ S

k

℄' ; [S

1

℄ p

'

^ � � � ^ [S

k

℄ p

'

and

hS

1

[ � � � [ S

k

i' ; hS

1

i p

'

_ � � � _ [S

k

℄ p

'

where p

'

is a new propositional variable. Call the result of these substitutions

 

0

. Seondly, use a new modal parameter R and de�ne

b

 :=  

0

^

^

p

'

ours in  

0

[R℄(p

'

$ ') ^ [:R℄(p

'

$ ')

It an easily be seen that this gives the following result.

Theorem 14 Satis�ability of K

(:);[

!

-formulae is ExpTime-omplete.

Next, we show that the satis�ability of K

(:);\

m

-formulae is NExpTime-hard.

The proof is given by a redution of a NExpTime-omplete variant of the well-

known, undeidable domino problem.

A domino problem [4, 19℄ is given by a �nite set of domino types. All domino

types are of the same size, eah type has a quadrati shape and olored edges.

Of eah type, an unlimited number of dominoe is available. The problem in the

original domino problem is to arrange these dominoe to over the plane without

holes or overlapping, suh that adjaent dominoe have idential olors on their

touhing edges (rotation of the dominoe is not allowed). In the NExpTime-

omplete variant of the domino problem that we use, the task is not to tile

the whole plane, but to tile a 2

n+1

� 2

n+1

-torus, i.e., a 2

n+1

� 2

n+1

-retangle

whose edges are \glued" together. See, e.g., [4, 19℄ for undeidable versions of

the domino problem and [6℄ for bounded variants. We now formally introdue

bounded domino systems.

De�nition 15 Let D = (D;H; V ) be a domino system, where D is a �nite

set of domino types and H;V � D � D represent the horizontal and vertial

mathing onditions. For s; t 2 N, let U(s; t) be the torus Z

s

� Z

t

, where Z

n

denotes the set f0; : : : ; n � 1g. Let a = a

0

; : : : ; a

n�1

be an n-tuple of dominoe

(with n � s). We say that D tiles U(s; t) with initial ondition a i� there exists

a mapping � : U(s; t)! D suh that, for all (x; y) 2 U(s; t):

� if �(x; y) = d and �(x �

s

1; y) = d

0

, then (d; d

0

) 2 H

� if �(x; y) = d and �(x; y �

t

1) = d

0

, then (d; d

0

) 2 V

� �(i; 0) = a

i

for 0 � i < n.

where �

n

denotes addition modulo n. Suh a mapping � is alled a solution for

D w.r.t. a. ▲
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These bounded domino systems are apable of expressing the omputational be-

haviour of restrited, so-alled simple, Turing Mahines (TMs). This restrition

is non-essential in the following sense: Every language aepted in time T (n)

and spae S(n) by some one-tape TM is aepted within the same time and

spae bounds by a simple TM, provided that S(n); T (n) � 2n [6℄.

Theorem 16 [[6℄, Theorem 6.1.2℄ Let M be a simple TM with input alphabet

�. Then there exists a domino systemD = (D;H; V ) and a linear time redution

whih takes any input x 2 �

�

to an n-tuple a of dominoe with jxj = n suh that

� If M aepts x in time t

0

with spae s

0

, then D tiles U(s; t) with initial

ondition a for all s � s

0

+ 2; t � t

0

+ 2;

� if M does not aept x, then D does not tile U(s; t) with initial ondition

a for any s; t � 2.

Corollary 17 There exists a domino system D suh that the following is a

NExpTime-hard problem: Given an initial ondition a = a

0

� � � a

n�1

of length

n, does D tile the torus U(2

n+1

; 2

n+1

) with initial ondition a?

Proof: Let M be a (w.l.o.g. simple) non-deterministi TM with time- (and

hene spae-) bound 2

n

deiding an arbitrary NExpTime-omplete language

over the alphabet �. Let D be the orresponding domino system and trans the

redution from Theorem 16. The funtion trans is a linear redution from L(M)

to the problem above: For b 2 �

�

with jbj = n, it holds that b 2 L(M) i� M

aepts b in time and spae 2

jbj

i� D tiles U(2

n+1

; 2

n+1

) with initial ondition

trans(b). ❏

We redue the NExpTime-omplete variant of the domino problem from

Corollary 17 to the satis�ability of K

(:);\

m

-formulae. Given a domino system

D = (D;H; V ) and an initial ondition a = a

0

; : : : ; a

n�1

, we de�ne a redution

formula '

(D;a)

suh that '

(D;a)

is satis�able i� D tiles the torus U(2

n+1

; 2

n+1

)

with initial ondition a. The redution formula '

(D;a)

an be found in Figure 1.

In this �gure, [u℄' is an abbreviation for [R℄' ^ [:R℄', where R is an arbi-

trary atomi modal parameter. Obviously, in eah model of [u℄', eah world

satis�es '. In Init, we write [R℄

n

' for the n-fold nesting of [R℄, i.e., for

[R℄ � � � [R℄

| {z }

n times

':

Before we formally prove the orretness of the redution, we disuss the un-

derlying intuition.

The general strategy is to de�ne the redution formula '

(D;a)

suh that, for

every model M of '

(D;a)

with set of worlds W ,

1. there exists a propositional variable p

d

for every domino type d 2 D suh

that eah w 2 W is in the extension of p

d

for exatly one d 2 D (see the

�rst line of Tiling),

16



2. for eah point (i; j) in the torus U(2

n+1

; 2

n+1

), there exists a orresponding

set of worlds fw

1

; : : : ; w

k

g � W with k � 1 and a d 2 D suh that all

w

1

; : : : ; w

k

are in the extension of p

d

,

3. the horizontal and vertial onditions V and H are satis�ed w.r.t. sets of

worlds representing points in the plane (see the seond and third line of

Tiling), and

4. the initial ondition is satis�ed (see Init).

Let us examine the struture of models of '

(D;a)

in detail. Let

M = (W;�;R

x

;R

y

;R

0

; : : : ;R

n

;S

0

; : : : ;S

n

; : : :)

be a model for '

(D;a)

. Every w 2W is assoiated with a point (i; j) of the torus

U(2

n+1

; 2

n+1

). The number i is binarily oded by the propositional variables

x

0

; : : : ; x

n

while the number j is binarily oded by the propositional variables

y

0

; : : : ; y

n

. More preisely, we set

xpos(w) = �

n

i=0

�

i

(w) � 2

i

and ypos(w) = �

n

i=0

�

i

(w) � 2

i

where

�

i

(w) =

�

1 if w 2 �(x

i

)

0 otherwise

and �

i

(w) =

�

1 if w 2 �(y

i

)

0 otherwise

With pos(w), we denote the pair (xpos(w); ypos(w)). The �rst onjunt of the

Init formula ensures that pos(w) = (0; 0) for all w with M; w j= '

(D;a)

. The

Count

x

and Count

y

formulae together with the Stable formula ensure that, for

every w 2W , there exist w

1

; w

2

2W suh that

(a) M; (w;w

1

) j= R

x

and M; (w;w

2

) j= R

y

,

(b) xpos(w

1

) = xpos(w) �

2

n+1
1 and ypos(w

2

) = ypos(w)�

2

n+1
1, and

() xpos(w

2

) = xpos(w) and ypos(w

1

) = ypos(w).

Here, the Count

x

and Count

y

formulae enfore Property (b) by a standard

enoding of binary inrementation by 1 modulo 2

n+1

(see, e.g., [6℄). The Stable

formula enfores Property (), i.e., Stable enfores that the R

x

-suessors of a

world w satisfy the same y

k

as w, and analogously for R

y

and x

k

.

Informally speaking, models of '

(D;a)

an be thought of as having the form

of an in�nite binary tree (in whih some nodes may oinide) where paths p

of R

x

and R

y

relations lead to a world w suh that xpos(w) is the number

of R

x

edges in p modulo 2

n+1

and ypos(w) is the number of R

y

edges in p

modulo 2

n+1

. The modal parameters R

x

and R

y

are representing horizontal

and vertial suessors in the torus.

As already noted, the domino types are represented by propositional vari-

ables p

d

with d 2 D, and the (�rst line of the) Tiling formula guarantees that

every worlds belongs to p

d

for exatly one d 2 D. We write dtype(w) to denote
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Count

x

= [u℄

h

n

^

k=0

�

(

k�1

^

j=0

x

j

)! (x

k

$ [R

x

℄:x

k

)

�

^

n

^

k=0

�

(

k�1

_

j=0

:x

j

)! (x

k

$ [R

x

℄x

k

)

�

^ hR

x

i true

i

Count

y

like Count

x

; replae R

x

by R

y

, x

j

by y

j

, and x

k

by y

k

Stable = [u℄

h

n

^

k=0

(x

k

! [R

y

℄x

k

) ^

n

^

k=0

(:x

k

! [R

y

℄:x

k

) ^

n

^

k=0

(y

k

! [R

x

℄ y

k

) ^

n

^

k=0

(:y

k

! [R

x

℄:y

k

)

i

Unique = [u℄

h

n

^

k=0

�

(x

k

! [:R

k

℄:x

k

) ^ (:x

k

! [:R

k

℄x

k

)

�

^

n

^

k=0

�

(y

k

! [:S

k

℄:y

k

) ^ (:y

k

! [:S

k

℄ y

k

)

�

^

^

d2D

p

d

! [R

0

\ � � � \R

n

\ S

0

\ � � � \ S

n

℄ p

d

i

Tiling = [u℄

h

(

_

d2D

p

d

) ^

^

d2D

^

d

0

2Dnfdg

:(p

d

^ p

d

0

) ^

^

d2D

p

d

!

�

[R

x

℄

_

(d;d

0

)2H

p

d

0

�

^

^

d2D

p

d

!

�

[R

y

℄

_

(d;d

0

)2G

p

d

0

��

Init =

n

^

k=0

(:x

i

^ :y

i

) ^ p

w

0

^ [R

x

℄ p

w

1

^ � � � ^ [R

x

℄

n�1

p

w

n�1

C

'

= Count

x

^ Count

y

^ Stable ^ Unique ^ Tiling ^ Init

Figure 1: The K

(:);\

m

formula '

(D;a)

for D = (D;H; V ) and a = a

0

; : : : ; a

n�1

.

the d 2 D suh that w 2 �(p

d

). Sine di�erent worlds may be assoiated with

the same point in the torus, we must ensure that pos(w) = pos(w

0

) implies

dtype(w) = dtype(w

0

). This is done by the Unique formula: For eah 0 � i � n,

this formula ensures that
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\(" First, assume that '

(D;a)

is satis�able, i.e., that there exists a Kripke

struture

M = (W;�;R

x

;R

y

;R

0

; : : : ;R

n

;S

0

; : : : ;S

n

)

and some w

0

2 W suh that M; w

0

j= '

(D;a)

. We show that D has a solution

w.r.t. a. De�ne a mapping � from U(2

n+1

; 2

n+1

) to D by setting �(i; j) := d

i� dtype(w) = d for a w 2 W with pos(w) = (i; j). By Lemmas 18 and 19, � is

a well-de�ned total funtion. We need to show that � is a solution for D with

initial ondition a.

Let (i; j) 2 U(2

n+1

; 2

n+1

) and i

0

= i�

2

n+1
+1. To show that � satis�es the

horizontal mathing ondition, we need to show that (�(i; j); �(i

0

; j)) 2 H . By

Lemma 18, there exists a world w suh that pos(w) = (i; j). By Lemma 19

and de�nition of � , we have dtype(w) = �(i; j). By the Count

x

formula, there

exists a w

0

2 W suh that xpos(w

0

) = i

0

and M; (w;w

0

) j= R

x

. By the Stable

formula, we have ypos(w

0

) = j. Again, by Lemma 19 and de�nition of � , we have

dtype(w) = �(i

0

; j). By the seond onjunt of the Tiling formula, we onlude

(�(i; j); �(i

0

; j)) 2 H . The proof that the vertial mathing ondition is satis�ed

is analogous. Taking into aount the Count

x

, Stable, and Init formulae and

the de�nition of � , it is straightforward to prove that the initial ondition is

satis�ed by using indution on n.

\)" Let � be a solution for D w.r.t. a. For two integers n; k 2 N with

0 � k � log

2

n, we denote the k'th bit in the binary representation of n by

bit

k

(n). We de�ne a Kripke struture

M = (W;�;R

x

;R

y

;R

0

; : : : ;R

n

;S

0

; : : : ;S

n

; : : : )

as follows:

W := fa

i;j

j 0 � i; j � 2

n+1

g

�(p

d

) := fa

i;j

j �(i; j) = dg for all d 2 D

�(x

k

) := fa

i;j

j bit

k

(i) = 1g for 0 � k � n

�(y

k

) := fa

i;j

j bit

k

(j) = 1g for 0 � k � n

R

x

:= f(a

i;j

; a

i

0

;j

) j i

0

= i�

2

n+1
1g

R

y

:= f(a

i;j

; a

i;j

0

) j j

0

= j �

2

n+1
1g

for 0 � k � n : R

k

:= f(a

i;j

; a

i

0

;j

0

) j bit

k

(i) = bit

k

(i

0

)g

for 0 � k � n : S

k

:= f(a

i;j

; a

i

0

;j

0

) j bit

k

(j) = bit

k

(j

0

)g

It is easy to verify that M; a

0;0

j= '

(D;a)

. ❏

Summing up Proposition 20 and Corollary 17, we obtain a NExpTime lower

bound for K

(:);\

!

-formulae. The orresponding upper bound follows from the

fat that the translation of K

:

!

-formulae to L

2

-formulae mentioned in Setion 2

an also be applied to K

(:);\

!

-formulae.

Theorem 21 Satis�ability of K

(:);\

!

-formulae is NExpTime-omplete.
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5 Full Boolean Modal Logi

In this setion, we investigate the omplexity of full Boolean Modal Logi. Let

us start with introduing this logi formally.

De�nition 22 A omplex modal parameter is a Boolean formula of atomi

modal parameters. We use K

:;\;[

!

to denote the extension of K

!

with omplex

modal parameters. Let M = hW;�;R

1

; : : :i be a Kripke struture, and S a

(possibly omplex) modal parameter. Then the extension E(S) is indutively

de�ned as follows:

if S = R

i

(i.e., S is atomi) then E(S) = R

i

if S = :S

0

then E(S) = (W �W ) n E(S

0

)

if S = S

1

\ S

2

then E(S) = E(S

1

) \ E(S

2

)

if S = S

1

[ S

2

then E(S) = E(S

1

) [ E(S

2

)

The semantis of formulae is extended as follows:

M; w j= hSi' i� 9w

0

2 W with (w;w

0

) 2 E(S) and M; w

0

j= '

M; w j= [S℄' i� 8w

0

2 W , if (w;w

0

) 2 E(S), then M; w

0

j= '

We write M; (w;w

0

) j= S i� (w;w

0

) 2 E(S).

▲

From Theorem 21 and the standard tranlation of K

:;\;[

!

into L

2

, we easily

obtain the following result:

Theorem 23 Satis�ability of K

:;\;[

!

-formulae is NExpTime-omplete.

However, it is interesting to note that the NExpTime redution used to prove

Theorem 21 ruially depends on the fat that an in�nite number of modal

parameters is available: Sine the size of the torus to be tiled is not bounded,

there exists no upper bound for the number of the R

i

and S

i

parameters used for

the redution either. Although Boolean Modal Logis usually provide an in�nite

number of modal parameters (see, e.g., [9℄), the question whether NExpTime-

hardness an still be obtained if only a bounded number of modal parameters is

available is natural. In the remainder of this setion, we answer this question by

showing that satis�ability and validity of K

:;\;[

m

, i.e., full Boolean Modal Logi

with a �xed number m of modal parameters, is ExpTime-omplete. The upper

bound is proved by a redution to multi-modal K enrihed with the universal

modality.

We show that satis�ability ofK

:;\;[

m

-formulae an be redued to satis�ability

of K

u

n

-formulae (i.e., formulae of multi-modal K enrihed with the universal

modality) by giving a series of polynomial redution steps. We do not introdue

K

u

n

formally but refer the reader to, e.g., [25℄. The following notions are entral

to several of the redution steps.
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De�nition 24 A Kripke struture M = hW;�;R

1

; : : :R

m

i is alled simple i�

we have R

i

\ R

j

= ; for all 1 � i < j � m. M is alled omplete i�, for all

w;w

0

2 W , there exists a unique i with 1 � i � m suh that (w;w

0

) 2 R

i

. A

formula (of any logi de�ned in this paper) is alled s-satis�able i� it has a model

whih is a simple Kripke struture. Similarly, a formula is alled -satis�able i�

it has a model whih is a omplete Kripke struture. ▲

Note that every omplete Kripke struture is also simple. We now desribe the

redution steps in detail. Let ' be a K

:;\;[

m

-formula whose satis�ability is to

be deided and let R

1

; : : : ; R

m

be the modal parameters of K

:;\;[

m

.

Step 1. Convert all modal parameters in ' to disjuntive normal form using a

truth table. If the \empty disjuntion" is obtained when onverting a modal

parameter S, then replae every ourrene of hSi with false and every our-

rene of [S℄ with true. Call the result of the onversion '

1

. The length of '

1

is linear in the length of ' sine the number m of atomi modal parameters is

�xed (and the onversion an be done in linear time). It is easy to see that '

1

is satis�able i� ' is satis�able.

Sine the onversion to DNF was done using a truth table, eah disjunt

ourring in a modal parameter in '

1

is a relational type, i.e., of the form

S

1

\ � � � \ S

m

with S

i

= R

i

or S

i

= :R

i

for 1 � i � m

Let � be the set of all relational types. As is easily seen, if M; (w;w

0

) j= S for

some Kripke strutureM with set of worldsW , w;w

0

2W , and S 2 �, then, for

every atomi modal parameters R

i

, this determines whether M; (w;w

0

) j= R

i

holds. Hene, for every w;w

0

2 W , we have M; (w;w

0

) j= S for exatly one

S 2 �.

Step 2. We redue satis�ability of K

:;\;[

m

-formulae of the form of '

1

(i.e, the

modal parameters are in DNF and hene [ does not appear nested inside other

operators) to the satis�ability ofK

(:);\

m

-formulae in whih all modal parameters

are relational types. It is not hard to see that this an be done as in Setion 4,

where K

(:);[

!

is redued to K

:

!

: In the redution, just replae the formula

[R℄(p

'

$ ') ^ [:R℄(p

'

$ ') with

V

S2�

[S℄(p

'

$ ').

2

The redution an

again be done in linear time sine m is �xed. The K

(:);\

m

-formula obtained by

onverting '

1

is alled '

2

.

Step 3. We redue satis�ability of K

(:);\

m

-formulae of the form of '

2

to -

satis�ability of K

2

m

-formulae. Set n := 2

m

and let K

1

; : : : ;K

n

be the atomi

modal parameters of the logi K

n

. Let r be some bijetion between � and

the set fK

1

; : : : ;K

n

g. The formula '

3

is obtained from '

2

by replaing eah

element S of � in '

2

with r(S). Considering the speial syntati form of '

2

and

the de�nitions of � and of -satis�ability, it is easy to see that '

2

is satis�able

i� '

3

is -satis�able. Furthermore, the redution is obviously linear. Note that

2

This redution ensures that all modal parameters in the resulting formula are relational

types.
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using 2

m

instead of m modal parameters does not spoil the redution sine,

ultimately, our redution goes to satis�ability of multi-modal K enrihed with

the universal modality, and this logi is known to be in ExpTime for any �xed

number of modalities [25℄.

Step 4. We redue -satis�ability of K

n

-formulae to s-satis�ability of K

u

n

-

formulae. De�ne '

4

as the onjuntion of '

3

with the formula

� := [u℄

�

^

 

1

;:::; 

n

subformulae of '

3

[K

1

℄ 

1

^ � � � ^ [K

n

℄ 

n

! [u℄( 

1

_ � � � _  

n

)

�

Note that the length of '

4

is polynomial in the length j'

3

j of '

3

: The number

of subformulae of '

3

is bounded by j'

3

j; hene, � onsists of at most j'

3

j

`

onjunts, where ` is a onstant sine the number of modal parameters is �xed.

Let us prove that '

3

is -satis�able i� '

4

is s-satis�able. The \only if" diretion

is straightforward: Let M be a omplete model for '

3

. Obviously, M is also

simple. Moreover, using the fat that M is omplete, it is straightforward to

hek that M is a model for '

4

. It remains to prove the \if" diretion. Let

M = hW;�;K

1

; : : : ;K

n

i be a simple model for '

4

. We �rst show that

Claim. For eah w;w

0

2 W , there exists an ` with 1 � ` � n suh that, for all

subformulae  of '

3

, M; w j= [K

`

℄ implies M; w

0

j=  .

Assume to the ontrary that, for some w;w

0

2 W , there exist no ` as in the

laim. Hene, for eah i with 1 � i � n, there exists a subformula �

i

of '

3

suh

thatM; w j= [K

i

℄�

i

andM; w

0

6j= �

i

. SineM is a model for �, we learly have

M; w j= [K

1

℄�

1

^ � � � ^ [K

n

℄�

n

! [u℄(�

1

_ � � � _ �

n

):

This is obviously a ontradition to the fat that M; w 6j= �

1

_ � � � _ �

n

whih

proves the laim.

Extend the Kripke struture M to M

0

= hW;�;K

0

1

; : : : ;K

0

n

i as follows: For

any w;w

0

2 W with (w;w

0

) =2 K

i

for all i with 1 � i � n, augment K

`

with

the tuple (w;w

0

), where ` is as in the laim. Obviously, M

0

is omplete. It is

now a matter of routine to prove that M; w j=  implies M

0

; w j=  for all

subformulae  of '

3

. The proof is by indution over the struture of  . The

only interesting ase is:

 = [K

i

℄ 

0

. Let (w;w

0

) 2 K

0

i

. We need to show thatM

0

; w

0

j=  

0

. First assume

that (w;w

0

) 2 K

i

. Sine M; w j=  , this implies M; w

0

j=  

0

. By indution, we

haveM

0

; w

0

j=  

0

and are done. Now assume (w;w

0

) 2 K

0

i

nK

i

. By de�nition of

K

0

i

, we have that M; w j= [K

i

℄� implies M; w

0

j= � for all subformulae � of '

3

.

Sine  is a subformula of '

3

, we have M; w

0

j=  

0

. It remains to apply the

indution hypothesis.

Sine M is a model for '

4

, we have that M

0

is a model for '

3

. ❏

Step 5. It remains to prove that s-satis�ability of K

u

n

-formulae is deidable in

ExpTime. This is, however, an easy onsequene of the fats that satis�ability
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of K

u

n

-formulae is in ExpTime and that K

u

n

has the tree model property: sine

every tree model is obviously simple, satis�ability oinides with s-satis�ability.

The sequene of redutions given above yields an ExpTime upper bound for the

satis�ability of K

:;\;[

m

-formulae. Sine the lower bound for K

:

!

already holds

if we have only a single modal parameter available (again, see [25℄), we obtain

the following theorem.

Theorem 25 Satis�ability of K

:;\;[

m

-formulae (i.e., K

:;\;[

!

with a

bounded bumber of modal parameters) is ExpTime-omplete.

The sequene of redutions given above immediately yields an upper bound for

the satis�ability of K

:;\;[

m

-formulae. Sine the lower bound for K

:

!

already

holds if we have only a single modal parameter available (again, see [25℄), we

obtain the following theorem.

Theorem 26 Satis�ability of K

:;\;[

m

-formulae (i.e., K

:;\;[

!

with a

bounded bumber of modal parameters) is ExpTime-omplete.

6 Boolean Modal Logis without Negation

So far, we have only onsidered logis with negation of modal parameters. We

will omplete our investigation by showing that adding intersetion and union of

modal parameters does not inrease the omplexity of K

!

(and thus neither the

omplexity of K

m

is inreased by this extension). The fat that the extension

of K

!

with intersetion of modal parameters (i.e., K

\

!

) is still in PSpae is an

immediate onsequene of PSpae-ompleteness of the Desription Logi ALCR

[8℄ and the fat that ALCR is a notational variant of K

\

!

[24℄. Moreover, it is

folklore that K

!

extended with union of modal parameters (i.e., K

[

!

) is also

in PSpae (however, the redution from Setion 4 annot be applied sine the

universal modality is not available). For both union and intersetion, we go into

more detail.

With K

\;[

!

, we denote the variant of K

:;\;[

!

obtained by disallowing the

use of negation of modal parameters. In the following, we will present a slight

extension of the standard PSpae tableau algorithm for K, K-World [20℄, to

deide satis�ability of K

\;[

!

-formulae. Please note that we annot adapt the

redution from the previous setion sine the disjuntive normal form of a om-

plex modal parameter an yield an exponential blow-up if the number of boolean

parameters is not bounded. When started with an input formula ', K-World

deides ''s satis�ability by reursively searhing a �nite tree-model of ' in a

depth-�rst manner. For eah world w in this tree model, it heks whether the

set � of formulae that w must satisfy is not ontraditory. Then, for eah 3 

in �, K-World is alled reursively with  and all � with 2� in �.

To extend K-World to K

\;[

!

, it is omfortable to view the semantis of roles

in a di�erent way. For S a omplex modal parameter and s a set of atomi

modal parameters, we say s j= S i� s, when viewed as the valuation that maps

eah R

i

2 s to true and eah R

j

62 s to false, evaluates the Boolean expression S
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to true. Then (w;w

0

) 2 E(S) i� there is a set s of atomi modal parameters with

s j= S and (w;w

0

) 2 R

i

for eah R

i

2 s. The only modi�ations to K-World

onern the reursive alls for diamond formulae whih are more elaborate in the

presene of omplex modal parameters. For eah hSi in the set � of formulae

urrently onsidered, we guess an s with s j= S, and then onsider  together

with all � where [S

0

℄ � is in � and s j= S

0

.

For the sake of a suint presentation, we assume the input formula ' to

ontain no disjuntion and no diamond-formulae. For � and S sets of K

\;[

!

-

formulae where S is losed under subformulae and single negations,K

\;[

!

-World(�; S)

returns true i�

� � is a maximally propositionally onsistent subset of S, i.e.,

{ � � S,

{ for eah : 2 S,  2 � i� : 62 �, and

{ for eah  

1

^  

2

2 S,  

1

^  

2

2 � i�  

1

2 � and  

2

2 �.

� For eah subformula : [S℄ 2 �, there exists a set s of modal parameters

with s j= S and a set �

 ;s

suh that

{ : 2 �

 ;s

,

{ for eah S

0

and �, if [S

0

℄ � 2 � and s j= S

0

, then � 2 �

 ;s

,

{ K

\;[

!

�World(�

 ;s

; S

0

) returns true, where S

0

is the losure under

subformulae and single negation of f� j [S

0

℄ � 2 � and s j= S

0

g [

f: g.

Let l(') be the smallest set of formulae ontaining ' that is losed under

subformulae and single negation. The proof that a K

\;[

!

-formula ' is satis�able

i� there exists a � � l(') with ' 2 � suh that

K

\;[

!

-World(�; l(')g)

returns true is analogous to the one forK-World. Just likeK-World,K

\;[

!

-World

runs in PSpae (sine PSpae = NPSpae [23℄, the additional non-deterministi

guessing of the set of modal parameters s does not matter). Moreover, K is

known to be PSpae-hard [20℄, and we thus have the following result.

Theorem 27 Satis�ability of K

[;\

!

-formulae is PSpae-omplete.

7 Conlusion

We have given a omplete piture of the omplexity of Boolean Modal Logis,

both with and without a bound on the number of modal parameters. The results

for (fragments of) Boolean Modal Logi with an unbounded number of modal

parameters are summarised in Figure 2, showing known results in grey.

We have proved that K

:

!

is in ExpTime using looping automata, whih

turned out to be rather elegent a tehnique for two reasons. Firstly, we did
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not need to bound the size of models/Hintikka trees sine the looping automata

we used work on in�nite trees. Seondly, disjuntions were handled simply by

introduing non-deterministi transitions of the automaton, whih are harmless

sine the emptyness problem for non-deterministi looping automata is polyno-

mial. Finally, we extended the automata approah to (K

!


K4

!

)

:

to show

that it is also appliable to similar logis.

NExpTime-hardness ofK

(:);\

!

was rather surprising sine so far, intersetion

of atomi modal parameters (not of hainings/omposition of modal parame-

ters) is mostly onsidered to be \harmless" w.r.t. omplexity. Interestingly, we

were able to show that, if a bound m is imposed on the number of atomi modal

parameters, then full Boolean Modal LogiK

:;\;[

m

beomes ExpTime-omplete.

For this proof, we did not use the automata-based approah beause we on-

sidered that extending it to take are of omplex modal parameters was more

involved than the redution to K

u

n

that we used.

As future work, it may be interesting to extend our tehniques to more ex-

pressive logis. For example, one may onsider arbitrary ombinations of the

Boolean operators on modal parameters with omposition and onverse. Several

results for suh logis are known from the area of Propositional Dynami Logis

(PDL). For example, Harel proves that PDL extended with negation of modal

parameters is undeidable using a redution to the equivalene problem for rela-

tion algebra [16℄. It is not hard to see that a similar redution (of the equivalene

problem of boolean algebras of relations with omposition only, see, e.g., [1℄)

an be used to show that Boolean Modal Logi extended with omposition of

modal parameters is undeidable. On the ontrary, it follows from Daneki's

results on PDL with intersetion that K

\;[

!

extended with omposition is de-

idable in double ExpTime [7℄. As we demonstrated by extending our results to

(K

!


K4

!

)

:

, our automata-based approah to proving ExpTime-bounds an

be onsidered exible. As a �rst step towards more expressive logis, we hope

that our approah an be \married" with the standard automata-based deid-

ability proedure for PDL thus yielding a deidability result for PDL extended

with atomi negation of modal parameters.
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