CEPIE Working Paper No. 01/22

Center of Public and International Economics

WORKING FROM SELF-DRIVING CARS

March 2022

Georg Hirte
Renée Laes

Working from Self-driving Cars

Georg Hirte*and Renée Laes ${ }^{\dagger}$

March 03, 2022

Abstract

Once automatic vehicles are available, working from self-driving car (WFC) in the AV's mobile office will be a real option. It allows firms to socialize land costs for office space from the office lot to road infrastructure used by AV. Employees, in turn, can switch wasted commuting time into working hours and reduce daily time tied to working. We develop a microeconomic model of employer's offer and employees choice of WFC contracts and hours. Using data for Germany and the U.S., we perform Monte Carlo studies to assess whether WFC may become reality. Eventually, we study the impact of transport pricing on these choices. Our findings is, that WFC contracts are likely to be a standard feature of large cities given current wages, office, and current and expected travel costs. There is a clear decline of hours spent working in office. On average, WFC hours and distance traveled slightly exceed commuting figures.

Keywords: Autonomous driving, telecommuting, working from car, working from home, transport economics
JEL codes: R40, R41, R48

Acknowledgements

Financial support from the German Research Foundation (DFG), grant 434191927, is gratefully acknowledged.

[^0]
1 Introduction

Commuting is one of the most disliked ways of time use in our world (see (e.g. Kahnemann et al. 2004, Stutzer and Frey, 2008). Therefore, if asked, employees may opt for telecommuting, which usually refers to working from home (WFH). WFH reduces the number of commuting trips and frees time for other purposes. Employers, in turn, can reduce office costs by allowing telecommuting, recently pushed by ICT developments such as cloud computing. Another way of telecommuting is to transfer wasted commuting into working time while traveling. Currently, this is partially possible by riding with taxis, ride-hailing, or transit. However, the spread of autonomous driving may change the game (Correia et al., 2019). Once automatic vehicles (AV) are available, working from self-driving cars (WFC) will be a real option since the interior of an AV can be decorated as an office with good ergonomic characteristics offering full access to the firm's IT network (e.g. Li et al., 2019; Janssen et al., 2019).

In principle, WFC offers the same benefits as WFH. Research provides evidence that the latter reduces commuting costs, increases time available for non-work activities due to reduced commuting (Wulff and Vernon, 2021) and improves the flexibility concerning time use (e.g., He et al., 2021), and may improve the work-life balance since it (discussion see Zhang et al., 2020; Wulff and Vernon, 2021). In addition, productivity concerning creative tasks may be higher compared to WFH because there is less stressful commuting and more time is available to sleep or regenerate (Bloom et al., 2015, Dutcher, 2012 Harker Martin and MacDonnell, 2012). Firms can save office space and costs since fewer employees are at the office on average.

However, there are also adverse effects of WFH. It may lower productivity since it increases isolation and reduces face-to-face contacts and employee density at the office needed for knowledge spillovers (Frakes and Wasserman, 2021, Rosenthal and Strange, 2020; Golden et al., 2008). Further, employees have less access to information and job networks (Golden and Veiga, 2015), may experience reduced career chances (Golden and Eddleston, 2020), and more family-to-work conflicts due to the loss of boundaries between work and private life (Sarbu, 2018).

WFC may help to reduce some of these issues. It makes it easier to disentangle work from private life and meet colleagues more often and with less effort than WFH. One can meet coworkers at the next cafe, temporarily book a co-working space, or drive to the office. Further, employees may be closer to the office than with WFH and can work on their way to a customer. Further, using a self-driving car makes even commuting less wasteful because more activities are available on the trip (Pudãne and Correia, 2020).

Additional costs from organizing WFH or WFC may differ. With WFH, firms outsource office costs to employees. In contrast, with WFC, land costs are outsourced to the society that finances road infrastructure. WFC may
increase the range of telecommuting since employees that do not have enough room at home or cannot work from home on account of family interruptions can use WFC. Further, the costs for employers such as monitoring or IT security costs may be even lower with WFC than WFH since the employee is working in the firm's mobile office ${ }^{1}$

Empirical evidence shows that many employees in the U.S. have a positive willingness-to-accept lower wages in exchange for the option to WFH, indicating that there is a private net-benefit of $\mathrm{WFH}(8 \%$ and 4.1% wage discount, see Mas and Pallais, 2017; Maestas et al., 2020). Since WFC provides similar advantages, we expect that many employees have a positive willingness-to-accept WFC.

Therefore, the question is not if there will be a supply of mobile offices, but whether this will become a widespread feature of tomorrow's world. If this is the case, we may observe a re-organizing of work with stark consequences on traffic comparable to the switch to just-in-time production changed the inventory handling (McKinnon and Woodburn, 1996). We examine how likely working from a self-driving car (WFC) is given current and expected prices and magnitudes of relevant parameters.

The first condition for widespread use of WFC is that enough jobs or tasks are suited for WFC. This condition is unambiguously fulfilled, given that a considerable share of work is suited for telecommuting (40% in the U.S. Dingel and Neiman, 2020). The second condition is that WFC offers strong enough advantages to employees and employers to offset adverse effects. This second condition is our focus. We ask whether WFC is likely to become a significant feature of our world. We look into this issue by studying the economics of WFC with a focus on employees' and employers' decisions.

We proceed in the following way. First, we derive a model of the economic decisions of employees and employers on WFC. We assume that an employee decides on the extensive and the intensive margin of WFC. The extensive margin is the choice of whether to accept a contract that offers the opportunity of WFC. Given that decision, the intensive margin is the decision on time spent working in AV. i. e. WFC hours. We perform comparative statics on this model to identify the impacts of different parameters, including taxes, subsidies, and fees, on these decisions.

Second, we develop a decision model of the firm. The firm offers mobilework contracts with a wage discount and an employee's payment for the private use of the firm's AV. The profit-maximizing firm chooses the mobilework wage and the travel-cost payment considering differences in productivity and costs between WFC and working in the office (WFO). We perform comparative statics to discuss these wage components using this approach.

[^1]Our model is closely related to De Borger and Wuyts (2011a) but bears also from Fetene et al. (2016) and Pudãne and Correia (2020). We extend the model of De Borger and Wuyts (2011a) that considers only the wage offer by the firm by adding the firm's decision on the payment for private use of the firm's AV.

Eventually, we run Monte Carlo simulations to understand under which parameter constellations WFC becomes a likely feature of the model's labor market. We study parameters like office costs, wage distribution, travel costs of electric cars and AVs, expected leasing and travel costs, the variation in utility function parameters, and heterogeneous preferences for WFC.

Our contribution is threefold: 1) There is hardly any literature on WFC. None is studying the economic decisions of both employees and employers on this type of mobile work. Our study is the first to examine these decisions in a single framework to the best of our knowledge. 2) We adopt the singleprice model of De Borger and Wuyts (2011a) and extend it to a case with two relevant prices: wages and price for using the firm's car. 3). We first apply Monte-Carlo Simulations to this type of approach.

In the next section, we develop the model that is subsequently used for some comparative statics to understand the main mechanisms of the model. Afterward, we present our data and perform Monte-Carl simulations. Eventually, we discuss the results and provide some conclusions.

2 Model of Decisions on Working from Self-driving Car

We develop a model of employees' and employers' decisions on WFC in the following. We distinguish two work contracts: Contract A enables only working in the office (WFO) while contract B allows WFC.

Employees maximize their expected utility in two stages. In the first stage, they decide on the intensive consumption margins for both contracts. In contract B, they also decide on non-WFC travel time and the allocation of working time to WFC and WFO. In the second stage, heterogeneous employees decide in a random utility approach whether to sign contract B.

Employers decide on the maximum wage they accept to hire mobile workers, i. e. workers with contract B, and the employee's payment for the private use of the firm's AV.

Contract A is the standard contract of an office worker where WFO is the only option. The employee has to work at the office at the current market wage w. We denote this contract as $A \equiv\{w ; \mathrm{WFO}\}$. It defines the benchmark without WFC. Contract $B \equiv\{\omega ; b$; WFC $\}$ is the contract enabling WFC. ω is the wage that may include a discount or supplement to the market wage, and b is the share of private travel costs in the firm's AV paid by the employee.

WFO is working from office, WFC is working form self-driving car. Superscript A denotes contract A with WFO only, while superscript B denotes contract B with the WFC option. $t \bar{x}$ is the total travel time from home to office equivalent to commuting time under contract A . In contract B , it encompasses pure commuting time $t x^{B}=t x$ and former commuting time now used for basic WFC $v_{c}=t x_{c}$, i. e. WFC instead of commuting where $t x_{c}$ is travel time while using WFC. In addition, additional WFC occurs outside the trip from home to office, denoted as v_{o} with $t x_{o}$ as the corresponding travel time. Note: $t \bar{x}=t x_{o}+t x_{c}, v_{c}=t x_{c}, v=v_{c}+v_{o}, H=v_{c}+v_{o}+h$.

Figure 1: Time use

Figure 1 displays the complexity of time allocation in the model. A typical contract-A employee's commuting distance to work, \bar{x}, is constant. She commutes using an electric (EV) but not an autonomous car. Time traveled per unit of distance t depends on traffic flow. Daily working time H is fixed and entirely spent at the office, while WFC is zero. We assume constant daily working H and non-working time E. Leisure is the residual $\ell^{A}=E-t \bar{x}$. Because in contract A WFO is the only available choice time spent working in the office is H.

A typical employee with contract B uses the firm's autonomous car (AV) for working (WFC) or non-working-related time use. To simplify, we assume that this non-WFC travel time is pure wasted commuting time. We assume that the employee travels from home to the office once a day. The employee's time use on this trip comprises commuting time $t x$ and basic WFC $v_{c}=t x_{c}$ with x_{c} as distance traveled while WFC. If travel time per VDT is the same, the home-to-office trip takes the same time under both contracts, hence, $t \bar{x}=t x+t x_{c}$. The employee can also substitute additional WFC, v_{o}, corresponding to the travel distance x_{o}. She spends left-over working time $h=H-v_{o}$ at the office (WFO).

2.1 Employee's decision with contract A

We assume that employees are identical except for their intrinsic preference for WFC. They derive (dis)utility from consumption z, leisure spent outside any car ℓ, and commuting time $t x$, where x denotes vehicle distance traveled
(VDT). The utility function

$$
\begin{align*}
U^{A}(z, \ell, t x) & =z+u_{2}(\ell)+u_{3}(t x) \tag{1}\\
u_{2}^{\prime} & >0 ; u_{3}^{\prime} \lesseqgtr 0 ; u_{2}^{\prime \prime}, u_{3}^{\prime \prime}<0 .
\end{align*}
$$

is quasi-linear in consumption z, concave in leisure $\left(u_{2}(\ell)\right)$ and inversely ushaped in $t x$ to consider additional costs of commuting. In contrast to the time-use literature there is no time for activities z and ℓ, and working generates no (dis) utility (DeSerpa, 1971; Jara-Diaz et al., 2008). A consequence of quasi-linearity is a constant marginal utility of income (MUI) that we set to unity in the following.
$u_{3}(t x)$ is the intrinsic value of time, i.e., the direct dis(utility) of the travel activity that depends on the quality of in-vehicle time and options to perform secondary activities (DeSerpa, 1971; Jara-Diaz et al., 2008). Employees may prefer a small amount of commuting travel usable for secondary activities, e.g., transport children, buffer between working and family live Redmond and Mokhtarian, 2001). In contrast, they suffer from longer commuting due to the stress of driving, implying that the disutility of longer commutes may exceed the disutility from loss of leisure (reviewed by Chatterjee et al., 2020). Therefore, we define $u_{3}(t x)$ as an inverted u-shaped function.
g_{m} denotes gross monetary costs per VDT on the commuting trip. It depends on speed, subsidies, and all taxes levied on car usage, including fuel taxes, VAT on fuel and car's purchase price, insurance, and sales taxes. We calculate them as averages per VDT. We assume that the traffic flow is fixed outside the model, implying that t and g_{m} are constants in the choice problems. VDT traveled is measured as the two-way commuting distance x. We further implement a congestion toll τ_{c} on travel time and a wage tax τ_{w} on wage income. The daily market wage is w.

Employees spend income net of taxes and commuting costs for private consumption z. Hence, in terms of days, the budget constraint is

$$
\begin{equation*}
z=\left(1-\tau_{w}\right) w-\tau_{q} H-\left(g_{m}+\tau_{c} t\right) \bar{x} \tag{2}
\end{equation*}
$$

where z is private consumption per day and $\left(1-\tau_{w}\right) w$ is daily net wage. $\tau_{q} H$ is the daily parking cost at the workplace, with τ_{q} as the hourly parking fee.

Substituting (2) into (1) yields indirect utility on a workday

$$
\begin{align*}
V^{A}\left(w, \tau_{w}, g_{m}, \tau_{c}, t\right)=\left(1-\tau_{w}\right) w-\tau_{q} H-\left(g_{m}\right. & \left.+\tau_{c} t\right) \bar{x} \\
& +u_{2}(E-t \bar{x})+u_{3}(t \bar{x}) \tag{3}
\end{align*}
$$

The value of time $(\mathrm{VOT})^{2}$ is $V O T=u_{2}^{\prime}=\left(1-\tau_{w}\right) w$ and the value of commuting-travel time savings (VTT) is $V T T=V O T-u_{3}^{\prime}$, where u_{3}^{\prime} is the

[^2]value of intrinsic value time (VTAT), that is the monetary equivalent of the direct dis(utility) of travel time (DeSerpa, 1971; Jara-Diaz et al., 2008).)

Assuming identical utility of all office workers (outside option), wage bargaining (collective or individual) implies that the reservation wage equalizes indirect with outside utility (fallback position), i.e., $V^{A}=\bar{U}$. This implies

$$
\begin{equation*}
w=\frac{\bar{U}+\tau_{q} H+\left(g_{m}+\tau_{c} t\right) \bar{x}-u(E-t \bar{x})-u(t \bar{x})}{1-\tau^{w}} \tag{4}
\end{equation*}
$$

2.2 Employee's decisions with contract B

Now assume an employee is working under a contract B, giving him the opportunity for WFC. In that case, the firm's V offers an autonomous car (AV) with an office inside (provides him with a mobile office). The AV picks up the employee every morning at home and drops her at home at the end of the working day. In contrast to the standard company car paid by the employer, we assume that the AV is only temporarily available. The AV can be used for working and private use while on the travel-to-office trip (former commuting trip). The firm pays all costs but demands a payment of $b t x$ for private use. There is a fringe benefit if this payment is below private travel costs. Following De Borger and Wuyts (2011b) there may be an imputed value ρ of this fringe benefit for calculating the income tax.

In contract B, the time structure of the model changes as shown in Panel B in 1. The mobile employee chooses non-WFC commuting distance x, i.e. indirectly basic WFC v_{c}, and additional WFC, i.e. v_{o}. We distinguish two time periods spent in AV: time needed to travel the home-to-office distance (equivalent to commuting time in contract A) and additional WFC time. The first can be either spent for WFC or private activities. However, we do not consider leisure time spent in $A V^{3}$ as equivalent to the leisure outside the car implemented in the labor supply decision (Pudãne and Correia, 2020; Correia et al., 2019). Instead, we assume that this type of leisure lowers the intrinsic value of time ${ }^{4}$ We assume that the employee chooses x, i.e., vehicle distance traveled (VDT) during private use of the firm's AV. WFO hours are $h=H-v_{o}$ and WFC hours are $v=v_{c}+v_{o}$ where $v_{c}=t(\bar{x}-x)$.

We assume that employees are identical except for their intrinsic preference for WFC. They derive utility or disutility from consumption z, leisure ℓ, travel distance, and v_{o}. The deterministic utility function is

$$
\begin{align*}
& U(z, \ell, t x, v)=z+u_{2}(\ell)+u_{3}(t x)+u_{4}\left(v_{o}\right) \tag{5}\\
& \quad u_{2}^{\prime}, u_{4}^{\prime}>0 ; u_{3}^{\prime} \lesseqgtr 0 ; u_{2}^{\prime \prime}, u_{3}^{\prime \prime}, u_{4}^{\prime \prime}<0, \phi>1 .
\end{align*}
$$

[^3]Referring to recent findings of Lee et al. (2021), we assume that the VTT increases with distance 5
$u_{4}\left(v_{o}\right)$ is concave utility arising from additional WFC. WFC may be more comfortable than WFO because there is more flexibility in organizing work, fewer disturbances with colleagues, or the possibility to stop for private errands in between. We assume that these effects occur only for v_{o} because this is the time one could alternatively be at the office ${ }^{6}$ However, there is a trade-off because WFC may lower career prospects, information exchange, and links to colleagues. These cost increase with intensity of WFC, $v_{o}{ }^{7}$. We assume that some of these adverse effects add to the concavity of utility. The other negative WFC effects impose costs on the employees that we consider in the budget constraint.

We further assume identical travel behavior on the home-to-office route at both contracts. There is the same distance traveled and the same speed choice behavior. Further, there is no cruising with additional WFC. ${ }^{8}$

The monetary budget constraint is

$$
\begin{equation*}
z=\left(1-\tau_{w}\right) \omega-\tau_{w} \rho \bar{x}-b t x-p e\left(v_{o}\right) \tag{6}
\end{equation*}
$$

where ω is the individual hourly wage with contract $B, \tau_{w} \rho \bar{x}$ is the tax liability for the fringe benefit of private use of firm's car with ρ as imputed tax value per unit of home-to-work distance, and $b t x$ is the employee's payment to the firm as compensation for the private use of the firm's AV. The daily wage may differ between both contracts. In addition, we assume some effort is needed to compensate for the loss of communication and information, e.g. call and invite colleagues. Its price is $p{ }^{9} e\left(v_{o}\right)$ is the effort function indicating the effort per hour of additional WFC. It is usually increasing with absence from office $e^{\prime}>0, e^{\prime \prime}>0$.

[^4]The employee maximizes utility (1) subject to (6) and several nonnegative restrictions

$$
\begin{aligned}
\max _{v_{o}, x} & \left(1-\tau_{w}\right) \omega-\tau_{w} \rho \bar{x}-b t x-p e\left(v_{o}\right) \\
& \quad+u_{2}(E-t x)+u_{3}(t x)+u_{4}\left(v_{o}\right) \\
\text { s.t.: } & v_{o} \geq 0 \perp \mu_{v} ; x \geq 0 \perp \mu_{x} ; \bar{x}-x \geq 0 \perp \mu_{c} .
\end{aligned}
$$

where we used $G \equiv g_{x}+\left(g_{h}+\tau_{c}\right) t$. The first order conditions (FOCs) are:

$$
\begin{align*}
u_{4}^{\prime} & =p e^{\prime}-\mu_{v} \tag{7a}\\
\left(-u_{2}^{\prime}+u_{3}^{\prime}\right) & t=b t-\mu_{x}+\mu_{c} \tag{7b}\\
v_{o} & \geq 0 \quad \text { if }{ }^{\prime}> \tag{7c}\\
x & \rightarrow \mu_{v}=0 \tag{7d}\\
x \leq \bar{x} \quad \text { if }{ }^{\prime}> & \text { if }{ }^{\prime}<\mu_{x}=0 \tag{7e}\\
x & \rightarrow \mu_{c}=0
\end{align*}
$$

where μ_{i} are the shadow prices of the non-negative and the maximum restrictions 10

Applying the theorem of implicit differentiation to the implicit demand functions (7a) and (7b) gives us partial derivatives of v_{o} and x with respect to cost and policy parameters, travel time, and traffic flow. Implicitly differentiating 7a yields

$$
\begin{align*}
& \frac{\partial v_{o}}{\partial i}=0, \forall i \neq p \\
& \frac{\partial v_{o}}{\partial p}=\frac{e^{\prime}}{-p e^{\prime \prime}+u_{4}^{\prime}}<0 \tag{8}
\end{align*}
$$

The choice of additional WFC hours v_{o} depends exclusively on the effort costs p.

By applying the theorem of implicit function to (7b) the derivatives of non-work travel distance x w.r.t. to the different parameters are:

$$
\begin{align*}
& \frac{\partial x}{\partial b}=\frac{1}{t\left(u_{2}^{\prime \prime}+u_{3}^{\prime \prime}\right)}<0 ; \\
& \frac{\partial x}{\partial i}=0, \forall i \notin\{b, t\} \tag{9}\\
& \frac{\partial x}{\partial t}=-\frac{x}{t}+\frac{b+u_{2}^{\prime}-u_{3}^{\prime}}{t^{2}\left(u_{2}^{\prime \prime}+u_{3}^{\prime \prime}\right)}
\end{align*}
$$

where $u_{2}^{\prime \prime}+u_{3}^{\prime \prime}<0$ and $\partial \ell / \partial x=-t$. The commuting travel leftover in a WCB contract declines with the costs of private use of the firm's AV (b), while the inverse speed (inverse travel time per km) may have an ambiguous effect. Other variables, including taxes and fees, do not matter.

[^5]Indirect utility of employee j is $V^{B}+\varepsilon$ where ε is the idiosyncratic preference for contract B (note, we drop index j). We assume that the mean of ε is zero.

$$
\begin{align*}
V^{B}\left(\tau_{w}, \omega, b, t, p, \rho, \mu_{x}, \mu_{v}, \mu_{c}\right)=\{ & \left(1-\tau_{w}\right) \omega-\tau_{w} \rho \bar{x}-b t x-p e\left(v_{o}\right) \\
& +u_{2}(E-t x)+u_{3}(t x)+u_{4}\left(v_{o}\right)+\varepsilon \\
& \left.+\mu_{v} v_{o}+\mu_{x} x+\mu_{c}(\bar{x}-x) \rightarrow \max _{v, x}\right\} \\
= & \left(1-\tau_{w}\right) \omega+V_{x}^{B}\left(\tau_{w}, b, t, p, \rho, \mu_{x}, \mu_{v}, \mu_{c}\right)+\varepsilon \tag{10}
\end{align*}
$$

We define $V_{x}^{B} \equiv V_{j}^{B}-\left(1-\tau_{w}\right) \omega-\varepsilon_{j}$.
The reservation wage ω of an employee j of type B equalizes $V^{B}=\bar{U}$, hence

$$
\begin{equation*}
\bar{U}-\left(1-\tau_{w}\right) \omega-V_{x}^{B}-\varepsilon=0 \tag{11}
\end{equation*}
$$

where \bar{U} is the reservation utility. Using $\varepsilon=0$ yields the reservation wage of the median employee

$$
\begin{equation*}
\omega=\frac{\bar{U}-V_{x}^{B}}{1-\tau_{w}} \tag{12}
\end{equation*}
$$

while the reservation wage of an individual of type j is

$$
\begin{equation*}
\omega_{j}=\omega-\frac{\varepsilon_{j}}{1-\tau_{w}} \tag{13}
\end{equation*}
$$

Assume $\varepsilon>0$, an employee with an above-average preference for WFC. This employee accepts a wage discount compared to the median employee because the preference partially compensates for the utility difference. ε is the net monetary value of the preference. Writing the compensation in gross terms implies that $\varepsilon /\left(1-\tau_{w}\right)$ is the gross preference for WFC. The wedge between the individual and the average reservation wage increases with an increasing gross preference, e.g., caused by a higher wage tax rate.

2.3 Employer's Decision

The employer decides on the contract B 's components while considering the employee's participation constraint (reservation wage). The components are the wage offer of the firm, the payment for the private use of the firm's car, and the WFC option, i.e., $B \equiv\{\omega, b ; W F C\}$. Think about a firm deciding on hiring a marginal mobile worker. It faces two problems: first, which wage to offer, and second, which payment to set for the private use of the firm's AV. We assume the firm determines the payment without any bargaining on it. We, further, assume that the payment is set prior to wage bargaining. The firm chooses the payment by maximizing net profits for a mobile worker
given the wage. The firm knows productivity, office and mobile work costs, WFC hours, and travel demand.

Concerning wages, we follow De Borger and Wuyts (2011b) and assume that the firm determines its maximum wage offer. The marginal worker just hired earns a wage equal to the worker's reservation wage. For all other employees with a WFC contract, the wage earned is in the interval limited by the offer and reservation wages. The specific wage paid to any other mobile employee is the outcome of wage bargaining.

2.3.1 Net Benefits and its Components

There are the following costs to the firm. r is the gross costs of office space per hour per worker, encompassing rents or capital costs, energy costs, maintenance, equipment, taxes, and overhead costs.

Firms face organization costs d^{i} because congestion may induce employees to arrive too late at meetings or customers or since it is costly to organize internal processes, such as meetings, allocating tasks to specific time slots, etc. These costs may differ between office work and mobile work. In the latter case, there are more actions available to avoid or reduce delays ${ }^{11}$ On the other side, employees cannot perform all tasks in the mobile office. Hence, WFC implies more effort to allocate tasks. We assume these organizational costs to be constant but contract specific and to depend on congestion: $d^{B}(F)^{\prime}>0, d^{A}(F)^{\prime}>0$.

There are variable costs per VDT ${ }^{12}$ of an AV. g_{x} is gross costs per VDT ${ }^{13}$ They include all taxes, fees, and subsidies ${ }^{14}$

In addition, there are fixed monetary gross costs per hour traveled, g_{h}, including, e. g., sales taxes, subsidies to sale, or daily leasing costs.

There may be a congestion toll τ_{c} levied per time unit of driving. We assume the AV moves with an average speed on the home-to-office trip. Generally, we assume that each employee travels to the office in the morning. Hence, WFC while parking is no option on the home-to-office trip. In contrast, the AV can cruise or park during additional WFC, $v_{o}{ }^{15}$. We define

[^6]the share of parking time s_{p} with a parking fee per hour of τ_{p}. The fee may differ from the parking fee near the office location arising with WFO, τ_{q}, because the AV can park everywhere and, thus, can drive to a zero-parking-fee place. Thus, VDT during additional WFC is
\[

$$
\begin{equation*}
x_{o}=\left(1-s_{p}\right) v_{o} / t ; \quad t_{p}=s_{p} v_{o} \tag{14}
\end{equation*}
$$

\]

where v_{o} / t is maximum distance traveled during v_{o}-hours (at average velocity) and $t_{p}=s_{p} v_{o}$ is the parking time during additional WFC. Any change in x_{o} changes the total distance traveled. Accordingly, an increase in effort costs or travel time per km (decline in speed) plus the share of parking while WFC lowers distances traveled at the optimum. No other determinant matters.

The daily non-wage costs per office worker, i.e., an employee entitled only to work in the office, is

$$
\begin{equation*}
c^{A}=r H+d^{A} \tag{15}
\end{equation*}
$$

while the expected daily non-wage cost per mobile worker, i.e., an employee with contract B, is given by

$$
\begin{equation*}
c^{B}=r(H-v)+\left(g_{x}+\tau_{c} t\right) x_{o}+\left(g_{h}+\tau_{p} s_{p}\right) v_{o}+\left[g_{x}+\left(g_{h}+\tau_{c}\right) t\right] \bar{x} \tag{16}
\end{equation*}
$$

There are office costs per hour of WFO $(r(H-v)$, monetary travel costs per VDT, g_{x}, congestion tolls per travel time, leasing, g_{h}, and parking fees, s_{p}, all per hour of additional WFC, and travel costs per VDT in AV on the home-to-office trip.

Further, labor is the only endogenous and variable input that matters to the pricing and hiring decision of the firm. There is a decreasing marginal productivity of labor per standard hour: $f(L), f^{\prime}>0, f^{\prime \prime}<0$. The productivity of an hour of WFC differs by β from the productivity of WFO. WFC is more or less productive than a standard labor hour. Therefore, the marginal daily productivity of a WFC hour differs by $v \beta$ from the productivity of a standard office hour.

2.3.2 Optimal payment for private use of the firm's AV

b is the employee's payment per hour of private use of the firm's AV on the home-to-office trip, while the firm forbids private use outside the original commuting trip. Accordingly, the firm chooses b to maximize net profits (NP) from AV's private use $t x$. We further assume that only the cost components directly differentiated according to x and v_{c} matter for this decision. For instance, indirect effects on v_{o} do not occur because v_{o} only depends on p. Further, wages are not relevant because wage bargaining does not occur

[^7]at this decision stage. Since we model quasilinear utility, wage differences across individuals affect consumption but neither x nor v_{o}. Therefore, the objective function includes productivity changes βv_{c} minus the firm's net car costs for private car use. The corresponding decision problem is
\[

$$
\begin{array}{r}
\max _{b} N P=t(\bar{x}-x) \beta+b t x-\left[g_{x}+\left(g_{h}+\tau_{c}\right) t\right] \bar{x} \\
\text { s.t.: } b \geq 0, \quad \perp \mu_{3} \tag{17}\\
\text { s.t.: }\left[g_{x}+\left(g_{h}+\tau_{c}\right) t\right] x \geq b t x, \quad \perp \mu_{4}
\end{array}
$$
\]

where productivity depends on x since $v_{c}=t(x)^{-}-x$ and the revenue from employee's payment $b x$ lowers the firm's net costs of private AV use. The optimal price b (with an interior solution) is

$$
\begin{equation*}
b=\frac{\varepsilon_{x b}}{\varepsilon_{x b}-1} \beta, \quad \varepsilon_{x b}=-\frac{\partial x / \partial b}{x / b}>0 \tag{18}
\end{equation*}
$$

We define the price elasticity of x in positive terms while $\partial x / \partial b<0$ (see (9)). Further, the elasticity is below unity. While the firm pays the car, the employee's payment is proportional to the returns from the change in productivity. If the productivity gain of WFC is positive, private use is a loss to the firm and $b>0$.

2.3.3 Wage for mobile work and probability of mobile work

Next, we derive the WFC wage and the probability of mobile work contracts. Our model builds upon the work of De Borger and Wuyts (2011b). The marginal daily net profits of an additional office or mobile worker a firm wants to hire at its profit maximum in per-day units are

$$
\begin{aligned}
& M P_{o}=f^{\prime}(L)-c^{A}-w \\
& M P_{v}=f^{\prime}(L)+v \beta-c^{B}-\omega
\end{aligned}
$$

Hence, the firms hires a mobile worker if $M P_{v}>M P_{o}$. This implies

$$
\begin{equation*}
w-\omega_{j}+v \beta-\Delta c>0 \tag{19}
\end{equation*}
$$

where the non-wage cost difference between contracts B and A is

$$
\begin{equation*}
\Delta c \equiv c_{B}-c_{A}=-v r+v_{o} \Delta_{m c}+\Delta_{f c}-b t x \tag{20}
\end{equation*}
$$

The difference in variable travel costs per WFC hour is

$$
\begin{equation*}
\Delta_{m c} \equiv\left(1-s_{p}\right)\left(\frac{g_{x}}{t}+\tau_{c}\right)+s_{p} \tau_{p}+g_{h} \tag{21}
\end{equation*}
$$

and the difference in the non-wage fix costs per employee is

$$
\begin{equation*}
\Delta_{f c} \equiv\left[g_{x}+\left(g_{h}+\tau_{c}\right) t\right] \bar{x}+d^{B}-d^{A} \tag{22}
\end{equation*}
$$

Remember, the reservation wage of a worker j is (13). Substituting into (19) yields for the cut-off preference parameter (marginal worker)

$$
\begin{equation*}
\varepsilon=\left(1-\tau_{w}\right)(\omega-w+\Delta c-v \beta) \tag{23}
\end{equation*}
$$

A mobile-work contract is given to the marginal worker j if this condition is fulfilled 16

Assume there is a uniform distribution of preferences for a WFC contract in the interval $[-a,+a]$, we get the share of mobile employees (WFC contracts) as

$$
\begin{equation*}
\alpha=\frac{1}{2}-\frac{\left(1-\tau_{w}\right)(\omega-w+\Delta c-v \beta)}{2 a} \tag{24}
\end{equation*}
$$

The share of WFC employees in the firm's labor force, i. e. the average probability of hiring a mobile worker, depends on the average gross wage, average cost, and productivity differences.

If marginal profits from hiring a WFC employee are below those of a WFO employee $(\omega-w+\Delta c-v \beta>0)$, firms demand a wage discount to offer a mobile-work contract. Consequently, only employees with a positive enough WFC preference (ε) accept the contract, and there is a relatively low share of mobile employees. The labor tax mitigates this channel because net wages are relevant for the mobile-working employee while the firm sets a gross-wage restriction.
α depends on several parameters. The marginal impacts are (see Appendix C

$$
\begin{align*}
& \frac{\partial \alpha}{\partial w}>0 ; \quad \frac{\partial \alpha}{\partial t} \lesseqgtr 0 ; \quad \frac{\partial \alpha}{\partial \bar{x}} \lesseqgtr 0 ; \quad \frac{\partial \alpha}{\partial g_{m}}>0 \\
& \frac{\partial \alpha}{\partial g_{x}}<0 ; \quad \frac{\partial \alpha}{\partial g_{h}}<0 ; \quad \frac{\partial \alpha}{\partial \eta} \lesseqgtr 0 ; \quad \frac{\partial \alpha}{\partial r}>0 ; \tag{25}\\
& \frac{\partial \alpha}{\partial \beta} \geq 0 ; \quad \frac{\partial \alpha}{\partial s_{p}} \geq 0 ; \quad \frac{\partial \alpha}{\partial d_{B}}<0=-\frac{\partial \alpha}{\partial d_{A}} ;
\end{align*}
$$

3 Data and Calibration

In the following, we describe the choice of functional forms, data collection, and calibration of the model subsequently used for simulations.

[^8]We specify the sub-utility functions as

$$
\begin{align*}
u_{2}(\ell) & =\delta_{1} \log \ell=\delta_{1} \log (E-t x) \\
u_{3}(t x) & =\delta_{2} \phi t x-d_{2}(t x)^{2} \tag{26}\\
u_{4}\left(v_{o}\right) & =\delta_{3} \log \left(d_{3}+v_{o}\right)
\end{align*}
$$

where the utility components for leisure, u_{2}, and from additional WFC, u_{4}, are \log-linear, while the intrinsic utility of travel time, u_{3}, is quadratic.

The intrinsic utility of travel time differs between both contracts because more secondary activities are available and since less effort is required to travel in an AV (Pudãne and Correia, 2020). $\phi, 0 \leq \phi \leq 1$ is a weight factor. We set $\phi=1$ in contract A but it may be lower with AV (Pudãne and Correia, 2020, see) ${ }^{17}$

We calibrate the parameter of the utility function such that the benchmark (contract A) VOT and VTT fit the corresponding value found in the literature (see Appendix A). According to Small (2012), the VTT for commuting is about 50% of the gross wage and the VTT for commuting travel is about 110% higher than for other travel Wardman et al. (2016).

We assume that there is an optimal commuting time $(t x)^{*}$, called ideal commute time, that results from maximizing utility without restrictions. There is a scarce literature on the ideal commute time. We use 16 min for $(t x)^{*}$ (Redmond and Mokhtarian, 2001). Knowing average commuting time $t \bar{x}$, we get d_{2}.

The VTT of commuting in an autonomous car $\left(V T T^{B}\right)$ is proportional to VTT, i.e. $V T T^{B}=\varphi V T T$, where φ is the reduction parameter of the VTT. We use $\varphi=0.5$ (see Compostella et al., 2021; Kolarova et al., 2019).
$u_{4}\left(v_{0}\right)$ measures the utility of WFC instead of WFO. There is no literature on that. A major advantage is that WFC allows working alone with fewer disturbances from colleagues. Maestas et al. (2020) find an average WTP for working alone of about 8.4% of the wage if an evaluation for teamwork is based on the teams' performance, but 2% if one own's performance is the basis for an evaluation of teamwork. Therefore, we set δ_{4}, the parameter of the positive component of u_{4}, to the average of these WTP, i. e. 5.2% of the daily wage in the benchmark $\left(\delta_{4}=\{10.7619,10.6995\}\right) .{ }^{19} d_{3}$ is set to unity to avoid a negative direct utility of v_{o}.

[^9]The uniform distribution parameter, a, is set such that the maximum WTP for WFC is below 50% of the benchmark WFO wage (45 for D, 60 for the U.S.).

We model the negative effects such as loss of career chances and knowledge exchange with coworkers as costs because they imply additional effort required to compensate for these issues. We assume that costs are convex $p e\left(v_{o}\right)=p v_{o}^{\eta}$ where $\eta=2$ in the benchmark and that these costs depend only on additional working from car $\left(v_{o}\right)$. Additional WFC is the time the employee is absent during standard office hours in addition to the trip to work. Opportunity costs arise due to time invested to compensate This time is not wasted because it increases future earnings. To simplify we set $p=0.582$. This price equalizes benefits and costs of additional WFC at $v_{o}=2 / 3 H$. There is a zero net benefit v_{o} if the employee spends $2 / 3$ of the workday outside the office.

There is evidence that the productivity of happy commuters is higher than that of other commuters. Short-distance commuters are therefore more productive (Ma and Ye, 2019, study case, commuters in Melbourne). Consequently, we assume that $\beta>1$ and use a benchmark level of 1.05 .

U()	specific	parameter $\{\mathrm{DE}, \mathrm{U} . \mathrm{S}\}$.	reason
$u(z)$	$\delta_{0} z$	$\delta_{0}=\{1,1\}$	MUI set to unity
$u(\ell)$	$\delta_{1} \ln (\ell)$	$\delta_{1}=\{85.45,82.97\}$	VOT is about 110% of VTT^{1}
$u(t x)$	$\delta_{2}(t x)$	$\delta_{2}=\{13.86,10.10\}$	VTT: $\left.u_{\ell}-u(t x)\right) \approx 50 \%$ of gross wage 2
$u(t x)$	$-d_{2}(t x)^{2}$	$d_{2}=\{19.15,17.08\}$	Ideal commute time ≈ 16 min/day ${ }^{3}$
$u\left(v_{o}\right)$	$\delta_{3} v_{o}$	$\delta_{3}=\{10.76,10.70\}$	WTP for working alone ${ }^{4}$
$u\left(v_{o}\right)$	$-d_{3}\left(v_{o}\right)^{2}$	$d_{3}=\{5.33,5.33\}$	$u\left(v_{o}\right)=0$ if $2 / 3$ of workday not in office
$e\left(v_{o}\right)$	$p v_{o}^{2}$	$p=$ endogenous	price is $0.25 \times$ VOT
Parameters of utility. ${ }^{1}$ see Wardman et al.	(2016); ${ }^{2}$ Small $(2012) ;$		
3 Redmond and Mokhtarian $(2001) ;{ }^{4}$ Maestas et al. (2020).			

Table 1: Calibration

Benchmark data are the following:

- Parking fee at the workplace. Since a large share of employers provides employer-paid parking (Brueckner and Franco, 2018, 80% in the U.S.), we assume that average parking fees per hour are $\tau_{q}=0.5 e$ in both countries.
- We assume daily working time amounts to 8 hours per day. Workdays per month are 18.2 in Germany and 19.58 in the U.S. (251 non-weekend days in 2019 minus paid leave days and holidays) (see Maye, 2019)
- The average aggregate wage tax rates from federal, states and local taxes plus social security contributions are 0.2015 in the U.S. and 0.4836 in Germany on the gross wages (OECD, 2020, own calculations) ${ }^{20}$

Concerning other parameters, we perform Monte-Carlo simulations with 10.000 draws from the probability densities we choose based on data found in the literature.

To get the parameter variable monetary commuting costs per VKT, g_{m}, we choose a truncated normal distribution where we take the highest and lowest price of current prices of 73 types of electric cars in Germany (ADAC, 2020a) as limits of a symmetric 95% confidence interval ${ }^{21}$ For the U.S. we use the overview in Compostella et al. (2021) to take the lowest and highest value for monetary travel costs per VMT in the U.S (Small SUV ICEV $0.50 \$ / \mathrm{VMT}$, ridesource BEV $2.35 \$ / \mathrm{VMT})^{22}$

The firm's variable travel costs per VKT, g_{s}, are drawn from a truncated normal distribution based on the limits of the symmetric 95% confidence interval. We assume that the AVs are electric cars with $18 \mathrm{kWh} / 100 \mathrm{~km}$ as average energy consumption (Deloitte, 2019). Energy consumption and operating costs for a selection of electric cars is taken from ADAC (2020b) ${ }^{23}$ For the U.S., we also use a truncated normal distribution due to the small number of observations in the data of Compostella et al. (2021). We take the energy costs of ridesource vehicles because these are commercial cars (Compostella et al. (2021), Tab. A3/A4).

We do not know the distribution of a $A V s$ ' fixed monetary travel costs per hour, g_{h}. Instead, we assume a uniform distribution of Germany's g_{h}. ADAC (2020b) gives $171.83 €$ as BMW i3's monthly fixed costs from insurance, taxes, and maintenance. We add a monthly leasing rate of $180 €$ for $30000 \mathrm{~km} / \mathrm{a}$ including environmental subsidies ('Eco-grant' is $5000 €$) and assume that the car is used 12 hours on each of 19 workdays per month. The result is $g_{h}=1.54 e / h$. Usually, we would take this as median and assume a uniform distribution between 1.04 and $2.04 € / \mathrm{h}$. To consider that AVs may be more expensive than standard BEVs, we double the upper limit to $4.08 € / \mathrm{h}$. For the U.S., we follow Compostella et al. (2021) and assume that the firm rents the car per km (like a driverless taxi). Compostella et al. (2021) provide calculations for the U.S. With a 80000 mileage per year the lower price limit is $0.33 \$ / \mathrm{VMT}$ and the upper price limit is $0.37 \$ / \mathrm{VMT}{ }^{24}$

[^10]The average two-way commuting distance \bar{x} is 21 km in Germany (Dauth and Haller, 2018). We approximate the commuting distance histogram (Dauth and Haller, 2018) with a gamma distribution 25 For the U.S., we also approximate the distance distribution of commuters with a gamma distribution 26

We determine the average commuting travel time $t \bar{x}$ as follows. Germany's average one-way commuting time was 22 minutes in 2010 (GimenézNadal et al., 2020). 24% of the population aged $18-64$ doesn't commute, 19% one-way commute less than 15 minutes, 31% between $15-29$ minutes, 20% 30-59 minutes, $5 \% 60-120$ minutes and 1% less than 120 minutes (Statista, 2021a). Using these data, a shape parameter of 1.35 and a rate parameter of 0.04 provide a strongly right-skewed gamma density for one-way commuting time. U.S. data are from citeBurdEtAl2021 report an average two-way commuting time of 27.6 minutes in 2020 (54.2 two-way) US Department Transport, 2020). The gamma density is right-skewed with a 2.5% percentile of 5 minutes, a 50% percentile of 27.6 minutes, and a 96.5% percentile of 89 minutes, the shape parameter is 0.71 , and the rate parameter is 0.3 .

Since there is a high correlation between speed and distance (0.78 in NL in the 1990s, Rietveld et al. (1999)), we choose the Rietveld et al. (1999) approach to calculate average speed in a city, $(1 / t)$. We use average speed in large cities and all commutes. Statista 2020) provides average speed during peak hours in German cities in 2018, which is between 11 and 18 mph . The average trip length of car trips in Berlin is 7.4 km (Gerike et al., 2020). However, this is average speed. Since commuting is mainly occurring during peak hours, speed is lower. To calculate the average travel time for Berlin, we use the average speed provided by (Statista, 2020) which is $17.7 \mathrm{~km} / \mathrm{h}$ (11 mph). Consequently, the average travel time is 25 minutes. According to Rietveld et al. (1999), travel speed increases considerably with distance mainly due to high costs for the first km and the increasing share of highways used at longer commutes. Distances below 25 km are usually traveled at a slower speed. We assume a uniform distribution of travel speed and calculate average speed following Rietveld et al. (1999) with parameters $a=8, b=$ (average time $-a) /$ (average distance), and $c=0.6$. We apply the same procedure to the U.S., where the average rush-hour speed in major U.S. cities ranges from 19 mph in Washington D.C. to 41 mph in St. Louis Geotab, 2018).
holidays (Christmas, labor day) and some days of illness. These assumptions yield 110 non-commuting and $365-110=255$ commuting days. We assume that the firm uses an AV 12 hours per day.
${ }^{25}$ Assumptions: the 7.6% level is 2 km , the mean is 10.5 km , and the 99.5% level is 90 km . We use 0.91 and 0.06 as shape and rate parameters, respectively.
${ }^{26}$ We choose 2.0 and 0.10 as shape and rate parameters. 29% of employees one-way commute less than 5 miles, the mean distance is 15.3 miles, and $99,84 \%$ of employees travel less than 200 miles.

Table 2: Data used

The average labor productivity, (β), is GDP divided by total working hours per year. Average annual hours worked in 2019 are 1386 and 1779 h, employment is 41061 and 147194 k , and GDPs are 4.6 and 21.4 trillion $\$$ in Germany and the U.S respectively. (OECD, 2021). We calculate average productivity with these data.

To get the hourly wages, \bar{w}, we calculate the empirical density for Germany's wages (DeStatis, 2018) and use it for the parameter draws. The U.S. hourly gross wage of the 10% percentile is $10.07 \$$ and the 95% percentile is $67.14 \$$ (Gould, 2020). Assuming eight work hours per day, we get mean daily gross wages of $205.76 €$ in the U.S. and $206.96 €$ in Germany. We use a Gamma distribution to calculate the U.S. wage density ${ }^{27}$,

There are no public data on Germany's monthly office rent per sqm, (r), but private firms offer a small number of statistics (see Table 9). We assume that rents in each i-City-Segment follow a probability density function of a truncated normal distribution around the mean gross rent, where the minimum and maximum rent levels in the A-city data segment give the support. The office rents of the cities of Essen and Leipzig mark the maximum and mean in B-cities' distribution. Since A-cities' minimum is low, we also use it as B-cities' minimum and a slightly lower value, i. e., five $€$, as the bottom rent in C- and D-cities. The data gives us the maximum rents of C- and D-cities. Eventually, we draw for each i-City segment its share of 10000 random draws from the assumed i-City density to get the 10000 draws of

[^11]office rents. The share of each i-city segment is its share on all newly rented sqm in 2019/20. We calculate the shares of C- and D-cities assuming that C-cities' accumulated share of newly rented square meters is three times as large as the D-cities' share of square meters. This procedure results in the average rent of $21.391 € / \mathrm{sqm}$.

We calculate the density of the U.S. monthly office rent per sqm, (r) from a truncated normal density for U.S. occupancy costs of the 25 most expensive city districts in the U.S. (CBRE, 2019; Colliers, 2019; JLL, 2020a b, 2019). Occupancy costs are the lowest in Denver Suburban (30.25 \$) and the highest in Mid Manhattan (212 \$). The U.S. average is $91.26 € / \mathrm{sqm}$, respectively.

A critical parameter is the square meter of office space per employee. Henger et al. (2017) provide office area per employee for several branches and types of cities in Germany. We assume a uniform distribution from 18.8 to 34.9 sqm . For the U.S., we use a uniform distribution from 9.20 to 27.87 sqm (Twardowski, 2019). Averages or benchmark values are 26.83 sqm in Germany and 18.557 sqm in the U.S.

For other parameters we assume a triangular distribution. These are $\beta \in\{-40,40\}, s p \in\{0,1\}, b \in\{0,1\}, d_{A} \in\{0,20\}, d_{B} \in\{0,10\}$, and effort parameter η from $e=v_{0}^{\eta} \in\{1,3\}$.

4 Simulations

We run Monte-Carlo simulations with 10.000 draws of the densities of the non-policy parameters presented in the above section. We draw the WFC preference parameter, ϵ, from a uniform distribution over the intervals [$45,+45]$ and $[-60,60]$ for Germany and the U.S., respectively. Our choice assigns a significant role to wages and other parameters, enough variety in decisions, and a relevant influence of unobserved heterogeneity. ${ }^{28}$,

Tables 3 and 4 summarize the results of the Monte-Carlo simulations. First, have a look at column α. While we expect that 50% of the employees would choose contract B if idiosyncratic preferences are the only determinant, our finding is a probability of 76% in the U.S. and 80% in Germany that more than half of the employees choose contract B (see columns α and 'value'). The probability that more than three-quarters of the employees choose contract B is 49% in the U.S. and 52% in Germany. Both median and mean are above a share of 0.5 . The median is 0.74 in the U.S. and 0.77 in Germany. The mean share of α is 0.68 and 0.72 in the U.S. and Germany, respectively. Accordingly, at least some non-marginal level of WFC contracts (contract B) is a likely outcome when self-driving cars enter the

[^12]| value | α | sv | svc | svo | sx | sxo |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 0.06 | 0.00 | 0.03 | 0.00 | 0.19 | 0.00 |
| 0.1 | 0.07 | 0.00 | 0.91 | 0.00 | 0.67 | 0.01 |
| 0.2 | 0.10 | 0.00 | 0.97 | 0.05 | 0.94 | 0.06 |
| 0.25 | 0.11 | 0.11 | 0.98 | 0.32 | 0.95 | 0.10 |
| 0.3 | 0.13 | 0.35 | 0.99 | 0.55 | 0.95 | 0.14 |
| 0.4 | 0.18 | 0.68 | 1.00 | 0.78 | 0.95 | 0.24 |
| 0.5 | 0.24 | 0.82 | 1.00 | 0.88 | 0.96 | 0.33 |
| 0.6 | 0.34 | 0.89 | 1.00 | 0.92 | 0.96 | 0.46 |
| 0.7 | 0.46 | 0.94 | 1.00 | 0.95 | 0.96 | 0.60 |
| 0.75 | 0.51 | 0.95 | 1.00 | 0.96 | 0.96 | 0.68 |
| 0.8 | 0.57 | 0.96 | 1.00 | 0.97 | 0.96 | 0.73 |
| 0.9 | 0.66 | 0.97 | 1.00 | 0.98 | 0.97 | 0.86 |
| 1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| median | 0.74 | 0.34 | 0.04 | 0.29 | 0.08 | 0.63 |
| mean | 0.69 | 0.39 | 0.05 | 0.34 | 0.11 | 0.61 |

Column 'value' and rows 'median' and 'mean' display shares on MCresults. All other date are cumulative probabilities. The share related to α is the share of employees with contract B ; sv , svc, svo are shares of WFC hours, v_{c} and v_{o}, on working hours; sx and sxo are ratios to basic commuting distance. $\alpha=$ probability of choosing contract B (50% do it by chance), $v=$ WFC hours, $v_{c}=$ basic WFC hours, $v_{o}=$ additional WFC hours, $x=$ commuting distance, $x_{o}=$ distance traveled with additional WFC.

Table 3: Results of Monte-Carlo Simulation: US
markets ${ }^{[29}$
The probability that total WFC hours (column 'sv') exceed 25% of average daily working time is 89% (96%) in the U.S. (Germany). In the U.S. (Germany), the probability of spending more than 90% of working time outside the office is $3 \%(5 \%)$. Results for basic WFC hours v_{c} / h are printed in column 'svc'. Basic WFC is, on average, 5% of work hours in the U.S. (13% in Germany). Overall, the mean of WFC (see column 'svo') is 34% of daily work time in both countries. In any case, these findings suggest that WFC is a relevant feature of working life.

Column 'sx' displays commuting left as a share of initial commuting distance. The probability that employees spent more than 20% of benchmark commuting distance not working is 6% in the U.S. (26% in Germany). Column 'sxo' shows the ratio of additional WFC-distance traveled beyond initial commuting distance as a ratio to the latter. It reveals that the average increase in distance traveled in U.S. amounts to 61% of initial commuting distance (52% in Germany). To summarize, WFC contracts are likely to be a common feature of the future, mainly the white-color labor market in medium and large cities when self-driving cars enter the market. Given current data, WFC substitutes most commuting time, and the total VKT

[^13]| value | α | sv | svc | svo | sx | sxo |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 00 | 0.03 | 0.00 | 0.02 | 0.00 | 0.06 | 0.00 |
| 0.1 | 0.04 | 0.00 | 0.57 | 0.00 | 0.51 | 0.02 |
| 0.2 | 0.06 | 0.00 | 0.76 | 0.05 | 0.74 | 0.10 |
| 0.25 | 0.07 | 0.06 | 0.81 | 0.31 | 0.85 | 0.16 |
| 0.3 | 0.09 | 0.20 | 0.86 | 0.54 | 0.94 | 0.22 |
| 0.4 | 0.14 | 0.45 | 0.94 | 0.77 | 0.98 | 0.36 |
| 0.5 | 0.20 | 0.64 | 0.99 | 0.87 | 0.98 | 0.49 |
| 0.6 | 0.30 | 0.77 | 1.00 | 0.92 | 0.98 | 0.61 |
| 0.7 | 0.42 | 0.86 | 1.00 | 0.95 | 0.98 | 0.71 |
| 0.75 | 0.48 | 0.90 | 1.00 | 0.96 | 0.98 | 0.77 |
| 0.8 | 0.53 | 0.92 | 1.00 | 0.97 | 0.98 | 0.82 |
| 0.9 | 0.62 | 0.95 | 1.00 | 0.98 | 0.98 | 0.92 |
| 1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| median | 0.77 | 0.42 | 0.08 | 0.29 | 0.10 | 0.51 |
| mean | 0.72 | 0.47 | 0.13 | 0.34 | 0.14 | 0.52 |

Column 'value' and rows 'median' and 'mean' display shares on MCresults. All other date are cumulative probabilities. The share related to α is the share of employees with contract B ; sv, svc, svo are shares of WFC hours, v_{c} and v_{o}, on working hours; sx and sxo are ratios to basic commuting distance. $\alpha=$ probability of choosing contract B (50% do it by chance), $v=$ WFC hours, $v_{c}=$ basic WFC hours, $v_{o}=$ additional WFC hours, $x=$ commuting distance, $x_{o}=$ distance traveled with additional WFC.

Table 4: Results of Monte-Carlo Simulation: Germany
traveled exceeds, on average, the initial commuting distance. As a consequence, the WFC option leads to an increase in traffic.

We can draw some tentative conclusions. Our results confirm that WFC is a likely outcome of the future world. There will be demand for WFC contracts and WFC hours, and a share of firms offer both. While we assume a constant number of trips, there is the probability that travel distances will increase. Hence, WFC will induce additional traffic while office space demand declines. To understand the channels for our findings, we next look at the relevance of different parameters for the outcome. After that, we look at the impact of different policies on the probability of WFC.

5 The impact of non-policy parameters

While comparative statics reveal the marginal signs of the impacts, the question is how strong effects are if other parameters vary simultaneously. This question is relevant since comparative statics show that a parameter's impacts usually depend on other parameters' magnitude. We run censored (Tobit) regressions with the Monte-Carlo results and calculate the marginal effects to identify the relevance of the parameters and their average impact.

Tables 5 and 6 show the marginal effect $\sqrt[30]{ }$

	Dependent variable:			
	alpha	sv	svc	svo
	(1)	(2)	(3)	(4)
\log (wage)	$0.038^{* * *}$	-0.0002	0.00003	-0.0004
	(0.002)	(0.001)	(0.001)	(0.001)
$\log (\mathrm{tkm})$	$-0.016^{* * *}$	$0.009^{* * *}$	$0.037^{* * *}$	-0.001
	(0.002)	(0.001)	(0.001)	(0.001)
$\log (\mathrm{eff})$	$0.026^{* * *}$	$-0.692^{* * *}$	$0.008^{* * *}$	$-0.698^{* * *}$
	(0.010)	(0.004)	(0.002)	(0.003)
$\log (\mathrm{xbar})$	$0.010^{* * *}$	$0.014^{* * *}$	$0.038^{* * *}$	-0.001
	(0.001)	(0.001)	(0.001)	(0.001)
$\log (\mathrm{gm})$	$0.074^{* * *}$	-0.003	0.001	-0.003
	(0.005)	(0.002)	(0.001)	(0.002)
beta	$0.017^{* * *}$	0.00000	0.00003^{*}	0.00002
	(0.0001)	(0.00003)	(0.00002)	(0.00003)
$\log (\mathrm{r})$	$0.163^{* * *}$	-0.002	-0.001	-0.001
	(0.003)	(0.002)	(0.001)	(0.001)
$\log (\mathrm{gx})$	$-0.015^{* *}$	-0.0004	-0.0002	-0.0002
	(0.005)	(0.003)	(0.001)	(0.002)
$\log (\mathrm{gh})$	$-0.149^{* *}$	-0.028	-0.009	-0.004
	(0.064)	(0.031)	(0.014)	(0.025)
$\log (\mathrm{sp})$	$0.013^{* * *}$	-0.002	-0.00000	-0.002
	(0.003)	(0.001)	(0.001)	(0.001)
dB	$-0.007^{* * *}$	$-0.0008 *$	-0.0003	-0.0004
	(0.001)	(0.0004)	(0.0002)	(0.0003)
Observations	10,000	10,000	10,000	10,000

Note: ${ }^{*} \mathrm{p}<0.1 ;{ }^{* *} \mathrm{p}<0.05 ;{ }^{* * *} \mathrm{p}<0.01$
Results of marginal effects of censored (Tobit) regressions. Observations are the 10,000 results from the Monte-Carlo simulation. Dependent variables are α, and 'sv', 'svc', and 'svo', i.e. the shares of v, v_{c}, v_{o} on daily working hours.

Table 5: Regression results: marginal effects (U.S.)
Subsequently, we discuss the parameters that directly affect employees' choices (see 25). These are the WFO wage, WFO commuting distance, inverse speed, effort costs, monetary travel costs, and the firm's payment to private AV use.

According to our model, the WFO wage negatively affects the probability of contract B, i.e., α, but not WFC hours and, thus, not distance (see row ' $\log ($ wage $)$ '). The higher the wage, the more likely is the choice of A. The highly significant average semi-elasticity implies that a one percent increase

[^14]| | Dependent variable: | | | |
| :--- | :---: | :---: | :---: | :---: |
| | alpha | sv | svc | svo |
| | (1) | (2) | (3) | (4) |
| $\log ($ wage $)$ | $0.052^{* * *}$ | -0.001 | -0.0001 | -0.001 |
| | (0.004) | (0.002) | (0.001) | (0.001) |
| $\log (\mathrm{tkm})$ | $0.12^{* * *}$ | $0.113^{* * *}$ | $0.1904^{* * *}$ | $-0.005^{* * *}$ |
| | (0.004) | (0.002) | (0.001) | (0.001) |
| $\log (\mathrm{eff})$ | $0.066^{* * *}$ | $-0.683^{* * *}$ | $0.009^{* * *}$ | $-0.68^{* * *}$ |
| | (0.007) | (0.004) | (0.002) | (0.003) |
| $\log (\mathrm{xbar})$ | $0.116^{* * *}$ | $0.010^{* * *}$ | $0.165^{* * *}$ | $-0.004^{* * *}$ |
| | (0.001) | (0.001) | (0.001) | (0.001) |
| $\log (\mathrm{gm})$ | $0.035^{* * *}$ | -0.003 | -0.002 | -0.0006 |
| | (0.005) | (0.003) | (0.001) | (0.002) |
| beta | $0.016^{* * *}$ | 0.00002 | $0.0001^{* * *}$ | 0.00002 |
| | (0.0001) | (0.00005) | (0.00002) | (0.00003) |
| $\log (\mathrm{r})$ | $0.063^{* * *}$ | -0.001 | -0.0003 | -0.002 |
| | (0.004) | (0.002) | (0.001) | (0.001) |
| $\log (\mathrm{gx})$ | -0.025 | -0.011 | -0.004 | -0.003 |
| | (0.014) | (0.009) | (0.004) | (0.005) |
| $\log (\mathrm{gh})$ | $-0.054^{* * *}$ | 0.002 | 0.001 | -0.004 |
| | (0.003) | (0.002) | (0.0001) | (0.001) |
| $\log (\mathrm{sp})$ | 0.005 | -0.001 | -0.0001 | -0.002 |
| | (0.003) | (0.002) | (0.0001) | (0.001) |
| dB | $-0.005^{* * *}$ | -0.0003 | -0.00002 | -0.0001 |
| | (0.001) | (0.0005) | (0.0002) | (0.0003) |
| Observations | 10,000 | 10,000 | 10,000 | 10,000 |

Note: ${ }^{*} \mathrm{p}<0.1 ;{ }^{* *} \mathrm{p}<0.05 ;{ }^{* * *} \mathrm{p}<0.01$
Results of marginal effects of censored (Tobit) regressions. Observations are the 10,000 results from the Monte-Carlo simulation. Dependent variables are α, and 'sv', 'svc', and 'svo', i.e. the shares of v, v_{c}, v_{o} on daily working hours.

Table 6: Regression results: marginal effects (DE)
in the WFO wage increases the share of WFC contracts by 0.038 in the U.S. (0.052 in Germany). Hence, high-wage earners are more likely to choose a WFC contract, but their working time allocation hardly differs from lowerwage earners' time use.

Initial commuting distance (row 'log(xbar)') and inverse travel speed (travel time per km , see row ' $\log (\mathrm{tkm})^{\prime}$ ') have, on average, a significantly and strong positive impact on Germany's α. The semi-elasticities are 0.116 and 0.12 for speed (inverse 'tkm'). However, in the U.S., home-to-work distance has a weak but significant positive impact while travel time slightly lowers α. Both parameters increase WFC time ('sv'). While they do not affect additional WFC time in the U.S. but decrease it in Germany, both parameters increase basic WFC time in both countries. Accordingly, people with longer commutes are more likely to choose contract B, while the impact of speed is positive in the U.S. but negative in Germany.

The fourth important determinant is the effort employees exert to avoid negative consequences of being away from work (row ' $\left.\log (\mathrm{eff})^{\prime}\right)$. A one percentage increase in $\log ($ eff $)$ implies a higher share of WFC contracts in both countries and a substantial reduction in additional WFC hours. Further, a higher effort reduces basic WFC hours.

Monetary private travel costs g_{m} positively affect alpha but no other outcome variable. A one percent raise in g_{m} implies that alpha increases, on average, by 0.074 points in the U.S. (0.035 in Germany).

Concerning the parameters on the firm's side, productivity ('beta'), office rent per employee (${ }^{(} \log (\mathrm{r})$ ') positively influence α, while traveling costs per hour $\left(g_{h}\right)$ and d_{B} lower α. The impact on WFC hours is negligible. The most relevant parameters are rents and office size.

To summarize this section. The Monte-Carlo simulation demonstrates the relevance of several determinants of WFC contracts and hours and gives clear signs for almost all dependencies.

6 Policy Issues

A finding of the above sections is that the adaption of WFC contracts implies an increase in aggregate travel distance because commuting distance, x_{o}, added to the home-to-office travel is positive. On an aggregate level, this induces additional traffic. On the other side, we find a high probability of declining office-space demand. These changes induce overall economic, traffic and welfare effects that one may study in a spatial general equilibrium approach with office markets and traffic. However, this is out of the scope of this paper. Instead, we discuss the role of policy parameters on the choice of WFC contracts, hours, and commuting in our partial equilibrium approach. This discussion gives a basic intuition on the power of current transportpolicy instruments to affect the consequences of these choices.

In particular, we examine whether policy intervention can affect WFC choices' extensive and intensive margins. If this is possible, policy intervention can lower transport-caused externalities related to WFC and increase the positive effect on the office markets. Though we do not simulate the intervention effects in the general equilibrium, we can derive some results from comparative statics. Table 7 summarizes the findings.

We implement several policy instruments that give us an idea of whether and how the policy can affect WFC contracts, WFC hours, and distance traveled. To quantify the impact of the instruments, we run a simple experiment: we perform a partial equilibrium simulation of our model where each policy instrument is varied based on the benchmark parameter choice.

The policy instruments are the wage tax rate τ_{w}, the imputed tax parameter of the fringe benefits ρ, the parking fee for on-street parking near the workplace τ_{q}, and the parking fee for parking during WFC, τ_{p}. The latter may differ from τ_{q} because the AV can move to cheaper parking lots. Further, some instruments, such as fuel taxes, miles taxes, or a congestion toll, change travel costs. We define these instruments as additional tax or subsidy rates on the benchmark transport costs. τ_{m} denotes a fuel, respectively, a CO_{2} tax rate levied on g_{k} such that $g_{m}=\left(1+\tau_{m}\right) g_{k} ; \tau_{s}$ refers to a tax or subsidy rate on the variable travel costs in AV, hence, $g_{h}=\left(1+\tau_{s}\right) g_{s}$; and τ_{d} is a tax rate imposed on the average travel costs per hours, such as a sales tax or a subsidy that lowers leasing costs, this is, $g_{d}=\left(1+\tau_{d}\right) g_{x}{ }^{31}$

How do fringe benefits, i.e. τ_{W} and ρ, affect the above decisions? Analytically we have (see Appendix (D.1) and (D.8)

$$
\begin{align*}
2 a \frac{\partial \alpha}{\partial \tau_{w}} & =\Delta c-v \beta-\rho\left\{t x+\left(1-\tau_{w}\right) \frac{(r+\beta) t-b}{t\left(u_{t x t x}+u_{\ell \ell}\right)}\right\} \tag{27}\\
2 a \frac{\partial \alpha}{\partial \rho} & =-\tau_{w}\left\{t x-\left(1-\tau_{w}\right) \frac{b+(r+\beta) t}{t\left(u_{t x t x}+u_{\ell \ell}\right)}\right\}<0 \tag{28}
\end{align*}
$$

Since $u_{\ell \ell}+u_{t x t x t}<0$, the term in curled brackets is positive. Nonetheless, there is an ambiguous effect of τ_{w} on α. From (9) and since $\partial v_{c} / \partial i=$ $-t \partial x / \partial i$ we derive a positive impact of τ_{w} on basic WFC hours $\left(v_{c}\right)$. Despite that, the wage tax rate does not affect additional WFC hours as shown in (8). While the share of fringe benefits subject to an income tax, ρ, positively affects v_{c} (see (9)) and v_{o} (see (8)) it has a negative impact on α (see (28).

Table 7 shows the results of the comparative static simulations.
First, look at the income tax rate τ_{w}. Its impact depends on the taxation of fringe benefits. We vary the marginal wage tax rate from 0 to 0.67 , a level far above the current maximum marginal tax rates in Germany and the U.S. This variation includes social security contributions. We find a positive impact of τ_{w} on α and negligible effect on v_{c} and v_{o}.
${ }^{31} g_{k}=g_{m}$ if $\tau_{m}=0$ and so on.

Policy	α	v	v_{c}

The table shows the median intervention semi-elasticities of the respective outcome variable. The first number in a column provides the U.S. elasticity and the second after the "|" sign is the German elasticity. An empty cell indicates zero elasticity. Suppose there is a single value but no "|" sign there is the same elasticity in both countries. Elasticities below 0.0005 are not printed.

Table 7: Comparative Statics

The influence of ρ on contract B's share is analytically and numerically negative. Its impact on WFC is negligible, too. Hence, we can conclude that taxing fringe benefits does not affect WFC demand. WFC allows people to approach their ideal commuting time, almost independently from the employer subsidy to private car use.

The subsequent formula display the analytical impacts of other taxes on α (see Appendix (D), while the impact on v_{c} and v_{o} are derived in (9). Note that we use $\partial v_{c} / \partial i=-t \partial x / \partial i$ and (8).

$$
\begin{align*}
2 a \frac{\partial \alpha}{\partial \tau_{m}} & =g_{k} \bar{x}>0 \tag{29}\\
2 a \frac{\partial \alpha}{\partial \tau_{q}} & =H>0 \tag{30}\\
2 a \frac{\partial \alpha}{\partial \tau_{s}} & =-\left(1-\tau_{w}\right) g_{s}\left[\left(1-s_{p}\right) x_{v}+\bar{x}\right]<0 \tag{31}\\
2 a \frac{\partial \alpha}{\partial \tau_{d}} & =-\left(1-\tau_{w}\right) g_{d}\left(v_{o}+t \bar{x}\right)<0 \tag{32}\\
2 a \frac{\partial \alpha}{\partial \tau_{p}} & =-\left(1-\tau_{w}\right) s_{p} v_{o}<0 \tag{33}\\
2 a \frac{\partial \alpha}{\partial \tau_{c}} & =t\left[\tau_{w} \bar{x}-\left(1-\tau_{w}\right)\left(1-s_{p}\right) x_{v}\right] \tag{34}
\end{align*}
$$

The impact of the tax multiplier on private commuting costs, τ^{m}, on α depends on the monetary net-travel cost of commuting of an office employee (tax base) (see (29)). An increase in this tax multiplier, e.g., due to a higher carbon price, a congestion toll, a city toll, a fuel tax increase, lowers
the reservation wage of an office worker and, thus, strengthens the cost reduction of a firm from mobile-work contracts. Consequently, an increase in this tax multiplier increases the probability of mobile-work contracts. There is neither an effect on v_{o} nor on v_{c}.

Table 7 shows on average strong responses of α on a percentage change in τ_{m}, and while there is a negligible effect on WFC hours for variation in τ^{m}. There is no effect on WFC hours and, thus, not on miles traveled. This finding implies that an instrument aiming at lowering private VKT is not relevant for WFC distance traveled. If the policy aims at achieving a transformation to AV use, this instrument may work.

Parking fees $\left(\tau_{p}\right)$ may matter because the AV is parking half of its WFCuse time outside the standard commuting route. Since τ_{p} increases the parking costs it theoretically reduces α (see (33)). We vary the parking fee from 0 to $4.50 €$ per hour with, on average, marginal effects on α and no effects on WFC hours and additional distance traveled. However, note we do not implement the parking choice but fix the share of parking. A remark is in order. We do not implement a parking choice in our model. Hence, implementing this instrument is worthwhile if the aim is to avoid parking or driving.

Next, consider τ^{q} the parking fee while working. (30) shows that a higher fee increases the probability of choosing contract B because it makes commuting with a private non-AV car (EV) more expensive. Again, there is, on average, no impact on WFC hours.

Eventually, we consider a fee per hour traveled such as a congestion toll. In that case, the costs difference is strongly affected, as is the reservation wage. Parking fees lower the probability of mobile-work contracts. The reason is that parking fees decrease the possibility to reduce WFC costs (see (34)). The congestion toll increases the travel costs for commuting but also the costs of AV's use. It, thus, hardly discriminates between both car types. Hence, it is not surprising that there is no effect on α or WFC hours and distances traveled.

To summarize, all travel-related taxes affect the extensive margin of WFC. However, only the AV's cost components impact WFC hours, and only a tax or subsidy on VKT related costs of AV affect additional WFC and travel distance. Taxes on private travel costs per $\mathrm{km}\left(\tau_{f}\right)$ and parking fees near the workplace $\left(\tau_{q}\right)$ are the most effective instruments concerning the extensive margin. Taxes that affect distance and hourly travel costs of an $\mathrm{AV}\left(\tau_{s}, \tau_{d}, \tau_{c}\right)$ are the only policy parameters affecting the intensive margin. For instance, a subsidy on AV distance traveled $\left(\tau_{s}\right)$ may increase additional WFC. This subsidy frees office space lowering the scarcity of land. Adding a congestion toll may reduce the increase in travel distance caused by additional WFC.

This exercise shows that standard tax or subsidy instruments affect the extensive margin. Some increase the choice of WFC contracts, others reduce
it. However, several instruments do not affect the intensive choice and, thus, are not suited to reduce land scarcity or traffic-induced externalities.

7 Conclusions

We study the impact of AV on the spatial re-organization of work due to the possibility of working from the car (WFC). Our study uses various benefits and costs and shows that WFC may become a reality in large agglomerations once AVs enter the market. Simulations of our model suggest that working from the car is a likely feature of tomorrow's labor market, given current data and expectations on costs for self-driving cars. They also suggest that WFC increases the overall distance traveled and reduces demand for office space. Eventually, we see that standard non-differentiated policy instruments on car use, traveling, and parking affect the share of WFC contracts, while most are purely suited to affect WFC hours or distance traveled with WFC. Consequently, taxes or subsidies affecting the AV's costs are the only effective instruments to steer WFC hours.

Our study bears some shortcomings. We do not consider telecommuting by working from home (WFH). Thus, we may miss some relevant effects of WHO. First, employees opting for WFH may reduce the number of commuting trips. In that case, our finding that WFC is used to substitute commuting time will survive. However, fewer commuting trips means that the amount of WFC hours per week is lower than our model suggests. Second, the above findings imply that a longer commuting distance is associated with a higher probability of choosing a WFC contract and more WFC hours. Since WFH is likely to increase commuting distances, considering WFH will increase the probability of WFC contracts and the number of WFC hours. Adding WFC to WFH is likely to reinforce relocations because WFC lowers commuting costs. The overall effect of fewer trips but longer distances on WFC is ambiguous. Hence, there are incentives to choose WFC contracts and transform commuting to WFC even when considering WFH.

Further interesting extensions may include choices of routes and parking locations. In addition, it may be interesting to add speed choice and the decision to park or cruising (Tscharaktschiew et al., 2022). Another interesting extension is the use of WFC on a business trip to a client or another work-related activity. It is reasonable to assume that this lowers production costs, increases productivity, and eventually raises the probability of WFC.

Finally, while we study individual decisions, the impact on society is an open issue. Considering WFC may induce aggregate changes in office space, commuting decisions, WFC hours and distances, and wage discounts on welfare and market outcomes in a full general equilibrium model. We left this extension to future research.

References

A.A.A., 2020. Your Driving Costs 2020.

ADAC (2020a) from "Kostenvergleich e-Fahrzeuge + Plug-in Hybride gegen Benziner und Diesel", 2020. ADAC2020a

ADAC, 2020b. Berechnungsgrundlagen für die standardisierte Autokostenberechnung.

Allen, T.D., Golden, T.D., Shockley, K.M., 2015. How effective is telecommuting? Assessing the status of our scientific findings. Psychological Science in the Public Interest 16(2), 40-68.

Bloom, N., GLiang, J., Roberts, J., Ying, Z.J., 2015. Does working from home work? Evidence from a Chinese experiment. Quarterly Journal of Economics 130, 165-218.

BNP Paribas Real Estate, 2021. Property Report: Büromarkt Deutschland BNP2021

Bureau of Transportation Statistics (BTS), 2017. National Household Travel Survey 'Stretch Commute' Quick Facts. Quick Facts 2017 accessed, 23.03.2021

Bureau of Transportation Statistics (BTS), 2003. Quick Facts. Quick Facts 2003 accessed, 23.03.2021

Brueckner, J., Franco, S., 2018. Employer-paid parking, mode choice, and suburbanization. Journal of Urban Economics 104, 35-46.

Burd, C., Burrows, M., McKenzie, B., 2021. Travel Time to Work in the United States: 2019. American Community Survey Reports, U.S. Census Bureau.

CBRE, 2019. 2019 Global prime office occupancy costs. CBRE 2019 accessed, 30.03.2021

Chatterjee, K., Chng, S., Clark, B., Davis, A., Vos, J. D., Ettema, D., Handy, S., Martin, A. and Reardon, L., 2020. Commuting and wellbeing: a critical overview of the literature with implications for policy and future research. Transport Reviews 40(1), 5-34.

Cipolla J, 2020. How much office space per employee do you need?
Compostella, J., Fulton, L.M., Brown, A. L., De Kleine, R., Kim, H. C., Wallington, T. J., 2021. Travel time costs in the near- (circa 2020) and long-term (2030-2035) for automated, electrified, and shared mobility in the United States. Transport Policy 105, 153-165.

Correia, G.H.d.A., Loo, E., van Cranenburgh, S., Snelder, M., van Arem, B., 2019. On the impact of vehicle automation on the value of travel time while performing work and leisure activities in a car: Theoretical insights and results from a stated preference survey. Transportation Research Part A: Policy and Practice 119, 359-382.

Colliers, 2019. Q4 2019 Office Market Outlook. U.S. Research Outlook.
Dauth W, Haller P, 2018. Berufliches Pendeln zwischen Wohn- und Arbeitsort: Klarer Trend zu längeren Pendeldistanzen. iab (10/2018), 13.

De Borger, B. and Wuyts, B., 2011a. The structure of the labor market, telecommuting, and optimal peak period congestion tolls: A numerical optimization model. Regional Science and Urban Economics 41(5), 426438.

De Borger, B. and Wuyts, B. (2011b), 'The tax treatment of company cars, commuting and optimal congestion taxes. Transportation Research Part B: Methodological 45, 1527-1544.

DeSerpa, A.C., 1971. A Theory of the Economics of Time. The Economic Journal 81, 828-846.

Deloitte, 2019. Urbane Mobilität und autonomes Fahren im Jahr 2035 Welche Veränderungen durch Robotaxis auf Automobilhersteller, Städte, und Politik zurollen.

DeStatis, 2021. Earnings. Minimum wages. DeStatis minimum wage accessed 24.03.2021

DeStatis, 2018. Verdienststrukturerhebung - Ergebnisse für Deutschland. Fachserie 16, Heft 1 2018. Destatis FS16.1 2018 accessed 24.03.2021

DeStatis, 2017. Verdienste auf einen Blick. DeStatis Verdienste accessed 24.03.2021

Dingel, J.I. and Neiman, B., 2020. How many jobs can be done at home? Journal of Public Economics 189, 104235.

Dutcher, E.G., 2012. The effects of telecommuting on productivity: An experimental examinaton. The role of dull and creative tasks. Journal of Economics Behavior \& Organization 84, 355-363.

Feld LP, Schulten A, Simons H, Wandzik C, Gerling M, 2020. Frühjahrsgutachten der Immobilienwirtschaft 2020 des Rates der Immobilienweisen. Im Auftrag von ZIA, Berlin. ZIA2020 accessed 24.03.2021

Fetene, G.M., Hirte, G., Kaplan, S., Prato, C.G., Tscharaktschiew, S., 2016. The economics of workplace charging. Transportation Research Part B: Methodological 88, 93-118.

Frakes, M.D., Wasserman, M.F., 2021. Knowledge spillovers, peer effects, and telecommuting: evidence from the U.S. Patent Office. Journal of Public Economics 198, 104425.

Gajedran, R.S., Harrison, D.A., 2007. The good, the bad, and the unknown about telecommuting: Meta-analysis of psychological mediators and individual consequences. Journal of Applied Psychology 92, 1524-1541.

Gerike, R., Hubrich, S., Ließke, F., Wittig, S., Wittwer, R., 2020. Tabellenbericht zum Forschungsprojekt 'Mobilität in Städten - SRV 2018' in Berlin. TU Dresden. SRV accessed 31.05.2021

Geotab, 2018. Gridlocked cities: traffic patterns revealed across 20 major U.S. cities. GEOTAB 2018 accessed 31.05.2021

Giménez-Nadal J.I., Molina J.A., Velilla J., 2020. Trends in commuting time of European workers: A cross-country analysis. IZA Working Paper DP No. 12916.

Golden, T.D., Eddleston, K.A., 2020. I there a price telecommuters pay? Examining the relationship between telecommuting and objective career success. Journal of Vocational Behavior 116, Part A, 103348.

Golden, T.D., Veiga, J.F., 2015. Self-estrangement's toll on job performance: the pivotal role of social exchange relationships with coworkers. Journal of Management 44, 1573-1597.

Golden, T.D., Veiga, J.F., Dino, R.N., 2008. The impact of professional isolation on teleworker job performance and turnover intentions: Does time spent teleworking, interacting face-to-face, or having access to communication-enhancing technology matter? Journal of Applied Psychology, 93, 1412-1421.

Gould, E., 2020. State of Working America Wages 2019. A story of slow, uneven, and unequal wage growth over the last 40years. Economic Policy Institute, Washington D.C. https://epi.org/183498 accessed 24.03.2021

Harker, Martin, B., MacDonnell, R., 2012. Is telework effective for organizations? A meta-analysis of empirical research on perceptions of telework and organizational outcomes. Management Research Review 35, 602-616.

He, H., Neumark, D., Weng, Q., 2021. Do workers value flexible jobs? A field experiment. Journal of Labor Economics 23, 709-738.

Henger R, Scheunemann H, Barthauer M, Giesemann C, Hude M, Seipelt B, Toschka A, 2017. Büroimmobilien: Energetischer Zustand und Anreize zur Steigerung der Energieeffizienz, Tech. Rep., Deutsche Energie-Agentur GmbH.

IEA, 2020. Key World Energy Statistics 2020, p. 81.
JLL, 2021. Büromarktüberblick Big 7/4.Quartal 2020. JLL 2021 accessed 24.03.2021

JLL, 2020a. Office Outlook JLL 2020a accessed 24.03.2021
JLL, 2020a. New York Q4 2019, Quarterly Office Outlook JLL 2020b accessed 24.03.2021

Janssen, C.P., Kun, A.L., Brewster, S., Boyle, L. N., Brumby, D. P., Chuang, L. L., 2019. Exploring the concept of the (future) mobile office. In: Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications: Adjunct Proceedings, ACM, Utrecht Netherlands, pp. 465-467.

Jara-Díaz, S.R., Munizaga, M.A., Greeven, P., Guerra, R. and Axhausen, K., 2008. Estimating the value of leisure from a time allocation model. Transportation Research Part B: Methodological 42, 946-957.

JLL, 2019. Global Premium Office Rent Tracker. JLL 2019 accessed 24.03.2021

JLL, 2018. Büro-Nebenkosten leicht rückläufig - OSCAR Analyse von JLL. JLL 2018 accessed 24.03.2021

Jokubauskaitè, S., Hössinger, R., Aschauer, F., Gerike, R., Jara-Díaz, S., Peer, S., Schmid, B., Axhausen, K.W., Leisch, F., 2019. Advanced continuous-discrete model for joint time-use expenditure and mode choice estimation. Transportation Research Part B: Methodological 129, 397421.

Kahneman, D., Krueger, A. B., Schkade, D. A., Schwarz, N., Stone, A. A., 2004. A Survey Method for Characterizing Daily Life Experience: The Day Reconstruction Method', Science 306, 1776-1780.

Kolarova, V., Steck, F. and Bahamonde-Birke, F.J., 2019. Assessing the effect of autonomous driving on value of travel time savings: A comparison between current and future preferences. Transportation Research Part A: Policy and Practice 129, 155-169.

KraftStG 2002. Einzelnorm (n.d.). KraftStg 2002 accessed 24.03.2021

Lee, J., Lee, E., Yun, J., Chung, J.-H., Kim, J., 2021. Latent heterogeneity in autonomous driving preferences and in-vehicle activities by travel distance. Journal of Transport Geography 94, 103089.

Li, M., Katrahmani, A., Kamaraj, A.V., Lee, J.D.. 2020. Defining A Design Space of The Auto-Mobile Offie: A Computational Abstraction Hierarchy Analysis. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 64, 293-297.

Ma, L. and Ye, R., 2019). Does daily commuting behavior matter to employee productivity? Journal of Transport Geography 76, 13-141.

Maestas, N., Mullen, K.J., Powell, D., von Wachter, T., Wenger, J.B., 2018. The value of working conditions in the United States and implications for the structure of wages. NBER working paper, wp 25204.

Mas, A. and Pallais, A., 2017). Valuing alternative work arrangements. American Economic Review 107, 3722-3759.

Maye, A., 2019. No-vacation nation, revised. CEPR
McKinnon, A. and Woodburn, A., 1996. Logistical restructuring and road freight traffic growth: An empirical assessment. Transportation 23, 141161.

Nathan, 2020. What is the average square footage of office space per person. (Nathan 2020) accessed 25.05.2021

OECD.Stat accessed 22.03.2021
OECD, 2020. Taxing Wages 2020. OECD
OECD, 2018. OECD Employment Outlook 2018, OECD. OECD 2018 accessed 24.03.2021

Oettinger, G.S., 2011. The incidence and wage consequences of home-based work in the United States, 1980-2000. Journal of Human Resources 46, 237-260.

PR Newswire, 2012. Office space per worker will drop to 100 square feet of below for many companies within five years, according to new research from CoreNet Global. (cited in: rnewswire 2012; news from CoreNet Global) accessed 25.05.2021

Pudãne, B. and Correia, G., 2020. On the impact of vehicle automation on the value of travel time while performing work and leisure activities in a car: Theoretical insights and results from a stated preference survey. A comment. Transportation Research Part A: Policy and Practice 132, 324-328.

Redmond, L.S. and Mokhtarian, P.L., 2001. The positive utility of the commute: modeling ideal commute time and relative desired commute amount. Transportation 28, 179-205.

Rietveld, P., Zwart, B., van Wee, B., van den Hoorn, T., 1999. On the relationship between travel time and travel distance of commuters. Annals of Regional Science 33, 269-287.

Rosenthal, S.S. and Strange, W.C., 2020. How Close Is Close? The Spatial Reach of Agglomeration Economies. Journal of Economic Perspectives 34(3), 27-49.

Sarbu, M., 2015. Determinants of work-at-home arrangements for German employees: work-at-home arrangements. Labour 29, 444-469.

Sarbu, M., 2018. The role of telecommuting for work-family conflict among German employees. Economics 70, 37-51.

Schmid, B., Molloy, J., Peer, S., Jokubauskaite, S., Aschauer, F., Hössinger, R., Gerike, R., Jara-Díaz, S.R., Axhausen, K.W., 2021. The value of travel time savings and the value of leisure in Zurich: Estimation, decomposition and policy implications. Transportation Research Part A: Policy and Practice 150, 186-215.

Singh, P., Paleti, R., Jenkins, S., Bhat, C.R., 2013. On modeling telecommuting behavior: option, chocie, and frequency. Transportation 40, 373396.

Small, K. A., 2012. Valuation of travel time. Economics of Transportation 1, 2-14.

Statista (2021a) O average, how long is your daily commute to work/school/university (one way?) Statista 2021a accessed 24.03.2021

Statista (2021b) Durchschnittsmiete in den Top 5-Bürozentren in Deutschland im 4.Quartal der Jahre 2014 und 2015. Statista 2021b accessed 24.03.2021

Statista (2021c) Mietpreise für Büroflächen in Frankfurt am Main bis 2020 Statista 2021c accessed 25.03.2021

Statista (2021d) Entwicklung der Durchschnittsmieten für Büroflächen in München von 2004 bis 2019 Statista 2021d accessed 25.03.2021

Statista (2021e) Entwicklung der Durchschnittsmieten für Büroflächen in Berlin Statista 2021e accessed 25.03.2021

Statista (2021f) Entwicklung der Spitzenmiete für Büroflächen in Berlin von 2008 bis 2020 Statista 2021f accessed 25.03.2021

Statista (2021g) Entwicklung der Mietpreise für Büroflächen in Hamburg von 2003 bis 2020 Statista 2021g accessed 25.03.2021

Statista (2021h) Entwicklung der Durchschnittsmiete für Büroflächen in Düsseldorf bis 2020 Statista 2021h accessed 25.03.2021

Statista (2021i) Entwicklung der Spitzenmiete für Bürofächen in Düsseldorf von 2009 bis zum 1. Halbjahr 2020 Statista 2021i accessed 25.03.2021

Statista (2021j) Entwicklung der Mietpreise für Büroflächen in Köln von 2003 bis 2020 Statista 2021j accessed 25.03.2021

Statista (2021k) Entwicklung der Durchschnittsmiete für Büroflächen in Stuttgart von 2001 bis 2019 Statista 2021k accessed 25.03.2021

Statista (20211) Entwicklung der Spitzenmiete für Büroflächen in Stuttgart von 2001 bis 2019 Statista 20211 accessed 25.03.2021

Statista (2021m) Bürofächen - Bestand nach Großstädten in Deutschland 2019/2020 Statista2021m.com accessed 25.03.2021

Statistia (2019) Durchschnittliche Geschwindkeite im Automobilverkehr in ausgewählten deutschen Städten im Jahre 2018. Statista 2019 accessed 27.05.2021

StromStG 2020. StromStG 2020 accessed 24.03.2021
Stutzer, A. and Frey, B.S., 2008. Stress that doesn't pay: the Commuting Paradox. Scandinavian Journal of Economics 110, 339-366.

Tscharaktschiew, S., Reimann, F., 2021. Cruising or Parking. TU Dresden, mimeo.

Tscharaktschiew, S., Reimann, F., Evangelinos, C., 2022. Repositioning of driverless cars: Is return to home rather than downtown parking economically viable? Transportation Research Interdisciplinary Perspectives 13, 100547.

Twardowski T, 2019. How much office space do you need? Twardowski 2019 accessed: 25 .05.2021.
U.S. Bureau of Labor Statistics, BoL, 2020. BoL 2020 accessed: 22.03.2021.
U.S. Bureau of Labor Statistics, BoL, 2020.
U.S. Department of Labor (US DoL), 2021. DoL accessed 24.03.2021
U.S. Department of Transportation, BoTS, 2020. Transportation Statistics Annual Report 2020. U.S. BoTS 2020 accessed: 20.03.2021.

Wardman, M., Chintakayala, V.P.K., de Jong, G., 2016. Values of travel time in Europe: Review and meta-analysis. Transportation Research Part A 94, 93-111.

Wulff Pabilonia, S., Vernon, V., 2021. Telework, wages, and time use in the United States. Preprint, July 2021.

Zhang, S., Moeckel, R., Moreno, A.T., Shuai, B., Gao, J., 2020. A worklife conflict perspective on telework. Transportation Research Part A 141, 51-68.

Indices		
A choice set A (WFO only) $i \in A, B$ index for contract type	B	choice set B (WFC option)
Employee's choice	Prices, costs, taxes	
E daily time endowment (non-work)	α	share of contracts B
$e(\cdot) \quad$ effort function	δ_{j}, d_{j}	parameters utility function
H daily working hours	d^{i}	expected delay costs in i
$h^{i} \quad$ daily office hours in i	ϵ	preference parameter (WFC)
$h \quad$ office hours in B	g_{d}	daily average costs of AV
$\ell^{i} \quad$ leisure in choice set i	g_{m}, g_{k}	monetary VDT cost EV
$t \quad$ travel time per km	g_{s}, g_{x}	monetary VDT costs of AV
$v^{i} \quad$ aggregate WFC hours in set i	λ	marginal utility of income
$v_{c} \quad$ basic WFC hours	$\mu_{2}, \mu_{v}, \mu_{x}$	rationing parameters
$v_{o} \quad$ additional WFC hours	p	effort price
$\bar{x} \quad$ home-to-office distance	r	office rent per worker
$x^{i} \quad$ commuting time in i	$\rho_{2}, \rho_{v}, \rho_{x}$	shadow prices due to rationing
$x \quad$ commuting dist. in choice set B	ρ	tax parameter fringe benefits
$x_{c} \quad$ commuting dist. basic WFC	θ^{i}	value of time
$x_{o} \quad$ commuting dist. additional WFC	τ_{c}	congestion charge rate
$U i \quad$ utility in choice set i	τ_{d}	tax per day of AV usage
$u_{j} \quad$ sub-utilities	τ_{p}	parking fee at suburbs
$V^{i} \quad$ indirect utility	τ_{q}	parking fee near office
$V_{x}^{i} \quad$ non-wage indirect utility	τ_{m}	tax per VDT with EV
$z^{i} \quad$ consumption in choice set i	τ_{s}	tax per VDT with AV
Employer	τ_{w}	income tax rate
β relative TFP of WFC	w	market wage contract i
$b \quad$ fee for private use of AV	ω	wage in choice set B
$\pi \quad$ profits per employee	ω_{j}	reservation wage

EV is private non-autonomous electric vehicle; AV is firm's autonomous vehicle
Table 8: List of symbols

A Calibration and Data

We calibrate the parameter of the utility function such that the benchmark (contract A) VOT and VTT fit the corresponding value found in the literature. According to Small (2012), the VTT for commuting is about 50% of the gross wage and the VTT for commuting travel is about 110% higher than for other travel Wardman et al. (2016) ${ }^{32}$.

Since $V O T \equiv u_{2}^{\prime}=\delta_{1} \ln (E-t \bar{x})$ and the VOT is 1.1×0.5 of the gross wage per hour (w / H) we get $\delta_{1}=(1.16 * 0.5) *(w / H) *(E-t \bar{x})$.

The negative derivative of indirect utility V_{A} (see (3)) w.r.t. $t \bar{x}$ gives the value of commuting travel time savings $V T T=\tau_{c}+u_{2}^{\prime}-u_{3}^{\prime}$. In the

[^15]benchmark $\tau_{c}=0$, therefore
\[

$$
\begin{equation*}
V T T=V O T-u_{3} t x \Rightarrow V O T-d_{2}=V T T-2 \delta_{2} t \bar{x} \tag{a}
\end{equation*}
$$

\]

We assume that there is an optimal commuting time $(t x)^{*}$, called ideal commute time that results from maximizing utility without restrictions, i.e.

$$
\begin{align*}
\max _{t x} & u_{2}(E-t x)+u_{3}(t x) \\
\Rightarrow & -u_{2}^{\prime}+u_{3}^{\prime}=0 \\
& -2 \delta_{2}(t x)^{*}=\text { VOT }-d_{2} \tag{b}
\end{align*}
$$

Substituting (a) and rearranging gives

$$
\begin{equation*}
\delta_{2}=\frac{V T T}{2 t\left(\bar{x}-x^{*}\right)} \tag{A.1}
\end{equation*}
$$

Substituting back into (a) yields

$$
\begin{equation*}
d_{2}=V O T+\frac{t x^{*}}{t \bar{x}-t x^{*}} V T T \tag{A.2}
\end{equation*}
$$

There is a scarce literature on the ideal commute time. We use 16 min for $(t x)^{*}(\overline{\text { Redmond and Mokhtarian, 2001). Knowing average commuting time }}$ $t \bar{x}$, we get d_{2}.

The VTT of commuting in an autonomous car $\left(V T T^{B}\right)$ is proportional to $V T T$, i.e. $V T T^{B}=\varphi V T T$, where φ is the reduction parameter of the VTT. We use $\varphi=0.5$ (see Compostella et al., 2021; Kolarova et al., 2019). Assuming the VOT is independent from the contract yields at initial commuting time and from using (a)

$$
\begin{align*}
V T T^{B} & =\varphi V T T \\
\Rightarrow V O T-d_{2}+2 \delta_{2} \phi t \bar{x} & =\varphi\left(V O T-d_{2}+2 \delta_{2} t \bar{x}\right) \\
\Rightarrow \phi & =\varphi-\frac{(1-\varphi)\left(V O T-d_{2}\right)}{2 \delta_{2} t \bar{x}} \tag{A.3}
\end{align*}
$$

Since mobile work is the only way to substitute commuting, there is no specific utility component for this part of mobile work. However, people can choose either WFO or WFC concerning time outside the original commute. $u\left(v_{0}\right)$ measures the utility of WFC while there is no specific utility component of WFO. There is no literature on that. However, there is literature on the preference for WFH. Given that WFH implies some conflicts with family work, we consider the preference for WFH as the minimum utility value.

Table 9: Office rents of new contracts, Germany, 2019 and 2020

B Some Derivatives

The reservation wage ω of an employee j of type B equalizes $V^{B}=\bar{U}$, i.e.

$$
\begin{equation*}
\bar{U}-\left(1-\tau_{w}\right) \omega-V_{x}^{B}-\varepsilon=0 \tag{B.1}
\end{equation*}
$$

where the reservation utility is \bar{U}.

B. 1 Employees' decisions: derivatives

From (3) we get for later use

$$
\begin{align*}
& \frac{\partial V^{A}}{\partial \tau_{w}}=-w<0 ; \quad \frac{\partial V^{A}}{\partial g_{m}}=-\bar{x}<0 \\
& \frac{\partial V^{A}}{\partial \bar{x}}-g_{m}-t\left(\tau_{c}+u_{2}^{\prime}-u_{3}^{\prime}\right)<0 ; \quad \frac{\partial V^{A}}{\partial \tau_{q}}=-H<0 \\
& \frac{\partial V^{A}}{\partial \tau_{c}}=-t \bar{x}<0 ; \quad \frac{\partial V^{A}}{\partial w}=\left(1-\tau_{w}\right)>0 \tag{B.2}\\
& \frac{\partial V^{A}}{\partial t}=-\left(\tau_{c}+u_{2}^{\prime}-u_{3}^{\prime}\right) \bar{x} \lesseqgtr 0 \\
& \frac{\partial V^{A}}{\partial i}=0, \forall i \in\left\{g_{x}, g_{h}, \tau_{h}, g_{d}, p, \rho, r, \beta, b\right\}
\end{align*}
$$

Further, we get from (4)

$$
\begin{align*}
\frac{\partial w}{\partial g_{m}} & =\frac{\bar{x}}{1-\tau_{w}}>0 ; \quad \frac{\partial w}{\partial \tau_{w}}=\frac{w}{1-\tau_{w}}>0 \\
\frac{\partial w}{\partial \tau_{q}} & =\frac{H}{1-\tau_{w}}>0 ; \quad \frac{\partial w}{\partial \tau_{c}}=\frac{t \bar{x}}{1-\tau_{w}}>0 \\
\frac{\partial w}{\partial \bar{x}} & =\frac{g_{m}+\left(\tau_{c}+u_{\ell}-u_{t x}\right) t}{1-\tau_{w}} \gtreqless 0 \tag{B.3}\\
\frac{\partial w}{\partial t} & =\frac{\left(\tau_{c}+u_{\ell}-u_{t x}\right) \bar{x}}{1-\tau_{w}} \gtreqless 0 \\
\frac{\partial w}{\partial i} & =0, \forall i \in\left\{g_{x}, g_{h}, \tau_{h}, \tau_{x}, p, \rho, r, \beta, b\right\}
\end{align*}
$$

In general $v=v_{o}+t(\bar{x}-x)$ and since $\frac{\partial v}{\partial i}=\frac{\partial v_{o}}{\partial i}-t \frac{\partial x}{\partial i}$ we get

$$
\begin{align*}
& \frac{\partial v}{\partial p}=\frac{\partial v_{o}}{\partial p}=\frac{e^{\prime}}{-p e^{\prime \prime}+u_{4}^{\prime \prime}}<0 \\
& \left.\frac{\partial v}{\partial i}\right|_{i \neq p}=-t \frac{\partial x}{\partial i}, \quad \forall i \notin\{p, t, \bar{x}\} \tag{B.4}
\end{align*}
$$

Substituting (9) (note: $\left.u_{23}=u_{\ell \ell}+u_{t x t x}<0\right)$ yields

$$
\begin{align*}
\frac{\partial v}{\partial b} & =-\frac{1}{u_{2}^{\prime \prime}+u_{3}^{\prime \prime}}>0 \\
\frac{\partial v}{\partial p_{e}} & =-\frac{e^{\prime}}{-p e^{\prime \prime}+u_{4}^{\prime \prime}}>0 \\
\frac{\partial v}{\partial t} & =\bar{x}-\frac{b+u_{2}^{\prime}-u_{3}^{\prime}}{u_{2}^{\prime \prime}+u_{3}^{\prime \prime}} \tag{B.5}\\
\frac{\partial v}{\partial \bar{x}} & =t \\
\frac{\partial v}{\partial i} & =0, \forall i \notin\left\{b, p_{e}, t, \bar{x}\right\}
\end{align*}
$$

By applying the envelope theorem and Roy's theorem to 10 and using (9), the partial derivatives of the indirect utility component V_{x}^{B} become:

$$
\begin{align*}
& \frac{\partial V_{x}^{B}}{\partial p}=-e\left(v_{o}\right)<0 ; \quad \frac{\partial V_{x}^{B}}{\partial b}=-t x<0 \\
& \frac{\partial V_{x}^{B}}{\partial \rho}=-\tau_{w} \bar{x}<0 ; \quad \frac{\partial V_{x}^{B}}{\partial \tau_{w}}=-\rho \bar{x}<0 \\
& \frac{\partial V_{x}^{B}}{\partial \bar{x}}=-\tau_{w} \rho+\mu_{c} ; \tag{B.6}\\
& \frac{\partial V_{x}^{B}}{\partial t}=-\left(b+u_{2}^{\prime}-u_{3}^{\prime}\right) x= \begin{cases}-\mu_{x} \frac{x}{t} & \text { if } x=0 \\
0 & \text { if } 0<x<\bar{x} \\
\mu_{c} \frac{x}{t} & \text { if } x=\bar{x}\end{cases} \\
& \frac{\partial V_{x}^{B}}{\partial i}=0, \forall i \notin\left\{p, b, t, \tau_{w}, \rho, \bar{x}\right\}
\end{align*}
$$

Since x is chosen considering travel time per $\mathrm{km}(t)$, any change in travel time only has an impact on indirect utility under contract B if x is a corner solution.

By using (B.6) and (B.6) we get the total change in the reservation wage
of the average worker $(\varepsilon=0)$ from implicitly differentiating (11)

$$
\begin{align*}
& \frac{\partial \omega}{\partial b}=\frac{t x}{1-\tau_{w}}>0 ; \quad \frac{\partial \omega}{\partial p}=\frac{e\left(v_{o}\right)}{1-\tau_{w}}>0 \\
& \frac{\partial \omega}{\partial \tau_{w}}=\frac{\omega+\rho \bar{x}}{1-\tau_{w}}>0 ; \quad \frac{\partial \omega}{\partial \rho}=\frac{\tau_{w} \bar{x}}{1-\tau_{w}}>0 \\
& \frac{\partial \omega}{\partial \bar{x}}=\frac{\tau_{w} \rho}{1-\tau_{w}}>0 \tag{B.7}\\
& \frac{\partial \omega}{\partial t}=-\frac{\partial V_{x}^{B} / \partial t}{\left(1-\tau_{w}\right) H} \begin{cases}\frac{\mu_{x} x}{t\left(1-\tau_{w}\right) H}>0 & \text { if } x=0 \\
0 & \text { if } 0<x<\bar{x} \\
-\frac{\mu_{c} x}{t\left(1-\tau_{w}\right) H}<0 & \text { if } x=\bar{x}\end{cases} \\
& \frac{\partial \omega}{\partial i}=0, \forall i \notin\left\{b, p, \tau_{w}, \rho, \bar{x}, t\right\}
\end{align*}
$$

B. 2 Derivatives of cost differences

For later use (where we used (8), (9), (B.15)):

$$
\begin{align*}
\frac{\mathrm{d} \Delta c}{\mathrm{~d} r} & =-v-r \frac{\partial v}{\partial r}+v_{o} \frac{\partial \Delta_{m c}}{\partial r}+\Delta_{m c} \frac{\partial v_{o}}{\partial r}+\frac{\partial \Delta_{f c}}{\partial r}-b t \frac{\partial x}{\partial r} \tag{B.8}\\
& =-v<0 \\
\frac{\mathrm{~d} \Delta c}{\mathrm{~d} t} & =-r \frac{\partial v}{\partial t}+v_{o} \frac{\partial \Delta_{m c}}{\partial t}+\Delta_{m c} \frac{\partial v_{o}}{\partial t}+\frac{\partial \Delta_{f c}}{\partial t}-b t \frac{\partial x}{\partial t}-b x \\
& =(r-b) t \frac{\partial x}{\partial t}+v_{o} \frac{\partial \Delta_{m c}}{\partial t}+\left(\Delta_{m c}-r\right) \frac{\partial v_{o}}{\partial t}+\frac{\partial \Delta_{f c}}{\partial t}-b x \tag{B.9}\\
\frac{\mathrm{~d} \Delta c}{\mathrm{~d} b} & =-r \frac{\partial v}{\partial b}+v_{o} \frac{\partial \Delta_{m c}}{\partial b}+\Delta_{m c} \frac{\partial v_{o}}{\partial b}+\frac{\partial \Delta_{f c}}{\partial b}-b t \frac{\partial x}{\partial b}-t x \tag{B.10}\\
& =(r-b) t \frac{\partial x}{\partial b}+v_{o} \frac{\partial \Delta_{m c}}{\partial b}+\left(\Delta_{m c}-r\right) \frac{\partial v_{o}}{\partial b}+\frac{\partial \Delta_{f c}}{\partial b}-t x
\end{align*}
$$

and $\forall i \notin\{r, b, t\}$

$$
\begin{align*}
\frac{\mathrm{d} \Delta c}{\mathrm{~d} i} & =-r \frac{\partial v}{\partial i}+v_{o} \frac{\partial \Delta_{m c}}{\partial i}+\Delta_{m c} \frac{\partial v_{o}}{\partial i}+\frac{\partial \Delta_{f c}}{\partial i}-b t \frac{\partial x}{\partial i} \tag{B.11}\\
& =(r-b) t \frac{\partial x}{\partial i}+v_{o} \frac{\partial \Delta_{m c}}{\partial i}+\left(\Delta_{m c}-r\right) \frac{\partial v_{o}}{\partial i}+\frac{\partial \Delta_{f c}}{\partial i}
\end{align*}
$$

Using the variable travel cost per WFC hour (21), the differences in
non-wage fix costs per employee (22) and (9) are

$$
\begin{align*}
& \frac{\mathrm{d} \Delta c}{\mathrm{~d} b}=\frac{r-b}{u_{2}^{\prime \prime}+u_{3}^{\prime \prime}}-t x ; \\
& \frac{\mathrm{d} \Delta c}{\mathrm{~d} p}=\left(g_{h}+\left(1-s_{p}\right)\left(\frac{g_{x}}{t}+\tau_{c}\right)+s_{p} \tau_{p}-r\right) \frac{e^{\prime}}{-p e^{\prime \prime}+u_{4}^{\prime \prime}} \gtreqless 0 ; \\
& \frac{\mathrm{d} \Delta c}{\mathrm{~d} g_{x}}=x_{o}+\bar{x}>0 ; \quad \frac{\mathrm{d} \Delta c}{\mathrm{~d} g_{h}}=v_{o}+t \bar{x}>0 ; \\
& \frac{\mathrm{d} \Delta c}{\mathrm{~d} \bar{x}}=g_{x}+\left(g_{h}+\tau_{c}-r\right) t ; \quad \frac{\mathrm{d} \Delta c}{\mathrm{~d} d^{A}}=-1 ; \tag{B.12}\\
& \frac{\mathrm{d} \Delta c}{\mathrm{~d} d^{B}}=1 ; \\
& \frac{\mathrm{d} \Delta c}{\mathrm{~d} r}=-v-t(\bar{x}-x)<0 ; \quad \frac{\mathrm{d} \Delta c}{\mathrm{~d} s_{p}}=-\left(\frac{g_{x}}{t}+\tau_{c}-\tau_{p}\right) v_{o} \\
& \frac{\mathrm{~d} \Delta c}{\mathrm{~d} \beta}=0 ; \quad \frac{\mathrm{d} \Delta c}{\mathrm{~d} i}=0, \forall \in\left\{g_{m}, \tau_{w}, \tau_{q}, \rho, w, \beta\right\}
\end{align*}
$$

Eventually,

$$
\begin{equation*}
\frac{\mathrm{d} \Delta c}{\mathrm{~d} t}=\left(g_{h}+\tau_{c}-r\right) \bar{x}-\frac{g_{x}}{t} x o+(r-b) \frac{b+u_{2}^{\prime}-u_{3}^{\prime}}{t\left(u_{2}^{\prime \prime}+u_{3}^{\prime \prime}\right)} \tag{B.13}
\end{equation*}
$$

B. 3 Definitions

With policy parameters, the non-wage variable costs is

$$
\begin{equation*}
\Delta m c \equiv\left(1-s_{p}\right)\left(\frac{\left(1+\tau_{s}\right) g_{s}}{t}+\tau_{c}\right)+s_{p} \tau_{p}+\left(1+\tau_{d}\right) g_{d} \tag{21}
\end{equation*}
$$

and the difference in the non-wage fix costs per employee is

$$
\begin{equation*}
\Delta f c \equiv\left[\left(1+\tau_{s}\right) g_{s}+\left(\left(1+\tau_{d}\right) g_{d}+\tau_{c}\right) t\right] \bar{x}+d^{B}-d^{A} \tag{22}
\end{equation*}
$$

The derivatives for policy parameters are

$$
\begin{align*}
& \frac{\mathrm{d} \Delta c}{\mathrm{~d} \tau_{w}}=0 ; \quad \frac{\mathrm{d} \Delta c}{\mathrm{~d} \tau_{q}}=0 ; \quad \frac{\mathrm{d} \Delta c}{\mathrm{~d} \tau_{m}}=0 ; \quad \frac{\mathrm{d} \Delta c}{\mathrm{~d} \rho}=0 ; \\
& \frac{\mathrm{d} \Delta c}{\mathrm{~d} \tau_{p}}=s_{p} v_{o}>0 ; \quad \frac{\mathrm{d} \Delta c}{\mathrm{~d} \tau_{s}}=g_{s}\left(x_{o}+\bar{x}\right)>0 ; \tag{B.14}\\
& \frac{\mathrm{d} \Delta c}{\mathrm{~d} \tau_{d}}=g_{d}\left(v_{o}+t \bar{x}\right)>0 ; \quad \frac{\mathrm{d} \Delta c}{\mathrm{~d} \tau_{c}}=\left(1-s_{p}\right) v_{o}+t \bar{x}>0 ;
\end{align*}
$$

Note for later use (using (8)):

$$
\begin{align*}
& \frac{\partial x_{o}}{\partial p}=\left(1-s_{p}\right) \frac{1}{t} \frac{1}{u_{v_{o} v_{o}}}<0 ; \\
& \frac{\partial x_{o}}{\partial t}=\left(1-s_{p}\right) \frac{\partial v_{o}}{t} \frac{\left(1-s_{p}\right) \frac{v_{o}}{t^{2}}<0 ;}{\partial t}-\left(1-s_{p}\right) \frac{1}{t} \frac{\partial v_{o}}{\partial i}=0, \forall i \notin\{p, t\} \tag{B.15}
\end{align*}
$$

C Comparative statics of parameters on contract probability

The general derivative of $\alpha(24)$ w.r.t. to any parameter i (except τ_{w}) is

$$
\begin{align*}
& \left.2 a \frac{\partial \alpha}{\partial i}=-\left(1-\tau_{w}\right)\left[\left(\frac{\partial \omega}{\partial i}-\frac{\partial w}{\partial i}\right) H+\frac{\partial \Delta c}{\partial i}-\beta \frac{\partial v}{\partial i}\right], \forall i \notin\left\{\tau_{w}, \beta\right\}\right\} \tag{C.1}\\
& 2 a \frac{\partial \alpha}{\partial \beta}=-\left(1-\tau_{w}\right)\left[\left(\frac{\partial \omega}{\partial \beta}-\frac{\partial w}{\partial \beta}\right) H+\frac{\partial \Delta c}{\partial \beta}-\beta \frac{\partial v}{\partial \beta}-v\right]
\end{align*}
$$

The marginal change in α depends on the change in the wage differential, costs, and productivity that depends on the change in WFC hours. In the following, we use this derivative and substitute (B.3), (B.5), (B.7), and (B.11) - B.14).

Impact of the market wage w in case of WFO. Since the wage does neither affect the non-wage cost difference, nor WFC hours and distances x_{c} and x_{o}, we get

$$
\begin{equation*}
\frac{\partial \alpha}{\partial w}=\frac{1-\tau_{w}}{2 a}>0 \tag{C.2}
\end{equation*}
$$

The higher the WFO wage the higher the probability of choosing contract B.

Impact of g_{m}

$$
\begin{equation*}
\frac{\partial \alpha}{\partial g_{m}}=0>0 \tag{C.3}
\end{equation*}
$$

A change in private travel costs does not change the probability of choosing a WFC-contract (contract B).

Impact of g_{x}

$$
\begin{equation*}
\frac{\partial \alpha}{\partial g_{x}}=-\frac{\left(1-\tau_{w}\right)\left(x_{o}+\bar{x}\right)}{2 a}<0 \tag{C.4}
\end{equation*}
$$

An increase in variable travel costs of the AV lowers α.

Impact of g_{h}

$$
\begin{equation*}
\frac{\partial \alpha}{\partial g_{h}}=-\frac{\left(1-\tau_{w}\right)\left(v_{o}+t \bar{x}\right)}{2 a} \leq 0 \tag{C.5}
\end{equation*}
$$

An increase in the AV's travel costs per hour (e.g. leasing cost) does not increase α.

Impact of p

$$
\begin{equation*}
\frac{\partial \alpha}{\partial p}=-\frac{1}{2 a}\left\{e\left(v_{o}\right)+\left(1-\tau_{w}\right) \frac{\left[\beta-r+g_{h}+\left(1-s_{p}\right)\left(\frac{g_{x}}{t}\right)+s_{p} \tau_{p}\right] e^{\prime}}{-p e^{\prime \prime}+u_{4}^{\prime \prime}}\right\} \tag{C.6}
\end{equation*}
$$

after using (B.7), (B.3), (B.12), (B.4), (9), (8), (B.12), and (B.14).

Impact of r

$$
\begin{equation*}
\frac{\partial \alpha}{\partial r}=\frac{\left(1-\tau_{w}\right) v}{2 a}>0 \tag{C.7}
\end{equation*}
$$

after using (B.7), (B.3), B.12), B.4), (97, (8), (B.12), and B.14). An increase in the office rent per hour raises the probability of mobile-work contracts.

Impact of β

$$
\begin{equation*}
\frac{\partial \alpha}{\partial \beta}=\frac{\left(1-\tau_{w}\right) v}{2 a} \geq 0 \tag{C.8}
\end{equation*}
$$

after using (B.7), (B.3), (B.12), (B.4), (9), (8), (B.12), and (B.14). An increase in the productivity parameter of working from car raises the probability of mobile-work contracts.

Impact of d_{A}

$$
\begin{equation*}
\frac{\partial \alpha}{\partial d_{A}}=\frac{1-\tau_{w}}{2 a}>0 \tag{C.9}
\end{equation*}
$$

after using ($\overline{\mathrm{B} .7}$), ((B.3), ($\overline{\mathrm{B} .12)}$, ($\overline{\mathrm{B} .4), ~(9), ~(8), ~(~} \mathrm{B} .12)$, and ($\overline{\mathrm{B} .14) . ~}$
Impact of d_{B}

$$
\begin{equation*}
\frac{\partial \alpha}{\partial d_{B}}=-\frac{1-\tau_{w}}{2 a}<0 \tag{C.10}
\end{equation*}
$$

after using (B.7), (B.3), (B.12), (B.4), (9), (8), (B.12), and (B.14).

Impact of \bar{x}

$$
\begin{array}{r}
2 a \frac{\partial \alpha}{\partial \bar{x}}=-\left(1-\tau_{w}\right)\left(\frac{\partial \omega}{\partial \bar{x}}-\frac{\partial w}{\partial \bar{x}}+\frac{\partial \Delta c}{\partial \bar{x}}-\beta \frac{\partial v}{\partial \bar{x}}\right) \\
\frac{\partial \alpha}{\partial \bar{x}}=-\frac{1}{2 a}\left\{\left(1-\tau_{w}\right)\left[g_{x}+\left(g_{h}+\tau_{c}-r+\beta\right) t+g_{x}\right]+\tau_{w} \rho\right\} \tag{C.11}
\end{array}
$$

Impact of t

$$
\begin{align*}
2 a \frac{\partial \alpha}{\partial t}= & -\left(1-\tau_{w}\right)\left(\frac{\partial \omega}{\partial t}-\frac{\partial w}{\partial t}+\frac{\partial \Delta c}{\partial t}-\beta \frac{\partial v}{\partial t}\right) \\
=- & \left(1-\tau_{w}\right)\left(\frac{\left(b+u_{\ell}-u_{t x}\right) x}{\left(1-\tau_{w}\right) H}-\frac{\left(\tau_{c}+u_{\ell}-u_{t x}\right) \bar{x}}{\left(1-\tau_{w}\right) H}\right. \\
& \left.+\left(g_{x}+\tau_{c}\right) \bar{x}-\frac{g_{x} x_{0}}{t}-r x+(r-b) \frac{b+u_{\ell}-u_{t x}}{t\left(u_{\ell \ell}+u_{t x t x}\right)}-\beta\left(x-\frac{b+u_{\ell}-u_{t x}}{t^{2}\left(u_{\ell \ell}+u_{t x t x}\right)}\right)\right) \\
=- & \left(1-\tau_{w}\right)\left[(b-r-\beta) x+\left(u_{\ell}-u_{t x}\right)(\bar{x}-x)\right] \\
& -\left(1-\tau_{w}\right)\left[g_{x}\left(\bar{x}-\frac{x_{0}}{t}\right)+\left(r-b+\frac{+\beta}{t}\right) \frac{b+u_{\ell}-u_{t x}}{t\left(u_{\ell \ell}+u_{t x t x}\right)}\right] \tag{C.12}
\end{align*}
$$

$$
\frac{\partial \alpha}{\partial t}=-\frac{1}{2 a}\left\{\left(1-\tau_{w}\right)\left[\left(g_{h}-r+\beta+\tau_{c}\right) \bar{x}-\frac{g_{x}}{t} x_{o}\right]\right.
$$

$$
\begin{equation*}
\left.+\left(b+u_{2}^{\prime}-u_{3}^{\prime}\right)\left[x-\frac{\left(1-\tau_{w}\right)(b-r+\beta)}{t\left(u_{2}^{\prime \prime}+u_{3}^{\prime \prime}\right)}\right]\right\} \tag{C.13}
\end{equation*}
$$

after using (B.7), (B.3), (B.11), (B.4), (9), (8), (B.11), and (B.14).

Impact of s_{p}

$$
\begin{equation*}
\frac{\partial \alpha}{\partial s_{p}}=\frac{\left(1-\tau_{w}\right)\left(\frac{g_{x}}{t}+\tau_{c}-\tau_{p}\right) v_{o}}{2 a} \tag{C.14}
\end{equation*}
$$

D Comparative Statics: Policy Instruments

In the following, we use (C.1) and substitute (B.3), B.5), B.7), and B.11)(B.14).

Impact of τ_{w}

$$
2 a \frac{\partial \alpha}{\partial \tau_{w}}=\omega-w+\Delta c-v \beta-\left(1-\tau_{w}\right)\left[\left(\frac{\partial \omega}{\partial \tau_{w}}-\frac{\partial w}{\partial \tau_{w}}\right) H+\frac{\partial \Delta c}{\partial \tau_{w}}-\beta \frac{\partial v}{\partial \tau_{w}}\right]
$$

eventually

$$
\begin{align*}
& \frac{\partial \alpha}{\partial \tau_{w}}=\frac{d_{B}-d_{A}-b t x+\left[g_{x}+t\left(g_{h}+\tau_{c}\right)-\rho\right] \bar{x}}{2 a} \\
&-\frac{(r+\beta) v+\left(g_{x}+t \tau_{c}\right) x_{o}+\left(g_{h}+s_{p} \tau_{p}\right) v_{o}}{2 a} \tag{D.1}
\end{align*}
$$

after using (B.7), (B.3), (B.11), (B.4), (9), (8), B.11), and (B.14). The impact of the wage tax on α depends on the difference in fixed costs of the contracts (sign ambiguous), the change in variable profits per WFC hour (negative), and the changes in wages due to the imputed value of fringe benefits (negative).

Impact of τ_{m} Note: $g_{m}=\left(1+\tau_{m}\right) g_{k}$

$$
\begin{equation*}
\frac{\partial \alpha}{\partial \tau_{m}}=g_{k} \frac{\partial \alpha}{\partial g_{k}}=0 \tag{D.2}
\end{equation*}
$$

Impact of τ_{s} Note: $g_{x}=\left(1+\tau_{s}\right) g_{s}$

$$
\begin{equation*}
\frac{\partial \alpha}{\partial \tau_{s}}=g_{s} \frac{\partial \alpha}{\partial \tau_{s}}=-\frac{\left(1-\tau_{w}\right)\left(v_{o}+t \bar{x}\right)}{2 a} g_{s} \tag{D.3}
\end{equation*}
$$

after using (B.7), (B.3), (B.11), (B.4), (9), (8), (B.11), and (B.14).
Impact of $\tau_{d} \quad$ Note: $g_{h}=\left(1+\tau_{d}\right) g_{d}$

$$
\begin{equation*}
\frac{\partial \alpha}{\partial \tau_{d}}=g_{d} \frac{\partial \alpha}{\partial g_{d}}=-\frac{\left(1-\tau_{w}\right)\left(x_{o}+\bar{x}\right) g_{d}}{2 a} \tag{D.4}
\end{equation*}
$$

A change in the tax component of the firm's fixed monetary travel cost per WFC hour affect α via the tax base.

Impact of τ_{c}

$$
\begin{align*}
\frac{\partial \alpha}{\partial \tau_{c}} & =-\left(1-\tau_{w}\right)\left(\frac{\partial \omega}{\partial \tau_{c}}-\frac{\partial w}{\partial \tau_{c}}\right) H-\left(1-\tau_{w}\right)\left(\frac{\partial \Delta c}{\partial \tau_{c}}-\beta \frac{\partial v}{\partial \tau_{c}}\right) \\
& =-\frac{\left(1-\tau_{w}\right) t\left(x_{o}+\bar{x}\right)}{2 a} \tag{D.5}
\end{align*}
$$

Impact of τ_{p}

$$
\begin{equation*}
\frac{\partial \alpha}{\partial \tau_{p}}=-\frac{\left(1-\tau_{w}\right) s_{p} v_{o}}{2 a}<0 \tag{D.6}
\end{equation*}
$$

after using (B.7), (B.3), (B.11), (B.4), (9), (8), (B.11), and (B.14). The impact of the parking fee depends on WFC while parking. This effect is negative because τ_{p} increases the parking costs.

Impact of τ_{q}

$$
\begin{equation*}
\frac{\partial \alpha}{\partial \tau_{q}}=0 \tag{D.7}
\end{equation*}
$$

The parking fee for private parking near the working place does not affect α.

Impact of ρ

$$
\begin{equation*}
\frac{\partial \alpha}{\partial \rho}=-\tau_{w} \bar{x}<0 \tag{D.8}
\end{equation*}
$$

after using (B.7), (B.3), (B.11), (B.4), (9), (8), (B.11), and B.14).

D. 1 Impact of Parameters: Full Regressions Results

	Dependent variable:			
	alpha	sv	svc	svo
	(1)	(2)	(3)	(4)
\log (wage)	$\begin{gathered} 0.040^{* * *} \\ (0.003) \end{gathered}$	$\begin{gathered} -0.0002 \\ (0.001) \end{gathered}$	$\begin{gathered} 0.00004 \\ (0.001) \end{gathered}$	$\begin{aligned} & -0.0004 \\ & (0.001) \end{aligned}$
$\log (\mathrm{tkm})$	$\begin{gathered} -0.017^{* * *} \\ (0.002) \end{gathered}$	$\begin{gathered} 0.009^{* * *} \\ (0.001) \end{gathered}$	$\begin{gathered} 0.044^{* * *} \\ (0.001) \end{gathered}$	$\begin{aligned} & -0.001 \\ & (0.001) \end{aligned}$
$\log (\mathrm{eff})$	$\begin{gathered} 0.027^{* * *} \\ (0.008) \end{gathered}$	$\begin{gathered} -0.692^{* * *} \\ (0.004) \end{gathered}$	$\begin{gathered} 0.009^{* * *} \\ (0.002) \end{gathered}$	$\begin{gathered} -0.698^{* * *} \\ (0.003) \end{gathered}$
\log (xbar)	$\begin{gathered} 0.011^{* * *} \\ (0.001) \end{gathered}$	$\begin{gathered} 0.014^{* * *} \\ (0.001) \end{gathered}$	$\begin{gathered} 0.044^{* * *} \\ (0.001) \end{gathered}$	$\begin{aligned} & -0.001 \\ & (0.001) \end{aligned}$
$\log (\mathrm{gm})$	$\begin{gathered} 0.079^{* * *} \\ (0.005) \end{gathered}$	$\begin{aligned} & -0.003 \\ & (0.002) \end{aligned}$	$\begin{gathered} 0.001 \\ (0.001) \end{gathered}$	$\begin{gathered} -0.003^{*} \\ (0.002) \end{gathered}$
beta	$\begin{aligned} & 0.018^{* * *} \\ & (0.0001) \end{aligned}$	$\begin{gathered} 0.00000 \\ (0.00003) \end{gathered}$	$\begin{aligned} & 0.00004^{* *} \\ & (0.00002) \end{aligned}$	$\begin{gathered} 0.00002 \\ (0.00003) \end{gathered}$
$\log (\mathrm{r})$	$\begin{gathered} 0.173^{* * *} \\ (0.004) \end{gathered}$	$\begin{aligned} & -0.002 \\ & (0.002) \end{aligned}$	$\begin{aligned} & -0.001 \\ & (0.001) \end{aligned}$	$\begin{aligned} & -0.001 \\ & (0.001) \end{aligned}$
$\log (\mathrm{gx})$	$\begin{gathered} -0.016^{* * *} \\ (0.005) \end{gathered}$	$\begin{gathered} -0.0004 \\ (0.003) \end{gathered}$	$\begin{gathered} -0.0002 \\ (0.001) \end{gathered}$	$\begin{aligned} & -0.0002 \\ & (0.002) \end{aligned}$
$\log (\mathrm{gh})$	$\begin{gathered} -0.157^{* *} \\ (0.067) \end{gathered}$	$\begin{aligned} & -0.028 \\ & (0.031) \end{aligned}$	$\begin{aligned} & -0.010 \\ & (0.017) \end{aligned}$	$\begin{aligned} & -0.004 \\ & (0.025) \end{aligned}$
$\log (\mathrm{sp})$	$\begin{gathered} 0.013^{* * *} \\ (0.003) \end{gathered}$	$\begin{aligned} & -0.002 \\ & (0.001) \end{aligned}$	$\begin{gathered} -0.00000 \\ (0.001) \end{gathered}$	$\begin{aligned} & -0.002 \\ & (0.001) \end{aligned}$
dB	$\begin{gathered} -0.007^{* * *} \\ (0.001) \end{gathered}$	$\begin{gathered} -0.001^{* *} \\ (0.0004) \end{gathered}$	$\begin{aligned} & -0.0003 \\ & (0.0002) \end{aligned}$	$\begin{aligned} & -0.0004 \\ & (0.0003) \end{aligned}$
Constant	$\begin{gathered} (0.009) \\ -0.402^{* * *} \\ (0.142) \\ \hline \end{gathered}$	$\begin{gathered} (0.007) \\ 0.946^{* * *} \\ (0.065) \\ \hline \end{gathered}$	$\begin{gathered} (0.007) \\ 0.121^{* * *} \\ (0.035) \\ \hline \end{gathered}$	$\begin{gathered} (0.007) \\ 0.832^{* * *} \\ (0.052) \\ \hline \end{gathered}$
logSigma	$-1.888^{* * *}$	$-2.559^{* * *}$	$-3.177^{* * *}$	$-2.778^{* * *}$
Observations	10,000	10,000	10,000	10,000
Akaike Inf. Crit.	-3,265.583	-21,829.280	-33,918.230	-26,876.530
Bayesian Inf. Crit.	-3,171.848	-21,735.540	-33,824.500	-26,782.790

Note: ${ }^{*} \mathrm{p}<0.1 ;{ }^{* *} \mathrm{p}<0.05 ;{ }^{* * *} \mathrm{p}<0.01$
Results of censored (Tobit) regressions. Observations are the 10,000 results from the Monte-Carlo simulation. Dependent variables are α and the shares 'sc', 'svc', and 'svo' of v, v_{c}, v_{o} on daily working hours.

Table 10: Regression Results (U.S.)

E Results of Variation of Policy Parameters

	Dependent variable:			
	alpha (1)	(2)	vc (3)	(4)
\log (wage)	$\begin{gathered} 0.057^{* * *} \\ (0.004) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.002) \end{gathered}$	$\begin{gathered} -0.0001 \\ (0.001) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.001) \end{gathered}$
$\log (\mathrm{tkm})$	$\begin{gathered} 0.130^{* * *} \\ (0.004) \end{gathered}$	$\begin{gathered} 0.113^{* * *} \\ (0.002) \end{gathered}$	$\begin{gathered} 0.191^{* * *} \\ (0.001) \end{gathered}$	$\begin{gathered} -0.005^{* * *} \\ (0.001) \end{gathered}$
$\log (\mathrm{eff})$	$\begin{gathered} 0.073^{* * *} \\ (0.008) \end{gathered}$	$\begin{gathered} -0.683^{* * *} \\ (0.004) \end{gathered}$	$\begin{gathered} 0.009^{* * *} \\ (0.002) \end{gathered}$	$\begin{gathered} -0.680^{* * *} \\ (0.003) \end{gathered}$
\log (xbar)	$\begin{gathered} 0.127^{* * *} \\ (0.002) \end{gathered}$	$\begin{gathered} 0.103^{* * *} \\ (0.001) \end{gathered}$	$\begin{gathered} 0.165^{* * *} \\ (0.001) \end{gathered}$	$\begin{gathered} -0.004^{* * *} \\ (0.001) \end{gathered}$
$\log (\mathrm{gm})$	$\begin{gathered} 0.038^{* * *} \\ (0.006) \end{gathered}$	$\begin{aligned} & -0.003 \\ & (0.003) \end{aligned}$	$\begin{aligned} & -0.002 \\ & (0.001) \end{aligned}$	$\begin{aligned} & -0.001 \\ & (0.002) \end{aligned}$
beta	$\begin{aligned} & 0.017^{* * *} \\ & (0.0001) \end{aligned}$	$\begin{gathered} 0.00002 \\ (0.00005) \end{gathered}$	$\begin{aligned} & 0.0001^{* * *} \\ & (0.00002) \end{aligned}$	$\begin{aligned} & -0.00002 \\ & (0.00003) \end{aligned}$
$\log (\mathrm{r})$	$\begin{gathered} 0.069^{* * *} \\ (0.004) \end{gathered}$	$\begin{aligned} & -0.001 \\ & (0.002) \end{aligned}$	$\begin{gathered} -0.0003 \\ (0.001) \end{gathered}$	$\begin{aligned} & -0.002 \\ & (0.001) \end{aligned}$
$\log (\mathrm{gx})$	$\begin{gathered} -0.027^{*} \\ (0.015) \end{gathered}$	$\begin{aligned} & -0.011 \\ & (0.009) \end{aligned}$	$\begin{gathered} 0.004 \\ (0.004) \end{gathered}$	$\begin{aligned} & -0.003 \\ & (0.005) \end{aligned}$
$\log (\mathrm{gh})$	$\begin{gathered} -0.059^{* * *} \\ (0.003) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.002) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.001) \end{gathered}$	$\begin{aligned} & 0.0004 \\ & (0.001) \end{aligned}$
$\log (\mathrm{sp})$	$\begin{aligned} & 0.005^{*} \\ & (0.003) \end{aligned}$	$\begin{aligned} & -0.001 \\ & (0.002) \end{aligned}$	$\begin{gathered} -0.0001 \\ (0.001) \end{gathered}$	$\begin{aligned} & -0.002 \\ & (0.001) \end{aligned}$
dB	$\begin{gathered} -0.005^{* * *} \\ (0.001) \\ (0.009) \end{gathered}$	$\begin{gathered} -0.0003 \\ (0.0005) \\ (0.007) \end{gathered}$	$\begin{gathered} -0.00002 \\ (0.0002) \\ (0.007) \end{gathered}$	$\begin{gathered} -0.0001 \\ (0.0003) \\ (0.007) \end{gathered}$
Constant	$\begin{aligned} & 0.137^{* *} \\ & (0.058) \\ & \hline \end{aligned}$	$\begin{gathered} 0.949^{* * *} \\ (0.032) \\ \hline \end{gathered}$	$\begin{gathered} 0.232^{* * *} \\ (0.015) \\ \hline \end{gathered}$	$\begin{gathered} 0.792^{* * *} \\ (0.020) \\ \hline \end{gathered}$
logSigma	$-1.898^{* * *}$	$-2.372^{* * *}$	$-3.159^{* * *}$	$-2.843^{* * *}$
Observations	10,000	10,000	10,000	10,000
Akaike Inf. Crit.	-3,196.302	-17,791.260	-34,254.060	-28,446.640
Bayesian Inf. Crit.	-3,102.567	-17,697.530	-34,160.330	-28,352.900

Note: ${ }^{*} \mathrm{p}<0.1 ;{ }^{* *} \mathrm{p}<0.05 ;{ }^{* * *} \mathrm{p}<0.01$
Results of censored (Tobit) regressions. Observations are the 10,000 results from the Monte-Carlo simulation. Dependent variables are α and the shares 'sc', 'svc', and 'svo' of v, v_{c}, v_{o} on daily working hours.

Table 11: Regression Results (Germany)

	id_r	id_c	tauq	e_alpha	e_v	e_vc	e_vo	e_xB
1	1	DE	0.5					
2	2	DE	1	0.062	$1.5 \mathrm{e}-16$	0.00	0.00	0.00
3	3	DE	1.5	0.12	$-3 \mathrm{e}-16$	0.00	0.00	0.00
4	4	DE	2	0.16	$4.5 \mathrm{e}-16$	0.00	0.00	0.00
5	5	DE	2.5	0.21	$-6 \mathrm{e}-16$	0.00	0.00	0.00
6	6	DE	3	0.25	$7.5 \mathrm{e}-16$	0.00	0.00	0.00
7	7	DE	3.5	0.28	$-8.9 \mathrm{e}-16$	0.00	0.00	0.00
8	8	DE	4	0.079	$1 \mathrm{e}-15$	0.00	0.00	0.00
9	9	DE	4.5	0	$-1.2 \mathrm{e}-15$	0.00	0.00	0.00
10	10	DE	5	0	$1.3 \mathrm{e}-15$	0.00	0.00	0.00
11	mean	DE	tauq	0.12	$1.5 \mathrm{e}-16$	0.00	0.00	0.00

Table 12: Parameter tauq DE

	id_r	id_c	tauc	e_alpha	e_v	e_vc	e_vo	e_xB
1	1	US	0					
2	2	US	1	0	0	0	0	0
3	3	US	2	-0.0093	0.00043	0.0015	$3.8 \mathrm{e}-16$	-0.076
4	4	US	3	-0.019	0.00034	0.0012	$-3.8 \mathrm{e}-16$	-0.067
5	5	US	4	-0.029	$-4.2 \mathrm{e}-16$	0	$-5.7 \mathrm{e}-16$	$-7.3 \mathrm{e}-15$
6	6	US	5	-0.039	$1.1 \mathrm{e}-15$	0	$7.7 \mathrm{e}-16$	$-1.1 \mathrm{e}-14$
7	7	US	6	-0.049	0	0	0	$1.3 \mathrm{e}-14$
8	8	US	7	-0.059	$-8.3 \mathrm{e}-16$	0	$-1.1 \mathrm{e}-15$	0
9	9	US	8	-0.07	$1.2 \mathrm{e}-11$	$8.8 \mathrm{e}-16$	$1.7 \mathrm{e}-11$	$-3.7 \mathrm{e}-14$
10	10	US	9	-0.081	0	$-1 \mathrm{e}-15$	0	$6.5 \mathrm{e}-14$
11	mean	US	tauc	-0.039	0	0	0	$-7.3 \mathrm{e}-15$

Table 13: Parameter tauc US

	id_r	id_c	tauc	e_alpha	e_v	e_vc	e_vo	e_xB
1	1	DE	0					
2	2	DE	1	0	0	0	0	0
3	3	DE	2	-0.0038	$4 \mathrm{e}-04$	0.0018	$-1.9 \mathrm{e}-16$	-0.016
4	4	DE	3	-0.0075	$8 \mathrm{e}-04$	0.0036	0	-0.033
5	5	DE	4	-0.011	0.0012	0.0054	$5.7 \mathrm{e}-16$	-0.05
6	6	DE	5	-0.015	0.0016	0.0072	0	-0.068
7	7	DE	6	-0.019	0.002	0.009	$-9.6 \mathrm{e}-16$	-0.086
8	8	DE	7	-0.023	0.0024	0.011	0	-0.11
9	9	DE	8	-0.027	0.0028	0.013	$1.1 \mathrm{e}-11$	-0.12
10	10	DE	9	-0.031	0.0032	0.014	$-1.4 \mathrm{e}-14$	-0.15
11	mean	DE	tauc	-0.015	0.0016	0.0072	0	-0.068

Table 14: Parameter tauc DE

[^0]: *Technische Universität Dresden, Institute of Transport and Economics, georg.hirte@tu-dresden.de, corresponding author
 ${ }^{\dagger}$ Technische Universität Dresden, Institute of Transport and Economics, renee.laes@tudresden.de

[^1]: ${ }^{1}$ But due to IT developments, monitoring costs decline over time and are getting smaller with WFH, too (Oettinger, 2011).

[^2]: ${ }^{2}$ In the time use literature, often called "value of time as a resource" or "value of leisure time" (VOL), (DeSerpa, 1971, Jara-Diaz et al. 2008).

[^3]: ${ }^{3}$ In contrast to contract A, the employee can perform other activities in the AV, e.g., read, rest, sleep, or use ICT to reduce the utility loss from pure commuting and shrink the VTT. (Pudãne and Correia, 2020)
 ${ }^{4}$ We do not consider other activities like consumption from AV because we do not learn much from that distinction.

[^4]: 5 Lee et al. (2021) find that this happens between 10 to 100 km . They do not provide results for shorter distances. They also find that for people who are indifferent between AV and other car types, the VTT is constant between 10 and 50 km and increases for longer distances. We simplify and use their average finding.
 ${ }^{6}$ This is analogous to the telecommuting literature. According to the review of Allen et al. (2015), there is a positive value (satisfaction) of telecommuting that is concave. There are two drivers: work-family conflicts and coworker relationships (Gajedran and Harrison, 2007). While telecommuting improves the work-life balance, a high level of telecommuting may impose conflicts due to the interference of family with working at home. The latter is absent with WFC while the first may be slightly weaker.
 ${ }^{7}$ Golden and Eddleston (2020) provide evidence that the number of promotions and wage growth decline with the intensity of WFH.
 ${ }^{8}$ Tscharaktschiew and Reimann (2021) emphasize that empty autonomous cars may drive slower. Since speed raises WFC's monetary travel and sickness costs, reducing speed may also be a realistic outcome in the case of WFC. We do not model this to simplify matters.
 ${ }^{9}$ Golden and Eddleston (2020) provide evidence that telecommuters face a higher wage growth if they have more often face-to-face contact with supervisors and do more extra work.

[^5]: ${ }^{10}$ All μ_{i} are monetary values since MUI $=1$

[^6]: ${ }^{11}$ E.g., the timing of the start of a trip, no wasted time of earlier drive off to avoid late-arriving, etc.
 ${ }^{12}$ We do not distinguish between AV with a single user and other AVs but only look at costs per employee. Hence, the cost per VDT and costs per person kilometer traveled are equivalent.
 ${ }^{13}$ These differ from net costs per km of private use. We calculate the private-use costs as average costs per VDT. However, the AV may not always drive in the case of WFC. Then time and distance are no longer closely linked. Therefore we distinguish between fixed and variable costs.
 ${ }^{14}$ Implicitly, we assume that energy use depends on congestion via speed, implying that $g_{x}(F)^{\prime}>0, g_{x}(F)^{\prime \prime}>0$.
 ${ }^{15}$ It is likely, that speed will be lower due to reduced travel costs (Tscharaktschiew and Reimann, 2021, analoguous to cruising instead of parking) and motion sickness. We do not consider this here. However, note that this effect would lower the relative costs of

[^7]: WFC and makes WFC even more likely.

[^8]: ${ }^{16}$ We can interpret $\omega-w+\Delta c-v \beta$ as the discount or supplement the firm demands or offers in a mobile-work contract from/to the marginal employee. Then $\varepsilon /\left(1-\tau_{w}\right)$ is the gross preference value or the reservation discount or supplement this worker needs to accept the contract. The wage tax drives a wedge between the gross offer wage and the net reservation wage. It lowers the reservation offer price from the employee's point of view.

[^9]: ${ }^{17}$ This weight implies that utility discounting increases with distance. We follow Lee et al. (2021) who state that the advantage of AV is getting more relevant with increasing distance.
 ${ }^{18}$ Wardman et al. (2016) find a range between 1.02 for busy, 1.05 for light congestion and 1.21 for heavy congestion in the U.S. while their overview of 38 studies provides 1.32.0 as multipliers for different countries including stop-start and gridlock. Jokubauskaitè et al. (2019); Schmidt et al. (2021) provide recent estimates of VOT, VTT, and VTAT for Austria and Switzerland. They find a wide variety of values. The average VTT to VOT ratio in the non-representative studies is about 1.07 in Austria and 1.21 in Switzerland.
 ${ }^{19}$ Note, MUI is unity in our case. Hence, utility from wage income is equivalent to the monetary value.

[^10]: ${ }^{20}$ Gross wages are wages net of social security contributions of the employers.
 ${ }^{21} 0.306 €$ CitiGo e IV Ambition Skoda, $1.208 €$ Model X Performance Tesla
 ${ }^{22}$ Calculated as VKT and in $€$ with an exchange rate of $0.84 € / \$$ from March 19, 2021.
 ${ }^{23}$ BMW i3, $830 € /$ year, assumption: $15.000 \mathrm{~km} /$ year. A small firms' average power price is $21.19 €$-ct. It is the retail average power price at the firm's location that we take as use as charging price in Germany .
 ${ }^{24} \$ / \mathrm{VMT}$ are taken from Tab A3 and Tab A4 in Compostella et al. (2021) after netting out fuel costs. The year has 52 weeks implying 104 free days, plus six days to consider

[^11]: ${ }^{27}$ The shape parameter is 2.61 and the rate parameter 0.10

[^12]: ${ }^{28}$ There is evidence that individual, work-related, and household characteristics are essential determinants of the probability of WFH (E.g., Singh et al. 2013, Sarbu, 2015)

[^13]: ${ }^{29}$ Note that 50% would choose contract ' B ' if the idiosyncratic preference is the only choice determinant

[^14]: ${ }^{30}$ Note, the regression coefficients from the censored regression are the marginal effects of the control variable on the predicted value of the outcome variables. The regression tables are provided as Tables 10 and 11 in the Appendix.

[^15]: ${ }^{32}$ Wardman et al. (2016) find a range between 1.02 for busy, 1.05 for light congestion and 1.21 for heavy congestion in the U.S. while their overview of 38 studies provides 1.3 2.0 as multipliers for different countries including stop-start and gridlock. Jokubauskaitè et al. (2019); Schmidt et al. (2021) provide recent estimates of VOT, VTT, and VTAT for Austria and Switzerland. They find a wide variety of values. The average VTT to VOT ratio in the non-representative studies is about 1.07 in Austria and 1.21 in Switzerland.

