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Abstract

When calculating the dynamics of a quantum system, including the effect of its
environment is highly relevant since virtually any real quantum system is exposed
to environmental influences. It has turned out that the widely used perturbative
approaches to treat such so-called open quantum systems have severe limitations.
Furthermore, due to current experiments which have implemented strong system-
environment interactions the non-perturbative regime is highly topical. Therefore,
determining the exact dynamics of an open quantum system is of fundamental
relevance.

The hierarchy of pure states (HOPS) formalism amounts to such an exact approach.
Its novel and detailed derivation, as well as several numerical aspects constitute the
main methodical part of this work. Furthermore, motivated by fundamental issues
but also due to practical relevance for real world devices exploiting quantum effects,
the entanglement dynamics of two qubits in contact with a common environment is
investigated extensively.

The HOPS formalism is based on the exact stochastic description of open quantum
system dynamics in terms of the non-Markovian quantum state diffusion (NMQSD)
theory. The distinguishing and numerically beneficial features of the HOPS approach
are its stochastic nature, the implicit treatment of the environmental dynamics and,
related to this, the enhanced statistical convergence (importance sampling), as well
as the fact that only pure states have to be propagated. In order to claim that the
HOPS approach is exact, we develop schemes to ensure that the numerical errors
can be made arbitrarily small. This includes the sampling of Gaussian stochastic
processes, the multi-exponential representation of the bath correlation function and
the truncation of the hierarchy. Moreover, we incorporated thermal effects on the
reduced dynamics by a stochastic Hermitian contribution to the system Hamiltonian.
In particular, for strong system-environment couplings this is very beneficial for the
HOPS. To confirm the accuracy assertion we utilize the seemingly simple, however,
non-trivial spin-boson model to show agreement between the HOPS and other
methods. The comparison shows the HOPS method’s versatile applicability over
a broad range of model parameters including weak and strong coupling to the
environment, as well as zero and high temperatures.

With the reassurance that the HOPS method is versatile and accurately applicable,
we investigate the specific case of two qubits while focusing on their entanglement
dynamics. It is well known that entanglement, the relevant property when exploiting
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quantum effects in fields like quantum computation, communication and metrology,
is fragile when exposed to environmental noise. On the other hand, a common
environment can also mediate an effective interaction between the two parties fea-
turing entanglement generation. In this work we elucidate the interplay between
these competing effects, focusing on several different aspects. For the perturbative
(weak coupling) regime we enlighten the difficulties inherent to the frequently used
rotating wave approximation (RWA), an approximation often applied to ensure
positivity of the reduced state for all times. We show that these difficulties are best
overcome when simply omitting the RWA. The seemingly unphysical dynamics can
still be used to approximate the exact entanglement dynamics very well. Further-
more, the influence of the renormalizing counter term is investigated. It is expected
that under certain conditions (adiabatic regime) the generation of entanglement
is suppressed by the presence of the counter term. It is shown, however, that for
a deep sub-Ohmic environment this expectation fails. Leaving the weak coupling
regime, we show that the generation of entanglement due to the influence of the
common environment is a general property of the open two-spin system. Even for
non-zero temperatures it is demonstrated that entanglement can still be generated
and may last for arbitrary long times. Finally, we determine the maximum of the
steady state entanglement as a function of the coupling strength and show how the
known delocalization-to-localization phase transition is reflected in the long time
entanglement dynamics. All these results require an exact treatment of the open
quantum system dynamics and, thus, contribute to the fundamental understanding
of the entanglement dynamics of open quantum systems.
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Zusammenfassung

Reale Quantendynamik, wie sie in Experimenten zu beobachten ist, wird stets von
äußeren Einflüssen mitbestimmt. Es zeigt sich, dass die häufig verwendeten stö-
rungstheoretischen Ansätze zur Berücksichtigung dieser Einflüsse nur bedingt gute
Ergebnisse liefern. Entsprechend ist die exakte Bestimmung der Dynamik sogenann-
ter offener Quantensysteme von grundlegender Bedeutung. Im Rahmen einer sol-
chen exakten Beschreibung lässt sich außerdem das Regime starker Wechselwirkung
zwischen dem System und seiner Umgebung behandeln. Neben dem fundamenta-
len Interesse, stark wechselwirkende Systeme theoretisch zu beschreiben, führen
neuartige Experimente in diesem Regime zu zunehmender praktischer Relevanz.

Einen exakten numerischen Zugang für offene Quantendynamik stellt der hierarchy
of pure states (HOPS) Formalismus dar. Dessen neuartige und detaillierte Herleitung,
sowie diverse nummerische Aspekte werden im methodischen Teil dieser Arbeit
dargelegt. In vielerlei Hinsicht relevant folgt als Anwendung eine umfangreiche
Untersuchung der Verschränkungsdynamik zweier Qubits unter dem Einfluss einer
gemeinsamen Umgebung. Vor allem im Hinblick auf die mittlerweile experimentell
realisierbare starke Kopplung mit der Umgebung ist dieses Analyse von Interesse.

Der HOPS-Formalismus basiert auf der stochastischen Beschreibung der Dynamik
offener Quantensysteme im Rahmen der non-Markovian quantum state diffusion
(NMQSD) Theorie. Der stochastische Charakter der Methode, die implizite Be-
rücksichtigung der Umgebungsdynamik, sowie das damit verbundene Importance
Sampling, als auch die Tatsache, dass lediglich reine Zustände propagiert werden
müssen, unterscheidet diese Methode maßgeblich von anderen Ansätzen und birgt
numerische Vorteile. Um zu behaupten, dass die HOPS-Methode exakte Ergebnisse
liefert, müssen die auftretenden numerischen Fehler beliebig klein gemacht wer-
den können. Ein grundlegender Teil der hier vorgestellten methodischen Arbeit
liegt in der Entwicklung diverser Schemata, die genau das erreichen. Dazu zählen
die numerische Realisierung von gauß’schen stochastischen Prozessen, die Darstel-
lung der Badkorrelationsfunktion als Summe von Exponentialfunktionen sowie das
Abschneiden der Hierarchie. Außerdem wird gezeigt, dass sich der temperaturab-
hängige Einfluss der Umgebung durch einen stochastischen hermiteschen Beitrag
zum System-Hamiltonoperator berücksichtigen lässt. Vor allem bei starker Kopplung
ist diese Variante besonders geeignet für den HOPS-Zugang. Um die Genauigkeits-
behauptung der HOPS-Methode zu überprüfen, wird die Übereinstimmung mit
anderen Methode gezeigt, wobei das vermeintlich einfachste, jedoch nicht triviale
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Spin-Boson-Modell als Testsystem verwendet wird. Diese Untersuchung belegt, dass
die HOPS-Methode für eine Vielzahl an Szenarien geeignet ist, wie zum Beispiel
schwache und starke Kopplung an die Umgebung, sowie Temperatur null als auch
hohe Temperaturen.

Mit der gewonnenen Sicherheit, dass die HOPS-Methode vielseitig einsetzbar ist
und genaue Ergebnisse liefert, wird anschließend der spezielle Fall zweier Qubits
untersucht. Im Hinblick auf die Ausnutzung von Quanteneffekten in Bereichen wie
Quantencomputern, Kommunikation oder Messtechnik liegt der primäre Fokus auf
der Dynamik der Verschränkung zwischen den Qubits. Es ist bekannt, dass durch
von außen induziertes Rauschen die Verschränkung im Laufe der Zeit abnimmt.
Andererseits weiß man auch, dass eine gemeinsame Umgebung zu einer effekti-
ven Wechselwirkung zwischen den Qubits führt, welche Verschränkung aufbauen
kann. In dieser Arbeit wird das Wechselspiel zwischen diesen beiden gegensätz-
lichen Effekten untersucht, wobei die folgenden Aspekte beleuchtet werden. Für
den Fall schwacher Kopplung, wo eine störungstheoretische Behandlung in Frage
kommt, werden die Probleme der rotating wave approximation (RWA) analysiert.
Diese Näherung wird häufig verwendet, um die Positivität des reduzierten Zustands
für alle Zeiten zu gewährleisten. Es wird gezeigt, dass die negativen Auswirkungen
der RWA am besten durch einfaches Weggelassen dieser umgangen werden können.
Die auf den ersten Blick nicht-physikalische Dynamik ist sehr gut geeignet, um die
exakte Verschränkungsdynamik näherungsweise wiederzugeben. Des Weiteren wird
der Einfluss der Renormalisierung durch den sogenannten counter-Term untersucht.
Unter bestimmten Voraussetzungen (adiabatisches Regime) ist zu erwarten, dass der
Verschränkungsaufbau durch den counter-Term verhindert wird. Es zeigt sich jedoch,
dass für eine sehr subohm’sche Umgebung (deep sub-Ohmic regime) diese Erwar-
tung nicht zutrifft. Mit praktischer Relevanz für neuartige Experimente wird der Fall
starker Kopplung zwischen dem Zwei-Qubit-System und der Umgebung betrachtet.
Die Berechnungen zeigen das generelle Bild, dass sich zwei nicht wechselwirkende
Qubits durch den Einfluss einer gemeinsamen Umgebung verschränken. Selbst bei
Temperaturen größer als null kann Verschränkung aufgebaut werden und auch für
beliebig lange Zeiten erhalten bleiben. Als spannende letzte Frage wird das Maximum
der stationären Verschränkung (Langzeit-Limes) in Abhängigkeit der Kopplungsstär-
ke bestimmt. Die Berechnungen zeigen außerdem, dass eine qualitative Änderung in
der Langzeitdynamik der Verschränkung mit dem bekannten Phasenübergang von
Delokalisierung zu Lokalisierung einhergeht. All diese Erkenntnisse erfordern eine
exakte Behandlung der offenen Systemdynamik und ermöglichen ein erweitertes
Verständnis der Verschränkungsdynamik offener Quantensysteme.
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1Introduction

At the microscopic scale, numerous experiments report effects which clash with our
classical intuition from the macroscopic world. They include, for example, the wave-
particle-dualism or the quantization of energy. Importantly, the theory of quantum
mechanics predicts that a quantum system can be prepared in a superposition
of states, with consequences most radically illustrated by Schrödinger’s famous
thought experiment [Sch35]. The thrilling implications for multi-partite (many-body)
quantum states have been discussed manifold in the literature, most prominently
under the keywords Einstein-Podolsky-Rosen-Paradoxon [EPR35; Boh35] and Bell
inequalities [Bel64]. The experimental verification that in our world Bell inequalities
can indeed be violated [CS78; AGR82; Hen+15] has motivated one of the most
fascinating applications of modern physics – the exploitation of entanglement to
supersede classical computation and communication [NC00]. Although, in principal,
the evolution and manipulation of quantum systems and, thus, the dynamical
behavior of entanglement is understood, real world implementations suffer from
environmental noise. Therefore, investigating the exact entanglement dynamics
while including the effect of an environment poses an exciting field which sets the
overall scope of the research presented here.

From a fundamental point of view, the system of interest and its surrounding should
be modeled on equal grounds [CL83; BP07; Wei08]. This means that the dynamics
of the joint global system is governed by the Schrödinger equation as well. As we are
interested in the system only, the environmental degrees of freedom can be averaged
out. The resulting so-called reduced dynamics contains all information to determine
the expectation value of any system observable, i.e., any measurable system quantity.
Thinking of the surrounding being composed of a very large number of degrees of
freedom, which we will refer to as a macroscopic environment, obviously precludes
a straightforward explicit quantum mechanical treatment of everything. It is the
primary task of the field of open quantum system dynamics to still calculate the
dynamics of the reduced state [BP07; Wei08]. Beyond a perturbative treatment
of the system-environment interaction this amounts to an exceptionally difficult
task. Various presumably exact approaches have been developed, each with a
limited range of applicability. To name but a few, the quasi-adiabatic propagator
path integral (QUAPI) [Mak95; MM95] as well as the related time-evolving matrix
product operator (TEMPO) approach [Str+18] assume a finite memory length of
the environment, which usually holds approximately only. The family of time-
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dependent Hatree methods, in particular the multilayer multiconfiguration time-
dependent Hartree (ML-MCTDH) approach [WT03] provides a powerful tool to
solve the Schrödinger equation of the global system for a very large, but, finite
set of environmental oscillators modeling the macroscopic surrounding. Although
this approach is well suited to treat a strong system-environment interaction in
combination with long lasting environmental correlations [WT10; WS19], it seems
unfeasible to account for thermal initial environmental states. In contrast, the
hierarchical equations of motion (HEOM) approach [Tan06; Tan14] can treat thermal
initial states but becomes impractical for low temperatures. While recent variants
have improved on this deficit [Tan+15; RK19], the inherent matrix character of the
HEOM approach sets limits on the possible system dimension as well as the coupling
strength to the environment.

These limits can be improved by means of a pure state description for the reduced
dynamics. The price to pay is the stochastic nature of the resulting non-Markovian
quantum state diffusion (NMQSD) [Str96; DGS98; SDG99] formalism. As we
will show in this theses, a very promising approach to actually solve the NMQSD
equation and, with this, unravel the reduced density matrix in terms of pure states,
is the hierarchy of pure states (HOPS), first introduced by D. Süß et al. [SES14].
The salient point of the HOPS formalism is to replace the numerically impractical
functional derivative appearing in the NMQSD equation by a set of auxiliary states,
an approach inspired by the HEOM [Tan06; Tan14]. The evolution equation for
these auxiliary states includes yet another set of auxiliary states. In that way an
infinite hierarchical structure of coupled differential equations emerges – the HOPS.
Note that due to its stochastic nature, the HOPS method can easily be parallelized
and is, thus, well suited for modern super computers, allowing us to push the limits
on the coupling strength between the system and the environment.

As a first result of this thesis the HOPS approach is elevated to the level of a
generally applicable (arbitrary system Hamiltonian and environment, wide range
of temperatures, including zero temperature) and numerically exact (in principal,
errors can be made arbitrarily small) method. We derive the formalism independently
of the existing pathways in Ch. 2 by employing an iterative, and with that, time-
discrete formulation of the evolution. In that way the NMQSD equation as well
as the HOPS are obtained very transparently (Sec. 2.1). Subsequently, we show
how to incorporate non-zero temperature into any zero temperature formalism,
e.g., the NMQSD/HOPS approach, by introducing a stochastic contribution to the
system Hamiltonian (Sec. 2.2). For the HOPS this is particularly relevant because it
leaves the hierarchical structure invariant. This conceptional part is completed by
elucidating various other results derived from the NMQSD equation (Sec. 2.3) which
are promising on their own and conceivably contribute to alternative descriptions of
the reduced dynamics.
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Fig. 1.1: Inspired by a recent experiment from Magazzù et al. [Mag+18] we consider a
single spin strongly coupled to a macroscopic environment and show its dynamics
obtained from the HOPS (blue line) in the left panel. Strongly damped oscillatory
dynamics is clearly visible. When further including an external harmonic probe
driving (black lines, two different probe driving frequencies ωp as examples) the
spin dynamics (orange and green lines) exhibits the same periodicity as the probe
signal, however, with different amplitude and phase shift. From the amplitude and
phase shift, the transmission coefficient can be deduced [Mag+18]. By varying
the energy bias ε of the spin system and the probe frequency ωp the transmission
spectrum (right panel) follows. Since the spectrum is symmetric around zero,
the theoretical data is plotted mirrored to the experimental results from Ref.
[Mag+18]. Thus, overall agreement between the theoretical and the experimental
data is shown. The rather broad width on the frequency axis, seen in experimental
as well as theoretical data, indicates the strong coupling regime which in general
requires a non-perturbative, i.e., exact treatment of the open system model.

Besides fundamental interests, exact methods beyond the weak coupling regime,
such as the HOPS, are motivated by recent experimental progress focusing on strong
system-environment interaction [Fri+19]. In particular, L. Magazzù et al. [Mag+18]
achieved to strongly couple a superconducting flux qubit to a transmission line which
amounts to an implementation of the very prominent spin-boson model (SBM)
[Leg+87] (see Sec. 4.1 for details on the model). The strong damping of the spin po-
larization due to the strong system-environment interaction is reflected in the width
of the measured transmission spectrum (see Fig. 1.1). For a theoretical prediction
the driven SBM has to be solved. The amplitude/phase relation between the long
time spin polarization and the driving signal allows one to deduce the transmission
spectrum. The theoretical prediction obtained using the HOPS agrees qualitatively
with the experimental data. As seen in the left panel of Fig. 1.1 the associated
spin dynamics is strongly damped. This shows that open quantum system dynamics
far beyond the perturbative regime has become relevant for experimentalists, too.
Noteworthily, also weakly damped quantum systems designed with the intention
to serve as building blocks for quantum information tasks [DS13; NMG16], where
entanglement plays a crucial role, might require a non-perturbative treatment, as
we elucidate in Sec. 5.1.

3



In order to trust the results of the HOPS formalism, numerical errors need to
be controllable which is of particular relevance for the strong coupling regime
mentioned above. It is the second major aspect of this thesis (Ch. 3) to elevate the
HOPS formalism to serve as an exact method in the sense that numerical errors can
be made arbitrarily small.

This includes a scheme to reliably sample stochastic processes, which are complex
valued, stationary and Gaussian distributed. In Sec. 3.1 we develop two different
such sampling schemes. Importantly, for both of them the accuracy can be controlled
such that the auto correlation function of the numeric realizations agree with the
given one up to a certain tolerance. An implementation of the presented sampling
schemes is freely available at github.com/cimatosa/stocproc.

Further, the hierarchical structure of the HOPS is governed by the model for the
environmental interaction, i.e., the spectral density (SD) or equivalently the bath
correlation function (BCF). The particular structure is tightly related to a multi-
exponential representation of the BCF where the size of the hierarchy scales with the
number of exponential terms. It is, thus, desirable to find a highly accurate represen-
tation with as few as possible exponential terms. Here we focus on the commonly
used class of Ohmic and sub-Ohmic SDs [Leg+87]. Notably, other approaches, like
the HEOM [Tan06; Tan14], require such an exponential representation as well. It
is often obtained indirectly via a Maier-Tannor approximation of the SD where this
particular form of the SD results exactly in a multi-exponential representation of the
BCF [MT99]. However, using this approach for sub-Ohmic SDs, poor results for the
dynamics have been noted [Tan+15]. In addition, low temperatures are numerically
unfeasible. It is shown in Sec. 3.2 that these limits can be overcome by fitting the
multi-exponential representation directly in the time domain. Although this path
is numerically very demanding, we find exceptionally good (nearly exponential)
convergence of the error with the number of exponential terms used. Based on
this, we are able to check convergence of the reduced dynamics with respect to the
accuracy of the BCF representation.

Of course, the infinite set of differential equations needs to be truncated for a
numerical treatment. Besides discussing general aspects of truncating the hierarchy
in Sec. 3.3, we propose a flexible truncation scheme which allows one to tweak the
convergence rate with respect to the number of auxiliary states for Ohmic as well
as sub-Ohmic SDs. Related to the truncation of the hierarchy, we highlight in Sec.
3.4 the significant numerical benefit of incorporating non-zero temperature effects
by means of a stochastic contribution to the system Hamiltonian. This approach
outperforms the previously proposed thermo field (TF) method [SU83; TU96] which
yields the same NMQSD equation as for zero temperature, but, with the non-zero
temperature BCF instead [DGS98].
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Since the error due to the stochastic process sampling, the multi-exponential rep-
resentation of the BCF and the truncation of the hierarchy can be made arbitrarily
small, the HOPS method is regarded exact. The wide range of applicability of
the HOPS approach is demonstrated in Ch. 4 by solving the so-called spin-boson
model (SBM), i.e., a two-level system (spin) in contact with a bosonic environment.
As environment we consider the challenging sub-Ohmic case. The comparison with
various other approaches yields agreement over a wide range of situations reaching
from weak to strong coupling to the environment, as well as zero to high temperature
for the initial environmental state.

After having derived, refined and tested the HOPS method we are able to explore in
Ch. 5 novel physical effects related to one of the most fascinating properties of quan-
tum mechanics – entanglement. As mentioned at the very beginning, entanglement
is the crucial resource when exploiting quantum mechanics to supersede classical
applications in fields like computation, communication and metrology. Unfortunately,
it has turned out that entanglement is a fragile property which degrades under the
influence of a macroscopic environment [Zur03; Min+05]. Even worse, it has been
demonstrated that after finite time, entanglement may be lost completely [YE09],
a phenomenon known as sudden death of entanglement. In contrast, it has been
shown that for two non-interacting separable qubits, entanglement can still develop
due to the interaction with a common environment [Bra02; Isa09]. The interplay
between these competing effects poses an exciting field of research.

Similar to many other open systems concerns, the subject has been first addressed
by utilizing master equations to model the reduced dynamics (e.g. in Refs. [BF05;
LW06; BFM10]). This formalism reveals that the non-unitary contribution to the
dynamics (action of the so-called dissipator) results in the decay of entanglement
whereas the environmentally induced unitary part (often called Lamb-shift Hamil-
tonian) can explain the buildup of entanglement. Interestingly, it has been shown
also that for two non-interacting qubits the evolution under the dissipator only can
generate entanglement, too [BFP03]. However, a few puzzling questions emerged
alongside these seminal findings. For example, the success of the quantum optical
master equation (QOME) (Born-Markov and rotating wave approximation (RWA))
to describe the decay of a single atom (modeled effectively as two-level system)
motivates the application of the same series of approximations to the two-qubit
model. Due to the RWA, entanglement generation can only be found for resonant
qubits, i.e., qubits with the same energy splitting. Even an infinitesimal detuning of
the qubit frequencies results in no entanglement generation at all, which seems not
plausible [BFM10]. This deficiency of the RWA to adequately describe bipartite cor-
relations has been noted for a multitude of systems [Ma+12; Eas+16; Dod+18]. As
a result, various other master equations circumventing the RWA, while still retaining
the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)-form, i.e., assuring completely
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positive dynamics, have been proposed [SB08; BFM09; TB15; Dav20]. Alternatively,
the Redfield equation (RFE) can be used, which is sound in a perturbative sense but
does not guarantee positivity of the reduced state for all times. Although all of these
approaches can resolve the inconsistency related to slightly detuned qubits, it is not
obvious which equation is most appropriate. With reference to the exact dynamics
obtained from the HOPS we show in Sec. 5.1 that the RFE should be the perturbative
method of choice and elucidate the shortcomings of the other approaches. As a
remark, the results are in agreement with the thorough accuracy assessment [HS20a]
for the same selection of master equations, however, considering a single pseudo-
mode environment (single Lorentzian SD). The only difference observed is that for
the sub-Ohmic environment considered here, negative eigenvalues of the reduced
state approximation from the RFE appear already when the error is still acceptably
small. Since the magnitude of the negative and, thus, unphysical contribution is
significantly smaller than the error between the exact and the approximate state,
the occurrence of the negative contributions does not contradict the usefulness of
the RFE. Still, it should be kept in mind that the overall error of the reduced state
obtained from the RFE scales linearly with the coupling strength [FC11; HS20a;
Dav20; Tup+21]. Therefore, the behavior of the asymptotic entanglement, which
is shown in Sec. 5.4 to increase linearly with the coupling strength, cannot be
predicted correctly. The same holds true for the other perturbative approaches as
well.

Another issue concerns the effect of the so-called counterterm. Originating from
the model of a trapped particle in contact with a harmonic environment, the coun-
terterm is included to compensate the change of the potential felt by the particle
due to the presence of the environment [Wei08]. For the open two-spin model this
corresponds to a compensation of the environmental induced Hamiltonian contribu-
tion (Lamb-shift). As mentioned above, this contribution is primarily responsible
for the generation of entanglement. Consequently, one expects that including the
counterterm inhibits the buildup of entanglement [KA14]. We show in Sec. 5.2
that the effect of including the counterterm depends crucially on the model for
the environment, i.e., the kind of SD J(ω) ∼ ωs. Wile for the Ohmic case (s = 1)
the inhibition is evident, nearly no effect of the counterterm on the entanglement
dynamics is seen in the deep sub-Ohmic regime s = 0.3. Utilizing the RFE, we can
explain this behavior by showing that the remaining contribution of the Lamb-shift
Hamiltonian plus the counterterm is related to the flatness of S(ω) over the interval
containing all transition frequencies of the system Hamiltonian. The function S(ω)
denotes the half sided Fourier transform of the BCF and is, thus, determined by
the SD. Remarkably, we find the unexpected result that even in the adiabatic limit,
i.e., S(ω) becomes effectively flat, for resonant qubit and a sub-Ohmic environment,
entanglement generation beyond purely dissipative effects remains [HS20b].
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As a next step we investigate the entanglement dynamics far beyond the perturbative
regime. We analyze a broad range of model parameters, showing that the HOPS
approach suits many scenarios encountered by current experiments featuring strong
system-environment interactions [Mag+18]. Furthermore, the strong coupling
regime is methodically relevant since for this case inconsistencies between several
other numerical methods have been noted recently [Zho+18]. In Sec. 5.3 we
show the exact entanglement dynamics for a broad range of coupling strengths and
various detuning parameters. The buildup of a significant amount of entanglement
appears to be the general case. The significant difference between resonant and
detuned qubits, observed for weak coupling, disappears. When including non-
zero temperature, entanglement generation can still be observed. As intuitively
expected, increasing the temperature leads to less entanglement being generated.
Nonetheless, our results show that the generation of entanglement is far from being
a zero-temperature phenomenon.

As mentioned above, the entanglement of the steady state is inaccessible by pertur-
bative approaches, here referred to master equations of first order in the coupling
strength (second order in the interaction Hamiltonian) [FC11; HS20a]. This moti-
vates us to investigate the asymptotic entanglement by means of HOPS in Sec. 5.4. It
is estimated from a sufficiently long real time propagation of the reduced state. Un-
fortunately, a direct calculation of the steady state within the HOPS formalism is not
straightforward. We find that the asymptotic entanglement increases linearly from
zero when increasing the coupling strength. Note that it is plausible that for zero
coupling strength, i.e., the qubits are isolated from the environment, the asymptotic
entanglement is zero since no entanglement can be induced by the environment.
The limit of infinite coupling strength can be treated analytically, too, by simply
neglecting the system Hamiltonian. The resulting dephasing-like model results in
no dynamics at all for the particular initial condition of the two spins oriented in
z-direction. Consequently, the reduced states remains separable for all times. It
follows that the asymptotic entanglement as a function of the coupling strength must
exhibit a maximum. By means of the HOPS formalism we find the location and the
value of that maximum for the two exemplary cases of an Ohmic and a sub-Ohmic
(s = 0.3) environment. In other words, for two qubits with no direct interaction we
deduce the particular coupling strength between the system and the environment
at which the long-time entanglement between the qubits becomes largest. For both
cases (s = 1 and s = 0.3) the maximum was found in the vicinity of the coupling
strength η ≈ 0.5 (see Eq. (3.25) for a definition of η). Further we show that the
asymptotic entanglement is nearly independent of the detuning of the two qubits.
This is particularly remarkable in the weak coupling regime where the intermediate
path to the asymptotic state, the entanglement dynamics as such, is very sensitive to
the detuning. With respect to the presence of the counterterm, in the weak coupling
regime its diverse effects on the dynamics (elucidated in Sec. 5.2) are reflected by
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the asymptotic entanglement, too. Since the counterterm, which mimics a direct
interaction between the qubits, scales with the coupling strength, a different overall
behavior is expected in the strong coupling regime. Our calculation shows that
the asymptotic entanglement arising when including the counter term increases
monotonically with the coupling strength, i.e., no maximum is observed.

While examining the asymptotic entanglement for the special case of zero tempera-
ture, and with that the asymptotic state, we are able to connect our dynamical results
to the known phase transition of the two-spin system [Ort+10; WR14; Zho+18].
In spirit of other works concerning a single spin [WT08; WT10; Str+18] we use
the asymptotic spin polarization of, for example, spin A 〈σAz 〉 as an order parameter.
For a sub-Ohmic environment we find that 〈σAz 〉 remains zero (delocalized phase)
upon increasing the coupling strength until a critical value ηc is reached. Beyond
that, 〈σAz 〉 increases continuously (localized phase) which reflects the second order
phase transition. We find that the critical coupling strength coincides with the
position of the maximum of the asymptotic entanglement. Notably, passing the
critical coupling strength is also reflected in a qualitative change of the entanglement
dynamics. For η < ηc the entanglement approaches the steady state quickly (on the
scale η−1). Contrarily, for η > ηc an additional exponential relaxation appears with
a decay rate vanishing as η approaches ηc from above. The sudden appearance of
this additional decay is responsible for a kink in the asymptotic entanglement as
a function of the coupling strength. Since this slow decay is very sensitive to the
accuracy of the multi-exponential representation of the sub-Ohmic BCF (Sec. 3.2),
determining the asymptotic entanglement in the regime of localization is numerically
very demanding. For an Ohmic SD the phase transition appears at a larger coupling
strength while the location of the maximum of the asymptotic entanglement remains
nearly unchanged. Determining the exact value of the critical coupling strength of
the phase transition by means of real time dynamics remains challenging, as for the
single spin case [Str+18].

As a summary, the results presented in Ch. 5 concern a) the applicability of perturba-
tive master equations (Sec. 5.1), b) the anomalous behavior in the adiabatic regime
where the renormalizing counterterm is expected to inhibit entanglement generation
(Sec. 5.2), c) the entanglement dynamics beyond the weak coupling regime for
various model parameters, including zero and non-zero temperature (Sec. 5.3) and
d) the asymptotic entanglement while drawing the connection to the known phase
transition of the two-spin-boson model (Sec. 5.4).

From a methodical point of view, these results demonstrate the wide range of
applicability of the HOPS approach and show how far the limits of exact open
quantum system dynamics approaches have been pushed. The thesis closes with
conclusions and an outlook on future project arising from our results.
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2Open Quantum System Dynamics

Perfectly isolating a quantum system from its surrounding is an idealized concept.
Therefore, in order to calculate the dynamics of a real quantum system it is inevitable
to including external influences which result in dissipation of energy and decoherence
of quantum states. For a fully quantum mechanical description of such open quantum
systems the environment is commonly modeled by a set of harmonic oscillators.
Note that this oscillator model has one of its roots in the classical description of a
particle exhibiting Brownian motion due to environmental influences [Ull66]. In
the standard model the system and the environment are coupled by a Hermitian
interaction linear in the creation (annihilation) operator a†λ (aλ) of the environmental
mode λ [Leg+87; BP07; Wei08; CDG98]. The unitary dynamics of the composite
system, system of interest and environment, is governed by the so-called microscopic
Hamiltonian

H = Hsys +Hinteraction +Henv

= Hsys +
∑
λ

(g∗λLa
†
λ + h.c.) +

∑
λ

ωλa
†
λaλ .

(2.1)

Hsys denotes the system Hamiltonian and L the coupling operator, both acting on
the Hilbert space of the system. L can be Hermitian but does not have to be. The
coupling constants gλ account for the individual coupling strength between the
system and the mode with frequency ωλ. For convenience, units are used where h̄
(reduced Planck constant) and kB (Boltzmann constant) become unity.

To model the effect of a genuine environment, leading to dissipation and decoher-
ence, the discrete set of environmental modes needs to become infinite with a dense
distribution of the frequencies ωλ [Wei08] – the so-called continuous limit. This
leads to the concept of the spectral density (SD) where the individual coupling
strengths gλ are captured by a, in general, continuous function in ω

J(ω) ..= π
∑
λ

|gλ|2δ(ω − ωλ) . (2.2)

Note, the factor π is solely conventional. It has its origin in the derivation of
perturbative master equations and was kept to relate this work more easily to the
literature.

The equation of motion given by the microscopic Hamiltonian [Eq. (2.1)], in
particular in the continuous J(ω) limit, can, in general, not be solved explicitly as
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of its infinite dimension. Even a suitable truncation of each harmonic oscillator
does not solve this problem. However, since the original motivation is to model the
dynamics of the system part including dissipation, the primary task is to calculate
the non-unitary dynamics of the reduced density matrix

ρsys(t) ..= Trenvρ(t) (2.3)

where the total state ρ(t) evolves unitarily according to the von-Neumann equation
iρ̇(t) = [H, ρ(t)] and Trenv denotes the partial trace over the environmental modes.
Under suitable conditions (weak coupling and/or an effectively flat SD) the reduced
dynamics can be calculated efficiently in a perturbative manner using time local
master equations [Red57; Dav74; SB08; Dav20] (see also App. D). However,
when leaving the perturbative regime the calculation of the reduced dynamics
becomes substantially more challenging. Not only theoretical interest but also the
growing number of experiments considering non-trivial environmental influences
([Eng+07; Nie+10; MM13; Bay+17; Mag+18] to list a few only) has encouraged
the development of non-perturbative methods. Without doubt, the steady increase
of computational power over the last decades has contributed to the successful
application and further refinement of such methods as well.

The non-perturbative methods fall mainly into two categories. On the one hand,
for so-called explicit methods the continuous environment is approximated by a
sufficiently large but finite set of modes. It is the challenge of such methods to
calculate the dynamics governed by the still very large microscopic Hamiltonian in a
sophisticated way. Consequently, the reduced dynamics is simply obtained by explic-
itly performing the trace over the environmental degrees of freedom. Among the
most prominent candidates for that group are variants of the time-dependent Hartee
(TDH) formalism [MMC90; WT03], the time-dependent numerical renormalization
group (TD-NRG) [AS05; AS06] and the multi-Davydov-Ansatz [Sun+15; Gro+16;
WG18].

On the other hand, evolution equations for the reduced state alone can also be
constructed. These so-called reduced methods usually involve the BCF (here for zero
temperature)

α(τ) ..= 1
π

∫ ∞
0

dω J(ω)e−iωτ (2.4)

which contains, just like the SD, all the necessary information about the coupling
to the environment. Successfully applied methods from that group include the
quasi-adiabatic propagator path integral (QUAPI) [Mak95; MM95], its variant based
on matrix product states – the time-evolving matrix product operator (TEMPO) ap-
proach [Str+18] and the hierarchical equations of motion (HEOM) [Tan06; Tan14]
including several variants [Tan+15; RK19].
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As a side note, the two categories are opposing in the sense that frequency and
time are conjugate variables. Further details have been discussed in a cooperation
with Michael Werther and Frank Großmann [Har+19] where a path towards an
intermediate picture has been proposed.

Although the pool of available methods seems rich, each approach has its limits.
The explicit methods, for example, struggle with non-zero temperature. The QUAPI
approach requires a sufficiently short memory time for the environment and the
HEOM approach, in its traditional form, makes use of the Maier-Tannor decomposi-
tion [MT99] for the SD and, thus, does not work for low temperatures. Also, since
the reduced methods are usually based on auxiliary density matrices computational
storage limits are reached quickly.

Yet another very promising line of reasoning aims for a stochastic representation
of the reduced state. Suitable for the non-perturbative regime (usually referred
to as non-Markovian in the literature) the fundamental non-Markovian quantum
state diffusion (NMQSD) formalism [Str96; DGS98; SDG99] yields, as we will show,
the generally applicable and numerically exact HOPS method [SES14; HS17] –
the principal method of this thesis. It allows one, for example, to treat both zero
and non-zero temperature environments. Although the method can be considered
as a reduced method, it is based on pure states instead of density matrices at
the cost of being a stochastic method. This, however, can easily be coped with
by numeric parallelization. Also, in a stochastic sense, the global microscopic
state can be recovered. Remarkably, as a consequence of realizing an importance
sampling scheme a non-linear evolution equation emerges which allows for an
efficient treatment of strong environmental interactions.

The central steps to derive the HOPS in linear and non-linear form are presented in
the following section 2.1 by using a time-discrete formulation. This new time-discrete
path represents an independent and highly transparent derivation of the NMQSD /
HOPS formalism. Equally important, in section 2.2 a novel and numerically highly
favorable way to treat non-zero temperature initial environmental states follows.
These two sections provide the fundamentals for the HOPS formalism. In addition,
section 2.3 contains various different aspects related to the NMQSD and HOPS theory
intended to inspire future investigations. Nonetheless, special notice should be given
to the Karhunen-Loève expansion Schrödinger equation (KLESEQ) derived in Sec.
2.3.1 which provides a new approach especially suited for environments with long
memory times and is, thus, complementary to the well studied Markovian regime. It
is particularly interesting since it is based explicitly on the BCF but has the notion of
a discrete environment, however, with time-dependent coupling strengths.
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2.1 Derivation of the Hierarchy of Pure States
(HOPS) Formalism

The HOPS was first derived by D. Süß et al. [SES14] from the NMQSD approach
[Str96; DGS98; SDG99]. Despite the NMQSD framework being well known, here
we derive the NMQSD equation as well as the HOPS in an independent manner. By
utilizing a time-discrete scheme the NMQSD/HOPS formalism follows in a clear and
self-contained way. In addition, this novel time-discrete formulation contributes on
a more fundamental level, too. We are able to relate the reduced dynamics to a
so-called time-oscillator model – instead of a static coupling to the environment, the
sought after reduced dynamics is also obtained when the system couples dynamically
to a new oscillator at each time step (see Sec. 2.3.2).

2.1.1 Time-Discrete Non-Markovian Quantum State Diffusion
(NMQSD) Equation

The main achievement of the NMQSD theory is to express the reduced density matrix
as ensemble average over dyads of stochastic pure states where the evolution of
these states is governed by the NMQSD equation.

Starting point is the formal expression of the reduced state [Eq. (2.3)] where the
trace over the environment has been made explicit in terms of Bargmann coherent
states [Bar61] |zλ〉 ..= ezλa

†
λ |0〉λ with the coherent state labels zλ ∈ C and |0〉λ

denoting the ground state of the mode with index λ,

ρsys(t) = Trenv(|Ψ(t)〉〈Ψ(t)|) =
∫

d2ze
−|z|2

πNB
〈z|Ψ(t)〉〈Ψ(t)|z〉 . (2.5)

Note, to ensure unambiguous notation the number of environmental oscillators NB

enters explicitly. The boldface notation is used to express the vector character of
z ..= (z1, . . . zNB )T . In addition |z〉 is meant to abbreviate the tensor product |z〉 ..=
|z1〉 . . . |zNB 〉 and d2zλ ..= d Re(zλ) d Im(zλ). To eliminate the oscillator dynamics,
the interaction picture with respect to the environmental Hamiltonian Henv is chosen
for the total state |Ψ(t)〉. Thus, |Ψ(t)〉 evolves according to the following Schrödinger
equation

i∂t|Ψ(t)〉 = U †env(t)(H −Henv)Uenv(t)|Ψ(t)〉

=
(
Hsys +

∑
λ

g∗λe
iωλtLa†λ + gλe

−iωλtL†aλ
)
|Ψ(t)〉 . (2.6)
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Since the propagator Uenv(t) = e−iHenvt acts on the environment only, the reduced
state is unaffected by that particular choice of interaction picture.

Reading the integral (2.5) in a Monte-Carlo sense turns the coherent state labels
into complex valued Gaussian distributed random variables with zero mean and
covariances

M(zλzλ′) =M(z∗λz∗λ′) = 0 and M(zλz∗λ′) = δλ,λ′ . (2.7)

Consequently, the reduced state appears as an ensemble average, generally denoted
byM, over the coherent state labels

ρsys(t) =M
z

(|ψ(z∗, t)〉〈ψ(z, t)|) (2.8)

of the dyads of the stochastic pure state

|ψ(z∗, t)〉 ..= 〈z|Ψ(t)〉 . (2.9)

For completeness, it is a property of the Bargmann coherent states that 〈Ψ(t)|z〉
is holomorphic in z and, thus, does not depend on z∗. This is of importance, e.g.,
for the non-linear theory (Sec. 2.1.3) and explains the notation |ψ(z∗, t)〉 for the
stochastic pure state.

Therefore the dynamics of the reduced state can be obtained if the dynamics of
the stochastic pure state is known. Using that 〈z|aλ|Ψ〉 = ∂z∗

λ
〈z|Ψ〉 and 〈z|a†λ|Ψ〉 =

z∗λ〈z|Ψ〉, its evolution equation follows from the Schrödinger equation (2.6) and
reads

∂tψ(z∗, t) =
[
−iHsys + η∗(z∗, t)L− iL†

∑
λ

gλe
−iωλt∂z∗

λ

]
ψ(z∗, t) (2.10)

where the microscopic definition of the stochastic process η∗(t), a scalar complex
function,

η∗(z∗, t) ..= −i
∑
λ

g∗λz
∗
λe

iωλt (2.11)

has been introduced. In order to clarify notation, we choose the symbol η∗ for
the stochastic process which differs from the notation established in the literature
[DGS98; SDG99] where z∗ has been chosen. Here, we reserve the symbol z∗(t) for
the vector of co-moving coherent state labels only (see Sec. 2.1.3). Note that for
reasons of convenience the “bra-ket” notation of the stochastic pure state will be
omitted whenever the notion as “ket”-vector is clear, i.e., |ψ(z∗, t)〉 ∧= ψ(z∗, t).

Although the stochastic pure state is an element of the system Hilbert space, the
number of bath modes is still present in the above expression (2.10) by means of
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the coherent state labels. Crucially, this z∗ dependence (frequency domain) can be
cast into a functional dependence on the stochastic process η∗ (time domain) and
with that a dependence on the BCF only. In order to show that, a factorized initial
pure state is assumed, i.e.,

|Ψ0〉 = |ψ0〉
NB⊗
λ

|0〉λ , (2.12)

with an arbitrary system state |ψ0〉 and a zero temperature environment correspond-
ing to the ground states |0〉λ of the environmental modes. Note that an initial
thermal environmental condition can be dealt with as well by still making use of the
zero temperature formalism (see Sec. 2.2.2). The expressions derived next do not
contain the number of bath modes NB anymore and, thus, intrinsically allow for the
continuous limit (NB →∞) of the SD.

The derivation presented here departs from the original lines of reasoning by using
a time-discrete scheme instead of keeping the differential form. For a fixed ∆t the
index n is used to enumerate equally spaced time points tn ..= n∆t and with that

ψn(z∗) ..= ψ(z∗, tn), η∗n(z∗) ..= η∗(z∗, tn) = −i
∑
λ

g∗λz
∗
λe

iωλn∆t . (2.13)

It follows from the evolution equation (2.10) that up to first order in ∆t the propa-
gation from tn to tn+1 becomes

ψn+1(z∗) = [1 + ∆tKn]ψn(z∗)

Kn
..=− iHsys + η∗n(z∗)L− iL†

∑
λ

gλe
−iωλn∆t∂z∗

λ
.

(2.14)

To elucidate the change of variables for the stochastic pure state from z∗ to the
functional η∗ the successive iteration of equation (2.14) is considered. From the
initial condition |Ψ(0)〉 = |ψ0〉|0〉 it follows that the stochastic pure state at time
t = 0 coincides with the initial state of the system ψ0(z∗) = |ψ0〉〈z|0〉 = |ψ0〉 and,
thus, does not depend on z∗. As a consequence the partial derivative with respect to
z∗λ acting on ψ0 vanishes and it follows

ψ1(z∗) = [1 + ∆t(−iHsys + η∗0(z∗)L)]ψ0 . (2.15)

Evidently, ψ1 depends on z∗ solely by means of the complex scalar η∗0. Concerning the
next iteration ψ2 = [1 + ∆tK1]ψ1, this can be used to express the partial derivative
acting on ψ1. By using the chain rule it follows that

−i
∑
λ

gλe
−iωλt1∂z∗

λ
ψ1(η∗0(z∗)) = −

∑
λ

|gλ|2e−iωλ(t1−t0)∂η∗0ψ1(η∗0) . (2.16)
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Realizing that the right hand side contains the zero temperature bath correlation
function α(τ) introduced in Eq. (2.4), results in

ψ2(z∗) =
[
1 + ∆t

(
−iHsys + η∗1(z∗)L− L†α(t1 − t0)∂η∗0

)]
ψ1(η∗0(z∗)) (2.17)

which shows that ψ2 depends on z∗ through η∗0 and η∗1. In the same way it follows
that: given ψn depends on η∗0 . . . η

∗
n−1 then ψn+1 takes the form

ψn+1(η∗|n0 ) =
[
1 + ∆t

(
−iHsys + η∗nL− L†

n−1∑
m=0

α(tn − tm)∂η∗m

)]
ψn(η∗|n−1

0 )

(2.18)
and, thus, depends on η∗0 . . . η

∗
n (shorthand notation η∗|n0 ). By mathematical induction

it follows that for any n ≥ 0, ψn+1 depends on η∗|n0 .

Although the time-discrete evolution equation (2.18) does not depend explicitly
on the infinite number of random variables zλ, it does so implicitly through η∗|n0 .
However, since η∗k depends linearly on the original Gaussian random variables z∗,
η∗k is also Gaussian distributed. Therefore, the statistical properties of η∗k are fully
determined by its first and second moment. From the definition of the stochastic
process η∗ [Eq. (2.11)] and the statistics of z∗λ [Eq. (2.7)] it follows that

M(η∗k) = 0, M(η∗kη∗l ) = 0 =M(ηkηl) and M(ηkη∗l ) = α(tk − tl) . (2.19)

This shows that equation (2.18) is fully characterized by Hsys, L and the BCF α(τ).

Taking the limit ∆t→ 0 leads to the known differential form of the NMQSD equation

∂tψt[η∗] =
[
−iHsys + η∗(t)L− L†

∫ t

0
ds α(t− s) δ

δη∗(s)

]
ψt[η∗] . (2.20)

The random variables η∗k turn into a time continuous, complex valued, Gaussian
distributed and stationary stochastic process η∗ = η∗(t) with zero mean and only
one non-vanishing second moment

M(η(t)η∗(s)) = α(t− s) . (2.21)

Consequently, the stochastic pure state becomes a functional of the stochastic process
η∗ indicated by the squared brackets. Although the equation is local in time with
respect to the stochastic pure state, it contains a convolution-like integral which
probes how the stochastic pure state at time t depends on the entire history of the
stochastic process.

At this stage, we have derived the evolution equation for the stochastic pure states,
the NMQSD equation (2.20). Solving this equation independently for many different

2.1 Derivation of the Hierarchy of Pure States (HOPS) Formalism 15



realizations of the stochastic process η∗(t) and taking the ensemble average over their
dyads yields the sought after reduced dynamics. However, due to the integral over
the functional derivative the NMQSD equation cannot be solved straightforwardly.
In the following we show how to overcome this difficulty by introducing auxiliary
states comprising the complicated terms, eventually leading to the hierarchy of pure
states (HOPS). As acknowledging note, this strategy was inspired by the HEOM
[TK89; Tan06] – a reduced method based on (auxiliary) density matrices rather than
pure states.

2.1.2 Time-Discrete HOPS

Here the HOPS is deduced from the time-discrete NMQSD equation (2.18). This
derivation is very transparent because it involves only partial rather than func-
tional derivatives. Of course, both approaches are equivalent, especially, since
the functional derivative is defined as the limiting case of infinitely many partial
derivatives.

As a remark, the explicit expression defining the auxiliary states is related to a partic-
ular representation of the BCF. If it is possible to represent the BCF and its derivative
in terms of a finite set of functions a HOPS can be constructed which yields the
exact reduced dynamics. However, since the numerical effort to propagate the HOPS
scales with the number of such functions a small set is desirable. Hence, the case
of an approximate representation, where the error decreases while increasing the
number of involved functions, is also of relevance. Finding an optimal representation
for the BCF is a non-trivial task which has been investigated in relation to the HEOM,
too [Tan+15; Dua+17].

Here, an expansion in terms of exponential functions is considered, i.e.,

α(τ) =
N∑
µ=1

Gµe
−Wµτ with Gµ,Wµ ∈ C and τ ≥ 0 . (2.22)

Obviously, for each function e−Wµτ its derivative is trivially represented by the set
of functions, too. It turns out that this simple expansion is very well suited for a
wide range of BCF and, thus, for a variety of environments (see Sec. 3.2 for more
details).

The representation of the BCF with N exponentials [Eq. (2.22)] gives rise to the
definition of N independent auxiliary states. This is most conveniently done by
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introducing the combined partial derivative (action of the convolution-like integral
and the functional derivatives)

Dn
µ

..=

0 n = 0

ḡµ
∑n−1
m=0 e

−Wµ(n−m)∆t∂η∗m n > 0
(2.23)

where n and m correspond to discrete time indices, µ is the index from the bath
correlation function representation and ḡµ ∼

√
Gµ is an arbitrary scaling which

ensures that the auxiliary states have the same unit as the stochastic pure state. In
order to ease readability, the explicit dependence of the stochastic pure state on
the random variables η∗k is dropped ψn(η∗|n−1

0 ) → ψn which, for the time-discrete
NMQSD equation, yields

ψn+1 = ψn + ∆t (−iHsys + η∗nL)ψn −∆tL†
N∑
µ=1

Gµ
ḡµ
Dn
µψn . (2.24)

This expression motivates the definition of the auxiliary states ψeµ
n

..= Dn
µψn with

index vector eµ which denotes the N -dimensional unit vector in µ direction. It turns
out useful to define a general auxiliary state indexed by the vector k = (k1, . . . kN )
with kµ ≥ 0 and kµ ∈ N as

ψk
n

..=
N∏
µ=1

(
Dn
µ

)kµ
ψn (2.25)

where, as a consequence of the partial derivatives, the sequence of applying the D
operators is arbitrary. The total number of successive applications reflects the order
of the partial derivatives and is given by l =

∑
µ kµ (later also referred to as the

hierarchy level).

With the help of the recursion relation

Dn+1
µ = e−Wµ∆t

(
ḡµ∂η∗n +Dn

µ

)
(2.26)

the evolution for the auxiliary states can be determined. Combining the above
equations yields

ψk
n+1 =

N∏
µ=1

(
Dn+1
µ

)kµ
ψn+1 =

N∏
µ=1

e−kµWµ∆t
(
ḡµ∂η∗n +Dn

µ

)kµ
×

1 + ∆t

−iHsys + η∗nL− L†
N∑
µ=1

Gµ
ḡµ
Dn
µ

ψn . (2.27)

It has been pointed out earlier that ψn does not depend on η∗n. Therefore, the partial
derivative ∂η∗n acts only on the linear occurrence of η∗n in equation (2.27) which
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means that higher than first order partial derivatives with respect to η∗n vanish.
Consequently, we group the terms of the product derivative operator according to
powers of ∂η∗n

N∏
µ=1

(
ḡµ∂η∗n +Dn

µ

)kµ
=

N∏
µ=1

(
Dn
µ

)kµ
+

N∑
µ=1

kµḡµ∂η∗n

(
Dn
µ

)−1 N∏
ν=1

(
Dn
ν

)kν
+ ∼ ∂2

η∗n
+ · · ·+ ∼ ∂lη∗n . (2.28)

For reasons of compact notation the expression D−1 as been introduced which
acts like D−1Dk ≡ Dk−1 for k > 0. Note,

(
∂η∗n +Dn

)0 = 1 = (Dn)0 holds for
k = 0. Therefore the term 0 · ∂η∗n(Dn)−1(Dn)0 does not appear when “expanding”
(ḡµ∂η∗n + Dn

µ)0 and it is consistent to define kD−1Dk ≡ 0 for k = 0. Keeping only
terms up to first order in ∆t yields

ψk
n+1 =

1−
N∑
µ=1

kµWµ∆t

1 +
N∑
µ=1

kµḡµ∂η∗n

(
Dn
µ

)−1


×

1 + ∆t

−iHsys + η∗nL− L†
N∑
µ=1

Gµ
ḡµ
Dn
µ

ψk
n

=ψk
n + ∆t

−iHsys −
N∑
µ=1

kµWµ + η∗nL

ψk
n

−∆tL†
N∑
µ=1

Gµ
ḡµ
ψk+eµ
n + ∆tL

N∑
µ=1

kµḡµψ
k−eµ
n .

(2.29)

Taking the limit ∆t→ 0 recovers the set of coupled differential equations known as
the (linear) Hierarchy of Pure state (HOPS) [SES14; HS17]:

ψ̇k
t = Aψk

t +B
N∑
µ=1

Gµ
ḡµ
ψ

k+eµ
t + C

N∑
µ=1

kµḡµψ
k−eµ
t ,

with A = −iHsys −
N∑
µ=1

kµWµ + η∗tL, B = −L†, C = L,

M(η∗t ) = 0, M(η∗t η∗s) = 0 =M(ηtηs), M(ηtη∗s) = α(t− s) .

(2.30)

As a remark, the scalars ḡµ have been introduced to account for the unit of [Gµ] =
[ω]2. If gµ has the unit of a frequency the auxiliary states are unitless. Nonetheless,
the HOPS remains valid for any value of gµ. This allows one to recover the exact form
of the HOPS from the seminal paper of D. Süß et al. [SES14] by setting gµ = Gµ.

The structure of the above equations reveals that an auxiliary state of level l =
∑
µ kµ

couples to other auxiliary states with level l ± 1 only. Thus, the different levels of
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Fig. 2.1: This graph shows the hierarchical structure of the HOPS for an exemplary BCF
representation with N = 3 exponential terms up to a hierarchical depth l = 2. The
tuple in brackets corresponds to the index vector k. The very top node with index
vector 0 corresponds to the stochastic pure state needed to calculate the reduced
state.

auxiliary states depend on each other in a hierarchical manner (see Fig. 2.1 for a
graph visualization of the hierarchical structure).

In order to solve the above set of differential equations (the HOPS) the initial
condition needs to be specified. Recall, the initial condition for the stochastic pure
state coincides with the initial state for the system. Further, by definition [Eqs. (2.23)
and (2.25)] the auxiliary states are zero at t = 0. Thus, the initial condition for the
HOPS reads

ψk
0 = |ψ0〉 for k = 0

ψk
0 = 0 for k 6= 0 .

(2.31)

In summary, based on a multi-exponential representation of the BCF [Eq. (2.22)] we
have shown that the stochastic pure states, being solutions to the NMQSD equation,
can equivalently be obtained from the HOPS – an a-priory infinite set of coupled
differential equations. Further details regarding its use as numerical method and
its comparison to other approaches are discussed in Ch. 3 and Ch. 4 respectively.
We continue on the conceptual side by showing how to modify the NMQSD / HOPS
formalism in order to ensure that each sample contributes with equal weight to the
ensemble average, a property which is highly desirable for numerics and has turned
out necessary in the strong coupling regime.
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2.1.3 Importance Sampling and the Non-Linear HOPS

In the previous section, the HOPS formalism has been derived as a method to
solve the NMQSD equation (2.20). The resulting stochastic pure states ψt yield
the reduced dynamics by averaging the dyads |ψt〉〈ψt|. Crucially, it follows from
the NMQSD equation that the norm of the stochastic pure states

√
〈ψt|ψt〉 is not

preserved. As a consequence the dyads contribute with different weight to the
ensemble average. This is easily seen by trivially rewriting Eq. (2.8) in terms of
normalized dyads (actual projectors)

ρsys(t) =M
(
〈ψt|ψt〉

|ψt〉〈ψt|
〈ψt|ψt〉

)
=
∫

d2ze
−|z|2

πNB
〈ψt|ψt〉

|ψt〉〈ψt|
〈ψt|ψt〉

, (2.32)

where the squared norm 〈ψt|ψt〉 expresses the time dependent weights for each
contribution. Note that we distinguish between a general dyadic product |ψt〉〈ψt|
and the dyadic product of normalized states |ψt〉〈ψt|/〈ψt|ψt〉, referred to exclusively
as projectors.

Especially for strong system-environment interactions the norm may differ drastically
between different realizations of ψt. When using a finite number of samples to
estimate the ensemble mean, as necessary for a numeric method, a single stochastic
pure state can dominate the entire ensemble and ruin the statistical significance. As
demonstrated in Sec. 4.5 an improved stochastic convergence becomes inevitable
for a numeric treatment of the strong coupling regime.

Remarkably, it has been shown that the NMQSD formalism can be modified such
that each sample does, in fact, contribute with the same weight to the ensemble
[DGS98; deV+05], i.e., the so-called importance sampling is realized. The resulting
equation is usually referred to as the non-linear NMQSD equation. By revising the
steps for the NMQSD formalism we eventually obtain the corresponding HOPS.

Starting point is, again, the expression for the reduced state by taking the trace
over the environmental degrees of freedom in terms of Bargmann coherent states.
As indicated above, averaging over projectors can be trivially achieved by dividing
|ψ(z∗, t)〉 ≡ 〈z|Ψ(t)〉 by its norm

√
〈ψ(z, t)|ψ(z∗, t)〉 ,

ρsys(t) =
∫

d2ze
−|z|2

πNB
〈Ψ(t)|z〉〈z|Ψ(t)〉 |ψ(z∗, t)〉〈ψ(z, t)|

〈ψ(z, t)|ψ(z∗, t)〉 . (2.33)

It is now a crucial observation that the terms in front of the projector correspond
precisely to the Husimi function (Q-function) of the multi-mode bath state,

〈Ψ(t)|z〉〈z|Ψ(t)〉e
−|z|2

πNB
= 〈z|(Trsys|Ψ(t)〉〈Ψ(t)|) |z〉e

−|z|2

πNB
≡ Q(z, z∗, t) , (2.34)
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here expressed in terms of Bargmann coherent states |z〉. The evolution equation of
Q(z, z∗, t) follows from the Schrödinger equation (2.6) and takes the form of a first
order partial differential equation,

∂tQ(z, z∗, t) = −
∑
λ

(
igλe−iωλt∂z∗

λ
〈L†〉Q(z, z∗, t) + h.c.

)
,

with 〈L†〉 = 〈ψ(z, t)|L†|ψ(z∗, t)〉
|ψ(z∗, t)|2 .

(2.35)

Note that Q(z, z∗, t), being the Husimi function of the environment, can be regarded
as a pseudo probability distribution. In particular, it is normalized to 1. Thus, the
dynamics in phase space expressed in (z∗, z) coordinates has to obey a continuity
equation, i.e., ∂tQ + div ~J = 0. Thinking of Q(z, z∗, t) being realized by a set of
individual trajectories (z∗(t), z(t)) and expressing the current as ~J ..= (ż∗, ż)Q allows
us to identify Eq. 2.35 as the continuity equation if the evolution of the components
of (z∗(t), z(t)) obey

ż∗λ(t) = igλe−iωλt〈L†〉 (2.36)

or its complex conjugate version, respectively. As a remark, the trajectories corre-
spond to the characteristics when solving the partial differential equations (2.35) by
means of the method of characteristics [Eva10]. The above reasoning allows us to
express the time evolution of Q(z, z∗, t) in terms of the evolution of the individual
trajectories with initial conditions z(t = 0) = z0, i.e,

Q(z, z∗, t) =
∫

d2z0 Q0(z0, z∗0)δ(z− z(t, z0)) , (2.37)

with Q0(z, z∗) ..= Q(z, z∗, 0). Note that as for the notation of d2z we abbreviate

δ(z) ≡ δ(Re(z1))δ(Im(z1))δ(Re(z2))δ(Im(z2)) . . . . (2.38)

In summary, it has been shown that the environmental state, expressed as a phase
space distribution (Husimi function), can be represented by a family of phase space
trajectories z∗(t, z0), so-called co-moving coherent state labels, which are the solutions
of the characteristic equation (2.36). Note that the influence of the system on the
environmental dynamics, i.e., the characteristics, is hidden in the special expectation
value 〈L†〉 which has to be taken with respect to the stochastic pure state ψ(z∗, t) of
the system.

It follows that the reduced state can now be expressed as

ρsys(t) =
∫

d2z d2z0 Q0(z0, z∗0)δ(z− z(t, z0))P (z, z∗, t) (2.39)
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with the abbreviation for the stochastic projector

P (z, z∗, t) ..= |ψ(z∗, t)〉〈ψ(z, t)|
|ψ(z∗, t)|2 . (2.40)

The z integration collapses due to the δ term causing an evaluation of the projector
at the value of the co-moving coherent state labels at time t, i.e., z∗ → z∗(t). The
integration over z0 can be understood in a Monte Carlo sense. For the relevant case
here where |0〉 is considered as initial environmental state, the weight function for

the initial values z0 becomes Gaussian, Q0(z0, z∗0) =
∏
λ
e
−|zλ,0|

2

π . This leads to the
central conclusion that the reduced state can be written as ensemble average of
projectors

ρsys(t) = M
z0,z∗0

P (z, z∗, t)
∣∣∣
z∗=z∗(t,z∗0)

(2.41)

over the complex valued and Gaussian distributed random variables zλ,0 with
M(zλ,0) = 0 =M(zλ,0zλ′,0) andM(zλ,0z∗λ′,0) = δλ,λ′ , The projector is constructed
from the dyadic product of the normalized stochastic pure state

|ψ̃(z∗, t)〉 ..= |ψ(z∗, t)〉
|ψ(z∗, t)| , (2.42)

however, evaluated at z∗ = z∗(t). To establish a more intuitive picture, recall that by
definition the stochastic pure states |ψ(z∗, t)〉 ..= 〈z|Ψ(t)〉 are parameterized by the
coherent state labels z∗. In that sense, each combination of parameters z∗ can be
identified with a different stochastic pure state. Therefore, since the projector in Eq.
(2.41) is evaluated at z∗(t), in general, a different stochastic pure state contributes
at each time (see parts of the later Fig. 2.2 for a visualization). Due to their equal
weight for the reduced state, the stochastic pure states selected in this way can be
regarded as most relevant. Furthermore, since the co-moving coherent state labels
reflect the dynamics of the Q-function the exact dynamics of the environment is
captured in this approach.

To make use of this statistically favorable rewriting of the reduced state we deduce
the evolution equation for the “effective” stochastic pure state which follows the
co-moving coherent state labels |ψ(z∗(t, z∗0), t)〉 and, thus, swipes through many
different “ordinary” stochastic pure states |ψ(z∗, t)〉. As before, this includes the
transformation from the dependence on the infinite dimensional coherent state
labels z to a functional dependence on a stochastic process.
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2.1.3.1 Non-Linear NMQSD Equation

To ease notation, the dependence of the co-moving coherent state label on the initial
condition z∗0 is not essential for the following and will, thus, be omitted. Using the
evolution equation for a fixed z∗ [Eq. (2.10)] and the expression for ż∗λ [Eq. (2.36)]
yields for the change of the stochastic pure state with a co-moving frame

d
dtψ(z∗(t, z∗0), t) =

[(
− iHsys + η∗(z∗, t)L− iL†

∑
λ

gλe
−iωλt∂z∗

λ

)
ψ(z∗, t)

+ i〈L†〉ψ(z∗,t)
∑
λ

gλe
−iωλt∂z∗

λ
ψ(z∗, t)

]
z∗=z∗(t,z∗0)

.

(2.43)

The subscript at the special normalized expectation value 〈L†〉ψ(z∗,t) [Eq. (2.35)]
is used to highlight its z∗ dependence. Formally, this expression corresponds to
the evolution equation of the stochastic pure state with a fixed z∗ [Eq. (2.10)],
however, with the replacements L† → L† − 〈L†〉 and z∗ → z∗(t). As shown in the
following, these changes show up in the NMQSD equation, too [DGS98; Str01]. It is,
again, instructive to employ the time-discrete scheme to perform the change from
the coherent state labels z∗ to the stochastic process η∗. Simply rewriting the above
differential equation up to first order in ∆t then yields

ψn+1(z∗)
∣∣∣
z∗=z∗(tn+1)

=
[
ψn(z∗) + ∆t

(
− iHsys + η∗n(z∗)L

− i
∑
λ

gλe
−iωλn∆t(L† − 〈L†〉)∂z∗

λ

)
ψn(z∗)

]
z∗=z∗(tn)

. (2.44)

Ignoring the explicit evaluation of z∗ at z∗(tn) for a moment, the equation describes
the relation between ψn and ψn+1 seen as functions that map a coherent state label
z∗ to a vector of the system Hilbert space. Exactly as in the previous Sec. 2.1.1,
these functions can be rephrased to depend on the time-discrete stochastic process
η∗n(z∗) [Eq. (2.13)] rather than the coherent state labels z∗. Thus, ψn(η∗|n−1

0 ) and
ψn+1(η∗|n0 ) are related by the time-discrete NMQSD equation (2.18), here, however,
with L† → L† − 〈L†〉,

ψn+1(η∗|n0 ) =
[
1 + ∆t

(
− iHsys + η∗nL

− (L† − 〈L†〉)
n−1∑
m=0

α(tn − tm)∂η∗m
)]
ψn(η∗|n−1

0 ) . (2.45)
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Recalling that we started with the time derivative of the stochastic pure state with co-
moving frame, the additional 〈L†〉 term ensures that evaluating ψn at η∗i (z∗ = z∗(tn))
for 0 ≤ i < n results in the iterated state ψn+1 evaluated at η∗i = η∗i (z∗(tn+1))

ψn+1(η∗|n0 )
∣∣∣
η∗i =η∗i (z∗(tn+1))

=
[(

1 + ∆t
(
− iHsys + η∗nL

− (L† − 〈L†〉)
n−1∑
m=0

α(tn − tm)∂η∗m
))
ψn(η∗|n−1

0 )
]
η∗i =η∗i (z∗(tn))

(2.46)

with 0 ≤ i ≤ n. Fig. 2.2 attempts to illustrate the relation between the co-moving
coherent state labels and the resulting shifted process, i.e, the process in the co-
moving frame (see Eq. (2.49) below), as well as the stochastic pure states with
and without co-moving coherent state labels. This leads to the known differential
form [DGS98; SDG99] for the non-normalized stochastic pure state with co-moving
coherent state labels,

∂tψt[η∗] =
[
− iHsys + η∗(z∗(t), t)L

− (L† − 〈L†〉ψt[η∗])
∫ t

0
ds α(t− s) δ

δη∗(s)

∣∣∣∣∣
η∗(·)=η∗(z∗(t),·)

]
ψt[η∗] . (2.47)

This is the final result. Propagating this equation yields the stochastic pure states
with co-moving coherent sate labels. The reduced state is obtained by averaging their
normalized dyads, thus, featuring the enhanced statistical convergence discussed
above.

Several remarks deserve notice. Since the additional normalized expectation value
〈L†〉 [Eq. (2.35)] is taken with respect to the stochastic pure state, the equation
(2.47) is non-linear in ψ and, thus, referred to as the non-linear NMQSD equation.
To distinguish this equation from the previously discussed case (Sec. 2.1.1), the
NMQSD equation with fixed coherent state labels z∗ is also called linear NMQSD
equation.

Another remark concerns the evaluation of the microscopically defined stochastic
process for the time evolving co-moving coherent state labels, i.e., η∗(z∗(t), t), which
is needed for the non-linear NMQSD equation. Recalling the definition of the
stochastic process, η∗(t) ..= −i

∑
λ g
∗
λz
∗
λe

iωλt, and setting z∗λ to the formal solution of
the characteristics [Eq. (2.36)]

z∗λ(t, z∗λ,0) = z∗λ,0 +
∫ t

0
ds igλe−iωλs〈L†〉ψs (2.48)
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Fig. 2.2: The plots shown here are illustrations only, visualizing various quantities occurring
in the co-moving frame and their relation to the linear HOPS. In the co-moving
frame, coherent state labels evolve with time, z∗ → z∗(t) (upper left panel). There-
fore, η∗i (z∗(t)) = −i

∑
λ g
∗
λz
∗
λ(t)eiωλti (from Eq. (2.13)) generally varies for all i

when t changes (upper right panel). Note that η̃∗i (t) has two independent time
variables, the time index i of the process and the time t fixing z∗λ as z∗λ(t). The
NMQSD equation, however, is exposed to the instance t = tn only, defining the ac-
tual shifted stochastic process η̃∗(tn) ..= η∗n(z∗(tn)). The other values (i < n) enter
indirectly only in terms of the partial derivatives. Their influence can be coped
with using the HOPS formalism (see below). The bottom panel shows various
stochastic pure states ψlin,k

n (colored lines) obtained from the linear NMQSD equa-
tion for a fixed process η∗i (z∗(tk)) (fixed tk). As of the co-moving coherent state
labels, the action of the non-linear NMQSD equation propagates the stochastic
pure state such that it changes from one solution of the linear NMQSD to another,
i.e., ψlin,k=n

n = ψnon−lin
n . In that way, referring to the importance sampling at each

time the “optimal” stochastic pure state is obtained.

results in

η∗(z∗(t), t) = −i
∑
λ

g∗λz
∗
λ,0e

iωλt +
∫ t

0
ds α∗(t− s)〈L†〉ψs

η̃∗(t) ..= η∗(z∗(t), t) = η∗(t) + η∗sh(t) .
(2.49)

The first term on the right hand side in the upper line corresponds to a truly
stochastic process, microscopically generated by the random numbers z∗λ,0. Since the
z∗λ,0 are Gaussian distributed with variance one, the process can be identified with
the Gaussian process η∗(t) known from the linear NMQSD equation [Eq. (2.21)].
The second term shifts the Gaussian process, thus, the stochastic process η̃(t) is
called shifted process. Note that the shift itself is expressed in terms of a memory
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kernel involving the entire history of the stochastic pure state. This makes an explicit
evaluation very complicated. However, for a BCF of multi-exponential form [Eq.
(2.22)], as required for the HOPS, the time derivative of the shift takes the closed
form

η∗sh(t) ≡
N∑
µ=1

η∗sh,µ(t) ..=
N∑
µ=1

∫ t

0
dsG∗µe−W

∗
µ (t−s)〈L†〉ψs

⇒ η̇∗sh,µ(t) = G∗µ〈L†〉ψt −W ∗µη∗sh,µ(t) .

(2.50)

Therefore, it can be propagated along with the stochastic pure state. Note that
from a numerical perspective, here the number of exponential terms representing
the BCF is not limited to a few terms only, in contrast to the HOPS. Consequently,
an appropriate discretization of the SD which also leads to a multi-exponential
representation of the BCF may be used, too.

To obtain the stochastic pure state in the co-moving frame the non-linear NMQSD
equation (2.47) needs to be solved. As in the linear case, the functional derivative
term can be dealt with using the HOPS formalism, shown next.

2.1.3.2 Non-Linear HOPS

Starting from the time-discrete non-linear NMQSD equation (2.45), it is the same
line of reasoning as for the linear equation (see Sec. 2.1.2) which leads to the
non-linear HOPS. Consequently, its hierarchical structure is identical to the linear
HOPS. The only differences emerge from the additional expectation value 〈L†〉 and
the shifted noise process η̃∗(t). In summary, for a given BCF α(τ) with a suitable
representation as a sum of exponentials

∑N
µ=1G

∗
µe
−W ∗µτ the non-linear HOPS refers

to the following set of non-linear differential equations

ψ̇k
t = Aψk

t +B
N∑
µ=1

Gµ
ḡµ
ψ

k+eµ
t + C

N∑
µ=1

kµḡµψ
k−eµ
t ,

η̇∗sh,µ(t) = G∗µ〈L†〉ψt −W ∗µη∗sh,µ(t),

(2.51)

with

A = −iHsys −
N∑
µ=1

kµWµ + η̃∗tL, B = −(L† − 〈L†〉ψt), C = L,

η̃∗(t) = η∗(t) +
N∑
µ=1

η∗sh,µ(t),

M(η∗t ) = 0, M(η∗t η∗s) = 0 =M(ηtηs), and M(ηtη∗s) = α(t− s).

(2.52)
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Up to now, this set of equations provides the most sophisticated approach to utilize
the NMQSD formalism as numeric approach which solves the dynamics of an open
quantum system exactly. Based on the details on solving the HOPS provided in Ch.
3, it will be shown in Ch. 4 that the HOPS is well suited for a wide range of situation
reaching from weak to strong coupling as well as zero and large temperatures.
Our publications concerning these results can be found in Refs. [HS17; Har+19;
HS20b].

2.2 Shifted and Thermal Initial Bath States

The derivation of the NMQSD equation (2.20), as provided in the previous section,
requires that the environment is initially in its ground state. Obviously, this require-
ment has to be met for the HOPS as well. However, it has been shown that the
NMQSD formalism can also be extended to thermal initial environmental states
[DGS98; DS97]. For Hermitian coupling operators L = L†, non-zero temperature is
simply accounted for by replacing the zero-temperature BCF by its thermal equiva-
lent. Here, however, a different approach is used to account for initial environmental
conditions other than the ground state. It will be shown in the following that a
shifted initial condition can be treated with the ground-state formalism, except
for an additional time dependent system Hamiltonian. As a consequence of this,
for a thermal initial environmental state the time dependence of the additional
Hamiltonian is governed by yet another stochastic process. This corresponds to
the picture that a thermal environment can be accounted for by a stochastic force
[Wei08] which yields a stochastic potential encoded by a time dependent system
Hamiltonian.

This approach has two advantages over the earlier one. First, since only the zero-
temperature BCF enters the HOPS formalism, a suitable multi-exponential represen-
tation has to be obtained only once. In the former approach, each temperature yields
a different BCF which, in turn, would require its own multi-exponential representa-
tion. As discussed in Sec. 3.2, finding highly accurate representations is a difficult
task on its own. Even more importantly, the approach presented here requires
significantly less numerical effort when dealing with strong system-environment
interactions (see Sec. 4.5).

Noteworthy, this approach is not only particularly suited for the HOPS methods, but
can in principal be used by any method which solves the zero-temperature case and
allows for a time dependent system Hamiltonian.
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2.2.1 Shifted Initial States

As a prerequisite to treat thermal initial conditions, shifted initial states are con-
sidered. Suppose the reduced dynamics for an arbitrary initial global state ρ0 can
be calculated. Here we show that this implies that the reduced evolution of the
shifted initial condition ρsh ..= Dρ0D† can be calculated, too, by actually solving the
reduced dynamics for ρ0, however, with an additional time-dependent contribution
to the system Hamiltonian. The environmental operator D ..= ⊗λDλ(yλ) denotes the
multi-mode displacement operator, where Dλ(yλ) = eyλa

†
λ
−y∗λaλ (yλ ∈ C) acts on the

mode λ. This, in particular, implies that coherent states can be dealt with effectively
using the ground state as initial condition.

For ρsh as initial condition, the reduced state at later times t can be expressed by
means of the propagator U(t) for the microscopic model [Eq. (2.6)],

ρsys(t) = TrenvU(t)ρshU
†(t) = TrenvU(t)Dρ0D†U †(t) . (2.53)

Using that D is a unitary operator, ρsys(t) may also be written as

ρsys(t) = TrenvŨ(t)ρ0Ũ
†(t) (2.54)

with the transformed time evolution operator Ũ(t) = D†U(t)D. Since U(t) obeys
the Schrödinger equation (2.6)

i∂tU(t) = H(t)U(t) , (2.55)

Ũ(t) fulfills the same Schrödinger equation with the transformed Hamilton H̃(t) ..=
D†H(t)D. This leads to the final conclusion that the reduced dynamics, formally
expressed in Eq. (2.54), can be obtained by evolving the initial state ρ0 under action
of the total Hamilton

H̃(t) = Hsys +Hshift
sys (t,y) +

(
L
∑
λ

g∗λe
iωλta†λ + h.c.

)
, (2.56)

which includes an additional contributing to the system Hamiltonian, the so-called
shift Hamiltonian

Hshift
sys (t,y) ..= L

∑
λ

g∗λy
∗
λe

iωλt + h.c. . (2.57)

As a specific application of that, recall that the displacement operator acting on the
ground state yields a coherent state |yλ〉 = Dλ(yλ)|0〉. Therefore, the initial state
|ψ〉|y〉 can be expressed by a shift of the ground state,

|ψ〉〈ψ|⊗|y〉〈y| ≡ |ψ〉〈ψ|⊗D|0〉〈0|D† = ρsh . (2.58)
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This in turn allows us to use the zero-temperature HOPS formalism with the addi-
tional Hermitian shift Hamiltonian given in Eq. (2.57) to treat coherent states as
initial condition.

Another application of the above consideration appears for an environment initially
prepared in a so-called canonical shifted distribution [Wei08; ABV07; NT10]

ρsh = |ψl〉〈ψl|⊗ exp (−β(Henv −Hint|L=l)) /Z̃, (2.59)

at inverse temperature β, where the system state |ψl〉 is forced to be the eigenstate
of the now Hermitian coupling operator L = L† with real eigenvalue l while the
environment is assumed to be thermalized with respect to the remaining effective
environmental Hamiltonian Henv −Hint|L=l (see Eq. (2.1)). By using the properties
of the displacement operator, the exponent in the equation above can be rewritten
as

Henv −Hint|L=l =
∑
λ

ωλa
†
λaλ − l(g

∗
λa
†
λ + gλaλ)

=
∑
λ

ωλ(a†λ − lgλ/ωλ)(aλ − lg∗λ/ωλ)− l2|gλ|2/ωλ

=
∑
λ

ωλDλ(yλ)a†λaλD
†
λ(yλ) + const.

(2.60)

with yλ = lg∗λ/ωλ. Thus, the state considered in Eq. (2.59) belongs to the class of
shifted initial conditions

ρsh = |ψl〉〈ψl|⊗DρβD†, ρβ = e−βHenv/Z, Z = Tre−βHenv , (2.61)

and the shift Hamiltonian takes the form

Hshifted
sys (t) = Ll(t) (2.62)

with
l(t) ..= l

∑
λ

|gλ|2/ωλ cos(ωλt) = l

π

∫ ∞
0

dω J(ω)
ω

cos(ωλt) . (2.63)

Note that a thermal initial state appears as an effective initial state for the environ-
ment. It will be shown in the following, how a thermal initial state can be dealt with
stochastically in a zero-temperature formalism such as the HOPS approach.

2.2.2 Thermal initial states

Using the Glauber-Surdashan P-representation allows us to express a thermal envi-
ronmental state at inverse temperature β in terms of coherent states. Therefore we
can employ the above results for coherent states to obtain an effective description of
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a thermal environment while still using a zero temperature open system formalism.
The P-representation for a thermal state reads

ρβ =
⊗
λ

∫
d2yλ

1
πn̄λ

e−|yλ|
2/n̄λ |yλ〉〈yλ| with n̄λ(β) = (eβωλ − 1)−1 . (2.64)

In spirit of Eq. (2.53), the formal time evolution of the reduced state reads

ρsys(t) =
∏
λ

∫
d2yλ

1
πn̄λ

e−|yλ|
2/n̄λTrenvU(t)D(y)|ψ〉〈ψ|⊗|0〉〈0|D†(y)U †(t) .

(2.65)
Understanding the integration over y in a Monte-Carlo sense

ρsys(t) =M
y
ρy(t) (2.66)

allows us to compute the reduced state as an average over the density matrices
ρy(t) by sampling the random numbers yλ according to the Gaussian distribution

1
πn̄λ

e−|yλ|
2/n̄λ . In turn, each ρy(t) can be obtained by the HOPS formalism as an

average over stochastic pure state dyads with the additional shift Hamiltonian

Hshift
sys (t,y) = L

∑
λ

g∗λy
∗
λe

iωλt + h.c. , (2.67)

as elucidated above. In the continuous limit the dependence of the shift Hamiltonian
on yλ is most conveniently expressed in terms of the microscopically defined Gaussian
stochastic process

ξ(t) ..=
∑
λ

gλyλe
−iωλt (2.68)

with corresponding momentsM(ξ(t)) = 0 =M(ξ(t)ξ(s)) and

M(ξ(t)ξ∗(s)) =
∑
λ,λ′

|gλ|2M(yλyλ′)e−iωλ(t−s) = 1
π

∫ ∞
0

dω n̄(βω)J(ω)e−iω(t−s) .

(2.69)

As a remark, for a Hermitian coupling operator L = L† the shift Hamiltonian
becomes

Hshift
sys = Lξ∗(t) + L†ξ(t) = Lξ̄(t) (2.70)

with the real valued noise ξ̄(t) ..= ξ(t) + ξ∗(t) withM(ξ̄(t)) = 0 and

M(ξ̄(t)ξ̄(s)) = 1
π

∫ ∞
0

dω 2n̄(βω)J(ω) cos(ω(t− s)) . (2.71)
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It turns out that this correlation function corresponds to the thermal part of the
non-zero temperature BCF which is generally defined by the two time correlation of
the force operator F (t) =

∑
λ gλaλe

−iωλt + g∗λa
†
λe

iωλt [FV63; CDG98]

α(β, t− s) = TrρβF (t)F (s)

= 1
π

∫ ∞
0

dω J(ω)
(
(2n̄(βω) + 1) cos(ω(t− s)− i sin(ω(t− s))

)
.

(2.72)

This general expression for the BCF splits into a temperature dependent and temper-
ature independent part,

α(β, τ) = TrρβF (t+ τ)F (t) = α(τ) + αβ(τ) with

α(τ) = lim
β→∞

α(β, τ) = 1
π

∫ ∞
0

dω J(ω)e−iωτ

and αβ(τ) = 1
π

∫ ∞
0

dω 2n̄(βω)J(ω) cos(ωτ) .

(2.73)

The formalism derived here accounts for both contributions in a stochastic manner.
The zero-temperature BCF α(τ) defines the statistics of the noise felt by the system
which has a purely quantum origin. Its influence is correctly accounted for by the
NMQSD, or, equivalently, the HOPS formalism. The noise induced by the uncertainty
of the environmental state, which is reflected by the canonical ensemble, obeys the
statistics given by αβ(τ). Its influence can simply be accounted for by the stochastic
Hamiltonian contribution which can be interpreted as a classical random force acting
on the system. Similar stochastic potentials have been proposed by unraveling the
Feynman-Vernon influence functional [SG02; CCS13; MC13] where such a Hermitian
contribution arises from the real part of the BCF instead of the thermal part αβ.

In summary, using the HOPS method to calculate the reduced dynamics for a system
in contact with a thermal environment amounts to averaging stochastic pure state
dyads over the two independent stochastic processes η∗(t) and ξ(t), i.e.,

ρsys(t) =M
η,ξ
|ψt[η∗, ξ]〉〈ψt[η∗, ξ]| . (2.74)

In order to understand how the HOPS formalism is used as a numerical method
solving open spin systems in contact with a Ohmic or sub-Ohmic environment,
one can continue directly with Ch. 3. The following section, however, provides
more theoretical aspects related to the NMQSD as well as the HOPS formalism with
prospects for advancing the existing numerical methods.
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2.3 Extending Theoretical Aspects of the NMQSD
and HOPS Formalism

To give an overview of the different aspects covered in the following, in Sec. 2.3.1
yet another description of remarkable kind for the reduced dynamics is provided. It
has been obtained from the NMQSD formalism by expanding the time-continuous
stochastic process η∗t using the Karhunen–Loève theorem [KMT11; GS12]. The
expansion, done for a finite time interval t ∈ [0, T ], yields a discrete-mode-like
Schrödinger equation with time dependent coupling strengths between the system
and the modes. In contrast to many of the explicit methods, where the particular
discretization of the SD is arbitrary, here it is uniquely determined by the BCF.

Inspired by the time-discrete NMQSD equation (2.18), a different angle on how to
describe the reduced dynamics in spirit of a collision model [AL07; KLS16], the
so-called time-oscillator picture, is presented in Sec. 2.3.2.

With the aim to gain insights into the physical meaning of the auxiliary states of the
HOPS, in particular their role when truncation the hierarchy, the case of a finite set
of environmental mode is discussed in Sec. 2.3.3. In this case, the auxiliary states
are closely related to the Fock state representation of the environment, however, in
an inverse sense. An auxiliary state at tire l is a superposition of all Fock states with
occupation number n ≥ l.

As a last result (Sec. 2.3.4), a different kind of hierarchy is derived from the NMQSD
equation. Instead of expressing the BCF by a suitable set of functions, higher order
derivatives of the BCF itself are used to define the auxiliary states which leads to a
different hierarchical structure. This circumvents the need to find a multi-exponential
representation for the BCF. A particular use case might be the long time dynamics
of the SBM in the localized phase (strong coupling) which has turned out sensitive
to the accuracy of the multi-exponential representation (see Sec. 5.4).

All these aspects provide independent results which, we are convinced, will be
beneficial to develop further applications of the NMQSD theory.

2.3.1 Karhunen–Loève Expansion – a Bath Discretization
with Time Dependent Coupling

As mentioned in the introduction of Ch. 2, the vast number of methods known
to solve the dynamics of an open quantum system, either exact or approximately,
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can be categorized into two classes. On the one hand, reduced methods manage
to evolve the reduced state and usually depend on the BCF. Such methods, like
HOPS or HEOM [TK89; Tan06; RK19; Tan20], are particularly suited for a smooth
SD because the continuous limit for the BCF is well defined. On the other hand,
explicit methods, which model the continuous SD by a sufficiently large number
of modes, have been used successfully, too (to list a few references only [WT03;
MM13; Sun+15; Gro+16; WG20]). In order to cope with the resulting very large
Hilbert space, the success of such methods depends on a suitable, usually time
dependent, choice for the basis vectors. In addition, the particular discretization is
known to crucially influence the convergence with respect to the number of modes
and with that its numerical cost. We have addressed this topic in a cooperation with
Michael Werther and Frank Grossmann [Har+19] where we investigate different
discretization schemes and propose an a-priory criterion to assess their quality with
respect to the resulting reduced dynamics. This discussion is, however, out of the
scope of this theses.

Based on the NMQSD equation (2.20), we propose a novel approach which results
in an environment of discrete modes, however, with a time dependent coupling
between the system and these modes. By explicitly fixing a finite time interval for the
solution of the reduced dynamics, the set of discrete modes and their time dependent
coupling is uniquely determined by the BCF. Therefore, a continuous SD can be
handled intrinsically, however, the resulting evolution equation is a Schrödinger
equation for a system interacting with a discrete set of modes. Importantly, the
coupling strength decreases with the mode index which means that a finite set of
modes may be used as approximation. Consequently, any explicit method which
allows for time-dependent system-mode coupling may be used to solve this particular
Schrödinger equation.

The essential step for the derivation is to use the Karhunen–Loève expansion [KMT11;
GS12] to express the stochastic process η∗(t) occurring in the NMQSD equation
(2.20), an idea which has also recently been used in the context of a stochastic
Liouville equation [HC18]. The theorem states that a stochastic process considered
over the interval [0, T ] can be expressed by the infinite sum

η(t) = i
∞∑
k=1

√
λkZkuk(t) , (2.75)

where for a zero mean complex-valued Gaussian process η(t) the random variables
Zk are independent, complex-valued and Gaussian distributed with

M(Zk) = 0, M(ZkZl) = 0, and M(ZkZ∗l ) = δk,l . (2.76)
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Note that the factor i is non-standard but convenient for the following. In general, the
expansion may be multiplied with an arbitrary phase without altering the stochastic
properties. The orthonormal basis functions uk are the solutions of the Fredholm
equation ∫ T

0
ds α(t, s)uk(s) = λkuk(t) , (2.77)

with α(t, s) = M(η(t)η∗(s)) denoting the correlation function of the stochastic
process. Since the kernel α(t, s) is a correlation function, the kernel has to be
non-negative and, thus, λk ∈ R with λk ≥ 0. In correspondence with the discrete
eigenvalue problem, the kernel can be expressed in terms of the eigenfunctions uk(t)
and the corresponding eigenvalues λk

α(t, s) =
∞∑
k=1

λkuk(t)u∗k(s) . (2.78)

Using these properties, it is easily verified that the stochastic process η∗(t), expanded
as in Eq. (2.75), fulfills the required statisticsM(η(t)) = 0 =M(η(t)η(s)) and

M(η(t)η∗(s)) =
∑
k,k′

√
λkλk′M(ZkZ∗k′)uk(t)u∗k′(s) =

∞∑
k=1

λkuk(t)u∗k(s) = α(t, s) .

(2.79)
As a remark, a stochastic process can be expanded in terms of any orthonormal set
of basis functions of the L2 Hilbert space of square integrable function over [0, T ].
However, using the Karhunen–Loève expansion minimizes the total mean squared
error when approximating the process by the truncated sum [KMT11; GS12] (see
also Sec. 3.1.1 where the sampling of stochastic processes is discussed).

Rewriting the NMQSD equation (2.20) by using the Karhunen-Loève expansion for
the stochastic process and the BCF yields

∂tψt[η∗] =
(
− iHsys − iL

∑
k

√
λkZ

∗
ku
∗
k(t)

− L†
∫ t

0
ds
∑
k

λkuk(t)u∗k(s)
δ

δη∗(s)
)
ψt[η∗] , (2.80)

which allows us to perform, again, a variable transformation for the stochastic pure
state from the process η∗ to the discrete random numbers Z∗ ..= (Z∗1 , . . . ). Noting
that −i

√
λku

∗
k(s) = ∂Z∗

k
η∗(s) holds, the integral part becomes

∫ t

0
ds
∑
k

λkuk(t)u∗k(s)
δ

δη∗(s) ψt[η
∗] = i

∑
k

√
λkuk(t)

∫ t

0
ds ∂η

∗(s)
∂Z∗k

δ

δη∗(s) ψt[η
∗(Z∗)]

= i
∑
k

√
λkuk(t)∂Z∗

k
ψt(Z∗) .

(2.81)
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The action of Z∗k and ∂Z∗
k

on the stochastic pure state may equally well be mimicked
by

Z∗kψt(Z∗) = 〈Z|b†k|Φ(t)〉 and ∂Z∗
k
ψt(Z∗) = 〈Z|bk|Φ(t)〉 . (2.82)

The state |Φ(t)〉 corresponds to a total state which is an element of the product Hilbert
space of the system and formally introduced environmental modes with ψt(Z∗) ≡
〈Z|Φ(t)〉. The states |Z〉 ..= |Z1〉⊗|Z2〉 . . . are, again, multi-mode Bargmann coherent
states of the environment with |Zk〉 = eZkb

†
k |0〉k. The operators bk and b†k behave

as usual bosonic annihilation and creation operators ([bk, b†k′ ] = δk,k′) acting on the
Fock states |n〉k of the mode k. These steps correspond precisely to the steps done in
order to derive the NMQSD equation (see Sec. 2.1.1), however, in reverse order. It
follows that Eq. (2.80) can be written as

〈Z|∂t|Φ(t)〉 = −i〈Z|
(
Hsys + L

∑
k

√
λkb
†
ku
∗
k(t) + L†

∑
k

√
λkuk(t)bk

)
|Φ(t)〉 .

(2.83)
Since this equation is valid for any Z∗, the following equation must hold,

∂t|Φ(t)〉 = −i
(
Hsys + L

∑
k

√
λkb
†
ku
∗
k(t) + L†

∑
k

√
λkbkuk(t)

)
|Φ(t)〉 . (2.84)

It has the structure of a Schrödinger equation for the total state |φ(t)〉 in the interac-
tion picture with respect to the environmental modes. Henceforth, the above equa-
tion (2.84) is called Karhunen-Loève expansion Schrödinger equation (KLESEQ).
In contrast to the original microscopic model Hamiltonian [Eq. (2.6)] the phase
gke
−iωkt is replaced by

√
λkuk(t).

This shows that the exact reduced dynamics of an open quantum system interacting
with a continuous environment can be obtained from a model where the environ-
ment is accounted for by an a-priory infinite, however, countable set of modes.
The time dependent interaction between the modes and the system is uniquely
determined by the BCF and the finite time interval [0, T ] for which the dynamics
can be evaluated. What is advantageous about this approach is that the coupling
strength

√
λk decreases with k (see also Sec. 3.1.1, in particular Fig. 3.4). Therefore

truncating the infinite sum yields an approximation and convergence can be checked
straightforwardly. Furthermore, the rate at which the

√
λk decrease is very large

for short times intervals, i.e., small T . Thus, the KLESEQ is particularly suited to
calculate the short time dynamics.

Several points should be noted. To reiterate, the state |Φ〉 is an object of the product
Hilbert space of the system and the formally introduced modes enumerated by the
index k. Its meaning for the open quantum system dynamics is established by evolv-
ing the initial product state |Φ(0)〉 = |ψ0〉sys⊗|0〉env according to the KLESEQ (2.84)
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and tracing out the environmental modes, ρsys(t) = Trenv|Φ(t)〉〈Φ(t)|. Remarkably,
for a Hermitian coupling operator L = L† this pure state formalism can also be used
to cover thermal initial environmental states by simply using the thermal BCF (see
Eq. (2.72)). The KLESEQ inherits this property directly from the NMQSD equation
[DGS98]. We note in passing that the so-called thermo field (TF) dynamics [SU83;
TU96], originally used to derive the NMQSD equation for thermal environments,
allows one to treat thermal initial conditions with a zero temperature formalism, too.
There, the trick is to introduce a second, however, completely isolated bath. With
the help of a suitable Bogoliubov transformation an effective joint environment is
constructed such that its ground state (zero temperature) corresponds to the thermal
state for the original environment.

It should be kept in mind that the basis functions uk(t) are defined over the time
interval [0, T ]. Therefore, the KLESEQ allows one to solve the reduced dynamics
for that interval only. In terms of numerical effort, the upper bound T significantly
influences the number of modes required for a suitable truncation. The smaller T
the less modes are required (see e.g. Fig. 3.4). In the limit T → ∞ the original
microscopic model is recovered, i.e., uk(t)→ e−iωkt.

To push the limits of applicability, the KLESEQ could be solved by any of the more
advanced explicit methods like the time-dependent Hatree [WT03], the Multi-
Davidov [Har+19; WG20] or the time-dependent density matrix renormalization
group [AS05] approach, which can treat several thousands of modes. Investigating
the advantage of the KLESEQ over a conventional discretization of the SD remains
as an exciting project.

2.3.2 The Time-Oscillator Picture

In this section it will be shown, that the reduced state can also be obtained from
successive interactions in time with mode like degrees of freedom, which is in close
relation to so-called collisional models [AL07; KLS16]. This perspective is suggested
by the time-discrete form of the NMQSD equation (2.18). The idea is to account for
the multiplication with η∗i and the action of the derivative ∂η∗i within the time-discrete
NMQSD equation (2.18), again, by using creation and annihilation operators b†i and
bi. In contrast to the above KLESEQ, the index i corresponds to a time index. Thus,
the action of, i.e., bi is tied to the time ti. Simply replacing η∗i → b†i and ∂η∗i → bi
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Fig. 2.3: A visualization of the dynamical map [Eq. (2.85)] is shown which iterates from
the (not necessarily normalized) state |Ψn〉 to |Ψn+1〉. Due to the term b†n, the
system (small circle) excites a new oscillator (index n). In addition all previously
excited oscillators (index m < n) have a back action on the system scaled by the
value of the BCF α(tn − tm). In that way memory effects due to the environment
are incorporated.

motivates the following map acting on the product Hilbert space of the system and
N harmonic “time-oscillators”,

|Ψn+1〉 =
[
1 + ∆t

(
−iHsys + b†nL− L†

n−1∑
m=0

α(tn − tm)bm

)]
|Ψn〉 for n ≤ N .

(2.85)
A visualization of this map is shown in Fig. 2.3.

To obtain the reduced state, on is tempted to take the trace over the environment,
i.e, the “time oscillators”. Performing the trace in terms of multi-mode Bargmann
coherent states |y〉 (as in Eq. (2.5) for the NMQSD derivation) yields, by construction,
a stochastic pure state with a time-discrete evolution which, on first sight, seems to
agree with the NMQSD equation (2.18):

Trenv|Ψn〉〈Ψn|=
∫

d2y〈y|Ψn〉〈Ψn|y〉, d2yi := dRe(yi)dIm(yi)
e−|yi|

2

π
,

〈y|Ψn+1〉 =: ψn+1 =
[
1 + ∆t

(
−iHsys + y∗nL− L†

n−1∑
m=0

α(tn − tm)∂y∗m

)]
ψn .

(2.86)
However, the independence of the “time-oscillators” is reflected by independent
random variables y∗n representing the coherent state labels from the trace. This
means that the statistics of y∗n, i.e.,M(yny∗m) = δn,m is different from the statistics
of the time-discrete process η∗n of the NMQSD equation, i.e,M(ηnη∗m) = α(tn − tm).
Consequently, taking the trace over the time-oscillator modes does not yield the

2.3 Extending Theoretical Aspects of the NMQSD and HOPS Formalism 37



reduced dynamics of the original microscopic model. Nevertheless, the reduced state
can be obtained from the following expression

ρsys = TrenvΥ|Ψn〉〈Ψn| , (2.87)

where Υ denotes the environmental operator

Υ ..=
∫ d2η

πN |α|
e−η†α−1η|η〉〈η|, (2.88)

with |η〉 ..= |η0〉 . . . |ηN 〉, |ηλ〉 ..= eηλb
†
λ |0〉λ and 0 ≤ λ ≤ N . This leads to the

expression for the reduced state

ρsys =
∫ d2η

πN |α|
e−η†α−1η〈η|Ψn〉〈Ψn|η〉 =M

η
|ψn(η∗)〉〈ψn(η)| . (2.89)

Here, α−1 denotes the inverse of the correlation matrix αij = α(ti − tj) and |α| its
determinant. Reading the integral in a Monte-Carlo sense allows one to identify
the vector η with a multi-variant complex valued Gaussian distributed random
variable obeyingM(ηi) = 0 = M(ηiηj) andM(ηiη∗j ) = αij . Note that due to the
integration over the complex plane, the square root for the normalization is missing
compared to a real valued multi-variant Gaussian probability density. By choosing
the ground state as the initial condition for the time-oscillator modes it is assured
that 〈η|Ψn〉 ≡ |ψn〉 depends on η∗0 . . . η

∗
n−1 only. This shows that the right hand

side of Eq. (2.89) is equivalent to the expression for the reduced state obtained by
the NMQSD formalism. Consequently, propagating the time-oscillator model [Eq.
(2.85)] with the initial condition |Ψ0〉 = |ψ0〉sys|0〉 allows one to obtain the reduced
state of the microscopic model for open quantum system dynamics [Eq. (2.1)] at
time tn by evaluating

ρsys(tn) = TrenvΥ|Ψn〉〈Ψn| . (2.90)

Of course, the above statement is valid within the time-discrete NMQSD formalism
and, thus, requires a sufficiently small step size ∆t = tn+1 − tn.

Although the map [Eq. (2.85)] for the vector |Ψn〉 is mathematically sound, the
existence of an experimental implementation is not obvious due to the complicated
non-Hermitian generator

−iHsys + b†nL− L†
n−1∑
m=0

α(tn − tm)bm . (2.91)

Nonetheless, the time-oscillator picture presented here might lead to a feasible
quantum simulator utilizing successive qubit interactions to emulate open quantum
system dynamics. Noteworthily, since each time oscillator is excited only once and
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the initial state is the ground state, the vector |Ψn〉 is confined to the two lowest
levels of each oscillator. Thus, the oscillators appear as qubits only.

Yet another field of investigation originates from the assumption of a finite correlation
length, that is α(τ) = 0 for τ > τmax. It seems plausible that this yields a finite
dimensional formalism even for an arbitrarily large propagation time and is in the
spirit of the QUAPI / TEMPO approach [Mak95; Str+18].

2.3.3 HOPS for a Finite Set of Modes

The goal of this section is to enlighten the meaning of the auxiliary states from
a physical perspective and, with this, give reasons to justify the truncation of the
hierarchy. As shown in the following, this is easily possible for a finite set of
environmental modes. For a continuous environment, however, the physical meaning
of the auxiliary states is not obvious. Still, the insights from the discrete case
underpin the empiric result (see Sec. 3.3) that the stochastic pure state converges
with respect to the number of auxiliary states.

Note that for a discrete SD J(ω) = π
∑N
λ=1|gλ|2δ(ω−ωλ) withN modes, by definition

[Eq. (2.4)], the BCF is of multi-exponential kind α(τ) =
∑N
λ=1|gλ|2e−iωλτ such that

the parameters entering the HOPS are Gλ = |gλ|2 and Wλ = iωλ (compare with
Eq. (2.22)). The stochastic process η∗(t) = −i

∑N
λ=1 g

∗
λz
∗
λe

iωλt is defined by the N
complex random variables z∗λ (coherent state labels). This allows one to identify the
operator Dλ as the partial derivative with respect to the coherent states labels z∗λ

i
g∗λ
e−iωλn∆t∂z∗

λ
=

n−1∑
m=0

e−Wλ(n−m)∆t∂η∗m = Dn
λ (2.92)

when acting on the stochastic pure state (including a factorized initial condition
with a zero temperature environment). The above relation corresponds to simply
changing the dependence on the stochastic process η∗n back to the coherent state
labels z∗λ. As a consequence, for a discrete bath the auxiliary states of the HOPS are
related to the Fock-states of the modes by

ψk
n =

N∏
λ=1

(Dn
λ)kλ ψn(η0, . . . ηn−1)

∼
N∏
λ=1

(
∂z∗
λ

)kλ
ψn(z∗1 , . . . z∗N ) = 〈z|

N⊗
λ=1

akλλ |Ψ(tn)〉

=

 N⊗
λ=1

∞∑
nλ=0

(z∗λ)nλ
√

(nλ + kλ)!
nλ! 〈nλ + kλ|

 |Ψ(tn)〉

(2.93)
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where |z〉 =
∑
n z

n/
√
n!|n〉 has been used. This means that an auxiliary state with

hierarchy index k is a superposition of the states 〈n1 . . . nN |Ψ〉 with nλ ≥ kλ only.
Large values of kλ imply that only highly excited states contribute. Henceforth,
if such states are only marginally populated, auxiliary states of large hierarchy
depth are expected to be irrelevant. This reasoning motivates the truncation of the
hierarchy which enables a numerical treatment of the HOPS (see also Sec. 3.3).

Is interesting to note that for any fixed set z∗λ, the auxiliary state vector can be
obtained from the Fock-state by a simple matrix multiplication, as seen in Eq. (2.93).
Inverting this relation allows one, in principal, to obtain the Fock-space represen-
tation, and with it the reduced state ρsys =

∑
n1,...nN 〈n1, . . . nN |Ψ〉〈Ψ|n1, . . . nN 〉,

from a single realization of the HOPS solution, i.e., the stochastic pure state and all
corresponding auxiliary states. Recall that in the usual NMQSD / HOPS formalism
the reduced state is obtained by averaging over the dyads of different realizations of
the stochastic pure state.

The special meaning of the auxiliary states for the discrete environment becomes
particularly evident for the choice z∗λ = 0. In that case ψk

n ∼ 〈0|⊗λa
kλ
λ |Ψ〉 ∼ 〈k|Ψ〉

where |k〉 denotes the product Fock-state with occupation number kλ for the mode
λ. The HOPS recovers the Schrödinger equation in the Fock-state representation

ψ̇k
t = −i

(
Hsys +

N∑
λ=1

kλωλ

)
ψk
t − iL†

N∑
λ=1

gλ
√
kλ + 1ψk+eλ

t − iL
N∑
λ=1

g∗λ
√
kλψ

k−eλ
t .

(2.94)
Here, the stochastic term has vanished since the coherent state labels have all been
chosen to be zero.

2.3.4 HOPS with Derivatives of the Bath Correlation
Function

In this section we provide another way to solve the NMQSD equation (2.20) and,
thus, the open system model. In the very same spirit as the HOPS approach (Sec.
2.1.2), here we derive a set of hierarchically structured equations where the sought
after stochastic pure state amounts to the root of this hierarchy. The crucial difference
is that, instead of using a multi-exponential representation for the BCF, higher order
derivatives of the BCF are involved. This kind of hierarchy might be of particular
relevance for the case where the dynamics depends sensitively on the accuracy of
the multi-exponential representation, as noted, e.g., when investigating the long
time entanglement dynamics of two qubits in the strong coupling in Sec. 5.4.
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Note that in relation with the HEOM, other representations than the multi-exponential
form of the BCF have also been used to define auxiliary objects and to derive their
hierarchical relation [Tan+15; Cui+19]. As for the HEOM, if the BCF and its deriva-
tive can be expressed by a finite set of arbitrary functions a HOPS can be derived,
too. For reasons of numerical efficiency the number of such functions should be as
small as possible which poses a trade-off between accuracy and efficiency.

In the following we can circumvent this challenging task of finding a suitable
representation by deriving a hierarchy based on higher order derivatives of the
BCF. It turns out to be useful to define the auxiliary states ψk

n at time tn, where
k = (k0, ..., kµ, ...) denotes an infinite dimensional index vector, as

ψk
n :=

∞∏
µ=0

(Dn,µ)kµ ψn

with Dn,µ :=
n−1∑
j=0

α(µ)((n− j)∆t)∂η∗j .
(2.95)

Here α(µ) refers to the µ-th derivative of the BCF. In this notation the time-discrete
NMQSD equation (2.18) reads

ψn+1 =
[
1 + ∆t

(
−iHsys + η∗nL− L†Dn,0

)]
ψn . (2.96)

The evolution of the auxiliary states is obtained by expressing ψk
n+1 by ψk

n up to
first order in ∆t while using the above expression (2.96) of the NMQSD equation.
Expanding the µ-th derivative of the BCF at (n− j)∆t up to first order in ∆t leads
to

α(µ)
(
(n+ 1− j)∆t

)
= α(µ)

(
(n− j)∆t

)
+α(µ+1)

(
(n− j)∆t

)
∆t+O(∆t2) , (2.97)

and yields the recursion relation

Dn+1,µ = Dn,µ + αµ0∂η∗n + ∆t
(
Dn,µ+1 + αµ+1

0 ∂η∗n

)
, (2.98)

with αµ0
..= α(µ)(0) denoting the value of the µ-th derivative of the BCF at τ = 0.

Evaluating the product
∏∞
µ=0 (Dn+1,µ)kµ up to first order in ∆t results in

∞∏
µ=0

(Dn+1,µ)kµ =
∞∏
µ=0

(
Dn,µ + αµ0∂η∗n

)kµ

+ ∆t
∞∑
µ=0

kµ

∏∞
µ′=0

(
Dn,µ′ + α(µ′)(0)∂η∗n

)kµ′
Dn,µ + αµ0∂η∗n

(
Dn,µ+1 + αµ+1

0 ∂η∗n

)
, (2.99)
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Fig. 2.4: The hierarchical structure of the HOPS based on derivatives of the BCF is shown.
In each column the first index k0 is increased only. The arrangement of the rows
was chosen such that for a particular row, the “distance” from each auxiliary state
to the stochastic pure state is constant. The term “distance” refers to the minimum
number of edges connecting two states in the sense of a mathematical graph.

where the fraction is a formal notation to express the cancellation of the term with
index µ in the product. Taking into account that the stochastic pure state at time tn
does not depend on η∗n, i.e., ∂η∗nψn = 0 (see Sec. 2.1.1) leads to

ψk
n+1 =

∞∏
µ=0

(Dn,µ)kµ
[
1 + ∆t

(
−iHsys + η∗nL− L†Dn,0

)]
ψn

+ ∆t
∞∑
µ=0

kµ

∏∞
µ′=0

(
Dn,µ′

)kµ′
Dn,µ

αµ0Lψn + ∆t
∞∑
µ=0

kµ

∏∞
µ′=0

(
Dn,µ′

)kµ′
Dn,µ

(Dn,µ+1)ψn .

(2.100)

Applying the definition for the auxiliary states, the final expression reads,

ψk
n+1 = ψk

n + ∆t (−iHsys + η∗nL)ψk
n −∆tL†ψk+e0

n

+ ∆t
∞∑
µ=0

kµ
(
αµ0Lψ

k−eµ
n + ψ

k−eµ+eµ+1
n

)
(2.101)

and becomes, in differential form,

∂tψ(t)k = (−iHsys + η∗tL)ψ(t)k − L†ψ(t)k+e0

+
∞∑
µ=0

kµ
(
αµ0Lψ(t)k−eµ + ψ(t)k−eµ+eµ+1

)
. (2.102)

Note that only values of the derivatives of the BCF at τ = 0 enter the hierarchy as
parameters.

42 Chapter 2 Open Quantum System Dynamics



As for the HOPS with an exponential representation of the BCF, the initial condition
reads

ψk
0 = |ψ0〉 for k = (0, 0, . . . )

ψk
0 = 0 for k 6= (0, 0, . . . ) .

(2.103)

The structure of this HOPS is depicted in Fig. 2.4. Note that the stochastic pure state
is directly influenced by the auxiliary state with k = (1, 0, . . . ) only. Henceforth,
only this auxiliary state belongs to the hierarchy level with depth one. In turn, its
time derivative depends on the stochastic pure state and the two new auxiliary
states with k = (2, 0, . . . ) and k = (0, 1, 0, . . . ). These two new auxiliary states
constitute the hierarchy level with depth two. In general, since each auxiliary
state with k = (k0, k1, . . . ) depends, among others, on the auxiliary state with
k = (k0 + 1, k1, . . . ), increasing the first index by one increases the hierarchy level
by one, too (see the columns in Fig. 2.4). The influence of lower hierarchy levels on
the auxiliary state ψk

n is determined by the index k− eµ. In contrast to the standard
HOPS (Sec. 2.1.2), k − eµ enumerates auxiliary states from different hierarchy
levels. With reference to Fig. 2.4, each non-vanishing index vector component of
k − eµ results in an incoming arrow from “above”. On the other hand, the index
k− eµ + eµ+1 labels an auxiliary state with belongs to the next hierarchy level. This
reasoning motivates the following expression for the hierarchy depth

l =
∞∑
µ=0

µ · kµ . (2.104)

In the sense of a mathematical graph, this quantity reflects the smallest number
of (directed) edges connecting an auxiliary state of index k with the root index
k = (0, 0, . . . ). In other words, it reflects how many intermediate auxiliary states
are present for an auxiliary state with index k to influence the stochastic pure state.
Thus, the quantity l seems suitable to serve as the hierarchy level.

In contrast to the HOPS based on a multi-exponential BCF representation, here,
the coupling between the auxiliary states is not bi-directional (see Fig. 2.4). In
particular, an auxiliary state of level l may directly depend on an auxiliary state from
a lower level l′ with a level difference larger than 1, i.e., l − l′ > 1. However, these
connections never appear in the opposite direction, since an auxiliary state with
level l is only influenced from states of larger level l′ with a level difference of 1.

When truncating the set of differential equations (2.102), the hierarchical scheme
presented here can serve as a numerical method to solve the NMQSD equation
(2.20). The importance sampling (non-linear NMQSD formalism) discussed in Sec.
2.1.3 as well as the stochastic treatment of a thermal initial environmental states
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(Sec. 2.2.2) can be incorporated as well. It remains as an exciting project to explore
the advantages of this kind of hierarchy for real open system scenarios.
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3Solving the HOPS Numerically

In the previous Chapter it has been shown that the HOPS yields an exact description
for the reduced dynamics. It is the goal of this Chapter to discuss in detail how the
HOPS formalism can be used as a numerical method to calculate the exact dynamics
of an open quantum system. To be precise, with “exact” we refer to the intrinsic
exactness of the method. Any explicit numeric evaluation will contain some degree
of error. However, as of the “exactness” of the HOPS method, this error can, in
principle, be made arbitrarily small. Undeniably, the price to pay is the numerical
effort.

To begin with, numerical techniques to sample stochastic processes are elucidated in
Sec. 3.1. As for the relation to the HOPS, the focus lies on complex valued stationary
Gaussian processes defined in terms of their correlation function. Two approaches
are considered. The Karhunen-Loève expansion (Sec. 3.1.1) works well for any kind
of correlation function and needs the least amount of random numbers as input
to sample a particular realization of the stochastic process. However, the method
requires one to solve an eigenvalue problem. This limits its applicability since the
dimension of this eigenvalue problem scales with the size of the time interval for
which the process is defined. In Sec. 3.1.2 a second approach based on the numerical
Fourier Transform is analyzed. Whenever the fast Fourier transform (FFT) algorithm
is applicable, this method is very efficient (Sec. 3.1.2.1). For an effective SD which
diverges at ω = 0, the FFT becomes inefficient due to the implied midpoint rule with
equidistant nodes ωi. As a remark, such SDs become relevant when sampling the
thermal noise ξ(t) [Eq. (2.69)] for a sub-Ohmic SD [Eq. (3.25)]. Since the numeric
integration of a function with poles can efficiently be done using the tanh-sinh (TS)
substitution, a Fourier Transform method based on the TS integration scheme proves
to be efficient (Sec. 3.1.2.2).

Another central ingredient for the (standard) HOPS formalism is the multi-exponential
representation of the BCF. For the widely used class of Ohmic and sub-Ohmic SDs
[Leg+87; BTV03; CT06; WT08; Tan+15; Str+18; Mag+18], also considered in
Ch. 4 and Ch. 5, the BCF decays algebraically α(τ) ∼ τ−(s+1) with 0 < s ≤ 1. As a
consequence, an exponential representation may serve as an approximation only. In
Sec. 3.2 it is shown how to find highly accurate multi-exponential representations
by directly fitting the BCF in time domain. Analyzing the error of the approximation
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reveals an efficient convergence with the number of exponential terms. Explicit
values for the fits are provided in App. C.

In Sec. 3.3 the truncation of the HOPS is discussed. Along with general consid-
erations on how to check convergence with respect to the truncation, a flexible
truncation scheme is proposed and tweaked for Ohmic and sub-Ohmic SDs.

In a final remark (Sec. 3.4), the two approaches, mentioned earlier in Sec. 2.2, for a
thermal initial environmental state are compared using the spin-boson model with
a sub-Ohmic environment as test bed. It is shown that, in particular for a strong
system-environment interaction, the stochastic potential (SP) approach (Sec. 2.2.2)
converges significantly faster with respect to the hierarchy depth as compared to the
NMQSD variant utilizing the thermal BCF [DGS98]. This is plausible since the real
part of the BCF increases with temperature which results in an effective increase of
the coupling strength between the auxiliary states. Hence, the stochastic method
should be considered the method of choice to incorporate non-zero temperature.

Implementing the tweaks presented in this chapter allow to employ the HOPS
formalism to solve the dynamics of an open quantum system far beyond the weak
coupling regime. In particular, the development of these tools was necessary to
trustworthily determine the entanglement dynamics of two qubits in contract with
a common environment over a broad range of system parameters, which sets the
overall scope for the application of the HOPS in this theses (see Ch. 5).

3.1 Stochastic Process Sampling

An essential role of the HOPS formalism is taken by the stochastic process. Recall
that each realization of the stochastic process yields another stochastic pure state.
The reduced dynamics is obtained by averaging over the dyads of such stochastic
pure states. Evidently, from a numerical perspective the microscopic definition of
the stochastic process η∗(t) = −i

∑
λ g
∗
λz
∗
λe

iωλt [Eq. (2.11)] is of no use for a truly
continuous SD. In that case the characterization of the process by its moments
is more suitable. The Gaussian distribution of the random variables z∗λ results in
a Gaussian process which is fully characterized by its first and second moments.
Therefore, the aim is to develop an accurate method for sampling such Gaussian
stochastic processes that fulfill the statistics required by the NMQSD equation

M(η(t)) = 0, M(η(t)η(s)) = 0 and M(η(t)η∗(s)) = α(t− s) (3.1)

for a given BCF α(τ).
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Two different approaches are considered. One possibility is to approximate the
stochastic process in terms of the truncated Karhunen-Loève expansion [KMT11;
GS12]. The accuracy is then controlled by the number of expansion terms. A
second approach makes use of the representation of the BCF in terms of a Fourier
integral. The stochastic process is obtained by a modified version of this particular
Fourier transform, where the accuracy of such a representation is determined by
the discretization of the corresponding integral. An implementation of the methods
presented here is publicly available at github.com/cimatosa/stocproc.

3.1.1 Karhunen–Loève Expansion

The Karhunen-Loève theorem states that for a fixed time interval [0, T ] the expansion
of the stochastic process

η(t) =
∞∑
k

gkZkuk(t), (3.2)

with decreasingly ordered gk and basis functions uk defined by the continuous
eigenvalue problem

∫ T

0
ds α(t− s)uk(s) = |gk|2uk(t), (3.3)

is optimal in the sense that any truncation minimizes the total mean squared error
ε with respect to any other basis expansion. To avoid misconception, in order to
comply with common notation the symbols gk are used here, too, which have a
different meaning than the coupling constants of the microscopic Hamiltonian [Eq.
(2.1)]. Note that the eigenvalues |gk|2 are real. Thus, gk is specified up to an
arbitrary phase only so we assume gk ∈ R. The complex-valued random variables Zk
have to be Gaussian distributed withM(Zk) = 0 =M(ZkZl) andM(ZkZ∗l ) = δkl

to yield the desired statistics for the process, i.e.,M(η(t)η∗(s)) = α(t− s). The total
mean squared error is defined as

ε ..=
∫ T

0
dsM(|εN (t)|2) (3.4)

with εN = η(t) − ηN (t). Here, ηN (t) denotes the numerically accessible truncated
expansion using the first N expansion terms,

ηN (t) ..=
N∑
k=1

gkZkuk(t) . (3.5)

The defining equation (3.3) for the eigenfunctions uk belongs to the class of Fred-
holm equations. Although this kind of equation has been studied thoroughly
[Mik+14], analytical solutions are only known for very limited scenarios. Therefore,
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Fig. 3.1: The deviation of the second moment of the truncated Karhunen-Loève expansion
from the given BCF is shown for various numbers of expansion terms N . The
absolute error is maximal on the diagonal i = j, the relative error in the off
diagonal corners. As expected, using more terms for the expansion decreases the
error. A grid with M = 257 equidistant grid points and equal weights (mid-point
rule) has been used (α(τ) ∼ (1 + iτ)−2, T = 30).

an accurate numerical scheme is desirable and will be presented in the following. For
an arbitrary BCF the eigenfunctions uk can be obtained by discretizing the integral
and solving the resulting eigenvalue problem [Pre+07]

M∑
i=1

hjα(ti − tj)uk(tj) = g2
kuk(ti) . (3.6)

In terms of numerical quadrature the times ti ∈ [0, T ] represent the nodes and hi
the corresponding weights. It is instructive to write the above equation in matrix
form RD2uk = g2

kuk where Rij = α(ti − tj) and Dij = δij
√
hj . Multiplication with

D from the left yields an eigenvalue equation for the Hermitian matrix R̃ = DRD

with eigenvectors ũk = Duk and intrinsically real eigenvalues g2
k. Since the integral

kernel α originates from the expectation value M(η(t)η∗(s)), the eigenvalues g2
k

are non-negative. Without loss of generality, the coefficients gk are chosen to be
the positive root of the numerically obtained g2

k. As noted earlier, using eiϕkgk as
coefficients for the expansion [Eq. (3.2)] is equivalent in terms of the moments of
the stochastic process.

For a given quadrature scheme, i.e, fixing the nodes ti and the corresponding weights
hi, the time-discrete numerical estimate for the stochastic process ηN (ti) [Eq. (3.5)]
depends on two parameters: the number of nodes M used to discretize the integral
and the number of expansion terms N . Its correlation function

αaprx(ti − tj) ..=M(ηN (ti)η∗N (tj)) =
N∑
k=1

g2
kuk(ti)u∗k(tj) (3.7)
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approximates the exact values α(ti − tj). The absolute error |αaprx − α| scales with
the missing eigenvalues |gk|2 (k > N) and becomes zero for N = M . As an example,
for the most simple quadrature rule, the mid-point rule with equally weighted nodes,
the error dependence on N is shown in Fig. 3.1 for an algebraically decaying BCF
α(τ) ∼ (1 + iτ)−2. In addition to the absolute error we show the relative error
|αaprx − α|/|α|, too. Whereas the absolute error has its maximum on the diagonal
i = j the relative error becomes largest at the off-diagonal corners. Note that in
order to capture the algebraic decay over a given time interval, the relative error
should be used to assess the accuracy. However, when trying to estimate the statistics
of the stochastic process in practice by drawing a finite number of Ns samples, the
second moment estimate shows an absolute overall noise level which scales with
1/
√
Ns. This means that unfeasibly many samples are necessary to see the algebraic

decay of the correlations over a large time interval. With respect to using these
sample in a numerical methods it appears, thus, consistent to use the maximum
absolute error, i.e.,

ε ..= max
i,j

∣∣∣∣∣
N∑
k=1

g2
kuk(ti)u∗k(tj)− α(ti − tj)

∣∣∣∣∣ , (3.8)

to quantify the accuracy of the numerical approximation of the stochastic process. It
is clear that for any discretization of the Fredholm integral, using the whole set of
eigenfunctions (N = M) restores the discrete kernel exactly, whereas for N < M

the error depends on the quadrature rule. It is shown in Fig. 3.2 (upper row) that
the error of the tanh-sinh (TS) scheme [Mor05] (see Sec. 3.1.2.2 for details on the
TS quadrature) decreases the fastest when increasing the number of expansion terms
N . Remarkably, among the equidistant methods (mid-point, Simpson and 4-point
scheme), the very simple mid-point rule performs best.

To be precise, the above statements refer to the case where the stochastic process
is evaluated on the grid points ti specified by the quadrature scheme. However,
the stochastic processes entering the HOPS approach are continuous in time. In
particular, when using adaptive numeric solvers for the set of differential equations,
i.e., the HOPS, this property needs to be captured by the numeric estimate of the
stochastic process, too. Interpolating the time-discrete eigenfunctions as suggested
in Ref. [Pre+07], i.e.,

uk(t) = 1
g2
k

M∑
i=1

hjα(t− tj)uk(tj) , (3.9)

achieves this task with unexpected consequences for the accuracy (see Fig. 3.2 and
3.3). Comparing the maximum absolute error for the interpolated stochastic process
(lower row in Fig. 3.2) reveals that the advantage of the TS scheme is nullified
whereas the mid-point rule is to be favored slightly over all other considered schemes.
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Fig. 3.2: The maximum absolute error ε of the correlation kernel as a function of the
number of expansion terms N is shown for various numbers of nodes M and
quadrature schemes. For the upper row the correlation kernel was evaluated
on the quadrature scheme-dependent time grid only. For the lower row three
additional times placed equidistantly between two neighboring grid points were
considered. It is clear that on the grid points (upper row) the error becomes zero
for N = M . For N < M differences between the quadrature become evident.
In contrast, including intermediate times (lower row) reveals that the maximum
error remains larger than zero even for N = M . Its particular value depends on
the fineness of the grid controlled by the overall number of nodes M and the
quadrature scheme, which is expected. The plots suggest to favor the mid-point
rule over the other schemes considered (α(τ) ∼ (1 + iτ)−2, T = 30).

To demonstrate the drastic impact of the interpolation on the accuracy of the second
moment, the error along the diagonal αii is shown in Fig. 3.3 for the mid-point
and the TS scheme. While for the mid-point scheme the error at interpolated
times is roughly the same as for the times on the grid, the TS scheme behaves
entirely different. For times close to the middle of the time interval, the error for
an intermediate point is larger by several orders of magnitude than the error at
the grid point and even exceeds the error of the mid-point rule. This leads to the
final conclusion that equally distributed times with equal weights are most suited to
numerically solve the Fredholm equation (3.3) with the aim to numerically sample
a continuous-time stochastic process by means of the Karhunen-Loève expansion.
It seems plausible that this statement is not particularly related to the kind of
correlation function considered here, but holds in general.

It is important to note that the numerical effort increases when increasing the length
T of the time interval [0, T ] for which the stochastic process is evaluated. Numerically
analyzing the spectrum |gk|2 of the correlation kernel as a function of T reveals that
the number of eigenvalues larger than a certain threshold scales linearly with T ,
as shown in Fig. 3.4 for two different kinds of BCFs. Since this threshold roughly
controls the error of the truncation, doubling T requires twice as many expansion
terms in order to maintain a given degree of accuracy. This behavior is accompanied
by the fact that the interpolation error is related to the node density. Thus, the
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Fig. 3.3: The error of the correlation kernel M(ηN (t)η∗N (s)) for t = s is shown using
M = 65 nodes and N = 25 expansion terms. The time axis is labeled by the
index of the quadrature scheme-dependent grid points (black dots). This means
that for the TS scheme the highly increased node density near the ends of the
time interval results in a non-linear relation between the time and the index i.
To estimate the error for the continuous time stochastic process, 31 intermediate
points between neighboring grid points were used. The two methods under
consideration show a completely different behavior. While the error for the mid-
point scheme remains roughly constant for the intermediate times, for the TS
scheme the error at intermediate times is larger by several orders of magnitude
than the error at the grid points. To rule out that this is not a defect of the
special interpolation scheme [Eq. (3.9)], cubic splines were used to interpolate
the eigenfunctions uk (gray lines), too, which show a similar behavior (α(τ) ∼
(1 + iτ)−2, T = 30).

number of nodes M needs to increase with T , too. This suggests a linear scaling of
the matrix size M with the length of the time interval T . The complexity of general
eigenvalue routines is O(M3)[PC99]. Consequently, doubling the interval length
T results in an 8-fold of computation time. In practice, this limits the size of M
to several thousand. Notably, exploiting that the correlation kernel of a stationary
process is of Toeplitz kind αij = αi−j reduces the complexity of the eigenvalue
problem to O(M2logM)[PC99]. Obviously, the use of such a specialized algorithm is
highly desirable. Unfortunately, since the commonly known collections of numerical
algorithm do not contain such an implementation, exploiting the Toeplitz property
of the kernel for generating stochastic processes remains an open task.

The numerical limits set by the eigenvalue problem can be traded for a less “optimal”
expansion in terms of a discrete Fourier Transform discussed next.
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Fig. 3.4: The decrease of the eigenvalues |gk|2 with the index k is shown for different time
intervals [0, T ] and two different kinds of BCFs corresponding to an Ohmic SD
and a Lorentzian SD. Increasing T results in a slower decay of the spectrum. In
particular, the number of eigenvalues above a certain threshold scales linearly with
T as indicated by the dotted lines. The black dashed line is proportional to the
decay of the SD (exponential in the Ohmic case and algebraic in the Lorentzian
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3.1.2 Fourier Integral Methods

The Fourier integral approach works for the case where the correlation function can
be expressed as the Fourier transform of a positive function I(ω)

α(τ) = 1
π

∫ ∞
−∞

dω I(ω)e−iωτ . (3.10)

Note that this is always the case when the correlation function corresponds to the
bath correlation function (BCF) for open quantum system dynamics. The numerical
approximation of the stochastic process corresponds to an expansion in terms of
Fourier modes, i.e.,

ηN (t) ..=
N−1∑
k=0

gkZke
−iωkt, gk =

√
hkI(ωk)

π
. (3.11)

The random variables Zk are complex valued and Gaussian distributed withM(Zk) =
0 =M(ZkZk′) andM(ZkZ∗k′) = δkk′ . The expansion coefficients gk are chosen such
that the correlation function of the numerical estimate ηN (t) approximates the
integral defining the given correlation function [Eq. (3.10)]

M(ηN (t)η∗N (s)) = 1
π

N−1∑
k=0

hkI(ωk)e−iωk(t−s) ≈ 1
π

∫ ∞
−∞

dω I(ω)e−iω(t−s) = α(t− s) .

(3.12)
In terms of numerical quadrature, hk denotes the weights and ωk the nodes. Note
that if I(ω) corresponds to a physically meaningful SD J(ω), the lower bound of
the integral can be set to zero, since J(ω) = 0 for ω ≤ 0. Nonetheless, an effective
SD I(ω) with non-vanishing values for negative frequencies may be useful, too, for
example to incorporate non-zero temperature effects (see Sec. 3.4).
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3.1.2.1 Fast Fourier Transform

For equally spaced nodes ωk the stochastic process expansion given in Eq. (3.11)
can be evaluated using the fast Fourier transform (FFT) algorithm. Even though the
Fourier mode expansion of the stochastic process is not optimal, the efficiency of
the FFT algorithm (O(N logN) complexity) allows for significantly more expansion
terms which easily compensates for this deficiency.

In principal any quadrature scheme with equally spaced nodes can be used. It turns
out, however, that it is not beneficial to use more involved schemes as compared
to the very simple midpoint rule. This is true especially for large τ where the
fast oscillating phase e−iωτ permits a high degree polynomial interpolation of the
integrand between the nodes required by an advanced Newton–Cotes formula.

In terms of numerical evaluation, the improper integral [Eq. (3.12)] needs to
be truncated

∫∞
−∞ dω →

∫ ωmax
ωmin

dω . Using N nodes results in the node density
hk = (ωmax − ωmin)/N =.. ∆ω. Therefore, the stochastic process estimation based
on the FFT algorithm reads

ηl ..= ηN (tl) =

√
∆ω
π
e−itlωmin FFT

(√
J(ωk)Zk

)
(3.13)

with ωk = ωmin + k∆ω. The non-vanishing second moment

M(ηlη∗l′) = ∆ω
π

N−1∑
k=0

J(ωk)e−iωk(tl−tl′ ) =.. αaprx(tl − tl′) (3.14)

approximates the given correlation function α(τ). For the time interval of interest
[0, T ], the maximum absolute error

εintgr = max
0≤τl≤T

|αaprx(τl)− α(τl)| (3.15)

represents the error due to the numerical integration using the FFT algorithm and,
thus, can be made arbitrarily small for a suitable choice of ωmax, ωmin and N . Note
that for the FFT algorithm, the times tl take the values tl = 2πl

ωmax−ωmin
with its largest

value tN/2 = πN
ωmax−ωmin

. Therefore, for a given N , the difference ωmax − ωmin needs
to be large enough to fulfill tN/2 ≥ T . This imposes an additional condition on ωmax

and ωmin.

Furthermore, in order to provide a truly time-continuous stochastic process the
time-discrete process ηl [Eq. (3.13)] needs to be interpolated. The error induced by

3.1 Stochastic Process Sampling 53



the interpolation can easily be obtained for any interpolation scheme which is linear
in ηl

ηN (t) = S(η0, · · · ηN/2, t) =
N/2∑
l=0

al(t)ηl . (3.16)

This is in particular true for cubic splines [SB02]. The functions al are in general
non-linear in t and depend on the partition tl of the interval [0, T ]. Note that the
linearity in ηl justifies the applicability of the interpolation scheme for complex data
sets, too. For the interpolated stochastic process, the non-vanishing second moment
reads

M(ηN (t)η∗N (s)) =
N/2∑
l=0

N/2∑
l′=0

al(t)al′(s)αaprx(tl − tl′) (3.17)

which corresponds to the interpolation of the correlation kernel. Therefore, ∆t =
2π/(ωmax − ωmin) needs to be small enough to assure that the interpolation error

εintpol = max
t,s∈[0,T ]

∣∣∣∣∣∣
N/2∑
l=0

N/2∑
l′=0

al(t)al′(s)α(tl − tl′)− α(t− s)

∣∣∣∣∣∣ (3.18)

stays below a given threshold. Using the exact BCF instead of αaprx is justified if
εintgr is smaller than εintpol. Controlling the error of the interpolation imposes yet
another condition for a suitable choice of ωmax, ωmin and N .

In summary, the accuracy of the numerical realization of a truly time-continuous
stochastic process using the FFT algorithm in combination with cubic spline interpo-
lation can be controlled. Given the effective SD I(ω) of the correlation function, the
parameters ωmax, ωmin and N can be determined such that two error criteria with
given thresholds εintgr and εintpol are met. In that way it is assured that the error of
the correlation function of ηN (t) is in the vicinity of εintgr + εintpol or smaller.

3.1.2.2 Tanh-Sinh Integration

The applicability of the FFT-based approach crucially depends on the convergence
properties of the midpoint quadrature. For the case where the effective SD I(ω)
corresponds to a physically meaningful SD (J(ω) = 0 for ω ≤ 0 and cutoff above a
particular cutoff frequency) the quadrature converges in the expected manner, i.e,
O(∆ω2). However, if the BCF accounts for the influence of a thermal environment,
this behavior can change. In particular, for the class of sub-Ohmic SDs, the effective
SD diverges at ω = 0 (see Sec. 3.4) which drastically worsens the convergence
properties as shown in Fig. 3.5.
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In order to efficiently treat effective SDs with such singularities, quadrature schemes
with non-equidistant nodes can be used. The tanh-sinh (TS) scheme [Mor05] is
particularly suited for that case and, hence, will be discussed in the context of
sampling stochastic processes numerically.

In general, the convergence properties of a numerical quadrature scheme are en-
hanced if the integrand rapidly decays to zero at the integral boundaries. The TS
method exploits this feature in the most optimal way [TM73] by applying a variable
transformation which maps a definite integral, here from 0 to ωmax, to an indefinite
integral with a doubly exponentially decaying asymptotic behavior for the integrand.
The variable transformation ω → y “stretches” the vicinity of the singularity at ω = 0
to the real axis (limy→∞ ω(y) = 0) such that the new effective integrand decays
doubly exponentially, i.e.,

ω(y) = ωmax(1− tanh(s(y))), s(y) = π sinh(y)/2 and∫ ωmax

0
dω I(ω)e−iωτ = ωmax

∫ ∞
0

dy I(ω(y))e−iω(y)τ π cosh(y)
2 cosh2(s(y))

.
(3.19)

In order to evaluate the integral using double precision floats, the truncation at y = 4
is generally sufficient. At that value the additional factor π cosh(y)/(2 cosh2(s(y))) =
|dω/dy| evaluates to ≈ 10−35. The remaining definite integral has the desired
property of a fast decaying integrand in the vicinity of the integral boundaries and,
thus, can be evaluated very accurately using the simple trapezoidal rule, i.e.,

α(τ) ≈ 1
π

∫ ωmax

0
dω I(ω)e−iωτ

≈ ωmax
π

∫ 4

0
dy I(ω(y))e−iω(y)τ π cosh(y)

2 cosh2(s(y))
≈ 1

π

N∑
k=0

hkI(ωk)e−iωkτ ,
(3.20)

with

hk = 4ωmax
N − 1

π cosh(yk)
2 cosh2(s(yk))

, ωk = ω(yk) and yk = 4k
N − 1 . (3.21)

Note that for the trapezoidal rule h0 and hN need to be weighted with an additional
factor 1/2. The derived expression [Eq. (3.20)] is of the general form of a discrete
Fourier transform which approximates a given correlation function [Eq. (3.12)].
Therefore, the stochastic process ηN (t) =

∑N−1
k=0 gkZke

−iωkt with gk =
√

hkI(ωk)
π

serves as a numerical estimate (see Eq. (3.11)). Its error is controlled by the integral
truncation ωmax and the number of nodes N and can be made arbitrarily small.

In contrast to the FFT approach, here the time t is still a continuous parameter.
However, for reasons of efficiency it is advisable to specify a maximum interpolation
tolerance which determines the grid size acceptable for a cubic spline interpolation,
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Fig. 3.5: The error resulting from the approximation of the correlation function α(τ) by a
discrete Fourier transform is shown for the FFT and the TS method. In both cases
the indefinite integral is truncated at 10ωc. As expected, increasing the number of
nodes N used for the discretization results in a better approximation. Even though
the TS method is more accurate for the zero-temperature SD (left panel), the error
of the FFT method is still well acceptable. However, in case of a sub-Ohmic SD
weighted with the thermal occupation number (right panel), the singularity at
ω = 0 causes a significant slow down of the convergence rate of the FFT method.
Whereas the FFT methods requires more than 13 million nodes to reach an error of
10−3, for the TS approach 6400 nodes are sufficient. Lowering s and/or β worsens
the convergence of the FFT method. In contrast, for s = 1 the effective SD I(ω)
remains finite at ω = 0 for any β such that the difficulty disappears and the FFT
method is still applicable (not shown). The parameters for the plots are s = 0.5
and βωc = 0.2.

as for the FFT approach. When drawing a new sample of the stochastic process,
ηN (t) is evaluated for each grid point only once, enabling an efficient evaluation for
any time within the interval [0, T ] by interpolation.

Notably, for τ = 0 the integral approximation using the TS scheme is highly efficient
in terms of the required number of nodes. As for the oscillatory behavior of the
integrand, for larger τ the error of the TS quadrature increases drastically with τ .
This problem, however, is inherent to all Fourier transform based approaches. It is
sensible that the interval of a single period 2π/τ requires at least some nodes within
that interval. Although the node density is not necessarily constant, it does increase
linearly with N . The resulting linear relation between the largest acceptable τ and
the overall number of nodes N can be seen in Fig. 3.5, too.

To summarize, the Karhunen-Loève expansion and the discrete Fourier transform
representation (FFT or TS integration) of the correlation function can be used to
sample a time-continuous complex-valued Gaussian stochastic processes numerically.
For all three approaches the error over a finite time interval can be made arbitrarily
small. Nonetheless, the scope of application may be different for each method.
The efficiency of the FFT algorithm qualifies the FFT approach for most purposes
and allows for a very large time interval. However, in case of an effective SD with
singular points, the poor convergence of the simple midpoint rule inherent to the
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FFT algorithm might require the TS integration scheme instead. In contrast to the
two Fourier transform based approaches, the Karhunen Loève expansion does not
require the knowledge of the effective SD. The approach is solely based on the
correlation function and ensures that the number of expansion terms and, with it,
the number of complex-valued random variables, is optimal.

All three approaches yield numerical realizations for the stochastic process entering
the HOPS method (Sec. 2.1.2). Their controllable accuracy is an important feature
which allows us to claim that the HOPS formalism is exact up to numerical errors
which, in turn, can be made arbitrarily small.

3.2 Exponential Representation for (Sub-) Ohmic
Bath Correlation Functions

In order to employ the HOPS formalism for the widely used class of Ohmic and
sub-Ohmic SDs to model the structure of the environment [Leg+87; BTV03; WT08;
WT10; Mag+18], the algebraically decaying BCF needs to be accurately represented
by as few as possible exponential terms. In this section, it will be shown that the
zero-temperature BCF of such SDs, i.e., SDs with a power law behavior for small
frequencies ∼ ωs and an exponential cutoff, can be represented well by a sum of
exponential terms as required for the HOPS formalism (see Sec. 2.1.2). Since the
BCF of such a SD decays algebraically, whereas any finite sum of exponential terms
decays exponentially, it is not obvious that the exponential representation converges
efficiently with respect to the number of terms used. Because other methods, like
HEOM [Tan06; Tan14] or the non-equilibrium Green’s function formalism [XDR02],
rely on an exponential representation of the BCF, too, various possibilities to obtain
the desired form have been reported (see Ref. [MT99; HXY10; RE14; Cui+19]
for a small selection). They all have in common that the exponential form of the
BCF is obtained indirectly by means of the SD. That is, the (zero-temperature)
SD is expanded in terms of special kinds of functions. The resulting effective BCF
if exactly of exponential form and, thus, serves as approximation of the actual
BCF. Importantly, the number of relevant summands does not only depend on the
particular SD but also on the temperature of the initial environmental Gibbs state by
means of summing over Matsubara frequencies [Col15]. Low temperatures result
in a large number of such terms which prevents a numerical application in that
regime. Although recent developments improve on the numerical limits [Cui+19],
zero temperature is not feasible in this approach.

It is the aim of the following to show that this limitation can be overcome by
searching a suitable representation directly in the time domain [Har+19]. For the
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real time propagation of the reduced state, which is the main purpose of the HOPS
method, this approach is more reasonable. From the NMQSD equation (2.20) it
follows that in order to propagate the reduced state over the time interval [0, T ], it
is sufficient to know the BCF for that time interval only. Therefore, if the error of
an approximation of the BCF can be made arbitrarily small for all τ ∈ [0, T ], the
error of the reduced dynamics becomes arbitrarily small, too, for that interval of
time. Surely, the short (long) time behavior of the BCF is primarily determined by
the large (small) frequency behavior of the SD. Nonetheless, the relation between
the approximation of the SD (frequency domain) and the accuracy of the reduced
dynamics (time domain) is not obvious. A detailed numerical study concerning this
topic was carried out in a cooperation with Michael Werther and Frank Großmann,
and can be found in Ref. [Har+19].

It turns out that finding a suitable representation for a given BCF α(τ) in the time
domain can be achieved by simply using standard minimization algorithms for the
mean p-norm difference, i.e.,

d(Gµ,Wµ) ..= 1
M

(
M∑
i=1

∣∣∣f(τi)
(
αaprx(Gµ,Wµ, τi)− α(τi)

)∣∣∣p)
1
p

, (3.22)

where the minimization is performed with respect to the complex valued parameters
Gµ and Wµ of the exponential expansion, i.e.,

αaprx(Gµ,Wµ, τ) ..=
N∑
k=1

Gµe
−Wµτ for τ ≥ 0 . (3.23)

The discrete times τi, not necessarily equidistant, should cover the time interval
[0, T ] of interest for the dynamics. An additional weight function f(τ) is included, for
example, to distinguish between the absolute (f(τ) = 1) and the relative difference
(f(τ) = |α(τ)|−1). To rigorously quantify the error of the approximation, the
maximum deviation

ε ..= max
τ∈[0,T ]

∣∣∣f(τ)
(
αaprx(Gµ,Wµ, τ)− α(τ)

)∣∣∣ (3.24)

is used. Note, the maximum norm is disadvantageous for numerical minimization
since it is not a smooth function of the parameters Gµ and Wµ. Thus, the smooth
approximation in terms of the p-norm [Eq. (3.22)] is used where the limit p→∞
yields the maximum norm. However, choosing p too large results in a highly
structured deviation surface d(Gµ,Wµ) which is challenging for any minimization
routine.

Since such minimization routines converge to a local minimum only, which by chance
might be the global minimum, the minimization procedure has to be repeated with
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Fig. 3.6: As an overview for the class of sub-Ohmic and Ohmic environments, the SD and its
corresponding BCF is shown for various parameters s. This parameter determines
the low frequency power law of the SD, i.e., J(ω) ∼ ωs and with that the long time
behavior of the BCF which amounts to the algebraic decay α(τ) ∼ (1 + iωcτ)−1−s.

different initial conditions. They are generated most efficiently using a quasi-random
low-discrepancy sequence [Sob67; JK03; JK08]. In contrast to randomly chosen
initial conditions such a deterministic sequence samples the parameter space “more
uniformly“. Significant speedup is easily achieved by executing the individual
minimization processes on many computational units in parallel.

In the following, particular focus is given to the class of Ohmic (s = 1) and sub-
Ohmic (0 < s < 1) SDs with exponential cutoff (see Fig. 3.6 for example plots), i.e.,

J(ω) = ηωse−
ω
ωc , (3.25)

where ωc denotes the cutoff frequency and η the coupling strength. Note, in the
literature the coupling strength is usually scaled with ω1−s

c which assures that for
any value of s the SD has the dimension of a frequency while the coupling strength is
dimensionless [EW92; BTV03; WT10]. However, as already pointed out by Leggett
et al. [Leg+87] the physically relevant quantity is the entire prefactor η which
motivates the notation used here.

The power law behavior at low frequencies results in an algebraic decay of the BCF
which, for the exponential cutoff, takes the simple expression

α(τ) = 1
π

∫ ∞
0

dω J(ω)e−iωτ = η

π

(
ωc

1 + iωcτ

)s+1
Γ(s+ 1) , (3.26)

where Γ denotes the Gamma function. It is evident that the asymptotic behavior
of this class of BCFs cannot be reproduced by a finite sum of exponential functions.
However, for the finite time interval of the propagation the algebraic decay can
indeed be mimicked with high precision by a finite exponential expansion. Following
the algebraic decay for a longer time requires more expansion terms in order to
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maintain a certain accuracy. In practice this limits the rigorous approach of following
the algebraic decay over the entire time interval of the propagation. However, it
can also be argued that if the maximum absolute error of the BCF approximation is
small enough the effect on the dynamics will be small as well, independent of the
propagation time. Of course, in each case, convergence of the reduced dynamics
needs to be checked by successively lowering the error ε of the BCF approximation.

3.2.1 Numerical Details

The numerical effort of the minimization can be reduced by choosing the number of
times τi (see Eq. (3.22)) as small as possible while still capturing the main features
of the BCF. As shown in Fig. 3.7, distributing the times τi on a shifted logarithmic
scale fulfills that requirement. From the probability density p(τ) ∼ 1/(τ + τ0) for
τ ∈ [0, T ], the shift parameter τ0 is chosen such that the fraction ũ of times τi is
smaller than a given threshold τ̃ . This ensures that no matter how large the time
interval [0, T ] is chosen, a fixed portion of times τi accounts for the initial behavior
(τ < τ̃) of the BCF (see Fig. 3.7). For uniformly spaced parametric times ui ∈ [0, 1],
the real times read

τi = τ0 (eaui − 1) with a = ln
(
T + τ0
τ0

)
(3.27)

where up to first order in τ0/τ̃ the shift parameter can be determined as

τ0 = eb

1 + ceb
with b = ũ ln(T )− ln(τ̃)

ũ− 1 and c =
1
τ̃ −

ũ
T

ũ− 1 . (3.28)

Further it is sufficient to fit the specific BCF

α̃(τ) = (1 + iτ)−(s+1) ≈
N∑
µ=1

G̃µe
−W̃µτ , (3.29)

which depends on s only, and deduce the exponential representation of the general
(sub-) Ohmic BCF [Eq. (3.26)], i.e.,

Gµ = η

π
Γ(s+ 1)ωs+1

c G̃µ and Wµ = ωcW̃µ . (3.30)

It has turned out convenient to specify the time interval considered for the optimiza-
tion [0, T ] by the order of magnitude of the decay of the BCF. In the following this
quantity will be named decay threshold and denoted by D,

|α(T )|= 10−D|α(0)| . (3.31)
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Fig. 3.7: The typical behavior of a (sub-) Ohmic BCF is shown, i.e., real and imaginary
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while still capturing the algebraic decay over several orders of magnitude, the
time points τi are distributed on a shifted logarithmic scale [Eq. (3.27)] and
parameterized by u ∈ [0, 1] (middle and right panel). The effect of the parametric
time u is best seen by the logarithmic plots of the right panel. As an example,
the decay is captured over three orders of magnitude, i.e., |αs(T )|/|αs(0)|= 10−3.
Due to the different values for s, this amounts to significantly different ”real“ time
intervals ωcTs=1 ≈ 32 and ωcTs=0.3 ≈ 203. The threshold time τ̃ , which specifies
what is considered as initial behavior, was also chosen in terms of the relative
decay |αs(τ̃)|/|αs(0)|= 0.1 (horizontal dotted line). The weight for the initial
behavior was set to ũ = 0.5 (vertical dotted line).

It can be argued crudely that for different BCF, fits with the same value D are
comparable in terms of accuracy since they correctly account for the decay of the
BCF up to a certain threshold.

When implementing the optimization numerically, we found that a representation
of the complex parameters G̃µ, W̃µ by polar coordinates with a logarithmic radial
component is well suited,

G̃µ(xµ,1, xµ,2) = 10xµ,1eixµ,2 , W̃µ(xµ,3, xµ,4) = 10xµ,3eixµ,4 . (3.32)

By means of standard minimization algorithms provided by scipy [Sci+20], a first
estimate is obtained quickly by using the quasi-Newton method with Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm. Its output serves as initial condition
for the Sequential Least SQuares Programming (SLSQP) method polishing the
result. The initial conditions for the phases can be confined to −π < xµ,2 ≤ π and
0 < xµ,4 ≤ π since a decaying BCF requires a positive valued real part for each W̃µ.
The bounds for the radial magnitudes are not as obvious. Highly accurate fits with
an absolute error of ∼ 10−4 have been obtained by choosing initial values such that
−5 ≤ xµ,1 ≤ 0 and −4 ≤ xµ,3 ≤ 1. Reaching for an even better accuracy might
require a smaller value for the lower bound.

As an example, the plots in Fig. 3.8 show that increasing the number of summands
N in Eq. (3.23) allows for a representation of the BCF with smaller relative error.
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Fig. 3.8: For an Ohmic SD (s = 1) various approximations of the BCF in terms of a multi-
exponential representation are shown. As weight function f(τ) = |α(τ)|−1 was
chosen which results in an evenly distributed relative error (lower left panel). The
decay threshold of 3 used here sets the time interval of interest to [0, T ≈ 32/ωc].
As shown, increasing the number of summands N decreases the maximum relative
error ε and, thus, results in an approximation with higher accuracy for the time
interval [0, T ]. For times τ > T the exponential decay of the approximation
becomes evident and is reflected in the drastic increase of the relative error (lower
right panel).

Evidently, the algebraic decay is reproduced with increasing precision over the entire
relevant time interval. As showcase, D = 3 was chosen, which means that the
algebraic decay is mimicked with high accuracy over three orders of magnitude. For
τ > T (D) deviations from the algebraic decay become visible on the semi-log plot of
the BCF and result in an apparent increase of the relative error.

If the accuracy is quantified by the maximum absolute error (f(τ) = 1) the situation
changes slightly. Since the exponential approximation as well as the exact algebraic
BCF approach zero asymptotically, their absolute difference tends to zero, too. This
allows us to obtain fits where the maximum absolute error is bound for all τ ≥ 0. As
convention for the following, the maximum error ε of a fit obtained by minimizing the
absolute difference always refers to the maximum error for all times. Consequently,
if the maximum absolute error can be decreased, the approximation follows the
algebraic decay for a longer time, too.

As a remark, significant speed up for the global search of the minimum relative error
is achieved by using initial guesses based on extrapolating known fit data. Based
on heuristic investigation, the error of the optimal fit decreases exponentially with
N (see left panel of Fig. 3.10). For such ”optimal“ fits, most of the parameters G̃µ
and W̃µ follow a simple pattern when increasing N as shown in Fig. 3.9. Sampling
a few hundred initial guesses only in the vicinity of the extrapolated pattern usually
yields a fit where the error follows the heuristically found exponential behavior
log εN ∼ −N . In contrast, when minimizing the absolute difference the parameters
of the best fits found do not follows such a simple pattern. Although the error

62 Chapter 3 Solving the HOPS Numerically



5 6 7 8 9 10

N

100

10−1

10−2

10−3

10−4

|G̃µ|

5 6 7 8 9 10

N

−2
−1

0
1
2

arg(G̃µ)

5 6 7 8 9 10

N

100

10−1

10−2

10−3

|W̃µ|

5 6 7 8 9 10

N

0.00

0.25

0.50

0.75

arg(W̃µ)
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Fig. 3.10: For the multi-exponential representation the dependence of the maximum error
on the number of expansion terms N is shown. Whereas for the minimization of
the relative error (left panel), the time interval is implied by the decay threshold
D, it was chosen self-consistently for the absolute error to assure that the error
is bound for all times τ ∈ [0,∞]. The plot suggests a remarkable (nearly)
exponential convergence up to a certain value of N . For larger N (gray dots) it is
not clear if this behavior truly changes or if the corresponding better fit was not
found yet. See App. C for explicit values of the fits.

of the fits generated using the same technique decreases with N , the brute force
approach has returned better fits breaking the pattern. Further details have not been
investigated since the accuracy of the known fits is sufficient for many applications,
in particular those discussed in Ch. 4 and Ch. 5.

The error of the currently best known fits (relative and absolute) is shown in Fig.
3.10 for various parameters s of the SD. With less than N = 12 summands, a
relative error of 10−3 can be reached while following the algebraic decay over up to
D = 4 orders of magnitude. Concerning the absolute fits, the error quickly drops
below 10−3 and reaches 10−4. This reveals that remarkably accurate exponential
representations of the (sub-) Ohmic BCF are possible with less than a dozen terms.
For the fits shown in Fig. 3.10 the fit data is provided in App. C.
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Further increasing the number of summands N has led to only minor or even no
improvements of the accuracy. This might be due to the increasing complexity of
the global minimum search. However, finding even more accurate representations
could become relevant in case of very strong system-environment interactions.
Investigating more efficient algorithms and exploring the scaling properties of the
error is left for future work.

3.3 Truncation of the Hierarchy

Another prerequisite to solve the HOPS numerically is the truncation of the infinite
set of hierarchically structured differential equations, linear [Eq. (2.30)] or non-
linear [Eq. (2.51) and Eq. (2.52)].

Analytic arguments to justify a truncation can be found for a discrete environment
(see Sec. 2.3.3). In that case, it was shown that the auxiliary states can be related to
the Fock-states of the finite set of modes [Eq. (2.93)]. For example, in case of a single
mode, an auxiliary state of level l contains contributions with Fock-states n ≥ l only,
i.e., ψl =

∑∞
n=l c

l
n〈n|Ψ〉. Consequently, if the Hilbert space of the harmonic oscillator

can be truncated at lmax, that is, setting 〈n|Ψ〉 = 0 for all n > lmax serves as a suitable
approximation, auxiliary states with l > lmax can be neglected too since they do
not contribute to the reduced state, by means of the same degree of approximation.
Thus, the set of differential equations, the HOPS, becomes finite. Increasing the
truncation level lmax will increase the accuracy of the reduced state. Note that since
the random variable z∗ is not bound, the coefficients cln ∼ (z∗)n

√
(n+ l)!/n! can

become arbitrarily large. This means that it is not guaranteed that ψl is indeed
close to zero, even though 〈n|Ψ〉 ≈ 0 holds for all n ≥ l. This hints to the general
observation, discussed in the following, that simply considering the norm of the
auxiliary states does not justify the truncation.

For the more relevant case of a truly continuous SD, the physically motivated argu-
ment from above justifying the truncation is not obvious. This holds true particularly
for (sub-) Ohmic environments, where the exponential representation of the exact
BCF (see Sec. 3.2) has a purely mathematical motivation. As a consequence, the
physical interpretation of the auxiliary states is unclear. Nonetheless, the mathemati-
cal structure of the HOPS [Eq. (2.30)] indicates that high level auxiliary states have
only a minor influence on the zeroth level, i.e., the stochastic pure state. The rough
argument is that since ∂tψk ∼ −

∑
µ kµWµψ

k, the rate of change for the intrinsic
evolution increases with the hierarchy level l =

∑
µ kµ. This can either mean a quick

decay scaled by the real part of Wµ, which is always positive, or a fast oscillation
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Fig. 3.11: The deviation of the normalized stochastic pure state ψ̃|lmax from a reference
calculation with lref = 14 is shown for various truncation levels lmax. The coupling
strength η is increased from left to right. For each η, the deviation of ψ̃ becomes
small for a sufficiently large lmax. The shown graphs where obtained when
solving the two-spin-boson model Hsys = −∆A/2σAx −∆B/2σBx , ∆B = 0.8∆A,
L = −1/2(σAz + σBz ) with an Ohmic SD J(ω) = ηωe−ω/ωc , ωc = 10∆A.

due to the imaginary part of Wµ. In either case, it is expected that the effect on the
significantly slower dynamics of the zeroth level is small.

The following numerical investigation on the truncation of the HOPS confirms this
vague line of reasoning. As an example, Fig. 3.11 shows the convergence of the
stochastic pure state with respect to the truncation for the generic model of two
qubits coupled in a spin-boson like manner to an Ohmic environment (see Sec. 5
for details of the model) where an expansion of the BCF with 4 terms was used. For
reasons of simplicity, the so-called simplex truncation scheme is used which includes
all auxiliary states with level l ≤ lmax for a given truncation level lmax. Note that
since the non-linear variant of the HOPS is the numerical method of choice (see, e.g.
Ref. [deV+05; HS17] and Sec. 4.5), it is referred to exclusively by the following
examples. The effect of the truncation is analyzed by propagating the HOPS for a
fixed stochastic process η∗(t) while varying the truncation level lmax. The deviation
of the normalized stochastic pure state ψ̃|lmax := ψ/|ψ|, obtained when truncating at
lmax, from its correspondent using a suitably larger reference truncation at lref , i.e.,∣∣∣ψ̃|lmax−ψ̃|lref

∣∣∣, is used to examine the convergence.

It is shown in Fig. 3.11 that for a suitably large truncation level lmax the deviation
becomes small. This justifies the use of the HOPS to calculate the stochastic pure
state as being a solution of the NMQSD equation. In agreement with the case of a
finite set of environmental modes (see Sec. 2.3.3), increasing the coupling strength
requires a larger truncation level in order to maintain a certain degree of accuracy. It
is worth noting that the deviation does not necessarily decrease monotonically with
the truncation level. This behavior is often observed in the strong coupling regime
where the norm of the stochastic pure state grows fast. Further, it is important to
note that the ”population“ of the auxiliary states is hardly influenced by the coupling
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Fig. 3.12: In the upper row, the norm of the stochastic pure state |ψ| (blue lines, l = 0,
non-linear HOPS, not normalized) is shown. For large coupling strengths η, the
norm grows rapidly. In addition, the largest norm of all auxiliary states within a
given tire l of the hierarchy, maxk:l(k)=l|ψk|, is shown with the aim to represent
the ”population“ for each tire. For a better comparison, the lower row shows
the largest norm of each tire scaled by |ψ|−1. Thus, the lower row refers to the
normalized stochastic pure state and the corresponding auxiliary states. The plot
reveals that the ”population“ decreases with each hierarchy level l. However,
the particular values are hardly influenced by the coupling strength and, thus,
cannot be used as an indicator for the truncation of the HOPS. The same model
parameters as in Fig. 3.11 were used.

strength (see Fig. 3.12). This leads, again, to the conclusion that the norm of the
auxiliary states at different hierarchy levels cannot be used to deduce information
for a suitable truncation. Note that since the norm of the full state vector of the
hierarchy |Φ|= |(ψ̃, . . . , ψ̃k, . . . )| is not conserved, the term ”population“ must not
be understood in the sense of a probability.

So far the convergence of the normalized stochastic pure state with respect to the
truncation of the HOPS has been examined for a single realization. In general, the
truncation level required to achieve a certain degree of accuracy might depend
on the particular stochastic process. Therefore, for applications concerning the
reduced dynamics, it is more convenient to base the truncation check on the reduced
state rather than a single stochastic pure state. It seems sensible that using a few
realizations only is sufficient to estimate a suitable truncation level.

A reduction of the number of auxiliary states and, with that, of the numerical cost
may be achieved by refining the truncation scheme. For the fundamental discussion
above it was sufficient to use the most simple simplex scheme which treats each index
kλ of the index vector k = (k1, . . . kN ) equally. The truncation condition, that only
auxiliary states with a hierarchy level smaller or equal to a truncation level lmax are
taken into account corresponds to the simplex condition l(k) =

∑N
µ=1 kµ ≤ lmax. The
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Fig. 3.13: The plot visualizes the generalized truncation scheme given in Eq. (3.33) in 2
dimension with exemplary values kmax1 = 17.6 and kmax2 = 8.2.

following expression has turned out to be a useful generalization of the truncation
condition

N∑
µ=1

(
kµ

kmaxµ

)p
≤ 1 . (3.33)

The power p generalizes the simplex structure where p < 1 allows for auxiliary states
with higher level on the index axes eµ compared to states ”between“ the axes. For
p > 1 the opposite holds true. For p = 1 the simplex structure is recovered. The
truncation vector kmax allows to weight each index separately (see also Fig. 3.13 for
visualization).

It seem plausible that the optimal choice of kmax is related to the structure of the
hierarchy [Eq. (2.30) or Eq. (2.51)] determined by the parameters Gµ, specifying
the ”coupling“ between different auxiliary states ψ̇k ∼

∑
µGµψ

k+eµ , and Wµ, de-
termining the internal damping and/or oscillatory dynamics ψ̇k ∼ −

∑
µ kµWµψ

k.
Therefore, the truncation vector component kmaxµ should increase with |Gµ| but de-
crease with |Wµ|which is accounted for most simply by setting kmaxµ ∼ (|Gµ|/|Wµ|)q.
The requirement for a unitless component kmaxµ also suggests the so-called ”square

root“ truncation vector kmaxµ ∼
(√
|Gµ|/|Wµ|

)q
. The exponent q has been intro-

duced as an additional parameter which weights the asymmetry between the axes.

The following aim is to tune the parameters p and q for the class of sub-Ohmic and
Ohmic SDs. To quantify the quality of the truncation scheme the convergence rate
of the reduced state with respect to the number of auxiliary states is used. This
convergence rate is estimated using the maximum deviation of the reduced state
from a reference calculation involving significantly more auxiliary states over a
suitably large time interval, i.e.,

d ..= max
t∈[0,T ]

|ρNaux(t)− ρref(t)| . (3.34)
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Fig. 3.14: The maximum deviation of the reduced state is shown using 16 samples. The de-
viation decreases with the number of auxiliary states which signifies convergence
of the reduced state. The rate of convergence depends on the truncation scheme,
here modified in terms of q. The Hilbert-Schmidt norm was used as matrix norm
for |ρNaux(t)− ρref(t)|.

The Hilbert-Schmidt norm is used as matrix norm. Since the deviation, and not the
reduced state itself, is the quantify of interest, a small number of realizations yields a
good estimate already. To compare different truncation schemes, the calculations are
done for a fixed ensemble of stochastic processes (see Fig. 3.14 for an example).

A detailed examination of the influence of the generalized truncation scheme on the
convergence of the reduced state is shown in Fig. 3.15. The same relations as in the
previous Fig. 3.14 are plotted, however, for a large variety of truncation schemes.
The graphs suggest that q ≈ 0.5 yields the most rapid convergence. Conveniently,
this holds for various coupling strength and the sub-Ohmic as well as the Ohmic
case.

Based on that, Fig. 3.16 shows all graphs with q = 0.5 in one plot. It is evident that
the square root scaling kmaxµ ∼

(√
|Gµ|/|Wµ|

)q
is highly favorable. Further, the

convergence rate does not depend significantly on the parameter p for 1 . p . 1.5.
A small difference between the various values of p becomes visible for the larger
value of the coupling strength, i.e., η = 1.2∆1−s. In that case the plots suggest that
the optimal choice of p might also depend on the particular value of s. It should be
noted that the coupling strengths used for investigating the convergence rate are
very strong with respect to weak coupling perturbative regime. Thus, in order to
examine non-trivial dynamics far beyond the weak coupling regime we use p = 1.
When increasing the coupling strength much further, a more detailed investigation
on the truncation parameter p might become relevant.

In addition (not shown), the convergence rate was examined when using the real
part of Wµ instead of its absolute value |Wµ| to define the truncation vector, i.e.,
kmaxµ ∼

(√
|Gµ|/Re(Wµ)

)q
. Whereas in the Ohmic case a slight advantage of this

truncation scheme becomes evident, the opposite holds true in case of a sub-Ohmic
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Fig. 3.15: The convergence of the reduced state is shown by means of the maximum devi-
ation d. We distinguish between the sub-Ohmic (s = 0.3, upper two rows) and
the Ohmic case (lower two rows) as well as two different coupling strengths η
(left and right blocks). The plots reveal the influence of q (colors), p (columns)
and the truncation vector kmax (rows in each block), see Eq. (3.33), on the
convergence rate. For nearly all cases shown, q ≈ 0.5 yields the fastest conver-
gence. Also, choosing the square root truncation seems highly beneficial. As
reference truncation q = 0.5, p = 1 and kmaxµ ∼ (

√
|Gµ|/|Wµ|)q was used with

Nref = 25600 auxiliary states for η = 0.6∆1−s andNref = 102400 for η = 1.2∆1−s.
A fit with 6 exponential terms minimizing the absolute difference was used (see
App. C). Two qubits serve as exemplary model with Hsys = −∆/2(σAx + 0.8σBx ),
L = −1/2(σAz + σBz ), a (sub-) Ohmic environment (ωc = 10∆) at zero tempera-
ture and a propagation up to t∆ = 100.

SD with s = 0.3. Therefore this scheme is not used for the applications of the HOPS
discussed in Ch. 4 and Ch. 5.

A final remark is devoted to so-called n-mode approximation [ZBE18] which provides
an additional scheme to reduce the number of auxiliary states. The idea is that only
n out of N modes are allowed to be excited simultaneously which has been shown
useful for investigating molecular aggregates [ZBE18]. The n-mode approximation
corresponds to the condition that the index vector k must consist of at most n out
of N non-zero indices. However, as shown in Fig. 3.17, for spin systems strongly
coupled to a (sub-) Ohmic environment, as considered in Ch. 4 and Ch. 5, the
n-mode approximation does not provide an advantage.

To conclude, the numerical results gathered for sub-Ohmic and Ohmic SD confirms
that the zeroth order hierarchy state, i.e., the sought after stochastic pure state,
converges with respect to the number of auxiliary states when solving the truncated
HOPS. Consequently, the numerical error induced by truncation method can be
made arbitrarily small which qualifies the HOPS methods to be exact. Referring
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Fig. 3.17: The effect of the n-mode approximation for the hierarchy truncation on the con-
vergence rate is shown. Here, the n-mode approximation is applied in addition to
the truncation scheme with q = 0.5, p = 1 and the ”square root“ truncation vector
(see Fig. 3.15 and Fig. 3.16). The graphs show that the n-mode approximation
does not enhance the converge properties. Two qubits where use as generic
example with the model parameters as in Fig. 3.15.

to the class of sub-Ohmic and Ohmic SDs, using the specialized truncation scheme
[Eq. (3.33)] with the ”square root“ truncation vector kmaxµ ∼

(√
|Gµ|/|Wµ|

)q
and

parameters p = 1, and q = 0.5, yields the fastest convergence for a wide range of
coupling strengths. If not mentioned differently, this particular truncation scheme is
used as standard for the calculations presented in the following chapters.
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3.4 Non-Zero Temperature

The derivation of the NMQSD Equation (2.20) (Sec. 2.1.1) and, therefore, the HOPS
formalism, too, requires an initial product state of the form |Ψ〉 = |ψ〉sys ⊗ |0〉env

where |ψ〉sys denotes an arbitrary state of the system Hilbert space and |0〉env the
multi-mode ground state. Thus, the environmental initial condition is that of
a canonical ensemble at zero temperature. So far, two approaches have been
developed to treat an initial canonical ensemble at non-zero temperature. Both have
in common that they map the T > 0 case to an effective T = 0 scenario where the
original formalism is applicable. In particular, for a Hermitian coupling operator,
i.e., L = L†, the thermo field (TF) method [SU83; TU96] yields the same NMQSD
equation as for zero temperature, however, with the BCF α(τ) simply taking the
form of the thermal BCF α(β, τ) [Eq. (2.72)] [DGS98]. The stochastic potential (SP)
approach, introduced in Sec. 2.2.2, mimics the influence of non-zero temperature
by an additional stochastic Hermitian contribution to the system Hamiltonian. Both
approaches are exact. However, in terms of numerical applicability the SP method is
highly favorable. As shown in 3.18, the convergence of the reduced state with respect
to the number of auxiliary states is significantly faster compared to the TF method.
As an example, whereas the for the SP approach the difference of the 〈σz〉 dynamics
using 128 and 265 auxiliary states can hardly be distinguished, the TF method,
using 1024 auxiliary states, results in an evolution which significantly deviates
after a certain time. Note, in contrast to the previous investigation concerning the
truncation scheme (Sec. 3.3), here the convergence of the reduced state cannot be
based on a few realizations only since the noise processes are different. Instead, 218

samples were used to ensure that the stochastic uncertainty is below the deviation
between the reduces dynamics obtained using different truncation criterion.

To draw contact to earlier results presented in Ref. [HS17], the dynamics using the
TF method in combination with the most simple simplex truncation (p = 1, q = 0)
are shown as well (dotted lines in Fig. 3.18). The obvious difference emphasizes the
advantage of a suitable truncation scheme, again.

The disadvantage of the TF approach in combination with the HOPS can be traced
back to the increased real part of the thermal BCF compared to its zero-temperature
equivalent (see Fig. 3.19) as seen by the particular form of the thermal BCF given
in Eq. (2.72). Explicit expressions of the (sub-) Ohmic BCFs can be found in
App. B. Since the magnitude of the thermal BCF is reflected by the magnitude of
parameters Gµ of its exponential representation, increasing temperature effectively
increases the coupling strength between the auxiliary states. This in turn requires
more auxiliary states to reach a sufficiently degree of convergence and explains the
behavior observed in Fig. 3.18.
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Fig. 3.18: Focusing on the two different approaches (stochastic potential (SP) and thermo
field (TF)) to incorporate a thermal initial environmental, the convergence is
shown (similar to Fig 3.15). The striking difference is visible for the dynamics of
〈σz〉 (left panel) and quantified by the maximum deviation of the reduced state
(right panel). The SP approach (solid lines) requires significantly less auxiliary
states for an acceptable accuracy. The dynamics obtained using the TF method
(dashed lines) agrees with the converged result up to a certain time before it
starts to deviate. Increasing the number of auxiliary states increases that time,
eventually agreeing with the converged dynamics. Note that in addition to the
advanced truncation scheme (Sec. 3.3), for the TF method results using the
simplex truncation (TF splx) are shown, too (dotted lines). This emphasizes
again the advantage of the advanced truncation, here applied on an exponential
representation for the thermal BCF. The spin-boson model with a sub-Ohmic
environment is used a generic example (Hsys = ∆σx, L = σz, η = 0.745∆1−s,
s = 0.5, ωc = 10∆, T = ∆, NBCF = 6, 218 samples).

Note that the noise generation for the TF approach, such that M(η(t)η∗(s)) =
α(β, t−s) with β = 1/T , is challenging for sub-Ohmic SD using the Fourier transform
method (Sec. 3.1.2), although the thermal BCF [Eq. (2.72)] can in be written as the
Fourier transform of an effective thermal SD J(β, ω) including negative frequencies,

α(β, τ) ..=
∫ ∞

0
dω J(ω)

π
(coth(βω/2) cos(ωτ)− i sin(ωτ))

≡
∫ ∞
−∞

dω J(β, ω)
π

e−iωτ with J(β, ω) ..= J(ω)
1− e−βω .

(3.35)

Here, the microscopic SD J(ω) is extended to negative frequencies by J(ω) :=
sig(ω)J(|ω|) and n̄ denotes the Bose-Einstein distribution. As discussed in Sec. 3.1,
the divergence of J(β, ω) ∼ |ω|s−1 for s < 1 at ω = 0 (see also Fig. 3.19) results
in very poor convergence of the midpoint rule implied by the FFT method (Sec.
3.1.2.1). Although, an extension of the tanh-sinh (TS) scheme (Sec. 3.1.2.2) treating
positive and negative frequencies separately is feasible, the example shown in Fig.
3.18 makes use of the Karhunen-Loève approach (Sec. 3.1.1) which is based on
the BCF only. We note this here, because all calculation shown in the following
chapters use either of the Fourier Transform method, FFT or TS, since they allow for
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Fig. 3.19: The effect of non-zero temperature on the BCF and the related effective SD
is shown for various parameters s of the (sub-) Ohmic SD. As shown in the
left panel, the real part of the BCF at τ = 0 increases with temperature. The
imaginary part is not effected (not shown). For a sub-Ohmic SD (s < 1) the
temperature dependent contribution αβ(τ) to the thermal BCF α(β, τ) [(2.72)]
decays like τ−s and, thus, dominates the asymptotic behavior of α(β, τ) as shown
by the inset of the left panel. The right panel shows the effective SD which
diverges for s < 1 (see also App. B for a detailed analytic discussion).

larger time intervals. Note that the effective SD n̄(ωβ)J(ω) of the thermal noise ξ(t)
occurring in the SP approach diverges at ω = 0 for s < 1, too. However, since only
positive frequencies are involved, the singularity is at the border of the integration
interval and, thus, the TS method as presented Sec. 3.1.2 can be used. We conclude
from thie investigation that the SP approach is the preferred way to account for
non-zero temperatures in the HOPS formalism.
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4Comparing HOPS with Other
Approaches

This chapter concerns the dynamics of the very fundamental model of a single qubit,
i.e., a two-state quantum system, under the influence of a continuous environment
(see Sec. 4.1 for introduction of the model). It might seem peculiar that with the
general HOPS approach for open quantum system dynamics at hand, we focus on
the most simple system. But, solving this so-called spin-boson model (SBM) has been
a matter of research for theoreticians since decades [Leg+87; KM96; BTV03; TPG04;
Nes+07; WT10] and still is. In particular, the exact dynamics in the strong coupling
regime remains challenging [Str+18; Lam+19]. Therefore, the SBM represents
an ideal test bed for novel methods, such as ours. Despite that, the long lasting
interest is far from academical. The SBM appears as simplification of many physical
scenarios where a complex quantum system is effectively restricted to two states only
[Kal+83; Bru+96; Wal+00; MSS01; Por+08; Mag+18; HBR20]. Beyond that, many
experiments aim to explicitly design such effective two-state systems, e.g, by using
trapped ions [Sch17] or superconducting materials [Fag06; Per+10]. A reason for
this is that qubits are the basic building blocks for quantum information or metrology
devices [Ben+08; DS13; Bar+14] and other possible future technologies. Another
goal of these “artificial atoms” is to realize a wide range of qubit-environment
interactions. In that way the theory for light-matter interaction can be probed far
beyond the usual context of atoms in the electromagnetic field with prospects of
unexplored physics [Nie+10; Gus+14; Yos+17; For+17; Mag+18]. Furthermore,
comprehensive experimental control of the system parameters paves the way for
so-called quantum simulators [Bar+11; Hem+18]. Since exact calculations for open
quantum system are costly, using a tunable quantum system as an investigative tool
might be beneficial, too.

With this brought context in mind, we show in the following that the HOPS formalism
qualifies to solve the SBM for a wide range of parameters. This includes the bias of
the two-level system, the coupling strength to the environment and the temperature
of the initial environmental state. The commonly used Ohmic as well as sub-Ohmic
SD serves as model for the environmental structure. Importantly, agreement with
various very distinct methods including a perturbative master equation (Sec. 4.2),
the HEOM [Tan+15] (Sec. 4.3) as well as the multilayer MCTDH (ML-MCTDH)
approach [WT10] (Sec. 4.4) is demonstrated with high accuracy. Notably, since
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the algebraic decay of the BCF scales with the parameter s of the (sub-) Ohmic
SD like |α(τ)|∼ (ωcτ)−(s+1), the smaller s the slower the decay. As a consequence,
long-ranging temporal environmental correlations causing memory effects on the
system are expected if ωc is of the order coupling strength or smaller. This regime is
practically inaccessible by any method based on a rapid decay of the BCF, such as
the perturbative Redfield [Red57; Dav20] or coarse graining [SB08] approach, or
the QUAPI / TEMPO [MM95; Str+18] approach.

Although interesting on its own, here, we use the SBM mainly for testing purposes.
Our primary physical interest lies in the entanglement dynamics of two qubits
interacting with a common environment discussed in Ch. 5.

4.1 The Spin-Boson Model

Traditionally, the spin-boson model (SBM) originates from the scenario of a trapped
particle where the potential energy shows two minima separated by a barrier (double
well potential, see Fig. 4.1 for a sketch). For a sufficiently large spacing of the energy
spectrum compared to the thermal energy of the environment, considering the
two lowest energy eigenstates only is sufficient. The effective two-state system is
described by the Hamiltonian [Leg+87; Wei08]

Hsys = −∆
2 σx + ε

2σz (4.1)

in terms of the Pauli matrices σx and σz where ∆ corresponds to the tunneling
frequency and a possible energy difference between the left and right localized state
is given by the bias ε (see also Fig. 4.1). Thinking of the particle being confined to
these two states only, its position Q is represented by σz where 〈σz〉 = ±1 means
that the particle is in the right/left well. For ∆/ε � 1 the eigenstates of Hsys are
eigenstates of σz and, thus, if the particle is localized in one of the minima it will
remain in that state for a long-time. On the contrary, for ∆/ε� 1 the eigenstates are
symmetric / anti-symmetric superposition of the σz eigenstates. They correspond
to states where the particle is delocalized. Consequently, if the particle is initially
localized, its probability to be in one well oscillates with frequency ∆.

It has been argued that the influence of a continuous environment can be modeled
by a set of harmonic oscillators with a linear coupling in the oscillator coordinates
qλ [Leg+87]. This motivates the specific form of the open two level system

H = Hsys + L
∑
λ

cλqλ +
∑
λ

(
p2
λ

2mλ
+ mλω

2
λq

2
λ

2

)
(4.2)
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Fig. 4.1: The SBM as the low temperature limit of a particle confined in a double well
potential is shown, distinguishing the unbiased (left panels) and the biased (right
panel) case. The oscillation between the wells is damped by the influence of the
environment (here at zero temperature). For a sufficiently strong coupling the
oscillations vanish (green lines). The dynamics becomes overdamped. Further,
it is sensible that the particle relaxes to a low-energy state. This suits the shown
dynamics. In the biased case, the long-time dynamics indicates that the probability
of measuring the particle in the left well is higher. In contrast, for the unbiased
case, the asymptotic state has equal probability to find the particle in either well.
This changes, however, once the coupling reaches a critical value which is related
to known phase transition of the SBM [Leg+87; Wei08].

where cλ denotes the individual coupling strength to the mode λ and mλ, ωλ, qλ
and pλ its mass, frequency, position and momentum. The Hermitian system coupling
operator L = L† is still unspecified. Obviously, when changing from position and
momentum to the creation/annihilation operator representation, this model takes
the form of the microscopic model [Eq. 2.1] used to derive the HOPS

H = Hsys + L
∑
λ

gλ(aλ + a†λ) +
∑
λ

ωλaλa
†
λ with gλ = cλ√

2mλωλ
. (4.3)

The specific choice of L models different physical circumstances.

For example, the case where L commutes withHsys is, up to a unitary transformation,
equivalent to Hsys ∼ σz ∼ L. This is one of the rare cases where the open system
can be solved analytically [Unr95; PES96; BP07]. The dynamics of the reduced state
exhibits pure dephasing, that is, the diagonal elements remain constant while the
off-diagonal elements decay like e−Γ(t)t with some integral expression for Γ(t).

In spirit of a particle being trapped in the double well potential, it is sensible to
consider the system coupling operator to be the position Q of the particle and, thus,
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L = Q ∼ σz. This case is referred to as the SBM. The resulting Qqλ coupling is
known from the classical Langevin equation describing Brownian motion [Ull66]. In
that sense, the SBM can be seen as the limiting case of a quantum Brownian particle
confined to the two lowest energy eigenstates of a double well potential. Aside from
that, the SBM appears in many physical scenarios related to condensed matter and
atomic physics (see Ref. [GZC92; Bru+96; Hay+03; Por+08; Nie+10; Mag+18]
for a few examples). The resulting spin-boson Hamiltonian

H = −∆
2 σx + ε

2σz + σz
∑
λ

gλ(aλ + a†λ) +
∑
λ

ωλaλa
†
λ (4.4)

is non-trivial to solve for general parameters. For the standard parameterization
of the SD with a power law behavior for the low frequency modes [Leg+87], as
introduced in Sec. 3.2 and named Ohmic (s = 1) or sub-Ohmic (s < 1) SD [Eq.
(3.25)],

π
∑
λ

g2
λδ(ω − ωλ) ≡ J(ω) = ηωse−

ω
ωc , (4.5)

the reduced dynamics shows rich behavior reaching from oscillatory to overdamped
motion and to localization [Leg+87; WT08; WT10] (see also the example dynamics
in Fig. 4.1). Note that the dimension of the SD is, by definition, energy. Therefore,
for a sub-Ohmic SD the coupling strength η has the dimension [η] = [ω]1−s and, thus,
η∆s−1 is dimensionless. This follows our choice to provide all quantities in units of
∆.

In the following subsections 4.2 to 4.4, the reduced dynamics of the SBM is calculated
using the HOPS and compared to various other approaches found in the literature.
The results, signifying a broad range of applicability of the HOPS formalism, have
been published in the Journal of Chemical Theory and Computation [HS17].
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4.2 Weak Coupling – the Quantum Optical Master
Equation

First we compare the exact population dynamics 〈σz〉(t) gained from HOPS with
the dynamics calculated using so-called quantum optical master equation (QOME)
which reads,

d
dtρsys(t) =− i[Hsys +Hlamb, ρsys(t)] +

∑
ω

(
J(β, ω)[Lωρsys(t), L†ω] + h.c.

)
.

(4.6)
This master equation is of Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) kind
stating that the reduced dynamics is completely positive which, in turn, guarantees
a positive reduced state for any initial condition at any time. The equation can be
deduced from the general microscopic model Hamiltonian [Eq. (2.1)] in the weak
coupling limit by applying a Born, Markov and rotating wave approximation (RWA)
[Dav74; CDG98; BP07; KC08]. The derivation can be found in App. D.2. The
so-called Lindblad operators Lω are gained from the decomposition of the coupling
operator L in terms of projectors of the energy eigenstates of the system Hamiltonian

Lω ..=
∑

ε−ε′ : ω=ε′−ε
|ε〉〈ε|L|ε′〉〈ε′| . (4.7)

In case of the two-level system [Eq. (4.1)] the eigenvalues ±ε = ±
√
ε2 + ∆2/2

result in the possible values −2ε, 0 and 2ε for the transition frequency ω and the
corresponding operators read

L0 = cos(2θ)(cos(2θ)σz + sin(2θ)σx),

L2ε = sin(2θ)
(sin(2θ)

2 σz + sin2(θ)σ+ − cos2(θ)σ−
)

and L−2ε = L†2ε with tan(2θ) = ∆
ε
.

(4.8)

The so-called Lamb-shift Hamiltonian

Hlamb ..=
∑
ω

S(β, ω)L†ωLω (4.9)

and the dissipator in Eq. (4.6) depend on the values of the half-sided Fourier
transform of the BCF (see also App. B)

F (β, ω) ≡ J(β, ω) + iS(β, ω) :=
∫ ∞

0
dτ α(β, τ)eiωτ , (4.10)

where, for completeness, the thermal BCF depends on the SD J(ω) and the inverse
temperature β as given in Eq. (2.72). It can bee seen that the real part of F
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determines the non-unitary damping whereas the imaginary part influences the
environmentally induced unitary contribution of the reduced dynamics.

The validity of the QOME is limited to the weak coupling regime such that τbcf � τind

and τRWA � τind are fulfilled simultaneously [KC08; HS20a], where τbcf denotes
the time scale of the decay of the BCF and τRWA scales like

1
τRWA

∼ min
ω,ω′:ω 6=ω′

|ω − ω′| (4.11)

with ω and ω′ taking the values of the transition frequencies of the Hsys. Both of
these timescales have to be smaller than τind, the timescale of the dynamics induced
by the influence of the environment, that is, the time scale on which the reduced state
changes in the interaction picture. Since this time scale is governed by the coupling
strength τind∆ ∼ 1

η∆s−1 both conditions can be met if the coupling is sufficiently
weak. More details can be found in App. D.
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Fig. 4.2: The dynamics of the unbiased SBM (ε = 0) is shown for an Ohmic SD with weak
coupling (η = 0.015) and a fast decay of environmental correlations (ωc = 100∆).
In that regime the QOME is applicable and, thus, agreement with the HOPS
method is seen. Already, for Naux = 32 auxiliary states and Nsmp = 256 samples
the dynamics has converged (no visible difference between plots in the upper
and middle panel). Since the QOME is applicable, the dynamics is essentially
determined by the SD J(ω) at ω = ±∆ (and the related function S(ω), Eq. (4.10)).
This is also reflected by the exponential representation of the BCF. Sufficiently
many terms are required to follow the algebraic decay in order to yield good
agreement in frequency domain (see lower panels).

The expected agreement between the HOPS of the QOME for that regime is shown
in Fig. 4.2 using an Ohmic environment. As a consequence of the weak coupling,
several hundred samples only and a very small hierarchy depth are sufficient to
achieve converged results (compare top and middle panel in Fig. 4.2). However,

80 Chapter 4 Comparing HOPS with Other Approaches



the damped oscillation obtained from the HOPS is very sensitive to the exponential
representation of the Ohmic BCF (see Sec. 3.2). Although the fit using 4 terms to
minimize the absolute difference reaches an error of almost 10−3 (see Fig. 3.10)
a difference in the dynamics between the HOPS and the QOME is clearly visible.
Using more terms for a better approximation of the BCF results in better agreement
with the QOME dynamics. Notably, small deviations between the dynamics resulting
from 6 and 7 terms are visible, so the results cannot be claimed to have converged
yet. In contrast, using fits minimizing the relative difference over D = 4 orders
of magnitude yields no noticeable difference between 6 and 8 exponential terms.
The HOPS has converged already using N = 6 exponential terms (rel. fit) and, as
expected, agrees with the dynamics obtained from the QOME with high precision.

The slower convergence of the fits minimizing the absolute difference can be un-
derstood by recalling that the parameter regime was chosen such that Born- and
Markov-approximation is fulfilled

0.01 = ∆/ωc ∼ τbcf∆� τind∆ ∼ ∆/η ≈ 50 . (4.12)

Therefore, the value of the half-sided Fourier transform of the BCF at ω = ±2ε = ±∆
(unbiased case ε = 0) determines the dynamics effectively (Eq. (4.6) and Eq.
(4.10)). As shown in the bottom panel of Fig. 4.2 the faulty long-time behavior of
the exponential representation for the actually algebraic decay of the Ohmic BCF
results in a noticeable difference of J and S, the real and imaginary part of the
half-sided Fourier transform, for ω = ±∆, especially for N = 4 (abs. fit). The fits
minimizing the relative difference over 4 order of magnitude (red and purple lines
in Fig. 4.2), which follow the algebraic decay longer but with less accuracy, yield
more accurate values for the half-sided Fourier transform and, thus, more accurate
dynamics.

Based on that, Fig. 4.3 shows the population dynamics of the SBM for various tem-
peratures and different values of the detuning using the N = 6 (rel. fit) exponential
representation and Naux = 32 auxiliary states only. In all cases the HOPS method
and the QOME agree with high precision. Note that since the amplitude of the
noise related to the stochastic potential approach for non-zero temperature scales
with the temperature (see Sec. 2.2.2), the number of required samples scales with
temperature, too (see Fig. 4.4).

For a sub-Ohmic environment at non-zero temperature the QOME as specified in
Eq. (4.8) is not well defined. Both, the effective SD J(β, ω) and the corresponding
imaginary part S(β, ω) diverge at ω = 0 (see App. B). However, the formalism can
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QOME is applicable. As expected, agreement with the exact dynamics of the HOPS
method for various temperatures T and different values of the bias ε was found.
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term in the HOPS methods (see Sec. 2.2.2), increase with T , a higher temperature
requires more samples (Nsmp) to obtain converged results.

still be applied when “undoing” the
∫ t

0 →
∫∞

0 approximation used to derive the
QOME [NF14]. This results in the time-dependent coefficients (TDC)

Jβ,ω(t) + iSβ,ω(t) :=
∫ t

0
dτ α(β, τ)eiωτ , (4.13)

simply replacing their asymptotic values J(β, ω) and S(β, ω) in the QOME. The
comparison between the QOME with TDC and the HOPS shows agreement in all
combinations of temperature and bias. As in the Ohmic case, a small hierarchy
depth and a few hundred samples are sufficient for the HOPS to obtain converged
results. Notably, as of the slower decay of the sub-Ohmic BCF compared to the
Ohmic case, the coupling strength had to be chosen even smaller for the Born- and
Markov-approximation to be applicable.
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auxiliary states are sufficient to obtain converged results. The bottom panels
show the time-dependent coefficients (TDC) (Jβ,ω(t) ≥ 0, Sβ,ω(t) ≤ 0) and their
asymptotic values (dotted lines). For T = 0.5∆ the rapid increase of Jβ,ω=0(t) is
well seen (upper green line) and directly reflected by the strong damping of the
dynamics as compared to the zero-temperature environment. Note that the value
of Jβ,ω=0(t) is independent of the bias ε. However, since the operator L0 scales
with ε, i.e., L0 ∼ ε/

√
∆2 + ε2, the actual damping does depend on the bias, as

seen particularly in the right panels from top to bottom.
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4.3 Classical Noise – Hierarchical Equations of
Motion and its extension

The next regime considered is the classical noise limit where presumably the influ-
ence of the environment can be accounted for by a stochastic force alone. This is
the case whenever the real part of the BCF dominates the imaginary part. From
Feynman-Vernon’s path integral approach [FV63] it follows that when simply ne-
glecting the imaginary part of the BCF the reduced dynamics can be obtained by
averaging over the solutions of the stochastic Schrödinger equation

i∂tψ(t) = (Hsys + σzF (t))ψ(t) (4.14)

with the real valued noise process F (t) obeying M(F (t)F (s)) = Re(α(β, t − s))
[CCS13; MC13; Tan+15]. As a remark, in the high temperature limit, this expression
is consistent with the stochastic potential (SP) formalism for non-zero temperature
introduced in Sec. 2.2.2 and which can be seen as follows. Recalling that the thermal
BCF α(β, t− s) contains a zero temperature contribution and a purely real thermal
contribution [Eq. (2.73)], for large temperatures βωc � 1, the thermal contribution
scales linear with the temperature T = 1/β

αβ(τ) = 1
π

∫ ∞
0

dω 2n̄(βω)J(ω) cos(ωτ) ≈ 1
βπ

∫ ∞
0

dω 2J(ω)
ω

cos(ωτ) . (4.15)

Since the magnitude of the BCF, set by the scale η of the SD and the temperature,
determines the strength of the environmental influence, it is sensible to consider the
high temperature limit T →∞ while keeping ηT constant. In that limit, the real part
of the thermal BCF becomes the thermal contribution and the zero temperature BCF
tends to zero. Consequently, in the SP formalism, the zero temperature influence of
the environmental can be neglected and only the stochastic potential remains with

M(ξ̃(t)ξ̃(s)) = αβ(t− s) T→∞→ Re(α(β, t− s)) =M(F (t)F (s)) . (4.16)

The parameters for the SBM with dynamics shown in Fig. 4.6 are motivated by the
discussion on sub-Ohmic SD done by Tang et al. [Tan+15]. With the stochastic
Hamiltonian approach [Eq. (4.14)] as reference, they discuss the insufficiency
of the commonly used Meier-Tannor decomposition (MTD) [MT99] to obtain a
multi-exponential representation of the sub-Ohmic BCF when used for the HEOM
approach [TK89; Tan06]. Further, they show that this difficulty can be overcome
by expanding the BCF in terms of harmonic oscillator wave functions instead of
exponential terms which yields the so-called extended HEOM (eHEOM) method.
In Fig. 4.6 we compare the results from Tang et al. [Tan+15] with the dynamics
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Fig. 4.6: In the high temperature limit environmental influences can be treated via stochastic
forces (stoch. Ham. method, Eq. (4.14)). For the unbiased (ε=0) spin-boson
model the population dynamics obtained from the HOPS, the HEOM and its
extension the eHEOM approach are shown. In the left panel (η = 0.304∆1−s, ωc =
0.531∆, T = 2.09∆, s = 0.5) eHEOM and HOPS match well the reference data
from the stoch. Ham. method, whereas the usual HEOM yields slightly different
dynamics as pointed out in Ref. [Tan+15]. In the right panel (η = 0.192∆1−s,
ωc = 1.33∆, T = 5.21∆, s = 0.5) the zoomed in view of the inset reveals that
the HOPS matches the reference closely, whereas the eHEOM deviates slightly.
Therefore, even more basis function and / or a higher hierarchy depth are required
for the eHEOM approach to yield the same degree of accuracy as the HOPS. For
an additional consistency check, the HOPS was setup also by fitting the non-zero
temperature real valued BCF (red dots) which matches the reference data, too.
The numeric values of the parameters (specified in units of ∆) are given with
accuracy of three digits and correspond to the parameters given in Ref. [Tan+15]
Fig. 5d and Fig. 5b.

obtained by solving the HOPS. Agreement with the reference stochastic Hamiltonian
method is found while still making use of an exponential representation of the BCF.
The difference is that the representation used by the HOPS is obtained by directly
fitting the BCF in time domain (as explained in detail in Sec. 3.2) and not via MTD.
Noteworthily, for the particular example, the eHEOM approach requires 31 basis
functions to decompose the BCF sufficiently well. Also, a hierarchy depth of 6 is
needed for convergence which results in a set of 31.675.182 coupled differential
equations. In contrast, the HOPS has converged for 4 exponential terms and a
hierarchy depth of 5 which yields a set of 252 coupled differential equations only.

Furthermore, considering the parameter set corresponding to the right panel in
Fig. 4.6 a small discrepancy between the eHEOM and the stochastic Hamiltonian
method is observed. However, the fully quantum mechanical calculation using the
HOPS matches the dynamics gained from the stochastic Hamiltonian method very
well, supporting the validity of neglecting the imaginary part of the BCF. Thus, the
eHEOM approach has not fully converged yet for the parameters shown. To check
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Fig. 4.7: The biased (ε = 2.5∆) spin-boson model is considered with parameters η =
0.0272∆1−s, ωc = 2.65∆, T = 10.4∆, s = 0.5 corresponding to the parameters
from Ref. [Tan+15] Fig. 6a. The population dynamics gained from the fully
quantum mechanical calculation using HOPS (green line) decays faster than the
dynamics resulting from the other methods neglecting the imaginary part of the
BCF. This example shows that it is not straight forward to tell a priory whether the
imaginary part of the BCF can be neglected or not. Again, the usual HEOM with a
MTD of the SD yields an even larger discrepancy with respect to the exact HOPS
result.

consistency the HOPS has also been set up for the real valued non-zero temperature
BCF (red dotted line) Re(α(β, τ)) = 1

π

∫∞
0 dω J(ω) coth(βω/2) cos(ωτ) by fitting this

particular BCF which, by construction, reproduces the dynamics from the stochastic
Hamiltonian method exactly. As a reminder the fully quantum mechanical calculation
via the HOPS involves fitting the zero temperature BCF and including temperature in
a stochastic manner similar to the stochastic Hamiltonian method (see Sec. 2.2.2).

These results show that HOPS, which operates in the fully quantum regime, is
very well capable of dealing with high temperature environments with a predom-
inant classical influence (thermal fluctuations) on the quantum system. As of the
stochastic potential approach to include thermal environments (Sec. 2.2.2) this was
expected.

Additionally, in Fig. 4.7 a different set of parameters with a dominating bias ε, weak
coupling and high temperature is shown. In Ref. [Tan+15] Fig. 6a these parameters
serve as an example for the biased SBM. In contrast to the set of parameters
discussed before, the HOPS reveals that the quantum nature of the environment
yields a noticeable contribution to the dynamics. As a consistency check, we also
use the HOPS with only the real part of BCF which yields the expected agreement
with the stochastic Hamiltonian method and the eHEOM. However, invoking the
HOPS with the actual complex valued BCF yields the same oscillatory behavior as
the classic force approximation, however, with a slightly faster decay. Therefore, the
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quantum nature of the bath is important for this particular set of parameters, even
though the temperature is high.

4.4 Strong Coupling – Explicit Methods
(time-dependent Hartree, Davidov)

In addition to the reduced approaches considered so far (master equations and
HEOM) the SBM has been solved by means of explicit methods, too, which approx-
imate the continuous environment by a finite number of discrete modes [ABV07;
WT08; WT10; WG20]. The dynamics of the system and the environmental modes
are solved explicitly such that the reduced dynamics follows simply from tracing out
the environment. The very large dimension of the full Hilbert space is reduced by a
suitable choice of a time depended basis whose dynamics follows from a variational
principle. Among various choices, using a matrix product state representation has led
to the successful ML-MCTDH method [Bec+00; WT03]. The zero temperature case
for a sub-Ohmic environment, considered by Wang et al. [WT10], is highly relevant
for our comparison. As of that we adapt the notation for the coupling strength in
term of the dimensionless parameter α ..= η2ηωs−1

c /π. From the striking agreement
shown Fig. 4.8 we conclude that the HOPS formalism, in combination with the
tweaks discussed in Ch. 3, is indeed applicable in the strong coupling regime with

0 5 10 15 20 25
time t∆̃

−0.4

−0.2

0.0

0.2

0.4

0.6

〈σ
z
〉

HOPS

ML-MCTDH

α = 0.1

α = 0.15

α = 0.2

α = 0.25

Fig. 4.8: The dynamics of 〈σz〉 is shown (s = 0.5, ωc = 10∆̃, ε = 0, T = 0) various coupling
strengths η ≡ παω1−s

c /2. Agreement between the HOPS (colored lines) and the
ML-MCTDH approach (dotted lines) is demonstrated with high precision. The
graphs indicate that for α ≥ 0.2 the asymptotic state is localized. In contrast to
an Ohmic environment, for s < 1 the initial damped oscillations do not vanish
completely, even in the localized phase. A BCF fit minimizing the relative error
up to time 15/∆̃ with 5 terms and an accuracy below 2% was used. Convergence
has been achieved for a simplex hierarchy truncation with depth 5(α = 0.1),
6(α = 0.15), 9(α = 0.2) and 12(α = 0.25) while averaging over 105 stochastic pure
states. Note, parameters are given in units of ∆̃ = ∆/2 and the dimensionless
coupling strength α to match the parameterization used in Ref. [WT10].
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Fig. 4.9: The dynamics of 〈σz〉 is shown (same parameters as in Fig. 4.8) for various
temperatures. The graphs reveal that increasing temperature weakens the initial
oscillations until they vanish completely, which is sensible. Further, non-zero
temperature accelerates the decay towards 〈σz〉 = 0. Thus, it seem plausible that
the critical coupling strength for localization to occur shift to larger values upon
increasing temperature, which is in agreement with results from Ref. [ABV07].

a zero temperature environment while relying on an exponential representation of
the BCF. Also, the strong coupling and zero temperature case is opposing to the
previous discussions concerning weak coupling (Sec. 4.2) and high temperatures
(Sec. 4.3), demonstrating a wide range of applicability for the HOPS method.

Concerning the relevant physics of the dynamics shown in Fig. 4.8, it is well known
that the unbiased SBM exhibits a phase transition at a critical coupling strength
[Leg+87; KM96; Wei08; ABV07]. For weak coupling the ground state is delocalized,
i.e., 〈σz〉 = 0. The particle can be found in either well with equal probability. For a
coupling strength larger than a critical value, the ground state becomes degenerate
with 〈σz〉 = ±c. Remarkably, this degeneracy is also reflected by the asymptotic value
of the dynamics σz(t). Depending on weather the particle is initially prepared in the
right of the left well, σz(t→∞) approaches either +c∞ or −c∞. This means that the
particle is more likely to be found in one of the wells, it is said to be localized. The
critical coupling strength for the qualitative change of the asymptotic state depends
on the parameters modeling the environment such as the exponent s and the cutoff
ωc of the SD. In the limit of a large cutoff frequency ∆/ωc � 1, i.e., a fast decaying
BCF compared to the unperturbed dynamics of the spin, the Non-Interacting Blip
Approximation (NIBA) yields an extensive picture for the dynamics of the SBM
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[Leg+87]. However, if ∆/ωc � 1 does not hold, solving the SBM in the regime of
localization remains challenging, especially for the Ohmic case [WT10; Str+18].

In this spirit, the example shown in Fig. 4.8 deserves notice on its own, too, showing
the transition from delocalization to localization of the asymptotic reduced state. In
addition, the influence of non-zero temperature on the dynamics is shown in Fig.
4.9. For lower temperatures the effect is almost negligible for the initial oscillations
but becomes evident in the long-time behavior suppressing the localization (see the
insets of Fig. 4.9). Further increasing the temperature up to T = ∆̃ results also
in a stronger damping of the initial oscillations and a faster decay towards zero.
Note that due to the enlarged view, small fluctuations of the dynamics originating
from the stochastic nature of the HOPS method become visible. These fluctuations
decrease in amplitude when increasing the number of samples.

4.5 Numeric Futility of the Linear HOPS

In this section we demonstrate that the use of the non-linear variant of the HOPS
(Sec. 2.1.2) becomes nearly inevitable for strong couplings. For α = 0.2 (as in Fig.
4.8) the dynamics of the SBM obtained from the linear HOPS is compared to its
non-linear variant in Fig. 4.10. For 1000 samples already, the fluctuations due to the
stochastic nature of the HOPS method are significantly smaller for the non-linear
HOPS compared to the linear version. Even more severe, increasing the number of
samples by a factor of 20 hardly decrease the fluctuations in the linear formalism.
It seems unfeasible to obtain converged dynamics in particular at times where the
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Fig. 4.10: Comparison of the convergence properties for the linear HOPS (orange line)
and the non-linear HOPS (blue line) in the strong coupling regime (α = 0.2,
s = 0.5, ωc = 10∆̃, ε = 0, T = 0). As reference (gray dashed line) the non-linear
HOPS method with 105 samples was used which coincides well with ML-MCTDH
dynamics.
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dynamics has relaxed. The bad statistical convergence is explained by the unequal
weight with which the stochastic pure state dyads contribute to the reduced state. As
shown in Sec. 2.1.3, this weight corresponds to the squared norm of the stochastic
pure state. Since in the strong coupling regime the norm varies strongly between
different realizations, only a small portion of samples contributes effectively, which
explains the large fluctuation of the orange lines shown in Fig 4.10. In contrast,
the average over the normalized states from the non-linear NMQSD equation yields
dynamics (blue lines) for which the fluctuations cannot be resolved on the scale
shown in Fig. 4.10. Thus, the stochastic convergence is much better.
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5Entanglement Dynamics of the
Two-Spin-Boson Model

The extensive survey concerning the applicability of the HOPS to solve the spin-
boson model (SBM) for Ohmic and sub-Ohmic environments, done in the previous
chapter, has shown that the HOPS serves as universal method. It is, thus, the main
goal of this last chapter to address questions yet to be settled related to the dynamics
of open quantum systems using the HOPS method. The overall scope is the evolution
of entanglement of two qubits coupled to a common environment (see Fig. 5.1
for a sketch of the model). Many aspects of the following investigation have been
published in the Quantum journal [HS20b].

Considering a bipartite system, such as the two qubits sketched in Fig. 5.1, the
superposition principle of quantum mechanics allows for states which cannot be
factorized as a single tensor product of contribution belonging to either of the parties.
Such inseparable states are called entangled states [Hor+09]. As a consequence of
the necessity to considered the state as whole, a local state modification, e.g., a local
measurement, generally alters the whole state and with that the state of other party,
too, no matter how far the two parties have been separated. This phenomenon,
known as Einstein-Podolsky-Rosen-Paradoxon [EPR35], manifests quantum features
not occurring in the classical world. Their experimental realizations (see Ref. [CS78;
AGR82; Hen+15] for a small selection) pave the way to utilize entanglement as a
resource for quantum information tasks [Hor+09] with the aim to ultimately exceed
the capabilities of their classical equivalents [NC00].

qubit A, Hsys = −ωA
2 σ

A
x

Env.

qubit B, Hsys = −ωB
2 σ

B
x

L = σAz L = σBz

Fig. 5.1: The Schematic setup of two independent qubits experiencing an interaction medi-
ated by the common environment is shown. The model extends the usual SBM to
two qubits and, thus, allows us to study the influence of an environment on the
entanglement dynamics.
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The common challenge for all practical implementation exploiting entanglement
are environmental influences which can destroy, but also induce, entanglement. It
has been argued on general grounds that a quantum system can become effectively
classical as a consequence of its interaction with an environment [Zur03]. That
is, the noise induced by the environment causes the superposition state, featuring
entanglement, to loose coherence and eventually approach the classical statistical
mixture featuring no entanglement anymore. This behavior of the reduced dynam-
ics is captured when modeling the environmental influence in terms of a master
equation where the non-unitary contribution leads to decoherence and dephasing,
destroying entanglement [Min+05; YE09]. On the other hand, the interaction with
a common environment also features the capability to induce entanglement [DS98;
Bra02; Kim+02; Isa09; Maz+09], which can even last for arbitrary long times
[BF06; ZQK09; SM13]. For the perturbative master equation regime, the generation
of entanglement can be explained by the environmentally induced unitary contribu-
tion (often called Lamb-shift Hamiltonian) which mediates an effective interaction
between the qubits.

This motivates the following investigation of these non-trivial competing environ-
mental effects. With the exact dynamics from the HOPS at hand, we point at the
pitfalls of perturbative approaches (Sec. 5.1), show unexpected entanglement gener-
ation in the adiabatic regime (Sec. 5.2), demonstrate that a substantial amount of
entanglement is generated for a wide range of model parameters including non-zero
temperature (Sec. 5.3) and analyze the asymptotic entanglement while referring to
the known phase transition of the open two-qubit system (Sec. 5.4).

As particular model the SBM (see also Sec. 4.1) is simply extended by another
spin, in the following called two-spin-boson model (2SBM) [Ort+10; HL16]. The
particular microscopic model Hamiltonian for the open quantum system (as in Eq.
(2.1)) then reads

H = Hsys + L⊗
∑
λ

gλ(aλ + a†λ) +
∑
λ

ωλa
†
λaλ

with Hsys = −ωA2 σAx −
ωB
2 σBx and L = 1

2(σAz + σBz ) .
(5.1)

In spirit of the single SBM, each qubit (A and B) is modeled by the Pauli matrix σx
and tunneling frequency ω (see also Fig. 5.1) assuming no energy bias. Further, no
direct interaction between the qubits is present. If the tunneling frequencies are the
same (ωA = ωB) the qubits are referred to be resonant, otherwise they are called
detuned. The qubits are coupled with equal strength via σz to the common bosonic
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environment. The (sub-) Ohmic SD, introduced in Sec. 3.2, modeling the continuous
environment is reiterated for completeness

π
∑
λ

g2
λδ(ω − ωλ) = J(ω) = ηωse−ω/ωc . (5.2)

To examine the entanglement dynamics, focusing on its generation, the two-qubit
product state |ψ0〉 = |↑〉A ⊗ |↑〉B ≡ |↑↑〉 is chosen as initial condition where |↑〉 (|↓〉)
denotes the eigenvector of σz with eigenvalue +1 (−1). Note that for the unbiased
single qubit Hamiltonian considered here, i.e., no σz contribution in the system
Hamiltonian, the initial state |↓↓〉 yields the same entanglement dynamics. Also, the
symmetry of the resonant Hamiltonian (5.1) (ωA = ωB) results in a decoherence free
subspace spanned by the Bell-state |Φ−〉 ∼ |↑↓〉 − |↓↑〉. Therefore, since the states
|↑↓〉 and |↓↑〉 contain a contribution belonging to this decoherence free subspace, it
is not too surprising that entanglement is effectively generated if they serve as initial
condition [SM13]. For this reason, they are not considered here either.

To quantify the two-qubit entanglement the measure concurrence [HW97; Hor+09]
is used,

c ..= λ1 − λ2 − λ3 − λ4 (5.3)

where λi are the decreasingly sorted eigenvalues of the matrix R =
√√

ρρ̃
√
ρ

with ρ̃ = σAy σ
B
y ρ
∗σAy σ

B
y . Strictly speaking, only the positive values of c quantify

entanglement, however, when comparing the dynamics of c it seems more convenient
to show its negative values, too. As a remark, the meaning of c as an entanglement
measure is inevitably related to the semidefinite positivity of the statistical operator
ρ, i.e., ρ represents a physical state. For negative ρ the meaning of c is futile and c,
as defined above, can become complex valued. This becomes relevant for master
equations well motivated in a perturbative sense which, however, do not guarantee
positivity for the approximate reduced state such as the Redfield equation (RFE)
(see Ref. [Dav20; HS20b] and below).

5.1 Perturbative Master Equations

In a weak coupling regime and/or for a fast decaying BCF the reduced dynamics
of the microscopic model (Eq. (2.1) in general and Eq. (5.1) in particular) can be
obtained approximately by solving a time local ordinary differential equation for
the reduced state, that is, a time local master equation. Various such perturbative
master equations have been proposed based on various assumptions. As of their
simple structure, master equations are valuable, allowing for a fast evaluation and to
gain insights in the relevant mechanisms. However, as we enlighten in the following,
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their range of validity has to be checked carefully, in particular for quantum systems
beyond a single qubit. With reference to the exact dynamics obtained from the
HOPS, the applicability of the quantum optical master equation (QOME) (Born-
Markov approximation and rotating wave approximation (RWA)) [BP07; KC08],
its variation with only a partial rotating wave approximation (PRWA) [VJC13;
Jes+15; TB15], the Redfield equation (RFE) (no RWA at all) [Red57], the very
recent geometric-arithmetic master equation (GAME) (GKSL kind equation based on
the RFE) [Dav20] and a coarse-graining master equation (CGME) [SB08; BFM10;
Maj+13] is examined. The derivation of such master equations can be found in App.
D.

5.1.1 The Rotating Wave Approximation

The great success of the QOME to describe the dynamics of a single qubit encourages
the use of the same formalism for two qubits, too. Since the QOME is of GKSL form
positivity of the reduced state is assured for all times and any initial condition. For
resonant qubits ωA = ωB, the build-up of entanglement and its decay is shown in
Fig. 5.2 and Fig. 5.3 (top panel). The generation of entanglement is easily explained
by the unitary contribution of the QOME (Lamb-shift term, see also App. D.2)

HLamb =Hlocal + S(ωA) + S(−ωA)
8

(
σAz σ

B
z + σAy σ

B
y

)
(5.4)

mediating an effective coupling between the qubits [LW06; STP07; McC+09; SM13].
Here, S denotes the imaginary part of the half sided Fourier transform of the BCF
(see App. B.2 for details). Since the local contribution Hlocal acts on a single qubit
only, it does not influence the entanglement dynamics and is, thus, not further
specified.

Importantly, as of the RWA, for detuned qubits ωA 6= ωB the Lamb-shift term consists
of the local part only. Therefore entanglement generation is not featured by the
QOME for detuned qubits [BFM10] (see 5.2 and Fig. 5.3, middle and lower panel).
However, the exact dynamics obtained from the HOPS shows that for slightly detuned
qubits entanglement is generated in a very similar manner as in the resonant case
(see also Ref. [Fle+10; Ma+12; Eas+16; HS20a] for more detailed discussions on
the severe consequences of the RWA on bipartite correlations). Assuming that the
QOME provides a suitable approximation in some weak coupling regime, it seems
contradictory that an infinitesimal change of the system parameters results in a
significant change of the dynamics. The inconsistency can be resolved by recalling
that a small detuning introduces a new very slow system time scale. Only for a decay
time scale (inverse of the coupling strength) much larger than this slow system
time scale, hence a sufficiently weak coupling, the RWA and therefore the QOME is

94 Chapter 5 Entanglement Dynamics of the Two-Spin-Boson Model



0.0

0.2

ω
B
/ω

A
=

1
co

n
cu

rr
en

ce
−0.02

0.00

0.02

0.0

0.2

ω
B
/
ω
A

=
0
.9

5
co

n
cu

rr
en

ce

−0.02

0.00

0.02

0 1 2 3 4
time tηωsA

0.0

0.2

ω
B
/
ω
A

=
0
.8

co
n

cu
rr

en
ce

0 5 10 15 20
time tηωsA

−0.02

0.00

0.02

ηωs−1
A /π = 0.01 exact QOME PRWA

Fig. 5.2: The entanglement dynamics obtained from the QOME, the PRWA approach and
the HOPS is shown for a sub-Ohmic environment (s = 0.3, ωc = 10ωA, ηωs−1

A /π =
0.01). The short-time dynamics (left column), long-time dynamics (right column)
and different detunings ωB/ωA (rows) are considered. Note that the QOME and
the PRWA coincide in the resonant case. Whereas the QOME does not predict the
entanglement generation for detuned qubits, the PRWA approach shows overall
agreement with the exact dynamics. Both master equations yield a vanishing
asymptotic entanglement, which is in contrast to the exact finite value.

applicable. This highlights that the applicability of the QOME depends crucially on
the system parameters. Only in the limit of zero coupling (in combination with a
rescaled time, the so called scaling, van Hove or Davies limit) the QOME becomes
exact [Dav76; SL07]. This also means, that for a sufficiently weak coupling strength
the entanglement generation vanishes for any detuning, but remains in the resonant
case. This feature can, to some extent, be seen by the exact dynamics for the weak
coupling example shown in Fig. 5.2.

As of the severe problems for the detuned case, other perturbative approaches
circumventing the RWA are considered next. A first one, very similar to the QOME,
makes use of the RWA only partially [VJC13; Jes+15; TB15] which results in a
master equation of GKSL kind also. The resulting equation, for any kind of detuning,
involves the same non-local Lindblad operators occurring in the QOME for resonant
qubits (see App. D.3). Henceforth, the Lamb-shift term is non-local and features
entanglement generation also in the detuned case. The PRWA for the 2SBM rests on
the assumption that S(ωA) ≈ S(ωB) which is best fulfilled for a small detuning.
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Fig. 5.3: The entanglement dynamics is shown for the same parameters as in Fig. 5.2, except
for a larger coupling strength ηωs−1

A /π = 0.0316. As expected, larger deviations
from the exact dynamics are evident. For the initial dynamics the PRWA still yield
acceptable results.

The initial entanglement dynamics obtained from the PRWA master equation agrees
quantitatively, up to some fast oscillation, with the exact dynamics obtained by the
HOPS method (see Fig. 5.2 and Fig. 5.3). The fast superimposed oscillation are not
captured because the PRWA still neglects some secular terms. Keeping all secular
terms yields the RFE considered next. Both, the QOME and the PRWA approach
yield a vanishing asymptotic entanglement which is in disagreement with the exact
dynamics.

5.1.2 The Redfield Equation

It has been argued that for an initial product state of the system and the environment
a physically consistent reduced dynamics is necessarily completely positive [Pec94;
AL07]. Consequently, if the reduced dynamics is governed by a master equation, that
master equation needs to be of GKSL form [Lin76]. Since the RFE (see App. D.1) is
not of that form, at first glance it may disqualify as a suitable evolution equation.
However, in terms of a perturbative treatment of the microscopic open system
Hamiltonian [Eq. 2.1], the RFE involves less approximations compared to the QOME
/ PRWA. Therefore, although positivity of the reduced state is not guaranteed, the
resulting dynamics can be expected to approximate the exact dynamics with higher
accuracy. For two qubits and a common Lorentzian environment, we have confirmed
this expectation in Ref. [HS20a] (not included here). Notably, when also using time
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Fig. 5.4: The absolute value of the smallest negative eigenvalue is shown (blue lines) along
with the error of the reduced state obtained from the RFE (orange lines). The
error is quantified by means of the Hilbert-Schmidt-norm. Since the negative
contribution to the reduced density matrix is small compared to the error, the
matrix

√
ρρ† which is positive by construction, approximates the exact state on

the same level of accuracy (black dots). The same environmental parameters as in
Fig. 5.2 were used.

dependent coefficients for the RFE (see also App. D.1), we found that a violation of
positivity occurs only in the regime where the Redfield formalism is not applicable
anyway. Therefore, the violation of positivity should not be seen as a defect but rather
as a hallmark signaling the breakdown of the involved approximations [HS20a].

Unfortunately, for (sub-) Ohmic environments, as considered here, this feature is
missing. It can be seen in Fig. 5.4 that the reduced state develops a negative eigen-
value after some time, even in the regime where the error between the perturbative
RFE and the exact HOPS dynamics is small (here ≈ 1%). For such “states” with
a negative eigenvalue it is ambiguous to calculate the concurrence. However, the
plots in Fig. 5.4 also reveal that the magnitude of the negative eigenvalue remains
significantly smaller than the error of the Redfield dynamics. It is, thus, consistent
within a perturbative treatment to use the positive matrix R ..=

√
ρρ† as approxima-

tion for the reduced state and estimate the concurrence based on R (see Fig. 5.5
for an example). The deviation of ρ and R from the exact state, shown in Fig. 5.4,
is indistinguishable. As a remark, R is not necessarily normalized. However, the
deviation of the norm from unity is of the order of the negative eigenvalues.

Including these considerations when quantifying the entanglement by means of
the concurrence, the dynamics shown in Fig. 5.6 confirms that the high degree
of accuracy of the RFE also holds for the sub-Ohmic environment considered here.
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Fig. 5.5: The evolution of the concurrence and the smallest eigenvalue (scaled by a factor
of 100) of the “reduced state” obtained using the RFE with time dependent
coefficients is shown. When the eigenvalue turns negative, it is consistent within
the perturbative treatment to base the concurrence on the positive matrix

√
ρρ†

which coincides with ρ for positive ρ. The same environmental parameters as in
Fig. 5.2 were used with ηωs−1

A /π = 0.0316.

In particular, the initial build-up of entanglement agrees very well with the exact
dynamics, independent of the detuning. In contrast to the PRWA, the fast oscillations
are featured with high precision. Although the asymptotic entanglement is non-
zero, it deviates from the exact value. Notably, the exact value of the asymptotic
entanglement increases linearly with the coupling strength (see Sec. 5.4). So does
the overall error of the RFE, with or without time dependent coefficients, which
is reflected especially by the accuracy of the long-time dynamics [HS20a]. As a
consequence, even though the RFE is the most accurate among the perturbative
approaches considered here, it cannot predict the dependence of the asymptotic
state on the coupling strength correctly. That is, the slope of the linear dependence
of the asymptotic entanglement on the coupling strength is not accessible by the
RFE.
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Fig. 5.6: The entanglement dynamics obtained from the RFE (ρ →
√
ρρ†), the GAME

and the exact HOPS is shown for the same parameters as in Fig. 5.3. For all
three detuning parameters the RFE matches the exact dynamics very well over a
significant period of time. For longer times deviations become apparent. Although
slightly less accurate, the GAME yields similar results.

5.1.3 Geometric-Arithmetic Master Equation

In a recent publication the failure to quantify entanglement of a non-positive state in
an approximative sense has been addressed as well [Dav20]. The proposed GAME
(see also App. D.5) modifies the RFE such that it becomes a master equation of GKSL
type. Crucially, the environmentally induced unitary influence on the system is iden-
tified from the RFE before the additional approximation is applied. The justification
of the GAME is based on the relaxation time scale in the interaction picture, roughly
given by the inverse of the coupling strength, and properties of the SD only. In con-
trast to the QOME, the particular spectrum of the system Hamiltonian is irrelevant.
It is, thus, expected and confirmed in Fig. 5.6 that the entanglement generation
is well captured for any detuning of the qubits. The GAME mimics also the fast
oscillations of the entanglement dynamics, however, slightly less accurate compared
to the positive matrix constructed from the RFE dynamics (see Fig. 5.7). Since the
GAME is based on the RFE, it is consistent that the asymptotic entanglement deviates
from the exact value on the same scale as the RFE result (see Fig. 5.6), although
the value is overestimated. The comparison with the GAME results in the conclusion
that the positivity issues related to the quantification of entanglement can be cured
slightly more accurate using the Redfield formalism with

√
ρρ† approximating the

reduced state than applying the additional approximation invoked by the GAME.
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√
ρρ† is used as approximation for the reduced state. For both approaches,

the error of the concurrence (blue and orange lines) exceeds the error of the state
(green and red lines) only marginally. The RFE is slightly more accurate compared
the GAME. Nonetheless, the GAME outperforms the other GKSL kind equations
considerably (not shown here).

5.1.4 The Coarse-Graining Master Equations

An alternative path towards a master equation for the microscopic model which
assures positive dynamics is the so-called coarse-graining procedure [SB08; BFM10;
Maj+13] (see also App. D.4). It has been proposed precisely with the aim to
overcome the limitations due to the RWA. For two detuned qubits the generation of
entanglement has been demonstrated using such a CGME [BFM10]. However, the
quantitative comparison for a sub-Ohmic environment with s = 0.3 and ωc = 10ωA
(see Fig. 5.8 and Fig. 5.9) shows that the CGME does not reach the accuracy
of the PRWA and the GAME. The error is related to the applicability condition
τenv � τ � τind discussed in App. D.4 and Ref. [HS20a]. Since the timescale of
the induced dynamics can be estimated from the exact entanglement dynamics, the
separation of time scales can be checked explicitly. For the case with ηωs−1

A /π = 0.01
(Fig. 5.8) it follows τind ≈ 0.5/(ηωsA) ≈ 16ω−1

A . Although the decay time of the BCF
scales with the cutoff frequencies τenv ∼ ω−1

c the particular time at with the BCF has
decayed over, for example, 2 orders of magnitude is τenv,2 ≈ 102/(s+1)ω−1

c . For the
example considered here it follows τenv,2 ≈ 3.5ω−1

A . Obviously, there exists no coarse
graining parameter τ such that a clear separation of the three timescales is justified.
For the even stronger coupling ηωs−1

A /π = 0.0316 shown in Fig. 5.9 the time scale
of the dynamics τind ≈ 5ω−1

A becomes even smaller, which is directly reflected in a
larger error.
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the GAME and the exact dynamics (same environmental parameters as in Fig. 5.2).
Since the QOME is applicable in the resonant case it is not surprising that for large
coarse-graining parameters τ the CGME yields good results, too. For the detuned
case the entanglement generation is still visible, in contrast to the QOME (not
shown). However, the PRWA and the GAME agree better with the exact results.
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of the inaccurate dynamics. For the largest detuning considered ωB/ωA = 0.8, no
coarse graining parameter τ yields in an acceptable agreement for the dynamics.
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5.1.5 Summary

As expected, the approach with the least approximations, namely the RFE with
time dependent coefficients, yields the most accurate results for the entanglement
dynamics of two qubits coupled to a common sub-Ohmic environment. Positivity
violations can consistently be healed by using the positive matrix

√
ρρ† to estimate

the concurrence. The PRWA, which coincides with the QOME in the resonant case,
yields the correct overall dynamics while missing faster oscillations. The CGME
is less appropriate for the set of parameters considered here. The recent GAME
outperforms the other GKSL type master equations in terms of accuracy. Even the
fast superimposed oscillation are captured, however, slightly less accurate compared
to the RFE.

Both, the PRWA master equation as well as the GAME qualify as a suitable approxi-
mation scheme to describe the entanglement dynamics of the 2SBM, also for detuned
qubits. As of the GKSL structure of the master equation the unitary as well the dissi-
pative contribution can be calculated explicitly (see App. D). This allows one to use
these approaches together with the exact results to elucidate the influence of the
counterterm on the entanglement dynamics in the next section. Notably, none of the
perturbative approaches predicts the asymptotic value of the entanglement correctly.
It will be shown in Sec. 5.4 that the exact asymptotic entanglement scales linearly
with the coupling strength. Although the RFE as well as the GAME show a linear
behavior, too, they cannot predict the slope correctly. This is in fact expected since
the overall error of the perturbative approaches scales linearly with the coupling
strength, too [FC11; HS20a; Dav20; Tup+21], i.e., the reduced state, and with that
the entanglement dynamics, is correct up to zeroth order only.

5.2 Influence of the Counterterm

To recapitulate the expression for the counterterm, which is intended to compensate
the environmentally induced unitary effect on the system dynamics, a particle with
position q and momentum p moving in a potential V (q) and coupled to a set of
harmonic oscillators with position (momentum) xλ (pλ) is considered. The linear
coupling −

∑
λ Fλ(q)xλ to the environmental modes does not only result in damping

but also contributes to the potential affecting the particle. It has been argued that in
the adiabatic regime (instantaneous adjustment of the environmental modes to the
particle position) the effective potential becomes [Wei08]

Veff(q) = V (q)−
∑
λ

Fλ(q)2

2mλω
2
λ

. (5.5)
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For a mode independent coupling operator Fλ(q) = cλF (q), as in Eq. (5.1), the
Hamiltonian

H = p2

2M + V (q) +
∑
λ

 p2
λ

2mλ
+ mλω

2
λ

2

(
xλ −

cλ
mλω

2
λ

F (q)
)2
 (5.6)

compensates the change of the potential in the adiabatic regime.

It is plausible that the same line of reasoning holds true, too, when casting the
above Hamiltonian to the more abstract form of the 2SBM Hamiltonian [Eq. (5.1)],
as assumed also in Ref. [KA14]. In that case the induced change of the potential
corresponds to the so-called Lamb-shift Hamiltonian contributing to the system
Hamiltonian. Expressions for this Lamb-shift Hamiltonian can be deduced from the
perturbative master equations considered in the previous Sec. 5.1 and are given
explicitly for the PRWA [Eq. (D.23)] and the GAME [Eq. (D.42)] in the Appendix.
In the adiabatic regime it is expected that this unitary environmental influence is
compensated by the so-called counterterm Hc corresponding to the above change of
the potential. Therefore, Hc is said to renormalize the system Hamiltonian. Using
the relations gλ

√
2mλωλ = cλ and L = −F (q) yields as general expression

Hc ..=
∑
λ

c2
λF (q)2

2mλω
2
λ

=
∑
λ

g2
λ

ωλ
L2 = 1

π

∫ ∞
0

dω J(ω)
ω

L2 . (5.7)

For the class of (sub-) Ohmic SD, as given in Eq. (5.2), the counterterm evaluates to

Hc = 1
π
ηωscΓ(s)L2 . (5.8)

It follows that if the entanglement generation of two non-interacting qubits in contact
with a common environment is primarily due to the environmentally induced unitary
interaction, i.e., the Lamb-shift Hamiltonian, as indicated in the previous Sec. 5.1,
then it is expected that including the counterterm will suppress the generation of
entanglement in the adiabatic regime. In the following we will show and explain
that this is indeed the general behavior. However, for a deep sub-Ohmic environment
(s < 0.5) the adiabatic regime is reached much slower compared to the Ohmic case,
i.e., a significantly larger cutoff frequency ωc is required to reach the regime where
the counterterm cancels the Lamb-shift Hamiltonian effectively. Remarkably, for
two resonant qubits and a deep sub-Ohmic environment we report the anomalous
behavior that even in the adiabatic limit (ωc →∞) entanglement generation due to
the Lamb-shift Hamiltonian remains significant when including the counterterm in
the microscopic model. Thus, an effective cancellation is never observed.
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Fig. 5.10: The influence of the countertermHc on the entanglement dynamics for two qubits,
distinguishing the resonant (upper panels) and the detuned case (lower panels), is
shown. The parameter s of the (sub-) Ohmic environment (ωc = 10ωA) is lowered
from left to right. Also, two different coupling strengths η are considered. For the
weak and intermediate coupling strength shown, an effect of the counterterm is
evidently visible in the Ohmic case (s = 1), however, it diminishes in the deep
sub-Ohmic regime.

The effect of the counterterm on the entanglement dynamics obtained from the exact
HOPS propagation is shown in Fig. 5.10 for various parameters s of the SD, two
different coupling strengths and detuned as well as resonant qubits. A preliminary
look reveals that whereas for s = 1 and s = 0.8 the initial build-up of entanglement
is suppressed significantly, the entanglement generation remains nearly unchanged
for s = 0.3, independent of the other parameters under consideration. Since within
the HOPS formalism it is not obvious how to distinguish between the unitary (Lamb-
shift) and the dissipative influence of the environment, a clear relation between the
unitary contribution and the counterterm cannot be established at this stage.

Thus, to further enlighten the relevant mechanisms, we focus on weak coupling
where perturbative approaches (see Sec. 5.1 and App. D), with a clear expression
for the Lamb-shift and the dissipative contribution, are applicable. In that way the
effect of the Lamb-shift Hamiltonian and the dissipator can be considered separately.
The top row in Fig. 5.11 shows, again, the entanglement dynamics without the
counterterm (gray lines) where a significant amount of entanglement generation
is observed on an initial time scale. Note that the general case of two detuned
qubits is considered. This initial phase coincides well with the joint unitary dynamics
of the system and the Lamb-shift Hamiltonian (green lines), yielding the periodic
entanglement dynamics shown in the middle row of Fig. 5.11. This allows for
the conclusion that the initial major build-up of entanglement has its origin in
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Fig. 5.11: The entanglement dynamics of the 2SBM (upper row, with and without Hc), and
the entanglement due to the joint unitary dynamics of the system and Lamb-
shift Hamiltonian, with and without Hc, is shown (detuned qubits: middle row,
resonant qubits: lower row). If the exact entanglement dynamics including the
counterterm (blue lines) is well mimicked by the action of the system Hamiltonian
and the dissipator only (orange dashed lines), it can be concluded that the
counterterm compensates the induced Lamb-shift contribution to some extend.
As shown, the degree of compensation depends crucially on the parameter s of
the SD. Further, the compensation is shown consistently by the joint unitary
dynamics. The parameters for the 2SBM read ηωs−1

A /π = 0.0178, ωc = 10ωA and,
for the detuned case, ωB = 0.95ωA.

the environmentally induced Lamb-shift Hamiltonian. The additional dissipative
effects reduce the amount of entanglement over time. Including the counterterm
to the unitary contribution (purple lines) has different effects depending on the
parameter s of the SD. Whereas for the Ohmic case (s = 1) the amplitude of the
periodic entanglement pattern is suppressed significantly, it is marginally influenced
in the deep sup-Ohmic regime (s . 0.5). This is consistently reflected by the
exact entanglement dynamics including the counterterm (blue lines) which, in the
Ohmic case, is mimicked well by the entanglement dynamics under the action of the
dissipator only (dashed orange lines), which means that the Lamb-shift Hamiltonian
and the counterterm nearly cancel each other. In contrast, for the deep sub-Ohmic
regime, the dissipator-only dynamics behaves entirely different compared to the exact
dynamics including the counterterm, thus, the counterterm does note compensate
the induced Lamb-shift contribution.

Before we explain this behavior, several remarks are worth noting. First, as shown
by the bottom row of Fig. 5.11, for resonant qubits the entanglement dynamics
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due to the joint unitary evolution including the counterterm (Hsys + Hlamb + Hc,
purple lines) nearly reaches one. This is in contrast to the detuned case where the
amplitude of the entanglement dynamics becomes small. For the Ohmic case s = 1,
however, the rate at which entanglement is generated in the microscopic model
including the counterterm is slow compared the case without the counterterm and,
even more importantly, slow compared to the timescale of the dissipation. Thus,
the generation of entanglement is suppressed effectively, as seen also for the exact
dynamics shown in the upper row of Fig. 5.10. Notably, the rate at which the
entanglement is generated, including the counterterm, increases while decreasing
s. For s = 0.3 this rate becomes even larger under the action of the counterterm. It
seams reasonable that this rate corresponds to the difference between Hlamb and
Hc and, thus, reflects how well the two terms compensate each other. A further
investigation on this hypothesis follows below.

A second remark concerns the Lamb-shift Hamiltonian which generally depends on
the system Hamiltonian. Consequently, the microscopic model with and without
the counterterm yields different Lamb-shift Hamiltonians. However, since in the
weak coupling regime the counterterm (Hc ∼ η, Eq. (5.8)) is small compared to the
system Hamiltonian, the leading order of the Lamb-shift Hamiltonian is independent
of the counterterm.

As a final remark, the exact form of the Lamb-shift Hamiltonian and the dissipator
depends on the particular master equation. Based on the discussion of the previous
Sec. 5.1, the PRWA and the GAME may be employed which both yield to the agreeing
results shown in Fig. 5.11. Since the RFE is not of GKSL form it does not reveal the
unitary and the dissipative contribution unambiguously.

Nonetheless, the RFE can still be used to understand the compensation of the Lamb-
shift Hamiltonian and the counterterm in general and to explain the sensitivity of
that compensation on the parameter s of the SD. Using asymptotic coefficients, the
RFE reads (see App. D.1)

ρ̇(t) = −i[Hsys, ρ(t)] +
∑
i

(F (ωi)[Lωiρ(t), L] + h.c.) . (5.9)

The real part of F (ω) =
∫∞

0 dτ αbcf(τ)eiωτ = J(ω) + iS(ω), which corresponds to
the SD, accounts for dissipation whereas the imaginary part determines the unitary
contribution, which is of relevance here. Under the assumption that the particular
values S(ωi) can be approximated by S(0) (recall ωi takes the value of all possible
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transition frequencies of the system Hamiltonian) the corresponding contribution in
the RFE becomes

i
∑
i

(S(ωi)[Lωiρ(t), L] + h.c.) ≈ −iS(0)[L2, ρ(t)] , (5.10)

where it has been used that by definition L =
∑
i Lωi .

Using the equivalent Cauchy principal value P expression for S(ω), which is based
on the SD rather than the BCF,

S(ω) = − 1
π
P
∫ ∞
−∞

dω′ J(ω′)
ω′ − ω

, (5.11)

yields that the above approximate unitary contribution is exactly the negative of
the counterterm. Therefore, given that S(ωi) ≈ S(0) holds the unitary contribution
in the perturbative treatment (Lamb-shift term) is approximately canceled by the
counterterm

HLamb ≈ S(0)L2 = − 1
π

∫ ∞
0

dω′ J(ω′)
ω′

L2 = −Hc . (5.12)

For the class of (sub-) Ohmic SD the validity of the assumption S(ωi) ≈ S(0) depends
on the parameter s in a very sensitive way. To see that, it is convenient to expand
the function S(ω) around ω = 0. Expressing F (ω) analytically and expanding the
incomplete gamma function for small values x ..= ω/ωc yields (see App. B.2.1)

S(ω) =− ηωscΓ(s)
π

e−xf(s, x)

f(s, x) =

1 + sg(s, x)Γ(−s)|x|s+ sx
s−1 +O(x2) s < 1

1− x ln(|x|) + (1− eγ)x+O(x2) s = 1

g(s, x) = cos(πs)Θ(x) + Θ(−x)

(5.13)

where eγ denotes the Euler–Mascheroni constant and Θ the Heaviside step function.
The expansion shows that the leading order behaves like |w|s in the sub-Ohmic and
w log(|w|) in the Ohmic case (see Fig. 5.12 for examples). In addition, for positive x
the term ∼ |x|s changes its sign at s = 0.5 which results in a pointed minimum at
S(0) for s < 0.5.

It follows that the approximation S(ωi) ≈ S(0) becomes better when increasing ωc
since f = 1 +O(|ω/ωc|s). However, the approximation becomes significantly worse
when changing from the Ohmic (s = 1) to the deep sub-Ohmic (s < 0.5) regime.
This behavior explains that the cancellation of the Lamb-shift by the counterterm
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BCF S(ω) is shown for different parameters s and ωc = 10ωA. (solid lines: exact
analytic expression, dashed lines: expansion around zero, dots: numeric Fourier
integral)

fails spectacularly for small s and the cutoff frequency ωc = 10ωA considered in the
above examples.

Nonetheless, the above reasoning suggests that in the limit ωc → ∞, where the
approximation S(ωi) ≈ S(0) becomes exact, the counterterm should truly cancel the
Lamb-shift contribution also in the deep sub-Ohmic regime. For two detuned qubits
this behavior is confirmed by the example shown in the left column of Fig. 5.13. The
entanglement dynamics (red lines) approaches the purely dissipative dynamics (blue
lines) when increasing the cutoff frequency. The unitary effect of the Lamb-shift
Hlamb (green lines) is compensated by the counterterm Hc (orange lines) where
the degree of compensation increases with the cutoff frequency ωc (top to bottom).
Therefore, the entanglement induced by the Lamb-shift Hamiltonian vanishes in the
adiabatic limit ωc →∞.

Remarkably, this does not hold true for resonant qubits (see right column in Fig.
5.13). To affirm that this effect remains even in the adiabatic limit it can be argued
as follows. The remaining Hermitian contribution HLamb +Hc scales in lowest order
like

∆S = S0 − S(ωA) ∼ S0

(
ωA
ωc

)s
(5.14)

which sets the timescale on which the remaining environmentally induced unitary
interaction takes place. Obviously, increasing ωc while keeping S0 constant increases
that timescale which could mean an effective cancellation if the damping takes place
on a faster time scale. It turns out, however, that this is not the case since the
damping rate γ, determined by the SD at ωA, scales with ωc in the same manner.
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Fig. 5.13: The entanglement dynamics (including the counterterm) is shown (red lines) for
a sub-Ohmic environment with s = 0.3 and |S(0)|/ωA = 0.03 = ηωscΓ(s)/ωA/π
while increasing the cutoff frequency ωc from top to bottom, hence η decreases.
As expected, for detuned qubits increasing ωc results in a more effective com-
pensation of the Lamb-shift contribution by the counterterm (orange lines).
Consequently, the exact entanglement dynamics (red lines) approaches the dy-
namics obtained by the action of the dissipator only (blue lines). Remarkably, for
resonant qubits (right column) this expectation is not fulfilled. In that case the
joint unitary dynamics Hsys +HLamb +Hc (orange lines) builds up entanglement
on the same time scale as the dissipation takes place, independently of the cutoff
frequency ωc. The exact dynamics cannot be mimicked by the dissipator only
dynamics (blue lines). This qualitative difference originates from the time scale
set by the detuning which is independent of ωc (gray vertical lines). Note, this
time scale decreases on the rescaled time tηωsA while increasing ωc. Since the
entanglement dynamics of the joint unitary part is periodic on that time scale,
but the build-up takes place on the time scale set by ∆S ∝ S0 (constant on the
rescaled time), the generation of entanglement is effectively suppressed. In the
limit of zero detuning that time scale becomes infinite. i.e., it is not present.´

This can be seen by expressing the coupling strength in terms of S0 and expanding
the SD in lowest order in ωA/ωc

γ ∼ J(ωA) ∼ S0

(
ωA
ωc

)s
. (5.15)

As a remark, in the adiabatic limit, the rate for the entanglement generation as well
as the damping rate becomes infinitely slow. Therefore, taking the limit ωc → ∞
while keeping S0 constant makes sense only in combination with a rescaled time
t · (ωA/ωc)s, similar to the scaling limit of the QOME.
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In summary, we find the counter-intuitive result that for two resonant qubits and a
sub-Ohmic environment the effect of the Lamb-shift contribution is not compensated
by the counterterm, even in the limit ωc → ∞ which is usually considered the
adiabatic limit. Consequently, entanglement generation beyond the purely dissipative
contribution remains for any ωc. This, in particular, stays in contrast with the results
presented in Ref. [KA14]. The authors claim that for sufficiently weak coupling the
model including the counterterm (as in Eq. 5.6) does not result in any entanglement
generation for the two qubits.

5.3 Strong Coupling

In this section we calculate the entanglement dynamics of the 2SBM beyond the
perturbative regime. Noteworthily, the presumably exact treatment of the 2SBM
by means of other numerical methods can be found in the literature with primary
focus on the phase transition (delocalization to localization, see also next Sec. 5.4)
[Ort+10; Bon13; WR14; HL16; Zho+18] as being a reminiscence of the well studied
(single) SBM. In a recent work by N. Zhou et. al [Zho+18] noticeable difference
between various approaches are addressed. Thus, we regard our exact results
obtained utilizing the HOPS as a significant contribution to the field. This is further
underlined by explicitly finding disagreement with path integral Monte Carlo results
from Ref. [KA14] (not shown here). Besides that, the investigation of the dynamics
of the 2SBM usually includes an explicit qubit-qubit interaction [Ort+10; WYS13] of
an a-priory given strength. Here, however, we retain the case of no direct interaction
where only the continuous environment mediates an effective interaction featuring
the buildup of entanglement and its persistence. Of course, in case of including the
counterterm [Eq. 5.8], a direct qubit-qubit interaction is present. Still, its strength is
not a free parameter but scales with the coupling strength.

First, an environmental initial condition of zero temperature is considered, while
varying the coupling strength, the detuning and the parameter s of the SD. The
plots shown in Fig. 5.14 show various aspects. In general, a significant amount of
entanglement builds up. The overall generation of entanglement is accompanied by
oscillations with a time scale set by the system Hamiltonian, i.e., ∼ ω−1

A , resulting
in the known phenomenon of sudden death and revivals of entanglement [YE09;
Maz+09; WYS13]. Recalling the discussion about the perturbative approaches
(Sec. 5.1), for detuned qubits and a sufficiently weak coupling, entanglement is not
generated. This tendency is seen already in the plots shown in Fig. 5.14. Beyond the
weak coupling regime the detuning has only a minor influence on the entanglement
dynamics. The kind of environmental model, i.e., sub-Ohmic (s = 0.3) or Ohmic,
primarily effects the time scale of the initial entanglement dynamics. For the Ohmic
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Fig. 5.14: The entanglement dynamics of the 2SBM is shown for a zero temperature initial
environmental state and a fixed cutoff frequency ωc = 10ωA while varying the
coupling strength η, the detuning ωB/ωA and the parameter s of the SD. Except
for the case of detuned qubits and weak coupling, due to the environmental
influence a significant amount of entanglement develops, followed by oscillatory
behavior and a non-vanishing asymptotic value.

environment, a full period of entanglement growth and decrease, due to the joint
unitary effect of the system and the Lamb-shift Hamiltonian (compare Fig. 5.11),
is visible before relaxational contributions dominate the dynamics. In case of the
sub-Ohmic environment the entanglement build-up is slower which also results in a
smaller maximum amount of entanglement being generated. This can be understood
as follow. Whereas the relaxation towards the asymptotic state takes place on
roughly the same time scale, the rate at which entanglement is generated initially
can be inferred from the Lamb-shift Hamiltonian whose magnitude scales with S(ω)
(imaginary part of the half-sided Fourier transform of the BCF). It is shown in App.
B.2 that for small ω/ωc the function S(ω) scales with ηωscΓ(s). As a consequence,
for the example shown in Fig. 5.14 choosing ωc = 10ωA, the magnitude of S(ω),
and with that the rate at which entanglement is generated, differs roughly by a
factor of two (see also Fig. 5.12) with respect to the sub-Ohmic and the Ohmic SD.
In contrast, for a very strong coupling ηωs−1

c & 0.5 and ωc = 10ωA the sub-Ohmic
environment features a larger amount of maximum entanglement compared to the
Ohmic case. However, for strong coupling the overall dynamics hardly depends
on the parameter s nor the detuning. In addition it is seen in Fig. 5.14 that the
asymptotic entanglement exhibits a maximum (details in Sec. 5.4).
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Next, the influence of the counterterm (see Sec. 5.2 for model details) beyond the
weak coupling regime is shown in Fig. 5.15. As observed already for weak coupling,
its effect for a sub-Ohmic environment is significantly less compared to an Ohmic
one. In any case, rich entanglement dynamics is observed, featuring the initial
build up of entanglement, followed by oscillatory behavior with complete loss of
entanglement and a non-vanishing asymptotic value. In this sense the dynamics is
very similar to the model without the counterterm. All of this is plausible because
the parameters considered, i.e., strong coupling and a cutoff frequency which is not
too large (ωc = 10ωA), are far away from the adiabatic regime.

Furthermore, the temperature dependence of the entanglement dynamics is shown
in Fig. 5.16. In general, increasing the temperature of the initial environmental
Gibbs state lowers the amount of entanglement which develops over time. This
behavior seems intuitive since increasing the temperature amounts to more states
contributing to the statistical mixture of the Gibbs state. Still, for the examples
shown in Fig. 5.16, where the thermal energy is smaller or comparable to the single
qubit energy T . ωA , initial entanglement build-up can be observed. Of course,

0.00

0.25

0.50

η
ω
s
−

1
A

=
0
.0

56

c(
t)

s = 0.3 s = 1

0.00

0.25

0.50

η
ω
s
−

1
A

=
0
.4

2

c(
t)

0.0 2.5 5.0 7.5 10.0
time tηωsA

0.00

0.25

0.50

η
ω
s
−

1
A

=
0
.8

6

c(
t)

0.0 2.5 5.0 7.5 10.0
time tηωsA

including Hc without Hc

Fig. 5.15: The entanglement dynamics of the 2SBM is shown, highlighting the differences
between the model with and without the counterterm. Here we show the general
case of slightly detuned qubits ωB/ωA = 0.95 for a zero temperature initial
environmental state and a cutoff frequency ωc = 10ωA. The expected suppression
of entanglement generation can partly be observed for the Ohmic case (s = 1).
However, in case of strong coupling and/or a sub-Ohmic SD, its effect is far from
counteracting the build-up of entanglement.
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Fig. 5.16: The entanglement dynamics of the 2SBM is shown for different temperatures
of the initial environmental Gibbs state. As in Fig. 5.15, slightly detuned
qubits ωB/ωA = 0.95 and a cutoff frequency ωc = 10ωA are chosen as example.
The sensible tendency that increasing temperature results in less entanglement
generation can be seen nicely.

revivals appear less prominent or not at all. Nonetheless, the calculation shows
that environmentally induced entanglement generation is far from being a zero
temperature phenomenon.

5.4 Asymptotic Entanglement

As already mentioned in the previous section and shown for example in Fig. 5.14,
the two qubits relax towards an asymptotic state which exhibits entanglement. The
properties of this so-called asymptotic entanglement are discussed in this section.

If the coupling is not too strong ηωs−1
A . 0.3 the plots in Fig. 5.17 suggest that in

general the asymptotic entanglement increases linearly with the coupling strength,
where in the limit η → 0 the asymptotic entanglement vanishes. This seems plausible
since it corresponds to the case of two non-interacting isolated qubits. This is also
consistent with the widely used perturbative approach involving the full rotating
wave approximation (RWA), which becomes exact in that limit of zero coupling
strength (see also Sec. 5.1.1). It is known that the resulting QOME yields the local

5.4 Asymptotic Entanglement 113



10−1 100

10−2

10−1

100

as
ym

p
to

ti
c

en
ta

n
gl

em
en

t
ωB/ωA = 1

10−1 100

coupling strength ηωs−1
A

ωB/ωA = 0.95

10−1 100

ωB/ωA = 0.8

s = 0.3 no Hc s = 0.3 with Hc s = 1 no Hc s = 1 with Hc

Fig. 5.17: The asymptotic entanglement (concurrence) is shown as a function of the cou-
pling strength. The linear dependence (black dashed lines) in the weak coupling
regime is well visible. Although the magnitude is effected when including the
counterterm, remarkably, the linear dependence remains. Beyond the weak
coupling regime, whereas a maximum is reached without the counterterm, the
asymptotic entanglement increases further and eventually saturated when includ-
ing the counterterm. Notably, the asymptotic behavior is largely independent of
the detuning of the qubits, which does not hold true for the dynamics in general
(ωc = 10ωA).

Gibbs ensemble as asymptotic state [BP07] which is, for two non-interacting qubits,
a separable state.

The plots shown in Fig. 5.17 further reveal that the asymptotic entanglement is
nearly independent of the detuning. This is remarkable when recalling that in the
weak coupling regime the actual dynamics depends strongly on the detuning (see Fig.
5.14). In addition, the effect of the counterterm on the asymptotic entanglement
is shown, too. Similar to the influence on the dynamics discussed in Sec. 5.2,
for an Ohmic environment including the counterterm suppresses the asymptotic
entanglement, here, by roughly a factor of 10. In contrast, in the sub-Ohmic case
s = 0.3 the value is slightly increased, which seems counter intuitive, but has been
explained in Sec. 5.2.

Beyond this linear regime, the presence of the counterterm results in a different
qualitative behavior. Whereas without the counterterm the asymptotic entanglement
reaches a maximum, it increases further and eventually saturates when the countert-
erm is present. Note, this qualitative difference is shown in light colors in Fig. 5.14
only, indicating that the results might not have fully converged yet in terms of numer-
ics (see below). Nonetheless, the overall trend can be deduced. It is indeed plausible
that the asymptotic entanglement for the model without the counterterm approaches
zero when the coupling strength, and with that the interaction Hamiltonian, becomes
large compared the system Hamiltonian. This can be seen when considering the very
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crude approximation of simply neglecting the system Hamiltonian. For that case
the reduced dynamics can be evaluated explicitly as for a general dephasing model
[Gor+04]. Since the initial state considered here ψ0 = |↑↑〉 is an eigenstate of the
coupling operator L ∼ σAz +σBz , the reduced state remains unchanged for that model.
Thus, no entanglement generation can be observed. Note, this argument could be
refined by treating the system Hamiltonian perturbatively, which is, however, out of
scope here. In contrast, when including the counterterm, the system Hamiltonian
cannot be neglected in the limit η →∞ because the counterterm scales with η, too,
which gives rise to the qualitative difference between the two models.

As mentioned above, calculating the long-time dynamics in the very strong coupling
regime turns our to be very demanding. In order to understand the difficulties
and with that the degree of accuracy of the later plot showing the behavior of the
asymptotic entanglement as a function of the coupling strength, special emphasize
on the numeric convergence of the HOPS method are discussed next. Tightly
connected, we show the single qubit expectation value 〈σAz 〉 which signifies the
known phase transition from delocalization 〈σAz 〉 = 0 to localization 〈σAz 〉 > 0. Due
to the qualitative differences, we distinguish between the sub-Ohmic and the Ohmic
environment.

Sub-Ohmic Environment (s = 0.3) First of all, from the long-time dynamics shown
in Fig. 5.18 we deduced that for any coupling strength the initial damped oscillations
nearly vanish at τ1ηω

s
A ≈ 10 (vertical dashed line). Further, for ηωs−1

A & 0.5 another

0 50 100 150 200 250
time tηωsA

0.06

0.08

0.10

0.12

0.14

c(
t)

10

ηωs−1
A = 0.4

ηωs−1
A = 0.5

ηωs−1
A = 0.525

ηωs−1
A = 0.55

ηωs−1
A = 0.575

Fig. 5.18: The long-time dynamics of the concurrence is shown for a sub-Ohmic environ-
ment with s = 0.3. At ηcωs−1

A ≈ 0.5 the long-time dynamics reaches its largest
value. Also, increasing the coupling strength beyond that value results in a quali-
tative change from quickly reaching the asymptotic value to a slow, presumably
exponential decay. Here, quickly refers to the time scale of the damping of the
initial oscillations. It is governed by the coupling strength and, thus, remains
constant (≈ 10) with respect to the rescaled time tηωsA (ωB = ωA, ωc = 10ωA).
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Fig. 5.19: Similar to Fig. 5.18, the long-time dynamics of the concurrence is shown (upper
row, s = 0.3, ωB = ωA, ωc = 10ωA), here with emphasis on the sensitive
dependence with respect to the accuracy of the BCF representation (number
of exponential terms N). In the localized phase (ηωs−1

A & 0.5) the long-time
entanglement experiences a correction towards smaller values when using a more
accurate representation, i.e., N is increased. In addition, the dynamics of 〈σz〉
is shown (lower row). The dependence on N seems not as crucial, however, an
insufficient hierarchy depth k can yield in a faulty decay to zero. The dashed
lines show the extrapolated asymptotic values.

kind of decay with an apparently larger time scale τ2 emerges. The graphs shown
in Fig. 5.18 motivate an estimation of the asymptotic entanglement by fitting an
exponential behavior to the long-time dynamics such that

c(t) ≈ c∞ + c1e
−t/τ2 for t� τ1 . (5.16)

The appearance of this qualitatively new decay hints at the known delocaliza-
tion/localized phase transition. This is underpinned by the behavior of the asymp-
totic spin polarization 〈σAz 〉 which becomes non-zero for coupling strengths where
the exponential decay appears, too (see Fig. 5.21). Remarkably, the critical coupling
strength amounts to the simple value of ηc ≈ 0.5ω1−s

A .

Importantly, it is shown in Fig. 5.19 that the additional exponential decay, and
with that the asymptotic entanglement, too, is very sensitive to the accuracy of
the exponential representation of the BCF (see Sec. 3.2). Therefore, substantially
more computational power is required when increasing the coupling strength ηωs−1

A

beyond 0.5 to obtained reliable results. In contrast, we observe that the required
hierarchy depth k only increases moderately with the coupling strength.
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Reiterating the results presented in Sec. 3.3, the truncation scheme [Eq. (3.33)]
with parameters p = 1, q = 0.5 and

kmaxµ = k
1
N

(√
|Gµ|/|Wµ|

)q
(5.17)

with the normalization N = minµ
(√
|Gµ|/|Wµ|

)q
is used. By increasing the hierar-

chy depth k the number of auxiliary states increases, too.

As shown in the right panel of Fig. 5.19, the influence of the hierarchy depth k on the
dynamics of the spin polarization 〈σAz 〉(t) (lower row) is more severe compared to
the entanglement dynamics (upper row). We found empirically that an insufficient
hierarchy depth often yields a faulty decay of 〈σAz 〉 to zero whereas the converged
dynamics remains at a non-zero value. This makes it challenging to deduce the
critical coupling strength from the dynamics of 〈σAz 〉. For an Ohmic environment
discussed next, it is even more difficult to obtain converged results in the localized
phase.

Ohmic Environment The long-time dynamics of the expectation value 〈σAz 〉 for an
Ohmic environment is shown in the lower panels of Fig. 5.20. Although the critical
coupling strength where 〈σAz 〉 becomes non-zero asymptotically is hard to access, the
lower left panel indicates that ηcωs−1

A > 0.9 should hold. Thus, the critical coupling
strength is larger as in the sub-Ohmic case, a behavior known from the (single) SBM,
too [BTV03]. For a coupling strength near the critical value the spin polarization
〈σAz 〉 approaches its asymptotic value very slowly (lower middle panel) which is
characteristic for the Ohmic case [WT08; Str+18]. As of that, its asymptotic value
is very hard to access. Here, we constrain our analysis to a first estimate using a
single exponential fit for extrapolation (black dashed lines). To rigorously justify this
choice the propagation time should be much longer. Although the accuracy of the
BCF representation (number of exponential terms N) seems to effect the dynamics
〈σAz 〉(t) only minor, as of the slow decay the estimate for the asymptotic value varies
drastically (lower middle panel). The same holds true when checking convergence
with respect to the hierarchy depth k (lower right panel). Consequently, showing the
phase transition is numerically very costly. As a remark, this difficulty has been noted
for the (single) SBM as well for a variety of other approaches [WS19]. Although the
plots in Fig. 5.20 suggest a non-vanishing asymptotic value 〈σAz 〉 at η = 1.1, due to
our primary focus on the entanglement dynamics, reliably determining the critical
coupling strength is left for further investigations.

As seen in the top panels of Fig. 5.20, the effect of the hierarchy depth on the
long-time entanglement dynamics (top right panel) is not as crucial, compared to
the dynamics of 〈σAz 〉. The same holds true for the influence of the accuracy of the
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Fig. 5.20: Similar to Fig. 5.19 the long-time dynamics of the concurrence and 〈σAz 〉 are
shown for an Ohmic environment (ωB = ωA, ωc = 10ωA). The entanglement
approaches its asymptotic value quickly. Convergence with respect to the accuracy
of the BCF representation (number of exponential terms N) and the hierarchy
depth k can be achieved easily. For 〈σAz 〉, however, near the critical coupling
strength the decay becomes very slow. As a consequence the asymptotic values
(dashed lines) obtained by extrapolation are very sensitive to N (middle panel)
and k (right panel).

BCF representation (top middle panel). In that sense we claim that the asymptotic
value for the entanglement has been determined reliably for η = 1.1. Note that the
qualitative change in the entanglement dynamics when passing the critical coupling
strength has not been observed (see the paragraph on the sub-Ohmic case). It
remains an open question if this qualitative change is simply not present in the
Ohmic case or if η = 1.1 is still smaller than the critical coupling strength. The
later would lead to the hypothesis that the qualitative change in the entanglement
dynamics is more suited to detect the phase transition than the asymptotic spin
polarization.

Asymptotic Values Finally, in Fig. 5.21 we show the asymptotic entanglement
(solid lines) and the asymptotic spin polarization (dashed lines) over a broad range
of coupling strengths, comparing the sub-Ohmic and the Ohmic environment. As
expected, in both cases the asymptotic entanglement exhibits a maximum. For
the sub-Ohmic case (s = 0.3) this maximum is located at ηmaxω

s−1
A ≈ 0.5 and

reads cmax ≈ 0.1. For s = 1 it appears slightly earlier at ηmax ≈ 0.45 and takes a
significantly larger value cmax ≈ 0.3. Remarkably, for the sub-Ohmic environment the
change from 〈σAz 〉 = 0 to 〈σAz 〉 > 0, signaling the phase transition, appears roughly
at the position of the maximum. Also, the qualitative change in the entanglement
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Fig. 5.21: The asymptotic values of the entanglement (solid lines) and the spin polarization
〈σAz 〉 (dashed lines) obtained from extrapolating the long-time dynamics are
shown as a function of the coupling strength (ωB = ωA, ωc = 10ωA). For
both environmental models (left: sub-Ohmic, right: Ohmic) the asymptotic
entanglement exhibits a maximum near ηωs−1

A = 0.5. In case of the sub-Ohmic
environment the maximum coincides with the critical coupling strength for the
known delocalization / localization phase transition. As of that, the asymptotic
entanglement shows a kink at that point. Also, beyond the maximum a sensitive
dependence of the entanglement on the accuracy of the BCF representation
(number of exponential terms N) becomes visible. For the Ohmic case the critical
coupling strength has not been determined reliably. (See the main text also for a
more detailed discussion of the graphs.)

dynamics, i.e., the additional “slow decay” discussed above, has been observed for
η > ηc = 0.5ω1−s

A . Therefore we conjecture that the maximum coincides with the
critical coupling strength of the phase transition. As a consequence of the additional
“slow decay” the asymptotic entanglement as a function of the coupling strength
exhibits a kink at ηmax = ηc. Importantly, the kink becomes visible only for a
sufficiently accurate approximation of the sub-Ohmic BCF, i.e, a sufficiently large
N .

Although the location of the maximum ηmax for the Ohmic environment marginally
differs from the sub-Ohmic case, a kink at the maximum is not observed. This is
not too surprising because the phase transition, indicated by the asymptotic value
of 〈σAz 〉, appears at a larger coupling strength ηc > 0.9. Since the critical coupling
strength has not been determined reliably, so far a statement about a kink at ηc
for an Ohmic environment is not possible. What we can say is that for η = 1.1
the long-time entanglement dynamics shows no qualitative difference compared
to the dynamics for smaller coupling strengths, i.e., no additional “slow decay” is
seen. However, a first crude estimate of the asymptotic spin polarization at η = 1.1
suggests a non-vanishing value indicating the phase transition.
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Putting our findings in a broader context, we find that the asymptotic behavior of
〈σAz 〉 as well as the concurrence agree qualitatively with the behavior obtained when
examining the ground state of the microscopic model [Ort+10], although there the
sub-Ohmic SD has been modeled with a sharp cutoff. This comparison is in the spirit
of the fundamental issue addressing the relation between the asymptotic (steady)
state and statistical properties of a small system in contact with a large environment.
In classical statistical mechanics it well known that the small system will thermalize,
i.e., its asymptotic state is the local thermal state (canonical ensemble) with a
temperature corresponding to the bath temperature. However, referring to the
microscopic model for an open quantum system it has been shown that this statement
holds approximately only in the weak coupling regime [Tas98; Gol+06; Wei08].
Beyond the perturbative regime rigorous statements are rare. What has been shown
recently is that under the assumption that the microscopic Hamiltonian (system
and environment) has non-degenerate energy gaps, the system reaches indeed a
steady (equilibrium) state which is, however, not necessarily the local thermal state
of the system [Lin+09; GE16]. However, it seems plausible that if the environment
is initially in the ground state (zero temperature) and the system is initially excited
then the presumably small energy contribution of the system will distribute over the
many environmental degrees of freedom without a major effect on the environment.
This suggests that the system should reach a steady state which is close to the
reduced state obtained from the global ground state of the microscopic model.
Of course, since in our formalism for the reduced dynamics a product state as
initial condition is evolved unitarily, the global state cannot evolve to the global
ground state. Following this line of reasoning makes is plausible that properties,
such as the spin polarization, of the ground state are reflected by the asymptotic
state, too, as we have shown above, although the asymptotic state may not agree
exactly with the “ground state”. Noteworthy, in the plausibility argument above
the energy contribution from the interaction Hamiltonian has not been accounted
for. In particular, for strong system-environment interactions, e.g., the regime of
localization, where this contribution becomes large, further clarification is needed.
In this respect the previous explanation for finding signs of the phase transition in the
asymptotic state is not satisfying. It seems more reasonable that the phase transition
is not only reflected by the ground state but rather by the entire spectrum of the
microscopic Hamiltonian, thus, leading to the qualitative change in the dynamics.
We are confident that the HOPS approach in general is well suited to perform
“numerical experiments” shedding further light on quantum mechanical equilibration
and thermalization.

As a final note, since we have considered the resonant case, 〈σBz 〉 shows the exact
same behavior as 〈σAz 〉 and could have been used instead as an indicator for the
phase transition. The plots in Fig. 5.17 and a comment in Ref. [Ort+10] give rise to
the expectation that slightly detuned qubits behave similar.
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6Conclusion and Outlook

Many modern experimental setups engineer quantum systems which are strongly
coupled to their environment [Nie+10; Mag+18]. This underlines the fundamental
interest in describing the dynamics of such open quantum system exactly [FV63;
Tan06]. Building on the theory of non-Markovian quantum state diffusion (NMQSD)
[SDG99], the hierarchy of pure states (HOPS) provides a promising approach suitable
for a numeric treatment [SES14; HS17]. Due to its stochastic nature, the HOPS
approach is ideally suited for distributed computing on modern large scale computer
systems which paves the way for the strong coupling regime. The methodical
details which make the HOPS approach exact have been explained extensively. As a
particular application of the HOPS method, we have focused on the entanglement
dynamics of the open two-qubit system over a broad range of coupling strengths
between the qubits and their environment.

A time-discrete scheme has been employed to derive the NMQSD / HOPS formalism
in an independent and highly transparent manner. This includes the non-linear
theory which ensures that the stochastic contributions assembling the reduced state,
i.e., the dyads of the stochastic pure states, have equal weight. Furthermore, we
have lifted the restriction for the harmonic environment to be initially prepared in
its ground state by allowing for coherent states, too. This, in turn, led us to model
non-zero temperature effects by means of a stochastic Hermitian contribution to
the system Hamiltonian, an approach which has turned out highly favorable for the
HOPS with strong system-environment interaction, but is also suitable for any zero
temperature formalism.

In addition to the HOPS formalism, we have also derived various aspects of the
underlying NMQSD equation which appear very promising for future methodical
investigation. By using the Karhunen–Loève expansion to represent the stochastic
process, we have derived a Schrödinger equation for the microscopic model where
the environment consists of a countably infinite set of bosonic modes with a time
dependent system-environment coupling. The reduced dynamics of that system
corresponds exactly to the dynamic of the original model involving a truly continuous
environment. Since the coupling to the modes decreases with the mode index,
approximate solutions follow naturally. The full potential of this so-called Karhunen-
Loève expansion Schrödinger equation (KLESEQ) approach has yet to be explored.
A different point of view on the dynamics of open quantum systems was found from
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the time-discrete formalism mentioned above. Taking the time-discrete equation
literally yields a dynamical picture for the reduced dynamics. Instead of a static
coupling to the environmental modes, in the so-called time oscillator picture the
system interacts with a new oscillator at each time step, i.e., it moves to the next
oscillator. Additional interactions with past oscillators account for memory effects.
The reduced state is obtained by taking some non-standard trace over the time
oscillators. Furthermore, we have derived a second kind of hierarchy of pure states
based on higher order derivatives of the bath correlation function (BCF) rather
than an exponential representation required by the “standard” variant. As we have
elucidated, there are cases where the long time dynamics depends crucially on the
accuracy of this exponential representation. Consequently, it remains an exciting
project to explore the benefits of this alternative approach as a numerical method.

Referring again to the “standard” hierarchy, it has been at the heart of this thesis
to show that the HOPS qualifies as a numerically exact approach, i.e., there are
numerical errors only which can, in principle, be made arbitrarily small. This
includes the sampling of stochastic processes, the exponential representation of
(sub-) Ohmic BCFs and the truncation of the hierarchy.

For the well studied spin-boson model (SBM) [Leg+87], which remains challenging
to treat exactly in the strong coupling regime [Str+18; WS19], we have demon-
strated agreement between our HOPS implementation and various other open system
approaches. The test cases include weak and strong coupling to the environment
as well as zero and high temperatures for the initial thermal environmental state.
Thus, we have concluded that the HOPS method is well suited for a wide range of
situations.

Based on that confidence, we have investigated the generation of entanglement
between two non-interacting qubits due to their interaction with a common environ-
ment. Starting with the weak coupling regime where perturbative master equations
are expected to give reasonable results, we have demonstrated that the entanglement
dynamics may differ significantly between such master equations. With the HOPS
results as a reference, we have shown that the RFE is the most accurate perturbative
method and that the commonly applied rotating wave approximation (RWA) is of
very limited use only. The Coarse Graining approach [SB08] and the Geometric-
Arithmetic approximation [Dav20], both intended to restore complete positivity
without applying the RWA, have their regime of applicability. However, they do not
reach the accuracy of the RFE. This is not surprising since the RFE involves the
least approximations. We have found that the often criticized non-positivity of the
reduced state obtained from the RFE is of no relevance since the positive matrix√
ρ†RFE · ρRFE approximates the reduced state to the same degree of accuracy as

ρRFE. Therefore, the approximate entanglement dynamics can be obtained unam-
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biguously using the RFE. Notably, we have reported that any of the perturbative
approaches under consideration fails to faithfully predict the dependence of the
steady state entanglement on the coupling strength. This is indeed in agreement
with recent investigations showing that any second-order master equation (in the
interaction Hamiltonian) yields a reduced state which is exact up to zeroth-order
only [FC11; Tup+21].

Furthermore, we have investigated the effect of the renormalizing counterterm, a
manually introduced contribution to the system Hamiltonian intended to compensate
for the environmentally induced Hermitian contribution to the system dynamics
(the so-called Lamb-shift Hamiltonian) [Wei08]. Since the Lamb-shift Hamiltonian
is the primary mechanism for the generation of entanglement, it can be expected
that the buildup of entanglement is suppressed by the counterterm. Employing
the HOPS, we have investigated the effect of the counterterm non-perturbatively.
We have found significant entanglement suppression due to the counterterm for
an Ohmic environment but nearly no effect in the deep sub-Ohmic regime (setting
s = 0.3, while leaving all other model parameters the same). Thus, the common
expectation seems to fail for the sub-Ohmic regime. We have shown that, in general,
the degree to which the counterterm cancels the Lamb-shift Hamiltonian is related
to the “flatness” of S(ω) near ω = 0 (S(ω) denotes the imaginary part of the half-
sided Fourier transform of the BCF). The pointed minimum at ω = 0 for a deep
sub-Ohmic SD (s < 0.5), thus, explains the unexpected behavior. Note that since
S(ω) ∼ S(0) + |ω/ωc|s (ωc: cutoff frequency the (sub-)Ohmic SD), S(ω) becomes
effectively flat in the limit of large ωc. In this adiabatic limit the counterterm and
the lamb-shift Hamiltonian eventually add up to zero. Still, we have shown that for
two resonant qubits and a deep sub-Ohmic SD, even in the adiabatic limit a small
qubit-qubit interaction remains, yielding significant entanglement generation which
cannot be explained by purely dissipative effects. This so-called anomalous behavior
in the adiabatic regime essentially relates to the order in which the long-time and
the adiabatic limits are taken.

Beyond the perturbative regime, we have shown that the detuning of the qubits
hardly influences the entanglement dynamics. Additionally, we have found that a
significant amount of entanglement remains in the steady state. Further, we have
calculated the entanglement dynamics for non-zero temperatures of the environment,
showing that the generation of entanglement is far from being a zero-temperature
phenomenon.

Last but not least, we have focused on the properties of the steady state. We have
found that the asymptotic entanglement, as a function of the coupling strength,
increases linearly in the weak coupling regime. As mentioned above, this behavior is
not faithfully accessible in lowest order perturbation theory. We have found that the
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asymptotic entanglement exhibits a maximum at an intermediate coupling strength.
For the two particular examples considered here (s = 0.3 and s = 1) the maximum
appears at almost the same coupling strength. It remains an interesting question
whether or not this holds more generally. For the sub-Ohmic environment (s = 0.3) it
has turned out that the location of the maximum coincides with the critical coupling
strength of the delocalization-to-localization phase transition [Ort+10; WR14].
In addition to the known properties of the spin polarization, we have observed a
qualitative change in the long time entanglement dynamics when passing the critical
coupling strength. On the one hand, for values smaller than the critical coupling
strength, the steady state entanglement is reached quickly, i.e., on a time scale
set by the inverse of the coupling strength. On the other hand, for larger values,
an additional exponential decay with a much slower decay rate compared to the
initial relaxation governs the long time dynamics. As a consequence, the asymptotic
entanglement exhibits a kink at the critical coupling strength and, with that, at
the maximum. Noteworthily, for coupling strengths larger than the critical value,
the asymptotic entanglement depends very sensitively on the accuracy of the BCF
representation. For the Ohmic case, the phase transition takes place at a larger
coupling strength and, thus, not at the position of the maximum. So far, the exact
value of the critical coupling strength has not been determined reliably within the
HOPS formalism. As a remark, calculating the point of the phase transition for a
single qubit and an Ohmic environment is known to be very challenging for other
approaches, too [WS19]. It remains an open question whether the phase transition
for two qubits and an Ohmic environment is accompanied by a kink in the asymptotic
entanglement as well.

Investigating the entanglement dynamics of the open two-qubit system over a broad
range of model parameters, especially for large system-environment interactions,
has been possible utilizing the HOPS method. Thus, the HOPS approach can readily
be used for many current topics in the field of open quantum system dynamics such
as transport through quantum systems and their equilibration, real world application
focusing on quantum information and quantum metrology as well as many others.

Although possible with current techniques, the numerical effort to obtain the long
time dynamics in the strong coupling regime, necessary to draw conclusions about
the phase transition, has been huge. This hints at future methodical directions of
research related to the HOPS formalism. As a rather abstract goal, a variant of the
HOPS, or even a novel approach obtained from the underlying NMQSD formalism
specifically suited for the strong coupling regime would complete the stochastic
description of the exact reduced dynamics. It remains for investigation whether
or not the hierarchy based on time derivatives is advantageous in that respect.
Furthermore, a stochastic steady state solver based on pure states is very desirable.
A straight forward approach, however, is unclear, since the stochastic pure states,
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i.e., solutions of the NMQSD equation, do not reach a steady state. Despite of that,
progress might be achievable by exploiting the fact that the long time dynamics of
the pure state projector is, in many cases, independent of the initial condition, which
has been noted recently [HS21]. Also, it has been argued that if the steady state is
unique, the time averaged projector of a single pure state realization approaches the
steady state in the long time limit. Surely, there are a multitude of further interesting
directions of research branching off the stochastic pure state description of open
quantum stems dynamics in terms of the NMQSD and the HOPS formalism.
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Appendix

A HOPS for Multi-Partite Systems and Multiple
Environments

The NMQSD equation (2.20) as well as the HOPS formalism (Sec. 2.1.2) can be
generalized to the scenario where the system is partitioned into sub-systems and the
environment consists of several independent environments, each one modeled by an
infinite set of harmonic oscillators (see Fig. A.1).

System

Environment

S1 . . . Sj . . . SNS

E1 . . . Ek . . . ENE

L
11

g11
λ

Lkjgkjλ

L
N
E
N
S

g N
E
N
S
λ

Fig. A.1: A schematic plot of the generalized microscopic model is shown. The system is
partitioned in NS sub-systems where each part is allowed to interact with NE
independent environments. As usual, the environments are modeled by a possibly
infinite number of harmonic oscillators. In general each sub-system j couples to
the modes of the environment k with individual coupling constants gkjλ, i.e., an
individual SD Jkj(ω) = π

∑
λ|gkjλ|2δ(ω − ωkλ).

The Hamiltonian of the microscopic model for the system and the environment takes
the form

H = Hsys +
NE∑
k=1

NS∑
j=1

∑
λ

(
g∗kjλLkja

†
kλ + h.c.

)
+

NE∑
k=1

∑
λ

ωkλa
†
kλakλ . (A.1)

The index k enumerates the different environments, the index λ the harmonic
oscillators within each of the environments and the index j the sub-system. The
coefficients gkjλ assemble the SD which models the influence of the k-th environment
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on the j-th sub-system, i.e., Jkj(ω) ≡ π
∑
λ|gkjλ|2δ(ω−ωkλ) or, equivalently, the BCF

αkj(τ) ..=
∑
λ|gkjλ|2e−iωkλτ . Changing to the interaction picture with respect to the

environment yields for the stochastic pure state

∂tψ(z∗, t) =
[
− iHsys +

∑
k,j

η∗kj(z∗k, t)Lkj

− i
∑
k,j

L†kj
∑
λ

gkjλe
−iωkλt∂z∗

kλ

]
ψ(z∗, t) . (A.2)

Different stochastic processes η∗kj(t) have been introduced with their microscopic
definition η∗kj(z∗k, t) ..= −i

∑
λ g
∗
kjλz

∗
kλe

iωkλt. Their (normal) second moments

M
(
ηkj(t)η∗kj(s)

)
= αkj(t− s) (A.3)

correspond to the known relation from the Sec. 2.1.1. However, since each sub-
system can interact with a particular environment simultaneously, also cross correla-
tions appear. This is captured by the Gaussian statistics of a vector valued stochastic
process (η∗kj are the components), which is uniquely determined by the normal
second moment

M
(
ηkj(t)η∗k′j′(s)

)
= δk,k′

∑
λ

gkjλg
∗
kj′λe

−iωkλ(t−s) = δk,k′αkjj′(t− s) . (A.4)

Note that due to the cross correlations the so-called generalized BCF αkjj′(τ) has
three components Following the same line of arguments as in Sec. 2.1.1 the time-
discrete NMQSD equation is obtained, i.e.,

ψn+1(η∗kj |
n
0 ) =

[
1 + ∆t

(
− iHsys +

∑
k,j

η∗kj(tn)Lkj

−
∑
k,j,j′

L†kj

n−1∑
m=0

αkjj′(tn − tm)∂η∗
kj′ (tm)

)]
ψn(η∗kj |

n−1
0 ) , (A.5)

which yields in differential form

∂tψ[η∗kj(t)]t =
[
− iHsys +

∑
k,j

η∗kj(t)Lkj

−
∑
k,j,j′

L†kj

∫ t

0
ds αkjj′(t− s)

δ

δη∗kj′(s)

]
ψ[η∗kj(t)]t . (A.6)
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For a multi-exponential representation of the generalized BCF, i.e., αkjj′(τ) =∑
µGkjj′µe

−Wkjj′µτ for τ ≥ 0, the HOPS reads

ψ̇h
t = Aψh

t +
∑

k,j,j′,µ

BkjGkjj′µψ
h+ekjj′µ
t +

∑
k,j,j′,µ

Ckj′hkjj′µψ
h−ekjj′µ
t

with A = −iHsys −
∑

k,j,j′,µ

hkjj′µWkjj′µ +
∑
k,j

η∗kj(t)Lkj ,

Bkj = −L†kjand Ckj′ = Lkj′ .

(A.7)

For completeness, the Gaussian statistics of the stochastic processes involved are
determined by

M(η∗kj(t)) = 0, M(η∗kj(t)η∗k′j′(s)) = 0 =M(ηkj(t)ηk′j′(s))

and M(ηkj(t)η∗k′j′(s)) = δkk′αkjj′(t− s) .
(A.8)

Note that the index vector h has four indices kjj′µ. Therefore the dimension of
h is NE ·N2

S ·Nµ. For simplicity it has been assumed that each component of the
generalized BCF αkjj′ is expressed with Nµ exponential terms, which can of course
be relaxed.

A.1 Importance Sampling (Non-Linear HOPS)

In the following, the main steps to derive the non-linear variant of the NMQSD
equation are reiterated, however using the microscopic model for a multi-partied
system and multiple environments as specified in Eq. (A.1).

The relation between the norm of the stochastic pure state and the environmental
Husimi function becomes

Q(z, z∗, t) = N〈z|ρenv(t)|z〉 = N〈z|Trsys|Ψ(t)〉〈Ψ(t)||z〉 = N〈ψ(z, t)|ψ(z∗, t〉 (A.9)

with

N (z, z∗) =
∏
k,λ

e−zkλz
∗
kλ

π
. (A.10)

The boldface is short hand notation for the product structure |z〉 =
∏
kλ|zkλ〉 enu-

merated by the environment index k and the mode index λ. The evolution equation
for Q takes the form of a first order partial differential equation

∂tQ(z, z∗, t) = −
∑
k,j,λ

igkjλe−iωkλt∂z∗
kλ
〈L†kj〉tQ(z, z∗, t)− h.c. (A.11)
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where the expectation value 〈L†kj〉t denotes the normalized expectation value with
respect to the stochastic pure state, i.e.,

〈L†kj〉t ..= 〈ψ(z, t)|L†kj |ψ(z∗, t)〉/〈ψ(z, t)|ψ(z∗, t)〉 . (A.12)

This allows us to view the evolution of Q in terms of “phase space” trajectories z∗(t)
(see Sec. 2.1.3) where the components obey

ż∗kλ(t) = ie−iωkλt
∑
j

gkjλ〈L†kj〉t (A.13)

with z∗(0) = z∗0 being Gaussian distributed according to Q(z0, z∗0, 0) = N (z0, z∗0). For
the stochastic pure states with co-moving coherent state label, i.e., ψ(z∗, t)|z∗=z∗(t),
it follows that

ψ̇(z∗(t), t) = ∂tψ(z∗(t), t) +
∑
k,λ

ż∗kλ(t)∂z∗
kλ
ψ(z∗(t), t)

=
[
−iHsys+

∑
k,j

η̃∗kj(z∗k(t), t)Lkj−i
∑
k,j,λ

(
L†kj − 〈L

†
kj〉t

)
gkjλe

−iωkλt∂z∗
kλ

]
ψ(z∗(t), t) .

(A.14)

This equations is remarkably similar to its linear variant (Eq. (A.2)) and, thus, yields
by similar reasoning the non-linear NMQSD equation

ψ̇[η∗kj(t)]t =
[
− iHsys +

∑
k,j

η̃∗kj(t)Lkj

−
∑
k,j,j′

(
L†kj − 〈L

†
kj〉t

) ∫ t

0
ds αkjj′(t− s)

δ

δη∗kj′(s)

]
ψ[η∗kj(t)]t (A.15)

however, with stochastic processes η̃∗kj(z∗k(t), t) depending on the co-moving coherent
state labels. Using the formal solution

z∗kλ(t) = z∗kλ(0) + i
∫ t

0
ds e−iωkλs

∑
j

gkjλ〈L†kj〉s (A.16)

the stochastic process becomes

η̃∗kj(z∗k(t), t) =− i
∑
λ

g∗kjλz
∗
kλ(0)eiωkλt +

∫ t

0
ds
∑
j′

∑
λ

g∗kjλgkj′λe
iωkλ(t−s)〈L†kj′〉t

= η∗kj(z∗k(0), t) +
∫ t

0
ds
∑
j′

α∗kjj′(t− s)〈L
†
kj′〉s .

(A.17)
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This shows that the stochastic process with co-moving coherent state labels consists
of the original stochastic process with

M(ηkj(zk(0), t)η∗k′j′(z∗k′(0), s)) = δkk′αkjj′(t− s) (A.18)

and a shift contribution. The shift can be obtained numerically by solving its
differential form along with the equations of the HOPS where the multi-exponential
representation of the generalized BCF is used again, i.e.,

η∗kj,sh(t) ..=
∫ t

0
ds
∑
j′

α∗kjj′(t− s)〈L
†
kj′〉s =

∑
µ,j′

η∗kjj′µ,sh(t)

with η∗kjj′µ,sh(t) ..=
∫ t

0
dsG∗kjj′µe

−W ∗
kjj′µ(t−s)〈L†kj′〉s

(A.19)

which obviously obeys

η̇∗kjj′µ,sh(t) = G∗kjj′µ〈L
†
kj′〉t −W

∗
kjj′µη

∗
kjj′µ,sh(t) with η∗kjj′µ,sh(t) = 0 . (A.20)

Very similar to the results obtained in Sec. 2.1.3.2, the HOPS for the non-linear
NMQSD equation is the same as in the linear case given in Eq. (A.7) except for
replacements L†kj → L†kj − 〈L

†
kj′〉t and η∗kj(t)→ η̃∗kj(t).

A.2 Special Cases

The general form of the HOPS [Eq. (A.7)] for many sub-systems coupled to various
independent environments contains two special cases worth noting. First, assuming
that the coupling operator Lkj for a particular sub-system is the same for each
environment, i.e., Lkj = Lj , the summation over k can be performed. Consequently,
an effective single environment remains. For example, this case is encountered when
several groups of atoms are trapped in different locations in a multi-mode lossy
cavity in the spirit of the dissipative Hubbard-Holstein model [FDD21]. Since the
coupling operator σx does not distinguish between the cavity modes, the multi-mode
cavity can be described effectively by a single environment. Still, the individual
coupling strength can depend on both, the mode and the particular group of the
atoms.

Second, the condition gkjλ = δkjgkλ accounts for the case where each sub-system
interacts with a single environment exclusively. This case includes the widely used
model for quantum aggregates which, for examples, allows to describe the excitation
dynamics in protein complexes occurring in biological light harvesting systems
[IF09].
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A.2.1 Effective Single Environment

The assumption that the coupling operator Lkj depends on the index j only, results
in the following NMQSD equation

∂tψ[η∗j (t)]t =
[
− iHsys +

∑
j

η∗j (t)Lj −
∑
jj′

L†j

∫ t

0
ds αjj′(t− s)

δ

δη∗j′(s)

]
ψ[η∗j (t)]t .

(A.21)

The microscopic definition of the effective noise process η∗j (t) is simply the sum over
k of the general noise processes, i.e.,

η∗j (t) ..=
∑
k

η∗kj(t) = −i
∑
kλ

g∗kjλz
∗
kλ
eiωkλ t . (A.22)

Note that for the effective single environment case the sum over k may be infinite
NE =∞. It follows consistently that

M
(
ηj(t)η∗j′(s)

)
=
∑
kk′

M
(
ηkj(t)η∗k′j′(s)

)
= αjj′(t− s) (A.23)

with the effective BCF αjj′(t− s) ..=
∑
k αkjj′(t− s). Expressing this effective BCF in

terms of a multi-exponential expansion, i.e, αjj′(τ) =
∑
µGjj′µe

−Wjj′µτ for τ ≥ 0,
the HOPS becomes

ψ̇h
t = Aψh

t +
∑
jj′µ

BjGjj′µψ
h+ejj′µ
t +

∑
jj′µ

Cj′hjj′µψ
h−ejj′µ
t with

A = −iHsys −
∑
jj′µ

hjj′µWjj′µ +
∑
j

η∗j (t)Lj , Bj = −L†j and Cj′ = Lj′ .
(A.24)

As a consequence of the assumption Lkj → Lj the index vector h has three indices
jj′µ instead of four as for the general case.

For the non-linear HOPS it follows that Bj = −(L†j − 〈L
†
j〉)t and η∗j (t) → η̃∗j (t) =

η∗j (t) + η∗j,sh(t) with

M
(
ηj(t)η∗j′(s)

)
=αjj′(t− s) ,

η∗j,sh(t) =
∫ t

0
ds
∑
j′

α∗jj′(t− s)〈L
†
j′〉s =

∑
µ,j′

η∗jj′µ,sh(t) ,

η∗jj′µ,sh(t) ..=
∫ t

0
dsG∗jj′µe

−W ∗
jj′µ(t−s)〈L†j′〉s ,

and η̇∗jj′µ,sh(t) =G∗jj′µ〈L
†
j′〉t −W

∗
jj′µη

∗
jj′µ,sh(t) .

(A.25)
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Referring to the multi-mode lossy cavity case, the j-th group of atoms interacts with
the k-th lossy mode which amounts to a Lorentzian SD for the k-th environment, i.e.,
Jkj(ω) = ckjγk/(γk+(ω−ω0k)2) and a corresponding BCF αkjj(τ) = ckje

−iω0kτ−γk|τ |.
Note that the frequency of the mode ωk and its damping rate γk is independent of the
atoms, i.e., the index j. Still, ckj denotes the individual coupling strength between
the j-th clump and k-th mode. This allows us to easily evaluate the non-diagonal
elements of the generalized BCF, i.e.,

αkjj′(τ) =
∫

dω
√
Jkj(ω)Jkj′(ω)e−iωτ = √ckjckj′e−iω0kτ−γk|τ | . (A.26)

The expression shows that each component of the generalized BCF for a multi-
Lorentzian environment takes the form of a single exponential with Gjj′k = √ckjckj′
and Wjj′k = γk − iω0k. For the effective single environment scenario, considered
here, the exponential structure inherent to the multi-Lorentzian environment results
in a sum of exponential terms directly suitable for the HOPS scheme, i.e.,

αjj′(τ) =
NE∑
k

αkjj′(τ) =
NE∑
k

√
ckjckj′e

−iω0kτ−γk|τ | ≡
NE∑
µ

Gjj′µe
−Wµτ (A.27)

for τ > 0. Although the multi-mode environment can be regarded as an effective
single environment, its BCF is assembled by NE exponential terms, i.e., one term per
mode. This corresponds to the intuitive picture that each Lorentzian environment is
indeed accounted for by a different branch in the hierarchy.

A.2.2 An Exclusive Environment for Each Sub-System Interaction

An exclusive interaction between the sub-system j and the environment k is realized
if gjkλ = 0 for all j 6= k, thus, the coupling strengths have to be of the form gkjλ =
δkjgkλ. This condition effects the stochastic processes such that η∗kj(t) = δkjη

∗
k(t)

with
η∗k(t) ..= −i

∑
λ

g∗kλz
∗
kλe
−iωkλt (A.28)

and the generalized BCF becomes αkjj′(τ) = δkjδkj′αk(τ) with

αk(τ) ..=
∑
λ

|gkλ|2e−iωkλτ . (A.29)

As a consequence, the NMQSD equation reads

∂tψ[η∗k(t)]t =
[
−iHsys+

∑
k

η∗k(t)Lk−
∑
k

L†k

∫ t

0
ds αk(t−s)

δ

δη∗k(s)

]
ψ[η∗k(t)]t (A.30)
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and the HOPS becomes

ψ̇h
t = Aψh

t +
∑
kµ

BkGkµψ
h+ekµ
t +

∑
kµ

Ckhkµψ
h−ekµ
t with

A = −iHsys −
∑
kµ

hkµWkµ +
∑
k

η∗k(t)Lk, Bk = −L†k and Ck = Lk
(A.31)

where the parameters Gkµ and Wkµ correspond to the multi-exponential representa-
tion of the BCF

αk(τ) =
∑
µ

Gkµe
−Wkµτ for τ ≥ 0 . (A.32)

The index vector h has only two indices instead of four as for the general case.

For the non-linear HOPS it follows that Bk = −(L†k − 〈L
†
k〉)t and η∗k(t) → η̃∗k(t) =

η∗k(t) + η∗k,sh(t) with

M (ηk(t)η∗k′(s)) = δkk′αk(t− s),

η∗k,sh(t) =
∫ t

0
ds α∗k(t− s)〈L

†
k〉s =

∑
µ

η∗kµ,sh(t),

η∗kµ,sh(t) ..=
∫ t

0
dsG∗kµe

−W ∗kµ(t−s)〈L†k〉s

and η̇∗kµ,sh(t) =G∗kµ〈L
†
k〉t −W

∗
kµη
∗
kµ,sh(t) .

(A.33)

B The BCF and its Half-Sided FT for (Sub-)Ohmic
Spectral Densities

The class of (sub-) Ohmic SDs, characterized by a power law behavior ωs for small
frequencies and an exponential cutoff at large frequencies, takes the form

J(ω) = ηωse−
ω
ωc (B.1)

where η denotes the coupling strength and ωc the cutoff frequency. The following
discussion of the corresponding bath correlation function (BCF) and its half-sided
Fourier transform (FT) distinguishes between the sub-Ohmic (s < 1) and the Ohmic
(s = 1) case.

First the analytic expression of the BCF in terms of the Riemann zeta function is
examined. In particular, the asymptotic decay is investigated. Furthermore, efficient
numeric methods to evaluate the half-sided FT of the BCF are presented. Whereas
for zero temperature it is sufficient to evaluate the incomplete gamma function, for
non-zero temperature the integral expression of the Cauchy principal value (CPV)
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needs to be evaluated numerically. Additionally, special emphasis is given to the
series expansion around ω = 0.

To reiterate, for a given SD J(ω), the BCF for a given inverse temperature β is
defined as [Wei08]

α(β, τ) ..= 1
π

∫ ∞
0

dω J(ω) (coth(βω/2) cos(ωτ)− i sin(ωτ)) . (B.2)

Using that coth(βω/2) = 1 + 2n̄(βω) with the Bose-Einstein distribution n̄(βω) =
(eβω − 1)−1 yields to the alternative form (as introduced in Eq. (2.72) already)

α(β, τ) = 1
π

∫ ∞
0

dω J(ω)
(
2n̄(βω) cos(ωτ) + e−iωτ

)
= α(β, τ) + αβ(τ) (B.3)

which shows that the thermal BCF splits into two parts, i.e., the zero temperature
contribution

α(τ) ..= 1
π

∫ ∞
0

dω J(ω)e−iωτ (B.4)

and a remainder
αβ(τ) ..= 2

π

∫ ∞
0

dω n̄(βω)J(ω) cos(ωτ) . (B.5)

The terminology is motivated by the fact that in the limit of zero temperature, i.e.,
β →∞, it holds that αβ(τ)→ 0 and, thus, α(β, τ)→ α(τ). This splitting is useful to
express the thermal BCF for (sub-) Ohmic SD analytically. Additionally, it turns out
convenient to express the thermal BCF as the FT of an effective SD, i.e.,

J(β, ω) ..= J(ω)
1− e−βω with J(ω) ..= −J(−ω) for ω < 0 . (B.6)

With this definition, the thermal BCF can also be expressed as

α(β, τ) = 1
π

∫ ∞
−∞

dω J(β, ω)e−iωτ . (B.7)

We employ this relation to evaluate the half-sided FT of the thermal BCF, i.e.,

F (β, ω) ..=
∫ ∞

0
dτ α(β, τ)eiωτ ≡ J(β, ω) + iS(β, ω) . (B.8)

Note that due to the oscillating integrand the above integral is not suited for an
accurate numerical evaluation, especially for large ω. However, since the thermal
BCF has been expressed in terms of the FT of an effective SD, this problem can be
circumvented by using that the imaginary part S(β, ω) is related to the real part
J(β, ω) by the Cauchy-Principal value, denoted by P, of the integral

S(β, ω) = − 1
π
P
∫ ∞
−∞

dω′ J(β, ω′)
ω′ − ω

. (B.9)
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B.1 Bath Correlation Function

For an inverse temperature β, the thermal BCF is most conveniently expressed as in
Eq. (2.72), i.e.,

α(β, τ) =α(τ) + αβ(τ) with

α(τ) = η

π

∫ ∞
0

dω ωse−
ω
ωc e−iωτ = η

π
Γ(s+ 1)

(
ωc

1 + iωcτ

)s+1

and αβ(τ) = 2η
π

Re
[∫ ∞

0
dω ω

se−
ω
ωc

eβω − 1e
−iωτ

]

= 2η
πβs+1 Γ(s+ 1)Re

[
ζ

(
s+ 1, 1 + βωc + iωcτ

βωc

)]
,

(B.10)

with the obvious zero temperature limit

lim
β→∞

α(β, τ) = α(τ) ∼ (1 + iωcτ)−(s+1) (B.11)

showing an algebraic decay of power s+ 1. Γ denotes the gamma function and ζ
the Hurwitz zeta function [ON10].

Note that the ζ function with complex arguments is, for example, implemented by
the arbitrary precision library Arb (arblib.org) [Joh17]. This library can be used
to assure correct 64-bit results by using a higher intermediate working precision.

Introducing z ..= (1 + iωcτ)/βωc leads to for the compact notation,

α(β, τ) = ηΓ(s+ 1)
πβs+1

(
z−(s+1) + 2Re[ζ(s+ 1, z + 1)]

)
. (B.12)

From the series expansion of ζ [ON10] in terms of the second argument, i.e.,

ζ(s+ 1, a) = a−s

s
+ a−(s+1)

2 +O
(
a−(s+2)

)
, (B.13)

the leading order terms of the asymptotic (large τ) behavior of the thermal BCF is
deduced. It is instructive rewrite the complex power as,

a−s = (x+ iy)−s =
(
x− iy
x2 + y2

)s
= e−isϕ

(x2 + y2)s/2
, (B.14)

with tan(ϕ) = y/x. In the asymptotic regime ωcτ � 1⇔ ε ..= x/y � 1 the following
relation holds,

y/x = tan(ϕ) ≈ 1
π/2− ϕ ⇒ ϕ = π

2 − ε , (B.15)
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and therefore,

(x+ iy)−s = e−isπ/2

ys

(
1 + (is− s/2)ε+O(ε2)

)
. (B.16)

Using this expression yields for the leading order terms of the asymptotic behavior
of the BCF [Eq. (B.12)]

α(β, τ) ≈ ηΓ(s+ 1)
π

cos(sπ/2)
( 2
sβ

1
τ s
− i 1

τ s+1

)
. (B.17)

For the Ohmic case (s = 1), however, since cos(π/2) = 0, these terms vanish.
Consequently, the asymptotic behavior is determined by the terms of next order, i.e.,

α(β, τ) ≈ 2η
π

( 1
βωcτ2 − i 1

ωcτ3

)
. (B.18)

One sees that the asymptotic values are suppressed roughly by the factor (ωcτ)−1

compared to the sub-Ohmic case (see also Fig. 3.19) which means that the BCF
decays much faster. Note that for s ≈ 1 the leading order terms are scaled by
cos(sπ/2) which is then close to zero. Therefore, the different asymptotic scaling
becomes noticeable only for sufficiently large τ .

B.2 Half-Sided Fourier Transform

In many perturbative approaches the half-sided FT of the BCF needs to be evaluated,
i.e.,

F (β, ω) ..=
∫ ∞

0
dτ α(β, τ)eiωτ ≡ J(β, ω) + iS(β, ω) . (B.19)

Its real part simply corresponds to the effective SD J(β, ω) [Eq. (B.6)] whereas the
imaginary part S(β, ω) needs to be deduced.

B.2.1 Zero Temperature

For the zero temperature BCF [Eq. (B.10)]

α(τ) = ηΓ(s+ 1)
π

ωs+1
c

(1 + iωcτ)s+1 (B.20)

the half-sided FT can be written by means of the incomplete Gamma function
(implemented for example by the Arb library [Joh17])

F (ω) = ηΓ(s+ 1)
π

(−iω)s

is+1 e−
ω
ωc lim

ε→0
Γ
(
−s,−

(
ω

ωc
+ iε

))
. (B.21)
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The limit assures the correct branch since the incomplete gamma function experi-
ences a branch cut along the negative real axis. For ω > 0 this expression can be
rewritten as

F>(ω) =ηωse−
ω
ωc FΓ

(
ω

ωc
, s

)
with

FΓ(x, s) ..=Γ(s+ 1)
π

e−iπ(s+1/2) lim
ε→0

Γ (−s,−(x+ iε))
(B.22)

where, indeed, the real part of FΓ equals to 1. For negative ω the expression takes
the form

F<(ω) = −iηΓ(s+ 1)
π

|ω|se
|ω|
ωc Γ

(
−s, |ω|

ωc

)
. (B.23)

Since the incomplete gamma function is purely real valued for a positive second
argument, F<(ω) is purely imaginary, as expected.

The regime |ω|� ωc follows from the series expansion in the second argument of
the incomplete gamma function (0 < s < 1), i.e.,

Γ(−s, z) = Γ(−s) + 1
zs

(1
s

+ z

1− s +O(z2)
)
. (B.24)

Whereas the expansion of F< follows immediately (x = |ω|/ωc)

F<(ω) = −iηΓ(s)ωsc
π

(
1 + sΓ(−s)xs + 1

1− sx+O
(
xs+1)

))
(B.25)

the negative second arguments appearing in the expression for F> requires special
care. Using

lim
ε→0

(− (x+ iε))s = e−iπsxs (B.26)

and Euler’s reflection formula Γ(s+ 1)Γ(−s) = −π sin−1(πs) yields

FΓ(x, s) =− iΓ(s+ 1)
π

e−iπs
(

Γ(−s) + 1
s

eiπs

xs
− 1

1− s
eiπs

xs−1 +O(x2−s)
)

=1− i
(Γ(s+ 1)

πsxs
− cot(πs)− Γ(s+ 1)

π(1− s)x
1−s +O(x2−s)

) (B.27)

and, thus, (x = ω/ωc)

F>(ω) = J(ω)− iηωsc
(Γ(s)

π
− cot(πs)xs − Γ(s)

π(1− s)x+O(xs+1)
)
. (B.28)

140 Appendix Appendix



Finally, the series expansion of the imaginary part of the half-sided FT reads in
compact notation

S(ω) = −ηω
s
cΓ(s)
π

(
1− Γ(1− s)g(s, ω)(|ω|/ωc)s −

ω

ωc(1− s)
+O((|ω|/ωc)s+1)

)
with g(s, ω) ..= cos(πs)θ(ω) + θ(−ω) ,

(B.29)
where θ denotes the Heaviside step function.

For the Ohmic case (s = 1) the expansion of the incomplete gamma function reads

Γ(−1, z) = 1
z
− (1− γ) + ln(z) + z

2 +O(z2) (B.30)

which results in

S(ω) = −ηωc
π

(
1−

(
γ + ln(|ω|/ωc)

) ω
ωc

+O((|ω|/ωc)2)
)

(B.31)

where γ = 0.577 . . . denotes the Euler–Mascheroni constant.

B.2.2 Non-Zero Temperature

For non-zero temperature the BCF is conveniently expressed as the FT of the effective
SD J(β, ω) [Eq. (B.6) and Eq. (B.7)]. The half-sided FT splits in a real and an
imaginary part, i.e.,∫ ∞

0
dτ α(β, τ)eiωτ = F (β, ω) ≡ J(β, ω) + iS(β, ω) (B.32)

where S(β, ω) can be evaluated in terms of the Cauchy principal value (CPV) P of
the integral

S(β, ω) = − 1
π
P
∫ ∞
−∞

dω′ J(β, ω′)
ω′ − ω

. (B.33)

For a numeric treatment, this non-oscillatory expression is more suitable. The limit
defining the CPV is simply incorporated by splitting the integral at ω and substituting
x = ω′ − ω,

I(ω) ..=P
∫ ∞
−∞

dω′ J(β, ω′)
ω′ − ω

= lim
ε→0

[∫ ω−ε

−∞
dω′ J(β, ω′)

ω′ − ω
+
∫ ∞
ω+ε

dω′ J(β, ω′)
ω′ − ω

]
= lim

ε→0

∫ ∞
ε

dx J(β, ω + x)− J(β, ω − x)
x

.

(B.34)

By the additional substitution y = x/|ω|≥ 0 the difficult points of the integrand
are located at y = 0 (possible pole from the CPV) and y = 1 (singularity of the
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effective SD at ω′ = 0 for sub-Ohmic SDs). Noting that ω ± x = |ω|(sgn(ω)± y) =
ω(1± sgn(ω)y) holds, the CPV integral becomes,

I(ω) =
∫ ∞

0
dy If (ω, y)

y

If (ω, y) ..= J(|ω|(sgn(ω) + y))
1− e−ωβ(1+sgn(ω)y) −

J(|ω|(sgn(ω)− y))
1− e−ωβ(1−sgn(ω)y) .

(B.35)

Realizing that for ω > 0 this expressions reduces to

If>(ω, y) ..= J(|ω|(1 + y))
1− e−ωβ(1+y) −

J(|ω|(1− y))
1− e−ωβ(1−y) (B.36)

whereas for ω < 0, using the antisymmetry of J(ω) allows us to write If (ω, y) as

If<(ω, y) ..=J(|ω|(−1 + y))
1− e−ωβ(1−y) −

J(|ω|(−1− y))
1− e−ωβ(1+y)

=−J(|ω|(1− y))
1− e−ωβ(1−y) + J(|ω|(1 + y))

1− e−ωβ(1+y) = If>(ω, y) .
(B.37)

In summary, the CPV integral becomes

I(ω) =
∫ ∞

0
dy 1

y

(
J(|ω|(1 + y))
1− e−ωβ(1+y) −

J(|ω|(1− y)
1− e−ωβ(1−y)

)

= |ω|
s

ωβ

[ ∫ 1

0
dy ωβ

y

(
(1 + y)se−

|ω|
ωc

(1+y)

1− e−ωβ(1+y) − (1− y)se−
|ω|
ωc

(1−y)

1− e−ωβ(1−y)

)

+
∫ ∞

1
dy ωβ

y

(
(1 + y)se−

|ω|
ωc

(1+y)

1− e−ωβ(1+y) + (y − 1)se−
|ω|
ωc

(y−1)

1− e−ωβ(1−y)

)] (B.38)

where ωβ has been factored out such that the integrals remain finite at ω = 0. It is
convenient to define µ = |ω|/ωc and ν = ωβωc/|ω|= ωβ/µ which leads to

I(ω) = ωsc
ν
µs−1

(
I01(s, µ, ν) + I0∞(s, µ, ν)

)
. (B.39)

Introducing the helper functions

f(x, µ, α) ..= xs−1g(µx, α) and g(z, α) ..= αze−z

1− e−αz (B.40)

allows us to write the integrals in the compact notation

I01 =
∫ 1

0
dy f(y + 1, µ, ν)− f(1− y, µ,+ν)

y
,

I1∞ =
∫ ∞

1
dy f(y + 1, µ, ν)− f(y − 1, µ,−ν)

y
.

(B.41)

Due to the possible singularities, the TS integration scheme [Mor05] should be used
for numerical integration which still yields very accurate results. For completeness,
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since the singularities are best coped with if they are located at zero, the numerical
evaluation is done by integrating three separate integrals (see also Fig. B.1), i.e.,

I01 =I01,a + I01,b with

I01,a =
∫ 1

2

0
dy f(y + 1, µ, ν)− f(1− y, µ,+ν)

y
,

I01,b =
∫ 1

2

0
dy f(2− y, µ, ν)− f(y, µ,+ν)

1− y and

I0∞ =
∫ ∞

0
dy f(y + 2, µ, ν)− f(y, µ,−ν)

1 + y
.

(B.42)

Fig. B.1: Sketch of the integral splitting suitable for the TS integration routine.

To correctly account for small, i.e., µ = |ω|/ωc � 1, the integrals need to be
expanded around 0. For the sub-Ohmic case (0 < s < 1) the expansion reads

I01(µ) =c0 + c1µ+O(µ2) with

c0 =
∫ 1

2

0
dy (1 + y)s−1 − (1− y)s−1

y
+
∫ 1

2

0
dy (2− y)s−1 − ys−1

1− y and

c1 =ν − 2
2

∫ 1

0
dy (1 + y)s − (1− y)s

y
,

(B.43)

as well as

I1∞(µ) =d0 + dsµ
1−s + d1µ+O(µ2−s) with

d0 =
∫ ∞

0
dy (y + 2)s−1 − ys−1

y + 1 ,

ds = ν

1− s(Γ(s)− Γ(s+ 1)) and

d1 =ν − 2
2s

[∫ 1

0
dy
(1
y

+ 1
)s
− 2s+1

]
− ν + 2

2s

∫ 1

0
dy
(1
y
− 1

)s
.

(B.44)

In case of an Ohmic SD (s = 1) it follows that

I01(µ) = c0 + c1µ+O(µ2) with c0 = 0 and c1 = ν − 2 , (B.45)
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as well as
I1∞(µ) =ν + [νγ − 2b0(ν) + 2 ln(µ)]µ+O(µ2) with

b0(ν) =
∫ ∞

0
dz g′′(z, ν) ln(z) ,

(B.46)

where γ = 0.577 . . . denotes the Euler–Mascheroni constant. Note that the second
derivative of g in the integral for b0 needs special care when evaluated for z close to
zero. This is related to the cancellation of precision of terms like ex −

∑n−1
k=0 x

k/k!∼
xn + O(xn+1) which is most dramatically for x ≤ 10−16/n where the difference
becomes numerically zero.

C Fit Data for the Exponential Expansion of (Sub-)
Ohmic SDs

C.1 Relative Difference

The following tables show the fit data for Gµ and Wµ corresponding to the fits used
in the left panel of Fig. 3.10. The accuracy A quantifies the maximum relative
error such that ε = 10−A over the time interval given by the decay threshold D [Eq.
(3.31)].

• D = 2
s = 0.1 Gµ real imag Gµ real imag Wµ real imag Wµ real imag
N = 4 1 -2.37062e-3 -3.88096e-2 2 +3.75720e-2 -1.88078e-1 1 +2.09791e-2 +1.26063e-3 2 +1.41558e-1 +1.75451e-2
A = 1.65 3 +5.92051e-1 -3.57569e-1 4 +3.91768e-1 +5.96105e-1 3 +5.78348e-1 +2.04310e-1 4 +1.55126e+0 +1.37439e+0
N = 5 1 -2.11021e-3 -3.05227e-2 2 +1.10752e-2 -1.19967e-1 1 +1.72661e-2 +1.02508e-3 2 +1.03266e-1 +9.60025e-3
A = 2.27 3 +2.11294e-1 -3.29215e-1 4 -1.69473e-2 +4.46271e-1 3 +3.62246e-1 +7.46272e-2 4 +2.13559e+0 +2.03959e+0

5 +7.95847e-1 +3.87365e-2 5 +1.01896e+0 +4.77135e-1
N = 6 1 -1.86246e-3 -2.52455e-2 2 +3.55113e-3 -8.75830e-2 1 +1.47116e-2 +8.69320e-4 2 +8.25642e-2 +6.57813e-3
A = 2.91 3 +8.38673e-2 -2.29588e-1 4 -1.55422e-1 +1.98214e-1 3 +2.58593e-1 +3.71272e-2 4 +2.73737e+0 +2.76113e+0

5 +4.91297e-1 -2.93854e-1 6 +5.77363e-1 +4.38351e-1 5 +6.81506e-1 +1.98828e-1 6 +1.51535e+0 +8.50352e-1
N = 7 1 -1.67177e-3 -2.14287e-2 2 +6.20109e-4 -6.88329e-2 1 +1.27728e-2 +7.40772e-4 2 +6.90492e-2 +4.94753e-3
A = 3.51 3 -1.30049e-1 +3.72693e-2 4 +3.81276e-2 -1.65322e-1 3 +3.34701e+0 +3.49724e+0 4 +2.00653e-1 +2.22389e-2

5 +2.45179e-1 -2.98643e-1 6 +1.82980e-1 +5.41438e-1 5 +4.89037e-1 +9.81346e-2 6 +2.04056e+0 +1.28855e+0
7 +6.64632e-1 -2.47175e-2 7 +1.07092e+0 +3.93436e-1

s = 0.3 Gµ real imag Gµ real imag Wµ real imag Wµ real imag
N = 4 1 -1.24638e-2 -4.27082e-2 2 +2.55276e-2 -2.48146e-1 1 +4.37116e-2 +4.38070e-3 2 +2.45550e-1 +4.38858e-2
A = 1.8 3 +2.50856e-1 +6.47691e-1 4 +7.44116e-1 -3.43373e-1 3 +1.88995e+0 +1.77967e+0 4 +8.27197e-1 +3.52115e-1
N = 5 1 -9.93756e-3 -3.24427e-2 2 -7.09455e-3 -1.57123e-1 1 +3.61240e-2 +3.60527e-3 2 +1.85172e-1 +2.63636e-2
A = 2.48 3 -1.30168e-1 +3.85127e-1 4 +2.88947e-1 -4.16177e-1 3 +2.55100e+0 +2.56135e+0 4 +5.66325e-1 +1.53055e-1

5 +8.55959e-1 +2.22996e-1 5 +1.36226e+0 +7.32490e-1
N = 6 1 -8.17305e-3 -2.61038e-2 2 -1.33949e-2 -1.12965e-1 1 +3.08905e-2 +3.12090e-3 2 +1.50779e-1 +1.93145e-2
A = 3.17 3 -1.81059e-1 +1.06606e-1 4 +1.06482e-1 -3.12304e-1 3 +3.23907e+0 +3.41477e+0 4 +4.26298e-1 +8.66504e-2

5 +6.59731e-1 -2.62584e-1 6 +4.35857e-1 +6.07020e-1 5 +9.91847e-1 +3.59283e-1 6 +1.95030e+0 +1.22659e+0
N = 7 1 -6.88935e-3 -2.17126e-2 2 -1.41717e-2 -8.76359e-2 1 +2.69811e-2 +2.75912e-3 2 +1.27972e-1 +1.55288e-2
A = 3.87 3 +4.01092e-2 -2.31113e-1 4 +3.70617e-1 -3.59356e-1 3 +3.43111e-1 +5.85857e-2 4 +7.59344e-1 +2.08148e-1

5 +7.47224e-1 +1.91333e-1 6 -4.19021e-2 +5.27154e-1 5 +1.48925e+0 +6.70211e-1 6 +2.57224e+0 +1.82736e+0
7 -9.49246e-2 -1.87573e-2 7 +3.94340e+0 +4.35150e+0

s = 0.5 Gµ real imag Gµ real imag Wµ real imag Wµ real imag
N = 4 1 -2.30979e-2 -4.50549e-2 2 +1.42756e-2 -3.14262e-1 1 +7.60300e-2 +1.10845e-2 2 +3.69536e-1 +8.69550e-2
A = 1.94 3 +1.21301e-1 +6.66241e-1 4 +8.88799e-1 -2.95390e-1 3 +2.20511e+0 +2.17970e+0 4 +1.07775e+0 +5.27688e-1
N = 5 1 -1.77355e-2 -3.29925e-2 2 -2.82220e-2 -1.97382e-1 1 +6.30497e-2 +9.20233e-3 2 +2.85764e-1 +5.59422e-2
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A = 2.66 3 -2.05767e-1 +3.11814e-1 4 +3.88851e-1 -4.93282e-1 3 +2.93475e+0 +3.06752e+0 4 +7.86669e-1 +2.61038e-1
5 +8.60771e-1 +4.12408e-1 5 +1.69321e+0 +1.01128e+0

N = 6 1 -1.37977e-2 -2.58589e-2 2 -3.19165e-2 -1.38546e-1 1 +5.38679e-2 +8.43298e-3 2 +2.34716e-1 +4.43741e-2
A = 3.4 3 -1.74947e-1 +3.34362e-2 4 +1.43765e-1 -3.98068e-1 3 +3.71346e+0 +4.04667e+0 4 +6.12350e-1 +1.65362e-1

5 +2.59580e-1 +7.07127e-1 6 +8.17201e-1 -1.78455e-1 5 +2.36167e+0 +1.62452e+0 6 +1.30283e+0 +5.60581e-1
N = 7 1 -1.12861e-2 -2.05713e-2 2 -3.07580e-2 -1.03383e-1 1 +4.66458e-2 +7.22022e-3 2 +1.98628e-1 +3.55020e-2
A = 4.13 3 +4.44907e-2 -2.99057e-1 4 +5.09481e-1 -3.94004e-1 3 +4.98993e-1 +1.16682e-1 4 +1.03085e+0 +3.50903e-1

5 +7.53102e-1 +4.09629e-1 6 -2.06917e-1 +4.49655e-1 5 +1.88049e+0 +9.68301e-1 6 +3.05487e+0 +2.35255e+0
7 -5.80542e-2 -4.22467e-2 7 +4.50396e+0 +5.18799e+0

s = 1 Gµ real imag Gµ real imag Wµ real imag Wµ real imag
N = 4 1 -4.96766e-2 -4.62328e-2 2 +4.14072e-3 -4.95114e-1 1 +1.93537e-1 +5.21517e-2 2 +7.23489e-1 +2.71841e-1
A = 2.19 3 -1.35525e-1 +6.24629e-1 4 +1.17658e+0 -7.86632e-2 3 +2.90446e+0 +3.15131e+0 4 +1.67280e+0 +1.04700e+0
N = 5 1 -3.54708e-2 -3.05365e-2 2 -2.80345e-1 +1.37315e-1 1 +1.61586e-1 +4.38557e-2 2 +3.77372e+0 +4.27130e+0
A = 3.01 3 -8.20466e-2 -3.08517e-1 4 +6.97903e-1 -6.05675e-1 3 +5.83764e-1 +1.94647e-1 4 +1.34332e+0 +6.36621e-1

5 +6.99328e-1 +8.06701e-1 5 +2.44460e+0 +1.76507e+0
N = 6 1 -2.69854e-2 -2.16956e-2 2 -1.04127e-1 -7.90134e-2 1 +1.39329e-1 +3.74378e-2 2 +4.90069e+0 +5.49211e+0
A = 3.81 3 -9.42500e-2 -2.08283e-1 4 +3.07626e-1 -6.42410e-1 3 +4.94837e-1 +1.52357e-1 4 +1.12988e+0 +4.45419e-1

5 -2.17400e-1 +7.28106e-1 6 +1.13527e+0 +2.23258e-1 5 +3.38190e+0 +2.63369e+0 6 +2.09861e+0 +1.15274e+0
N = 7 1 -2.07927e-2 -1.55233e-2 2 -8.64337e-2 -1.43833e-1 1 +1.20860e-1 +3.15279e-2 2 +4.24088e-1 +1.23136e-1
A = 4.42 3 +8.68540e-2 -5.27435e-1 4 +9.90641e-1 -3.23219e-1 3 +9.56214e-1 +3.36265e-1 4 +1.77977e+0 +8.19865e-1

5 +4.34348e-1 +9.70987e-1 6 -4.23245e-1 +8.31226e-2 5 +2.93767e+0 +1.82607e+0 6 +4.45226e+0 +3.66096e+0
7 +1.86053e-2 -4.40760e-2 7 +6.29211e+0 +6.79231e+0

• D = 4
s = 0.1 Gµ real imag Gµ real imag Wµ real imag Wµ real imag
N = 6 1 -6.99951e-5 -4.48480e-4 2 -4.18890e-4 -2.84453e-3 1 +3.58817e-4 +5.09446e-7 2 +2.77759e-3 +1.17736e-5
A = 1.4 3 -1.94312e-3 -1.85600e-2 4 +1.04115e-2 -1.19787e-1 3 +1.56920e-2 +2.93207e-4 4 +8.63100e-2 +7.00748e-3

5 +4.40759e-1 -4.11470e-1 6 +5.78923e-1 +5.58691e-1 5 +4.28034e-1 +1.32667e-1 6 +1.32056e+0 +1.18138e+0
N = 7 1 -5.84908e-5 -3.74349e-4 2 -2.82387e-4 -1.87671e-3 1 +3.12153e-4 +4.36805e-7 2 +2.11180e-3 +6.57407e-6
A = 1.77 3 -1.18311e-3 -9.31168e-3 4 -1.86164e-3 -4.71570e-2 3 +9.59154e-3 +1.02686e-4 4 +4.19214e-2 +1.61905e-3

5 +6.09751e-2 -2.18075e-1 6 +2.68324e-1 +5.71411e-1 5 +1.79211e-1 +2.36723e-2 6 +1.66263e+0 +1.56443e+0
7 +6.81687e-1 -2.84934e-1 7 +6.65504e-1 +2.61302e-1

N = 8 1 -5.04653e-5 -3.22760e-4 2 -2.09958e-4 -1.37940e-3 1 +2.77029e-4 +3.85020e-7 2 +1.72209e-3 +4.36124e-6
A = 2.14 3 -7.63126e-4 -5.55265e-3 4 -2.06714e-3 -2.30307e-2 3 +6.70871e-3 +4.74658e-5 4 +2.46142e-2 +5.37094e-4

5 +5.69627e-3 -9.44988e-2 6 +1.70101e-1 -3.08842e-1 5 +8.93493e-2 +5.90063e-3 6 +3.13033e-1 +5.86867e-2
7 +3.31885e-2 +4.70206e-1 8 +7.93887e-1 -3.12739e-2 7 +2.01351e+0 +1.97149e+0 8 +9.32892e-1 +4.32693e-1

N = 9 1 -4.44533e-5 -2.84155e-4 2 -1.66717e-4 -1.08740e-3 1 +2.49268e-4 +3.43230e-7 2 +1.46576e-3 +3.18864e-6
A = 2.5 3 -5.32334e-4 -3.71897e-3 4 -1.49657e-3 -1.31452e-2 3 +5.11738e-3 +2.61429e-5 4 +1.64164e-2 +2.27310e-4

5 -1.46885e-3 -4.67595e-2 6 +3.13128e-2 -1.58214e-1 5 +5.19988e-2 +1.95824e-3 6 +1.62910e-1 +1.61387e-2
7 -1.00750e-1 +3.23987e-1 8 +3.31025e-1 -3.43226e-1 7 +2.37088e+0 +2.39626e+0 8 +4.84914e-1 +1.17832e-1
9 +7.40580e-1 +2.44121e-1 9 +1.22129e+0 +6.40675e-1

s = 0.3 Gµ real imag Gµ real imag Wµ real imag Wµ real imag
N = 6 1 -2.30987e-4 -4.62206e-4 2 -1.59009e-3 -3.36175e-3 1 +1.39918e-3 +5.92910e-6 2 +8.77681e-3 +8.86847e-5
A = 1.58 3 -8.86792e-3 -2.39788e-2 4 -5.06292e-3 -1.69360e-1 3 +4.01900e-2 +1.42754e-3 4 +1.76144e-1 +2.21233e-2

5 +6.01806e-1 -4.42220e-1 6 +4.29737e-1 +6.52839e-1 5 +6.68981e-1 +2.59604e-1 6 +1.66855e+0 +1.58466e+0
N = 7 1 -1.89229e-4 -3.78238e-4 2 -1.06377e-3 -2.20706e-3 1 +1.22218e-3 +5.17900e-6 2 +6.89166e-3 +5.44401e-5
A = 1.99 3 -4.96113e-3 -1.18120e-2 4 -1.55601e-2 -6.53723e-2 3 +2.63287e-2 +5.80310e-4 4 +9.54386e-2 +6.32858e-3

5 +7.91244e-2 -3.08291e-1 6 +9.32348e-2 +5.75560e-1 5 +3.32261e-1 +6.29356e-2 6 +2.06775e+0 +2.05318e+0
7 +8.49930e-1 -1.79294e-1 7 +9.77554e-1 +4.60311e-1

N = 8 1 -1.60112e-4 -3.19813e-4 2 -7.86172e-4 -1.61386e-3 1 +1.08699e-3 +4.61508e-6 2 +5.73690e-3 +3.85897e-5
A = 2.4 3 -3.10957e-3 -6.97710e-3 4 -1.04541e-2 -3.11746e-2 3 +1.93448e-2 +2.99480e-4 4 +6.05231e-2 +2.45094e-3

5 -8.81081e-3 -1.37573e-1 6 -1.08389e-1 +3.97883e-1 5 +1.85536e-1 +1.94478e-2 6 +2.47645e+0 +2.54413e+0
7 +2.63271e-1 -4.06333e-1 8 +8.66274e-1 +1.88480e-1 7 +5.37858e-1 +1.36403e-1 8 +1.31217e+0 +7.08181e-1

N = 9 1 -1.38327e-4 -2.76091e-4 2 -6.19004e-4 -1.26172e-3 1 +9.78573e-4 +4.09055e-6 2 +4.94476e-3 +2.93623e-5
A = 2.81 3 -2.13875e-3 -4.63701e-3 4 -6.78277e-3 -1.74285e-2 3 +1.52714e-2 +1.77577e-4 4 +4.26682e-2 +1.14213e-3

5 -1.48644e-2 -6.66716e-2 6 +3.39303e-2 -2.33182e-1 5 +1.16762e-1 +7.36774e-3 6 +3.13074e-1 +4.53318e-2
7 -1.81806e-1 +2.16848e-1 8 +5.01944e-1 -3.83112e-1 7 +2.89576e+0 +3.04211e+0 8 +7.83192e-1 +2.42776e-1
9 +6.69205e-1 +4.89745e-1 9 +1.66566e+0 +9.87627e-1

s = 0.5 Gµ real imag Gµ real imag Wµ real imag Wµ real imag
N = 6 1 -4.06855e-4 -4.23326e-4 2 -3.17755e-3 -3.60407e-3 1 +3.86079e-3 +3.65331e-5 2 +2.07052e-2 +3.99109e-4
A = 1.73 3 -1.88817e-2 -2.94166e-2 4 -2.15671e-2 -2.32211e-1 3 +8.12998e-2 +4.63471e-3 4 +2.99589e-1 +5.16317e-2

5 +2.73283e-1 +7.04312e-1 6 +7.76702e-1 -4.24343e-1 5 +2.00597e+0 +1.99718e+0 6 +9.29895e-1 +4.23462e-1
N = 7 1 -3.26394e-4 -3.39012e-4 2 -2.11295e-3 -2.33128e-3 1 +3.38159e-3 +3.22239e-5 2 +1.66167e-2 +2.62170e-4
A = 2.18 3 -1.04652e-2 -1.39823e-2 4 -3.51457e-2 -8.79102e-2 3 +5.60030e-2 +2.10357e-3 4 +1.76587e-1 +1.73711e-2

5 +1.20012e-1 -4.13054e-1 6 -5.62827e-2 +5.35043e-1 5 +5.24420e-1 +1.28614e-1 6 +2.45830e+0 +2.54468e+0
7 +9.81642e-1 -1.24931e-2 7 +1.30136e+0 +6.97414e-1

N = 8 1 -2.70707e-4 -2.80742e-4 2 -1.54992e-3 -1.68165e-3 1 +3.01183e-3 +2.85535e-5 2 +1.40209e-2 +1.92540e-4
A = 2.63 3 -6.53611e-3 -8.06629e-3 4 -2.30915e-2 -4.03291e-2 3 +4.25961e-2 +1.16535e-3 4 +1.18584e-1 +7.46475e-3
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5 -2.60095e-2 -1.94523e-1 6 -1.98868e-1 +3.03600e-1 5 +3.19748e-1 +4.63922e-2 6 +2.91438e+0 +3.10930e+0
7 +4.02018e-1 -4.87075e-1 8 +8.52356e-1 +4.28765e-1 7 +8.00861e-1 +2.50628e-1 8 +1.69372e+0 +1.01756e+0

N = 9 1 -2.28413e-4 -2.34440e-4 2 -1.19409e-3 -1.28204e-3 1 +2.69768e-3 +1.66248e-5 2 +1.21058e-2 +1.32516e-4
A = 3.13 3 -4.37438e-3 -5.22959e-3 4 -1.45598e-2 -2.15606e-2 3 +3.41620e-2 +8.14926e-4 4 +8.63298e-2 +4.11679e-3

5 -3.49436e-2 -9.14615e-2 6 +4.93396e-2 -3.28109e-1 5 +2.12392e-1 +1.95428e-2 6 +5.06705e-1 +9.53511e-2
7 +7.06043e-1 -3.55745e-1 8 +5.07022e-1 +6.87755e-1 7 +1.11169e+0 +4.09478e-1 8 +2.10096e+0 +1.36595e+0
9 -2.07655e-1 +1.15370e-1 9 +3.38892e+0 +3.68077e+0

s = 1 Gµ real imag Gµ real imag Wµ real imag Wµ real imag
N = 5 1 -1.11571e-3 -1.13362e-4 2 -1.58710e-2 -4.94491e-3 1 +2.44831e-2 +8.41471e-4 2 +1.11631e-1 +7.86456e-3
A = 1.54 3 -1.10814e-1 -1.48545e-1 4 +6.90871e-1 -6.99669e-1 3 +3.94352e-1 +7.63372e-2 4 +1.12768e+0 +5.54962e-1

5 +4.47964e-1 +8.76912e-1 5 +2.23953e+0 +2.32935e+0
N = 6 1 -8.00051e-4 -7.71852e-5 2 -8.70875e-3 -2.04588e-3 1 +2.10777e-2 +7.33477e-4 2 +8.66699e-2 +4.87592e-3
A = 2.07 3 -6.04564e-2 -4.19271e-2 4 -4.02882e-2 -4.54874e-1 3 +2.63733e-1 +3.26289e-2 4 +7.17669e-1 +2.04606e-1

5 -7.89155e-2 +6.88243e-1 6 +1.18432e+0 -1.82947e-1 5 +2.79693e+0 +3.02790e+0 6 +1.60538e+0 +9.40320e-1
N = 7 1 -6.07565e-4 -5.68297e-5 2 -5.60023e-3 -1.09020e-3 1 +1.85468e-2 +6.55299e-4 2 +7.18536e-2 +3.55620e-3
A = 2.6 3 -3.32656e-2 -1.57897e-2 4 -1.10966e-1 -1.73240e-1 3 +1.97253e-1 +1.78624e-2 4 +4.90529e-1 +9.11637e-2

5 -2.89400e-1 +3.38965e-1 6 +3.63373e-1 -6.84975e-1 5 +3.36781e+0 +3.75323e+0 6 +1.10520e+0 +4.06703e-1
7 +1.07413e+0 +5.35794e-1 7 +2.10730e+0 +1.38835e+0

N = 8 1 -4.77791e-4 -4.20760e-5 2 -3.95891e-3 -6.55139e-4 1 +1.65483e-2 +5.65247e-4 2 +6.17820e-2 +2.70384e-3
A = 3.15 3 -2.04159e-2 -7.28470e-3 4 -7.84717e-2 -6.89911e-2 3 +1.58283e-1 +1.10483e-2 4 +3.63310e-1 +4.69817e-2

5 -2.62149e-1 +7.31195e-2 6 -5.17030e-2 -4.14915e-1 5 +3.94364e+0 +4.48354e+0 6 +7.83963e-1 +1.91604e-1
7 +9.02135e-1 -5.05668e-1 8 +5.14817e-1 +9.23779e-1 7 +1.53581e+0 +6.67741e-1 8 +2.62539e+0 +1.87304e+0

C.2 Absolute Difference

The following tables show the fit data for Gµ and Wµ corresponding to the fits used
for the right panel of Fig. 3.10. The accuracy A quantifies the maximum absolute
error such that ε = 10−A for all times τ ∈ [0,∞].

s = 0.1 Gµ real imag Gµ real imag Wµ real imag Wµ real imag
N = 4 1 +4.94961e-4 -6.07184e-2 2 +1.84023e-1 -3.21137e-1 1 +2.80945e-2 +2.36555e-3 2 +2.42205e-1 +6.68317e-2
A = 2.5 3 +2.33768e-2 +3.78319e-1 4 +7.91195e-1 +6.59844e-3 3 +2.00206e+0 +2.26706e+0 4 +8.92503e-1 +5.41010e-1
N = 5 1 -1.80631e-3 -2.30558e-2 2 +2.92837e-2 -1.54105e-1 1 +1.16463e-2 +4.70862e-4 2 +1.06164e-1 +1.52575e-2
A = 2.92 3 -9.01922e-2 +2.29451e-1 4 +3.93161e-1 -3.50635e-1 3 +2.42174e+0 +2.79962e+0 4 +4.55916e-1 +1.57589e-1

5 +6.68544e-1 +2.98812e-1 5 +1.23920e+0 +8.23901e-1
N = 6 1 -1.15826e-3 -9.11561e-3 2 +1.97238e-4 -6.46635e-2 1 +5.02657e-3 +6.50619e-5 2 +4.67717e-2 +3.03224e-3
A = 3.32 3 -1.17395e-1 +1.22286e-1 4 +9.32767e-2 -2.44967e-1 3 +2.79926e+0 +3.24552e+0 4 +2.17573e-1 +3.85453e-2

5 +5.68441e-1 -2.63184e-1 6 +4.56234e-1 +4.59527e-1 5 +6.87268e-1 +2.62223e-1 6 +1.56880e+0 +1.08288e+0
N = 7 1 -4.99283e-4 -3.88744e-3 2 -1.73669e-3 -2.75292e-2 1 +2.31738e-3 +4.30159e-5 2 +2.15567e-2 +9.83565e-4
A = 3.69 3 -1.02396e-1 +4.94397e-2 4 +1.51785e-2 -1.16084e-1 3 +3.15009e+0 +3.70755e+0 4 +1.01890e-1 +1.11276e-2

5 +1.95110e-1 -2.96773e-1 6 +2.36524e-1 +4.88045e-1 5 +3.47122e-1 +8.18079e-2 6 +1.86525e+0 +1.37358e+0
7 +6.57721e-1 -9.33573e-2 7 +9.09705e-1 +4.01381e-1

N = 8 1 -2.20818e-4 -1.80444e-3 2 -1.45637e-3 -1.26589e-2 1 +1.15444e-3 +3.72552e-5 2 +1.06938e-2 +2.70391e-4
A = 4.02 3 -1.09115e-4 -5.50726e-2 4 -7.72721e-2 +4.56786e-3 3 +5.09123e-2 +2.95840e-3 4 +3.53521e+0 +4.14145e+0

5 +4.67302e-2 -1.75364e-1 6 +4.20287e-2 +4.42924e-1 5 +1.78976e-1 +2.45639e-2 6 +2.20312e+0 +1.66684e+0
7 +3.22419e-1 -3.11848e-1 8 +6.67885e-1 +1.09187e-1 7 +5.06939e-1 +1.38443e-1 8 +1.16814e+0 +5.57302e-1

N = 9 1 -1.39100e-4 -1.03807e-3 2 -9.38248e-4 -7.37159e-3 1 +6.98168e-4 +1.50269e-5 2 +6.51874e-3 +1.21825e-4
A = 4.26 3 -1.65263e-3 -3.25031e-2 4 -4.26437e-2 -1.27215e-2 3 +3.13579e-2 +1.32107e-3 4 +3.85182e+0 +4.77917e+0

5 +1.26553e-2 -1.09160e-1 6 +1.28262e-1 -2.64102e-1 5 +1.11765e-1 +1.06880e-2 6 +3.25978e-1 +5.71190e-2
7 -1.09999e-1 +3.21103e-1 8 +4.89160e-1 -2.47511e-1 7 +2.54972e+0 +2.03313e+0 8 +7.82930e-1 +2.28451e-1
9 +5.25313e-1 +3.53299e-1 9 +1.52754e+0 +7.44882e-1

s = 0.3 Gµ real imag Gµ real imag Wµ real imag Wµ real imag
N = 4 1 -1.24673e-2 -6.18827e-2 2 -3.05782e-2 +3.68123e-1 1 +5.24549e-2 +6.49454e-3 2 +2.26317e+0 +2.68838e+0
A = 2.61 3 +1.89481e-1 -3.76616e-1 4 +8.52039e-1 +7.23097e-2 3 +3.52581e-1 +1.19641e-1 4 +1.10387e+0 +7.44590e-1
N = 5 1 -7.05864e-3 -2.09185e-2 2 +1.08650e-2 -1.71904e-1 1 +2.32839e-2 +1.53255e-3 2 +1.67428e-1 +3.39302e-2
A = 3.07 3 -1.18312e-1 +2.01632e-1 4 +4.45849e-1 -3.91668e-1 3 +2.69494e+0 +3.27497e+0 4 +6.07869e-1 +2.57513e-1

5 +6.67819e-1 +3.82897e-1 5 +1.47229e+0 +1.09071e+0
N = 6 1 -3.40903e-3 -7.48794e-3 2 -1.35707e-2 -6.67405e-2 1 +1.08918e-2 +9.85700e-5 2 +8.06677e-2 +7.51729e-3
A = 3.5 3 -1.28647e-1 +8.76841e-2 4 +8.57341e-2 -2.87298e-1 3 +3.13001e+0 +3.78162e+0 4 +3.19357e-1 +7.60166e-2

5 +4.00539e-1 +5.37959e-1 6 +6.59140e-1 -2.64333e-1 5 +1.84939e+0 +1.40491e+0 6 +8.86218e-1 +4.04464e-1
N = 7 1 -1.42457e-3 -3.17818e-3 2 -8.50287e-3 -2.80549e-2 1 +5.61245e-3 +1.39794e-4 2 +4.19789e-2 +3.03098e-3
A = 3.88 3 -9.52753e-2 +2.13577e-2 4 +2.42815e-4 -1.38059e-1 3 +3.49081e+0 +4.33308e+0 4 +1.70469e-1 +2.79196e-2

5 +2.34968e-1 -3.54971e-1 6 +1.33473e-1 +5.14859e-1 5 +5.05808e-1 +1.56896e-1 6 +2.18825e+0 +1.77555e+0
7 +7.36506e-1 -1.20554e-2 7 +1.17023e+0 +6.10143e-1

N = 8 1 -7.58760e-4 -1.61275e-3 2 -5.43060e-3 -1.40776e-2 1 +3.35268e-3 +5.85062e-5 2 +2.51564e-2 +1.03292e-3
A = 4.17 3 -4.42513e-2 -2.53913e-2 4 -1.21398e-2 -7.19508e-2 3 +4.27285e+0 +5.10133e+0 4 +1.03428e-1 +1.06903e-2
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5 +5.77062e-2 -2.41982e-1 6 -1.23822e-1 +3.65184e-1 5 +3.16210e-1 +6.64579e-2 6 +2.76443e+0 +2.30967e+0
7 +4.66308e-1 -3.38418e-1 8 +6.62424e-1 +3.28241e-1 7 +7.79045e-1 +2.83436e-1 8 +1.58950e+0 +9.06683e-1

N = 9 1 -4.76370e-4 -7.72144e-4 2 -3.04038e-3 -6.67347e-3 1 +2.00729e-3 -1.38026e-4 2 +1.46060e-2 -1.93215e-4
A = 4.43 3 -9.64342e-3 -3.46560e-2 4 -3.96686e-2 -4.33665e-3 3 +5.96950e-2 +3.60053e-3 4 +3.77177e+0 +5.29858e+0

5 +5.72922e-3 -1.27950e-1 6 -5.71423e-2 +2.63464e-1 5 +1.85276e-1 +2.99373e-2 6 +2.54677e+0 +2.58572e+0
7 +1.77999e-1 -2.63386e-1 8 +4.99474e-1 -1.30517e-1 7 +4.55264e-1 +1.47606e-1 8 +9.10563e-1 +4.85706e-1
9 +4.26766e-1 +3.04801e-1 9 +1.58816e+0 +1.20231e+0

s = 0.5 Gµ real imag Gµ real imag Wµ real imag Wµ real imag
N = 4 1 -2.46076e-2 -6.18372e-2 2 -7.40343e-2 +3.53925e-1 1 +8.52890e-2 +1.42010e-2 2 +2.49902e+0 +3.09335e+0
A = 2.7 3 +1.96625e-1 -4.29863e-1 4 +9.00358e-1 +1.38851e-1 3 +4.70710e-1 +1.87557e-1 4 +1.30319e+0 +9.57968e-1
N = 5 1 -1.20460e-2 -1.87041e-2 2 -1.55697e-2 -1.96986e-1 1 +4.08192e-2 +3.53914e-3 2 +2.46646e-1 +5.66231e-2
A = 3.2 3 -1.45383e-1 +1.73972e-1 4 +5.12732e-1 -4.44052e-1 3 +2.97457e+0 +3.72024e+0 4 +7.85067e-1 +3.60460e-1

5 +6.59669e-1 +4.85550e-1 5 +1.72265e+0 +1.34352e+0
N = 6 1 -5.08118e-3 -6.30271e-3 2 -3.08510e-2 -7.19199e-2 1 +2.07948e-2 +8.74328e-4 2 +1.30096e-1 +1.56279e-2
A = 3.64 3 -1.37998e-1 +5.80214e-2 4 +7.51989e-2 -3.53365e-1 3 +3.44594e+0 +4.25596e+0 4 +4.54708e-1 +1.20086e-1

5 +3.26981e-1 +6.26584e-1 6 +7.71669e-1 -2.53231e-1 5 +2.14813e+0 +1.69436e+0 6 +1.12383e+0 +5.44791e-1
N = 7 1 -2.02794e-3 -2.52575e-3 2 -1.43945e-2 -2.73479e-2 1 +1.13213e-2 +6.56019e-4 2 +7.00345e-2 +8.00183e-3
A = 4.03 3 -9.05959e-2 +7.82265e-4 4 -1.38494e-2 -1.56158e-1 3 +3.82120e+0 +4.85774e+0 4 +2.48535e-1 +5.67707e-2

5 +2.72590e-1 -4.07188e-1 6 +4.82708e-2 +5.31312e-1 5 +6.63178e-1 +2.53362e-1 6 +2.49161e+0 +2.13919e+0
7 +8.00031e-1 +6.10445e-2 7 +1.41328e+0 +8.26402e-1

N = 8 1 -1.02655e-3 -1.17277e-3 2 -7.42600e-3 -1.29372e-2 1 +6.96200e-3 +1.20019e-4 2 +4.30597e-2 +4.52622e-3
A = 4.36 3 -5.06682e-2 -1.39529e-2 4 -1.71821e-2 -7.30188e-2 3 +4.06878e+0 +5.49256e+0 4 +1.51849e-1 +3.16337e-2

5 +5.50618e-2 -2.46159e-1 6 -8.87373e-2 +3.73030e-1 5 +4.03960e-1 +1.32115e-1 6 +2.74868e+0 +2.60011e+0
7 +4.60448e-1 -3.31361e-1 8 +6.49548e-1 +3.05553e-1 7 +8.88894e-1 +4.22344e-1 8 +1.67241e+0 +1.12800e+0

s = 1 Gµ real imag Gµ real imag Wµ real imag Wµ real imag
N = 4 1 -5.24536e-2 -5.82591e-2 2 -1.53070e-1 +3.13214e-1 1 +2.00828e-1 +5.50627e-2 2 +3.01477e+0 +4.04811e+0
A = 2.89 3 +2.19825e-1 -5.55609e-1 4 +9.84414e-1 +3.00531e-1 3 +7.80901e-1 +4.10809e-1 4 +1.75909e+0 +1.51249e+0
N = 5 1 -2.12358e-2 -1.21821e-2 2 -1.72838e-1 +1.10546e-1 1 +1.11643e-1 +1.89225e-2 2 +3.54897e+0 +4.80949e+0
A = 3.44 3 -6.74051e-2 -2.48812e-1 4 +6.76090e-1 -5.15468e-1 3 +4.75015e-1 +1.66319e-1 4 +1.19276e+0 +7.06478e-1

5 +5.85227e-1 +6.65589e-1 5 +2.24681e+0 +2.03466e+0
N = 6 1 -8.12969e-3 -2.87953e-3 2 -6.51413e-2 -8.01954e-2 1 +6.62243e-2 +7.38414e-3 2 +2.93112e-1 +7.09275e-2
A = 3.91 3 -1.15364e-1 -4.03041e-3 4 +9.93156e-2 -4.76469e-1 3 +4.16684e+0 +5.59224e+0 4 +7.89167e-1 +3.32839e-1

5 +1.16286e-1 +6.85707e-1 6 +9.73105e-1 -1.22221e-1 5 +2.76330e+0 +2.60270e+0 6 +1.61906e+0 +1.05619e+0
N = 7 1 -3.41938e-3 -1.19963e-3 2 -3.32995e-2 -3.07209e-2 1 +4.27878e-2 +5.30407e-3 2 +1.91510e-1 +4.46372e-2
A = 4.28 3 -5.33754e-2 -2.16946e-2 4 -4.32204e-2 -2.36708e-1 3 +4.44007e+0 +6.43728e+0 4 +5.27067e-1 +1.96477e-1

5 -1.33009e-1 +4.29896e-1 6 +4.56843e-1 -4.86407e-1 5 +3.12810e+0 +3.26207e+0 6 +1.12086e+0 +6.15014e-1
7 +8.09484e-1 +3.46827e-1 7 +1.99961e+0 +1.53180e+0

D Derivation of the Perturbative Master Equations

As a preliminary to provide explicit expressions for various master equations aiming
for approximate solutions of the dynamics of the unbiased two-spin-boson model
(2SBM), the eigenvalues and eigenstates of the system Hamiltonian [Eq. (5.1)], i.e.,

Hsys = −ωA2 σAx −
ωB
2 σBx , (D.1)

are required. Using the eigenstates of the Pauli matrix σx, i.e.,

σx|ψ±〉 = σx
1√
2

(|↑〉 ± |↓〉) = 1√
2

(|↓〉 ± |↑〉) = ±|ψ±〉}; , (D.2)

the 4 eigenstates of Hsys follow immediately

Hsys|ψ±〉A|ψ±〉B = −1
2
(
(±)AωA(±)BωB

)
|ψ±〉A|ψ±〉B , (D.3)
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where the eigenvalues can also be expressed as ∓∆,∓δ with ∆ = (ωA + ωB)/2 and
δ = (ωA − ωB)/2. It turns out useful to decompose the coupling operator

L = 1
2
(
σAz + σBz

)
(D.4)

in terms of eigenstate projectors of Hsys|ε〉 = ε|ε〉 and group summands with an
equal energy difference (transition frequency) ω = ε′ − ε, i.e.,

L =
∑
ε,ε′

|ε〉〈ε|L|ε′〉〈ε′|=
∑
w

Lw with Lw ..=
∑

ε,ε′:ε′−ε=ω
|ε〉〈ε|L|ε′〉〈ε′| . (D.5)

The possible energy differences ω = ε′ − ε, given in the following table

ε\ε′ −∆ −δ δ ∆
−∆ 0 ωB ωA ωA + ωB

−δ −ωB 0 ωA − ωB ωA

δ −ωA ωB − ωA 0 ωB

∆ −ωA − ωB −ωA −ωB 0

(D.6)

and the action σz|ψ±〉 = σz
1√
2(|+〉 ± |−〉) = 1√

2(|+〉 ∓ |−〉) = |ψ∓〉 allows us to
evaluate the operators Lw, i.e.,

L0 = 0, L±(ωA+ωB) = 0, L±(ωA−ωB) = 0,

LωB = 1
21

A|ψ+〉B〈ψ−|B= L†−ωB and LωA = 1
2 |ψ+〉A〈ψ−|A1B = L†−ωA .

(D.7)

Note that for resonant qubits, i.e., ∆ = ωA = ωB, the two non-vanishing contribu-
tions above joint into the single operator

L∆ = 1
2
(
1A|ψ+〉B〈ψ−|B+|ψ+〉A〈ψ−|A1B

)
= L†−∆ . (D.8)

It is useful to introduce X+ and X− as the ladder operators with respect to the
eigenstates of σx, i.e.,

X+ ..= |ψ+〉〈ψ−|=
1
2(σz− iσy) and X− ..= |ψ−〉〈ψ+|=

1
2(σz + iσy) = X†+ . (D.9)

Also the following relations turn out useful, too,

X+X− = |ψ+〉〈ψ+|=
1
4(σz − iσy)(σz + iσy) = 1

2(1+ σx) and

X−X+ = |ψ−〉〈ψ−|=
1
2(1− σx) .

(D.10)
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D.1 The Redfield Equation

To derive an approximate evolution equation for the reduced state [BP07; KC08;
Whi08] the Nakajima-Zwanzig projection formalism [Nak58; Zwa60; Gra06] may
be used as starting point. In lowest order of the coupling strength the following
expression is obtained

˙̃ρ(t) = −
∫ t

0
dsTrenv[Ṽ (t), [Ṽ (s), ρ̃(s)⊗ ρenv]] . (D.11)

Here ρ̃ and Ṽ denote the reduced state and the interaction Hamiltonian in the
interaction picture with respect to the system and the environment Hamiltonian.
Also an initial product state of the form ρtot(0) = ρ(0) ⊗ ρenv has been assumed.
For the microscopic model Hamiltonian [Eq. (2.1)] with a Hermitian coupling
operator L = L† it follows explicitly that Ṽ (t) =

∑
λ gλL̃(t)(aλe−ωλt + a†λe

ωλt). To
note in passing, the following steps can easily be generalized for a non-Hermitian
coupling operator which yields two different integral kernels α1 and α2. Abbreviating
F (t) ..=

∑
λ aλe

−iωλt + a†λe
iωλt and assuming a thermal initial state ρenv ∼ e−βHenv ,

the evolution equation Eq. (D.11) becomes

˙̃ρ(t) = −
∫ t

0
ds
(
α(β, t− s)[L̃(t), L̃(s)ρ̃(s)] + h.c.

)
(D.12)

with the bath correlation function (BCF)

α(β, τ) ..= TrenvF (t)F (t+ τ)ρenv

=
∑
λ

g2
λ((2n̄(βω) + 1) cos(ωτ)− i sin(ωτ)) (D.13)

where n̄(x) = (ex − 1)−1 denotes the Bose-Einstein distribution. For a continuous
environment, i.e.,

∑
λ|gλ|2→ 1

π

∫∞
0 dω J(ω), the BCF becomes the previously intro-

duced integral expression (see for example App. B, Eq. (B.3)). For a BCF which
decays faster than the time scale of the reduced dynamics in the interaction picture,
ρ̃(s) may well be approximated with ρ̃(t) under the integral. Finally, substituting
τ = t− s and transforming back to the Schrödinger picture yields

ρ̇(t) = −i[Hsys, ρ(t)] +
∫ t

0
dτ
(
α(β, τ)[L̃(−τ)ρ(t), L] + h.c.

)
. (D.14)

The remaining interaction picture contribution L̃(−τ) can be made explicit by
decomposing L =

∑
ω Lω where ω runs over all possible transition frequencies of

Hsys (see Eq. (D.5)). In follows that an operator L in the interacting picture can be
written as

L̃(t) = eiHsystLe−iHsyst =
∑
ω

e−iωtLω . (D.15)
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The resulting master equation is known as the Redfield Master Equation with time-
dependent coefficients (RFEtdc) where the coefficients F (ω, t) can be obtained
conveniently by propagating F (ω, t) along with the reduced state, i.e.,

ρ̇(t) = −i[Hsys, ρ(t)] +
∑
ω

(
F (β, ω, t)[Lωρ(t), L] + h.c.

)
with

F (β, ω, t) ..=
∫ t

0
dτ α(β, τ)eiωτ

⇔ Ḟ (β, ω, t) = α(β, t)eiωt and F (β, ω, 0) = 0 .

(D.16)

In contrast to master equations involving the RWA (discussed next), grouping all
contribution with the same transition frequency is of no importance for the RFE
since the operators Lw enter the master equation linearly. Therefore,

∑
ω could be

replaced by
∑
ε,ε′ equally well.

For a sufficiently fast decaying BCF, the asymptotic values F (β, ω, t → ∞) =
J(β, ω) + iS(β, ω) may be used instead of the actual time dependent coefficients.
We have shown in App. B how to obtain these values for the class of (sub-)Ohmic
SDs. This leads to the Redfield Master Equation with asymptotic coefficients (RFEac).
Both variants of the RFE are not of Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)-
form which implies that the solution may develop negative eigenvalues over time.
Note that these negative and, thus, unphysical contributions are of the order of
the perturbative error. This justifies the use of the RFE which has been discussed
controversially in the literature. Since many attempts to restore complete positivity
of the dynamics involve additional approximation on top of the RFE, it is not too
surprising these approaches are less accurate (see Ref. [HS20a] for details).

Also, for the same perturbative regime (including time dependent coefficients) a
positivity preserving stochastic quantum trajectory description is available by means
of a perturbative treatment of the NMQSD equation [Yu+99; deV+05].

D.2 Quantum Optical Master Equation

With the aim to enforce the GKSL-form for the master equation, Eq. (D.12) is rewrit-
ten with L̃(t) =

∑
ω e

iωtL†ω and L̃(s) =
∑
ω′ e
−iω′sLω′ . As before, for a sufficiently

fast decaying BCF the integral can be approximated by replacing ρ̃(s) with ρ̃(t). The
resulting equation (D.12) takes the form

˙̃ρ(t) =
∑
ω,ω′

e−i(ω−ω′)tF (ω′, t)[Lω′ ρ̃(t), L†ω] + h.c. . (D.17)

If the magnitude of F (ω′, t), which scales with the coupling strength, is significantly
smaller than the smallest non-zero frequency (minω 6=ω′ |ω−ω′|), it can be argued that
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due to the oscillating phase so-called secular terms (summands with ω 6= ω′) average
to zero. This motivates to keep terms only with ω = ω′. Furthermore, replacing
F (β, ω′, t) by the asymptotic values F (β, ω′) = J(β, ω′) + iS(β, ω′) yields, in the
Schrödinger picture, the well-known quantum optical master equation (QOME)
which is of GKSL-form

ρ̇(t) = −i[Hsys +
∑
ω

S(ω)L†ωLω, ρ(t)] +
∑
ω

(
J(ω)[Lωρ(t), L†ω] + h.c.

)
. (D.18)

In contrast to the RFE, the so-called Lindblad Operators Lω appear non-linearly in the
master equation (products of Lω and L†ω). Therefore the grouping of contributions
with the same transition frequency effects the resulting master equation significantly.
In the general case (ωA 6= ωB), the non-trivial terms for Lω are the single qubit
operators (see Eq. (D.7)) LωA/B and L†−ωA/B . As a consequence the Lamb-shift
Hamiltonian (ignoring terms proportional to the identity matrix)

HLamb =
∑

ω∈{±ωA,±ωB}
S(ω)L†ωLω

= S(−ωA)− S(ωA)
8 σAx + S(−ωB)− S(ωB)

8 σBx

(D.19)

contains local contributions only. However, for resonant qubits (ωA = ωB = ∆),
since the Lindblad operator consists of the sum of the above local contributions, i.e.,

L∆ = LωA + LωB = 1
4(σAz + σBz − iσAy − iσBy ) = L†−∆ , (D.20)

the Lamb-shift Hamiltonian contains additional, in particular, non-local terms medi-
ating an effective interaction between the qubits, i.e.,

HLamb =
∑

ω∈{±∆}
S(ω)L†ωLω

= S(∆) + S(−∆)
4 (XA

−X
B
+ +XA

+X
B
− ) +H local

Lamb

= S(∆) + S(−∆)
8 (σAz σBz + σAy σ

B
y ) +H local

Lamb

with H local
Lamb = S(−∆)− S(∆)

8 (σAx + σBx )+ ∼ 1 .

(D.21)

Even for infinitesimally detuned qubits, these non-local terms are missing due to the
secular approximation which particularly influences the entanglement dynamics of
the two qubits as discussed in Sec. 5.1.

As a remark, the Lamb-shift term of the QOME expressed by the ladder operators
X± shows that the induced interaction is excitation conserving which is a clear
signature of the RWA. Without the RWA, additional terms, proportional to XA

+X
B
+

D Derivation of the Perturbative Master Equations 151



and XA
−X

B
− , contribute to the environmentally qubit-qubit interaction as shown, e.g.,

by the GAME [Eq. (D.42)].

D.3 Partial Rotating Wave Approximation

For a small detuning the unphysical discontinuity in the Lamb-shift Hamiltonian can
be circumvented by using the Lindblad operators of the resonant case [Eq. (D.8)]
also for the detuned case. Formally this corresponds to a way of deriving a master
equation of GKSL kind where the rotating wave approximation (RWA) is applied
only partially [VJC13; Jes+15; TB15]. As for the derivation of the QOME (full
RWA), Eq. (D.17) serves as starting point. Given that the transition frequencies ω
cluster into groups such that for each member ω of the group Gω̄ the approximation
F (ω̄) ≈ F (ω) holds, Eq. (D.17) becomes

˙̃ρ(t) =
∑
ω̄,ω̄′

e−i(ω̄−ω̄′)tF (ω̄′, t)[Lω̄′ ρ̃(t), L†ω̄] + h.c. (D.22)

where Lω̄ =
∑
ω∈Gω̄ Lω. If the mean frequencies ω̄ of each cluster differ significantly,

applying the RWA on the basis of the frequencies ω̄ is well motivated. Transforming
back to the Schrödinger picture yields the PRWA master equation

ρ̇(t) = −i[Hsys +
∑
ω̄

S(ω̄)L†ω̄Lω̄, ρ(t)] +
∑
ω̄

(
J(ω̄)[Lω̄ρ(t), L†ω̄] + h.c.

)
(D.23)

which is of GKSL form. Note that due to the grouping, the Lindblad operators are, in
general, different compared to the QOME. This results, for example, in significantly
different entanglement dynamics as discussed in Sec. 5.1.1.

Applying this idea to the 2SBM works especially well for a small detuning δ � ∆.
In that case ωA and ωB are grouped in the group with label ∆ = (ωA + ωB)/2. A
second group exists for the negative values. Thus, ω̄ takes the values ±∆ and the
corresponding Lindblad operator corresponds to the QOME Lindblad operator for
resonant qubits, i.e.,

L∆ = 1
2(XA

+ +XB
+ ) = 1

4(σAz + σBz − iσAy − iσBy ) = L†−∆ , (D.24)

here, however, used for the detuned case.

D.4 Coarse-Graining Master Equation

Applying a coarse-graining procedure provides yet another way to improve on the
limitation of the RWA for detuned qubits while keeping the GKSL-property of the
master equation [SB08; BFP03; Maj+13]. The method is based on a second order
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expansion of the time evolution operator U(t, t+ τ) in the full interaction picture
which yields

ρ̃(t+ τ)− ρ̃(t) ≈ −i
∫ t+τ

t
ds [H̃(s), ρ̃(t)]−

∫ t+τ

t
ds
∫ s

t
du [H̃(s), [H̃(u), ρ̃(t)]] ,

(D.25)
where H̃(s) is the remaining interaction Hamiltonian in the interaction picture. As
before, evaluating the trace over the environment on the right hand side is done
approximately by assuming that ρ̃(t) can be replaced by ρ̃sys(t) ⊗ ρ̃env under the
integral. Given that Trenv[H̃(s), ρ̃sys(t)⊗ ρ̃env] = 0 holds true1 this yields

ρ̃sys(t+ τ)− ρ̃sys(t) ≈ Zτ ρ̃(t) with

Zτ ρ̃(t) ..= −
∫ t+τ

t
ds
∫ s

t
du
(
α(s− u)[L̃(s), L̃(u)ρ̃sys(t)] + h.c.

)
.

(D.26)

If the product state assumption ρ̃sys(t) ⊗ ρ̃env is reasonable not only at t but also
at any discrete tn = t + nτ , the above expression suggests to generate the time
discrete dynamics by sequentially applying Zτ such that ρ̃(t+ nτ) = (Zτ )n ρ̃(t). In
this sense τ is related to the decay of bath correlations, that is the time scale on
which correlations between the system and the environment are expected to become
unimportant for the reduced dynamics.

However, it has been pointed out that the discrete map Zτ is not completely positive
[SB08], yet it is a valid GKSL generator. Therefore, if the finite difference may well
be approximated by the time derivative of the reduced state, Eq. (D.26) turns into a
master equation of GKSL-type [SB08], i.e.,

˙̃ρsys(t) ≈
ρ̃(t+ τ)− ρ̃(t)

τ
≈ Zτ

τ
ρ̃sys(t) . (D.27)

Notably, in the mathematical limit τ → 0 the double time integral in Eq. (D.26)
scales as τ2 which results in a vanishing and, thus, meaningless right hand side
of the above equation. Therefore, for the CGME to be meaningful the time scale
separation τenv � τ � τind is required. Again, τind is the timescale on which the
reduced state changes in the interaction picture, τenv is the timescale set by the decay
of the BCF and τ is in principle a free parameters of the coarse graining scheme.

To actually solve the CGME numerically, instead of writing the master equation in
obvious GKSL-form as provided in Ref. [SB08; BFM09], it is advantageous to rewrite
Eq. (D.27) solely in terms of the decomposition Lω of the coupling operator. In the
Schrödinger picture the CGME reads

ρ̇sys = −i[Hsys, ρ]− 1
τ

∑
ω,ω′

(
G(ω, ω′, τ)× [Lω′ , L†ωρsys] + h.c.

)
(D.28)

1As for Eq. (D.11), for thermal states in combination with the usual interaction Eq. (2.1), this is valid.
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where the coarse-graining parameter τ dependent coefficients

G(ω, ω′, τ) =
∫ τ

0
ds
∫ s

0
duα(s− u)ei(ω′s−ωu) (D.29)

have been introduced.

As for the RFE, the operators Lω appear linearly only which makes the CGME
insensitive to the grouping by transition frequencies involved to obtain Lω.

D.5 Geometric-Arithmetic Master Equation

Based on the RFE [Eq. (D.16)] the geometric-arithmetic master equation (GAME)
[Dav20] achieves complete positivity without any requirements on the system Hamil-
tonian and, thus, no RWA. In a first step, a unitary effect of the environment on
the system is separated (referred as renormalization of the system Hamiltonian or
Lamb-shift) by constructing a von-Neumann like contribution for the right hand side
of the RFE with asymptotic coefficients [Eq. (D.16)], i.e.,∑

ω

(
Fω[Lωρ, L] + h.c.

)
≡ −LL†fρ− ρLfL+ L†fρL+ LρLf

with L†f
..=
∑
ω

F (ω)Lω ,
(D.30)

by the following rewriting,

−LL†fρ− ρLfL =− 2

LL†fρ
2 + ρLfL

2

+
ρLL†f

2 −
ρLL†f

2 + LfLρ

2 − LfLρ

2

=− i i
2 [LfL− LL†f , ρ]− 1

2{LfL+ LL†f , ρ} ,
(D.31)

where HLamb ..= i
2(LfL− LL†f ) is indeed Hermitian. The RFE takes the form

ρ̇+ i[Hsys +HLamb, ρ] = −1
2{LfL+ LL†f , ρ}+ L†fρL+ LρLf . (D.32)

Recalling the definition of L†f =
∑
ω F (ω)Lω =

∫∞
0 dτ α(β, τ)L̃(−τ) allows to write

the above RFE in matrix components with respect to the eigenstates of the system
Hamiltonian Hsys|n〉 = εn|n〉, using

〈n|L†f |m〉 =
∫ ∞

0
dτ α(β, τ)〈n|e−iHsysτLeiHsysτ |m〉

=
∫ ∞

0
dτ α(β, τ)e−i(εn−εm)τLnm

=F (ωmn)Lnm with ωmn = εm − εn
and 〈n|Lf |m〉 = 〈m|L†f |n〉

∗ = F ∗(ωnm)L∗mn = F ∗(ωnm)Lnm

(D.33)
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yields to
ρ̇nm + i[Hsys +HLamb, ρ]nm

=
∑
ij

(
− 1

2F
∗(ωni)L∗inLijρjm −

1
2LniF (ωji)Lijρjm

− 1
2ρniF

∗(ωij)L∗jiLjm −
1
2ρniLijF (ωmj)Ljm

+ F (ωin)LniρijLjm + LniρijF
∗(ωjm)L∗mj

)
.

(D.34)

By using the hermicity of L it follows that

ρ̇nm + i[Hsys +HLamb, ρ]nm =
∑
ij

(
LniρijLjm(F (ωin) + F ∗(ωjm))

− 1
2ρniLijLjm(F (ωmj) + F ∗(ωij))

− 1
2LniLijρjm(F (ωji) + F ∗(ωni))

)
.

(D.35)

Ignoring the coefficients F (ω) + F ∗(ω′) for a moment, the right hand side is already
of GKSL kind A†ρA− 1

2{AA
†, ρ}. The additional approximation made is based on

the properties of the coefficients. Replacing the sum of the real parts (geometric
mean) by the square root of their product (arithmetic mean) results in

F (ω) + F ∗(ω′) = J(ω) + J(ω′) + i(S(ω)− S(ω′)) = 2
√
J(ω)J(ω′) + f(ω, ω′)

(D.36)
where, crucially, the remainder

f(ω, ω′) =
(√

J(ω)−
√
J(ω′)

)2
+ i(S(ω)− S(ω′)) (D.37)

becomes zero for ω = ω′. As a consequence of that (see Ref. [Dav20] for a thorough
discussion), on a coarse grained time scale the influence of this remainder becomes
small. Notably, the validity of this statement depends on the particular functions
J(ω) and S(ω) and, thus, on the BCF only. Hence, for a sufficiently weak coupling
strength, such that the reduced dynamics in the interaction picture takes place on
a time scale slower than the coarse graining time scale needed to suppress the
influence of the remainder, the following master equation is justified

ρ̇nm + i[Hsys +HLamb, ρ]nm =
∑
ij

(
L∗in

√
JinρijLjm

√
Jjm

− 1
2
(
ρniLij

√
JijL

∗
mj

√
Jmj + Lni

√
JniL

∗
ji

√
Jjiρjm

) )
.

(D.38)
Since J(ω) is non-negative, defining the Lindblad operator Anm = Lnm

√
J(ωnm)

results in the GAME

ρ̇ = −i[Hsys +HLamb, ρ] +A†ρA− 1
2{AA

†, ρ} , (D.39)
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which is of GKSL kind. Note that opposing to the claim in Ref. [Dav20], equivalency
between the equation for the components and the final matrix equation can not be
established for time dependent coefficients F (ω, t) since, in general, Re(F (ω, t)) ≥ 0
does not hold true for all times.

Finally, we derive the Lamb-shift Hamiltonian of the GAME for the 2SBM. Using

L = 1
2(σAz + σBz ) = 1

2(XA
+ +XA

− +XB
+ +XB

− ) (D.40)

yields to

LL†f =
∑
ω

F (ω)LLω =

F (ωA)
4 (XA

−X
A
+ +XA

+(XB
+ +XB

− )) + F (−ωA)
4 (XA

+X
A
− +XA

−(XB
+ +XB

− ))

+ F (ωB)
4 (XB

−X
B
+ + (XA

+ +XA
−)XB

+ ) + F (−ωB)
4 (XB

+X
B
− + (XA

+ +XA
−)XB

− ) .

(D.41)

The Lamb-shift Hamiltonian, thus, equates to

HLamb = i
2(LfL− LL†f ) = i

2
∑
ω

(F (ω)∗L†ωL− F (ω)LLω)

= S(ωA)
4 XA

−X
A
+ + S(−ωA)

4 XA
+X

A
− + S(ωB)

4 XB
−X

B
+ + S(−ωB)

4 XB
+X

B
−

+ S(ωA) + S(−ωA) + S(ωB) + S(−ωB)
8 (XA

− +XA
+)(XB

− +XB
+ )

+ iJ(ωA)− J(−ωA)
8 (XA

− −XB
+ )(XB

− +XB
+ )

+ iJ(ωB)− J(−ωB)
8 (XA

− +XB
+ )(XB

− −XB
+ )

(D.42)
which is, up to some irrelevant contributions, equivalent to

HLamb = S(−ωA)− S(ωA)
8 σAx + S(−ωB)− S(ωB)

8 σBx

+ S(−ωA) + S(ωA) + S(−ωB) + S(ωB)
8 σAz σ

B
z

+ (J(−ωA)− J(ωA))
8 σAy σ

B
z + J(−ωB)− J(ωB)

8 σAz σ
B
y .

(D.43)
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