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Abstract

In this paper we propose an approach for incremental
learning of semi-supervised SVM. The proposed approach
makes use of the locality of radial basis function kernels
to do local and incremental training of semi-supervised
support vector machines. The algorithm introduces a se-
quential minimal optimization based implementation of the
branch and bound technique for training semi-supervised
SVM problems. The novelty of our approach lies in the
introduction of incremental learning techniques to semi-
supervised SVMs.

1. Introduction

The machine learning and data mining communities
have recently had new research challenges imposed by the
massive growth in information technology. Data is being
generated continuously and knowledge is always needed to
be extracted from these streaming data. Extracting knowl-
edge from data streams requires incremental learning ap-
proaches which are concerned with constantly enhancing
the available learning machines using the continuously col-
lected data without retraining on all the available data. An
important aspect of data streams is that the labeling pro-
cess of training data is a costly and time consuming pro-
cess. On the other hand, vast amounts of unlabeled data are
collected all the time. Hence, developing incremental learn-
ing approaches that can make use of labeled and unlabeled
samples (semi-supervised) during the learning process is of
great benefit.

Support vector machines (SVMs) [19] are powerful and
popular machine learning tools due to their good general-
ization performance. As a result, researchers have been try-
ing to extend the paradigm of SVMs (originally supervised
learning) to be able to handle semi-supervised and incre-
mental learning problems.

The basic idea of SVMs is to find the maximum margin

classifier for the labeled training samples. Formally, given a
labeled training dataset S = {(xi, yi)}mi=1, where xi ∈ Rn
and yi ∈ {+1,−1}, the problem is to find the solution of
the optimization problem

minw
1
2
‖w‖2 + C

i=m∑
i=1

`l((w, b); (xi, yi)) (1)

where b is a bias term and

`l((w, b); (xi, yi)) = max{0, 1− yi(〈w, xi〉+ b)} (2)

is the loss function with subscript l denoting the use of la-
beled training data set. This is basically a convex optimiza-
tion problem (quadratic programming problem) that can be
solved using standard quadratic programming (QP) solvers.

In semi-supervised SVM (S3VM), the training data
consists of labeled and unlabeled samples. The goal
is to find the maximum margin classifier using both la-
beled and unlabeled samples. This is formulated as fol-
lows: Given a mixed labeled/unlabeled dataset S =
{(xi, yi)}mi=1

⋃
{xi}m+k

i=m+1 where xi ∈ Rn , yi ∈
{+1,−1}, m and k are the number of labeled and unla-
beled samples, respectively. The semi-supervised problem
is to find the solution of

minw,y
u

1
2
‖w‖2 + C

i=m∑
i=1

`l((w, b); (xi, yi))

+ C∗
i=m+k∑
i=m+1

`u((w, b); (xi)) (3)

where u denotes the unlabeled samples

`u((w, b); (xi)) = max
yi∈{−1,+1}

{0, 1− yi(〈w, xi〉+ b)}. (4)

and yu = [ym+1 · · · ym+n] is the vector of labels of all the
unlabeled samples. The solution of (3) will result in finding
the optimal separating hyperplane w and the labels assigned
to the unlabeled samples in yu.
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The S3VM optimization problem in (3) is non-convex
due to the non-convexity of `u, which is the reason that
makes the S3VM optimization a challenging problem. Ben-
nett and Demiriz [1] were the first to address this problem.
They used 1-norm of w and reformulated the problem so as
to be operable by mixed-integer programming techniques.
They showed results for data sets with no more than 50 un-
labeled points. Joachims [11] introduced another approach
to solve S3VM with the text classification problem in mind.
The novelty of that work lies in the capability to handle
large number of unlabeled samples and the introduction of
another constraint, balancing constraint, which makes sure
that the algorithm avoids degenerate solutions. This condi-
tion has been considered in many of the subsequent works
on S3VM [6, 17]. Other approaches attempted to use off the
shelf optimization techniques. ∇S3VM introduced in [7]
uses gradient descent to solve the problem. However, due to
the non-differentiablity of the loss functions they proposed
using smooth versions of both `l and `u. Also global opti-
mization techniques such as continuation methods [5], de-
terministic annealing methods [17], and branch and bound
methods [6] have also been used recently. Other techniques
tried to overcome the main difficulty of optimizing S3VM,
non-convexity of `u in (4). In CCCP [8], a symmetric-ramp
loss function that is then analyzed into convex and concave
components and then a convex-concave optimization is ap-
plied. Fung and Mangasarian [9] used the same concept
of resolving the non-convex optimization function, however
their work is restricted to linear S3VM. Transforming the
non-convex S3VM problem into a convex semi-definite pro-
gramming problem [2, 20] is another way to overcome the
non-convexity issue.

Incremental learning of SVMs has attracted considerable
attention due to the need to use SVMs with very large data
sets. Syed [18] proposed one of the earliest attempts to
solve SVM incrementally. This approach works by retrain-
ing the SVM using a new batch of data along with the sup-
port vectors from the past SVM. An improvement was pro-
posed in [16] so as to make the algorithm capable of dealing
with the problem of concept drifting basically by making
the cost of error on the old support vectors more costly than
the cost of error on the new data. Fung and Mangasarian
[10] proposed a fast and simple approach for incremental
SVMs that is based on modifying the current linear SVM
by removing old data and adding new data. Kivinen [12]
considered incremental learning in a Reproducing Kernel
Hilbert Space using gradient descent within a feature space.
LISVM introduced in [15] is an approach that exploits the
locality of the RBF kernels to update the current SVM by
only considering a subset of the support candidates in the
neighborhood of the new sample.

In this work, we propose an approach for incremental
learning of S3VM. The novelty of our work is that it ad-

dresses two situations encountered in real life applications;
It is always desirable to enhance the currently available clas-
sifiers using newly observed data without going through the
tedious and impractical process of retraining over all the
available data. On the other hand, the newly observed data
can be a mixture of labeled and unlabeled samples. The
unlabeled samples constitutes the majority of the newly ob-
served data due to the high cost and long time needed to
manually label training data. Hence, the benefit of the pro-
posed approach is quite obvious.

The rest of the paper will be organized as follows: In
Section 2, we review some related works which includes
Sequential Minimal Optimization (SMO) training of SVMs
[14] and branch and bound for S3VM training [6]. Section
3 will discuss the proposed approach. Experimental results
and conclusion will be presented in Section 4 and Section
5, respectively.

2. Related work

The basic formulation of SVMs in (1) and (2) is a com-
pact one that is used to show a closed form for the objective
function being optimized. A more conventional form is to
solve

minw
1
2
‖w‖2 + C

m∑
i=1

ξi (5)

subject to the constraints

yi(〈w, xi〉+ b) > 1− ξi, ξi > 0, i = 1, 2, · · ·m. (6)

Introducing the Lagrange multipliers αi for each of the con-
straints in (6) the dual problem is obtained;

min
αi

1
2

m∑
i=1

m∑
j=1

yiyj〈xi, xj〉αiαj −
m∑
i=1

αi (7)

subject to

m∑
i=1

yiαi = 0, 0 6 αi 6 C, i = 1, 2, · · ·m. (8)

The solution is reached when all Karush-Kuhn-Tucker
(KKT) conditions are being satisfied over all the training
samples. KKT conditions are described as follows [14]:

αi = 0 =⇒ yi(〈w, xi〉+ b) > 1
0 < αi < C =⇒ yi(〈w, xi〉+ b) = 1 (9)

αi = C =⇒ yi(〈w, xi〉+ b) 6 1

2.1. Sequential minimal optimization

Sequential Minimal Optimization (SMO) [14] is a sim-
ple algorithm to solve the QP problem arising in training
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SVMs. It belongs to a family of algorithms that addresses
training SVMs on large data sets by breaking the QP prob-
lem into smaller manageable ones [13]. SMO takes the
idea of breaking the QP problem to its extreme by choos-
ing to solve the smallest possible QP problem; At each it-
eration, two Lagrange multipliers are jointly optimized and
the SVM is updated accordingly. The advantage of optimiz-
ing two Lagrange multipliers lies in the possibility to do it
analytically which means fast.

Starting with (x1, y1, α
old
1 ) and (x2, y2, α

old
2 ) and con-

sidering the constraints in (8), it is clear that the space of
possible values for α1 and α2 is actually, due to the inequal-
ity constraints, a square with side length C. Moreover, we
can see that the summation constraint forces the values of
α1 and α2 to lie on a diagonal line. These insights narrow
down the space of the solution. The algorithm starts by find-
ing the bounds on αnew2 which depends on the value y1y2;
If y1y2 = −1, then the bounds on αnew2 are:

L = max(0, αold2 − αold1 )
H = min(C,C + αold2 − αold1 ). (10)

If y1y2 = 1, then the bounds on αnew2 are:

L = max(0, αold1 + αold2 − C)
H = min(C,αold1 + αold2 ). (11)

Next, αnew2 is obtained by:

αnew2 = αold2 − y2(E1 − E2)
η

(12)

where η is the second derivative of the objective function
(7) along the diagonal line:

η = 2〈x1, x2〉 − 〈x1, x1〉 − 〈x2, x2〉 (13)

and Ei is the error of the old SVM on the ith training sam-
ple. Then, αnew2 is clipped according to its bounds in (10)
or (11).

αnew,clipped2 =

 H if H 6 αnew2

αnew2 if L < αnew2 < H
L if αnew2 6 L

(14)

Finally, αnew1 is computed by

αnew1 = αold1 + y1y2(αold2 − αnew,clipped2 ) (15)

SMO provides two heuristics to select the Lagrange multi-
pliers to be optimized. The first choice heuristic selects the
first Lagrange multiplier by iterating over the whole train-
ing dataset until a multiplier violating the KKT conditions
is found then the search start for the second Lagrange mul-
tiplier by initializing the second choice heuristic. When the
first choice heuristic completes one pass through the entire

training dataset, it starts iterating over the multipliers that
are neither 0 or C (non-bound multipliers). Again after it
finishes iterating over the non-bound multipliers, it makes
another pass through the whole training dataset and so on.
The second choice heuristic aims at choosing the second
Lagrange multiplier that maximizes the step taken during
the optimization. SMO proposes using |E1 − E2| as an es-
timate for the step size. Therefore, a cached error Ei is
stored for every non-bound multiplier which is then used by
the second choice heuristic to choose the second Lagrange
multiplier.

2.2. Branch and bound for S3VM

Starting with the S3VM formulation in (3), let us denote
the objective function to be minimized by

F (w, yu) =
1
2
‖w‖2 + C

i=m∑
i=1

`l((w, b); (xi, yi))

+ C∗
i=m+k∑
i=m+1

`u((w, b); (xi)) (16)

where `l and `u are defined in (2) and (4), respectively.
Hence, the S3VM is to solve

minw,y
u

F (w, yu). (17)

For a fixed yu, the problem in (17) will come down to a
standard SVM training problem. Using this idea, (17) is
reformulated to be

miny
u

J(yu)

where J(yu) = minw F (w, yu). (18)

Therefore, the goal now is to find the binary vector yu that
minimizes J in (18).

Branch and bound for S3VM [6] is an approach to solve
(18) on a tree structure. Basically, each node on the tree rep-
resents an SVM. The root has the SVM trained using only
the labeled samples {(xi, yi)}mi=1 and the leaves have dif-
ferent solutions for the S3VM in (18). Each node inside the
tree represents an SVM trained on all the labeled samples
and some of the unlabeled ones.

The basic components of any branch and bound algo-
rithm are the branching criterion, bounds estimates, and ex-
ploration techniques adopted in the algorithm. The details
of these components depend on the problem being solved.
In [6], the branching criterion actually answers the ques-
tion of which unlabeled sample should be considered for
the next optimization step. The most intuitive way to do
this is to optimize using the unlabeled sample that we are
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most confident about, which is the nearest unlabeled sam-
ple to the so far labeled samples.

The algorithm proposed using the value of the of the ob-
jective function J in (18) as an upper bound for leaf nodes
while non-leaf nodes do not have upper bounds (assigned to
+∞). On the other hand, the proposed lower bound is based
on the observation that the value of F (w, yu) in (16) after
training using only a labeled data set is always smaller than
the its value when trained using labeled-unlabeled dataset.
This is due to the addition of the third term (involvingC∗) in
(16). Therefore, at each node the lower bound is determined
by optimizing a standard SVM using the so far labeled sam-
ples at that node.

Finally, the algorithm used the depth first search to ex-
plore the tree structure. This was motivated by the choice
of the upper bound, as reaching the leaves as often as pos-
sible is necessary for obtaining a tight bound which in turns
helps the pruning process throughout the tree search.

3. Proposed approach

We propose an approach to deal with the incremental
training of S3VM using labeled-unlabeld (partly labeled)
data sets. The scenario attempted assumes the existence of
an S3VM. We use SMO [14] for all the SVM training in-
volved in the approach. Due to the continuous availability
of training samples overtime, we need to improve the ex-
isting S3VM using these newly arriving training samples.
It is almost always the case that the new training samples
are unlabeled. Furthermore, labeled training samples can
be available later in time due to the high cost and time re-
quirements for the human labeling process. Our approach
assumes the newly arriving training samples to be partly la-
beled.

The use of kernels that are based on the notion of neigh-
borhood, makes the influence of a support vector greatly
confined to a limited area in the feature space [15, 3]. There-
fore, improving an existing SVM by using new training
samples does not require repeating the training process all
over the whole available training samples again. However,
it suffices to solve the SVM QP problem only in the neigh-
borhood of the new training samples. To make use of this
concept, the proposed approach uses the radial basis func-
tion (RBF) kernel. Therefore, in the proposed approach
only the neighborhood of the newly arriving training sample
is considered for updating the S3VM.

Starting from an existing S3VM and a new training sam-
ple (labeled-unlabeld), the approach begins by constructing
a neighborhood to the new sample. This neighborhood will
include the current training samples that are expected to be
mostly influenced by the new training sample. Then the
approach attempts to update the current S3VM by solving
QP in the neighborhood. However, due to the fact the new

sample may be unlabeled, we encounter a S3VM problem.
An SMO based implementation of the branch and bound
for S3VM has been developed and used to solve the S3VM
problem in hand.

Using the branch and bound technique to solve the
S3VM problem in our approach was motivated by the good
results presented in [6] and the fact that it attempts to find
the global solution for the S3VM objective function. De-
spite its limited ability to deal with large S3VM problems,
the branch and bound was suitable to invoke in our approach
due to the limited size of the neighborhood. The branch and
bound for S3VM algorithm involves solving SVM problem
at each node visited by the search procedure. It is not prac-
tical to solve an SVM problem from scratch at each node.
As a result, an incremental SVM technique should be used
through out the branch and bound training process. For our
approach, we chose the SMO as the core SVM solver inside
the branch and bound technique. An important property of
SMO is that it works by solving the SVM QP problem on
two Lagrange multipliers at a time and then iterate until all
the Lagrange multipliers satisfy the KKT conditions. This
property makes the SMO inherently incremental; For a new
sample to update an existing SVM, its Lagrange multiplier
is initialized to zero and added to the Lagrange multipliers
of the SVM. Then the SMO is asked to start checking the
KKT conditions starting with the new Lagrange multiplier.
The result is an improved SVM that have been updated us-
ing the a new training sample. This inherent incremental
property was also one of the motivations to use SMO.

During the course of solving S3VM, labels are assigned
to the non-labeled training samples. These labels are the
best solution the S3VM algorithm could provide at the time
of training. However, these labels are not real (binding).
So, during the construction of the neighborhood we remove
the labels assigned to the originally unlabeled samples. By
doing this, we give the S3VM solver the opportunity to find
the best solution possible without being confined to labels
that has been assigned before and sometimes they may be
erroneous. In fact, using this technique enhances the perfor-
mance by allowing the algorithm to recover from labeling
mistakes made in the past.

The neighborhood in our approach is constructed by us-
ing the Euclidean distance as a measure of closeness and
its size is the number of samples inside it. To achieve a
good performance, the proposed approach uses varying size
neighborhood. At first, the neighborhood size is initialized
and the updated S3VM is obtained. Then the approach es-
timates the performance of the updated S3VM by using a
validation dataset. If the performance is not satisfactory the
approach changes the size and repeats until accepted per-
formance is achieved. The initial size of the neighborhood
is estimated experimentally using a validation dataset. Al-
though the incremental construction of the neighborhood,
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adding one sample at a time, seems more intuitive, the use
of an initial estimate saves a lot of computation cost due to
the smaller number of neighborhoods that would be exam-
ined. Starting from the initial neighborhood size, changes
are performed by adding a new neighboring sample to the
original neighborhood. If the size needs to be changed
again, a sample is removed from the original neighborhood.
This process of alternatively using increasing and decreas-
ing neighborhoods is repeated until the proper size is found.

The proposed approach can be summarized as follows:

1. Starting with S3VMold.

2. New partly labeled (labeled-unlabeled) sample arrives.

3. Construct an initial neighborhood to the new sample.

4. Remove labels of the originally unlabeled samples in-
side the neighborhood.

5. SMO based Branch and Bound technique is used to
locally solve the incremental S3VM problem on the
neighborhood and S3VMnew is obtained.

6. S3VMnew is evaluated using a validation dataset.

7. If the performance of S3VMnew is not satisfactory
(The correct classification rate is less than a predefined
threshold), change the neighborhood size and go back
to step 3.

8. Otherwise, wait for another new sample and get back
to step 1.

4. Experimental results

This section will show sample results of the proposed al-
gorithm on sample data sets. Two data sets have been con-
sidered. FourClass dataset is a two dimensional two-class
dataset from [4]. It has a total of 802 training samples in
both classes. Also, we used MNIST dataset of hand written
digits. We used the a dataset with a total of 2000 samples
from the digits 0 and 9.

During the experiments each dataset is split into train-
ing dataset (8%), validation dataset for neighborhood size
and other parameters choice (2%), testing dataset (2%), and
the rest of the dataset is used to simulate the new training
samples which are used to update the current S3VM one at
a time. 80% of the labels of the new training samples are
removed to simulate a highly unlabeled dataset which is the
case in the real world.

Figure 1 shows the results of the proposed approach on
four successive new training samples located at different po-
sitions in the feature space. The square (yellow) and circular
(pink) points represents the two classes. All the tan circled
point are the training samples of the current S3VM. The

new training sample is the green one with the neighborhood
region depicted around it. The average correct classifica-
tion rate (CCR) for this dataset with and without varying
neighborhood is 96.3% and 76.75% respectively.

(a) (b)

(c) (d)

Figure 1. The performance of the algorithm
on four different successive training samples

Figure 2 shows CCR for 1500 new training samples
from the MNIST dataset. Figure 2 (b) depicts the good
performance obtained by using varying neighborhood (av-
erage CCR is 98.68%). On the other hand, Figure 2 (a)
shows much lower correct classification rate (average CCR
is 83.26%) for the same dataset and same new training sam-
ples due to the use of a constant neighborhood size.

5. Conclusion and future work

The paper introduced a novel learning approach for in-
cremental learning of semi-supervised support vector ma-
chines. The approach provided an implementation of the
branch and bound technique to solve semi-supervised sup-
port vector machines that is based on sequential minimal
optimization. This implementation makes use of the in-
herent incremental behavior of the sequential minimal op-
timization algorithm. Moreover, the proposed approach
makes use of the locality of the radial basis function kernel
which makes it possible to locally do incremental training
of semi-supervised support vector machine problems. The
preliminary experiments have shown promising results, yet
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Figure 2. The correct classification rate for
the MNIST 0 and 9 digits classification (a) Us-
ing constant neighborhood size and (b) Us-
ing the varying neighborhood size

we are currently working on extensive quantitative evalua-
tion. For future work, we plan to investigate a formulation
for a generalization error estimate that is based on semi-
supervised dataset. This estimate should serve as a more
efficient criterion to choose the neighborhood size, rather
than using a validation dataset.
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