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Abstract

Query containment under constraints is the problem of determining whether
the result of one query is contained in the result of another query for every database
satisfying a given set of constraints. This problem is of particular importance in
information integration and warehousing where, in addition to the constraints de-
rived from the source schemas and the global schema, inter-schema constraints can
be used to specify relationships between objects in different schemas. A theoretical
framework for tackling this problem using the DLR logic has been established,
and in this paper we show how the framework can be extended to a practical deci-
sion procedure. The proposed technique is to extend DLR with an Abox (a set of
assertions about named individuals and tuples), and to transform query subsump-
tion problems into DLR Abox satisfiability problems. We then show how such
problems can be decided, via a reification transformation, using a highly optimised
reasoner for the SHZQ description logic.

1 Introduction

Query containment under constraints is the problem of determining whether the result
of one query is contained in the result of another query for every database satisfying
a given set of constraints (derived, for example, from a schema). This problem is of
particular importance in information integration (see [9]) and data warehousing where,
in addition to the constraints derived from the source schemas and the global schema,
inter-schema constraints can be used to specify relationships between objects in differ-
ent schemas (see [6]).

This problem has been studied by Calvanese et al. [4]; they have established a theo-
retical framework using the logic DLR,! presented several (un)decidability results, and
described a method for solving the decidable cases using an embedding in the propo-
sitional dynamic logic CPDL, [12, 11]. However, this method does not lead directly
to a practical decision procedure as there is no (known) implementation of a CPDL,
reasoner. Moreover, even if such an implementation were to exist, similar embedding
techniques [10] have resulted in severe tractability problems when used, for example,
to embed the SHZF description logic in SHF by eliminating inverse roles [13].

ISet semantics is assumed in this framework.



In this paper we present a practical decision procedure for the case where neither
the queries nor the constraints contain regular expressions. This represents a restriction
with respect to the framework described in Calvanese et al., where it was shown that
the problem is still decidable if regular expressions are allowed in the schema and the
(possibly) containing query, but this seems to be acceptable when modelling classi-
cal relational information systems, where regular expressions are seldom used [7, 6].
Moreover, the use of DLR in both schema and queries still allows for relatively ex-
pressive queries, and by staying within a strictly first order setting we are able to use a
decision procedure that has demonstrated good empirical tractability.

The procedure is based on the method described by Calvanese et al., but extends
DLR by defining an 4Box, a set of axioms that assert facts about named individuals
and tuples of named individuals (see [5]). This leads to a much more natural encoding
of queries (there is a direct correspondence between variables and individuals), and
allows the problem to be reduced to that of determining the satisfiability of a DLR
knowledge base (KB), i.e., a combined schema and ABox. This problem can in turn
be reduced to a KB satisfiability problem in the SHZQ description logic, with n-ary
relations reduced to binary ones by reification. In [16], a similar approach is presented.
However, the underlying description logic (ALCNR) is less expressive than DLR and
SHTQ (for example, it is not able to capture Entity-Relationship schemas).

We have good reasons to believe that this approach represents a practical solution.
In the FaCT system [ 13] we already have an (optimised) implementation of the decision
procedure for SHZ Q schema satisfiability described in [15], and using FaCT we have
been able to reason very efficiently with a realistic schema derived from the integra-
tion of several Entity-Relationship schemas using DLR inter-schema constraints.” In
Section 4 we show how this algorithm can be straightforwardly extended to deal with
ABox axioms. As the number of individuals generated by the encoding of realistic
problems will be relatively small, this extension should not compromise the empirical
tractability.

2 Preliminaries

In this section we will (briefly) define the key components of our framework, namely
the logic DLR, (conjunctive) queries, and the logic SHZQ.

2.1 The Logic DLR

We will begin with DLR as it is used in the definition of both schemas and queries.
DLR is a description logic (DL) extended with the ability to describe relations of any
arity.

Definition 2.1.1 Given a set of atomic concept names NC and a set of atomic relation
names NR, every C' € NC is a concept and every R € NR is a relation, with every R
having an associated arity. If C, D are concepts, R, S are relations of arity n, ¢ is an

>The schemas and constraints were taken from a case study undertaken as part of the Esprit DWQ
project [7, 6].



integer 1 < ¢ < n, and k is a non-negative integer, then

T,-C,C N D,3$iR, (< k[$i]R) are DLR concepts, and
Tr, "R, RMS, ($i/n: C) are DLR relations with arity n.

Relation expressions must be well typed in the sense that only relations with the same
arity can be conjoined, and in constructs like 3[$7]R the value of s must be less than or
equal to the arity of R.

The semantics of DLR is given in terms of interpretations T = (AT, -T), where
AT is the domain (a non-empty set), and - is an interpretation function that maps
every concept to a subset of A7 and every n-ary relation to a subset of (A7)” such that
the following equations are satisfied (“” denotes set cardinality).

T = AT (cnbp)y =ctnp?
-0T = AT\ C7 (ASiR)” = {d € AT |3(dy,... ,d,) € R".d; = d}
(< KSR = {d e AT | ¢{(d1,... ,dn) € RT.d; =d} <k}
—]-nl' g (AI)n RI g TnI
=T,7\R? (RMS)F =RTNs?
($i/n:C)Y ={(di,... ,dn) € T,T |d; € CF}

Note that T,, does not need to be interpreted as the set of all tuples of arity n, but
only as a subset of them, and that the negation of a relation R with arity n is relative to
Th.

In our framework, a schema consists of a set of logical inclusion axioms expressed
in DLR. These axioms could be derived from the translation into DLR of schemas
expressed in some other data modelling formalism (such as Entity-Relationship mod-
elling [3, 8]), or could directly stem from the use of DLR to express, for example,
inter-schema constraints to be used in data warehousing, (see [6]).

Definition 2.1.2 A DLR schema S is a set of axioms of the foom C C D and RC S,
where C, D are DLR concepts and R, S are DLR relations of the same arity; an
interpretation Z satisfies C C D (written Z |= C' C D) iff C* C DZ, and it satisfies
R C S (written Z = R C S) iff R?Y Cc ST, An interpretation Z satisfies a schema S iff
7 satisfies every axiom in S.

Crucially, we extend DLR to assert properties of individuals, names represent-
ing single elements of the domain. An 4Box is a set of axioms asserting facts about
individuals and tuples of individuals.

Definition 2.1.3 Given a set of individuals NI, a DLR ABox A is a set of axioms of the
form w:C and w:R, where C is a concept, R is a relation of arity n, w is an individual
and @ is an n-tuple (wy, ... ,wy,) such that wy, ... ,w, are individuals. We will often
write w; to refer to the ith element of an n-tuple w, where 1 < ¢ < n.

Additionally, the interpretation function -Z maps every individual to an element of
AT An interpretation 7 satisfies an axiom w:C (written Z = w:C) iffw? € C7Z, and
it satisfies an axiom 1j:R (written Z |= 1i:R) iff? € RZ. An interpretation 7 satisfies
an ABox A iff 7 satisfies every axiom in A.

A knowledge base (KB) K is a pair (S, A), where S is a schema and A is an ABox.
An interpretation Z satisfies a KB K iff it satisfies both S and A.



If an interpretation Z satisfies a concept, schema, or ABox X, then we say that 7 is
amodel of X, call X satisfiable, and write 7 = X .

Note that it is not assumed that individuals with different names are mapped to
different elements in the domain (the so-called unique name assumption).

Definition 2.1.4 If K isaKB, 7 is a model of K, and A is an ABox, then 7' is called an
extension of T to Aiff 7' satisfies A, AT = AT, and all concepts, roles and individuals
occuring in K are interpreted identically by Z and 7.

Given two ABoxes A, A’ and a schema S, A is included in A’ w.rt. S (written
(S, A)A") iff every model Z of (S, .A) can be extended to A’

2.2 Queries

In this extended abstract we will consider only conjunctive queries (see [1, chap. 4]).
A conjunctive query q is an expression

q(Z) < term1(Z,7,6) A ... Atermy(Z, 7, )

where Z, ¥, and ¢ are tuples of distinguished variables, variables, and constants, re-
spectively (distinguished variables appear in the answer, “ordinary” variables are used
only in the query expression, and constants are fixed values). Each term term;(Z, ¥, ©)
is called an atom in ¢ and is in one of the forms C'(w) or R(w), where w (resp. ) is
a variable or constant (resp. tuple of variables and constants) in Z, 7, ¢ C is a DLR
concept and R is a DLR relation.?

For example, a query designed to return the bus number of the city buses travelling
in both directions between two stops is:

BUS(nr) < bus_route(nr, stop,, stop,) A bus_route(nr, stop,, stop,) A city_bus(nr)

where nr is a distinguished variable (it appears in the answer), stop, and stop, are non-
distinguished variables, city_bus is a DLR concept and bus_route is a DLR relation.

In this framework, the evaluation of a query ¢ with n distinguished variables w.r.t.
a DLR interpretation® Z (written ¢(Z)) is the set of n-tuples d € (AT)™ such that

7 = Jyj.term, (d: TON... A termn(d-: 7, ©).

A query ¢ () is contained in a query q»(Z) w.r.t. a schema S (written S = ¢ C
@2), iff, for every possible model Z of S, ¢1(Z) C ¢2(Z).
For example, the schema containing the axioms

(bus_route M ($1/3 : city_bus)) C city_bus_route and
city_bus_route C (bus_route M1 ($1/3 : city_bus)),

states that the relation city_bus_route contains exactly the bus_route information that
concerns city buses. It is easy to see that the following CITY_BUS query

CITY_BUS(nr) « city_bus_route(nr, stop,, stop,) A city_bus_route(nr, stop,, stop,)

3The fact that these concepts and relations can also appear in the schema is one of the distinguishing
features of this approach.
4Here perceived as standard FO interpretation.



is equivalent to the previous BUS query w.r.t. the given schema. In an information inte-
gration scenario, for example, this could be exploited by reformulating the BUS query
as a CITY_BUS query ranging over a smaller database without any loss of information.

2.3 The Logic SHZQ

SHZQ is a standard DL, in the sense that it deals with concepts and (only) binary
relations (called roles), but it is unusually expressive in that it supports reasoning with
inverse roles, qualifying number restrictions on roles, transitive roles, and role inclusion
axioms.

Definition 2.3.1 Given a set of atomic concept names NC and a set of atomic role
names NR with transitive role names NRy C NR, every C' € NC is a concept, every
R € NRisarole, and every R € NR is a transitive role. If R is arole, then R~ is also
arole (and if R € NRy then R~ is also a transitive role). If S is a (possibly inverse)
role, C', D are concepts, and k is a non-negative integer, then

T,-C,CnND,35.C, <kS.C are also SHZ Q concepts.

The semantics of SHZQ is given in terms of interpretations T = (AT, -T), where AT
is the domain (a non-empty set), and -* is an interpretation function that maps every
concept to a subset of A7 and every role to a subset of (A7)? such that the following
equations are satisfied.

TZ = AT (35.0)T = {d | 3d'.(d,d") € ST and d' € CT}
~CT = AT\ CT  (<kS.C)T ={d | #{d'.(d,d') € STand d' € CT} < k}
(cnp)r =cTnDt RT = (RT)* forall R € NR,.

(R ={(dd) | (d,d') € R"}

SHIQ schemas, ABoxes, and KBs are defined similarly to those for DLR: if
C, D are concepts, R, S are roles, and v, w are individuals, then a schema S consists
of axioms of the form C C D and R C S, and an ABox A consists of axioms of the
form w:C and (v, w):R. Again, a KB K is a pair (S, A), where S is a schema and A
is an ABox.

The definitions of interpretations, satisfiability, and models also parallel those for
DLR, and there is again no unique name assumption.

Note that, in order to maintain decidability, the roles that can appear in number
restrictions are restricted [15]: if a role R occurs in a number restriction <kS.C, then
neither S nor any of'its sub roles may be transitive (i.e., if the schema contains a C-path
from S’ to S, then S’ is not transitive).

3 Determining Query Containment

In this section we will describe how the problem of deciding whether one query is
contained in another one w.r.t. a schema can be reduced to the problem of deciding KB
satisfiability in the SHZQ description logic. There are three steps to this reduction.



Firstly, the queries are transformed into DLR ABoxes A; and A, such that S |
q1 C ¢q2 iff (S, A1 )| A2 (see Definition 2.1.4). Secondly, the ABox inclusion problem
is transformed into one or more KB satisfiability problems. Finally, we show how a
DLR KB can be transformed into an equisatisfiable SHZQ KB.

3.1 Transforming Query Containment into ABox Inclusion

We will first show how a query can be transformed into a canonical DLR ABox.
Such an ABox represents a generic pattern that must be matched by all tuples in the
evaluation of the query.

Definition 3.1.1 Let g be a conjunctive query. The canonical ABox for q is defined by
Ay = {W:R | R() is an atom in ¢} U {w:C' | C(w) is an atom in ¢}.

We introduce a new atomic concept P,, for every individual w in A and define the
completed canonical ABox for g by

jq = Ay U{w:P, | woccurs in A;} U {w;:=P,, | w;, w; are constants in g and i # j}.

The axioms w: P, in ﬁq introduce representative concepts for each individual w in
Ajy. They are used (in the axioms w;:=P,;) to ensure that individuals corresponding
to different constants in ¢ cannot have the same interpretation,® and will also be useful
in the transformation to KB satisfiability.

By abuse of notation we will say that an interpretation Z, and an assignment p of
distinguished variables, non-distinguished variables and constants to elements in the
domain of Z such that Z |= p(q), define a model for A, with the interpretation of the
individuals corresponding with p and the interpretation PZ = {w?}.

We can use this definition to transform the query containment problem into a (very
similar) problem involving DLR ABoxes. We can assume that the names of the non-
distinguished variables in ¢, differ from those in ¢; (arbitrary names can be chosen
without affecting the evaluation of the query), and that the names of distinguished vari-
ables and constants appear in both queries (if a name is missing in one of the queries,
it can be simply added using a term like T (v)).

The following Theorem shows that a canonical ABox really captures the structure
of a query, allowing the query containment problem to be restated as an ABox inclusion
problem.

Theorem 3.1.2 Given a schema S and two queries q1 and ¢z, S = q1 C ¢ iff
<87 "441 > FﬁAQQ'

PROOF: For the if direction, assume S [~ ¢; T go. Then there exists a model Z of S
and a tuple (dy, ... ,d,) € (AT)" such that (dy,... ,d,) € ¢:(Z) and (dy, ... ,d,) &
q2(Z). T and the assignment of variables leading to (d, ... ,d,) define a model for
/qu. If T could be extended to satisfy A,,, then the extension would correspond with
an assignment of the non-distinguished variables in ¢, such that (dy, ... ,d,) € ¢2(Z),
thus contradicting the assumption.

5 A standard assumption in the database setting.



For the only if direction, assume there is a model Z of both S and .zzl\ql that cannot
be extended to a model of A,,. Hence there is a tuple (dy,... ,d,) € ¢:(Z) and a
corresponding assignment of variables that define Z. If there is an assignment of the
non-distinguished variables in ¢» such that (dy, ... ,d,) € g2(Z), then this assignment
would define the extension of Z such that A, is also satisfied. ]

The representative concepts P, in a completed canonical ABox A have the useful
property that, without loss of generality, we can often restrict our attention to interpre-
tations in which, for every w occurring in A, PZ = {w?’}.

Lemma 3.1.3 Let S be a schema, A a canonica/l\ABox and ./Zl\ the completed version
of A. If T is an interpretation such that T |= (S, A), then there exists an interpretation
T where AT = AT, PZ' = {w”} for all individuals w occuring in A and their
corresponding representative concepts Py, I is the same as -T in every other respect,

andT' = (S, A).

PROOF: From the semantics it is clear that the interpretation of a concept C' depends
only on the interpretations of the atomic concepts and roles that appear syntactically
in C, and from Definition 3.1.1, P,, appears only in axioms of the form w;:P,,, and
w;j: Py, in /T\A Therefore 7' satisfies all the axioms C' T D and R C Sin S and all
the axioms w:C in A, because Z |= (S, ./Zl\) and all the C, D, R, S and w are identically
interpreted by Z and 7. ~

Moreover, Z' also satisfies both kinds of axiom in A \ A. It obviously satisfies the
axioms of the form w:P,, because w” = w” and PZ = {w”}, so w” € PL . Italso
satisfies the axioms of the form w;:—Py,;, where w; # wj, because from wjZ € ng

I o4 pI z z A T 7'
and w; ¢ P, we havew; # wj,and P, = {wj},sow; ¢ P, . "

3.2 Transforming ABox Inclusion into ABox Satisfiability

Next, we will show how to transform the ABox inclusion problem into one or more KB
satisfiability problems. In order to do this, there are two main difficulties that must be
overcome. The first is that, in order to transform inclusion into satisfiability, we would
like to be able to “negate” axioms. This is easy for axioms of the form w:C, because an
interpretation satisfies w:—C' iff it does not satisfy w:C. However, we cannot deal with
axioms of the form «@:R in this way, because DLR only has a weak form of negation
for relations relative to T,. Our solution is to transform all axioms in A, into the form
w:C.

The second difficulty is that .A,, may contain individuals corresponding to non-
distinguished variables in g2 (given the symmetry between queries and ABoxes, we
will refer to them from now on as non-distinguished individuals). These individuals
introduce an extra level of quantification that we cannot deal with using our standard
reasoning procedures: (S, Ay, YAy, iff for all models Z of (S, A, ) there exists some
extension of 7 to A,,. We deal with this problem by eliminating the non-distinguished
individuals from A4, .

We will begin by exploiting some general properties of ABoxes that allow us to
compact Ay, so that it contains only one axiom @R for each tuple @, and one axiom



w:C for each individual w that is not an element in any tuple. It is obvious from the se-
mantics that we can combine all ABox axioms relating to the same individual or tuple:
T &= {w:C,w:D} (resp. {:R, w:S}) iff T = {w:(C M D)} (resp. {w:(RMS)}). The
following lemma shows that we can also absorb w;:C' into w:R when wj; is an element
of w.

Lemma 3.2.1 Let A be a DLR ABox with {w;:C,wW:R} C A, where w; is the ith
elementin . Then T |= Aiff T |= {w:(RM % : C)} U A\ {w;:C,W:R}.

PROOF: From the semantics, if w> € (RM$i : C)Z, then @' € R? and w? € CZ,
and if w? € C7 and w? € R, then w? € (RN $i: C)Z. "

The ABox resulting from exhaustive application of Lemma 3.2.1 can be represented
as a graph, with a node for each tuple, a node for each individual, and edges connecting
tuples with the individuals that compose them. The graph will consist of one or more
connected components, where each component is either a single individual (represent-
ing an axiom w:C, where w is not an element in any tuple) or a set of tuples linked
by common elements (representing axioms of the form w:R). As they do not have any
individuals in common, we can deal independently with the inclusion problem for each
connected set of axioms: (S, A) A" iff (S, A)xG for every connected set of axioms

GCA.

Returning to our original problem, we will now show how we can collapse a con-
nected component of A,

Q = {1[71:R1, . ,QﬁnCRn}

into a single axiom of the form w:C', where w (the “root” individual) is an element of
one of the tuples @ .. . W, occurring in G, C'is a concept that describes G from the
point of view of w, and (S, A, ) &G iff (S, Ay, ){w:C}. The collapsing procedure
works by replacing each axiom w;:R; with an axiom of the form w:C (where w is an
element of w;), which can then be absorbed into another axiom @;:R; (where w is an
element of «;) using Lemma 3.2.1. A recursive traversal of the graphical representa-
tion of G is used to choose the order in which to apply the replacements and absorptions
so that G is collapsed into a single axiom (a similar technique is used in [4] to transform
queries into concepts). During the collapsing procedure, new concepts @),,; may be in-
troduced to represent non-distinguished individuals w; that occur in G. These concepts
serve only as “place-holders”, and will be replaced when G is completely collapsed.

A traversal starts at an (arbitrary) individual node w (the “root”) and proceeds as
follows.

e At an individual node z, the node is first marked as visited. Then, while there
remains an unmarked tuple node connected to z, one of these, w0, is selected,
visited, and the axiom R is replaced with the axiom

ASIRA [ ($i/n:Cu,))),
1<ji<n. j#i

where @ = (w1, ... ,wy), ¢ is the ith element of W, w; is the jth element of ,
and C; is either the representative concept P, if w; is an individual occurring



in .zzl\ql , or a concept (),,; otherwise. Finally, any axioms z:C', ... , z:C), result-
ing from visiting the unmarked tuples connected to = are merged into a single
axiom z:(Cy M ... M CY).

e At a tuple node o, the node is first marked as visited. Then, while there remains
an unmarked individual node connected to w, one of these, x, is selected, visited,
and any axiom z:C that results from the visit is merged into the axiom :R using
Lemma 3.2.1.

After the traversal, G has been reduced to a single axiom w:C', but it may contain
concepts (Q,,; that were introduced during the collapsing procedure as representatives
for non-distinguished individuals. As these concepts do not occur in (S, /qu ), they
must be eliminated if the inclusion relationship is to be preserved. This is easy for
concepts (,; that occur only once in C, and where w; is not the root individual (i.e.,
w # w;): as w; is “referred to” only once in the collapsed axiom, and can be freely
interpreted when a model Z of (S, A,, ) is extended to G, (), can simply be replaced
with T (this will be shown more formally in Lemma 3.2.2).

This solution cannot be adopted for a concept @), that occurs more than once in
C, or that occurs at least once in C' when w = w;, because w; must have the same
interpretation everywhere it is “referred to” in the collapsed axiom. However, in this
case we can deal with ),,; by exploiting the fact that the individual w; must occur in
a cycle in the graph representing G. An individual w is in a cycle in the graph if there
is a path leading from the node representing w back to itself in which the same edge is
never traversed (in either direction) more than once. As the marking of nodes during
the traversal ensures that the same edge is never traversed more than once, w; must
have been in such a cycle.

Given the correspondence between the graph and the axioms in G, it is obvious that
G can only be satisfied by an interpretation Z in which w? is also in a relational cycle
(the cycle is explicitly asserted by the axioms in G). Moreover, given that (S, ./Zl\) kG,
and that extending an interpretation of (S, /T) to G cannot extend the interpretation of
any relation, then such a cycle must already exist in every interpretation of (S, ./Zl\)
Finally, the properties of DLR mean that an interpretation Z of (S, .Z) can only be
guaranteed to contain a relational cycle if the cycle is explicitly asserted in axioms of
the form w:R in A4, so that each element in the cycle must be the interpretation of one
of the individuals forming the tuples in these axioms. We can therefore conclude that
the individual w; must have the same interpretation as some individual w; occurring in
.2, and that (),,; can be replaced with the representative concept P,,; (and that if w; is
the root individual, the axiom w; : C can be replaced by w; : C).

Of course we do not know which individual occurring in A corresponds to a given
Quw;, but we can simply try all possible replacements (of which there can only be
finitely many), so that (S, .qu Y@ iff, for one of these replacements, (S, ﬁql Yre{w:C}.
An extra level of non-determinism is thus added to the procedure, but this should be
manageable as the numbers of such Q,,. will typically be very small.® These replace-

OThis represents a useful refinement over the procedure described in [4], where all z; that occur in cycles
are non-deterministically replaced with one of the w;, regardless of whether or not they are used to enforce
a co-reference.



ments can obviously be performed either before or after the collapsing procedure with-
out affecting the the result. In practice, it will be more efficient to delay the replacement
as long as possible, but in the following Lemma (Lemma 3.2.2) we will assume that
the replacements have been performed before the collapsing procedure.

The correctness of the collapsing procedure does not depend on the traversal (whose
purpose is simply to choose a suitable ordering), but only on the correctness of the in-
dividual transformations. We have already shown that the compacting and absorbing
transformations preserve (un)satisfiability, and so obviously preserve the implication
relationship; it only remains to show that the implication relationship is also preserved
by each replacement of an axiom of the form w':R with one of the form w:C.

Lemma 3.2.2 Let S be a schema, .,2[\ a completed canonical ABox and A; an ABox
where W:R € Aj, W = (wy,... ,wy), w; is the ith element of W, and every other
element of W is either an individual that occurs in A or an individual that occurs
nowhere else in either A or Ay. Let C be the concept

JB(RN |_| ($5/n ij))a

1<j<n.j#i

where Cy,; is the representative concept P,,; when wj is individual that occurs in A,
and T otherwise. If As is the ABox that results from the replacement of W:R € Ay with
the axiom w;:C, then (S, A) A iff (S, A)RAs.

PROOF: It is only necessary to show that (S, A)p{i:R} iff (S, A)re{w;:C}: if A,
contains other axioms, then any interpretation that satisfies these axioms will still sat-
isfy them after the replacement. For the only if direction, it is easy to show that if
T |= (S, A), and 7' is an extension of Z that satisfies #:R, then Z' also satisfies w;:C.

Obviously, w? is the ith element of @7 , and @ € RZ . For each component
(8j/n : C,) in C there are two possible cases

1. When wj is an individual occurring in A, C,,; is P, the representative concept
. . . . N ’ ’ ’ .
for w;. In this case, w;:P,,; is an axiom in A, so w]I € P,fj and wr € ($5/n :
II
Py,

2. Otherwise, C.,; is T, and as (85 /n : T) is equivalent to T,,, obviously wT e
(8j/n:T)".

Therefore, we also have @7 € Migjcnjzi(8i/n: Cy;)" , and sow} € CT'.
The converse direction is more complicated. Let 7 be an interpretation such that
T = (S, Aq, ), and T cannot be extended to satisfy «@:R. From Lemma 3.1.3 we can

assume, without loss of generality, that P,fi = {w?} for every representative concept
P,,; occurring in A. Assume that 7 can be extended to an interpretation Z' that satisfies
w;:C'. Then there must be some (dy, ... ,d,) € RZ such that d; = wZ', and for each
d; with j # i,d; € ($j/n : C’wj)f. Again, for each component ($5/n : C;) in C
there are two possible cases.

1. When wy is an individual occurring in ﬁ, Cl; is Py, the representative concept

T’

- AR —
for w;. In this case, P, = {wj },s0d; = wj .
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2. Otherwise, Cy, is T. In this case, w; occurs nowhere else in either A or A,
so when 7 was extended to Z', w; could have been interpreted as any element
in A7 without affecting the satisfiability of any other axiom. We can therefore
assume, without loss of generality, that in this particular interpretation w =d;

(obviously, d; € TZ).

We therefore have @ = (dy,... ,d,) and (dy,...,d,) € RY, so I’ |= @R, in
contradiction of the assumption. L]

Having collapsed G, and (non-deterministically) replaced the @.,,, we finally have
a problem that we can decide using KB satisfiability.

Lemma 3.2.3 If'S is a schema, Aisa completed canonical ABox and C'is a concept
composed only of relations and concepts occurring in S or A, then (S, A)r{w:C}
iff w is an individual in A and (S, (A U {w ~C'})) is not satisfiable, or w is not an
individual in A and (S U {T C=C}), A) is not satisfiable.

PROOF: In the case where w is an individual in A there are no longer any non-
distinguished individuals in w:C, so (S, A)ke{w:C} iff every model of (S, A) is also
a model of w:C'. This is obviously true iff there are no models of (S, A)r{w:C} that
are also models of w:—C, i.e., iff (S, (ﬁ U {w:~C1})) is not satisfiable.

In the case where w is not an individual in A, (S, A Yre{w:C'} iff for every model Z
of (S, .Z), 7 can be extended to {w:C'}. As w is the only remaining non-distinguished
individual in {w:C}, T can be extended to {w:C} iff CT # () (equivalently, (=C)T #
A7), ie.,iff (SU{T T ~C}), A) is not satisfiable. -

To illustrate the inclusion to satisfiability transformation, we will refer to the ex-
ample given in Section 2.2. The containment of BUS in CITY_BUS w.r.t. the schema
is demonstrated by the inclusion (S, A1>|~A2, where S, A1 and A, are the schema
and two canonical ABoxes (completed in the case of Al) corresponding to the given
queries:

S { (bus_route M ($1/3 : city_bus)) C city_bus_route, }
city_bus_route C (bus_route 1 ($1/3 : city_bus))
A = { (n, y1,y2):busroute, (n, y2, y1):bus_route, n:city_bus, n:P,,, y1: Py, , y2: P,
Ay = { (n, 21, z2):city_bus_route, (n, 22, 21 ):city_bus_route }

The two axioms in A are connected, and can be collapsed into a single axiom using
the described procedure. If z; is chosen as the root, and the traversal visits (n, 21, 22),
22, and (n, 29, 21 ), in that order, then the resulting axiom (describing .4, from the point
of view of z1) is z1:C, where C is the concept

3[$2](city-bus_route I ($3 : (P, M I[$2](city_bus_route M $1: P, M$3: P,,))) M $1:

and P,,, P,, are “place-holders” for 21, 25.7 As 2 is referred to only once, P,, can be

replaced w1th T. However, as z; is referred to twice (as P,, and as the root), it must be

"The reader will recall that, in practice, we use such “place-holders” during the collapsing procedure and
then make appropriate substitutions.
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replaced (non-deterministically) with one of the individuals in A7, and (S, A; ) keAs
iff (S, ﬁ1>|%{21:0} for one of these replacements. Substituting P., with T, z; with
y1 and P., with Py, results in an axiom y;:C", and (S, A1) Re{y1:C"} holds because
(S, (A; U {yy:=C"})) is not satisfiable.

Summing up, we thus have:

Theorem 3.2.4 For a DLR KB K = (S, A) and a DLR ABox A', the problem
whether A is included in A’ w.rt. S can be reduced to (possibly several) DLR ABox
satisfiability problems.

3.3 Dealing with disjunctive queries

In this section we will show how the technique can be extended in order to decide the
containment of disjunctive queries.

Definition 3.3.1 A disjunctive query q is an expression

—

q(%) < termy 1 (%, 91,6 A ... ANtermy g, (Z,71,C)
V

\%
termu 1 (%, Gm, ) A ... ANtermm, k.. (Z, ¥m, ©),
where all the terms are defined exactly as in the conjunctive queries of Section 2.2.
The query evaluation is defined as the union of all the evaluations for any disjunct.

Given a query g with n distinguished variables, its evaluation w.r.t. the interpretation
T = (AZ, 1) is the set of n-tuples:

de (AT | 3g.termy(d, i1, @) A ... Atermy i, (d, i1, )

Vv
a(Z) = :
Vv
G termm 1 (d, Gm, €) A ... Atermp, .. (d, §m, €)
Without loss of generality we can assume that all the variable names in ¢y, . . . , ¥

are distinct, and that distinguished variables and constant names appear in every dis-
junct (see Section 3.1). The query containment problem is defined as in the conjunctive
case.

The basic idea is to consider each conjunctive subexpression as a canonical ABox,
and to extend the inclusion relation of Section 2.1 to take into account the “disjunction”
of ABoxes. We will first extend the definition of DLR ABoxes to disjunctive DLR
ABoxes (in order to avoid ambiguity, we will sometimes refer to the kind of ABox
defined in Section 2.1 as a conjunctive ABox).

Definition 3.3.2 A disjunctive DLR ABox is a finite set of conjunctive ABoxes {Aq, . ..

The definition of interpretation and satisfiability for each conjunctive ABox A; is the

12



same as that given in Section 2.1. An interpretation Z satisfies a disjunctive ABox A
(written Z |= A) iff Z satisfies at least one of the conjunctive ABoxes in A.

On top of the definition of a disjunctive ABox, is built the notion of a disjunctive KB
and its satisfiability. All the definitions given in Section 2.1 can be naturally extended
to the disjunctive case; in particular the fundamental notion of the inclusion relation
between ABoxes.

To simplify the notation, we define the operator (- x -) which adds a set of axioms to
each element of a disjunctive KB. The meaning of the operator is given by the following
equations:

(S AL .o Ap)) x {w:C} = (S, {A U{w:CY,. .., Ay U{w:C}Y)
(S, {A1,... , An)Yx {CED} = (SU{CCDY,{A, ..., A}

with the natural extension to finite sets of axioms:
Kx{ay,...,an}=(..(Kx{a1}) x...) x{a,}.

Now we will proceed as in Sections 3.1 and 3.2 by first showing how to reduce the
query containment problem to ABox inclusion, and then to ABox satisfiability.

First, we will extend the definition of canonical ABox to deal with disjunctive
queries.

Definition 3.3.3 Let ¢ be a disjunctive query. The canonical disjunctive ABox for q is
defined by

Aq = {Al,... ,Am}
where each A; describes a single conjunct in the query:

A; = {WR | R(W) = term; ; (¥, y;, ) is an atom in ¢ for some j} U
{w:C'| C(w) = term; ;(Z,¥;, €) is an atom in ¢ for some j}

The completed canonical disjunctive ABox for ¢ is defined in a similar way to the non-
disjunctive case (see Definition 3.1.1), the difference being that the new axioms are
added to each of the conjunctive ABoxes making up the disjunction. Given the dis-
junctive ABox A; = {A;,..., An}, its completed version (written as A,) is defined
as:

A, = Ay x ({w:Py, | woccurs in A, } U
{w;:= Py, | wi, w; are constants in ¢ and i # j})
As in the non-disjunctive case, there is a natural correspondence between database

instances and interpretations of disjunctive KBs. Each element of a query evaluation
corresponds to an interpretation satisfying the canonical ABox and vice versa.®

Proposition 3.3.4 Given a database T = (A%, 1) and a disjunctive query q(T), then
the tuple d is in the evaluation q(T) iff there is an extension ' of T satisfying A, such
that ;% = d; for each x; in T.

8We will consider a database as a standard DL R interpretation in which an individuals corresponding to
a constant is taken to be interpreted as the actual constant.
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PROOF: For the “only if” direction, let dbe in q(Z), then it satisfies at least one of the
disjuncts in q:

3g;.termi (d, 7, & A ... Aterm, (d, i, @)

for 1 < i < m, which means that there is an assignment for the variables in ¢; that
makes the expression true. If A; € A, is the corresponding conjunctive ABox, then an
extension Z' of Z can be defined by adding to - T a mapping from each individual in A

to the corresponding element of d. Ttis easy to see that 7' satisfies A and thus satisfies
Aq.

For the “if” direction, let Z' be an extension of Z satisfying j such that 2,7 = d;
for each ; in #. Then, from the definition of satisfiability of a disjunctive ABox, there
is some A; € A such that 7' = A;. Note that 7' must interpret all the individual
appearing in A;; it therefore defines an assignment for the variables ¢; in the corre-
sponding disjunct of ¢. It is easy to see that this assignment satisfies the formula

E!gj}.termi71(d: Ui, C) A ... Nterm; , d,7:,0).

Given the Proposition 3.3.4 above, we can extend Theorem 3.1.2 to the disjunctive
case.

Theorem 3.3.5 Given a schema S and two disjunctive queries g1 and ¢2, S = q1 C ¢o
WS, Agy ) Ag,-

PROOF: The same as for Theorem 3.1.2. u

The next step consists of reducing ABox inclusion to ABox satisfiability. As in the
conjunctive case, we only consider a particular kind of ABox on the r.h.s. of the inclu-
sion, namely those containing only axioms of the form w:C. This assumption can be
made without loss of generality because the connected components of each conjunctive
ABox can be collapsed into a single concept assertion, as shown in Section 3.2.

Proposition 3.3.6 Let S be a schema, Aa completed canonical disjunctive ABox and
A" a disjunctive ABox. Then (S, A) A iff there is a disjunctive ABox A" containing
only axioms of the form w:C, such that (S, A)pA"

PROOF: (SKETCHED) The same considerations set out in Section 3.2, which enable us
to “collapse” connected components into single axioms of the form w:C', also apply in
the disjunctive case, and can be used to transform each conjunctive ABox in A’ so that
it contains only such axioms. L]

In the following Lemma (Lemma 3.3.7), which provides the reduction to ABox
satisfiability, we use the notation w-C' to describe the axiom which forces the inter-
pretation of the individual w not to be in the extension of C'. If w is a non-distinguished
individual, then it is the schema axiom T C —(C; otherwise it is the ABox axiom w:—C'.

Lemma 3.3.7 Let S be a schema, A a disjunctive ABox, and { Ay, . .. , Ap} a disjunc-

tive ABox, where each A; contains only axioms of the form w:C. Then (S, A) R{A,...
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iff for every possible KB

K= <S,./21\> X U {w+C?} for some (w:C) € A;,

1<i<m
IC is unsatisfiable.
PROOF:

e For the “only if” direction, assume that (S, A)k{ A, ..., Ap,} and that there
issome A; € {Ay,...,A,,} such that the KB

K'=(S,A)x |J {w+C} forsome (w:C) € A;

1<i<m

is satisfiable. Let Z be an interpretation satisfying X', and Z’ the restriction of
this interpretation to exclude the non-distinguished individualsin {4, ... , A }.
Obviously 7" satisfies (S, A). Therefore there is an extension 7" of 7' satisfying
{Ay,...,An}. Let Ay € {A4,..., A, } be a conjunctive ABox satisfied by
7". By construction of ', there must be an assertion w:C' € Ay such that if
K' = (8", A"), then either (w+C) is in S’ or (w+C) is in every conjunctive
ABox in A'. Therefore 7 |= w+C, and Z" |= w:C. Moreover, as both Z and
T" are extensions of Z' (see 2.1.4), they differ only in the interpretation of non-
distinguished variables. There are two cases, depending on whether or not w is
a non-distinguished individual.

— If w is a non-distinguished individual, then w” € CT" and AT C (=C)Z.
As CT" = C7, this implies that w”" € (), an obvious contradiction.

— Otherwise, w” = w” ,w” € (=C)T andw?” € CT". As CT" = C7, this
implies that (=C)Z N C? # (), again an obvious contradiction.

e For the “if” direction, assume that there is an interpretation Z satisfying (S, .Z)
which cannot be extended to one satisfying {A;,..., A, }. For each A; €
{A1,...,Ap} there must be at least one axiom (w;:C;) € A; that Z cannot be
extended to satisfy. Therefore, there is a KB

K'=(S,A)x |J {w+C} forsome (w:C) € A;

1<i<m

such that the interpretation Z cannot be extended to satisfy any of the selected
axioms w:C € A;. The interpretation Z satisfies (S,.A), and it also satisfies
all the axioms {w-+C'} added in K'. Again, there are two cases, depending on
whether or not w is a non-distinguished individual.

— If w is a distinguished variable, then w” ¢ C7 otherwise any extension
will satisfy w:C'. Therefore Z | w:—C.

— If w is a non-distinguished variable, then CZ must be empty, otherwise
an extension satisfying w:C' can be defined by mapping w to one of the
element of CZ. Therefore 7 = T C —C. n
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B U(T) = U(Tl)
e =4
o($i/n:C)=T,N3fi.0(C) U(Claé_éig z ;UC('S)I’] o(Cy)
. U|-(|;1R) = Trkl" ﬂﬂU(Rl){ o(A[$iR) = 3f;.0(R)
o(Ry 2) =0(R1) Mo(Re) o(< k[$iR) = (< k f; o(R))

Figure 1: Reification of DLR concepts and relations

Lemma 3.3.7 shows how the problem can be reduced from ABox inclusion to ABox
satisfiability. Unfortunately, the resulting KB is still disjunctive, and Section 3.4.1
only shows how to solve satisfiability problems for conjunctive KBs. However, we
can reduce the problem to conjunctive KB satisfiability by introducing one more non-
deterministic step.

Lemma 3.3.8 4 disjunctive KB (S,{A1,...,An}) is satisfiable iff for some A €
{A1,..., An} (S, A) is satisfiable.

PROOF: Obviously, if Z | (S, A), then Z |= (S,{A1,...,An}), and if T =
(S,{Ai,...,An}), then from Definition 3.3.2, 7 must satisfy at least on of the con-
junctive ABoxes in {Ay, ..., Ay} "

3.4 Transforming DLTR satisfiability into SHZ Q satisfiability

We decide satisfiability of DLR knowledge bases by means of a satisfiability-preserving
translation o(-) from DLR KBs to SHZQ KBs. This translation deals with the fact
that DLR allows for arbitrary n-ary relations while SHZQ only allows for unary pred-
icates and binary relations; this is achieved by a process called reification. The main
idea behind this is easily described: each n-ary tuple in a DLR-interpretation is rep-
resented by an individual in a SHZQ-interpretation that is linked via the dedicated
functional relations f1, ..., f, to the elements of the tuple.

For DLR without regular expressions, the mapping o(+) shown in Figure 1 (given
by Calvanese et al. [4]) reifies DLR expressions into SHZ Q-concepts. This mapping
can be extended to a knowledge base as follows.

Definition 3.4.1 Let £ = (S, A) be a DLR knowledge base. The reification of S is
given by

{(e(R1) Eo(Ry)) [ (R1 ERy) € S}U{(0(C1) Eo(Ch)) | (C1 ECr) € S}

To reify the ABox 4, we have to reify all tuples appearing in the axioms. For
each distinct tuple & = (wy, . .., w,) occurring in A we chose a distinct individual #,;
(called the “reification of w”) and define:

o(W:R) = {tz:o(R)} U {{tg,w;):fi |1 <i<n} and
o(A) = {oc(FR) | ¥R € A}U {w:o(C) | w:C € A}.
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We need a few additional inclusion and ABox axioms to guarantee that any model
of (6(S),0(A)) can be “un-reified” into a model of (S, .A). Let nmax denote the max-
imum arity of the DLR relations appearing in . We define f(S) to consist of the
following axioms (where z = y is an abbreviation forz C y and y C 2):

T=TyU---UTy,
TE(E1A)T-- (ST f)

szJ_ E \V/fi+1.J_ for 2 S 1< Tmax
Ti = E‘fl.Tl M- aszl m \V/fi+1.J_ for 2 S ) S Mmax
PC T, for each atomic relation P of arity n
AC T, for each atomic concept A

These are the standard axioms needed for reification in schema reasoning, and can
already be found in [4].

We introduce a new atomic concept @, for every individual w in A and define
f(A) to consist of the following axioms:

f(A) = {w:Q, | w occurs in A} U
{wr:< 1 f7 (TnN3f2.Quy M ..M 3fn.Qu,) | (w1,... ,wy,) occurs in A}

These axioms are crucial when dealing with the problem of tuple-admissibility (see
below) in the presence of ABoxes.

Finally, we define 0(K) = ((¢(S) U f(S)), (6(A) U f(A))).

Theorem 3.4.2 Let K = (S, A) be a DLR knowledge-base. K is satisfiable iff the
SHIQ-KB o(K) is satisfiable.

The proof of Theorem 3.4.2 is rather involved and technical. We first give a sketch

of the proof.
PROOF (sketch): The same techniques that were used in [2] can be adapted to the DL
SHTZQ, and extended to deal with ABox axioms. The only-if direction is straightfor-
ward. A model Z of K can be transformed into a model of o(K) by introducing, for
every arity n with 2 < n < nmax and every n-tuple of elements d € (AZ)", a new
element ¢ 7 that is linked to the elements of d by the functional relations fi, ..., fn. If
we interpret T1 by AZ, T, by the reifications of all elements in TZ, and, for every w
that occurs in A, Q.,, by w”, then it is easy to show that we have constructed a model
of o(K).

The converse direction is more complicated since a model of (K) is not necessar-
ily tuple-admissible, i.e., in general there may be distinct elements ¢, ¢’ that are reifica-
tions of the same tuple d. In the “un-reification” of such a model, d would only appear
once which may conflict with assertions in the DLR KB about the number of tuples
in certain relations. However, it can be shown that every satisfiable KB ¢ (K) also has
a tuple-admissible model. It is easy to show that such a model, by “un-reification”,
induces a model for the original KB K. [

Theorem 3.4.2 will be an immediate consequence of the following Lemmata 3.4.3
and 3.4.5.

17



Lemma 3.4.3 Let K = (S, A) be a DLR knowledge-base. If K is satisfiable, then the
SHIQ-KB o(K) is satisfiable.
PROOF: Let Z be a model of (S,.4). We will reify it into a model Z for (¢(S) U
f(K),a(A)).

ALet Nmax denote the maximum arity of relations in S and A. The set of individuals
of 7 is the set of individuals of Z plus a distinct individual for each possible n-tuple
with 2 < n < Npax:

AT = AT Utz | d=(dy,...,dy) € (AT)",2 < 0 < nn}

We have to fix the interpretation of the atomic SHZQ-concepts and roles. The only
roles that occur in (o(S) U f(K,0(A)) are the f,, with 1 < n < ny,y. For each role
fn we set

f,{ = {{tdn) | d € (AT)" and d,, is the n-th component of d}
For every atomic DLR-concept A, we set
Ai’ — AI

For every atomic SHZ Q-concept P that corresponds to an n-ary atomic DL R -relation
with n > 2 we define

P7 = {t;| de (AT)" and d € P7}

Finally, we have to define the interpretation of the newly-introduced atomic concepts
T, for 1 < n < ngay. This is done as follows:

T T
T1:A
Th={ty|de TL} for2<n < np

It is easy to see that 7 |= f(S).

By induction of the structure of DLR-concepts and relations one can_show, for
every DLR-concept C, every DLR-relation R, every d € AT, and every d € (AT)"
for 2 < n < npax, that

d € CT implies d € o(C)* and
d € R” implies t ; € o(R).

From this it immediately follows that Z }= S implies Z = o(S) and hence 7 =
o(S) U f(K). It remains to show that also Z = o (A).
We fix the interpretation of the auxiliary concepts @, that have been introduced in

f(A) by

At first, we have to define the interpretation of the individuals in o(S). For any
individual w that appears also in A we set w? = w?. For each newly introduced
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individual ¢ with @ = (wy,...,w,) we set 1% = t ; where d= (wf,... ,wl). With
this definition it is easy to see that Z |= o(A).

It remains to show that 7 |= f(A). Z = w:Q,, follows by construction of Qllu
for every individual w that occurs in A. Let (wq,...,w,) be a tuple that occurs in

A. We have to show that w? € (< 1f; (Tn M 3f2.Quy M ... 1M Elfn.an))i. By
construction we have that

(TrnMN3f2.Qu, I‘I...I‘IEIfn.an)i ={t;l de Tz andd = (z,w¥, ... wk) forsomez € AT}

and hence

(K1 (TaN3foQuy MM 3fnQu, ) = {z € AT |Ft € TZ . d = (w0, ...

Trivially, for every x € AZ, there is at most one n-tuple that starts with 2 and continues
with w?, ..., wl. Hence, we get, for every tuple (wy,...,w,) that occurs in A, that
ITlEw:<lfi (ToMN3fo.Qu, N...M3Afn.Qu,)- ]

The proof of the converse direction of Lemma 3.4.3 is more involved. The problem
arises from the fact that a model Z of ¢(K) may not be tuple-admissible, i.e., there
may be two distinct elements ¢,¢' € AZ that are reifications of the same tuple d =
(dy,...,dy,). This means that both t,¢' € TZ and (t,d;) € fF aswellas (t',d;) € f
for 1 < i < n. The next lemma shows that any consistent SHZQ knowledge base
always has a tuple-admissible model.

Lemma 3.4.4 Let K = (S, A) be DLR-KB and o(K) = (¢(S) U f(K),o(A)) its
reified SHT Q-counterpart. If o(K) is consistent, then there exists a tuple-admissible

model T for o(K), i.e., a model where, for every 2 < n < nupe, and t,t' € T% it holds
that

N Fd(tdy et dyefh)| =t=t (%)

1<i<n

PROOF: Let Z be a model of o(K). We will transform Z into a tuple-admissible model
7 for o(K). Since T |= o(K), we have that 7 |= f(K) and hence fZ is the graph of a
partial function. To this function we will refer by fZ(-).

For 2 < m < npax and n-tuple d= (dy,...,d,) € (TF)", we define the set of all
reifications of this tuple by

Ty={te AT | (t,di) € ff A-+-A(t,dn) € fL}

Each set 7'y which contains more than one element violates (*). For any such set we
pick an arbitrary element ¢ ; € T'7 and say that the other elements are conflicting with
t ;- With Confwe denote the set of all elements that are conflicting with other elements.
We will now transform 7 into an interpretation 7 that contains no conflicts.

We start by describing this transformation for the simple case that we have only a
single conflicting element ¢. This conflict can be resolved as follows. Let Z' be the
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interpretation consisting of two disjoint copies of Z (we will forget about the interpre-
tation of individuals at the moment). 7' contains the conflicting element ¢ and a copy
t' of t. We define Z from Z' by setting

R (N F ) NN F () ) IR (8 F () AN F ()38

and preserving the interpretation of all other atomic concepts and roles. The result is
an interpretation that contains no more conflicting elements.

The construction in the general case is a little bit more complicated because in
general Conf may be of arbitrary cardinality and we have to take care of the ABox
axioms. To prevent interference of the later construction with the ABox axioms we will
use a little bit more care when choosing Conf. Firstly, we show that the interpretation
of two different ABox individuals may never conflict.

CLAIM 1: Let t3, t;z be two distinct ABox individuals. There is no conflict between tvz
and tZ.

PROOF OF CLAIM 1: If tZ = tZ then there cannot be a conflict because no element

: s T z : T(4IY — #I(4T
conflicts with itself. Assume ¢ # ¢ but, for each 1 < i < n, f(t;) = f; (t3)
(a conflict). Since Z & o(A) we have, for each 1 < i < n, v = w! and hence
v} € QL. This implies

{tE LY C(Tn N 3fo.Quy M. ..M 3fn.Qu, )7,

which yieldsw? & (< 1f; (Tn N 3f2.Quy M ... T Elfn.an))i because w appears
as the first component of two distinct reified tuples that satisfy T, M 3 fo.Qy, M ... M
3fp-Qu, - This is a contradiction to the assumption that Z = f(A).

Using Claim 1, we make sure that we do not have any conflicting elements that
appear in the interpretation of ABox individuals. There are no two ABox individuals
., , tw, such that tél , téZ are conflicting. From this it follows that, in each set Ty,
there is at most one element that appears as the image of an ABox individual of the
interpretation Z (it may appear as the image of several ABox individuals). Hence, we
can choose Conf'in a way that it contains no elements that appear as images of ABox
individuals of Z.

Let Z' denote the disjoint union of §(2°°"/) copies of Z. For a set Z C Conf we
denote the copy of d € A in the Z-th copy of Z by dz. For two distinct sets Z, Z'
and elements dz, dz, we call exchanging f¥ (dz) with f£ (dz) the operation on Z'
which changes the interpretation of f; under Z' as follows:

FE =\ {dz, 1F (d2)), (e, £E (d )} U {ldz, £ (d2)), (dar, £E (d2))}

We define 7 from Z' as the result of simultaneously exchanging, for each d € Confand
each Z C Confwithd € Z, fi(dz) with fi(dz\(a4y)-

CLAIM 2: 7 does not contain any conflicts.

PROOF OF CLAIM 2: A conflict in 7 may either origin from Z' or may be created
during the exchange.
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e A conflict in Z’ can only involve two elements in the same disjoint copy. Let
dz,ez denote the conflicting elements which reside in the Z-th copy. W.o.l.g.,
we can assume d € ConfN Z. From the fact that dz ,€7 are stil! in a conflict
originating from Z’ we have fI (dz) = f (ez) and f(dz) = f(ez).

— Ife € Conf, then we have changed the relation f; for ez. Strictly speaking,
we have to distinguish the two cases e € Z and e € Z but these are dual.
In the first case we have exchanged f{ (ez) by f{ (e (c}), in the latter
case we have exchanged f1 7' (ezu(.}) with I (ez).

— If e ¢ Conf, then we have not changed the relation f; for ez and hence we
have f7(ez) = fT' (ez). At the same time, we have exchanged f (dz) by
fi(dz\{4y) and hence ff(dz) # fL' (dz) which is a contradiction.

In both cases, we have fli (dz) # fli (ez) because these elements are in different
disjoint copies. Hence, dz and ez cannot be conflicting.

e Now assume that we have created a new conflict between elements dz, ez in
7. This implies that, w.l.0.g., the function f; has been modified for dz during
the exchange (otherwise the conflict would already be present in Z'). Since we
only change the interpretation of the role f;, dz and ez must have fif (dz) =
fiI’ (ez) for 2 < i < n, and hence dz and ez must reside in the same disjoint
copy because we do not have f;-links between the disjoint copies in Z' fori > 2.
Hence we have Z = Z'. Since dz and ez do not conflict in Z’, we must have

fE(dz) # fL (ez).

— Ifboth d,e ¢ Conf, then f{(dz) = fI (dz) # I (ez) = fi(ez), and
dz, ez cannot conflict in 7.

— If d € Confand e ¢ Conf, then we have that fli(dz) lies in the Y-th
disjoint copy for Y # Z, while f{(ez) lies in the Z-th disjoint copy.
Thus, we cannot have a conflict between dz and e .

— Finally, if d,e € Conf, then we have to distinguish between the following
cases:

x ifdye € Z then f{(dz) = I (d(ay) = f1(ez) = [T (e qey).
Hence, Z\ {d} and Z\ {e} refer to the same disjoint copy and we have
d = e and thus dz and ez are the same element and can not conflict.

x if d,e & Z, then d = e follows analogously and hence dz and ez
cannot conflict.

CLAIM 3: Let C be a SHZO-concept, d € CT and Z C Conf. Thend, € CZ.

PROOF OF CLAIM 3. We use a simple induction over the stucture of SHZ Q-concepts.
The claim obviously holds for all atomic concepts. Also, per induction, it immedi-
ately holds for the boolean combination of concepts. For the existential, value, and
number restrictions it follows from the fact that we start with disjoint copies and only
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change the interpretation of roles by exchanging elements that are copies of the same
element. Hence, we do not changes the number of successors for each element, and,
we also exchange only links to elements which, by the induction hypothesis, cannot be
distinguished by “smaller” concepts.

From Claim 3 it follows that 7 = S. It remains to show that we can fix the
interpretation of the ABox individuals in A under 7 such that 7 |= A. This can be
done by interpreting all individuals in a single copy, e.g., by setting, for every ABox
individual w, w? = w%

Again, from Claim 3, we get that, for every ABox assertion w:C' € 4 we have that
w” € C* implies w” € C”. Furthermore, since, for every individual w that appears

in A, we have w? ¢ Confand hence the interpretation of f; is not changed for w% . For

any assertion (w1, ws):f;, we have (w?,wl) € f and hence (w?,w) € f£. Thus,
we also have 7 |= A and thus 7 = K.

Together with Claim 2, which yields that 7 satisfies (%), we have that Tisa tuple-
admissible interpretation with Z |= o'(K). "

Once we have solved the problem of tuple admissibility it is fairly straightforward
to show the following lemma.

Lemma 3.4.5 Let K = (S, A) be a DLR knowledge-base. If the SHIQ-KB o(K) is
satisfiable, then K is satisfiable.

PROOF: If ¢(K) is consistent, then, by Lemma 3.4.4 we have that there is a tuple
admissible model Z for o(K). We will “un-reify” the reified tuples in 7 into ordinary
tuples. We use the auxiliary function ur that maps a reified tuple to its un-reified
counterpart. If t € TZ and fZ(t) = d; for 1 < i < n, then we define ur(t) =
(di,...,dy).

The atomic concepts and relations will be defined as follows:

AT =T7
AT = A% for each atomic concept A
PZ = {ur(t) | t € PT} for each atomic relation P of arity n

We also have to define the interpretation of the ABox individuals in 4. For every

individual w that appears in A we set w” = w’. Please note that, also if w appears

inside a tuple of a relation assertion in A, w will appear in o(A) and hence w” is

defined.
Since 7 |= f(K) we have that Z is indeed a well defined interpretation. The fol-
lowing can easily be shown:

CLAIM: For every DLR-concept C' and DLR-relation R,

d € o(C)E implies d € CF
te U(R)i implies ur(t) € R*
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PROOF OF THE CLAIM. The claim is obvious for atomic concepts and relations by the
definition of Z. By induction it follows easily also for complex concepts and roles. We
need the fact that 7 is tuple admissible to ensure that the claim holds for concepts and
relations involving counting expressions.

From this it follows that Z = S and also Z |= A, hence we have shown that K is
consistent. m

We now have the machinery to transform a query containment problem into one
or more SHZQ schema and ABox satisfiability problems. In the next section we will
present a decision procedure that will enable us to solve such problems.

4 Deciding Satisfiability of SHZ Q Knowledge Bases

To test satisfiability of a knowledge base K = (S, A), we first internalise the schema S
into the ABox A, i.e, we add, for each individual w that occurs in A, an axiom w:Cg,
where
Cs := |_| —|(C M —|D) nvU. |_| —|(C M —|D),
CCDes CCDeS

for U € NRy anew transitive role with R C U for all roles R occurring in K. Since U
functions as a universal role, the ABox resulting from this internalisation is satisfiable
iff IC is satisfiable. Thus it only remains to decide satisfiability of SHZ Q-ABoxes.

Satisfiability of SHZ Q-ABoxes can be decided by a tableaux algorithm that tries
to construct a model for the input ABox A by breaking down concepts occurring in
A into sub-concepts, possibly introducing new individual variables, and thus making
explicit the constraints imposed on individuals in models of A. To this purpose, it
works on a completion forest (i.e., a collection of trees whose root nodes are possibly
connected to each other) some of whose nodes correspond to individuals in a model.
The forest’s edges denote role-successorships, and each node is labelled with concepts
it must be an instance of. This algorithm is similar to the one that decides satisfiability
of SHZQ-concepts presented in Horrocks et al. [15]. Due to lack of space, we can
neither describe the algorithm in detail nor prove its soundness and completeness, and
refer the reader to [14], pages 38—49. Instead, we will simply point out the differences
between the concept- and the ABox-satisfiability algorithm.

Firstly, instead of working on a completion tree, it works on a completion forest,
that is, a collection of completion trees whose nodes correspond to individuals of a
model of the input ABox and whose root nodes correspond to those individuals that
occur explicitly in the ABox. Secondly, the rules of the algorithm had to be modified
to correctly handle completion forests. This mainly involves the rule that identifies
some of the neighbours of a node  whenever it has >n neighbour nodes with respect
to arole R, and we learn that, due to an at-most number restriction, 2 must only have at
most n — 1 of these “R-successors”. Here, we must take special care when root nodes
are involved in this identification. Thirdly, the blocking condition which guarantees
termination had to be modified in order to deal properly with root nodes. Basically,
this means that root nodes can never be blocked.
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5 Discussion

In this paper we have shown how the problem of query containment under constraints
can be decided using a KB (schema plus ABox) satisfiability tester for the SHZQ
description logic, and we have indicated how a SHZ Q schema satisfiability testing al-
gorithm can be extended to deal with an ABox. We have only talked about conjunctive
queries, but extending the procedure to deal with disjunctions of conjunctive queries
should be straightforward. Although there is some loss of expressive power with re-
spect to the framework presented in [4], this seems to be acceptable when modelling
classical relational information systems, where regular expressions are seldom used.

Given that the FaCT implementation of the SHZ Q schema satisfiability algorithm
has been shown to work well with realistic problems, and that the number of individ-
uals generated by query containment problems will be relatively small, there is good
reason to believe that a combination of the ABox encoding and the extended algorithm
will lead to a practical decision procedure for query containment problems. Work is
underway to test this hypothesis by extending the FaCT system to deal with SHZQ
ABoxes.
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