
LTCS{Report

Aachen University of Technology

Research group for

Theoretical Computer Science

A PSpace-algorithm for ALCQI-satis�ability

Stephan Tobies

LTCS-Report 99-09

RWTH Aachen

LuFg Theoretische Informatik

http://www-lti.informatik.rwth-aachen.de

Ahornstr. 55

52074 Aachen

Germany

A PSpace-algorithm for

ALCQI-satis�ability

Stephan Tobies

July 23, 1999

Revised version

Abstract

The description logic ALCQI extends the \standard" description

logic ALC by qualifying number restrictions and converse roles. We

show that concept satis�ability for this DL is still decidable in poly-

nomial space. The presented algorithm combines techniques from

[Tob99] to deal with qualifying number restrictions and from [HST99]

to deal with converse roles.

1 The Description Logic ALCQI

Qualifying number restrictions [HB91] are a common generalisation of both

role-quanti�cation and standard number restrictions that are present in al-

most all implementations of DL systems. They provide an expressive means

to describe objects by the number of other objects they are related to and

are necessary for reasoning with semantic data models [CLN94]. In [Tob99]

we have shown that|at least for ALC|number restrictions can be replaced

by qualifying number restrictions without increasing the (worst-case) com-

plexity of the satis�ability problem. In this section we extend this result to

converse roles.

De�nition 1 (The DL ALCQI) Let N

C

be a set of atomic concepts and

N

R

a set of atomic roles. The set of ALCQI-roles N

R

is N

R

[fR

�

j R 2

N

R

g. Concepts in ALCQI are built inductively using the following rules:

1

1. every A 2 N

C

is an ALCQI-concept, and

2. if C;D

1

; D

2

are ALCQI-concepts, n 2 N and R 2 N

R

then :C, D

1

u

D

2

, D

1

tD

2

, (> n R C), and (6 n R C) are ALCQI-concepts.

For an interpretation I = (�

I

; �

I

), we extend the usual semantics of ALC-

concepts to qualifying number restrictions as follows:

(> n R C)

I

:= fx 2 �

I

j]fy j (x; y) 2 R

I

; y 2 C

I

g > ng;

(6 n R C)

I

:= fx 2 �

I

j]fy j (x; y) 2 R

I

; y 2 C

I

g 6 ng;

where] denotes the cardinality of a set. For converse roles we de�ne (R

�

)

I

:=

f(y; x) j (x; y) 2 R

I

g. With ALCQ we denote the fragment of ALCQ which

does not contain converse roles. With Sat(ALCQ) and Sat(ALCQI) we

denote the set of all satis�able ALCQ-, resp., ALCQI-concepts.

In order to avoid considering roles such as R

��

, we de�ne a function Inv

that returns the inverse of a role by setting

Inv(R) :=

(

R

�

if R 2 N

R

S if R = S

�

for some S 2 N

R

2 Reasoning for ALCQI

In [HB91] a tableaux algorithm is presented that decides Sat(ALCQ) in

polynomial space, provided that unary coding of numbers in the input is

assumed when calculating the size of the input. In [dHR95] it is conjectured

that binary coding of numbers would make Sat(ALCQ) ExpTime-complete.

Why does the coding of numbers seem to be of such an importance for the

problem? The answer lies in the nature of the tableaux algorithms forALCQ:

They decide the satis�ability of a concept C by trying to explicitly construct

a model for it. For a concept of the form (> n R C), the algorithm in

[HB91] generates n individuals, and the correctness of the algorithms relies

on that fact that they are kept in memory simultaneously. Assuming unary

coding of numbers in the input, this is admissible because the number n will

consume n bits in the input and hence the amount of memory needed for the

n successors is polynomial in the size of the input. This changes if we assume

binary coding of numbers: The number n consumes only log

2

n bits in the

2

input, making the amount of memory needed for n successors potentially

exponential in the size of the input.

In [Tob99] we give an algorithm derived from the one presented in [HB91]

that is capable of deciding Sat(ALCQ) in PSpace, even if binary coding

of numbers in the input is allowed. While still generating n successors for a

concept (> n R C), non-deterministic guessing of an assignment of relevant

constraints to newly generated nodes is used to be able to generate these

one after another re-using space. This exactly determines the complexity of

Sat(ALCQ) as PSpace-complete. This rather surprising result shows that

augmenting ALC with qualifying number restrictions does not increase the

(worst-case) complexity of the satis�ability problem.

In this paper we present an extension of the algorithm in [Tob99] that

can additionally deal with converse roles and runs in polynomial space. This

yields that also Sat(ALCQI) is PSpace-complete. The \reset-restart" tech-

nique, which is used to deal with concepts moving upwards in the completion

tree, has already been used in [HST99] to deal with converse roles.

De�nition 2 An ALCQI-concept C is in negation normal form (NNF) if

negation occurs only in front of atomic concepts; we denote the NNF of :C

by �C. For a concept C in NNF we de�ne clos(C) to be the smallest set of

ALCQI-concepts that contains C and is closed under sub-concepts and �.

A completion tree for an ALCQI-concept D is a tree where each node x of

the tree is labelled with a set L(x) � clos(D) and each edge hx; yi is labelled

with a role name L(hx; yi) = R for a (possibly inverse) role occurring in

clos(D).

Given a completion tree, a node y is called an R-successor of a node x i� y

is a successor of x and L(hx; yi) = R. A node y is called an R-neighbour of x

i� y is an R-successor of x, or if x is an Inv(R)-successor of y. Predecessors

and ancestors are de�ned as usual.

A node x in T is said to contain a clash if,

� for some atomic concept A, fA;:Ag � L(x), or

� for some concept C, role R, and n 2 N, (6 n R C) 2 L(x) while

]R

T

(x; C) > n, where R

T

(x; C) := fy j y is R-neighbour of x in T and

C 2 L(y)g.

A completion tree is called clash-free i� none of its nodes contains a clash;

it is called complete i� none of the expansion rules in Figure 2 is applicable.

3

u-rule: if 1. C

1

uC

2

2 L(x) and

2. fC

1

; C

2

g 6� L(x)

then L(x) �! L(x) [fC

1

; C

2

g

t-rule: if 1. C

1

tC

2

2 L(x) and

2. fC

1

; C

2

g \ L(x) = ;

then L(x) �! L(x) [fCg for some C 2 fC

1

; C

2

g

choose-rule: if 1. (./ n R C) 2 L(x) and

2. there is an R-predecessor y of x

with fC;�Cg \ L(x) = ;

then L(y) �! L(y) [fEg for some E 2 fC;�Cg

and delete all descendants of y.

>-rule: if 1. (> n R C) 2 L(x), x is not blocked and no

non-generating rule is applicable to x or any

of its ancestors, and

2.]R

T

(x;C) < n

then create a new node y with L(hx; yi) = R and

L(y) = B(y) = fC;E

1

; : : : ; E

n

g where

fD

1

; : : : D

n

g = fD j (./ n R D) 2 L(x)g

and E

i

2 fD

i

;�D

i

g.

Figure 1: Tableaux expansion rules for ALCQI

For an ALCQI-concept D, the algorithm starts with a completion tree

consisting of a single node x with L(x) = fDg. It applies the expansion

rules, stopping when a clash occurs, and answers \D is satis�able" i� the

completion rules can be applied in such a way that they yield a complete and

clash-free completion tree.

2.1 Correctness of the Algorithm

In order to prove the correctness of the algorithm we have to show termina-

tion, soundness, and completeness.

Before we prove termination of the algorithm we will establish a bound

on the size of a completion tree generated by the tableaux algorithm that

will also be used in the complexity analysis.

4

Lemma 3 Let D be an ALCQI-concept in NNF and T a completion tree

that is generated for D by the tableaux algorithm.

1.]clos(D) = O(jDj).

2. The length of a path in T is limited by jDj.

3. The out-degree of T is limited by]clos(D)� 2

jDj

.

Proof.

1. The �rst part of this Lemma can easily be proved by observing that

for a concept D in NNF

clos(D) = sub(D) [f�C j C 2 sub(D)g

holds, where sub(D) denotes the set of all sub-concepts ofD. Obviously,

]sub(D) � jDj and hence]clos(D) � O(jDj).

2. For a node x we de�ne `(x) as the maximum depth of nested number

restrictions in L(x). Obviously, for the root x

0

of T, `(x

0

) � jDj holds.

Also, if y is a successor of x in T, then `(x) > `(y). Hence each path

x

1

; : : : ; x

n

in T induces a strictly decreasing sequence `(x

1

) > `(x

2

) >

� � � > `(x

k

) of natural numbers. Thus, the longest path in T starts at

x

0

and its length is bounded by jDj.

3. Successors in T are only generated by the >-rule. For a node x this rule

will generate at most n successors for each (> n R C) 2 L(x). There

are at most]clos(D) such formulae in L(x). Hence the out-degree of

x is bounded by]clos(D) � 2

jDj

, where 2

jDj

is a limit for the biggest

number that may appear in D if binary coding is used.

From this we can follow termination of the algorithm.

Lemma 4 (Termination) For any ALCQI-concept D the tableaux algo-

rithm terminates.

Proof. Termination of the algorithm is a consequence of the following facts:

� Each node is labelled with a subset of the �nite set clos(D). Concepts

are never removed from the labels of the nodes.

5

� The size of the tree is bounded by Lemma 3.

� The rules either add concepts to the label of a node or add nodes to

the tree.

� Whenever a node is deleted from the tree the labels of one of its ances-

tors grows.

Assume that algorithm does not terminate. Due to the mentioned facts

this can only be because of an in�nite number of deletions of subtrees. Each

node can of course only be deleted once, but the successors of a single node

may be deleted several times. The root of the completion tree cannot be

deleted because it has no predecessor. Hence there are nodes which are

never deleted. Choose one of these nodes x with maximum distance from

the root, i.e., which has a maximum number of predecessors. Suppose that

x's successors are deleted only �nitely many times. This cannot be the case

because, after the last deletion of x's successors, the \new" successors were

never deleted and thus x would not have maximum distance from the root.

Hence x triggers the deletion of its successors in�nitely many times. However,

the choose-rule is the only rules that leads to a deletion, and it simultaneously

leads to an increase of L(x), namely by the missing concept which caused

the deletion of x's successors. Since we never remove any concepts from the

labels, this implies the existence of an in�nitely increasing chain of subsets

of clos(D), which is clearly impossible.

Lemma 5 (Soundness) If the expansion rules can be applied to anALCQI-

concept D such that they yield a complete and clash-free completion tree, then

D is satis�able.

Proof. Let T be such a completion tree for D. A model I = (�

I

; �

I

) for D

can be de�ned by setting �

I

to be the nodes of T and by de�ning:

A

I

= fx j A 2 L(x)g for all concept names A in clos(D)

R

I

= fhx; yi j L(hx; yi) = R or L(hy; xi) = Inv(R)g:

Inductively we will show for all x 2 �

I

and all C 2 clos(D) that C 2 L(x)

implies x 2 C

I

. We cannot use induction over the structure of concepts due

to the >-rule that adds negated concepts to the tree. Instead we will use the

6

following norm k � k of a concept C. The norm kCk for concept in NNF is

inductively de�ned by:

kAk := k:Ak := 0 for A 2 N

C

kC

1

u C

2

k := kC

1

t C

2

k := 1 + kC

1

k+ kC

2

k

k(./ n S C)k := 1 + kCk

The two base cases of the induction are C = A or C = :A. If A 2 L(x), then

by de�nition x 2 A

I

. If :A 2 L(x), then A 62 L(x) because T is clash-free

and hence x 62 A

I

. For the induction step we have to distinguish several

cases:

� C = C

1

u C

2

. Since T is complete C 2 L(x) implies C

1

2 L(x) and

C

2

2 L(x). Hence, by induction, we have x 2 C

I

1

and x 2 C

I

2

which

yields x 2 (C

1

u C

2

)

I

.

� C = C

1

t C

2

. Similar to the previous case.

� C = (> n R E). For an x with C 2 L(x) we have]R

T

(x; E) >

n because T is complete. Hence there are n distinct R-neighbours

y

1

; : : : ; y

n

with E 2 L(y

i

) for all i. By induction, we have y

i

2 E

I

and,

since, for each R-neighbour y

j

, hx; y

j

i 2 R

I

holds, also x 2 C

I

.

� C = (6 n R E). Let x be an individual with C 2 L(x). For any R-

neighbour y of x either E 2 L(y) of �E 2 L(y). This is guaranteed by

the choose-rule (for an R-predecessor of x) and by the >-rule which is

suspended until no other rules can applied to x or any predecessor of x

together with the reset-restart mechanism that is triggered by concepts

\moving upwards" in the tree.

We show that]R

I

(x; E) 6]R

T

(x; E): Assume]R

I

(x; E) >]R

T

(x; E).

This implies the existence of some y with hx; yi 2 R

I

with y 2 E

I

but E 62 L(y). This implies �E 2 L(y), which, by induction yields

y 2 (�E)

I

in contradiction to x 2 E

I

.

Since D 2 L(x

0

) for the root x

0

of T this implies D

I

6= ; and hence I is

a model for D.

7

Lemma 6 (Completeness) Let D be an ALCQI-concept: If D is satis�-

able, then the expansion rules can be applied in such a way that they yield a

complete and clash-free completion tree for D.

Proof. Let I = (�

I

; �

I

) be a model for D. We will use this model to guide

the application of the non-deterministic completion rules. For this we will

incremently de�ne a function � mapping the nodes in T to elements of �

I

such that at any given stage the following holds:

1: L(x)) �(x) 2 C

I

2: if L(hx; yi) = R then h�(x); �(y)i 2 R

I

3: if y; z are two R-neighbours of x then �(y) 6= �(z)

9

=

;

(�)

Claim: Whenever (�) holds for a tree T and a function � and a rule is

applicable to T then it can be applied in a way that maintains (�).

� The u-rule: if C

1

u C

2

2 L(x), then �(x) 2 (C

1

u C

2

)

I

. This implies

�(x) 2 C

I

1

\ C

I

2

, and hence the rule can be applied without violating

(�).

� The t-rule: if C

1

t C

2

2 L(x), then �(x) 2 (C

1

t C

2

)

I

. This implies

�(x) 2 C

I

1

[C

I

2

. Hence the t-rule can add a concept E 2 fC

1

; C

2

g to

L(x) such that (�) still holds.

� The choose-rule: obviously, either �(y) 2 E

I

or �(y) 62 E

I

for any

node y of the tree. Since (�E)

I

= �

I

n E

I

the rule can always be

applied in a way that maintains (�). Deletion of nodes does not violate

(�)

� The >-rule: if (> n R C) 2 L(x), then �(x) 2 (> n R C)

I

. This

implies]S

I

(�(x); C) > n. We claim that there is an element t 2 �

I

such that

h�(x); ti 2 R

I

; t 2 C

I

; and t 62 f�(y) j y is an R-neighbour of x g (��)

We will come back to this claim later. Let D

1

; : : : ; D

n

be an enumer-

ation of the set fD j (./ n R D) 2 L(x)g. The >-rule can add a new

node y with L(hx; yi) = R and L(y) = fCg [fD

i

j t 2 D

I

i

g [f�D

i

j

8

t 62 D

I

i

g. If we set �

0

:= �[y 7! t], then the modi�ed tree together with

�

0

satis�es (�).

Why does there exists an element t that satis�es (��)? It is obvi-

ous that there exists an element t with h�(x); ti 2 R

I

and t 2 C

I

such that t 62 f�(y) j y is an R-neighbour of x and C 2 L(y)g because

]R

T

(�(x); C) � n >]R

T

(x; C).

Assume t appears as an image of an R-neighbour y of x with C 62 L(y).

This implies �C 2 L(y) as follows: Either y is an R-predecessor of x,

then in order for the >-rule to be applicable, no non-generating rules

and especially the choose-rule is not applicable to x and its ancestor

which implies fC;�Cg \ L(y) 6= ;. If y is an R-successor of x then

it must have been generated by an application of the >-rule to x. In

order for this rule to be applicable no non-generating rule may have

been applicable to x or any of its ancestors. This implies that at the

time of the generation of y already (> n R C) 2 L(x) held and hence

the >-rule ensures fC;�Cg \ L(y) 6= ;.

In any case �C 2 L(y) holds and together with (�) this implies t 62 C

I

which contradicts t 2 C

I

. Hence C 2 L(y) must hold which is a

contradiction to the assumption C 62 L(y) and thus there must be an

element that satis�es (��).

This concludes the proof of the claim. The claim yields the lemma as

follows: Obviously, (�) holds for the initial tree with only a single node x

0

if we set �(x

0

) := s

0

for an element s

0

2 D

I

(such an element must exist

because I is a model for D). The claim yields that whenenver a rule is appli-

cable then it can be applied in a manner that maintains (�). Lemma 4 yields

that each sequence of rule applications must terminate, and also each tree for

which (�) holds is necessarily clash-free. It cannot contain a clash of the form

fA;:Ag � L(x) because this would imply �(x) 2 A

I

and �(x) 62 A

I

. It can

neither contain a clash of the form (6 n R C) 2 L(x) and]R

T

(x; C) > n

because � is an injective function on the set of all R-neighbours of y and

hence]R

T

(x; C) > n implies]R

I

(x; C) > n and which cannot be the case

since �(x) 2 (6 n R C)

I

.

Summing up, from Lemmas 4, 5, and 6 we get the following:

9

Theorem 7 The tableaux algorithm is a non-deterministic decision proce-

dure for ALCQI-satis�ability.

2.2 Complexity of ALCQI

What remains to show is that the algorithm can be implemented to run in

polynomial space. This is stated in the following lemma.

Due to Savitch's theorem [Sav70] that states that PSpace coincides with

NPSpace we don't have to deal with the non-determinism in the rules. Nev-

ertheless, models for a ALCQI-concept may be required to have exponential

size so we have to develop a method that facilitates re-use of space while

generating the completion tree.

Lemma 8 The tableaux algorithm can be implemented in PSpace.

Proof. Let D be the ALCQI-concept to be tested for satis�ability. We can

assume D to be in NNF because the transformation of a formula to NNF can

be performed in linear time and space.

The key idea for a PSpace implementation is the trace technique[SSS91],

i.e., it is su�cient to keep only a single path (a trace) of T in memory at a

given stage if the completion tree is generated in a depth-�rst manner. This

has already been the key to a PSpace upper bound for the propositional

modal logic K

m

and ALC in [Lad77, SSS91, HM92]. To do this we need to

store the values for]R

T

(x; C) for each node x in the path, each R which

appears in clos(D) and each C 2 clos(D). By storing these values in binary

form, we are able to keep information about exponentially many successors

in memory while storing only a single path at any stage.

Consider the algorithm in Fig. 2, where R

D

denotes the set of role names

that appear in clos(D) together with their inverses. It re-uses the space

needed to check the satis�ability of a successor y of x once the existence

of a complete and clash-free \subtree" for the constraints on y has been

established. This is admissible since the tableaux rules can delete but will

never modify this subtree once is it completed. This deletion is necessary

because the choose-rule pushes concepts upwards in the tree which might

have an inuence of the subtrees of the e�ected node. Since these have

already been discarded from memory they have to be regenerated.

Constraints in a subtree have no inuence on the completeness or the

existence of a clash in the rest of the tree, with the exception that a concept

10

C 2 L(y) for an R-neighbour y of x contributes to the value of]R

T

(x; C).

These numbers play a role both in the de�nition of a clash and for the

applicability of the >-rule. Hence, in order to re-use the space occupied by

the subtree for y, it is necessary and su�cient to store these numbers.

An algorithm that works as previously described is shown in Fig. 2. Let

us examine the memoryusage of this algorithm. Let n = jDj. The algorithm

is designed to keep only a single path of T in memory at a given stage. For

each node x on a path, L(x) � clos(D) and hence its size is bounded by

2n. Thus, for a single variable x, L(x) can be stored in O(n) bits. For

each variable, there are at most]R

D

�]clos(D) = O(n

2

) counters to be

stored. The numbers to be stored in these counters do not exceed the out-

degree of the tree, which, by Lemma 3, is bounded by]clos(D)�2

jDj

. Hence

each counter can be stored using O(n

2

) bits when binary coding is used to

represent the counters, and all counters for a single variable require O(n

4

)

bits. Due to Lemma 3, the length of a path is limited by n, which yields an

overall memory consumption of O(n

5

+ n

2

) bits.

Obviously, satis�ability for ALCQI is at least as hard as for ALC. To-

gether with the previous lemma this yields the following.

Theorem 9 Sat(ALCQI) is PSpace-complete, even if numbers in the in-

put are represented in binary coding.

References

[CLN94] D. Calvanese, M. Lenzerini, and D. Nardi. A uni�ed framework for

class based representation formalisms. In Proceedings of KR-94,

1994.

[dHR95] Wiebe Van der Hoek and Maarten De Rijke. Counting objects. J.

of Logic and Computation, 5(3):325{345, June 1995.

[HB91] B. Hollunder and F. Baader. Qualifying number restrictions in

concept languages. In Proceedings of the Second International Con-

ference on Principles of Knowledge Representation and Reasoning,

KR-91, pages 335{346, Boston (USA), 1991.

11

ALCQI � SAT(D) := sat(x

0

; [x

0

7! fDg])

sat(x;L):

allocate counters]R

T

(x; C) for all R 2 R

D

and C 2 clos(D).

restart:

for each counter]R

T

(x; C):

if x has a predecessor y and L(hy; xi) = Inv(R) and C 2 L(y)

then]R

T

(x; C) := 1 else]R

T

(x; C) := 0

while (the u- or the t-rule can be applied at x) and (T is clash-free)

do

apply the u- or the t-rule to x.

od

if T contains a clash then return \not satis�able".

if the choose-rule is applicable to x for (./ n R C) 2 L(x)

then return \restart with C"

while (the >-rule applies to a concept (> n R C) 2 L(x))

do

C

new

:= fC;E

1

; : : : ; E

k

g

where

fD

1

; : : : ; D

k

g = fD j (./ m R D) 2 L(x), and

E

i

is chosen non-deterministically from fD

i

;�D

i

g

for each D 2 C

new

do increase]R

T

(x;D)

if (6 m R D) 2 L(x) and]R

T

(x;D) > m

then return \not satis�able".

result := sat(y;L[y 7! C

new

; hx; yi 7! R])

where y is a fresh node

if result = \not satis�able" then return \not satis�able"

if result = \restart with D" then

L(x) := L(x) [fEg

where E is chose non-deterministically from fD;�Dg

goto restart

od

remove the counters for x from memory.

return \satis�able"

Figure 2: A NPSpace decision procedure for ALCQI-satis�ability.

12

[HM92] J. Y. Halpern and Y. Moses. A guide to completeness and complex-

ity for model logics of knowledge and belief. Arti�cial Intelligence,

54(3):319{379, April 1992.

[HST99] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reason-

ing for description logics with functional restrictions, inverse and

transitive roles, and role hierarchies. In Proceedings of the 1999

Workshop Methods for Modalities (M4M-1), Amsterdam, 1999.

[Lad77] Richard E. Ladner. The computational complexity of provability in

systems of modal propositional logic. SIAM Journal on Computing,

6(3):467{480, September 1977.

[Sav70] Walter J. Savitch. Relationships between nondeterministic and de-

terministic tape complexities. Journal of Computer and System

Sciences, 4(2):177{192, April 1970.

[SSS91] M. Schmidt-Schau� and G. Smolka. Attributive concept descrip-

tions with complements. Arti�cial Intelligence, 48:1{26, 1991.

[Tob99] S. Tobies. A pspace algorithm for graded modal logic. In Proceed-

ings of the 16th International Conference on Automated Deduc-

tion (CADE-99), Lecture Notes in Arti�cial Intelligence. Springer-

Verlag, 1999. To appear.

13

