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Optimisation of Terminologial Reasoning

Ian Horroks and Stephan Tobies

Abstrat

When reasoning in desription, modal or temporal logis it is often

useful to onsider axioms representing universal truths in the domain

of disourse. Reasoning with respet to an arbitrary set of axioms

is hard, even for relatively inexpressive logis, and it is essential to

deal with suh axioms in an eÆient manner if implemented systems

are to be e�etive in real appliations. This is partiularly relevant

to Desription Logis, where subsumption reasoning with respet to a

terminology is a fundamental problem. Two optimisation tehniques

that have proved to be partiularly e�etive in dealing with termi-

nologies are lazy unfolding and absorption. In this paper we seek to

improve our theoretial understanding of these important tehniques.

We de�ne a formal framework that allows the tehniques to be pre-

isely desribed, establish onditions under whih they an be safely

applied, and prove that, provided these onditions are respeted, sub-

sumption testing algorithms will still funtion orretly. These results

are used to show that the proedures used in the FaCT system are

orret and, moreover, to show how eÆieny an be signi�antly im-

proved, while still retaining the guarantee of orretness, by relaxing

the safety onditions for absorption.

1 Motivation

Desription Logis (DLs) form a family of formalisms whih have grown out

of knowledge representation tehniques using frames and semanti networks.

DLs use a lass based paradigm, desribing the domain of interest in terms

of onepts (lasses) and roles (binary relations) whih an be ombined us-

ing a range of operators to form more omplex strutured onepts [4℄. A

DL terminology typially onsists of a set of asserted fats, in partiular as-

serted subsumption (is-a-kind-of) relationships between (possibly omplex)

onepts.

1

.

1

DLs an also deal with assertions about individuals, but in this paper we will only be

onerned with terminologial (onept based) reasoning
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This de�nition aptures a whole range of DLs, namely, the important

DL ALC [22℄ and its many extensions. Int(L) hides restritions on the inter-

pretation of ertain roles like transitivity, funtionality, or role hierarhies,

whih are imposed by more expressive DLs (e.g., [18℄), as these are irrelevant

for our purposes. Please note that various modal logis [21℄, propositional

dynami logis [10℄ and temporal logis [14℄ also �t into this framework. We

will use C ! D as an abbreviation for :C tD, C $ D as an abbreviation

for (C ! D) u (D ! C), and > as a tautologial onept, e.g., A t :A for

an arbitrary A 2 NC.

A TBox onsists of a set of axioms asserting subsumption or equality

relations between (possibly omplex) onepts.

De�nition 2.2 (TBox, Satis�ability) A TBox T for L is a �nite set of

axioms of the form C

1

v C

2

or C

1

:

= C

2

, where C

i

2 L. If, for some A 2 NC,

T ontains an axiom of the form A v C or A

:

= C, then we say that A is

de�ned in T .

Let L be a DL and T a TBox. An interpretation I 2 Int(L) is a model

of T i�, for eah C

1

v C

2

2 T , C

I

1

� C

I

2

holds, and, for eah C

1

:

= C

2

2 T ,

C

I

1

= C

I

2

holds. In this ase we write I j= T . A onept C 2 L is satis�able

with respet to a TBox T i� there is an I 2 Int(L) with I j= T and C

I

6= ;.

A onept C 2 L subsumes a onept D 2 L w.r.t. T i�, for all I 2 Int(L)

with I j= T , C

I

� D

I

holds.

Two TBoxes T ;T

0

are alled equivalent (T � T

0

), i�, for all I 2 Int(L),

I j= T i� I j= T

0

.

We will only deal with onept satis�ability as onept subsumption

an be redued to it for DLs that are losed under boolean operations: C

subsumes D w.r.t. T i� (D u :C) is not satis�able w.r.t. T .

For temporal or modal logis, satis�ability with respet to a set of formu-

lae fC

1

; : : : ; C

k

g asserted to be universally true orresponds to satis�ability

w.r.t. the TBox f>

:

= C

1

; : : : ;>

:

= C

n

g.

Many deision proedures for DLs base their judgement on the existene

of models or pseudo-models for onepts. A entral rôle in these algorithms is

played by a struture that we will all a witness in this paper. It generalises

the notions of tableaux that appear in DL tableau-algorithms [16, 2, 18℄

as well as the Hintikka-strutures that are used in tableau and automata-

based deision proedures for temporal logi [14℄ and propositional dynami

logi [24℄.

De�nition 2.3 (Witness) Let L be a DL and C 2 L a onept. A witness

W = (�

W

; �

W

;L

W

) for C onsists of a non-empty set �

W

, a funtion �

W

4



that maps NR to 2

�

W

��

W

, and a funtion L

W

that maps �

W

to 2

L

suh

that the following properties are satis�ed:

(W1) there is some x 2 �

W

with C 2 L

W

(x),

(W2) there is an interpretation I 2 Int(L) that stems from W, and

(W3) for eah interpretation I 2 Int(L) that stems from W, it holds that

D 2 L

W

(x) implies x 2 D

I

.

An interpretation I = (�

I

; �

I

) is said to stem from W if it satis�es:

1. �

I

= �

W

,

2. �

I

j

NR

= �

W

, and

3. for eah A 2 NC, A 2 L

W

(x) implies x 2 A

I

and :A 2 L

W

(x) implies

x 62 A

I

.

A witness W is alled admissible with respet to a TBox T if there is an

interpretation I 2 Int(L) that stems from W with I j= T .

Please note that, for any witness W, (W2) together with Condition 3 of

\stemming" implies that, there exists no x 2 �

W

and A 2 NC, suh that

fA;:Ag � L

W

(x). Also note that, in general, more than one interpretation

may stem from a witness. This is the ase if, for an atomi onept A 2

NC and an element x 2 �

W

, L

W

(x) \ fA;:Ag = ; holds (beause two

interpretations I and I

0

, with x 2 A

I

and x 2 :A

I

0

, ould both stem from

W).

Obviously, eah interpretation I gives rise to a speial witness, alled

anonial witness:

De�nition 2.4 (Canonial Witness) Let L be a DL. For any interpreta-

tion I 2 Int(L) we de�ne the anonial witness W

I

= (�

W

I

; �

W

I

;L

W

I

) as

follows:

�

W

I

= �

I

�

W

I

= �

I

j

NR

L

W

I

= �x:fD 2 L j x 2 D

I

g

The following elementary properties of a anonial witness will be useful

in our onsiderations.

5



Lemma 2.5 (Some properties of the anonial witness) Let L be a DL.

Let C 2 L and T a TBox. For eah I 2 Int(L) with C

I

6= ;,

1. eah interpretation I

0

stemming from W

I

is isomorphi to I

2. W

I

is a witness for C,

3. W

I

is admissible w.r.t. T i� I j= T

Proof.

1. Let I

0

stem from W

I

. This implies �

I

0

= �

I

and �

I

0

j

NR

= �

I

j

NR

.

For eah x 2 �

I

and A 2 NC, fA;:Ag \ L

W

I

(x) 6= ;, this implies

�

I

0

j

NC

= �

I

j

NC

and hene I and I

0

are isomorphi.

2. Properties (W1) and (W2) hold by onstrution. Obviously, I stems

from W

I

and from (1) it follows that eah interpretation I

0

stemming

from W

I

is isomorphi to I, hene (W3) holds.

3. Sine I stems from W

I

, I j= T implies that W

I

is admissible w.r.t.

T . If W

I

is admissible w.r.t. T , then there is an interpretation I

0

stemming from W

I

with I

0

j= T . Sine I is isomorphi to I

0

, this

implies I j= T .

As a orollary we get that the existene of admissible witnesses is losely

related to the satis�ability of onepts w.r.t. TBoxes:

Lemma 2.6 Let L be a DL. A onept C 2 L is satis�able w.r.t. a TBox T

i� it has a witness that is admissible w.r.t. T .

Proof. For the only if -diretion let I 2 Int(L) be an interpretation with

I j= T and C

I

6= ;. From Lemma 2.5 follows that the anonial witness

W

I

is an witness for C that is admissible w.r.t. T .

For the if -diretion let W be an witness for C that is admissible w.r.t.

T . This implies that there is an interpretation I 2 Int(L) stemming from

W with I j= T . For eah interpretation I that stems from W, it holds that

C

I

6= ; due to (W1) and (W3).

6



From this it follows that one an test the satis�ability of a onept w.r.t.

to a TBox by heking for the existene of an admissible witness. We all

algorithms that utilise this approah model-building algorithms.

This notion aptures tableau-based deision proedures, [16, 2, 18℄, those

using automata-theoreti approahes [24, 9℄ and, due to their diret orre-

spondene with tableaux algorithms [19, 6℄, even resolution based and se-

quent alulus algorithms. This work develops a tehnique appliable to all

these algorithm types.

The way many deision proedures for DLs deal with TBoxes exploits

the following simple lemma.

Lemma 2.7 Let L be a DL, C 2 L a onept, and T a TBox. Let W be a

witness for C. If, for eah x 2 �

W

,

C

1

v C

2

2 T implies C

1

! C

2

2 L

W

(x)

C

1

:

= C

2

2 T implies C

1

$ C

2

2 L

W

(x)

�

(�)

then W is admissible w.r.t. T .

Proof. W is a witness, hene there is an interpretation I 2 Int(L) stemming

from W. From (W3) and the fat that W satis�es (�) it follows that, for

eah x 2 �

I

,

C

1

v C

2

2 T implies C

1

! C

2

2 L

W

(x) implies x 2 (C

1

! C

2

)

I

C

1

:

= C

2

2 T implies C

1

$ C

2

2 L

W

(x) implies x 2 (C

1

$ C

2

)

I

Hene, I j= T and W is admissible w.r.t. T .

Examples of algorithms that exploit this lemma to deal with axioms

an be found in [13, 11, 18℄, where, for eah axiom C

1

v C

2

(C

1

:

= C

2

)

the onept C

1

! C

2

(C

1

$ C

2

) is added to every node of the generated

tableau.

Dealing with general axioms in this manner is ostly due to the high

degree of nondeterminism introdued. This an best be understood by look-

ing at tableaux algorithms, whih try to build witnesses in an inremental

fashion. For a onept C to be tested for satis�ability, they start with

�

W

= fx

0

g, L

W

(x

0

) = fCg and �

W

(R) = ; for eah R 2 NR. Subsequently,

the onepts in L

W

are deomposed and, if neessary, new nodes are added

to �

W

, until either W is a witness for C, or an obvious ontradition of

the form fA;:Ag � L

W

(x), whih violates (W2), is generated. In the latter

7
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We �x an arbitrary linearisation A

1

; : : : ; A

k

of the \uses" partial order

on the atomi onept names appearing on the left-hand sides of axioms in

T suh that, if A

i

uses A

j

, then j < i and the de�ning onept for A

i

is D

i

.

For some interpretation I, atomi onept A, and set X � �

I

, we denote

the interpretation that maps A to X and agrees with I on all other atomi

onepts and roles by I[A 7! X℄. For 0 � i � k, we de�ne I

i

in an iterative

proess starting from an arbitrary interpretation I

0

stemming from W and

setting

I

i

:= I

i�1

[A

i

7! fx 2 �

W

j x 2 D

I

i�1

i

g℄

Sine, for eah A

i

there is exatly one axiom in T , eah step in this

proess is well-de�ned. Also, sine Int(L) may only restrit the interpretation

of atomi roles, I

i

2 Int(L) for eah 0 � i � k. For I = I

k

it an be shown

that I is an interpretation stemming from W with I j= T .

First we prove indutively that, for 0 � i � k, I

i

stems from W. We

have already required I

0

to stem from W.

Assume the laim was proved for I

i�1

and I

i

does not stem from W.

Then there must be some x 2 �

W

suh that either (i) A

i

2 L

W

(x) but

x 62 A

I

i

i

or (ii) :A

i

2 L

W

(x) but x 2 A

I

i

i

(sine we assume I

i�1

to stem

from W and A

i

is the only atomi onept whose interpretation hanges

from I

i�1

to I

i

). The two ases an be handled dually:

(i) From A

i

2 L

W

(x) it follows that D

i

2 L

W

(x), beauseW is unfolded.

Sine I

i�1

stems from W and W is a witness, Property (W3) implies

x 2 D

I

i�1

i

. But this implies x 2 A

I

i

i

, whih is a ontradition.

(ii) From :A

i

2 L

W

(x) it follows that :D

i

2 L

W

(x) beause W is un-

folded. Sine I

i�1

stems from W and W is an witness, Property (W3)

implies x 2 (:D

i

)

I

i�1

. Sine (:D

i

)

I

i�1

= �

W

n D

I

i�1

i

this implies

x 62 A

I

i

i

, whih is a ontradition.

Together this implies that I

i

also stems from W.

To show that I j= T we show indutively that I

i

j= A

j

:

= D

j

for eah

1 � j � i. This is obviously true for i = 0.

The interpretation of D

i

may not depend on the interpretation of A

i

beause otherwise (I2) would imply that A

i

uses itself. Hene D

I

i

i

= D

I

i�1

i

and, by onstrution, I

i

j= A

i

:

= D

i

. Assume there is some j < i suh that

I

i

6j= A

j

:

= D

j

. Sine I

i�1

j= A

j

:

= D

j

and only the interpretation of A

i

has hanged from I

i�1

to I

i

, D

I

i

j

6= D

I

i�1

j

must hold beause of (I2). But

this implies that A

i

ours in D

j

and hene A

j

uses A

i

whih ontradits

10



j < i + 1. Thus, we have I j= A

j

= D

j

for eah 1 � j � k and hene

I j= T .

Lazy unfolding is a well-known and widely used tehnique for optimis-

ing reasoning w.r.t. primitive TBoxes [3℄. So far, we have only given a

orretness proof for this relatively simple approah, although one that is

independent of a spei� DL or reasoning algorithm. With the next lemma

we show how we an extend orret absorptions and hene how lazy unfold-

ing an be applied to a broader lass of TBoxes. A further enhanement of

the tehnique is presented in Setion 5.

Lemma 3.5 Let (T

u

;T

g

) be a orret absorption of a TBox T .

1. If T

0

is an arbitrary TBox, then (T

u

;T

g

[ T

0

) is a orret absorption

of T [ T

0

.

2. If T

0

is a TBox that onsists entirely of axioms of the form A v D,

where A 2 NC and A does not our on the left-hand side of any axiom

in T

u

, then (T

u

[ T

0

;T

g

) is a orret absorption of T [ T

0

.

Proof. In both ases, T

u

[ T

g

[ T

0

� T [ T

0

holds trivially.

1. Let C 2 L be a onept andW be an unfolded witness for C w.r.t. the

absorption (T

u

;T

g

[ T

0

). This implies that W is unfolded w.r.t. the

(smaller) absorption (T

u

;T

g

). Sine (T

u

;T

g

) is a orret absorption,

there is an interpretation I stemming from W with I j= T . Assume

I 6j= T

0

. Then, without loss of generality,

2

there is an axiom D v

E 2 T

0

suh that there exists an x 2 D

I

n E

I

. Sine W is unfolded,

we have D ! E 2 L

W

(x) and hene (W3) implies x 2 (:D t E)

I

=

�

I

n(D

I

nE

I

), a ontradition. Hene I j= T [T

0

andW is admissible

w.r.t. T [ T

0

.

2. Let C 2 L be a onept and W be an unfolded witness for C w.r.t.

the absorption (T

u

[ T

0

;T

g

). From W we de�ne a new witness for C

as follows:

�

W

0

:= �

W

�

W

0

:= �

W

L

W

0

:= �x:

�

L

W

(x) [ f:A j A v D 2 T

0

; A 62 L

W

(x)g

�

2

Arbitrary TBoxes an be expressed using only axioms of the form C v D.

11



It is easy to see that W

0

is indeed a witness for C and that W

0

is also

unfolded w.r.t. the absorption (T

u

[ T

0

;T

g

). This implies that W

0

is

also unfolded w.r.t. the (smaller) absorption (T

u

;T

g

). Sine (T

u

;T

g

) is

a orret absorption of T , there exists an interpretation I stemming

from W

0

suh that I j= T . We will show that I j= T

0

also holds.

Assume I 6j= T

0

, then there is an axiom A v D 2 T

0

and an x 2 �

I

suh that x 2 A

I

but x 62 D

I

. By onstrution of W

0

, x 2 A

I

implies A 2 L

W

0

(x) beause otherwise :A 2 L

W

0

(x) would hold in

ontradition to (W3). Then, sine W

0

is unfolded, D 2 L

W

0

(x),

whih, again by (W3), implies x 2 D

I

, a ontradition.

Hene, we have shown that there exists an interpretation I stemming

from W

0

suh that I j= T

u

[ T

0

[ T

g

. By onstrution of W

0

, any

interpretation stemming from W

0

also stems from W, hene W is ad-

missible w.r.t. T [ T

0

.

4 Appliation to FaCT

In the preeeding setion we have de�ned orret absorbtions and disussed

how they an be exploited in order to optimise satis�ability proedures.

However, we have said nothing about the problem of how to �nd an ab-

sorption given an arbitrary terminology. In this setion we will desribe

the absorption algorithm used by FaCT and prove that it generates orret

absorptions.

Given a TBox T ontaining arbitrary axioms, the absorption algorithm

used by FaCT onstruts a triple of TBoxes (T

g

;T

prim

;T

in

) suh that

� T � T

g

[ T

prim

[ T

in

,

� T

prim

is primitive, and

� T

in

onsists only of axioms of the form A v D where A 2 NC and A

is not de�ned in T

prim

.

We refer to these properties by (�). From Theorem 3.4 together with

Lemma 3.5 it follows that, for

T

u

:= fA v D;:A v :D j A

:

= D 2 T

prim

g [ T

in

(T

u

,T

g

) is a orret absorption of T ; hene satis�ability for a onept C

w.r.t. T an be deided by heking for an unfolded witness for C.

12



In a �rst step, FaCT distributes axioms from T amongst T

in

, T

prim

, and

T

g

, trying to minimise the number of axioms in T

g

while still maintaining

(�). To do this, it initialises T

prim

;T

in

, and T

g

with ;, and then proesses

eah axiom X 2 T as follows.

1. If X is of the form A v C, then

(a) if A 2 NC and A is not de�ned in T

prim

then X is added to T

in

,

(b) otherwise X is added to T

g

2. If X is of the form A

:

= C, then

(a) if A 2 NC, A is not de�ned in T

prim

or T

in

and T

prim

[ fXg is

primitive, then X is added to T

prim

,

(b) otherwise, the axioms A v C and C v A are added to T

g

It is easy to see that the resulting TBoxes T

g

;T

prim

;T

in

satisfy (�). In a

seond step, FaCT proesses the axioms in T

g

one at a time, trying to absorb

them into axioms in T

in

. Those axioms that are not absorbed remain in T

g

.

To give a simpler formulation of the algorithm, eah axiom (C v D) 2 T

g

is

viewed as a lause G = fD;:Cg, orresponding to the axiom > v C ! D,

whih is equivalent to C v D. For eah suh axiom FaCT applies the

following absorption proedure.

1. Try to absorb G. If there is a onept :A 2 G suh that A 2 NC

and A is not de�ned in T

prim

, then add A v B to T

in

, where B is the

disjuntion of all the onepts in G n f:Ag, remove G from T

g

, and

exit.

2. Try to simplify G.

(a) If there is some :C 2 G suh that C is of the form C

1

u : : :uC

n

,

then substitute :C with :C

1

t : : : t :C

n

, and ontinue with

step 2b.

(b) If there is some C 2G suh that C is of the form (C

1

t : : :tC

n

),

then apply assoiativity by settingG = G[fC

1

; : : : ; C

n

gnf(C

1

t

: : : t C

n

)g, and return to step 1.

3. Try to unfold G. If, for some A 2 G (resp. :A 2 G), there is an

axiom A

:

= C in T

prim

, then substitute A 2 G (resp. :A 2 G) with C

(resp. :C) and return to step 1.

13



4. If none of the above were possible, then absorption of G has failed.

Leave G in T

g

, and exit.

For eah step, we have to show that (�) is maintained. Dealing with

lauses instead of axioms auses no problems. In the �rst step, axioms are

moved from T

g

to T

in

as long as this does not violate (�). The seond and

the third step replae a lause by an equivalent one and hene do not violate

(�).

Termination of the proedure is obvious. Eah axiom is onsidered only

one and, for a given axiom, simpli�ation and unfolding an only be applied

�nitely often before the proedure is exited, either by absorbing the axiom

into T

in

or leaving it in T

g

. For simpli�ation, this is obvious; for unfolding,

this holds beause T

prim

is ayli.

Theorem 4.1 For any TBox T , FaCT omputes a orret absorption of T .

5 Improving Performane

The absorption algorithm employed by FaCT already leads to a dramati

improvement in performane. This is illustrated by Figure 1, whih shows

the times taken by FaCT to lassify versions of the Galen KB with some or

all of the general axioms removed. Without absorption, lassi�ation time

inreased rapidly with the number of general axioms, and exeeded 10,000s

with only 25 general axioms in the KB; with absorption, only 160s was taken

to lassify the KB with all 1,214 general axioms.

However, there is still onsiderable sope for further gains. In partiular,

the following de�nition for a strati�ed TBox allows lazy unfolding to be more

generally applied, while still allowing for orret absorptions.

De�nition 5.1 (Strati�ed TBox) A TBox T is alled strati�ed i� it

onsists entirely of axioms of the form A

:

= D with A 2 NC, eah A 2 NC

appears at most one on the left-hand side of an axiom, and T an be ar-

ranged monotonously, i.e., there is a disjoint partition T

1

_

[ T

2

_

[ : : :

_

[ T

k

of

T , suh that

� for all 1 � j < i � k, if A 2 NC is de�ned in T

i

, then it does not our

in T

j

, and

� for all 1 � i � k, all onepts whih appear on the right-hand side of

axioms in T

i

are monotone in all atomi onepts de�ned in T

i

.
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intersetion \, respetively. For any omplete lattie L, its n-fold artesian

produt L

n

is also a omplete lattie, with ordering, join, and meet de�ned

in a pointwise manner.

For a lattie L, a funtion � : L ! L is alled monotone, i�, for x

1

; x

2

2

L, x

1

v x

2

implies �(x

1

) v �(x

2

).

By Tarski's �xed point theorem [23℄, every monotone funtion � on a

omplete lattie, has uniquely de�ned least and greatest �xed points, i.e.,

there are elements x; x 2 L suh that

x = �(x) and x = �(x)

and, for all x 2 L with x = �(x),

x v x and x v x:

Proof. T

u

[ T

g

� T is obvious. Let W = (�

W

; �

W

;L

W

) be an unfolded

witness. We have to show that there is an interpretation I stemming from

W with I j= T . Let T

1

; : : : ; T

k

be the required partition of T . We will de�ne

I indutively, starting with an arbitrary interpretation I

0

stemming from

W.

Assume I

i�1

was already de�ned. We de�ne I

i

from I

i�1

as follows: let

fA

i

1

:

= D

i

1

; : : : ; A

i

m

:

= D

i

m

g be an enumeration of T

i

. Sine all of the D

i

j

are

monotone in all of the A

i

m

, the following is a monotone funtion:

�(X

1

; : : : ;X

m

) := ( (fx j A

i

1

2 L

W

(x)g [ (D

i

1

)

I

i�1

(X

1

;:::;X

m

)

) n fx j :A

i

1

2 L

W

(x)g;

: : : ;

(fx j A

i

m

2 L

W

(x)g [ (D

i

m

)

I

i�1

(X

1

;:::;X

m

)

) n fx j :A

i

m

2 L

W

(x)g )

where

I

i�1

(X

1

; : : : ;X

m

) := I

i�1

[A

i

1

7! X

1

; : : : ; A

i

m

7! X

m

℄

This implies that � has a least �xed point, whih we denote by (X

1

; : : : ;X

m

).

We use this �xed point to de�ne I

i

by

I

i

:= I

i�1

[A

i

1

7! X

1

; : : : ; A

i

m

7! X

m

℄

Claim 1: For eah 0 � i � k, I

i

stems from W.

Assume I

i�1

stems fromW. Sine the only thing that hanges from I

i�1

to I

i

is the interpretation of the atomi onepts A

i

1

; : : : ; A

i

m

, we only have
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to hek that A

i

j

2 L

W

(x) implies x 2 (A

i

j

)

I

i

and :A

i

j

2 L

W

(x) implies

x 62 (A

i

j

)

I

i

.

By de�nition of �, and beause fx j A

i

j

2 L

W

(x)g\fx j :A

i

j

2 L

W

(x)g =

;, A

i

j

2 L

W

(x) implies x 2 (A

i

j

)

I

i

. Also by the de�nition of �, :A

i

j

2 L

W

(x)

implies x 62 (A

i

j

)

I

i

. Hene, I

i

stems from W.

Claim 2: For eah 1 � j � i � k, I j= T

i

.

We prove this laim by indution over i starting from 0. For i = 0, there

is nothing to prove. Assume the laim would hold for I

i�1

. The only thing

that hanges from I

i�1

to I

i

is the interpretation of the atomi onepts

A

i

1

; : : : A

i

m

de�ned in T

i

. Sine these onepts may not our in T

j

for j < i,

the interpretation of the onepts in these TBoxes does not hange, and

from I

i�1

j= T

j

follows I

i

j= T

j

for 1 � j � i� 1.

It remains to show that I

i

j= T

i

. Let A

i

j

:

= D

i

j

be an axiom from T

i

.

From the de�nition of I

i

we have

(A

i

j

)

I

i

= (fx j A

i

j

2 L

W

(x)g [ (D

i

j

)

I

i

) n fx j :A

i

j

2 L

W

(x)g: (1)

W is unfolded, hene A

i

j

2 L

W

(x) implies D

i

j

2 L

W

(x) and, sine I

i

stems from W, this implies x 2 (D

i

j

)

I

i

, thus

fx j A

i

j

2 L

W

(x)g [ (D

i

j

)

I

i

= (D

i

j

)

I

i

(2)

Furthermore, :A

i

j

2 L

W

(x) implies :D

i

j

2 L

W

(x) implies x 2 (:D

i

j

)

I

i

, thus

(D

i

j

)

I

i

n fx j :A

i

j

2 L

W

(x)g = (D

i

j

)

I

i

(3)

Taking together (1), (2), and (3) we get

(A

i

j

)

I

i

= (D

i

j

)

I

i

;

and hene I

i

j= A

i

j

:

= D

i

j

.

Together, Claim 1 and Claim 2 prove the theorem, sine I

k

is an inter-

pretation that stems from W and satis�es T .

This theorem makes it possible to apply lazy unfolding to ylial def-

initions. Suh de�nitions are quite natural in a logi that supports inverse

roles. For example, an orthopaedi proedure might be de�ned as a pro-

edure performed by an orthopaedi surgeon, while an orthopaedi surgeon

17



might be de�ned as a surgeon who performs only orthopaedi proedures:

3

orthopaedi-proedure

:

= proedure u (9performs

�

:orthopaedi-surgeon)

orthopaedi-surgeon

:

= surgeon u (8performs:orthopaedi-proedure)

The absorption algorithm desribed in Setion 4 would fore the seond

of these de�nitions to be added to T

g

as two general axioms and, although

both axioms would subsequently be absorbed into T

u

, the proedure would

result in a disjuntive term being added to one of the de�nitions in T

u

.

Using Theorem 5.2 to enhane the absorption algorithm so that these kinds

of de�nition are diretly added to T

u

redues the number of disjuntive terms

in T

u

and an lead to signi�ant improvements in performane.

This an be demonstrated by a simple experiment with the new FaCT

system, whih implements the SHIQ logi [18℄ and is thus able to deal with

inverse roles. Figure 2 shows the lassi�ation time in seonds using the

normal and enhaned absorption algorithms for terminologies onsisting of

between 5 and 50 pairs of ylial de�nitions like those desribed above for

orthopaedi-surgeon and orthopaedi-proedure. With only 10 pairs the gain in

performane is already a fator of 30, while for 45 and 50 pairs it has reahed

several orders of magnitude: with the enhaned lazy unfolding the termi-

nology is lassi�ed in 2{3 seonds whereas with the original algorithm the

time required exeeded the 10,000 seond limit imposed in the experiment.

It is worth pointing out that it is by no means trivially true that ylial

de�nitions an be dealt with by lazy unfolding. Even without inverse roles

it is lear that de�nitions suh as A

:

= :A (or more subtle variants) fore

the domain to be empty and would lead to an inorret absorption if dealt

with by lazy unfolding. With onverse roles it is, for example, possible to

fore the interpretation of a role R to be empty with a de�nition suh as

A

:

= 8R:(8R

�

::A), again leading to an inorret absorption if dealt with by

lazy unfolding.

6 Optimal Absorptions

We have demonstrated that absorption is a highly e�etive and widely appli-

able tehnique, and by formally de�ning orretness riteria for absorptions

we have proved that the proedure used by FaCT �nds orret absorptions.

Moreover, by establishing more preise orretness riteria we have demon-

strated how the e�etiveness of this proedure ould be further enhaned.

3

This example is only intended for didati purposes.
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Figure 2: Classi�ation times with and without enhaned absorption

However, the absorption algorithm used by FaCT is learly sub-optimal,

in the sense that hanges ould be made that would, in general, allow more

axioms to be absorbed (e.g., by also giving speial onsideration to axioms

of the form :A v C with A 2 NC). Moreover, the proedure is non-

deterministi, and, while it is guaranteed to produe a orret absorption,

its spei� result depends on the order of the axioms in the original TBox

T . Sine the semantis of a TBox T does not depend on the order of its

axioms, there is no reason to suppose that they will be arranged in a way that

yields a \good" absorption. Given the e�etiveness of absorption, it would

be desirable to have an algorithm that was guaranteed to �nd the \best"

absorption possible for any set of axioms, irrespetive of their ordering in

the TBox.

Unfortunately, it is not even lear how to de�ne a sensible optimality

riterion for absorptions. It is obvious that simplisti approahes based on

the number or size of axioms remaining in T

g

will not lead to a useful solution

for this problem. Consider, for example, the ylial TBox experiment from

the previous setion. Both the original FaCT absorption algorithm and the

enhaned algorithm, whih exploits Theorem 5.2, are able to ompute a

omplete absorption of the axioms ( i.e., a orret absorption with T

g

= ;),

but the enhaned algorithm leads to muh better performane, as shown in

Figure 2.

An important issue for future work is, therefore, the identi�ation of
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a suitable optimality riterion for absorptions, and the development of an

algorithm that is able to ompute absorptions that are optimal with respet

to this riterion.
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