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Optimisation of Terminologi
al Reasoning

Ian Horro
ks and Stephan Tobies

Abstra
t

When reasoning in des
ription, modal or temporal logi
s it is often

useful to 
onsider axioms representing universal truths in the domain

of dis
ourse. Reasoning with respe
t to an arbitrary set of axioms

is hard, even for relatively inexpressive logi
s, and it is essential to

deal with su
h axioms in an eÆ
ient manner if implemented systems

are to be e�e
tive in real appli
ations. This is parti
ularly relevant

to Des
ription Logi
s, where subsumption reasoning with respe
t to a

terminology is a fundamental problem. Two optimisation te
hniques

that have proved to be parti
ularly e�e
tive in dealing with termi-

nologies are lazy unfolding and absorption. In this paper we seek to

improve our theoreti
al understanding of these important te
hniques.

We de�ne a formal framework that allows the te
hniques to be pre-


isely des
ribed, establish 
onditions under whi
h they 
an be safely

applied, and prove that, provided these 
onditions are respe
ted, sub-

sumption testing algorithms will still fun
tion 
orre
tly. These results

are used to show that the pro
edures used in the FaCT system are


orre
t and, moreover, to show how eÆ
ien
y 
an be signi�
antly im-

proved, while still retaining the guarantee of 
orre
tness, by relaxing

the safety 
onditions for absorption.

1 Motivation

Des
ription Logi
s (DLs) form a family of formalisms whi
h have grown out

of knowledge representation te
hniques using frames and semanti
 networks.

DLs use a 
lass based paradigm, des
ribing the domain of interest in terms

of 
on
epts (
lasses) and roles (binary relations) whi
h 
an be 
ombined us-

ing a range of operators to form more 
omplex stru
tured 
on
epts [4℄. A

DL terminology typi
ally 
onsists of a set of asserted fa
ts, in parti
ular as-

serted subsumption (is-a-kind-of) relationships between (possibly 
omplex)


on
epts.

1

.

1

DLs 
an also deal with assertions about individuals, but in this paper we will only be


on
erned with terminologi
al (
on
ept based) reasoning
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This de�nition 
aptures a whole range of DLs, namely, the important

DL ALC [22℄ and its many extensions. Int(L) hides restri
tions on the inter-

pretation of 
ertain roles like transitivity, fun
tionality, or role hierar
hies,

whi
h are imposed by more expressive DLs (e.g., [18℄), as these are irrelevant

for our purposes. Please note that various modal logi
s [21℄, propositional

dynami
 logi
s [10℄ and temporal logi
s [14℄ also �t into this framework. We

will use C ! D as an abbreviation for :C tD, C $ D as an abbreviation

for (C ! D) u (D ! C), and > as a tautologi
al 
on
ept, e.g., A t :A for

an arbitrary A 2 NC.

A TBox 
onsists of a set of axioms asserting subsumption or equality

relations between (possibly 
omplex) 
on
epts.

De�nition 2.2 (TBox, Satis�ability) A TBox T for L is a �nite set of

axioms of the form C

1

v C

2

or C

1

:

= C

2

, where C

i

2 L. If, for some A 2 NC,

T 
ontains an axiom of the form A v C or A

:

= C, then we say that A is

de�ned in T .

Let L be a DL and T a TBox. An interpretation I 2 Int(L) is a model

of T i�, for ea
h C

1

v C

2

2 T , C

I

1

� C

I

2

holds, and, for ea
h C

1

:

= C

2

2 T ,

C

I

1

= C

I

2

holds. In this 
ase we write I j= T . A 
on
ept C 2 L is satis�able

with respe
t to a TBox T i� there is an I 2 Int(L) with I j= T and C

I

6= ;.

A 
on
ept C 2 L subsumes a 
on
ept D 2 L w.r.t. T i�, for all I 2 Int(L)

with I j= T , C

I

� D

I

holds.

Two TBoxes T ;T

0

are 
alled equivalent (T � T

0

), i�, for all I 2 Int(L),

I j= T i� I j= T

0

.

We will only deal with 
on
ept satis�ability as 
on
ept subsumption


an be redu
ed to it for DLs that are 
losed under boolean operations: C

subsumes D w.r.t. T i� (D u :C) is not satis�able w.r.t. T .

For temporal or modal logi
s, satis�ability with respe
t to a set of formu-

lae fC

1

; : : : ; C

k

g asserted to be universally true 
orresponds to satis�ability

w.r.t. the TBox f>

:

= C

1

; : : : ;>

:

= C

n

g.

Many de
ision pro
edures for DLs base their judgement on the existen
e

of models or pseudo-models for 
on
epts. A 
entral rôle in these algorithms is

played by a stru
ture that we will 
all a witness in this paper. It generalises

the notions of tableaux that appear in DL tableau-algorithms [16, 2, 18℄

as well as the Hintikka-stru
tures that are used in tableau and automata-

based de
ision pro
edures for temporal logi
 [14℄ and propositional dynami


logi
 [24℄.

De�nition 2.3 (Witness) Let L be a DL and C 2 L a 
on
ept. A witness

W = (�

W

; �

W

;L

W

) for C 
onsists of a non-empty set �

W

, a fun
tion �

W

4



that maps NR to 2

�

W

��

W

, and a fun
tion L

W

that maps �

W

to 2

L

su
h

that the following properties are satis�ed:

(W1) there is some x 2 �

W

with C 2 L

W

(x),

(W2) there is an interpretation I 2 Int(L) that stems from W, and

(W3) for ea
h interpretation I 2 Int(L) that stems from W, it holds that

D 2 L

W

(x) implies x 2 D

I

.

An interpretation I = (�

I

; �

I

) is said to stem from W if it satis�es:

1. �

I

= �

W

,

2. �

I

j

NR

= �

W

, and

3. for ea
h A 2 NC, A 2 L

W

(x) implies x 2 A

I

and :A 2 L

W

(x) implies

x 62 A

I

.

A witness W is 
alled admissible with respe
t to a TBox T if there is an

interpretation I 2 Int(L) that stems from W with I j= T .

Please note that, for any witness W, (W2) together with Condition 3 of

\stemming" implies that, there exists no x 2 �

W

and A 2 NC, su
h that

fA;:Ag � L

W

(x). Also note that, in general, more than one interpretation

may stem from a witness. This is the 
ase if, for an atomi
 
on
ept A 2

NC and an element x 2 �

W

, L

W

(x) \ fA;:Ag = ; holds (be
ause two

interpretations I and I

0

, with x 2 A

I

and x 2 :A

I

0

, 
ould both stem from

W).

Obviously, ea
h interpretation I gives rise to a spe
ial witness, 
alled


anoni
al witness:

De�nition 2.4 (Canoni
al Witness) Let L be a DL. For any interpreta-

tion I 2 Int(L) we de�ne the 
anoni
al witness W

I

= (�

W

I

; �

W

I

;L

W

I

) as

follows:

�

W

I

= �

I

�

W

I

= �

I

j

NR

L

W

I

= �x:fD 2 L j x 2 D

I

g

The following elementary properties of a 
anoni
al witness will be useful

in our 
onsiderations.

5



Lemma 2.5 (Some properties of the 
anoni
al witness) Let L be a DL.

Let C 2 L and T a TBox. For ea
h I 2 Int(L) with C

I

6= ;,

1. ea
h interpretation I

0

stemming from W

I

is isomorphi
 to I

2. W

I

is a witness for C,

3. W

I

is admissible w.r.t. T i� I j= T

Proof.

1. Let I

0

stem from W

I

. This implies �

I

0

= �

I

and �

I

0

j

NR

= �

I

j

NR

.

For ea
h x 2 �

I

and A 2 NC, fA;:Ag \ L

W

I

(x) 6= ;, this implies

�

I

0

j

NC

= �

I

j

NC

and hen
e I and I

0

are isomorphi
.

2. Properties (W1) and (W2) hold by 
onstru
tion. Obviously, I stems

from W

I

and from (1) it follows that ea
h interpretation I

0

stemming

from W

I

is isomorphi
 to I, hen
e (W3) holds.

3. Sin
e I stems from W

I

, I j= T implies that W

I

is admissible w.r.t.

T . If W

I

is admissible w.r.t. T , then there is an interpretation I

0

stemming from W

I

with I

0

j= T . Sin
e I is isomorphi
 to I

0

, this

implies I j= T .

As a 
orollary we get that the existen
e of admissible witnesses is 
losely

related to the satis�ability of 
on
epts w.r.t. TBoxes:

Lemma 2.6 Let L be a DL. A 
on
ept C 2 L is satis�able w.r.t. a TBox T

i� it has a witness that is admissible w.r.t. T .

Proof. For the only if -dire
tion let I 2 Int(L) be an interpretation with

I j= T and C

I

6= ;. From Lemma 2.5 follows that the 
anoni
al witness

W

I

is an witness for C that is admissible w.r.t. T .

For the if -dire
tion let W be an witness for C that is admissible w.r.t.

T . This implies that there is an interpretation I 2 Int(L) stemming from

W with I j= T . For ea
h interpretation I that stems from W, it holds that

C

I

6= ; due to (W1) and (W3).

6



From this it follows that one 
an test the satis�ability of a 
on
ept w.r.t.

to a TBox by 
he
king for the existen
e of an admissible witness. We 
all

algorithms that utilise this approa
h model-building algorithms.

This notion 
aptures tableau-based de
ision pro
edures, [16, 2, 18℄, those

using automata-theoreti
 approa
hes [24, 9℄ and, due to their dire
t 
orre-

sponden
e with tableaux algorithms [19, 6℄, even resolution based and se-

quent 
al
ulus algorithms. This work develops a te
hnique appli
able to all

these algorithm types.

The way many de
ision pro
edures for DLs deal with TBoxes exploits

the following simple lemma.

Lemma 2.7 Let L be a DL, C 2 L a 
on
ept, and T a TBox. Let W be a

witness for C. If, for ea
h x 2 �

W

,

C

1

v C

2

2 T implies C

1

! C

2

2 L

W

(x)

C

1

:

= C

2

2 T implies C

1

$ C

2

2 L

W

(x)

�

(�)

then W is admissible w.r.t. T .

Proof. W is a witness, hen
e there is an interpretation I 2 Int(L) stemming

from W. From (W3) and the fa
t that W satis�es (�) it follows that, for

ea
h x 2 �

I

,

C

1

v C

2

2 T implies C

1

! C

2

2 L

W

(x) implies x 2 (C

1

! C

2

)

I

C

1

:

= C

2

2 T implies C

1

$ C

2

2 L

W

(x) implies x 2 (C

1

$ C

2

)

I

Hen
e, I j= T and W is admissible w.r.t. T .

Examples of algorithms that exploit this lemma to deal with axioms


an be found in [13, 11, 18℄, where, for ea
h axiom C

1

v C

2

(C

1

:

= C

2

)

the 
on
ept C

1

! C

2

(C

1

$ C

2

) is added to every node of the generated

tableau.

Dealing with general axioms in this manner is 
ostly due to the high

degree of nondeterminism introdu
ed. This 
an best be understood by look-

ing at tableaux algorithms, whi
h try to build witnesses in an in
remental

fashion. For a 
on
ept C to be tested for satis�ability, they start with

�

W

= fx

0

g, L

W

(x

0

) = fCg and �

W

(R) = ; for ea
h R 2 NR. Subsequently,

the 
on
epts in L

W

are de
omposed and, if ne
essary, new nodes are added

to �

W

, until either W is a witness for C, or an obvious 
ontradi
tion of

the form fA;:Ag � L

W

(x), whi
h violates (W2), is generated. In the latter

7
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We �x an arbitrary linearisation A

1

; : : : ; A

k

of the \uses" partial order

on the atomi
 
on
ept names appearing on the left-hand sides of axioms in

T su
h that, if A

i

uses A

j

, then j < i and the de�ning 
on
ept for A

i

is D

i

.

For some interpretation I, atomi
 
on
ept A, and set X � �

I

, we denote

the interpretation that maps A to X and agrees with I on all other atomi



on
epts and roles by I[A 7! X℄. For 0 � i � k, we de�ne I

i

in an iterative

pro
ess starting from an arbitrary interpretation I

0

stemming from W and

setting

I

i

:= I

i�1

[A

i

7! fx 2 �

W

j x 2 D

I

i�1

i

g℄

Sin
e, for ea
h A

i

there is exa
tly one axiom in T , ea
h step in this

pro
ess is well-de�ned. Also, sin
e Int(L) may only restri
t the interpretation

of atomi
 roles, I

i

2 Int(L) for ea
h 0 � i � k. For I = I

k

it 
an be shown

that I is an interpretation stemming from W with I j= T .

First we prove indu
tively that, for 0 � i � k, I

i

stems from W. We

have already required I

0

to stem from W.

Assume the 
laim was proved for I

i�1

and I

i

does not stem from W.

Then there must be some x 2 �

W

su
h that either (i) A

i

2 L

W

(x) but

x 62 A

I

i

i

or (ii) :A

i

2 L

W

(x) but x 2 A

I

i

i

(sin
e we assume I

i�1

to stem

from W and A

i

is the only atomi
 
on
ept whose interpretation 
hanges

from I

i�1

to I

i

). The two 
ases 
an be handled dually:

(i) From A

i

2 L

W

(x) it follows that D

i

2 L

W

(x), be
auseW is unfolded.

Sin
e I

i�1

stems from W and W is a witness, Property (W3) implies

x 2 D

I

i�1

i

. But this implies x 2 A

I

i

i

, whi
h is a 
ontradi
tion.

(ii) From :A

i

2 L

W

(x) it follows that :D

i

2 L

W

(x) be
ause W is un-

folded. Sin
e I

i�1

stems from W and W is an witness, Property (W3)

implies x 2 (:D

i

)

I

i�1

. Sin
e (:D

i

)

I

i�1

= �

W

n D

I

i�1

i

this implies

x 62 A

I

i

i

, whi
h is a 
ontradi
tion.

Together this implies that I

i

also stems from W.

To show that I j= T we show indu
tively that I

i

j= A

j

:

= D

j

for ea
h

1 � j � i. This is obviously true for i = 0.

The interpretation of D

i

may not depend on the interpretation of A

i

be
ause otherwise (I2) would imply that A

i

uses itself. Hen
e D

I

i

i

= D

I

i�1

i

and, by 
onstru
tion, I

i

j= A

i

:

= D

i

. Assume there is some j < i su
h that

I

i

6j= A

j

:

= D

j

. Sin
e I

i�1

j= A

j

:

= D

j

and only the interpretation of A

i

has 
hanged from I

i�1

to I

i

, D

I

i

j

6= D

I

i�1

j

must hold be
ause of (I2). But

this implies that A

i

o

urs in D

j

and hen
e A

j

uses A

i

whi
h 
ontradi
ts

10



j < i + 1. Thus, we have I j= A

j

= D

j

for ea
h 1 � j � k and hen
e

I j= T .

Lazy unfolding is a well-known and widely used te
hnique for optimis-

ing reasoning w.r.t. primitive TBoxes [3℄. So far, we have only given a


orre
tness proof for this relatively simple approa
h, although one that is

independent of a spe
i�
 DL or reasoning algorithm. With the next lemma

we show how we 
an extend 
orre
t absorptions and hen
e how lazy unfold-

ing 
an be applied to a broader 
lass of TBoxes. A further enhan
ement of

the te
hnique is presented in Se
tion 5.

Lemma 3.5 Let (T

u

;T

g

) be a 
orre
t absorption of a TBox T .

1. If T

0

is an arbitrary TBox, then (T

u

;T

g

[ T

0

) is a 
orre
t absorption

of T [ T

0

.

2. If T

0

is a TBox that 
onsists entirely of axioms of the form A v D,

where A 2 NC and A does not o

ur on the left-hand side of any axiom

in T

u

, then (T

u

[ T

0

;T

g

) is a 
orre
t absorption of T [ T

0

.

Proof. In both 
ases, T

u

[ T

g

[ T

0

� T [ T

0

holds trivially.

1. Let C 2 L be a 
on
ept andW be an unfolded witness for C w.r.t. the

absorption (T

u

;T

g

[ T

0

). This implies that W is unfolded w.r.t. the

(smaller) absorption (T

u

;T

g

). Sin
e (T

u

;T

g

) is a 
orre
t absorption,

there is an interpretation I stemming from W with I j= T . Assume

I 6j= T

0

. Then, without loss of generality,

2

there is an axiom D v

E 2 T

0

su
h that there exists an x 2 D

I

n E

I

. Sin
e W is unfolded,

we have D ! E 2 L

W

(x) and hen
e (W3) implies x 2 (:D t E)

I

=

�

I

n(D

I

nE

I

), a 
ontradi
tion. Hen
e I j= T [T

0

andW is admissible

w.r.t. T [ T

0

.

2. Let C 2 L be a 
on
ept and W be an unfolded witness for C w.r.t.

the absorption (T

u

[ T

0

;T

g

). From W we de�ne a new witness for C

as follows:

�

W

0

:= �

W

�

W

0

:= �

W

L

W

0

:= �x:

�

L

W

(x) [ f:A j A v D 2 T

0

; A 62 L

W

(x)g

�

2

Arbitrary TBoxes 
an be expressed using only axioms of the form C v D.

11



It is easy to see that W

0

is indeed a witness for C and that W

0

is also

unfolded w.r.t. the absorption (T

u

[ T

0

;T

g

). This implies that W

0

is

also unfolded w.r.t. the (smaller) absorption (T

u

;T

g

). Sin
e (T

u

;T

g

) is

a 
orre
t absorption of T , there exists an interpretation I stemming

from W

0

su
h that I j= T . We will show that I j= T

0

also holds.

Assume I 6j= T

0

, then there is an axiom A v D 2 T

0

and an x 2 �

I

su
h that x 2 A

I

but x 62 D

I

. By 
onstru
tion of W

0

, x 2 A

I

implies A 2 L

W

0

(x) be
ause otherwise :A 2 L

W

0

(x) would hold in


ontradi
tion to (W3). Then, sin
e W

0

is unfolded, D 2 L

W

0

(x),

whi
h, again by (W3), implies x 2 D

I

, a 
ontradi
tion.

Hen
e, we have shown that there exists an interpretation I stemming

from W

0

su
h that I j= T

u

[ T

0

[ T

g

. By 
onstru
tion of W

0

, any

interpretation stemming from W

0

also stems from W, hen
e W is ad-

missible w.r.t. T [ T

0

.

4 Appli
ation to FaCT

In the pre
eeding se
tion we have de�ned 
orre
t absorbtions and dis
ussed

how they 
an be exploited in order to optimise satis�ability pro
edures.

However, we have said nothing about the problem of how to �nd an ab-

sorption given an arbitrary terminology. In this se
tion we will des
ribe

the absorption algorithm used by FaCT and prove that it generates 
orre
t

absorptions.

Given a TBox T 
ontaining arbitrary axioms, the absorption algorithm

used by FaCT 
onstru
ts a triple of TBoxes (T

g

;T

prim

;T

in


) su
h that

� T � T

g

[ T

prim

[ T

in


,

� T

prim

is primitive, and

� T

in



onsists only of axioms of the form A v D where A 2 NC and A

is not de�ned in T

prim

.

We refer to these properties by (�). From Theorem 3.4 together with

Lemma 3.5 it follows that, for

T

u

:= fA v D;:A v :D j A

:

= D 2 T

prim

g [ T

in


(T

u

,T

g

) is a 
orre
t absorption of T ; hen
e satis�ability for a 
on
ept C

w.r.t. T 
an be de
ided by 
he
king for an unfolded witness for C.

12



In a �rst step, FaCT distributes axioms from T amongst T

in


, T

prim

, and

T

g

, trying to minimise the number of axioms in T

g

while still maintaining

(�). To do this, it initialises T

prim

;T

in


, and T

g

with ;, and then pro
esses

ea
h axiom X 2 T as follows.

1. If X is of the form A v C, then

(a) if A 2 NC and A is not de�ned in T

prim

then X is added to T

in


,

(b) otherwise X is added to T

g

2. If X is of the form A

:

= C, then

(a) if A 2 NC, A is not de�ned in T

prim

or T

in


and T

prim

[ fXg is

primitive, then X is added to T

prim

,

(b) otherwise, the axioms A v C and C v A are added to T

g

It is easy to see that the resulting TBoxes T

g

;T

prim

;T

in


satisfy (�). In a

se
ond step, FaCT pro
esses the axioms in T

g

one at a time, trying to absorb

them into axioms in T

in


. Those axioms that are not absorbed remain in T

g

.

To give a simpler formulation of the algorithm, ea
h axiom (C v D) 2 T

g

is

viewed as a 
lause G = fD;:Cg, 
orresponding to the axiom > v C ! D,

whi
h is equivalent to C v D. For ea
h su
h axiom FaCT applies the

following absorption pro
edure.

1. Try to absorb G. If there is a 
on
ept :A 2 G su
h that A 2 NC

and A is not de�ned in T

prim

, then add A v B to T

in


, where B is the

disjun
tion of all the 
on
epts in G n f:Ag, remove G from T

g

, and

exit.

2. Try to simplify G.

(a) If there is some :C 2 G su
h that C is of the form C

1

u : : :uC

n

,

then substitute :C with :C

1

t : : : t :C

n

, and 
ontinue with

step 2b.

(b) If there is some C 2G su
h that C is of the form (C

1

t : : :tC

n

),

then apply asso
iativity by settingG = G[fC

1

; : : : ; C

n

gnf(C

1

t

: : : t C

n

)g, and return to step 1.

3. Try to unfold G. If, for some A 2 G (resp. :A 2 G), there is an

axiom A

:

= C in T

prim

, then substitute A 2 G (resp. :A 2 G) with C

(resp. :C) and return to step 1.

13



4. If none of the above were possible, then absorption of G has failed.

Leave G in T

g

, and exit.

For ea
h step, we have to show that (�) is maintained. Dealing with


lauses instead of axioms 
auses no problems. In the �rst step, axioms are

moved from T

g

to T

in


as long as this does not violate (�). The se
ond and

the third step repla
e a 
lause by an equivalent one and hen
e do not violate

(�).

Termination of the pro
edure is obvious. Ea
h axiom is 
onsidered only

on
e and, for a given axiom, simpli�
ation and unfolding 
an only be applied

�nitely often before the pro
edure is exited, either by absorbing the axiom

into T

in


or leaving it in T

g

. For simpli�
ation, this is obvious; for unfolding,

this holds be
ause T

prim

is a
y
li
.

Theorem 4.1 For any TBox T , FaCT 
omputes a 
orre
t absorption of T .

5 Improving Performan
e

The absorption algorithm employed by FaCT already leads to a dramati


improvement in performan
e. This is illustrated by Figure 1, whi
h shows

the times taken by FaCT to 
lassify versions of the Galen KB with some or

all of the general axioms removed. Without absorption, 
lassi�
ation time

in
reased rapidly with the number of general axioms, and ex
eeded 10,000s

with only 25 general axioms in the KB; with absorption, only 160s was taken

to 
lassify the KB with all 1,214 general axioms.

However, there is still 
onsiderable s
ope for further gains. In parti
ular,

the following de�nition for a strati�ed TBox allows lazy unfolding to be more

generally applied, while still allowing for 
orre
t absorptions.

De�nition 5.1 (Strati�ed TBox) A TBox T is 
alled strati�ed i� it


onsists entirely of axioms of the form A

:

= D with A 2 NC, ea
h A 2 NC

appears at most on
e on the left-hand side of an axiom, and T 
an be ar-

ranged monotonously, i.e., there is a disjoint partition T

1

_

[ T

2

_

[ : : :

_

[ T

k

of

T , su
h that

� for all 1 � j < i � k, if A 2 NC is de�ned in T

i

, then it does not o

ur

in T

j

, and

� for all 1 � i � k, all 
on
epts whi
h appear on the right-hand side of

axioms in T

i

are monotone in all atomi
 
on
epts de�ned in T

i

.
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interse
tion \, respe
tively. For any 
omplete latti
e L, its n-fold 
artesian

produ
t L

n

is also a 
omplete latti
e, with ordering, join, and meet de�ned

in a pointwise manner.

For a latti
e L, a fun
tion � : L ! L is 
alled monotone, i�, for x

1

; x

2

2

L, x

1

v x

2

implies �(x

1

) v �(x

2

).

By Tarski's �xed point theorem [23℄, every monotone fun
tion � on a


omplete latti
e, has uniquely de�ned least and greatest �xed points, i.e.,

there are elements x; x 2 L su
h that

x = �(x) and x = �(x)

and, for all x 2 L with x = �(x),

x v x and x v x:

Proof. T

u

[ T

g

� T is obvious. Let W = (�

W

; �

W

;L

W

) be an unfolded

witness. We have to show that there is an interpretation I stemming from

W with I j= T . Let T

1

; : : : ; T

k

be the required partition of T . We will de�ne

I indu
tively, starting with an arbitrary interpretation I

0

stemming from

W.

Assume I

i�1

was already de�ned. We de�ne I

i

from I

i�1

as follows: let

fA

i

1

:

= D

i

1

; : : : ; A

i

m

:

= D

i

m

g be an enumeration of T

i

. Sin
e all of the D

i

j

are

monotone in all of the A

i

m

, the following is a monotone fun
tion:

�(X

1

; : : : ;X

m

) := ( (fx j A

i

1

2 L

W

(x)g [ (D

i

1

)

I

i�1

(X

1

;:::;X

m

)

) n fx j :A

i

1

2 L

W

(x)g;

: : : ;

(fx j A

i

m

2 L

W

(x)g [ (D

i

m

)

I

i�1

(X

1

;:::;X

m

)

) n fx j :A

i

m

2 L

W

(x)g )

where

I

i�1

(X

1

; : : : ;X

m

) := I

i�1

[A

i

1

7! X

1

; : : : ; A

i

m

7! X

m

℄

This implies that � has a least �xed point, whi
h we denote by (X

1

; : : : ;X

m

).

We use this �xed point to de�ne I

i

by

I

i

:= I

i�1

[A

i

1

7! X

1

; : : : ; A

i

m

7! X

m

℄

Claim 1: For ea
h 0 � i � k, I

i

stems from W.

Assume I

i�1

stems fromW. Sin
e the only thing that 
hanges from I

i�1

to I

i

is the interpretation of the atomi
 
on
epts A

i

1

; : : : ; A

i

m

, we only have
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to 
he
k that A

i

j

2 L

W

(x) implies x 2 (A

i

j

)

I

i

and :A

i

j

2 L

W

(x) implies

x 62 (A

i

j

)

I

i

.

By de�nition of �, and be
ause fx j A

i

j

2 L

W

(x)g\fx j :A

i

j

2 L

W

(x)g =

;, A

i

j

2 L

W

(x) implies x 2 (A

i

j

)

I

i

. Also by the de�nition of �, :A

i

j

2 L

W

(x)

implies x 62 (A

i

j

)

I

i

. Hen
e, I

i

stems from W.

Claim 2: For ea
h 1 � j � i � k, I j= T

i

.

We prove this 
laim by indu
tion over i starting from 0. For i = 0, there

is nothing to prove. Assume the 
laim would hold for I

i�1

. The only thing

that 
hanges from I

i�1

to I

i

is the interpretation of the atomi
 
on
epts

A

i

1

; : : : A

i

m

de�ned in T

i

. Sin
e these 
on
epts may not o

ur in T

j

for j < i,

the interpretation of the 
on
epts in these TBoxes does not 
hange, and

from I

i�1

j= T

j

follows I

i

j= T

j

for 1 � j � i� 1.

It remains to show that I

i

j= T

i

. Let A

i

j

:

= D

i

j

be an axiom from T

i

.

From the de�nition of I

i

we have

(A

i

j

)

I

i

= (fx j A

i

j

2 L

W

(x)g [ (D

i

j

)

I

i

) n fx j :A

i

j

2 L

W

(x)g: (1)

W is unfolded, hen
e A

i

j

2 L

W

(x) implies D

i

j

2 L

W

(x) and, sin
e I

i

stems from W, this implies x 2 (D

i

j

)

I

i

, thus

fx j A

i

j

2 L

W

(x)g [ (D

i

j

)

I

i

= (D

i

j

)

I

i

(2)

Furthermore, :A

i

j

2 L

W

(x) implies :D

i

j

2 L

W

(x) implies x 2 (:D

i

j

)

I

i

, thus

(D

i

j

)

I

i

n fx j :A

i

j

2 L

W

(x)g = (D

i

j

)

I

i

(3)

Taking together (1), (2), and (3) we get

(A

i

j

)

I

i

= (D

i

j

)

I

i

;

and hen
e I

i

j= A

i

j

:

= D

i

j

.

Together, Claim 1 and Claim 2 prove the theorem, sin
e I

k

is an inter-

pretation that stems from W and satis�es T .

This theorem makes it possible to apply lazy unfolding to 
y
li
al def-

initions. Su
h de�nitions are quite natural in a logi
 that supports inverse

roles. For example, an orthopaedi
 pro
edure might be de�ned as a pro-


edure performed by an orthopaedi
 surgeon, while an orthopaedi
 surgeon

17



might be de�ned as a surgeon who performs only orthopaedi
 pro
edures:

3

orthopaedi
-pro
edure

:

= pro
edure u (9performs

�

:orthopaedi
-surgeon)

orthopaedi
-surgeon

:

= surgeon u (8performs:orthopaedi
-pro
edure)

The absorption algorithm des
ribed in Se
tion 4 would for
e the se
ond

of these de�nitions to be added to T

g

as two general axioms and, although

both axioms would subsequently be absorbed into T

u

, the pro
edure would

result in a disjun
tive term being added to one of the de�nitions in T

u

.

Using Theorem 5.2 to enhan
e the absorption algorithm so that these kinds

of de�nition are dire
tly added to T

u

redu
es the number of disjun
tive terms

in T

u

and 
an lead to signi�
ant improvements in performan
e.

This 
an be demonstrated by a simple experiment with the new FaCT

system, whi
h implements the SHIQ logi
 [18℄ and is thus able to deal with

inverse roles. Figure 2 shows the 
lassi�
ation time in se
onds using the

normal and enhan
ed absorption algorithms for terminologies 
onsisting of

between 5 and 50 pairs of 
y
li
al de�nitions like those des
ribed above for

orthopaedi
-surgeon and orthopaedi
-pro
edure. With only 10 pairs the gain in

performan
e is already a fa
tor of 30, while for 45 and 50 pairs it has rea
hed

several orders of magnitude: with the enhan
ed lazy unfolding the termi-

nology is 
lassi�ed in 2{3 se
onds whereas with the original algorithm the

time required ex
eeded the 10,000 se
ond limit imposed in the experiment.

It is worth pointing out that it is by no means trivially true that 
y
li
al

de�nitions 
an be dealt with by lazy unfolding. Even without inverse roles

it is 
lear that de�nitions su
h as A

:

= :A (or more subtle variants) for
e

the domain to be empty and would lead to an in
orre
t absorption if dealt

with by lazy unfolding. With 
onverse roles it is, for example, possible to

for
e the interpretation of a role R to be empty with a de�nition su
h as

A

:

= 8R:(8R

�

::A), again leading to an in
orre
t absorption if dealt with by

lazy unfolding.

6 Optimal Absorptions

We have demonstrated that absorption is a highly e�e
tive and widely appli-


able te
hnique, and by formally de�ning 
orre
tness 
riteria for absorptions

we have proved that the pro
edure used by FaCT �nds 
orre
t absorptions.

Moreover, by establishing more pre
ise 
orre
tness 
riteria we have demon-

strated how the e�e
tiveness of this pro
edure 
ould be further enhan
ed.

3

This example is only intended for dida
ti
 purposes.

18



0.01

0.1

1

10

100

1000

10000

5 10 15 20 25 30 35 40 45 50

C
PU

 ti
m

e 
(s

)

Concept pairs

normal
enhanced

Figure 2: Classi�
ation times with and without enhan
ed absorption

However, the absorption algorithm used by FaCT is 
learly sub-optimal,

in the sense that 
hanges 
ould be made that would, in general, allow more

axioms to be absorbed (e.g., by also giving spe
ial 
onsideration to axioms

of the form :A v C with A 2 NC). Moreover, the pro
edure is non-

deterministi
, and, while it is guaranteed to produ
e a 
orre
t absorption,

its spe
i�
 result depends on the order of the axioms in the original TBox

T . Sin
e the semanti
s of a TBox T does not depend on the order of its

axioms, there is no reason to suppose that they will be arranged in a way that

yields a \good" absorption. Given the e�e
tiveness of absorption, it would

be desirable to have an algorithm that was guaranteed to �nd the \best"

absorption possible for any set of axioms, irrespe
tive of their ordering in

the TBox.

Unfortunately, it is not even 
lear how to de�ne a sensible optimality


riterion for absorptions. It is obvious that simplisti
 approa
hes based on

the number or size of axioms remaining in T

g

will not lead to a useful solution

for this problem. Consider, for example, the 
y
li
al TBox experiment from

the previous se
tion. Both the original FaCT absorption algorithm and the

enhan
ed algorithm, whi
h exploits Theorem 5.2, are able to 
ompute a


omplete absorption of the axioms ( i.e., a 
orre
t absorption with T

g

= ;),

but the enhan
ed algorithm leads to mu
h better performan
e, as shown in

Figure 2.

An important issue for future work is, therefore, the identi�
ation of

19



a suitable optimality 
riterion for absorptions, and the development of an

algorithm that is able to 
ompute absorptions that are optimal with respe
t

to this 
riterion.
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