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Optimisation of Terminological Reasoning

Ian Horrocks and Stephan Tobies

Abstract

When reasoning in description, modal or temporal logics it is often
useful to consider axioms representing universal truths in the domain
of discourse. Reasoning with respect to an arbitrary set of axioms
is hard, even for relatively inexpressive logics, and it is essential to
deal with such axioms in an efficient manner if implemented systems
are to be effective in real applications. This is particularly relevant
to Description Logics, where subsumption reasoning with respect to a
terminology is a fundamental problem. Two optimisation techniques
that have proved to be particularly effective in dealing with termi-
nologies are lazy unfolding and absorption. In this paper we seek to
improve our theoretical understanding of these important techniques.
We define a formal framework that allows the techniques to be pre-
cisely described, establish conditions under which they can be safely
applied, and prove that, provided these conditions are respected, sub-
sumption testing algorithms will still function correctly. These results
are used to show that the procedures used in the FaCT system are
correct and, moreover, to show how efficiency can be significantly im-
proved, while still retaining the guarantee of correctness, by relaxing
the safety conditions for absorption.

1 Motivation

Description Logics (DLs) form a family of formalisms which have grown out
of knowledge representation techniques using frames and semantic networks.
DLs use a class based paradigm, describing the domain of interest in terms
of concepts (classes) and roles (binary relations) which can be combined us-
ing a range of operators to form more complex structured concepts [4]. A
DL terminology typically consists of a set of asserted facts, in particular as-
serted subsumption (is-a-kind-of) relationships between (possibly complex)
concepts.l.

!DLs can also deal with assertions about individuals, but in this paper we will only be
concerned with terminological (concept based) reasoning



One of the distinguishing characteristics of DLs is a formally defined
semantics which allows the structured objects they describe to be reasoned
with. Of particular interest is the computation of implied subsumption
relationships between concepts, based on the assertions in the terminology,
and the maintenance of a concept hierarchy (partial ordering) based on the
subsumption relationship [25].

The problem of computing concept subsumption relationships has been
the subject of much research, and sound and complete algorithms are now
known for a wide range of DLs (for example [15, 5, 1, 12, 18]). However, in
spite of the fundamental importance of terminologies in DLs, most of these
algorithms deal only with the problem of deciding subsumption between
two concepts (or, equivalently, concept satisfiability), without reference to a
terminology (but see [7, 8, 13, 18]). By restricting the kinds of assertion that
can appear in a terminology, concepts can be syntactically expanded so as
to explicitly include all relevant terminological information. This procedure,
called unfolding, has mostly been applied to less expressive DLs. With more
expressive DLs, in particular those supporting universal roles, it is often
possible to encapsulate an arbitrary terminology in a single concept. This
technique can be used with satisfiability testing to ensure that the result is
valid with respect to the assertions in the terminology, a procedure called
internalisation.

Although the above mentioned techniques su ce to demonstrate the
theoretical adequacy of satisfiability decision procedures for terminological
reasoning, experiments with implementations have shown that, for reasons
of (lack of) e ciency, they are highly unsatisfactory as a practical method-
ology for reasoning with DL terminologies. Firstly, experiments with the
KRis system have shown that integrating unfolding with the (tableaux) sat-
isfiability algorithm (lazy unfolding) leads to a significant improvement in
performance [3]. More recently, experiments with the FaCT system have
shown that reasoning becomes hopelessly intractable when internalisation is
used to deal with larger terminologies [17]. However, the FaCT system has
also demonstrated that this problem can be dealt with (at least for realistic
terminologies) by using a combination of lazy unfolding and internalisation,
having first manipulated the terminology in order to minimise the number
of assertions that must be dealt with by internalisation (a technique called
absorption). It should be noted that, although these techniques were discov-
ered while developing DL systems, they are applicable to a whole range of
reasoning systems, independent of the concrete logic and type of algorithm.

In this paper we seek to improve our theoretical understanding of these
important techniques which has, until now, been very limited. In partic-



ular we would like to know exactly when and how they can be applied,
and be sure that the answers we get from the algorithm are still correct.
This is achieved by defining a formal framework that allows the techniques
to be precisely described, establishing conditions under which they can be
safely applied, and proving that, provided these conditions are respected,
satisfiability algorithms will still function correctly. These results are then
used to show that the procedures used in the FaCT system are correct and,
moreover, to show how e ciency can be significantly improved, while still
retaining the guarantee of correctness, by relaxing the safety conditions for
absorption. Finally, we identify several interesting directions for future re-
search, in particular the problem of finding the “best” absorption possible.

2 Preliminaries

Firstly, we will establish some basic definitions that clarify what we mean
by a DL, a terminology (subsequently called a TBox), and subsumption and
satisfiability with respect to a terminology, . The results in this paper are
uniformly applicable to a whole range of DLs, as long as some basic criteria
are met:

Definition 2.1 (Description Logic) Let L be a DL based on infinite sets
of atomic concepts NC and atomic roles NR. We will identify L with the
sets of its well-formed concepts and require L to be closed under boolean
operations and sub-concepts.

An interpretation T is a pair T = (AT,-T), where AT is a non-empty set
and T is a function mapping NC to 2287 and NR to 28" %A With each DL
L we associate a set Int(L) of admissible interpretations for L. Int(L) must
be closed under isomorphisms, and, for any two interpretations T and T'
that agree on NR, it must satisfy T € Int(L) & Z' € Int(L). Additionally, we
assume that each DL L comes with a semantics that allows any interpretation
Z € Int(L) to be extended to each concept C € L such that it satisfies the
following conditions:

(11) it maps the boolean combination of concepts to the corresponding boolean
combination of their interpretations, and

(12) the interpretation CTof a compound concept C € L depends only on
the interpretation of those atomic concepts and roles that appear syn-
tactically in C.



This definition captures a whole range of DLs, namely, the important
DL ALC [22] and its many extensions. Int(L) hides restrictions on the inter-
pretation of certain roles like transitivity, functionality, or role hierarchies,
which are imposed by more expressive DLs (e.g., [18]), as these are irrelevant
for our purposes. Please note that various modal logics [21], propositional
dynamic logics [10] and temporal logics [14] also fit into this framework. We
will use C — D as an abbreviation for —=C LI D, C' <+ D as an abbreviation
for (C — D)N (D — C), and T as a tautological concept, e.g., AL A for
an arbitrary A € NC.

A TBox consists of a set of axioms asserting subsumption or equality
relations between (possibly complex) concepts.

Definition 2.2 (TBox, Satisfiability) A TBox 7 for L is a finite set of
azxioms of the form C1 E Co or C; = Co, where C; € L. If, for some A € NC,
T contains an axiom of the form A C C or A = C, then we say that A is
defined in T.

Let L be a DL and T a TBoz. An interpretation Z € Int(L) is a model
of T iff, for each C1 C Cy € T, C% C CT holds, and, for each C1 = Cy € T,
CT = CF holds. In this case we write T |=T. A concept C € L is satisfiable
with respect to a TBox T iff there is an I € Int(L) with Z =T and CT # ().
A concept C € L subsumes a concept D € L w.r.t. T iff, for all T € Int(L)
with T =T, CT 2 DT holds.

Two TBozes T,T' are called equivalent (T = T'), iff, for all T € Int(L),
IETHIET.

We will only deal with concept satisfiability as concept subsumption
can be reduced to it for DLs that are closed under boolean operations: C
subsumes D w.r.t. 7 iff (D 1 —C) is not satisfiable w.r.t. 7.

For temporal or modal logics, satisfiability with respect to a set of formu-
lae {C1,...,Cy} asserted to be universally true corresponds to satisfiability
w.r.t. the TBox {T =C4,..., T =Cp}.

Many decision procedures for DLs base their judgement on the existence
of models or pseudo-models for concepts. A central role in these algorithms is
played by a structure that we will call a witness in this paper. It generalises
the notions of tableauz that appear in DL tableau-algorithms [16, 2, 18]
as well as the Hintikka-structures that are used in tableau and automata-
based decision procedures for temporal logic [14] and propositional dynamic
logic [24].

Definition 2.3 (Witness) Let L be a DL and C € L a concept. A witness
W = (AW, WV LYY for C consists of a non-empty set AW, a function VY



that maps NR to 2AWXAW, and a function L that maps AW to 2b such
that the following properties are satisfied:

(W1) there is some z € AW with C € LV (z),
(W2) there is an interpretation I € Int(L) that stems from W, and

(W3) for each interpretation Z € Int(L) that stems from W, it holds that
D € LY (x) implies x € DT.

An interpretation T = (AZ,-T) is said to stem from W if it satisfies:
1. AT =AW,
2. -I|NR = -W, and

3. for each A € NC, A € L () implies € AT and —A € £V (z) implies
z ¢ AT.

A witness W is called admissible with respect to a TBox T if there is an
interpretation T € Int(L) that stems from W with T |= T .

Please note that, for any witness W, (W2) together with Condition 3 of
“stemming” implies that, there exists no 2 € A" and A € NC, such that
{A,-~A} C £(z). Also note that, in general, more than one interpretation
may stem from a witness. This is the case if, for an atomic concept A €
NC and an element z € AW, £V (z) N {4,-A} = 0 holds (because two
interpretations Z and 7', with z € AZ and z € ~A”, could both stem from

Obviously, each interpretation Z gives rise to a special witness, called
canonical witness:

Definition 2.4 (Canonical Witness) Let L be a DL. For any interpreta-
tion T € Int(L) we define the canonical witness Wy = (AWz, Wz V1) g5
follows:

AWI — AI

N = T)\r

VT = z{D el |z e D%}

The following elementary properties of a canonical witness will be useful
in our considerations.



Lemma 2.5 (Some properties of the canonical witness) LetL be a DL.
Let C €L and T a TBoz. For each T € Int(L) with CT # (),

1. each interpretation ' stemming from Wr is isomorphic to T
2. Wr is a witness for C,
3. Wr is admissible w.r.t. T iff T =T

Proof.

1. Let 7' stem from Wy. This implies AT = AT and -II|NR = Z|\r.
For each z € AT and A € NC, {A,~A} N LVZ(z) # (), this implies
'I,|NC = Z|nc and hence 7 and 7' are isomorphic.

2. Properties (W1) and (W2) hold by construction. Obviously, Z stems
from Wz and from (1) it follows that each interpretation Z' stemming
from Wr is isomorphic to Z, hence (W3) holds.

3. Since Z stems from Wy, T &= T implies that Wt is admissible w.r.t.
T. If Wr is admissible w.r.t. 7, then there is an interpretation 7'
stemming from W7 with 7 |= 7. Since Z is isomorphic to Z’, this
implies Z |= 7. .

As a corollary we get that the existence of admissible witnesses is closely
related to the satisfiability of concepts w.r.t. TBoxes:

Lemma 2.6 Let L be a DL. A concept C € L is satisfiable w.r.t. a TBox T
iff it has a witness that is admissible w.r.t. T .

Proof. For the only if-direction let Z € Int(L) be an interpretation with
T & T and CF # (. From Lemma 2.5 follows that the canonical witness
Wr is an witness for C' that is admissible w.r.t. 7.

For the if-direction let W be an witness for C' that is admissible w.r.t.
7. This implies that there is an interpretation Z € Int(L) stemming from
W with Z = T. For each interpretation Z that stems from W, it holds that
CT # ) due to (W1) and (W3). .



From this it follows that one can test the satisfiability of a concept w.r.t.
to a TBox by checking for the existence of an admissible witness. We call
algorithms that utilise this approach model-building algorithms.

This notion captures tableau-based decision procedures, [16, 2, 18], those
using automata-theoretic approaches [24, 9] and, due to their direct corre-
spondence with tableaux algorithms [19, 6], even resolution based and se-
quent calculus algorithms. This work develops a technique applicable to all
these algorithm types.

The way many decision procedures for DLs deal with TBoxes exploits
the following simple lemma.

Lemma 2.7 Let L be a DL, C € L a concept, and T a TBox. Let W be a
witness for C. If, for each x € AV,

CiCCyeT implies Cy — (Cy € [,W(l‘) (*)
Cr=CoeT implies Cp <+ Coe L (x)

then W is admissible w.r.t. T .

Proof. W is a witness, hence there is an interpretation Z € Int(L) stemming
from W. From (W3) and the fact that W satisfies (x) it follows that, for
each z € A7,

Ci,CCyeT implies C;— Cy € LY(x) implies z € (C;— Co)?
Ci=Cy €T implies Cy+ Cy € EW(x) implies x € (Cl ~ CQ)I

Hence, Z = T and W is admissible w.r.t. 7. .

Examples of algorithms that exploit this lemma to deal with axioms
can be found in [13, 11, 18], where, for each axiom C} C Cy (C; = Cb)
the concept C; — Cy (C1 <> C9) is added to every node of the generated
tableau.

Dealing with general axioms in this manner is costly due to the high
degree of nondeterminism introduced. This can best be understood by look-
ing at tableaux algorithms, which try to build witnesses in an incremental
fashion. For a concept C' to be tested for satisfiability, they start with
AW = {z0}, LY(zg) = {C} and YV (R) = 0 for each R € NR. Subsequently,
the concepts in £ are decomposed and, if necessary, new nodes are added
to A, until either W is a witness for C, or an obvious contradiction of
the form {4, A} C £ (z), which violates (W2), is generated. In the latter



case, backtracking search is used to explore alternative non-deterministic de-
compositions (e.g., of disjunctions), one of which could lead to the discovery
of a witness.

When applying Lemma 2.7, disjunctions are added to the label of each
node of the tableau for each general axiom in the TBox (one disjunction for
axioms of the form Cy C Cy, two for axioms of the form C; = (). This
leads to an exponential increase in the search space as the number of nodes
and axioms increases. For example, with 10 nodes and a TBox containing
10 general axioms (of the form C; C Cy) there are already 100 disjunctions,
and they can be non-deterministically decomposed in 2'00 different ways.
For a TBox containing large numbers of general axioms (there are 1,214
in the GALEN medical terminology KB [20]) this can degrade performance
to the extent that subsumption testing is effectively non-terminating. To
reason with this kind of TBox we must find a more e cient way to deal
with axioms.

3 Absorptions

We start our considerations with an analysis of a technique that can be used
to deal more e ciently with so-called primitive or acyclic TBoxes.

Definition 3.1 (Absorption) Let L be a DL and T a TBoz. An absorp-
tion of T is a pair of TBozes (Ty, Ty) such that T = T, UTy and T, contains
only azxioms of the form AT D and ~A T D where A € NC.

An absorption (Ty,Ty) of T is called correct if it satisfies the following
condition. For each witness W, if

ACDeT,and Aec L (x) implies D€ L (z)
-~AC D€ T,and ~A € LY (z) implies D e LV(x)
CiCCyeT, implies C; — Cy € LV (z) (x)
Ci =0y € 7'9 implies C; «+ Cy € [,W(x)

then W is admissible w.r.t. T. A witness that satisfies (x) will be called
unfolded w.r.t. 7.

If the reference to a specific TBox is clear from the context, we will often
leave the TBox implicit and say that a witness is unfolded.

How does a correct absorption enable an algorithm to deal with axioms
more e ciently? This is best described by returning to tableaux algorithms.
Instead of dealing with axioms as previously described, which may lead to an
exponential increase in the search space, axioms in 7, can now be dealt with



in a deterministic manner. Assume, for example, that we have to handle
the axiom A = C. If the label of a node already contains A (resp. —A),
then C (resp. —=C) is added to the label; if the label contains neither A nor
—A, then nothing has to be done. Dealing with the axioms in 7, this way
avoids the necessity for additional non-deterministic choices and leads to a
gain in e ciency. A witness produced in this manner will be unfolded and
is a certificate for satisfiability w.r.t. 7. This technique is generally known
as lazy unfolding of primitive TBoxes [17]; formally, it is justified by the
following lemma:

Lemma 3.2 Let (7,,7,) be a correct absorption of T. For any C € L, C
has a witness that is admissible w.r.t. T iff C' has an unfolded witness.

Proof. The if-direction follows from the definition of “correct absorption”.
For the only if-direction, let C' € L be a concept and W a witness for C
that is admissible w.r.t. 7. This implies the existence of an interpretation
7 € Int(L) stemming from W such that Z = 7 and C% # (). Since T = T, UT,
we have 7 = T, U T, and hence the canonical witness Wz is an unfolded
witness for C. "

A family of TBoxes where absorption can successfully be applied are
primitive TBoxes, the simplest form of TBox usually studied in the litera-
ture.

Definition 3.3 (Primitive TBox) A TBoz T is called primitive iff it
consists entirely of axioms of the form A = D with A € NC, each A € NC ap-
pears as at most one left-hand side of an axiom, and T is acyclic. Acyclicity
is defined as follows: A € NC is said to directly use BENC if A=D e T
and B occurs in D; uses is the transitive closure of “directly uses”. We say
that T s acyclic if there is no A € NC that uses itself.

For primitive TBoxes a correct absorption can easily be given.
Theorem 3.4 Let T be a primitive TBoz, Ty =0, and T, defined by
T.={ACD-AC-D|A=D¢eT}
Then (Ty, Ty) is a correct absorption of T.

Proof. Trivially, T = T, U7, holds. Given an unfolded witness W, we have
to show that there is an interpretation Z stemming from W with Z = T.



We fix an arbitrary linearisation Ay,..., Ay of the “uses” partial order
on the atomic concept names appearing on the left-hand sides of axioms in
T such that, if A; uses A;, then j7 <4 and the defining concept for A; is D;.

For some interpretation Z, atomic concept A, and set X C AZ, we denote
the interpretation that maps A to X and agrees with Z on all other atomic
concepts and roles by Z[A — X]. For 0 < i < k, we define Z; in an iterative
process starting from an arbitrary interpretation Z; stemming from W and
setting

I, = i—l[Ai — {l‘ € AW | T e DZL_I}]

Since, for each A; there is exactly one axiom in 7T, each step in this
process is well-defined. Also, since Int(L) may only restrict the interpretation
of atomic roles, Z; € Int(L) for each 0 < 4 < k. For Z = 7 it can be shown
that Z is an interpretation stemming from W with Z |= T.

First we prove inductively that, for 0 < ¢ < k, Z; stems from W. We
have already required Zy to stem from W.

Assume the claim was proved for Z; | and Z; does not stem from W.
Then there must be some z € A" such that either (i) 4; € £ (z) but
x & AZ.I" or (i) =4; € £V (z) but z € AiIi (since we assume Z;_; to stem
from W and A; is the only atomic concept whose interpretation changes
from Z; 1 to Z;). The two cases can be handled dually:

(i) From A; € £ (z) it follows that D; € £V(x), because W is unfolded.
Since Z; 1 stems from W and W is a witness, Property (W3) implies
x € DZ.L"l. But this implies z € AiIi, which is a contradiction.

(ii) From —A; € £ (z) it follows that —=D; € LY () because W is un-
folded. Since Z;_1 stems from W and W is an witness, Property (W3)
implies z € (—D;)%i-1. Since (=D;)5i-1 = AW\ DZ-I"_1 this implies
T e AiL', which is a contradiction.

Together this implies that Z; also stems from W.

To show that Z = T we show inductively that Z; = A; = D; for each
1 < j <. This is obviously true for 2 = 0.

The interpretation of D; may not depend on the interpretation of A;
because otherwise (12) would imply that A; uses itself. Hence D} = DiL"1
and, by construction, Z; = A; = D;. Assume there is some j < 7 such that
I; - Aj = Dj. Since I; 1 |= A; = D; and only the interpretation of A;
has changed from Z; ; to Z;, D]L' # D]L"l must hold because of (12). But
this implies that A; occurs in D; and hence A; uses A; which contradicts

10



j < i+ 1. Thus, we have Z |= A; = D; for each 1 < j < k and hence
ITE=T. .

Lazy unfolding is a well-known and widely used technique for optimis-
ing reasoning w.r.t. primitive TBoxes [3]. So far, we have only given a
correctness proof for this relatively simple approach, although one that is
independent of a specific DL or reasoning algorithm. With the next lemma
we show how we can extend correct absorptions and hence how lazy unfold-
ing can be applied to a broader class of TBoxes. A further enhancement of
the technique is presented in Section 5.

Lemma 3.5 Let (7,,7,) be a correct absorption of a TBox T.

1. If T' is an arbitrary TBoz, then (T,, Ty UT') is a correct absorption
of TUT'.

2. If T' is a TBoz that consists entirely of arioms of the form A T D,
where A € NC and A does not occur on the left-hand side of any aziom
in Ty, then (T, UT',Ty) is a correct absorption of T UT".

Proof. In both cases, 7, UT,UT' =T UT' holds trivially.

1. Let C' € L be a concept and W be an unfolded witness for C' w.r.t. the
absorption (7,7, U 7'). This implies that W is unfolded w.r.t. the
(smaller) absorption (7y,7,). Since (7, 7T4) is a correct absorption,
there is an interpretation Z stemming from W with Z = 7. Assume
T W~ T'. Then, without loss of generality,? there is an axiom D C
E € T’ such that there exists an = € DT\ EZ. Since W is unfolded,
we have D — E € £ (z) and hence (W3) implies z € (=D U E)? =
AT\ (DT\ E?), a contradiction. Hence Z = TUT"’ and W is admissible
wr.t. TUT.

2. Let C' € L be a concept and W be an unfolded witness for C' w.r.t.
the absorption (7, UT’,7,). From W we define a new witness for C'

as follows:
AV = AW
_W' W

LY = 1. (EW(QT) U{~A|ACDeT A¢ LW(:E)})

2 Arbitrary TBoxes can be expressed using only axioms of the form C' C D.

11



It is easy to see that W' is indeed a witness for C' and that W' is also
unfolded w.r.t. the absorption (7, U 7', 7,). This implies that W' is
also unfolded w.r.t. the (smaller) absorption (7, 74). Since (7, 7T4) is
a correct absorption of 7T, there exists an interpretation Z stemming
from W' such that Z = 7. We will show that Z = 7' also holds.
Assume Z [~ T, then there is an axiom A T D € 7' and an z € A
such that z € AT but « ¢ DT. By construction of W', z € AT
implies A € £V () because otherwise =A € £ () would hold in
contradiction to (W3). Then, since W' is unfolded, D € £ (z),
which, again by (W3), implies z € DZ, a contradiction.

Hence, we have shown that there exists an interpretation Z stemming
from W' such that Z |= T, U T’ U T,. By construction of W', any
interpretation stemming from W' also stems from W, hence W is ad-
missible w.r.t. T UT". .

4 Application to FaCT

In the preceeding section we have defined correct absorbtions and discussed
how they can be exploited in order to optimise satisfiability procedures.
However, we have said nothing about the problem of how to find an ab-
sorption given an arbitrary terminology. In this section we will describe
the absorption algorithm used by FaCT and prove that it generates correct
absorptions.

Given a TBox 7 containing arbitrary axioms, the absorption algorithm
used by FaCT constructs a triple of TBoxes (7g, Tprim, Tinc) such that

o T = ,TgU'];)rimU?;n(:a
® Tprim is primitive, and

e Tinc consists only of axioms of the form A C D where A € NC and A
is not defined in Tprim.

We refer to these properties by (x). From Theorem 3.4 together with
Lemma, 3.5 it follows that, for

7;;: {AED,—lAE—ID|A:D€7;)r1m}U7;nC
(Tu,T4) is a correct absorption of T hence satisfiability for a concept C

w.r.t. 7 can be decided by checking for an unfolded witness for C.

12



In a first step, FaCT distributes axioms from 7 amongst Tinc, Tprim, and
Ty, trying to minimise the number of axioms in 7, while still maintaining
(¥). To do this, it initialises Tprim, Tinc, and T, with (), and then processes
each axiom X € T as follows.

1. If X is of the form A C C, then

(a) if A € NC and A is not defined in Tpim then X is added to Tinc,
(b) otherwise X is added to 7y

2. If X is of the form A = C, then

(a) if A € NC, A is not defined in Tprim or Tinc and Tprim U {X} is
primitive, then X is added to 7prim,

(b) otherwise, the axioms A T C' and C' C A are added to 7,

It is easy to see that the resulting TBoxes Tg, Tprim, Tinc satisfy (x). In a
second step, FaCT processes the axioms in 7, one at a time, trying to absorb
them into axioms in 7inc. Those axioms that are not absorbed remain in 7.
To give a simpler formulation of the algorithm, each axiom (C'C D) € Ty is
viewed as a clause G = {D,~C}, corresponding to the axiom T C C' — D,
which is equivalent to C' © D. For each such axiom FaCT applies the
following absorption procedure.

1. Try to absorb G. If there is a concept =A € G such that A € NC
and A is not defined in T,pim, then add A C B to Tinc, where B is the
disjunction of all the concepts in G \ {-A}, remove G from 7y, and
exit.

2. Try to simplify G.

(a) If there is some —=C' € G such that C' is of the form CyM...MCy,
then substitute -C with —-Cq U ... U —=C),, and continue with
step 2b.

(b) If there is some C' € G such that C' is of the form (C1U...UCy),
then apply associativity by setting G = GU{C,... ,Cp,}\{(C1 U
...UCp)}, and return to step 1.

3. Try to unfold G. If, for some A € G (resp. ~A € G), there is an
axiom A = C in Tprim, then substitute A € G (resp. =4 € G) with C
(resp. =C) and return to step 1.

13



4. If none of the above were possible, then absorption of G has failed.
Leave G in 74, and exit.

For each step, we have to show that (x) is maintained. Dealing with
clauses instead of axioms causes no problems. In the first step, axioms are
moved from 74 to Tine as long as this does not violate (). The second and
the third step replace a clause by an equivalent one and hence do not violate

Termination of the procedure is obvious. Each axiom is considered only
once and, for a given axiom, simplification and unfolding can only be applied
finitely often before the procedure is exited, either by absorbing the axiom
into Tine or leaving it in 74. For simplification, this is obvious; for unfolding,
this holds because Tprim is acyclic.

Theorem 4.1 For any TBox T, FaCT computes a correct absorption of T .

5 Improving Performance

The absorption algorithm employed by FaCT already leads to a dramatic
improvement in performance. This is illustrated by Figure 1, which shows
the times taken by FaCT to classify versions of the GALEN KB with some or
all of the general axioms removed. Without absorption, classification time
increased rapidly with the number of general axioms, and exceeded 10,000s
with only 25 general axioms in the KB; with absorption, only 160s was taken
to classify the KB with all 1,214 general axioms.

However, there is still considerable scope for further gains. In particular,
the following definition for a stratified TBox allows lazy unfolding to be more
generally applied, while still allowing for correct absorptions.

Definition 5.1 (Stratified TBox) A TBoz T is called stratified iff it
consists entirely of axioms of the form A = D with A € NC, each A € NC
appears at most once on the left-hand side of an axiom, and T can be ar-
ranged monotonously, i.e., there is a disjoint partition T{ U T U...U Ty of
T, such that

e foralll <j<i<k,if Ae NC is defined in T;, then it does not occur
in Tj, and

o for all 1 < i <k, all concepts which appear on the right-hand side of
axioms in T; are monotone in all atomic concepts defined in T;.
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Figure 1: Classification times with and without absorption

A concept C' is monotone in an atomic concept A if, for any interpretation
T € Int(L) and any two sets X1, Xo C AT,

X; C X, implies ¢TA=X1] ¢ gZ[A=Xs],

For many DLs, a su cient condition for monotonicity is syntactic mono-
tonicity, i.e., a concept C' is syntactically monotone in some atomic concept
A if A appears in C only in the scope of an even number of negations.

Theorem 5.2 Let T be a stratified TBoz, Ty =0 and T, defined by
RZ{AED,—IAE—ID|AiD€T}.

Then (Ty, Ty) is a correct absorption of T.

The proof of this theorem follows the same line as the proof of Theo-
rem 3.4. Starting from an arbitrary interpretation Zy stemming from the
unfolded witness, we incrementally construct interpretations Zy,...,Z;, us-
ing a fixed point construction in each step. We show that each Z; stems
from W and that, for 1 < j <i <k, Z; = T;, hence 7}, = T and stems from
W.

Before we prove this theorem, we recall some basics of lattice theory. For
any set S, the powerset of S, denoted by 2° forms a complete lattice, where
the ordering, join and meet operations are set-inclusion C. union U, and
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intersection N, respectively. For any complete lattice L, its n-fold cartesian
product L" is also a complete lattice, with ordering, join, and meet defined
in a pointwise manner.

For a lattice L, a function ® : £ — L is called monotone, iff, for 21,29 €
L, 1 C 2o implies ®(z1) C P(x3).

By Tarski’s fixed point theorem [23], every monotone function ® on a
complete lattice, has uniquely defined least and greatest fixed points, i.e.,
there are elements Z,z € £ such that

Z = ®(Z) and z = ®(z)
and, for all z € £ with z = &(z),
zCxand z C 7.

Proof. T,UT, = T is obvious. Let W = (AW, W W) be an unfolded
witness. We have to show that there is an interpretation Z stemming from
WwithZ = T. Let Ty, ..., Tk be the required partition of 7. We will define
7 inductively, starting with an arbitrary interpretation Z; stemming from
W.

Assume Z;_1 was already defined. We define Z; from Z;_1 as follows: let

{A} = Di,... Al = D!} be an enumeration of 7;. Since all of the D;- are

monotone in all of the A? | the following is a monotone function:
O(X1,..., Xm) = ({2 ] A} € LY(2)} U (DT XX\ {z | 247 € LY (2)},
({2 | Ay € £7(@)} U (D)X (o | AL, € £¥(2)})
where
T ( X1,y Xm) =T 1AL = X, .. AL X

This implies that ® has a least fixed point, which we denote by (X,...,X,,).
We use this fixed point to define Z; by

=T 1[A = X, AL = X ]

CrAamM 1: For each 0 <1 <k, Z; stems from W.

Assume Z; 1 stems from W. Since the only thing that changes from Z;
to Z; is the interpretation of the atomic concepts Aj,..., A}, we only have
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to check that A;- € LY (z) implies = € (A;)Il and —|A§- € LY (z) implies
x & (A;)L

By definition of @, and because {z | A;- e LYV (z)}n{z | —|A§- € LV (z)} =
0, A;- € £ (z) implies z € (A;)L Also by the definition of @, —|A§ € LV (x
implies = ¢ (A;)Il Hence, Z; stems from W.

CrLAmM 2: Foreach 1 <j<i<k, T[ET,.

We prove this claim by induction over 7 starting from 0. For 2 = 0, there
is nothing to prove. Assume the claim would hold for Z;_i. The only thing
that changes from Z; | to Z; is the interpretation of the atomic concepts
Ai,... Al defined in T;. Since these concepts may not occur in T; for j <,
the interpretation of the concepts in these TBoxes does not change, and
from Z;_y =T follows Z; =T, for 1 < j <i—1.

It remains to show that Z; &= 7;. Let A; = D;- be an axiom from 7;.
From the definition of Z; we have

(AT = ({z ]| 45 € LY@}V (DPF) \{z | =45 € LY (@)} (1)

W is unfolded, hence A;- € LY (z) implies D; € L% (z) and, since T;
stems from W, this implies z € (D;)Ii, thus

3 w iNL; __ i\ L;
{z | A5 € L7(z)} U(Dj)™ = (D) (2)
Furthermore, —|A§- € £ (x) implies —|D§ € £ (x) implies z € (ﬂDé)Ii, thus
(D)T\ {z | ~45 € £LY(2)} = (D))" (3)
Taking together (1), (2), and (3) we get
i _ (pinNT
(45)" = (Dj)™,
and hence Z; |= A; = D;

Together, Claim 1 and Claim 2 prove the theorem, since Z; is an inter-
pretation that stems from W and satisfies 7. n

This theorem makes it possible to apply lazy unfolding to cyclical def-
initions. Such definitions are quite natural in a logic that supports inverse
roles. For example, an orthopaedic procedure might be defined as a pro-
cedure performed by an orthopaedic surgeon, while an orthopaedic surgeon
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might be defined as a surgeon who performs only orthopaedic procedures:3
orthopaedic-procedure = procedure 1 (Jperforms™ .orthopaedic-surgeon)
orthopaedic-surgeon = surgeon M (Vperforms.orthopaedic-procedure)

The absorption algorithm described in Section 4 would force the second
of these definitions to be added to 7, as two general axioms and, although
both axioms would subsequently be absorbed into 7,, the procedure would
result in a disjunctive term being added to one of the definitions in 7.
Using Theorem 5.2 to enhance the absorption algorithm so that these kinds
of definition are directly added to 7, reduces the number of disjunctive terms
in 7, and can lead to significant improvements in performance.

This can be demonstrated by a simple experiment with the new FaCT
system, which implements the SHZQ logic [18] and is thus able to deal with
inverse roles. Figure 2 shows the classification time in seconds using the
normal and enhanced absorption algorithms for terminologies consisting of
between 5 and 50 pairs of cyclical definitions like those described above for
orthopaedic-surgeon and orthopaedic-procedure. With only 10 pairs the gain in
performance is already a factor of 30, while for 45 and 50 pairs it has reached
several orders of magnitude: with the enhanced lazy unfolding the termi-
nology is classified in 2-3 seconds whereas with the original algorithm the
time required exceeded the 10,000 second limit imposed in the experiment.

It is worth pointing out that it is by no means trivially true that cyclical
definitions can be dealt with by lazy unfolding. Even without inverse roles
it is clear that definitions such as A = —A (or more subtle variants) force
the domain to be empty and would lead to an incorrect absorption if dealt
with by lazy unfolding. With converse roles it is, for example, possible to
force the interpretation of a role R to be empty with a definition such as
A =VR.(VR™.—A), again leading to an incorrect absorption if dealt with by
lazy unfolding.

6 Optimal Absorptions

We have demonstrated that absorption is a highly effective and widely appli-
cable technique, and by formally defining correctness criteria for absorptions
we have proved that the procedure used by FaCT finds correct absorptions.
Moreover, by establishing more precise correctness criteria we have demon-
strated how the effectiveness of this procedure could be further enhanced.

3This example is only intended for didactic purposes.
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Figure 2: Classification times with and without enhanced absorption

However, the absorption algorithm used by FaCT is clearly sub-optimal,
in the sense that changes could be made that would, in general, allow more
axioms to be absorbed (e.g., by also giving special consideration to axioms
of the foom —=A C C with A € NC). Moreover, the procedure is non-
deterministic, and, while it is guaranteed to produce a correct absorption,
its specific result depends on the order of the axioms in the original TBox
T. Since the semantics of a TBox 7 does not depend on the order of its
axioms, there is no reason to suppose that they will be arranged in a way that
yields a “good” absorption. Given the effectiveness of absorption, it would
be desirable to have an algorithm that was guaranteed to find the “best”
absorption possible for any set of axioms, irrespective of their ordering in
the TBox.

Unfortunately, it is not even clear how to define a sensible optimality
criterion for absorptions. It is obvious that simplistic approaches based on
the number or size of axioms remaining in 7, will not lead to a useful solution
for this problem. Consider, for example, the cyclical TBox experiment from
the previous section. Both the original FaCT absorption algorithm and the
enhanced algorithm, which exploits Theorem 5.2, are able to compute a
complete absorption of the axioms ( i.e., a correct absorption with 7, = 0),
but the enhanced algorithm leads to much better performance, as shown in
Figure 2.

An important issue for future work is, therefore, the identification of
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a suitable optimality criterion for absorptions, and the development of an
algorithm that is able to compute absorptions that are optimal with respect
to this criterion.
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