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Abstract 

Mechanical properties of cells and their environment have an undeniable impact on physiological and 

pathological processes such as tissue development or cancer metastasis. Hence, there is a pressing need 

for establishing and validating methodologies for measuring the mechanical properties of cells, as well 

as for deciphering the molecular underpinnings that govern the mechanical phenotype. During my 

doctoral research, I addressed these needs by pushing the boundaries of the field of single-cell 

mechanics in four projects, two of which were method-oriented and two explored important biological 

questions. First, I consolidated real-time deformability cytometry as a method for high-throughput 

single-cell mechanical phenotyping and contributed to its transformation into a versatile image-based 

cell characterization and sorting platform. Importantly, this platform can be used not only to sort cells 

based on image-derived parameters, but also to train neural networks to recognize and sort cells of 

interest based on raw images. Second, I performed a cross-laboratory study comparing three 

microfluidics-based deformability cytometry approaches operating at different timescales in two 

standardized assays of osmotic shock and actin disassembly. This study revealed that while all three 

methods are sensitive to osmotic shock-induced changes in cell deformability, the method operating at 

the shortest timescale is not suited for detection of actin cytoskeleton changes. Third, I demonstrated 

changes in cell mechanical phenotype associated with cell fate specification on the example of 

differentiation and de-differentiation along the neural lineage. In the process of reprogramming to 

pluripotency, neural precursor cells acquired progressively stiffer phenotype, that was reversed in the 

process of neural differentiation. The stiff phenotype of induced pluripotent stem cells was equivalent 

to that of embryonic stem cells, suggesting that mechanical properties of cells are inherent to their 

developmental stage. Finally, I identified and validated novel target genes involved in the regulation of 

mechanical properties of cells. The targets were identified using machine learning-based network 

analysis of transcriptomic profiles associated with mechanical phenotype change, and validated 

computationally as well as in genetic perturbation experiments. In particular, I showed that the gene 

with the best in silico performance, CAV1, changes the mechanical properties of cells when silenced or 

overexpressed. Identification of novel targets for mechanical phenotype modification is crucial for 

future explorations of physiological and pathological roles of cell mechanics. Together, this thesis 

encompasses a collection of contributions at the frontier of single-cell mechanical characterization 

across timescales and cell state transitions, and lays ground for turning cell mechanics from a correlative 

phenomenological parameter to a controllable property.  
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Kurzfassung 

Die mechanischen Eigenschaften von Zellen und ihrer Umgebung haben einen unbestrittenen Einfluss 

auf physiologische und pathologische Prozesse, wie die Gewebeentwicklung oder die Metastasierung 

bei Krebs. Daher besteht ein dringender Bedarf Methoden zur Messung der mechanischen 

Eigenschaften von Zellen zu etablieren und zu validieren, sowie die molekularen Faktoren zu 

entschlüsseln, die den mechanischen Phänotyp der Zellen bestimmen. In meiner Doktorarbeit wurde 

dieser Bedarf anhand von vier Projekten adressiert, die die Grenzen des Gebiets der 

Einzelzellmechanik erweitert haben. Zwei von diesen Projekten waren methodenorientiert und zwei 

erforschten wichtige biologische Fragestellungen. Zuerst zeigte ich die breite Anwendbarkeit der 

Echtzeit-Verformungszytometrie für die mechanische Hochdurchsatz-Phänotypisierung einzelner 

Zellen und trug dazu bei, diese Methode zu einer vielseitigen, bildbasierten Zellcharakterisierungs- und 

Sortierplattform zu erweitern. Die neuentwickelte Plattform ermöglicht die Sortierung von Zellen 

sowohl nach bildbasierten Parametern, als auch anhand trainierter neuronaler Netze, die mit 

Rohbildern arbeiten. Des Weiteren führte ich eine laborübergreifende Studie durch, in der drei auf 

unterschiedlichen Zeitskalen arbeitende Varianten der mikrofluidischen Verformungszytometrie 

verglichen wurden. Für den Vergleich wurden zwei standardisierte Analyseverfahren durchgeführt, die 

auf der Anwendung osmotischer Schocks, beziehungsweise des Aktinabbaus basierten. Diese Studie 

zeigte, dass alle drei Methoden für die Messung von osmotischen schock-induzierten Veränderungen 

der Zellverformbarkeit geeignet sind. Es wurde jedoch auch gezeigt, dass die Methode, die im kürzesten 

Zeitintervall agiert, ungeeignet für den Nachweis von Veränderungen des Aktinzytoskeletts ist. 

Anschließend zeigte ich, am Beispiel der neuronalen Differenzierung und Dedifferenzierung, wie sich 

der mechanische Phänotyp von Zellen mit der Bestimmung des Zellschicksals verändert. Während der 

Reprogrammierung zur Pluripotenz erlangten neurale Vorläuferzellen einen zunehmend steiferen 

Phänotyp, der sich im Prozess der neuralen Differenzierung wieder umkehrte. Der steife Phänotyp 

induzierter pluripotenter Stammzellen entsprach dem von embryonalen Stammzellen, was darauf 

hindeutet, dass die mechanischen Eigenschaften von Zellen mit ihrem Entwicklungsstadium eng 

verbunden sind. Abschließend identifizierte und validierte ich neue Zielgene, die an der Regulierung 

der mechanischen Eigenschaften von Zellen beteiligt sind. Um diese Zielgene zu identifizieren, wurden 

die transkriptomischen Profile, die mit der Veränderung des mechanischen Phänotyps einhergehen, 

anhand einer auf maschinellem Lernen basierter Netzanalyze verarbeitet. Die Resultate wurden 

rechnerisch und durch genetische Manipulationsexperimente validiert. Insbesondere zeigte ich, dass 

das Zielgen mit der besten in silico Leistung, CAV1, die mechanischen Eigenschaften von Zellen 

verändert, wenn es hoch- oder herunterreguliert wird. Die Identifizierung neuer Zielgene zur 

Modifikation des mechanischen Phänotyps ist entscheidend für zukünftige Untersuchungen der 

physiologischen und pathologischen Rollen der Zellmechanik. Zusammengefasst beinhaltet diese 

Dissertation wesentliche Beiträge auf dem Gebiet der mechanischen Einzelzellcharakterisierung über 

eine Reihe von Zeitskalen und Zellveränderungen und legt den Grundstein für die Transformation der 

mechanischen Eigenschaften der Zellen von einem korrelativen phänomenologischen hin zu einem 

kontrollierbaren Parameter. 
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Introduction 

One of the most basic but very informative medical examinations is palpation — a simple test in which 

a physician feels for firmness, size, and position of patient’s organs to learn about the state of their 

health. On a microscopic scale, an analogous test can be performed on the fundamental units of our 

bodies, the cells. Similar to the way organs change their stiffness in diseases, individual cells become 

mechanically altered during various physiological and pathological processes, such as cell fate 

specification1,2, immune activation1,3–6, or malignant transformation7–11. A change in the mechanical 

property is a global signature of alterations happening in the cell interior that can serve as an inherent, 

label-free marker for biomedical applications12–14.  

Examining mechanical properties of cells is, however, not a trivial task, as it requires tools that operate 

at length and force scales relevant to cells. For reference, human cells measure between 8 µm (red blood 

cell) and 100 µm (oocyte)15, generate forces on the order of several nN16, and withstand forces on the 

order of 1 µN before rupture17. To meet these scales, scientists need to devise various types of dedicated 

apparatus. Over the decades, a variety of methods for single-cell mechanical characterization has been 

introduced, with classical examples including micropipette aspiration18 or atomic force microscopy 

(AFM)-based indentation19. Such classical methods suffer from technically demanding and time-

consuming procedures that limit the number of measured cells and the uptake of these techniques 

beyond specialized laboratories. Recently introduced deformability cytometry approaches overcome 

this bottleneck by offering unprecedented throughputs and comparatively simple handling20. 

Throughout this thesis, I have implemented a variant of deformability cytometry, real-time 

deformability cytometry (RT-DC)21, as a workhorse for mechanical characterization of cells. Detailed 

operation of RT-DC as well as its extension into a versatile image-based characterization platform with 

sorting capability are described in Chapter 2. 

While the high throughput of microfluidics-based methods for mechanical characterization of cells is 

a great advancement, it comes at a cost of shortening the time in which each cell is measured. The short 

measurement time is inextricably linked with rapid force application, a factor that can influence the 

magnitude of assessed mechanical properties — cells typically appear stiffer when probed faster22–24. 

Additionally, at very fast probing rates, the relative magnitude of loss (viscous) and storage (elastic) 

moduli can be completely reversed25–27. The microfluidics-based deformability cytometry methods 

themselves vary not only in the type of channel geometries, but also in the range of timescales in which 

they induce cell deformation. In the project presented in Chapter 3, I undertook an effort of a direct 

comparison of three state-of-the-art deformability cytometry methods operating at different timescales 

in two standardized assays of osmotic shock and actin filament disassembly. This study showed that 

while all three methods detect osmotic shock-induced changes in cell deformability, the sensitivity to 
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actin disassembly is method-dependent and no deformability response was observed for the method 

operating at the highest strain rate. 

In living organisms, there are several processes for which the mechanical properties of cells are of 

critical importance. These processes typically involve direct exposure of cells to forces, as is the case 

for cells circulating through microvasculature28 or cells squeezing through narrow spaces within solid 

tissues during cancer metastasis29. Another example of a process to which cell mechanics contributes 

substantially is morphogenesis30, during which cells change shape, divide and relocate to give rise to 

organs and tissues of an adult body. While studying the mechanical properties of cells during 

morphogenesis may be challenging in situ, it is straightforward to monitor mechanical changes 

accompanying cell fate transitions in in vitro model systems. The knowledge generated with such model 

systems can be used to predict the behavior of cells in more complex environments. Within the 

framework of the project presented in Chapter 4, I investigated the cell mechanical changes in a model 

of dedifferentiation of murine fetal neural progenitor cells (fNPCs) to induced pluripotent stem cells 

(iPSCs), and in a converse process of differentiation along neural lineage. I found that fNPCs become 

progressively stiffer during reprogramming to pluripotency, and that this stiffening is mirrored by iPSCs 

becoming more compliant in differentiation towards the neural lineage. Furthermore, I showed that 

the mechanical phenotype of iPSCs is comparable with that of pluripotent stem cells isolated from 

mouse embryos, suggesting that mechanical properties of cells are inherent to their developmental 

stage. 

Characterization of the mechanical properties during cell state transitions such as cell differentiation 

brings valuable biophysical insights into cell function, however, to be able to understand and control 

the mechanical properties, it is necessary to unravel their molecular origins. Mechanical phenotype of 

cells is attributed in the biggest part to the cytoskeletal structures31, with actin network and its 

contractility playing the most prominent role32,33. Other intracellular features, such as the architecture 

of the plasma membrane, its attachment to the actin cortex, or cytoplasmic packing, can also contribute 

to the measured properties20. Many of the known contributors to cell mechanics are central to cell 

homeostasis and their alteration can lead to severe impairment of cell function. Thus, it is important to 

seek novel molecular targets through which mechanical properties could be tuned in subtle ways. 

In Chapter 5, I introduce a mechanomics approach for de novo identification of cell mechanics 

regulators that tackles this challenge. Mechanomics relies on machine learning-based discriminative 

network analysis of transcriptomic data associated with mechanical phenotype changes in systems 

ranging from stem cell development to cancer progression. Based on intersection of networks inferred 

from two systems, we identified a conserved module of five genes with putative roles in the regulation 

of mechanical properties. We next validated the power of the individual genes to discriminate between 

soft and stiff cell states in silico, and demonstrate experimentally that the top scoring gene, CAV1, 

changes the mechanical phenotype of cells when silenced or overexpressed. Mechanomics approach 

has the power of hypothesis-free identification of genes involved in cell mechanics regulation and paves 
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the way towards engineering cell mechanical properties on demand to explore their impact on 

physiological and pathological cell functions. 

This thesis opens with a background chapter (Chapter 1)  introducing concepts from the field of cell 

mechanics and mechanical characterization of cells. It continues with a comprehensive introduction of 

RT-DC, a versatile method for morphological and mechanical characterization of cells and its recent 

extension to a sorting platform (Chapter 2). Next, the impact of measurement timescale on the 

mechanical characterization of cells in microfluidics-based systems is revealed by comparing three 

deformability cytometry methods operating at different timescales (Chapter 3). Chapter 4 presents 

characterization of cell mechanical phenotype change in cell fate transitions, on the example of 

(de-)differentiation of murine stem cells along the neural lineage. Finally, Chapter 5 introduces a 

method that can be used to identify novel targets involved in the regulation of the mechanical 

phenotype of cells. The obtained results are discussed and put into the context of the relevant scientific 

literature within the individual result chapters (Discussion sections in Chapters 2–5). At the end of 

the thesis, overarching conclusions and future research directions are presented (Conclusions and 

Outlook).  Together, this thesis encompasses a collection of contributions at the frontier of single-cell 

mechanical characterization across timescale and cell transitions.
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— Chapter 1 — 
Background 

1.1. Mechanical properties as a marker of cell state in health and disease 

Over the years, changes in mechanical properties of cells have been reported to accompany many 

physiological and pathological processes, such as cancer progression7–10, leukocyte activation1,3–6, red 

blood cells (RBCs) pathologies34,35, or stem cell differentiation1,2. Since measurements of mechanical 

properties circumvent the need of using extrinsic labels, they constitute an attractive, noninvasive way 

of cell state identification with an implicated clinical applicability (Figure 1.1). 

Figure 1.1 | Mechanical phenotype as a marker of cell state transitions. The chart provides an overview of 
several processes that can be identified by looking at the mechanical properties of cells (inner circle) and highlights 
the biomedical application areas of monitoring the mechanical cell properties (outer region). This figure is 
modified after Di Carlo12. 

1.1.1. Malignancy and invasiveness of cancers 

Mechanical features of cells and their microenvironment are known to play an important role in 

carcinogenesis29,36,37. While tumorous tissues are typically characterized by increased stiffness38, 

malignant transformation of cells was shown to be correlated with cell softening in overwhelming 
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majority of studies, and the cancerous cells become softer with increasing invasive potential (see 

Suresh39 and Alibert et al.40 for reviews). The decrease in cell stiffness is likely a reflection of the changes 

in the cytoskeletal organization that are characteristic for malignancy and metastatic progression39,41–44, 

and holds true for cancers originating from different organs, including gastrointestinal tract41,45, 

pancreas41,46,47, breast7,45–48, mouth49, ovaries8,44,48, bladder45,47, lung46 and cervix47. Exception from this 

rule constitute leukemias, for which cancerous cells appear stiffer than their healthy counterparts3,5,50–

52. While many of the aforementioned studies have been performed on cell lines, several attempts of 

mechanical measurements on cancer cells from patients5,8,10,46,49 demonstrate that measurements of 

mechanical properties could be used for cancer diagnostics and staging in clinical settings. 

1.1.2. Immune cell activation and blood-related diseases 

Another process hallmarked by cell mechanical phenotype change is the activation of leukocytes. 

Leukocytes are the chief actors of the immune system involved in fighting pathogens and inflammatory 

states in the human body. They are a heterogenous group of cells that consists of granulocytes 

(neutrophils, eosinophils and basophils), monocytes and lymphocytes, with neutrophils being the most 

abundant leukocyte type and accounting for 50–70% of all white blood cells53. Various biochemical 

agents, such as cytokines and bacterial products can induce neutrophil activation, during which cells 

change their inner structure and morphological features in preparation for the immunological 

function53. While several studies have shown that in vitro activation of neutrophils is connected with 

their stiffening within first minutes after the activation54–57, other studies reported increased size and 

deformability of neutrophils on the timescales of 30–60 minutes after exposure to a stimulus1,58. These 

two observations were integrated in recent time-resolved studies of the neutrophil response, which 

revealed that indeed after the initial phase of stiffening and compaction (first 15 minutes upon 

stimulation), the cells become larger and more deformable at longer timescales5,6. Macrophages and 

dendritic cells derived from monocytes showed varied deformability responses upon activation, 

depending on the applied stimulus4. In patient-derived samples, neutrophils were observed to have 

larger size and increased deformability for conditions such as acute lung injury and viral respiratory 

tract infection5, while lymphocytes and monocytes showed more pronounced increase of these two 

parameters for Epstein-Barr-virus infections5. Granulocytes were also shown to have higher 

deformability in patients with sepsis59, and characteristic fingerprints of leukocyte deformability have 

been associated with various chronic and acute inflammatory conditions10. Most recently, it was shown 

that during COVID19 infection lymphocytes become stiffer, monocytes increase in size, and 

neutrophils acquire bigger size and higher deformability characteristic for activated state60. Interestingly, 

changes in deformability of leukocytes were also reported in patients with depressive disorder61. These 

studies show that deformability measurements could be used to detect immune cell activation and that 

the differential responses of the specific immune cell subpopulations could be indicative of the type of 

infection or inflammatory state. 
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Beyond mechanical phenotyping of leukocytes, the information about biophysical properties of RBCs 

is also of potential diagnostic relevance. Firstly, spherocytosis — a condition of spherical rather than 

biconcave discoidal shape of RBCs characteristic for hemolytic anemias — is characterized by lowered 

deformation of RBCs5 and higher Young’s modulus62. Secondly, the RBCs from sickle cell anemia 

patients were shown to have an increased elastic modulus, bending modulus and viscosity63–66. 

Furthermore, malaria-infected RBCs are characterized by lowered deformability and increased bending 

modulus of the membrane5,67–69. Altered deformation capacity of RBCs was also shown to accompany 

conditions not directly related to blood, such as COVID19 infection60, persistent depressive 

disorders61, or metabolic disorders such as diabetes and obesity70, opening a possibility of screening for 

non RBC-related diseases by looking at the biophysical phenotype of RBCs. 

1.1.3. Pluripotency, stemness and cell fate specification 

During embryonic development, pluripotent stem cells differentiate into specialized cell types to give 

rise to all tissues of the adult body. The transition from undifferentiated to more specialized cell states 

is underlined by rearrangements in nuclear and cytoskeletal architecture71,72, what leads to changes in 

mechanical properties of cells. Stiffness changes have been shown to be an indicator of early 

differentiation of murine and human embryonic stem cells (ESCs)1,70,73, and cardiac74 as well as 

chondrogenic75 differentiation of human ESCs. Apart from studies on the pluripotent ESCs, 

mechanical phenotype changes during cell differentiation from multipotent stem cells have been 

characterized. For example, human mesenchymal stem cells were shown to change their mechanical 

phenotype during differentiation towards osteogenic76–78 and adipogenic lineages77. Furthermore, the 

differentiation potential for a given lineage of adipose-derived stem cells (a heterogenous population 

of mesenchymal stem and stromal cells derived from adipose tissue) was shown to correlate with cell 

stiffness79. Human myeloid precursor cells have been shown to soften during differentiation towards 

neutrophils and monocytes, but stiffen during differentiation towards macrophages2,51. Finally, human 

hematopoietic stem and progenitor cells80 and human skeletal stem cells81 were shown to be 

distinguishable from other cell types found in bone marrow based on their size and deformability. This 

shows that mechanical phenotyping has potential for use in distinguishing differentiated cells of specific 

fates, or separate stem cells from mixed populations. Using the mechanical phenotype as a marker of 

cell state for cell enrichment is particularly attractive for cases in which surface markers are not well 

defined, or antibody staining is not desired due to required purity of cells for downstream applications.
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1.2. Functional relevance of single-cell mechanical properties 

Mechanical properties determine how easily cells deform in response to applied forces. Thus, beyond 

being a valuable marker of cell state transitions, they also influence cellular functions that depend on 

the ability of cells to change shape. Such functions include circulation through microvasculature, 

interstitial and transepithelial migration, positioning in multicellular assemblies, cell fate specification 

as well as proliferation in crowded environments. 

1.2.1. Circulation through microvasculature 

Microcapillaries, the smallest vessels of the cardiovascular system, can have diameters as low as 

2 μm34,82, much lower than typical diameters of blood cell (8 μm for RBCs15, and between 6 and 30 μm 

for leukocytes83). Thus, for efficient circulation through microvasculature, cells need to sufficient 

deformability34,82 (Figure 1.2). Compromised deformability of blood cells can disturb physiological 

blood flow and lead to inefficient perfusion of organs, lower oxygen transport and vascular occlusions, 

all of which have debilitating effects on patient’s health84. For example, the RBCs stiffened by malaria 

infection were shown to obstruct small capillaries in vitro more readily than the uninfected RBCs85,86, 

and the reduced deformability of RBCs was correlated with fatal disease outcome in patients87. 

Increased occlusions of the capillary system were also observed for less deformable RBCs in sickle cell 

anemia88. Furthermore, stiffened leukocytes characteristic for leukemias3,50,89,90 and stiffening of 

leukocytes in response to chemotherapy91 are associated with leukostasis — a formation of leukocyte 

plugs in microcapillaries. The accumulation of leukemic cells in the blood vessels of brain or lung can 

result in sever conditions such as intercranial hemorrhage or respiratory failure91. Other conditions in 

which decreased deformability of leukocytes was reported to contribute to vascular occlusions include 

acute respiratory distress syndrome92,93, sepsis94 and pneumonia95. 

Sufficient deformability of cells is also crucial for delivery of stem cells to target organs after intravenous 

transplantation. Various types of stem cells, including mesenchymal stem cells, hematopoietic stem and 

progenitor cells as well as other tissue-specific progenitor stem cells, can be transplanted to patients for 

immunomodulatory or regenerative purposes96. When administered intravenously, the cells need to 

pass through pulmonary capillary beds before arriving to target organs, what carries a risk of substantial 

sequestration of cells in the lungs and diminished or delayed homing97–100. It has recently been 

demonstrated that expanding mesenchymal stem cells in 3D spheroids rather than in 2D plastic-

adherent cultures results in a smaller and more deformable phenotype of cells28. This phenotype was 

connected with faster passage through microfluidic channels mimicking microcirculation, decreased 

trapping in lung and increased recovery in organs such as liver, heart, spleen or kidney upon 

transplantation into mice28, suggesting that engineering biophysical properties of stem cells could foster 

their capability to pass microcirculation and enable efficient transplantation. 



 Functional relevance of single-cell mechanical properties 

9 

Figure 1.2 | Circulation through microvasculature requires blood cells to deform. When circulating 
through microvasculature, blood cells encounter increasingly narrow capillaries. When the diameter of the vessel 
becomes smaller than the cell diameter, cells need to deform to pass it. Reference dimensions of undeformed 
RBCs and leukocytes are provided in the figure. 

1.2.2. Invasion and migration in cancer metastasis 

Another important cellular function influenced by mechanical properties of cells is invasion and 

migration in the context of cancer malignancy. Metastasis, a sequence of events that leads to 

development of secondary tumors, is the major cause of cancer-related deaths101. Metastatic 

progression is a multistep process that includes detachment of the cells from primary tumor, migration 

through surrounding tissues, two events of crossing the epithelium during entering and exiting the 

blood vessels, as well as colonization and secondary tumor formation102 (Figure 1.3).  

Softer phenotype of cancer cells, frequently associated with cancer invasion and metastasis, has been 

hypothesized to facilitate squeezing of cells through narrow spaces7,44,103, and there is some direct 

evidence that cell stiffness plays a role at various stages of the metastatic cascade. For example, during 

detachment from primary tumor, cells undergo epithelial to mesenchymal transition (EMT), a process 

in which epithelial, polarized cells undergo cytoskeletal remodeling and reduction of intracellular 

adhesion to acquire mesenchymal, motile phenotype104. EMT was shown to reduce cellular stiffness 

and promote invasion105, and softening of cells during their detachment and migration from breast 

cancer spheroids was directly observed106,107. Recently, it has also been demonstrated that cancer cells 

soften while entering narrow constrictions108, suggesting that they adapt their mechanical properties to 

the encountered migratory challenges. Interestingly, while interphase cells become softer during EMT, 

the mitotic cells increase their cortical stiffness, what could have implications for successful cell division 

in crowded environments109. The ability of cells to deform is also crucial for transendothelial migration 
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during intra- and extravasation110, and the deformability of cell nucleus is rate-limiting for passing 

through narrow pores111–113, both when crossing epithelial barriers and invading the tissues. While cell 

softening is generally thought to promote migration, stiffer cells may have advantage for resisting cell 

damage during exposure to forces, for example in circulation. Thus, it is likely that for successful 

metastasis cancer cells need to adapt their mechanical properties throughout the process29. Since cell 

softening and mechanical adaptability of the cells appear crucial for successful metastasis, mechanical 

properties of cancer could be targeted for preventing cancer spreading, a perspective that is actively 

explored114,115. 

 
Figure 1.3 | Stages of cancer metastasis. In distant metastasis cancer cells are disseminated to new sites via 
bloodstream to form secondary tumors. First, cells detach from the primary tumor and explore the surrounding 
tissue (local invasion). The detached cells enter nearby blood vessels (intravasation) and are carried with the 
bloodstream (dissemination). Some of the circulating cells exit the blood vessels (extravasation), migrate through 
local tissue, proliferate and form a secondary tumor. This figure is modified from Wirtz et al.116. 

1.2.3. Migratory capability of immune cells 

Another type of cells that undergo extensive migration are immune cells. Immune cells extravasate and 

migrate through tissues to reach the sites of infection or inflammation within the body117,118. For 

example, in innate immunity response, neutrophils and macrophages are recruited to infection sites to 

eliminate pathogens from the body119 (Figure 1.4). Neutrophils circulate in the blood stream and 

extravasate into tissues when captured by adhesion molecules displayed by activated endothelium120. 

Macrophages are either recruited locally from the population residing in the tissues or are differentiated 

from monocytes recruited from the blood stream117,121. 

Differentiation of myeloid precursor cells towards neutrophils is accompanied by increase in cell 

deformability and decrease in viscosity, both of which facilitate migration2,51,122. High deformability of 

neutrophils was also shown to facilitate their adhesion to blood vessels essential for extravasation123. 

Neutrophils show increase in deformability during activation58,124,125, what could further promote their 
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migratory capability. Same as for cancer cells, the migration of neutrophils through narrow spaces was 

shown to be limited by the deformation of their nucleus126, and the whole cells become transiently 

softer when entering constrictions127. Contrary to neutrophils, macrophages appear less compliant than 

their precursor cells on short timescales, however, they do show decreased viscosity and increased 

compliance at longer timescales2. Since macrophages do not circulate through vasculature, they may 

not require high deformability at short timescales, and their long timescale properties likely support 

tissue infiltration2. On the other hand, high elasticity of macrophages (measured on short timescales) 

was reported to facilitate phagocytosis and increase with activation of macrophages128. Other immune 

cells that migrate into tissues, such as lymphocytes B and T, natural killer cells, or dendritic cells, 

experience similar obstacles and their successful trafficking is likely also influenced by their mechanical 

properties. 

 
Figure 1.4 | Migration of neutrophils and macrophages to bacterial infection site. In case of bacterial 
infection, neutrophils and monocytes circulating in the blood vessels extravasate and are migrate towards the 
infection site. After leaving the blood stream, monocytes differentiate into macrophages. Other macrophages that 
already reside in the tissues, the so-called tissue-resident macrophages, are also recruited towards the infection 
site. mono – monocyte, macro – macrophage, neu – neutrophil. This figure is modified from Ekpenyong et al.2. 

1.2.4. Cell fate specification and morphogenesis 

Cell mechanics has been shown to play a role in cell fate specification and development, starting from 

the earliest embryonic stages (see Figure 1.5 for an overview of early embryonic development in mice). 

The compaction of the 8-cell-stage mouse embryo, crucial for progression of development, is driven 

by pulses in cortical tension generated by actomyosin contractility of the outside-facing cell surfaces129. 

Subsequent lineage specification of outer-facing trophectoderm (TE) and inner cell mass (ICM) is 

triggered by differences in cell mechanical properties: cells with lower cortical tension tend to engulf 

other cells and position outwards, whereas cells with high cortical tension are internalized129,130. The 

specification towards TE and ICM is supported by the Hippo/YAP mechanosensitive pathway131–133. 

The loss of naïve pluripotency of ESCs, isolated from ICM of early blastocyst (E3.5, Figure 1.5), and 
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their differentiation towards primed state has been demonstrated in vitro to require membrane tension 

decrease134,135. 

 
Figure 1.5 | An overview of early development of a mouse embryo. Schematic illustrates main 
morphological changes and cell fate specification events that take place from fertilization to gastrulation in the 
mouse embryo. The time of development is indicated at the bottom axes; E, embryonic day. Cell types are color 
coded. AVE, anterior visceral endoderm; DVE, distal visceral endoderm; Epi, epiblast; Exe, extra- embryonic 
ectoderm; ICM, inner cell mass; PrE primitive ectoderm; PS, primitive streak; TE, trophectoderm, VE, visceral 
endoderm; symmetry axis in E6.5: A, anterior; P, posterior. This figure is adapted from Takaoka and Hamada136. 

At later stages of embryonic development where EMT is involved, such as primitive streak formation, 

gastrulation (Figure 1.6) and neural crest cells formation, the cells acquiring mesenchymal phenotype, 

by analogy to EMT in cancer, are expected to soften what would support their migratory capabilities. 

It has been shown in our group that inducing EMT in epiblast stem cells (EpiSCs; isolated from E4.5 

epiblast) makes cells more deformable (Dr. Maria Winzi, unpublished data) and that differentiation of 

ESCs towards mesoderm and ectoderm decreases cell stiffness137. During gastrulation in zebrafish 

embryo, the three generated cell lineages were shown to acquire distinct mechanical phenotypes with 

ectoderm cells exhibiting highest cortical tension, mesoderm intermediate one, and endoderm being 

the softest138. This differences in cortical tension are sufficient to guide cell sorting in multicellular 

assemblies, with stiffest ectoderm cells being sorted towards aggregate center when mixed with 

mesoderm cells138. Apart from enabling cell migration or sorting, mechanical properties of individual 

cells can contribute to stiffness of local microenvironment and through that influence behavior of 
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neighboring cells. A prominent example constitutes migration of neural crest cells in Xenopus laevis 

embryos, which is driven by myosin-dependent stiffening of underlaying mesoderm cells139,140. 

 
Figure 1.6 | Epithelial and mesenchymal cell phenotype in gastrulating mouse embryo. a, Diagram of a 
E7.5 gastrulating mouse embryo. b, Scanning electron micrograph of a transverse section through a E7.5 mouse 
embryo. Epiblast, mesoderm and endoderm are color coded as in a. Note that epiblast has an epithelial structure 
with closely packed cells, while mesoderm corresponds to loosely packed mesenchymal phenotype. Mesoderm 
emerges from epiblast during EMT. This figure was modified from Ferrer-Vaquer et al.141. 

All of the above examples of functional relevance of mechanical properties were focused on whole-cell 

stiffness or deformability of cells. Undoubtedly, this is a simplified view, as in many of the discussed 

processes the mechanical properties of the microenvironment and the interactions between the cells 

play an equally important role37,142,143. Furthermore, often not the static whole-cell mechanical 

properties, but their local anisotropies or actively-driven dynamic evolution over time are the drivers 

of cellular functions30. These aspects are, however, beyond the scope of this thesis. 

The processes discussed in this section illustrate that mechanical properties of cells are of crucial 

importance for cellular functions. To be able to influence mechanics-dependent cell functions, it is 

necessary to understand structural and molecular determinants of single-cell mechanical properties.
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1.3. Internal structures determining mechanical properties of cells 

Most animal cells — including human and mouse cells characterized in this thesis — are enclosed by a 

plasma membrane and contain membrane-bound organelles as well as membrane-less compartments 

and macromolecular assemblies144, an overview of which is presented in Figure 1.7. All of these 

constituents are embedded in a semi-fluid, gel-like cytoplasm, that is characterized by a high degree of 

macromolecular crowding145. Membrane-bound organelles include cell nucleus, Golgi apparatus, 

endoplasmic reticulum, lysosomes and other vesicles, such as peroxisomes or endosomes. The 

functional cell elements not surrounded by membranes include ribosomes, centrosome, nucleolus and 

macromolecular assemblies such as the cytoskeleton filaments. In the following sections, cellular 

constituents that are known to contribute to the mechanical properties of cells are discussed in detail.  

 
Figure 1.7 | Schematic diagram of an animal cell. The diagram presents simplified cell architecture with an 
overview of main cell structural and functional components. In reality, the cell is much more crowded with 
organelles and macromolecules. The inset on the left shows a model of the molecular crowding in the bacterial 
cytoplasm. The cell image is adapted from Wikimedia Commons146, the inset depicting cytoplasmic crowding is 
adapted from McGuffee et al.147. 

1.3.1. Cytoskeleton 

The cytoskeleton, an interconnected network of filamentous proteins, gives structural stability to the 

cell and is one of the major contributors to mechanical properties of the cell31. The three major types 

of cytoskeletal networks present in eucaryotic cells are actin, intermediate filaments, and microtubules. 

Each of these networks has a distinct supramolecular architecture, mechanical characteristics and 

distribution within the cell (Figure 1.8). 
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Figure 1.8 | The three major types of cytoskeletal networks. a, Actin filaments. b, Intermediate filaments. 
c, Microtubules. From top to bottom, the panels depict the typical distribution of respective filamentous networks 
within a cell, the structure of the filaments, the morphology of the respective filaments reconstituted in vitro and 
imaged with transmission electron microscopy, and the visualization of the relative flexibility of the filaments. 
ULF – unit-length filament. The electron micrographs are adapted from Hermann et al.148, scale bars: 100 nm. 

Actin filaments are helices of two intertwined monomer strands, with faster growing plus end, and 

slower growing minus end. Their persistence length 𝐿𝐿𝑝𝑝, a length over which the directionality of a 

filament is preserved, amounts to several micrometers149–152. This means that the actin filaments show 

limited bending over their typical lengths 𝐿𝐿 (𝐿𝐿𝑝𝑝 ≈ 𝐿𝐿) and are considered semi-flexible153. In suspended 

cells, actin filaments organise predominantly into an actin cortex — a thin, crosslinked network 

underpinning the plasma membrane32 (Figure 1.8a). In adherent cells, apart from the cortical mesh, 

actin filaments also form bundled cables spanning longer distances called stress fibers154. Importantly, 

actin filaments do not form an inert network, but are under tension generated by the contractility of 

myosin motors, mainly non-muscle myosin II. Myosin motors slide antiparallel actin filaments relative 

to each other using energy produced by ATP hydrolysis. The contractile capability of the actin network 

is influenced by its architecture, which is governed by the following actin accessory proteins: (i) passive 

actin cross-linkers (e.g., α-actinin and formin), (ii) actin nucleators that initiate polymerization (formins) 

and branching (Arp2/3), and (iii) actin-membrane linkers that connect the actin cortex to the plasma 

membrane (ERM (ezrin, moesin and radixin) or myosin I protein families)155,156 (Figure 1.9). On the 

regulatory level, actomyosin contractility is primarily governed by the signaling cascades mediated by a 

Rho GTPase RhoA and its downstream effector Rho-protein kinase ROCK33 (Figure 1.10). Actin 

cytoskeleton modulates cell shape and participates in many active cellular processes in which generation 

of force is required, such as cell migration or cytokinesis. 
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Figure 1.9 | Actin cortex underlies the plasma membrane and determines the mechanical properties of 
the cell surface. a, The actin cortex directly underlies the plasma membrane and is under tension, T, due to 
contractility generated by myosin motors. Zoom-in: the actin filaments in the cortex are cross-linked by myosin 
and passive actin cross-linkers, the cortex is anchored to the plasma membrane via actin-membrane linkers such 
as ezrin, radixin and moesin (ERM). b, Scanning electron micrograph showing the actin cortex meshwork of a 
membrane-extracted interphase HeLa cell. Scale bars: 10 μm in the overview image, 100 nm in the magnified 
image. The electron micrograph is adapted from Chugh et al.157. 

 

 
Figure 1.10 | The contractility of the actin cytoskeleton is regulated by RhoA signalling pathway. RhoA 
is a small GTPase that is active when associated with GTP. Its cycling between the active and inactive state is 
facilitated by the regulatory proteins: guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins 
(GAPs). Through its effector protein ROCK, RhoA increases the phosphorylation of myosin light chain (MLC) 
in dual way: by directly phosphorylating MLC, in parallel with MLC kinases (MLCK), and by inhibiting MLC 
phosphatases (MLCP). Increased MLC phosphorylation results in increases actin contractility. ROCK additionally 
contributes to stabilization of actin filaments by activating LIM domain-containing protein kinase (LIMK) that 
inhibits cofilin dephosphorylation. The scheme is based on the information in references158,159. 

 

 



 Internal structures determining mechanical properties of cells 

 

 17 

Intermediate filaments are the most heterogenous family of the cytoskeletal filaments, that includes 

members such as vimentin, keratin, or desmin filaments148. The basic structural units of the 

intermediate filaments are elongated dimers that combine in pairs to form tetramer rods. Eight 

tetramers associate radially into unit-length filaments before assembling longitudinally into 10 nm wide 

apolar filaments (Figure 1.8b). With a persistence length on the order of 1 μm (𝐿𝐿𝑝𝑝 ≪ 𝐿𝐿), intermediate 

filaments are the most flexible cytoskeletal filaments160,161. Typically, they form a dense meshwork 

located deeper inside the cytoplasm than the actin cortex. This meshwork surrounds the cell nucleus 

and spreads towards the cell periphery148. It gives mechanical stability to the cells and has been shown 

to protect the genetic material contained within the nucleus from damage during passage through 

narrow constrictions162. Apart from the cytoplasmic intermediate filaments, a special class of 

intermediate filaments called lamins, comprised of A-type and B-type lamins, is involved in the 

formation of the nuclear lamina that underlays the nuclear envelope163. The nuclear lamina is connected 

to the cytoskeleton via the linker of nucleoskeleton and cytoskeleton (LINC) complex (Figure 1.11). 

 
Figure 1.11 | Nucleus is interconnected with the cytoskeletal networks. The nucleoskeleton is formed from 
lamin fibers that underline the inner membrane of the nuclear envelope. The LINC complex connects 
nucleoskeleton with the cytoskeleton and is comprised of SUN proteins that span the inner nuclear membrane 
(INM) and nesprins that span the outer nuclear membrane (ONM). SUN proteins bind to the nuclear lamina and 
chromatin on the nucleoplasm side, and nesprins bind to all three cytoskeletal networks directly (actin) or via 
adaptor proteins such as dyneins, kinesins (microtubules) and plectins (intermediate filaments). Nesprins have a 
C-terminal KASH domain that faces the perinuclear space and interacts with SUN domain of the SUN proteins. 
Nuclear pore complexes (NPCs) span the nuclear envelope and provide for selective transport in and outside of 
the nucleus. The schematics is based on the information from refs164–166. 

The third type of cytoskeletal filaments, microtubules, are hollow cylinders with 25 nm outer diameter 

(Figure 1.8c). They are formed by the polymerization of α/β-tubulin heterodimers that align 

horizontally to form protofilaments, 13 of which come together laterally to form a hollow tube. Similar 

to actin filaments, microtubules have plus and minus ends, i.e., they are polar, what is important to 

their function as molecular tracks for the transportation of cargo within cells. Microtubules undergo 

alternating phases of rapid polymerization and disassembly, referred to as dynamic instability, that 

allows the filaments to explore space and execute cellular functions167,168. Their stability and 
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functionality can be modified by posttranslational modifications and by microtubule-associated 

proteins, that include motor proteins (kinesins and dyneins), enzymes that depolymerize (e.g., MCAK) 

or sever the filaments (spastin, katanin), filament nucleators (e.g., XMAP215), end-binding proteins 

(e.g., EB1) and structural MAPs such as tau or MAP2168,169. The persistence length of microtubules is 

the highest from all cytoskeletal components and reaches several millimeters (𝐿𝐿𝑝𝑝 ≫ 𝐿𝐿)149,152 — they 

behave like straight, rigid rods. Apart from the function as filamentous tracks for molecular motors, 

microtubules assemble the mitotic spindle to execute segregation of genetic material during cell 

division. In cells, microtubules grow out of the microtubule organizing centers (MTOCs), such as the 

centrosome, located in the proximity of the nucleus, and spread radially towards the cell edge168. 

Microtubules withstand compressive forces generated by actomyosin contractility and the 

environment, and show characteristic buckling under load170. 

 
Figure 1.12 | Septin cytoskeleton assembly and localization within cells. a, Septin subunits from various 
septin groups (indicated by colors) come together to form heterooligomeric complexes. Such complexes join 
end-to-end to form non-polar filaments. Septin filaments associate laterally to form bundles and higher-order 
structures such as rings. Modified from Mostowy et al.171. b, Two typical localizations of septins within cells. 
During cell division septins form rings in the cleavage furrow to facilitate cytokinesis. In non-dividing cells, septin 
assembles under the plasma membrane and acts as a scaffold that restrains diffusion of receptors and transporters, 
and takes part in membrane retraction after bleb formation. 

Beyond the three canonical networks discussed above, septins are increasingly recognized as the fourth 

cytoskeletal component171. Septins form rod-like heterooligomeric complexes (typically hexa- or 

octameric), that can come together to form filaments and higher-order structures such as rings and 

meshworks171,172 (Figure 1.12a). During cell division, septin rings facilitate cleavage furrow 

formation173. In non-dividing cells septins form filamentous network at the cell cortex. This network 

is involved in functions such as bleb retraction and lateral compartmentalization of plasma 

membrane171,174,175 (Figure 1.12b). Septins are known to interact with membranes and other 

cytoskeletal networks172, and have an implicated role in maintaining cell shape and cortical rigidity176. 

Among all cytoskeletal networks, the actin network, and its contractility regulated via Rho signaling, is 

recognized as the most prominent contributor to the global mechanical phenotype33. Destabilization 



 Internal structures determining mechanical properties of cells 

 

 19 

of the actin cytoskeleton with chemical agents, such as cytochalasins or latrunculins, drastically reduces 

cell stiffness, both in adherent and suspended cells17,177–181. Similarly, the inhibition of actomyosin 

contractility with myosin inhibitors, such as Blebbistatin, and ROCK inhibitors, such as Y27632, results 

in decrease of cell stiffness and surface tension182–184. Newly developed optogenetic tools for activation 

of RhoA can be leveraged to locally control actin contractility185. So far, these tools have been exploited 

to study the influence of contractility on process such as cell migration186,187, traction force 

generation186,188, cleavage furrow formation189 and control of morphogenetic processes190,191. Their 

implementation for the study of mechanical properties of cells remains to be explored. Intermediate 

filaments, in particular vimentin and keratins, have also been demonstrated to contribute to mechanical 

responses of cells, especially in measurements at high strains162,192–195. Actin and microtubules networks 

reconstituted in vitro break under 20% and 50% strains, respectively. On the contrary, intermediate 

filament networks withstand very high strains and show strain-stiffening196,197. These properties support 

the notion that intermediate filaments have a load-bearing function at high cell deformation. Although 

there is some evidence of the contribution of microtubules to cell stiffness at high strains198, their role 

has been difficult to address directly, since drug-induced microtubule disassembly evokes 

reinforcement of actin cytoskeleton and cell contractility199. Depletion of septins has been shown to 

reduce cell stiffness in cultured cells200, more extensive insights on their role in cell mechanics are yet 

to be established. There is a growing evidence suggesting that the cytoskeletal networks interact more 

universally with one another via both direct physical links, as well as at the regulatory level172,201,202, thus, 

more holistic approach in studies of the impact of cytoskeleton on cell mechanics is desirable. 

1.3.2. Plasma membrane structures 

When considering the deformation of the cell surface it is important to discuss not only the 

contribution of the cytoskeleton, but also the contribution of the plasma membrane. The plasma 

membrane is an asymmetric lipid bilayer comprising inner and outer leaflets, each composed of a fluid 

mosaic of lipids (phospholipids, glycolipids and sterols) and proteins203. Reconstituted lipid bilayers are 

easy to bend (their bending modulus is on the order of 10−19 N m−1) but very difficult to stretch (their 

area expansion modulus ranges from 0.1 to 1 N m−1), and typically rupture at 2–4% lateral 

extension204,205. The plasma membrane is, however, not a flat lipid bilayer, but an extensively wrinkled 

surface with actively maintained topological features such as membrane folds, caveolae, clathrin-coated 

pits, blebs, microvilli and membrane ruffles206,207 (Figure 1.13). The membrane excess gathered in these 

superstructures can buffer increase in the membrane tension and account for up to five-fold volumetric 

expansion of cells (two-fold surface area expansion), with further membrane reservoirs up to a total of 

>10-fold volume increase available for recruitment from the intracellular membranes via exocytosis208. 

In particular, caveolae, characteristic cup-shaped invaginations formed by membrane proteins caveolins 

and cytoplasmatic cavins, have been shown to react robustly to membrane tension increase and act as 

a first responder when cells are subjected to stress209. Noteworthy, the functions of caveolae, and 
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caveolins in particular, are multifaceted as apart from structuring the membrane, they also engage in 

signaling functions and cross-talk with cytoskeletal networks210,211.  

The effective tension of the plasma membrane in unstressed cells ranges from 0.03 to 0.3 mN m−1, and 

is dictated by an interplay between in-plane tension in the lipid bilayer and the contributions from the 

connections between the membrane and the underlaying cytoskeleton, and the intracellular pressure206. 

Plasma membrane tension is important for regulating process such as vesicular trafficking and signaling 

connected to it206. However, with respect to the global mechanical properties of the cell surface, plasma 

membrane tension is considered to be dominated by the cortical tension183,212. 

 
Figure 1.13 | Cells maintain membrane reservoirs in topological superstructures. a, Schematic overview 
of membrane superstructures maintained at the cell surface. Schematics is based on refs206,213. b, Scanning 
electron micrograph showing the cytoplasmic surface of the plasma membrane with underlaying actin cortex 
from fetal rat skin keratinocytes. Apart from actin meshwork, there is a clearly discernable caveolar bud (orange 
arrow) and a clathrin-coated pit (purple arrow). Scale bar: 100 nm. Adapted from Morone et al.214. c, Scanning 
electron micrograph of a macrophage showing numerous membrane ruffles on its surface. Scale bar: 5 μm. 
Adapted from Escolano et al.215. 

1.3.3. Contribution of the nucleus 

Apart from the structures located close to the cell surface, the organelles laying deeper inside the 

cytoplasm, in particular the cell nucleus, can contribute to the measured mechanical responses. The 

relative stiffness of the nucleus with respect to the stiffness of the whole cell is controversial. Based on 

the early reports, the nucleus is considered to be stiffer than the whole cell216–218. However, the 
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properties of the nucleus are typically either inferred from the behavior of the nucleus within the 

cell216,217 or assessed in the isolated nuclei217,218. These conditions are non-ideal, as when embedded in 

the cell, the nucleus is surrounded and supported by the cytoskeleton (see Figure 1.8 and Figure 1.11), 

and in the case of chemical or mechanical extraction, the properties of the nucleus can be compromised. 

Several recent reports challenge the notion of the nucleus being stiffer than the whole cell219–222. Firstly, 

AFM indentation measurements conducted on the nucleus within cells, but exposed apically, yielded 

Young’s modulus values lower than the ones obtained for whole cells219. Secondly, theoretical 

modelling of the nuclear contributions in the micropipette aspiration220 and AFM indentation 

experiemnts221 points towards low nuclear stiffness. Finally, probing of enucleated cells with AFM 

showed that removing the nucleus did not lower the cell stiffness222. Nonetheless, there is clear evidence 

suggesting that modification of the mechanical properties of the nucleus — either by manipulation of 

the nuclear lamina223–226 or by changing the compaction of the chromatin227 — can lead to changes in 

the mechanical properties of the whole cell. This indicates that the nucleus is an important structural 

element within the cell that contributes to cell mechanics either directly or by influencing other cellular 

components. 

1.3.4. Macromolecular crowding 

Finally, the properties of the cytoplasm itself can have an impact on the overall cell stiffness. Cytoplasm 

is a crowded environment filled to near capacity with macromolecules145. The level of molecular 

crowding in the cell can be increased either by water efflux228–232 or by overexpression of proteins that 

account for big fraction of the cellular volume such as ribosmomes233. The increase in the volume 

fraction occupied by macromolecules leads to a steep increase in the stiffness of the cytoplasm and 

concomitant decrease of diffusivity230,233, analogous to the glass transition observed in colloidal 

mixtures230. This increase in cytoplasmic stiffness leads, in turn, to decrease in whole-cell deformability 

and affects most of the global mechanical measurements of the cell228–232.
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1.4. Cell as a viscoelastic material  

To be able to compare mechanical properties of different cells, it is necessary to parametrize them. 

Most of the biological materials, including cells, are viscoelastic, i.e., they exhibit both fluid-like time-

dependent viscous responses and solid-like elastic ones. Therefore, a combination of concepts from 

the theory of elasticity and fluid mechanics — integrated in a disciple called rheology — is necessary 

to describe mechanical responses of cells234. In a typical rheological experiment, a relationship between 

strain 𝜀𝜀 (relative displacement of the material) and stress 𝜎𝜎 (force per unit area) is established and used 

to deduce the mechanical properties of the material. In practice, either constant stress is applied to the 

material and the strain is monitored over time (creep test), or constant strain is applied and the ensuing 

stress is recorded (stress-relaxation test)234,235. In the examples below, I will focus on the former type 

of testing. 

1.4.1. Elastic solid and viscous fluid 

Before discussing the behavior of cell-like viscoelastic materials, it is useful to introduce the 

characteristics of purely elastic solids and purely viscous fluids. A linear elastic solid exposed to uniaxial 

stretch behaves like a Hookean spring — the induced strain is linearly dependent on the applied stress 

with a proportionality constant called Young’s modulus 𝐸𝐸236: 

 𝜎𝜎 = 𝐸𝐸𝜀𝜀. 1.1 

Young’s modulus defines how much stress is necessary to deform an object to a certain degree and is 

a measure of material’s resistance to deformation, i.e., its stiffness — the higher the Young’s modulus, 

the stiffer the material. An elastic solid, represented in one-dimensional rheological models as a spring, 

responds instantaneously to imposed loads and recovers to its initial shape immediately after the load 

is released (Figure 1.14a–b). On the contrary, the response of a viscous fluid is not instantaneous, but 

evolves over time with a rate determined by the fluid viscosity 𝜂𝜂234: 

 𝜎𝜎 = 𝜂𝜂 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. 1.2 

The fluids that behave according to the above equation, i.e., for which the relation between stress and 

strain rate 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 is linear, are called Newtonian fluids. The mechanical element used to represent a viscous 

fluid is called a dashpot. Dashpots not only show time-dependent evolution of strain, but also, contrary 

to elastic solids, do not restore their initial shape after removal of applied loads (Figure 1.14c). 
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Figure 1.14 | Response of purely elastic and purely viscous mechanical elements to stress. a, Time course 
of the step stress of magnitude 𝜎𝜎0 applied to the mechanical elements between time 𝑡𝑡0 and 𝑡𝑡1. b, Strain response 
of a purely elastic spring to the step stress shown in a. c, Strain response of a purely viscous dashpot to the step 
stress shown in a. In b and c, the equation of strain during stress application (creep response, highlighted in gray) 
is given above the graphs. 

1.4.2. Spring-dashpot models of viscoelastic materials 

The mechanical elements representing elastic (springs) and viscous (dashpots) components can be 

combined into circuits to model viscoelastic materials235. By analogy to electronic circuits, the 

mechanical elements can be connected either in series or in parallel237. In the case of connection in 

series, all elements experience the same amount of stress, and the total amount of strain is equal to the 

sum of strains of individual element: 

 
𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜎𝜎1 = ⋯ = 𝜎𝜎𝑛𝑛 

𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜀𝜀1 + ⋯+ 𝜀𝜀𝑛𝑛 
1.3 

For the elements connected in parallel, the total stress is equal to the sum of stresses of individual 

elements, and every element experience the same strain: 

 
𝜎𝜎𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝 = 𝜎𝜎1 + ⋯+ 𝜎𝜎𝑛𝑛 

𝜀𝜀𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝 = 𝜀𝜀1 = ⋯ = 𝜀𝜀𝑛𝑛 
1.4 

These rules, together with Equations 1.1 and 1.2, can be used to derive the responses of composite 

mechanical circuits. The simplest models of viscoelastic materials include the Maxwell model 

(Figure 1.15a), in which one dashpot and one spring are connected in series, and the Kelvin-Voigt 

model, in which one dashpot and one spring are connected in parallel (Figure 1.15b). Three-element 

models, such as the standard linear solid (SLS, also called Zener model; Figure 1.15c) and the standard 

linear fluid (SLF, also called Jeffreys model; Figure 1.15d), exhibit more complex mechanical 

responses, closer to the ones observed in real materials. SLS consist of a Maxwell model connected in 

parallel with an additional spring. It is considered to represent a solid, since it shows an instantaneous 

elastic-like component in its response, and recovers fully to its initial shape upon unloading 

(Figure 1.15c). SLF, in turn, consists of a Maxwell model connected in parallel with an additional 
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dashpot. SLF is considered to model a viscoelastic fluid, because rather than reaching an equilibrium 

value it continuously deforms under constant stress. Additionally, it does not show full shape recovery 

after the load is released (Figure 1.15d).  

 
Figure 1.15 | Two- and three-element spring-dashpot models of viscoelastic materials. a, Maxwell model. 
b, Kelvin-Voigt model. c, Standard linear solid (Zener model). d, Standard linear fluid (Jeffreys model). From left 
to right, each panel includes a spring-dashpot representation, constitutive equation governing stress-strain 
relationship for a given model, and a strain response to a step-stress of magnitude applied between time 𝑡𝑡0 and 
𝑡𝑡1 , as depicted in Figure 1.14a. The corresponding equations of strain during stress application (creep response, 
highlighted in gray) are given above each graph, with 𝜏𝜏 denoting the retardation time. The equations and graphs 
are based on refs238–241.  

In the models presented in Figure 1.15b–d, the buildup of strain is proportional to a negative 

exponential of time divided by the retardation time 𝜏𝜏: 𝜀𝜀(𝑡𝑡) ∝ 𝑒𝑒
−𝑡𝑡
𝜏𝜏 . The retardation time is a function of 

viscosities and Young’s moduli of the constituent mechanical elements and is a useful indicator of the 

timescale in which the material responds. Adding further elements to the spring-dashpot models can 

introduce multiple response timescales to the material. In a generalized Maxwell model (Wiechert 

model), consisting of a spring connected in parallel with a freely chosen number of Maxwell elements, 

an arbitrary number of timescales can be introduced235. The growing number of elements, however, 
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makes it challenging to solve such models analytically and the individual fit parameters become hard to 

interpret. 

1.4.3. Power law and springpot representation 

An alternative approach to the modelling using spring-dashpot approximations, is to capture the 

response of the viscoelastic material with an empirical single-exponent power law242. The creep 

response of a power-law material is characterized by the following proportionality: 

 𝜀𝜀(𝑡𝑡) ∝ (𝑡𝑡)𝛽𝛽𝜎𝜎0, 1.5 

with power exponent 𝛽𝛽 that takes values between zero and one characterizing the fluidity of the 

material. Power law describes a material with a continuous distribution of timescales. For 𝛽𝛽 = 0, the 

material behaves as a solid (Equation 1.5 becomes equivalent to the creep response of a spring, see 

Figure 1.14b), and for 𝛽𝛽 = 1, the material behaves as a fluid (Equation 1.5 becomes equivalent to the 

creep response of a dashpot, see Figure 1.14c)242.  

 
Figure 1.16 | Springpot as a versatile viscoelastic element. a, Symbolic representation and the constitutive 
equation of a springpot. b, Response of springpots with different exponents 𝛽𝛽 to a step stress of magnitude 𝜎𝜎0 
applied between time 𝑡𝑡0 and 𝑡𝑡1. The equation for strain during creep (section highlighted in gray) is given above 
the graph. 𝑐𝑐𝛽𝛽 and 𝛽𝛽 are coefficients obtained by fitting either creep or stress-relaxation response, 𝛤𝛤 denotes the 
gamma function. Panel b is modified from Bonfanti et al.241. 

Recently, a mechanical element that captures the power-law behavior called springpot was 

introduced241,243. Its constitutive equation was derived based on the empirical power-law relaxation 

behavior of materials using fractional calculus243 (Figure 1.16a). Springpots are versatile viscoelastic 

elements that can behave, depending on the value of the exponent 𝛽𝛽, as either springs or dashpots or 

in between (Figure 1.16b). Thus, they are proposed as unified mechanical models of cells and cellular 

components33,244. 

1.4.4. Modes of mechanical loading 

So far, we have only considered the responses to load of idealized one-dimensional materials. In actual 

experiments, apart from the magnitude of applied forces, it is also important to consider the mode of 
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loading and potential load-induced volume change. The two most frequently implemented loading 

modes are uniaxial extension/compression and shearing234,238 (Figure 1.17).  

 
Figure 1.17 | Two common modes of mechanical loading and the related elastic moduli. a, Uniaxial 
extension/compression. b, Shear deformation. In a and b, the directionality of the applied force is indicated with 
the arrow, and the surface to which the force is applied is indicated with opaque blue. 

In a uniaxial extension/compression experiment the force is applied perpendicular to one of the sides 

of a material block, causing elongation along the force application axis and compression along the 

perpendicular axis in extension experiment, the opposite is true in the case of compression 

(Figure 1.17a). Uniaxial extension/compression is a three-dimensional equivalent of loading 

considered for the one-dimensional spring-dashpot models. The elastic modulus that describes the 

proportionality between the normal stress and normal strain is Young’s modulus 𝐸𝐸, analogous to the 

one introduced in Equation 1.1. During shearing deformation, the shear force is applied along one 

surface of a material what causes a change in material’s shape without changing its length. The type of 

elastic modulus that connects the applied shear stress to induced shear strain is called shear modulus 

𝐺𝐺 (Figure 1.17b). The extent to which a material changes its volume during uniaxial extension or 

compression is determined by Poisson’s ratio, 𝜈𝜈, which is a ratio of the transverse strain to the axial 

strain: 

 𝜈𝜈 =
𝜀𝜀𝑑𝑑𝑠𝑠𝑝𝑝𝑛𝑛𝑠𝑠
𝜀𝜀𝑝𝑝𝑎𝑎𝑠𝑠𝑝𝑝𝑝𝑝

. 1.6 

Most biological materials consist to a high degree of nearly incompressible water. Hence, they are 

typically assigned Poisson’s ratio of an incompressible material equal to 0.5234. Knowing the Poisson’s 

ratio of a material, its shear and Young’s moduli can be converted into one another using the following 

relation: 

 𝐺𝐺 =
𝐸𝐸

2(1 + 𝜈𝜈)
. 1.7 
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1.4.5. Oscillatory probing  

Apart from the application of static, step-like stresses or strains, rheological probing of viscoelastic 

materials can be performed in a dynamic fashion using an oscillatory test signal.  

In an oscillatory experiment, typically a sinusoidal shear strain 𝛾𝛾 of a small amplitude 𝛾𝛾0 is applied to 

the material with an angular frequency 𝜔𝜔: 

 𝛾𝛾(𝑡𝑡) = 𝛾𝛾0 sin(𝜔𝜔𝑡𝑡). 1.8 

The resulting stress 𝜎𝜎 oscillates in time with an amplitude 𝜎𝜎0 and is delayed with respect to strain by a 

phase shift 𝜃𝜃 (Figure 1.18): 

 𝜎𝜎(𝑡𝑡) = 𝜎𝜎0sin (𝜔𝜔𝑡𝑡 + 𝜃𝜃). 1.9 

The phase shift is a dimensionless measure of viscoelastic dumping in the material. It takes values from 

0° to 90°, with 0° corresponding to an ideal elastic solid, 90° to a Newtonian liquid, and the values in 

between to a viscoelastic material234. The resulting stress can be expressed as a sum of elastic and 

viscous contributions: 

 𝜎𝜎(𝑡𝑡) = 𝛾𝛾0(𝐺𝐺′sin (𝜔𝜔𝑡𝑡) + 𝐺𝐺′′cos (𝜔𝜔𝑡𝑡)), 1.10 

with 𝐺𝐺′denoting the storage shear modulus that corresponds to the elastic contributions and the 

𝐺𝐺′′denoting the loss shear modulus, corresponding to the viscous contributions to the material 

response. Storage and loss moduli constitute, respectively, the real and imaginary parts of the complex 

shear modulus 𝐺𝐺∗ obtained in the oscillatory rheological measurements: 

 𝐺𝐺∗(𝜔𝜔) = 𝐺𝐺′(𝜔𝜔) + 𝑖𝑖𝐺𝐺′′(𝜔𝜔). 1.11 

The one-dimensional rheological models presented in this chapter can help us get some intuition on 

how viscoelastic materials respond to loads and extract mechanical properties of the cells for 

comparative purposes. However, even when extended to a three-dimension description, they still 

constitute only a crude approximation of the viscoelastic materials encountered in biology. Contrary to 

conventional materials, biological materials are heterogenous, non-isotropic and show a high degree of 

nonlinearity245. Thus, it is important to realize that the mechanical properties obtained from 

experimental testing will depend on the assumed material model and on the testing parameters 

characteristic for a selected measurement method. 
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Figure 1.18 | Dynamic response of a viscoelastic material to a sinusoidal probing signal. a, A sinusoidal 
strain of magnitude 𝛾𝛾0 and angular frequency 𝜔𝜔 is applied over time in an oscillatory fashion (blue curve). The 
resulting stress (green curve) oscillates with a magnitude 𝜎𝜎0 and same frequency, but is shifted with respect to 
strain by a phase shift 𝜃𝜃. b, A response of an elastic solid is characterized by no phase lag. c, Response of a viscous 
fluid is characterized by a phase shift of 90°. 
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1.5. Methods to measure single-cell mechanical properties 

Over the past few decades, a rich variety of methods for probing mechanical properties of single cells 

has been established246. These methods can be categorized based on several criteria, such as whether 

they probe the mechanical properties globally or locally, whether adherent or suspended cells are 

measured, and whether a step or oscillatory test signal is applied to the cells. An overview of most 

widespread techniques is presented in Table 1.1 and Figure 1.19, and a description of their operation 

is presented in the subsections below. 

Table 1.1 | Summary of methods for single-cell mechanical characterization. The applied force and 
throughput estimates are based on the values provided in Hao et al.246, unless indicated otherwise. adh. – adherent, 
susp. – suspended, osc. – oscillatory. 

 scale cell state applied mechanical 
signal 

applied 
force throughput 

 global local adh. susp. step osc. no   
micropipette 

aspiration × × × × ×   pN – μN ≤ 10 cells h−1 

AFM ×§ × × ×§ ×# ×†  pN – μN 
≤ 40 

cells h−1 $ 

optical stretcher ×   × × ×  pN – nN 1 – 100 
cells h−1 

parallel-plate 
rheometry ×  × × × ×  nN – μN ≤ 10 cells h−1 

magnetic 
twisting 

cytometry 
 × ×   ×  pN –  

100 nN 153 
~100 

cells h−1 

particle tracking 
microrhelogy 

 × ×    × none ~30 cells h−1 

optical tweezers ×   × × ×  fN –  
500 pN 153 ≤ 10 cells h−1 

deformability 
cytometry ×   × ×   pN – μN 1 – 1000 

cells s−1 

Brillioun 
microscopy 

 × × ×   × none 
10 – 200 

cells h−1 & 

acoustic 
miscroscopy 

 × × ×   × none ~ 10 cells h−1 

§ wedged cantilever, # indentation, † microrheology, $ based on own experimental experience, & lower bound 
corresponds to conventional implementation, upper bound to a line-scanning variant integrated with microfluidic 
sample delivery (Zhang et al.247) 

1.5.1. Micropipette aspiration 

In one of the earliest attempts, elasticity of cells was measured by sucking a part of a sea urchin egg cell 

into a narrow capillary in a micropipette aspiration assay248,249 (Figure 1.19a), a method that quickly 

gained popularity and was adapted for mechanical characterization of various eucaryotic cell types18. In 

micropipette aspiration experiments, the aspirated cell extension and the pipette geometry can be 

related to the suction pressure using Laplace law to derive cell surface tension. Further mechanical 
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properties such as viscosity and Young’s modulus can be derived from time-resolved micropipette 

aspiration measurements using continuum models for a liquid drop or a solid sphere18. Depending on 

the size of the capillary and whether the whole cell is aspirated into the pipette, either local or global 

cell properties can be assessed.  

 
Figure 1.19 | An overview of selected methods for the measurements of single-cell mechanical 
properties. a, Micropipette aspiration, ∆𝑃𝑃 – applied pressure difference. b, Atomic force microscopy 
measurements can be conducted on adherent cells (left-hand side) using a variety of cantilever tip geometries 
(here pyramidal tip is depicted) or on rounded cells (right-hand side). c, Optical stretcher, Δ𝑥𝑥 – cell extension in 
𝑥𝑥 direction. d, Parallel plate rheometry, 𝐷𝐷(ω) – oscillating displacement. e, Magnetic twisting cytometry, 
𝐻𝐻 – magnetic field. f, Particle-tracking microrheology. g, Deformability cytometry, h, Brillouin microscopy. 

1.5.2. Indentation and parallel plate compression 

Other early approaches to measuring cell mechanics, such as parallel plate compression250–253 and cell 

indentation using a cell poker177,254,255, relied on pushing into the cells rather than pulling on them. The 

parallel plate compression of single cells was first conducted using home-devised setups with a pair of 

glass plates, one fixed to a stiff support and one to a flexible arm that acts as a bending balance250–253. 

Concurrently, similar apparatus called cell poker was developed for the localized indentation 

experiments177,254,255. Rather than using a plate, cell poker utilized a blunt indenter with 2 μm diameter 

fixed to a flexible horizontal beam that was lowered onto a cell with an aid of an electromagnet254 or a 

piezoelectric motor177,255. The depth of the indentation was related to the applied force and used to 

extract viscoelastic properties from the measurements256. Shortly after its introduction, cell poker was 
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succeeded by AFM257,258 for the indentation measurements on cells (Figure 1.19b and Figure 1.20), a 

method that to date is considered a gold standard of the mechanical measurements on cells. 

 
Figure 1.20 | AFM-based indentation experiment. a, A schematics of a spherical indenter of a radius 𝑟𝑟 
attached to the AFM cantilever that is being pushed into the cell surface with a force 𝐹𝐹 to an indentation depth 
𝛿𝛿. The 𝑧𝑧-movement of the cantilever is actuated by a piezoelectric motor. 𝑎𝑎 indicates the radius of the contact 
area between the cantilever tip and the cell. b, A representative force−distance curve acquired during an AFM 
indentation experiment. In magenta the approach phase is presented, with cantilever first being lowered towards 
the cell surface, then coming into contact with it and finally performing the indentation. In green the retraction 
phase of the experiment is presented. 

Similar to the cell poker, AFM uses a horizontal probe — the cantilever — that is equipped with a tip 

pointing towards the sample and is actuated by a piezoelectric motor19. The vertical position of the 

cantilever is tracked based on the extension of the piezoelectric element. The cantilever deflects upon 

contact with the measured object, and the level of this deflection is detected by tracking the position 

of a laser beam reflected from the cantilever surface and directed onto the position-sensitive 

photodiode (Figure 1.19b). The force acting on the sample surface (derived based on the cantilever 

deflection and the cantilever spring constant) is analyzed as a function of the deflection-corrected 

separation between the sample surface and the indenter (Figure 1.20) to derive Young’s modulus of 

the cell using Hertz model259. Further probing modes, such as stress-relaxation260 or oscillatory 

probing25, can be implemented in the AFM measurements to obtain both viscous and elastic 

characteristics of the sample. The tip of the AFM cantilever can be a sharply-pointed pyramid that 

enables measurements with high spatial resolution, or a microsphere glued to a tipless cantilever that 

performs indentation over a bigger area (Figure 1.19b, Figure 1.20a). Alternatively, flat cantilevers 

(such as the wedged cantilever depicted in Figure 1.19b, right panel) can be employed to perform 

parallel plate compression of whole cells261, making it straightforward to probe not only adherent, but 

also suspended cells. Apart from AFM, parallel plate compression is often performed using a 

piezoelectric micromanipulator called parallel plate rheometer4,217,262–264 (Figure 1.19c). Using such a 

micromanipulator, cells can be compressed217,262, extended (when adhered to the plates)262–264, and 

probed using an oscillatory signal4,262,264. 
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1.5.3. Microrheology 

Another class of methods that allow for measuring of the local viscoelastic properties of the cells is 

called microrheology265. Methods from this class rely on following tracer microparticles localized either 

within the cytoplasm or on the cell surface. In the latter case, the particles are typically coated with 

RGD peptides and attached to the cells via focal adhesions. The motion of the tracer particles can be 

passively or actively induced, what defines the two subtypes of passive and active microrheology. In 

passive microrheology, also referred to as particle tracking microrheology, mean square displacement 

of the spontaneous, thermally driven motion of the tracer particles is measured over time and used to 

extract the complex shear modulus of the sample102,266 (Figure 1.19d). Typically, synthetic 

microspheres are injected into the cells for tracing102. An elegant alternative constitute genetically 

encoded multimeric nanoparticles that can be expressed directly within the cells233. In active 

microrheology, the motion of the tracer particles is actuated by external forces generated by 

magnetic22,267–271 , electromagnetic272–274 or acoustic fields275,276, applied in a step-wise or oscillatory 

fashion. Magnetic twisting cytometry (Figure 1.19e), a variant of magnetically-actuated microrheology 

in which the magnetic beads are first magnetized and then translocated and rotated by a magnetic field, 

has become particularly widespread22,270,271. The oscillatory mode of AFM measurements can also be 

classified as an active microrheology method and is often referred to as AFM microrheology4,262,264. 

1.5.4. Optical traps-based methods 

Optical traps, first introduced by Arthur Ashkin277,278, have a long history of application in the biological 

sciences for measuring and applying forces on structures ranging from single molecules to tissues279–

281. The single-beam laser traps, also called optical tweezers, use a highly focused laser beam that 

generates a steep gradient of the electromagnetic fields pushing the trapped objects towards the beam 

center. In the context of cell mechanical measurements, optical tweezers can be used to monitor282 or 

actuate272–274 the displacement of microparticles in microrheological experiments discussed above. 

Additionally, optical tweezers have been adopted to stretch red blood cells by pulling on a bead attached 

to the cell surface283–287. However, due to the comparatively low maximal forces obtained with the 

optical tweezers (see Table 1.1), this method found little application in probing of other, less 

deformable cell types. On the contrary, a dual-beam laser trap called optical stretcher288,289 was 

successfully applied to stretching of cells of various origin2,7,49,51,290,291. Optical stretchers use two 

divergent, counterpropagating laser beams to trap and, at increased laser intensities, deform the cells 

(Figure 1.19f). The deformation takes place due to the outward facing force generated by the transfer 

of light momentum onto the cell surface288. With the efforts to automatize sample delivery by 

integration with microfluidic delivery systems292,293, optical stretcher can reach measurement rates of 

up to 100 cells per hour. Compared to the techniques discussed so far, that typically allow for 

measurements of up to tens of cells per hour (see Table 1.1), this is an impressive improvement. 

However, for obtaining good statistics and through characterization of heterogenous cell populations 
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higher throughputs are desirable. This is particularly important for clinical applications, for example in 

disagnostics13,294.  

1.5.5. Microfluidics-based deformability cytometry approaches 

The bottleneck of the throughput in mechanical characterization of cells was overcome by the 

microfluidics-based deformability cytometry (DC) approaches, offering measurement rates of up to 

thousands cells per second20,294 — an improvement of a factor of 100,000 compared to 1 cell per minute 

in most of the conventional techniques (Figure 1.19g, Table 1.1). Numerous DC approaches, using a 

variety of channel geometries, detection modes and flow regimes, have been developed since the early 

2000s. They can be divided into three major classes: (i) constriction-based deformability cytometry 

(cDC), (ii) shear flow deformability cytometry (sDC) and (iii) extensional flow deformability cytometry 

(xDC). In cDC, cells are deformed in a constriction smaller than cell diameter, i.e., cells come in contact 

with the channel walls during deformation. Cell deformability is typically assessed based on the time 

the cell requires to enter or pass through the constriction, though in some variants the cell deformation 

is evaluated based on the bright-field images of the cells180,295. The translocation of cells through the 

constriction is detected by means of optical imaging3,180,295, electrical resistance measurements296,297, or 

mechanical frequency changes of a suspended microchannel resonator (SMR)9. In sDC and xDC, cells 

are deformed by hydrodynamic flow in a contactless manner, and cell deformation is derived from 

images acquired at high speed. sDC and xDC differ in the channel geometry used, the timescale of 

deforming the cells and the flow regime in which they operate. In sDC, cells are driven through a 

funnel-like constriction into a microfluidic channel where they are deformed by shear forces and 

pressure gradients into a bullet-like shape within few milliseconds21,298. sDC operates at a flow regime 

dominated by viscous forces called Stokes flow. A prominent example of this class is real-time 

deformability cytometry (RT-DC)21 — a method extensively used and further developed in this thesis 

(introduced in detail in Chapter 2). xDC, in turn, operates at an intermediate flow regime called inertial 

flow, in which inertial forces cannot be neglected and can lead to useful effects such as cell focusing299. 

Typical channel geometry for xDC is a cross junction in which cells are deformed by an extensional 

flow within a few microseconds. The prototype for this class of methods was developed in the Di Carlo 

group and was called deformability cytometry (DC)1. Another variant of deformability cytometry that 

is related to xDC is inertial cell stretcher. In inertial stretcher, cells are delivered at high speeds into a 

T-junction and their deformation is induced by collision with the channel wall300,301. Representatives of 

the three different deformability cytometry classes are discussed in more detail in Chapter 3 featuring 

a highly-standardized cross-laboratory study comparing their performance. 

1.5.6. Imaging-based elastography techniques 

Mechanical properties of single cells can also be evaluated in a non-invasive way using imaging-based 

elastography techniques. In particular, Brillouin microscopy is emerging as a promising tool for 
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mapping mechanical properties of living samples302. Classical elastography techniques such as optical 

coherence elastography or magnetic resonance elastography have found implementation for 

viscoelastic characterization of tissues303. These techniques allow for acquisitions of relatively big fields 

of view; however, they do not offer enough spatial resolution to monitor properties of individual cells. 

On the contrary, Brillion microscopy allows for the characterize of local mechanical properties at a 

sub-cellular resolution in the gigahertz frequency range304,305. In Brillouin microscopy, the light 

scattered on the acoustic phonons (intrinsically present in the material due to thermal vibrations) is 

used to deduce viscoelastic properties of the measured sample (Figure 1.19h). The shift in frequency 

of Brillouin-scattered light carries the information about longitudinal modulus of the material, and the 

linewidth of the scattered light contains the information about the material’s viscosity304. Brillouin 

microscopy enables mechanical characterization of single cells not only in separation or in monolayers, 

but also within multicellular structures and living organisms306,307, which is a unique characteristics of 

the method and its particularly interesting application area302. Another, somewhat less widespread 

method for non-invasive mechanical imaging of cells is acoustic microscopy that relies on measuring 

the attenuation of acoustic waves within the cell interior308–310. 

Due to different probing modalities and operation parameters, individual methods for measuring cell 

mechanics deliver results that differ both in magnitude and nature of measured properties. This issue 

was illustrated in a recent study comparing elastic and viscous moduli measured with an array of 

methods (AFM indentation, magnetic twisting cytometry, particle tracking microrheology, parallel-plate 

rheometry, and optical stretching) for the same cell line maintained in standardized conditions311. The 

obtained values showed a spread over two orders of magnitude for elastic modulus and three orders of 

magnitude for viscous modulus. The discrepancies were attributed to the differences in the magnitude 

of applied stress and strain rate, size of the probe, probing length scale, and whether the cells were 

attached or in suspension. It is therefore important to understand the peculiarities and limitations of 

individual methods, and, ideally, apply methods that are relevant to the time and length scales of studied 

processes. For providing a unified understanding of properties measured with different methods, 

further validation and comparison studies are required.
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Aims and scope of this thesis 

Integrating biophysical perspective into the current, biochemically-oriented description of cellular 

behaviors fosters comprehensive understanding of physiological and pathological processes. In 

particular, single-cell mechanical properties, such as whole-cell stiffness or deformability, are a marker 

of cell state transitions with relevance for cell function. To gain a thorough understanding of the role 

of single-cell mechanical phenotype in physiology, several developments are necessary. Firstly, it is 

necessary to establish and validate methods that allow for robust assessment of mechanical properties. 

Secondly, it is important to explore changes in mechanical phenotype of cells during physiologically 

relevant processes. Finally, it is necessary to uncover ways of tuning mechanical properties of cells on 

demand to enable exploring their function. The work performed during this thesis was aimed at 

addressing these demands and was split into four projects with the following specific aims: 

• consolidate real-time deformability cytometry as a robust method for high-throughput single-

cell mechanical phenotyping and support its integration with a sorting modality, 

• cross-validate three classes of microfluidics-based deformability cytometry operating at 

different timescale to enable interpretation of deformability measurements performed across 

platforms, 

• explore the relationship between mechanical phenotype and cell fate during reprogramming of 

fetal neural precursor cells to pluripotency and differentiation of pluripotent stem cells along 

neural lineage, 

• establish a method for identification of novel cell mechanics regulators from transcriptomic 

data associated with mechanical phenotype changes; perform validation of selected target 

genes in perturbation experiments. 
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— Chapter 2 — 
RT-DC as a versatile method for image-based 

cell characterization and sorting 

RT-DC is a microfluidics-based deformability cytometry platform, originally introduced for on-the-fly 

evaluation of mechanical properties of single cells in suspension at high throughput. It relies on high-

speed imaging of cells passing through a narrow constriction in a microfluidic channel. The method 

was developed in the group of Prof. Guck and first published in 201521. Since then, its functionality 

has been expanded by integrating a flow cytometry-like capability of measuring 1D fluorescence signal 

in three spectral channels312, and a sorting capability that allows for separation of cells with selected 

properties downstream of analysis313. The images acquired in RT-DC can be used not only to evaluate 

mechanical properties of cells, but also to extract many other parameters such as cell brightness, 

contour roughness, or texture features, all of which can be exploited for label-free, multidimensional 

identification of cells. Moreover, both the extracted features314 and raw cell images313,315 can be used to 

train artificial intelligence (AI) algorithms to classify different cell types — an aspect that is only 

beginning to be explored and will likely become more central for the method’s use in the future. 

RT-DC was used throughout this thesis as a workhorse for measurements of cell mechanics. I have 

made substantial contributions to developing standard operating procedures and optimizing its use for 

cultured cells. I have also been actively involved in the implementation of the sorting capability to the 

RT-DC setup. The purpose of this chapter is to introduce RT-DC and all its modalities, describe 

experimental procedures connect to its use, and showcase several applications of the method beyond 

the mechanical phenotyping of cells. 

2.1. RT-DC for mechanical characterization of cells 

RT-DC relies on flowing cells through a constriction in a microfluidic channel in which they are 

deformed in a contactless manner by hydrodynamic stresses (Figure 2.1a,b). The deformation of cells 

is evaluated based on bright-field images and used, together with cell area, to extract mechanical 

properties of measured cells (Figure 2.1c,d). 

2.1.1. Operation of the RT-DC setup 

An RT-DC setup is assembled on a standard inverted microscope (such as Axiovert 200M or Axio 

Observer Z1, Zeiss, Germany), and consists of a high-precision syringe pump (two modules neMESyS 

290N, NeMESyS, Cetoni, Germany), a high-speed CMOS camera (MC1365, Mikrotron, Germany), 



Chapter 2  

 

 38 

an LED lamp for stroboscopic illumination that is synchronized with the camera (AcCellerator L1, 

Zellmechanik Dresden, Germany), and a stage with a customized holder on which a microfluidic chip 

is installed during the measurements (Figure 2.1a). The setup operation is controlled by a user interface 

(ShapeIn, Zellmechanik Dresden) on a standard personal computer. 

 
Figure 2.1 | Operation principle of RT-DC for mechanical characterization of cells. a, Schematic 
overview of the RT–DC setup consisting of syringe pumps, LED-based stroboscopic illumination source and a 
CMOS camera, installed on an inverted microscope and controlled by a personal computer (PC). b, 3D 
illustration of the RT-DC chip, close-up depicts the constriction of the channel in which cells are deformed, the 
imaged region of interest is indicated by an orange dashed line. At the bottom, an exemplary cell image is shown 
with fitted contour (red line). c, A representative deformation vs. cell area scatter plot obtained during an RT-DC 
measurement. Each dot represents a single cell, the color scale indicates event density. The measurement was 
performed using ECC4 carcinoma cell line. d, Isoelasticity lines derived from numerical simulations aid in 
identifying cells of corresponding mechanical properties in a deformation vs. area plot. In c and d, plots 
correspond to a measurement using 30 µm channel and a total flow rate of 0.16 µl s−1. 

The microfluidic chip accommodates sample inlet, through which a cell suspension is introduced, and 

sheath fluid inlet, for the introduction of the fluid used for the focusing of cells (Figure 2.2). The 

measurement buffer, used for both cell resuspension and as a sheath fluid, has an increased viscosity 

to provide for sizeable cell deformation and prevent cell sedimentation during measurements 

(see Section 2.6.2 for more details). 
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Figure 2.2 | Layout of the RT-DC chip. Sheath fluid enters the chip via the sheath inlet on the left, and splits 
into two branches before combing with the sample flow after the reservoir region. Both sheath and sample fluids 
pass through micro-pillar filter structures right after entering the chip. In the channel constriction of the 
measurement region, hydrodynamic stresses deform the cells. After the measurement, the fluid leaves the chip 
through the outlet on the right. This figure is modified from Urbanska, Rosendahl, Kräter et al.316. 

Sample and sheath flows are driven into the microfluidic chip by a computer-controlled syringe pump 

at a 1:3 ratio that has proven to provide the best focusing of cells. Focused cells enter the channel 

constriction where they are deformed by shear and normal stresses298,317. The shear stresses are caused 

by the parabolic flow velocity distribution, and the normal stresses are caused by the pressure gradient. 

Together, they lead to cell deformation into a characteristic bullet-like shape as depicted in Figure 2.1b.  

During the measurements, cell images are acquired using a high-speed CMOS camera and a 

synchronized stroboscopic LED illumination. Stroboscopic illumination is necessary to prevent motion 

blurring. For example, at a flow rate of 0.16 µl s−1 in a 30 µm channel, cells reach a velocity of about 

0.18 m s−1. Thus, to keep motion blurring below the resolution of the microscope (ca. 0.5 μm), the 

exposure time needs to be adjusted to values as low as 2 μs. A high-power LED (CBT-90, Luminus 

Devices, CA, USA) with a custom driver circuit provides the necessary illumination intensities and an 

adjustable pulse length between 1 µs and 10 µs. The imagining is typically performed with a 40 × 

objective (EC-Plan-Neofluar, 40 ×/0.75, Zeiss). The resulting images are directly processed by a 

personal computer (PC) with a custom-written C++ software, which is now available commercially 

from Zellmechanik Dresden under the name ShapeIn. The image processing consists of the following 

steps: (i) background subtraction, (ii) threshold filtering, (iii) contour finding, and (iv) contour 

processing for the estimation of cell size, position, deformation, and brightness, among others. For 

mechanical characterization, the parameter deformation defined as 1 – circularity is of primary interest: 

 deformation = 1 − circularity = 1 −
2√𝜋𝜋𝜋𝜋
𝑃𝑃

, 2.1 

where 𝜋𝜋 is the cross-section area of the contour, and 𝑃𝑃 the perimeter of the contour. 

In a typical RT-DC measurement, thousands of cells are measured and displayed on an area-

deformation scatter plot for inspection (Figure 2.1c). Since larger cells experience higher stresses in 

the constriction, the deformation is not a direct measure of cell mechanical properties — a similarly 

stiff, but larger cell necessarily deforms more. An analytical model298 as well as numerical simulations317 
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have been developed to provide reference isoelasticity lines for finding cells of different sizes with 

corresponding stiffness (Figure 2.1d) and to assign Young’s modulus for each cell as explained in detail 

in the next section. 

2.1.2. Extracting Young’s modulus from RT-DC data 

To be able to draw conclusion about mechanical properties of cells with different sizes, it is necessary 

to estimate the Young’s modulus of the cells. This can be done using either analytical298 or numerical 

approaches317, and requires making assumptions about the nature of the material that the cell is  made 

of. While some attempts have been made to use more complex models of cells, such as neo-Hookean 

hyperelastic bulk or elastic shell models298,317, the simple model of cell as an isotropic elastic sphere 

with linear properties is the one that is, so far, broadly applied. Regardless of its simplicity, it provides 

a convenient approximation of cell mechanical properties for comparative purposes. 

In practice, a lookup table, graphically presented in Figure 2.3a, is used to assign Young’s modulus to 

the area and deformation values obtained for each cell in the RT-DC measurement. Importantly, the 

currently available lookup table was corrected for the shear-thinning of the measurement buffer (MB) 

that contains methylcellulose (MC) and image pixilation effects discussed in more detail elsewhere318.  

 
Figure 2.3 | Determination of Young’s modulus from RT-DC data. a, A lookup table based on the 
simulation is used to assign Young’s modulus values for given area and deformation. The colored region indicates 
the area covered by the simulations. The color map indicates the Young’s modulus values. b, An overlay of area-
deformation scatter plots for three separately measured cell lines of different mechanical properties (magenta – 
A549, stiff; bright green – EBC1, medium; dark green – Wa-hT, soft). c, Box plot of apparent Young’s modulus, 
𝐸𝐸, estimated based on deformation and area in (b). The cell population with same area but higher deformation 
has lower 𝐸𝐸 (bright green compared to magenta). For cells with similar deformation, the one with smaller area 
has lower 𝐸𝐸 (dark green compared to bright green). The box plots in d spread from 25th to 75th percentiles with 
a line at the median, whiskers span 1.5 × interquartile range (IQR). 

Young’s modulus extraction for three cell lines with different mechanical properties: Wa-hT, EBC-1, 

and A549 is illustrated in Figure 2.3b−c. The population of EBC-1 cells has higher deformation values 

as compared to the population of A549 cells, and both populations are similar in area (Figure 2.3b). 

Consequently, A549 cells have higher Young’s modulus than EBC-1 (Figure 2.3c). On the other hand, 
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Wa-hT and EBC-1 cell populations have similar deformation values but different areas (Figure 2.3b), 

and thus the two cell lines differ in their mechanical properties (Figure 2.3c).  

It is important to bear in mind that the computations on which the lookup table is based are performed 

for initially spherical cells and the Young’s modulus extraction should not be performed for cells that 

show non-spherical, pre-deformed shapes beforehand. This can be checked by assessing cell 

deformation in the reservoir region of the channel, in which cells should show only negligible 

deformation values. Additionally, since the lookup table covers limited area in the deformation-area 

space, evaluating samples that lie close to the boundaries of this area may result in discarding significant 

percentage of data and result in introducing artifacts. 

2.2. Additional functionalities implemented to the RT-DC setup 

2.2.1. 1D fluorescence readout in three spectral channels 

RT-DC was extended to include flow cytometry-like fluorescence readout in the RT-FDC variant 

developed by Rosendahl et al.312. The RT-FDC setup, apart from the LED illumination source and a 

camera, also features an array of lasers and detectors for the characterization of cell fluorescence 

(Figure 2.4).  

 
Figure 2.4 | RT-DC setup with fluorescence measurement functionality. a, Schematic overview of a real 
time fluorescence and deformability cytometry (RT-FDC) setup. The setup includes LED-based illumination 
source and camera necessary for bright-filed imaging of cells, as well as three laser sources (488 nm, 561 nm, and 
488 nm) and an array of detectors with dichroic beam splitters and filters in three spectral ranges (525/50, 593/46, 
and 700/75) that enable 1D detection of fluorescence signal in three spectral channels. b, A light sheet is created 
from the laser light perpendicular to the channel axis. c, When a cell passes the light sheet, a temporal peak of 
fluorescence signal from each channel is recorded, and assigned to the cell image. 

In particular, three solid-state lasers with wavelengths of 488 nm, 561 nm and 640 nm are implemented 

onto the setup (OBIS 488-nm LS 60 mW; OBIS 561-nm LS 50 mW; OBIS 640-nm LX 40 mW; 

Coherent GmbH, Germany). The laser beams are combined and, thanks to a cylindrical lens 
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(LJ1695RM-A; Thorlabs), form a light sheet that illuminates cells passing through the microfluidic 

channel constriction (Figure 2.4b). Using dichroic beam splitters and filters with distinct spectral 

specifications, the light emitted by the sample is split into three fluorescence channels: FL1 (FF555-

Di03, FF03-525/50; Semrock), FL2 (zt 633 RDC, Chroma Technology Corp; FF01-593/46, Semrock), 

and FL3 (700/75 ET; Chroma Technology Corp) and detected using avalanche photodiodes 

(MiniSM10035; SensL Corporate). As a result, 1D fluorescent signals are acquired over time in three 

spectral channels in parallel with cell images (Figure 2.4c). Several parameters of the fluorescence 

peaks can be extracted, such as maximum height of the peak (fl-max) and area under the peak that carry 

information about fluorescence intensity in the cells, or peak width, that carries information about the 

size of the fluorescence signal an can be used to deduce localization of the signal within the cell, for 

example the nuclear versus cytoplasmic localization312.  

 
Figure 2.5 | Examples of fluorescence-based gating of RT-FDC data. a, Fluorescent gating based on one 
spectral channel (FL2) of TGBC18TKB cells expressing tomato marker together with caveolin-1. b, Fluorescent 
gating based on two spectral channels of iPSCs at 23rd day of reprogramming stained with antibodies against 
SSEA1 and CD24. The fluorescence gating (leftmost column) can be used to visualize cells of interest in the 
space of parameters extracted from standard RT-DC measurement such as area and deformation (middle column) 
or to compare values of a property of interest, for example Young’s modulus 𝐸𝐸, for cells from different 
populations (rightmost column). 

The access to the fluorescence measurements expands the repertoire of RT-DC applications and 

enables selective analysis of cells of interest in mixed populations. For example, in the case of transient 

transfections with a transgene carrying a fluorescent marker, the transfected cells can be identified on-

the-fly and gated for to extract their characteristics and compare them with non-transfected controls. 

In Figure 2.5a, an example is shown, in which TGBC18TKB adenocarcinoma cells were transiently 

transfected with plasmid expressing caveolin-1 with tomato under independent ribosomal entry site 
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(IRES) as a fluorescence marker (see Chapter 5 for more details). The fluorescence signal can be used 

to identify cells expressing the tomato marker, and by extension caveolin-1. Furthermore, staining of 

cells with antibodies targeting specific surface markers can be used for identification of cells of interest. 

In Figure 2.5b an example is shown, in which induced pluripotent stem cells (iPSCs) are stained with 

two surface markers: SSEA1 and CD24, labelled with APC (SSEA1) and FITC (CD24) fluorochromes 

that can be detected in FL3 and FL1, respectively. These markers allow for distinguishing between 

bone-fide iPSCs (SSEA1+/−, CD24−), transgene-dependent iPSCs (SSEA1+, CD24+), and non-

pluripotent cells (SSEA1−, CD24+) in mixed populations at the intermediate stages of reprogramming 

towards pluripotency (see Chapter 4 for mor details). The gating of cells using one- (as in Figure 2.5a) 

and two-dimensional (as in Figure 2.5b) fluorescence gates is a procedure widely used in the flow 

cytometry community319, and many surface markers are established for identification of cell types in 

populations of various origins, for example for identification of leukocyte populations in blood 

samples320.  

2.2.2. SSAW-based active cell sorting 

To harness the real-time analysis potential of RT-FDC for active sorting based on characterized cell 

properties, a SSAW-based deflection mechanism was introduced to the RT-FDC setup (Figure 2.6a). 

Downstream of the analysis region, SSAW are generated by two opposing interdigital transducers 

(IDTs) flanking the channel and propagate on the lithium niobate substrate (Figure 2.6a–b). This 

allows for pushing the cells of interest into the target outlet. 

The chromium-gold IDTs are actuated at their resonance frequency, 𝑓𝑓, given by: 

 𝑓𝑓 =
𝜐𝜐
𝜆𝜆

, 2.2 

where 𝜐𝜐 is the velocity of sound in the lithium niobate substrate (1890 m s-1) and 𝜆𝜆 is the acoustic 

wavelength, defined by the distance between adjacent IDT fingers. The distance between the two IDTs 

is a multiple of 𝜆𝜆, which results in constructive interference of counter-propagating waves and 

emergence of standing waves. The SSAW are tuned to have one pressure node, positioned in front of 

the target channel, towards which cells are deflected when SSAW are triggered. SSAW generate an 

acoustic radiation force, 𝐹𝐹 
𝑠𝑠, that pushes cells towards the pressure node and directed them into the 

target outlet. 𝐹𝐹𝑟𝑟 is given by the following formula321: 

 𝐹𝐹𝑠𝑠 = −�
𝜋𝜋 𝑝𝑝02 𝑉𝑉𝑝𝑝 𝛽𝛽𝑓𝑓

2𝜆𝜆
�𝜙𝜙(𝛽𝛽,𝜌𝜌) sin(2𝑘𝑘𝑥𝑥), 2.3 

where 𝑝𝑝0 is the acoustic pressure, 𝜆𝜆 is the acoustic wavelength, 𝑉𝑉𝑝𝑝 is the volume of the particle, 𝛽𝛽 is 

compressibility, 𝜌𝜌 is density, and 𝜙𝜙 is the acoustic contrast factor that defines if the particle will translate 

to the pressure node (𝜙𝜙 >0) or the pressure antinode (𝜙𝜙 <0) defined as: 
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 𝜙𝜙(𝛽𝛽,𝜌𝜌) =
5𝜌𝜌𝑝𝑝 − 2𝜌𝜌𝑓𝑓
2𝜌𝜌𝑝𝑝 + 𝜌𝜌𝑓𝑓

−
𝛽𝛽𝑝𝑝
𝛽𝛽𝑓𝑓

. 

 

2.4 

The subscripts 𝑝𝑝 and 𝑓𝑓 stand for particle and fluid, respectively. 

 
Figure 2.6 | Operation principle of sorting real-time fluorescence and deformability cytometry 
(soRT-FDC). a, A schematic representation of the sorting principle. Downstream of the analysis ROI (marked 
with red box), a sorting region is introduced, in which cells are pushed towards the target outlet by SSAW 
generated by the IDTs placed at both sides of the channel. A trigger for SSAW is induced only for cells matching 
the sorting criteria. b, A cross-section view of the sorting region of the microfluidic channel. SSAW are generated 
by the IDTs and propagate on the lithium niobate substrate, the chip is designed so that only one pressure node 
is present within the channel width. Cells are pushed towards the pressure node placed in front of the target 
outlet. This figure is modified from Nawaz, Urbanska, Herbig et al.313. 

To accommodate the sorting functionality, the design of the standard RT-DC chip (Figure 2.2) was 

updated to the one shown in Figure 2.7a. The length of the narrow channel in which cells are 

deformed was extended from 300 to 880 μm. Afterwards, the 20 or 30 µm channel broadens to 50 µm 

to allow space for SSAW-induced cell deflection, before it bifurcates into default and target outlets. 

The bifurcation point is placed 5 µm off-center, so that all cells are collected in the default outlet when 

SSAW is switched off. Additionally, a syringe operated in withdrawal mode is mounted to the default 

outlet to ensure no accidental slipping of cells to the target. Typically, sorting experiments are 

conducted using flow rates of 0.01, 0.03 and ca. –0.027 µl s−1 for the sample, sheath, and default outlet 

modules, respectively (20 µm chip), or 0.02, 0.06, and ca. –0.05 µl s−1 (30 µm chip), and 0.6% 

methylcellulose buffer. A serpentine channel was introduced close to the sample inlet region to aid in 

cell focusing and longitudinal ordering322 (Figure 2.7a). Cells are exposed to SSAW for about 2 ms in 

the 50 µm wide and 200 µm long sorting region, what allows for sufficient displacement (Figure 2.7b). 

A digital output (TTL) is generated based on the real-time assessment of high-speed microscopy images 

or fluorescence signals from the three available fluorescence channels (for full list of parameters 

computed in real-time that are available for sorting see Table 2.1), and triggers SSAW actuation with a 

dedicated generator (BSG F20, BelektroniG, Germany). The delay induced by image processing is 
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on average 225 µs, and the total delay between image exposure and sorting trigger is below 1 ms. Thus, 

the analysis ROI is placed 120−180 μm before the end of the deformation channel (depending on flow 

rate and channel size) to allow for timely generation of the output signal. The image acquisition, analysis 

and signal processing are executed by a custom C++ program running on a standard desktop computer. 

To allow for inspection of a bigger region during sorting, the experiments are typically performed using 

a 20 × objective (Plan-Apochromat, 20 ×/0.8; #440640-9903, Zeiss). Additionally, a polarizer 

(Polarizer D, 90° rotatable, removable; #427706-0000-000, Zeiss) is introduced between the 

illumination light and the chip to cancel out the double refraction caused by the birefringent lithium 

niobate substrate. 

 
Figure 2.7 | Overview of the microfluidic chip used for sorting. a, A schematic of the sorting chip layout, 
with zoom-in insets depicting the areas around the sample inlet (i) and analysis channel (ii). b, Images visualizing 
bead trajectories in the sorting chip in the presence (upper image) and absence (lower image) of SSAW actuation. 
The images were created by a minimum intensity projection of 700 frames taken over 350 ms. The red line 
indicates the center of the channel and serves as a guide for the eye to demonstrate the off-center position of the 
bifurcation point. This figure is modified from Nawaz, Urbanska, Herbig et al.313. 

The sorting efficacy of the soRT-FDC setup was validated using heterogenous mixtures of polymer 

beads. First, fluorescence-activated sorting was demonstrated by separating AlexaFluor488-labeled 

from unlabeled polyacrylamide (PAAm) beads with a 4.7-fold enrichment (Figure 2.8a). Next, we 

validated the efficiency of sorting for image-derived parameters such as area and deformation. For area-

based sorting, we used a mixture of commercially-available monodisperse polymer beads of two 

different sizes (SiO2-F-L3519-1, 13.79 ± 0.59 µm diameter and PMMA-F-B1423, 17.23 ± 0.24 µm 

diameter; Microparticles, Germany), and observed a 5.7-fold enrichment (from 16.9% to 96.3% purity) 

when sorting for the bigger beads (Figure 2.8b). For deformation-based sorting, we mixed two PAAm 

bead populations of different stiffness. Using a combined gating for area and deformation, we obtained 

an increase of targeted beads from 16.2% in the initial mixture (prepared in a 1:6 ratio), to 83.7% in the 

target sample, amounting to 5.2-fold enrichment. The PPAm beads used for experiments presented in 

Figure 2.8a,c were produced in house according to previously established procedures323. 
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Table 2.1 | Features analysed in real-time during RT DC measurement. 

image-derived features 

position x position along channel axis 

position y position lateral in the channel (μm) 

bounding box size x (a) size of the object in the direction parallel to the flow (μm) 

bounding box size y (b) size of the object in the direction perpendicular to the flow (μm) 

aspect ratio (a/b) ratio between object’s length and height 

area raw area enclosed by the contour fitted to the object (pixel) 

area area enclosed by the convex hull of the contour fitted to the object (pixel & μm) 

area ratio ratio between area raw and area 

deformation 1 −
2√𝜋𝜋 area
perimeter 

inertia ratio 

(convex or raw contour) 

𝐼𝐼𝑦𝑦𝑦𝑦
𝐼𝐼𝑎𝑎𝑎𝑎

 

𝐼𝐼𝑦𝑦𝑦𝑦 - second moment of contour area calculated for 𝑦𝑦-direction 

𝐼𝐼𝑎𝑎𝑎𝑎 - second moment of contour area calculated for 𝑥𝑥-direction 

𝐼𝐼𝑦𝑦𝑦𝑦 = ∬ 𝑦𝑦2𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦𝐴𝐴 , 𝐼𝐼𝑎𝑎𝑎𝑎 = ∬ 𝑥𝑥2𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦𝐴𝐴  

𝑥𝑥 and 𝑦𝑦 represent Cartesian coordinates 

Young’s modulus 
mechanical property that quantifies cell stiffness derived from numerical 
simulations317, in real-time obtained from a look-up table based on object size 
and deformation (Pa) 

brightness average brightness of pixels enclosed by the contour fitted to the object (a.u.) 

s.d. brightness standard deviation of the brightness of pixels enclosed by the contour fitted to 
the object (a.u.) 

fluorescence trace-derived features 

FL1 intensity 
maximum fluorescence intensity (fl-max) recorded in channel 1 (a.u.); 

excitation wavelength 488 nm, emission filter 525/50 

FL2 intensity 
maximum fluorescence intensity (fl-max) recorded in channel 2 (a.u.); 

excitation wavelength 561 nm, emission filter 593/46 

FL3 intensity 
maximum fluorescence intensity (fl-max) recorded in channel 3 (a.u.); 

excitation wavelength 640 nm, emission filter 700/75 
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Figure 2.8 | Fluorescence and feature-based sorting of beads with soRT-FDC. a, Fluorescence-based 
sorting from a mixture of fluorescent and non-fluorescent PAAm beads. b, Area-based sorting from a mixture 
of beads of two different sizes. c, Sorting with a double gate for area and deformation from a mixture of PAAm 
beads with different stiffness. The scatter plots for initial samples are shown on the left-hand side of each panel, 
and the plots for samples collected in the target outlet are shown on the right. The color map represents event 
density. The histograms accompanying scatter plots were fit with a superposition of Gaussian functions (solid 
lines). The gates used for sorting are outlined in green. Percentages on scatter plots indicate the fraction of beads 
in the sorting gate. Data for this figure was acquired by Dr. Ahmad A. Nawaz, the figure is modified from Nawaz, 
Urbanska, Herbig et al.313. 

Cells are known to be more difficult to translocate using SSAW than polymer beads due to their lower 

acoustic contrast factor324 that determines the radiation force (see Equation 2.3). Hence, we next 

tested area and deformation-based sorting of living cells. Specifically, we sorted  Kc167 drosophila cells 

from their 1:4 mixture with human promyelocytic leukemia cells (HL60/S4) with a 4-fold enrichment 
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and 88.2% purity (Figure 2.9a), and a sub-fraction of red blood cells (RBCs) with high deformation 

from diluted whole blood with a 3-fold enrichment and 91.3% purity (Figure 2.9b).  

 
Figure 2.9 | Feature-based sorting of cells with soRT-FDC. a, Area-based sorting of a mixture of Kc167 
cells (smaller size) and HL60/S4 cells (bigger size). b, Deformation-based sorting of red blood cells from whole 
diluted blood. The scatter plots for initial samples are shown on the left-hand side of each panel, and the plots 
for samples collected in the target outlet are shown on the right. The color map represents event density. The 
histograms accompanying scatter plots were fit with a superposition of Gaussian functions (solid lines). The gates 
used for sorting are outlined in green. Percentages on scatter plots indicate the fraction of cells in the sorting gate. 
Data for this figure was acquired by Dr. Ahmad A. Nawaz, the figure is modified from Nawaz, Urbanska, 
Herbig et al.313. 

2.3. Beyond assessment of cell mechanics — emerging applications 

Even though RT-DC was originally introduced for the deformation-based evaluation of the mechanical 

properties of cells, it can be utilized to perform multifaceted morphological characterization and sorting 

of cells. This section presents examples of three application of RT-DC beyond evaluation of cell 

mechanics. First of all, the parameter deformation does not only aid in evaluation of mechanical 

properties, but also in discriminating different cell types in heterogenous population that would be 

obscured otherwise. An example of this is distinguishing of the main cell types in the whole blood 

samples (Section 2.3.1). Secondly, further parameters such as cell brightness can be deduced from the 

acquired images and serve as an additional dimension for further cell separation. In blood, this allows 

for distinguishing of sub-fractions of myeloid cells5, which can then be sorted in a label-free way as 
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shown on the example of neutrophils (Section 2.3.2). A wealth of image-derived morphological and 

texture parameters (a selection of which is summarized in Table 2.1 and Table 2.5) can be derived for 

each cell and used in a way analogous to brightness to perform image-based cell classification. Finally, 

thanks to the access to thousands of images of cells labelled for identity using fluorescence markers, 

neural networks (NNets) can be trained to recognize cells of interest based on images alone. We 

demonstrated this possibility on the examples of NNet-based sorting of neutrophils from blood 

(Section 2.3.3). 

 
Figure 2.10 | Deformation-assisted discrimination of three major cell types in blood samples. a, An 
overview of hematopoietic lineages. The cells identified as RBC, myeloid cells and lymphocytes in RT-DC 
measurements are outlined with red, green, and blue frames, respectively. b, Deformation-size scatter plot of 
RBC-depleted blood sample measured in the inlet region. c, Deformation-size scatter plot of RBC-depleted blood 
measured in the channel region as shown. The clearly distinguishable cell populations include: red blood cell 
(RBC) lymphocytes (ly) and myeloid cells (my). The percentages of respective cell types are indicated in the plot. 
The typical images of cells from each population are shown on the right. Panel a is adapted from Openstax Anatomy 
and Physiology textbook325, under CC BY 4.0 license326. Data for b and c was acquired by Dr. Ahmad A. Nawaz, 
these panels are adapted from Nawaz, Urbanska, Herbig et al.313. 
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2.3.1. Deformation-assisted population separation and sorting 

Flow-induced deformation of cells, together with their alignment along the major channel axis, 

enhances the separation of cell subpopulations in blood samples, and allows for distinguishing of three 

major blood cell types: RBCs, myeloid cells and lymphoid cells (indicated with shaded squares in 

Figure 2.10a). When characterized in the inlet region of the chip (Figure 2.7a, inset i), where cells 

experience negligible hydrodynamic forces and are randomly oriented, the three blood cell populations 

show an overlap in the area-deformation scatter plots (Figure 2.10b). Measuring the same sample in 

the deformation channel (Figure 2.7a, inset ii), where cells are deformed and aligned with the channel 

major axis, results in a clear separation of blood cell subtypes (Figure 2.10c), what is used for their 

identification5,21. Specifically, the RBC population with high deformation values moves further away 

from the two remaining cell subtypes on the deformation axis. Thanks to the clear separation of the 

subpopulations, sorting using area-deformation gates is possible. We were able to sort for the three cell 

populations and obtained a purity of 96.6% for RBCs (Figure 2.11a), 89.1% for lymphocytes 

(Figure 2.11b), and 94.7% for myeloid cells (Figure 2.11c), with an enrichment factor of 1.95, 21.7 

and 2.0, respectively (the percentages of cells in the respective gate before sorting are indicated in 

Figure 2.10c).  

 
Figure 2.11 | Deformation-assisted sorting for three major blood cell types. a–c, Analysis of cells collected 
in the target when sorting for RBCs (a; area: 25–65 µm2, deformation: 0.16–0.40), lymphocytes (b; area: 25–
45 µm2, deformation: 0–0.10) and myeloid cells (c; area: 53–120 µm2, deformation: 0–0.15) from RBC-depleted 
blood using gates indicated in the plot. Cells were sorted from the initial sample presented in Figure 2.10c. 
Percentages indicate purity. All sorting experiments were conducted with an additional gate for area ratio 1.0−1.1. 
Data for this figure was acquired by Dr. Ahmad A. Nawaz, the figure is modified from Nawaz, Urbanska, 
Herbig et al.313. 

2.3.2. Brightness-based identification and sorting of blood cells 

The myeloid cell fraction defined with the area-deformation gate above comprises several distinct cell 

types: basophils, neutrophils, eosinophils and monocytes (see Figure 2.10a). Adding an additional 

parameter, the average brightness within the cell contour, enables distinguishing of these cell types5 

(Figure 2.12a). Since brightness is a parameter calculated in real-time by the analysis software, it can 

be utilized for sorting of the specified myeloid blood subtypes.  
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Figure 2.12 | Brightness-based neutrophils sorting from RBC-depleted blood. a,b, Brightness-area scatter 
plots of RBC-depleted blood for initial (a) and target (b) samples. Color-coded patches delineate subpopulations 
of different cell types. Sorting gate is indicated with dashed green line. Typical cell images of respective 
subpopulations are displayed next to the scatter plots. The subpopulations include: lymphocytes (ly), basophils 
(ba), monocytes (mo), neutrophils (neu), eosinophils (eo), red blood cells (RBC) and red blood cell doublets 
(RBC-d). c,d, CD66 and CD14 surface marker expression for initial (c) and target (d) samples measured with 
RT-FDC. e,f, Brightness-cell size scatter plots as in a and b with CD66+/CD14− cells (putative neutrophils) 
indicated in orange. Data for this figure was acquired by Dr. Ahmad A. Nawaz, the figure is modified from 
Nawaz, Urbanska, Herbig et al.313. 

To demonstrate this possibility, we used a combination of area (50–100 µm2) and brightness (30–

40 a.u.) gates to perform label-free sorting of neutrophils from RBC-depleted blood. The percentage 

of events in the sorting gate increased from 19.4% in the initial sample to 81.5% in the target sample 

(Figure 2.12a,b), amounting to 4.2-fold enrichment. The identity of sorted cells was validated after 

sorting via staining with a mixture of APC-conjugated anti-human CD14 (dilution 1:20, #17-0149-42, 
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eBioscience, CA, USA) and PE-conjugated anti-human CD66a/c/e (dilution 1:40, #34303, BioLegend, 

CA, USA) and analysis with RT-FDC. The CD66+/CD14− cells, corresponding to neutrophils320, 

constituted 24.7%, in the initial and 84.7% in the target samples (Figure 2.12c,d). This corresponds 

well with the fractions contained in the size-brightness gate set for neutrophils (Figure 2.12a,b). 74.4% 

of all CD66+/CD14− events in the initial sample fell into the size-brightness gate specified for vital, 

resting, single neutrophils6 (Figure 2.12e). The remaining 25.6% of CD66+/CD14− events appear to 

belong to other blood cell type populations (Figure 2.12e), implicating occurrence of false positive 

neutrophil classification when using molecular labels. This observation points towards an important 

advantage of using physical parameters, such as size and brightness, for cell identification — the 

circumvention of the false positives observed in the fluorescent staining. 

2.3.3. Transferring molecular specificity into label-free cell sorting 

The image-derived parameters exploited for sorting in the aforementioned examples, including area, 

deformation, and brightness, are far from being exhaustive. Apart from the parameters listed in 

Table 2.1 and Table 2.5, more elaborate features such as Haralick texture features, scale-invariant 

feature transforms, local binary patterns, or threshold adjacency statistics327–330 can be extracted from 

the images and used for cell classification. However, the extraction of such parameters is typically too 

computationally expensive to allow for their real-time evaluation. Another approach is to take 

advantage of information contained within all pixels of the raw image, and use a neural network (NNet) 

to classify cells of interest in a featureless way (Figure 2.13a). NNet training generally requires a 

sufficiently large labelled dataset training. Using the RT-FDC platform, thousands of cell images can 

be acquired within seconds and their labelling can be achieved by connecting them with the expression 

of surface markers. Such labelled datasets are ideal for NNet training, and the NNet classifiers can be 

used thereafter to replace the fluorescent markers for a given classification task. The NNet-based 

classification can be performed in real-time and used for sorting.  In this way, the molecular specificity 

of the fluorescent labels can be transferred into label-free NNet-based cell classification and sorting. 

As an example, we trained a NNet for the identification and sorting of neutrophils based on bright-field 

images alone. To this aim, we have employed a dedicated AIDeveloper software developed in house by 

Dr. Maik Herbig315. First, we have chosen a type of network called multilayer perceptron (MLP) with 

an architecture that was identified to offer a good trade-off between maximum validation accuracy 

(MVA = 85.9 %) and inference time (183.7 µs) for hand-labelled blood datasets313,331 (Figure 2.13b). 

This architecture was then trained on a dataset of 34,206 blood cell images correlated with CD66/CD14 

staining, in which CD66+/CD14− events were labelled as neutrophils. Next, we applied the trained 

MLP on a validation dataset (5,925 cells), and observed a classification accuracy of 95.5% using 

fluorescent labels as ground truth (Figure 2.13c). Finally, the MLP was applied to sort neutrophils 

from RBC-depleted blood based on images alone. The post-analysis of the target and initial samples 
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was performed using RT-FDC, with CD14/CD66 staining as validation of cell identity. We obtained a 

89.7% purity and an 10-fold enrichment of CD66+/CD14− cells after image-based sorting using cell 

images and the trained NNet (Figure 2.13d,e). This demonstrates the feasibility of transferring 

molecular specify conferred in fluorescent markers into label-free image-based sorting using soRT-

FDC. Label-free sorting is of particular relevance for applications in which introducing fluorescent 

labels is undesirable, for example in transplantation. Specific examples of where label-free sorting for 

transplantation could be of interest include hematopoietic stem cells332,333 or retinal precursor cells334,335. 

 

Figure 2.13 | NNet-based sorting of neutrophils from RBC-depleted blood. a, Schematic representation 
of NNet-based image analysis. b, Maximum validation accuracy (MVA) versus inference time for 162 tested 
differently complex MLPs. The MLP selected for sorting (MLP 24-16-24) is indicated in red; its architecture 
details are summarized on the right. c, Percentage of different cell types classified as neutrophils by NNet. 
Calculation based on fluorescent staining: CD66+/CD14− cells correspond to neutrophils, CD66−/CD14+ to 
monocytes, double negative cells to RBCs and double positive are staining errors or cell doublets. d,e, Post-
analysis of the initial (d) and the target (e) samples using RT-FDC and CD14/CD66 staining. Data for this figure 
was acquired by Dr. Maik Herbig, the figure is reprinted from Nawaz, Urbanska, Herbig et al.313. 
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2.4. Discussion 

RT-DC is a robust method for rapid and continuous mechanical characterization of large populations 

of suspended cells. Cell images acquired during the measurements can be utilized to extract not only 

cell deformation that carries information about mechanical properties, but also further image-derived 

parameters such as cell size and brightness. Various combinations of the extracted parameters can be 

utilized for identification of cell types in heterogenous populations, as discussed in Sections 2.3.1 and 

2.3.2 on the example of blood. The combination of RT-DC with fluorescence detection in three 

spectral channels312 (Section 2.2.1) and SSAW-based sorting313 (Section 2.2.2) has transformed the 

original RT-DC setup into a versatile soRT-FDC platform for fluorescence- and image-based single 

cell analysis and sorting. Noteworthy, the thousands of bright-filed cell images generated with RT-DC 

can be labelled for cell identity using fluorescent markers and leveraged for training of NNets, that 

ultimately enable AI-assisted, image-based classification and separation of cells (Section 2.3.3). 

In terms of mechanical characterization, an invaluable asset of RT-DC is the availability of the analytical 

model298 and numerical simulations317 that allow for mapping of cell area and deformation to Young’s 
modulus (Section 2.1.2). This is of particular importance when comparing cells of different sizes, as in 

such cases the deformation information alone could be misleading (see Figure 2.3). Furthermore, the 

extracted Young’s moduli can be used to compare RT-DC results with the mechanical characterization 

using other methods. It is important to remember that several assumptions underlie both of the 

theoretical approaches, namely, that cells are homogenous and isotropic elastic bodies and that they are 

spherical before entering the channel298,317. These assumptions may not faithfully reflect heterogenous 

nature of cell structure and shape, however, similar simplifications underlie the Hertz model259, 

customarily used for extracting Young’s modulus from AFM indentation curves. Regardless, the 

assigned Young’s moduli fulfill their purpose as an effective parameter describing cell stiffness and 

facilitate mechanical comparison of different cell populations. 

Apart from characterization of Young’s modulus from a snapshot of steady-state cell deformation, 

RT-DC can be exploited to derive time-dependent properties of cells such as viscosity. For this 

purpose, the evolution of cell deformation has to be measured over extended period covering cell entry 

or passage through the channel. A challenge for modelling the deformation response is poised by the 

complex nature of the stresses applied to cells during their entry into the channel constriction. In the 

bottleneck region preceding the constriction, cells experience increasing extensional stress arising from 

the acceleration of the fluid around the cell, and after entry to the channel, cells experience the shear 

forces arising from the parabolic flow profile336,337. These two sources of stress are superimposed and 

hard to disentangle. An elegant solution to this problem, proposed by Fregin et al.336, is to decompose 

the cell shape into a sum of shape modes that are symmetric around the flow axis (even modes, 

reflecting the deformation induced by the extensional flow), and a sum of shape modes that are 

asymmetric around the flow axis (odd modes, reflecting the bullet-like cell shape induced inside 
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the channel) using Fourier decomposition. That way the relaxation inside the channel, traced by the 

deformation of reconstituted odd shape modes, can be considered a creep compliance experiment and 

modeled using a selected material model, e.g., a Kelvin-Voigt, to extract cell viscosity336. As tested by 

fitting the curves obtained via numerical simulations of viscoelastic spheres of given viscosity, using 

squared inertia ratio can give even better estimate of the viscosity than fitting the deformation curves 

obtained for the contours reconstituted from odd coefficients of the Fourier modes337. Future direction 

in extracting time-dependent properties of cells in RT-DC include exploring model-free approaches 

for derivation of frequency-dependent viscoelastic moduli based on Fourier transform, so far 

implemented for AFM step-strain338,339 and step-stress experiments340, as well as devising microfluidic 

channel geometries that ensure a simpler stress profile. 

The main limitation of RT-DC in terms of mechanical characterization of cells is performing the 

measurements on suspended cells. For adherent cell lines, organoids, or tissue sections, single cell 

suspensions need to be generated prior to the experiments, what may affect the properties of the cells 

that relay on cell-cell and cell-substrate attachment. For example, it has previously been demonstrated 

for mesenchymal stem cells that harvesting the cells from the substrate and keeping them in suspended 

state may cause cell stiffening over time341. Thus, it is crucial to control the time between cell 

detachment and the measurements, and to bear in mind that mechanical differences observed for 

adherent cells may not always be maintained in the suspended state. 

RT-DC is characterized by straightforward operation, automated data acquisition and low sample 

volume required for analysis, what makes it an attractive method not only for basic research but also 

for clinical applications. RT-DC has been successfully implemented for identification of several 

medically relevant pathological conditions based on the properties of blood cells. Examples include 

exposure of RBCs to Plasmodium falciparum5,69, spherocytosis5, leukocyte activation5,6,124, as well as acute 

myeloid and lymphatic leukemias5. Most recently, it has been demonstrated using RT-DC that during 

infection with COVID19 the physical properties of blood cells are altered, and do not recover to 

previous levels long after the infection is over60, what may play a role in persisting long-term symptoms 

referred to as long COVID. Analysis of blood in RT-DC is particularly straightforward as blood cells 

are naturally in the suspended state. Expanding RT-DC characterization to cells extracted from solid 

tissue biopsies, in particular for potential usage in cancer diagnostics and staging, will require 

implementation of a robust method for sample dissociation, such as TissueGrinder342— a mechanical 

dissociation method that allows for generation of highly viable cell suspensions from tissues within 

several minutes. 

High measurement throughput and low sample processing time render RT-DC particularly well suited 

for performing screening experiments. Such screens, aimed at discovering regulators of mechanical 

properties or other morphological features of cells, can be performed using dedicated libraries, such as 

RNA interference (RNAi)343, CRISPR344, or chemical compound libraries. So far several attempts at 
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RNAi screens have been performed in the group: (i) a pilot screen for regulators of mitotic cell 

mechanics in Drosophila cell line Kc167 using 42 pre-selected genes312, (ii) its expansion with >200 

kinases/phosphatases (project of Dr. Katarzyna Plak, unpublished data), and (iii) a screen of genes 

involved in cell softening during epithelial to mesenchymal transition in epiblast stem cells (EpiSCs) 

using 50 pre-selected genes (project of Dr. Maria Winzi, unpublished data). Such screens, with 

treatments typically performed in triplicate, are still limited in scale hugely due to the sample preparation 

and loading times. Future developments aimed at automatization of sample pre-processing and 

measurement handling, for example by integrating a robot harvesting cells directly from a multi-well 

plate, autonomously loading the sample and running the measurements, will enable performing of such 

screens at a much broader scale. 

The sorting modality introduced in the soRT-FDC setup is a first demonstration of active sorting for 

cell mechanics with practically useful throughput. Previous attempts of active sorting based on 

mechanical properties using optical stretcher were limited in throughput to <100 cells per hour. For 

comparison, soRT-FDC enables sorting at rates of up to 100 cells per second. Typically, depending on 

abundance of cells of interest in the sample, several thousands of cells can be sorted in the timespan of 

an hour. Passive methods for mechanics-based sorting, such as deterministic lateral displacement345,346, 

inertial microfluidics347, acoustophoresis348,349, or filtration-based approaches350,351 provide high 

throughput; however, they often convolve cell deformability with size — small stiff cells are sorted 

with large soft ones — and, since the sorting parameters are hard-wired into the device design, they do 

not offer flexibility in choosing sorting parameters on demand. soRT-FDC, in turn, is well suited for 

freely and flexibly combining sorting for mechanics and other available parameters, such as cell size, 

fluorescence, or brightness. Label-free sorting of cells enabled by soRT-FDC, including feature-based 

as well as featureless AI-based sorting, is of high interest for downstream applications for which lack 

of extrinsic labels is of crucial importance. Such applications include sorting, for example of 

hematopoietic stem cells332,333 or retinal precursor cells334,335 enrichment, for use in transplantation. 

With thousands of cells characterized in every experiment, RT-DC is poised for integration with 

machine learning for applications such as cell and sample classification. As presented in Section 2.3.3 

on example of neutrophils, raw images labelled for cellular identity using fluorescent markers can be 

used for training of NNets for image-based recognition of cells of interest. Similarly, image-based 

discrimination of B- and T-cells in whole blood samples can be achieved using NNets trained on 

CD3/CD19 and CD3/CD56-stained samples315. Another example of machine learning-assisted 

classification of cell types is discrimination of mature RBCs from reticulocytes using a combination of 

parameters extracted from images314. Further examples of label-free image-based classification of cell 

can be found in the literature concerning conventional as well as microfluidics-based imaging flow 

cytometry (reviewed in Luo et al.352), and include classification of cells based on their cell cycle stages353 

or discrimination of platelets aggregates354. Apart from classification of cell subpopulations within 
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a given sample, machine learning-based approaches can be utilized to compare parameter distribution 

patterns between different samples for sample classification purposes, for example, in diagnostics. 

So far, RT-FDC combines bright-field imaging and fluorescence acquisition for a multiparametric 

characterization of cell phenotypes. In the future, further modalities could be added to RT-FDC to 

expand obtained biophysical parameters. For example, the integration of Raman spectroscopy, already 

demonstrated for flow-through configuration355,356, would enable label-free chemical characterization 

of cells. Thanks to the integration of quantitative phase imaging onto the platform, parameters such as 

refractive index and cell mass could be characterized357. Finally, addition of Brillouin line-scanning 

microscopy would enable characterization of longitudinal modulus247,358. 

Taken together, the combination of RT-FDC and SSAW-based cell sorting in conjunction with NNet 

classification provides for a flexible sorting platform, soRT-FDC, capable of not only parameter-based 

sorting, but also of AI-assisted, image-based separation of cells. The latter provides the opportunity to 

transfer molecular specificity into label-free cell sorting and to identify new cell types, the distinction 

of which is not possible on the basis of known features. Further developments of the platforms, in 

particular automation of sample handling and integration with machine learning-based data analysis, 

will accelerate RT-DC-driven discoveries and contribute to the understanding of the role of cell 

mechanics and morphology in health and disease. 

2.5. Key conclusions 

• RT-DC is a versatile method for single-cell mechanical phenotyping that can be utilized to 

characterize various suspended and adherent cell types. 

• Thanks to its integration with SSAW-based deflection mechanism, RT-DC can be used for 

image-activated cell sorting according to parameters such as cell deformation, size, and 

brightness. 

• Combining two or more parameters (e.g., deformation, size, and brightness for blood cell 

types) enables efficient classification of cell types within heterogenous populations. 

• The images generated during RT-DC experiments can be used not only to extract parameters, 

but also to train neural networks to classify and sort cells based on raw images. 

• Using fluorescent markers for cell labelling in training datasets enables transferring of 

molecular specificity into label-free image-based cell sorting. 

  



Chapter 2  

 

 58 

2.6. Materials and experimental procedures 

2.6.1. Microfluidic chips 

RT-DC chips were made from polydimethylsiloxane (PDMS, SYLGARD, 188 Dow, Corning Inc., NY, 

USA) using soft lithography techniques. A mixture of PDMS and curing agent (10:1, w/w) was poured 

over a silicon wafer master and cured as described in detail elsewhere359. The holes for connecting the 

sheath and sample tubing are punched through the PDMS replica (Figure 2.2) with the channel imprint 

using a 1.5 mm puncher (e.g., Biopsy Punch #49115, Pfm Medical AG, Germany). The PDMS replica 

were covalently bound to a microscopy-suited cover glass (40 × 24 mm2, Assistent, Germany) and 

sealed by plasma activation (50 W, 30 s, Plasma Cleaner Atto, Diener Electronic, Germany). The width 

of the channel used for given application should be selected in correspondence to the cell size. For 

optimal performance, cell diameters should cover 20–90% of the channel width. Commonly used 

channel widths range from 15 to 40 μm.  

For sorting chips, the PDMS replicas (with channel design presented in Figure 2.7a) were bonded to 

a 128° Y-cut lithium niobate (LiNbO3, Roditi International, UK) substrate instead of the glass coverslip. 

Prior to bonding, thin layers of chromium and gold (Cr/Au, 10 nm/70 nm, respectively; Kurt J. Lesker, 

UK) were deposited on top of the substrate to form the IDTs flanking the sorting channel region (see 

Figure 2.6a). Each IDT had 40 electrode pairs, an aperture of 200 µm, and an inter-finger distance of 

70 µm, resulting in an excitation frequency of 55.23 MHz. Additionally, a 100 nm layer of SiO2 was 

deposited on top of the substrate to improve bonding to PDMS. The sorting chips were prepared by 

Dr. Ahmad A. Nawaz. 

2.6.2. Measurement buffer 

The measurement buffer (MB), used for both cell suspension and as a sheath fluid during the RT-DC 

measurements, contains methylcellulose for achieving an increased buffer viscosity. High MB viscosity 

allows for appreciable cell deformations at moderate flow rates and reduces cell sedimentation during 

the measurements.  

MB was prepared by dissolving 0.5% (w/v) methylcellulose (MC, 4000 cPs #36718, Alfa Aesar, 

Germany) in a physiological buffer, such as PBS or the cell culture medium. After prolonged mixing 

of about 24 h on a rotary mixed to fully dissolve the MC powder, the buffer was filtered through a 

vacuum filter unit (Stericup-GP, 0.22 μm, Merc Millipore, Germany), and its viscosity was adjusted to 

15 mPa s at 23 °C using a falling drop viscometer (HAAKE, Thermo Fisher Scientific, MA, USA). For 

blood measurements and sorting MB with final viscosity of 25 mPa s, prepared by dissolving 0.6% 

(w/v) MC in PBS, was used. The osmolarity of the MB was adjusted to 320 ± 20 mOsm to 

accommodate for the physiological osmolarities of most eucaryotic cell lines. For reference, RPMI-

based media have an osmolarity of approximately 300 mOsm, which roughly corresponds to 
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the osmolarity of human blood plasma360. DMEM-based media, depending on exact composition and 

provider, have an osmolarity ranging from 310 and 360 mOsm, and the osmolarity of PBS solutions 

usually falls between 285 and 325 mOsm. 

2.6.3. Consumables 

Commercially available consumables necessary for conducting RT-DC measurements are listed in 

Table 2.2. 

Table 2.2 | Consumables necessary for setting up an RT-DC experiment. This table is adapted from 
Urbanska, Rosendahl, Kräter et al.316. 

Article Product Name; Company Order No. 

FEP tubing FEP Tubing 1/16” OD, 0.030” ID; 
Postnova Analytics, Germany 

1520XL 

syringe connector 
part 1 

PEEK Union for 1/16” OD Tubing; 
Postnova Analytics, Germany 

P-702 

syringe connector 
part 2 

F Luer to ¼-28 FB, F; 
Postnova Analytics, Germany 

P-658 

sheath /sample syringe BD Luer-Lok™ 1-mL syringe; 
BD Biosciences, NJ, USA 

613-4971 

syringe for tubing 
cleaning 

BD Disposable Luer-Lok™ tip 5-mL syringe; 
Henke Sass Wolf, Germany 

613-2043 

syringe needle Blunt Fill Needle 18G; 
BD Biosciences, NJ, USA 

BDAM305180 

syringe filter unit Millex-GV, 0.22 um, PVDF; 
Merck Millipore, Germany 

SLGV004SL 

 

2.6.4. Sample preparation  

A variety of cell sources can be used in RT-DC experiments. Within the framework of this thesis, 

experiments on non-adherent cells grown in suspension, adherent cell lines, as well as on blood were 

performed using variations of the general protocols outlined below. It is further possible to use samples 

such as solid tissues or cells cultured in 3D, providing that a dissociation is performed in advance as 

briefly described below. 

Non-adherent cells 

To collect semi-adherent cells or cells growing in suspension, the desired culture volume was 

centrifuged according to standard procedures (e.g., 5 min at 150 g). After pelleting the cells, supernatant 

was carefully removed to prevent dilution of MB. The cell pellet was resuspended thoroughly by 

pipetting up and down several times in 20–1000 μl of MB (20 μl is the minimal sample volume required 
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for filling the channel and running a measurement at one flow rate; 1000 μl is the maximal sample 

volume that can be aspirated into the 1 ml syringe typically used). The cell suspensions used for 

measurements had concentrations of 3–5 × 106 cells ml−1.  

Adherent cells 

Adherent cells need to be detached from the substrate prior to generating single-cell suspension. To 

this end, a PBS washing step, followed by an incubation with a dissociation agent (e.g., trypsin, accutase, 

collagenase, or EDTA) was performed. After dissociation, cells were suspended in a buffer quenching 

the activity of the dissociation agent (e.g., serum-containing buffer in case of trypsin) or diluting it. The 

detached cells were then centrifuged and resuspended in MB as described above. 

For adherent cells, the transition from cell-surface contact to a single cell state often leads to remodeling 

of actin cytoskeleton, and consequent change in mechanical properties over time341. This adaptation is 

differently pronounced depending on the cell type and should ideally be tested prior to performing 

experiments of interest by following the mechanical phenotype of cells over time after harvesting. 

When substantial change in stiffness is observed over initial time after detachment, it is advisable to 

preincubate cells in suspension before performing the measurements. 

Blood 

For whole-blood RT-DC measurements, 50 µl of anti-coagulated blood was diluted in 950 µl MB and 

mixed gently by manual rotation of the sample tube5. Depending on the cell population of interest, the 

ratio of blood to MB may be adjusted. For example, for effective measurements of the very abundant 

red blood cells, it is sufficient to dilute 5 µl blood in 995 µl MB. For the sorting experiments, the blood 

samples were depleted from RBCs to increase the relative content of lymphocytes and myeloid cells. 

To this end, anti-coagulated whole blood was drawn into 10 ml sodium-citrate tubes and mixed with 

the dextran solution (6% dextran in 0.9% sodium chloride solution) in a 4:1 ratio. RBCs were allowed 

to sediment for 30 min, forming a red pellet. RBC-depleted supernatant was then collected and 

centrifuged for 10 min at 120 g. Finally, the cell pellet was resuspended in MB (0.6% MC).  

3D cell cultures and solid tissue sections 

3D cell cultures, such as organoids or spheroids, as well as solid tissue sections can be prepared for 

RT-DC measurements using standard dissociation protocols based on enzymatic (e.g., incubation in a 

mixture of collagenase and DNase) or mechanical dissociation (using tools such as tissue grinder). Since 

such preparations may generate a lot of debris, it is recommended to perform washing steps with PBS. 

Additionally, the prepared cell suspension can be filtered through a strainer with a mesh size of 40 µm 

(EASYstrainerTM #542 040; Greiner Bio-One, Germany; #431750, Corning Inc., NY, USA; FlowMi 

#H136800040, Belart, NJ, USA or alike). This procedure reduces amount of cell clusters and debris 

with big diameter that may clog the RT-DC channel entry during the measurements. 
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2.6.5. Setup preparation 

The two following subsections contain general instructions and are written in the present tense. 

Two 1 ml luer-lock syringes are filled with previously filtered MB (using a 0.22-µm syringe filter unit) 

with an aid of blunt-end needles. The sheath fluid syringe is filled up to 1 ml, the sample syringe is filled 

to ca 0.2-0.5 ml to allow for later sample aspiration. FEP tubing (ca. 25 cm long, cleaned by flushing 

with 70% ethanol and distilled water and blow-dry with compressed air before using) is connected to 

the pre-filled syringes using dedicated luer-lock connectors (see Table 2.2), and the tubing is filled with 

MB by manually pushing the liquid through. The syringes are mounted onto the syringe pump and 

adjusted tightly. After connecting the sheath fluid tubing to the sheath inlet of the microfluidic chip 

(see Figure 2.2), the chip is filled with MB by setting the sheath flow to 1 µl s−1. After the sheath fluid 

has filled the whole chip (observe in ‘Prepare’ mode in the ShapeIn2 software) and a drop has appeared 

in the sample inlet, reduce the sheath flow rate to 0.01 µl s−1. Next, cell suspension (prepared as 

described in Section 2.6.4) is aspirated into the sample syringe using a negative flow rate of −1 µl s−1, 

the sample tubing is connected to the sample inlet (see  Figure 2.2) and the sample flow is started at 

~0.1 µl s−1. When first cells appear in the field of view, the flowrate of both sheath and sample syringes 

is adjusted to the one used in the measurement (see Table 2.3 and Table 2.4 for measurement flow 

rates typically used for respective channel sizes). Finally, when the drop of liquids appears in the outlet, 

the tubing is fitted and its free end is placed into a waste container. Manufacturers and ordering number 

of consumables necessary for the described procedure are listed in Table 2.2. 

Table 2.3 | Flow rates used for the RT-DC measurements with 0.5% MC medium. Table adapted from 
Urbanska, Rosendahl, Kräter et al.316. 

channel width total flow rate sample flow rate sheath flow rate 

10 µm 

0.004 µl s−1 0.001 µl s−1 0.003 µl s−1 

0.008 µl s−1 0.002 µl s−1 0.006 µl s−1 

0.016 µl s−1 0.004 µl s−1 0.012 µl s−1 

20 µm 

0.04 µl s−1 0.01 µl s−1 0.03 µl s−1 

0.08 µl s−1 0.02 µl s−1 0.06 µl s−1 

0.12 µl s−1 0.03 µl s−1 0.09 µl s−1 

30 µm 

0.16 µl s−1 0.04 µl s−1 0.12 µl s−1 

0.24 µl s−1 0.06 µl s−1 0.18 µl s−1 

0.32 µl s−1 0.08 µl s−1 0.24 µl s−1 

40 µm 

0.32 µl s−1 0.08 µl s−1 0.24 µl s−1 

0.64 µl s−1 0.16 µl s−1 0.48 µl s−1 

0.96 µl s−1 0.24 µl s−1 0.72 µl s−1 
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Table 2.4 | Flow rates used for the RT-DC measurements with 0.6% MC medium. Table adapted from 
Jacobi et al.80. 

channel width total flow rate sample flow rate sheath flow rate 

20 µm 

0.02 µl s−1 0.005 µl s−1 0.015 µl s−1 

0.06 µl s−1 0.015 µl s−1 0.045 µl s−1 

0.18 µl s−1 0.045 µl s−1 0.135 µl s−1 

30 µm 

0.16 µl s−1 0.04 µl s−1 0.12 µl s−1 

0.24 µl s−1 0.06 µl s−1 0.18 µl s−1 

0.32 µl s−1 0.08 µl s−1 0.24 µl s−1 

2.6.6. Measurement procedure 

Before the measurement, it is useful to set ‘hard’ gates for cell size and aspect ratio to avoid recording 

superfluous data. Gating out objects with very small size is recommended to prevent recording debris, 

and gating out particles of large size and large aspect ratio is helpful for discarding cell clusters. A 

standard setting for a 20 µm channel is a minimum height and length of 3 µm, a maximum height of 

20 µm, and a maximum length of 80 µm. The maximum aspect ratio is typically set to 2. Additionally, 

‘soft’ gates can be set, for which data outside of the gate is recorded but not included in the online 

event count or online plots. 

 
Figure 2.14 | Setting focus for the RT-DC measurements. For accurate image thresholding and contour 
fitting, the cells should be in slight underfocus (second image from the left, indicated with green box), i.e., the 
cell should appear darker than the background, with a bright halo around its edge. This figure is modified from 
Urbanska, Rosendahl, Kräter et al.316. 

After the chip has been filled with sheath and sample fluids (Section 2.6.5), and the flow rate adjusted 

to the desired measurement value, it is necessary to wait >1 min for the flow to equilibrate. In the 

meantime, the focus of the cells is adjusted to slight underfocus (Figure 2.14), what is necessary for 

accurate fitting of the cell contours. Next, a measurement is started and the desired number of events 

is acquired. Even though mostly only data from one flow rate is used for final analysis, it is 

recommended to record measurement at three flowrates as specified in Table 2.3 and Table 2.4, as it 

provides an internal control if the measurement was setup correctly — the deformation of the cells 

should increase with the increasing flow rate. Finally, a recording in the 100 µm wide reservoir region 

is performed (see Figure 2.2). In this region, cells do not experience significant loads and thus should 

be spherical. Any deviation from a spherical shape in this region indicates a pre-deformation that is not 

caused by the forces in the constriction channel.  
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2.7. Data analysis 

The analysis of the RT-DC results is similar to the one performed for the flow cytometry data, with 

the added possibility of inspecting individual events by looking at their images. Routinely performed 

data analysis steps include gating, calculation of parameters of interest not computed online (e.g., 

Young’s modulus values), and application of statistical methods such as linear mixed-effects models 

for comparison of results obtained for different samples. A dedicated open-source software called 

Shape-Out (Shape-Out2; available at https://github.com/ZELLMECHANIK-DRESDEN) is 

recommended for analyzing the RT-DC data as it supports loading of the native ‘.rtdc’ files and reads 

settings recorded with during the measurements. Moreover, Shape-Out provides tools for filtering, 

parameter calculations, and plotting. The raw or processed data can be exported from Shape-Out in 

‘.csv’ or ‘.fcs’ formats, which can be used for analysis in other programs such as Excel (Microsoft, WA, 

USA), MatLab (MathWorks, MA, USA), Origin (OriginLab, MA, USA) or FlowJo (FlowJo LCC, OR, 

USA). 

2.7.1. Data filtering 

Cell parameters computed in real-time, such as area, deformation, aspect ratio and area ratio (see 

Table 2.1 for full list), as well as many more parameters computed from the images and fluorescent 

trace offline (Table 2.5) can be used for filtering during data post-processing steps. The filters typically 

set before the measurement are discussed in Section 2.6.6. Below the filtering strategies using three 

parameters — area, area ratio, and aspect ratio — are discussed. Additional gating can be applied to 

select cell types of interest in heterogeneous samples. 

Table 2.5 | Additional features available during post-processing in Shape-Out. 

image-derived features 

absolute tilt of raw contour angle between the object’s major axis and the axis parallel to the 
flow direction 

principal inertia ratio of raw contour maximum inertia ratio that can be computed (rotation-invariant) 

volume  object’s volume calculated by rotation of its contour around the 
rotation axis parallel to the flow direction361 (μm3) 

fluorescence trace-derived features* 

FL area of the peak area under the peak(a.u.) 

FL position of peak  position of the peak maximum along the x axis (μs)$ 

FL width  full width at half maximum of the peak (μs)$ 

FL number of peaks number of detected signal maxima in a given frame 

FL distance between two first peaks The distance between detected peak maxima (μs)$ 

*available for all three spectral channels (FL1, FL2 and FL3) 
$derived from the temporal signature of the signal, thus estimated in μs 
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Area. Cell cross-section area, which serves as a measure of cell size, can be used to excluded events that 

are smaller (e.g. cell debris) or bigger (e.g. cell doublets or aggregates) than the cells of interests. The 

appropriate values of the filters can be determined by inspecting area-deformation scatter plots. It is 

typically easy to distinguish by eye the population of small debris from the population of cells, and 

from the population of bigger outliers (Figure 2.15a). Additionally, images of individual events can be 

inspected in Shape-Out by selecting a data point of interest on the deformation vs area scatter plot, what 

further aids in the selection of filter boundaries (Figure 2.15a). 

 
Figure 2.15 | An example of RT-DC data filtering using area and area ratio. a, Area filter. Area–
deformation scatter plot of unfiltered data from an exemplary measurement of ECC4 carcinoma cells (n = 5,095). 
Filters for area are shaded in gray and exemplary pictures of the events being filtered out are shown alongside the 
plot. b, Area ratio filter. Area ratio–deformation scatter plot of data filtered for size (n = 3,500) with the filtered 
area ratio values shaded in gray. Exemplary pictures of cells with different area ratio values are shown in the plot. 
Bottom picture represents an event with acceptable area ratio value (1.02). c, Area-deformation scatter plot of 
data filtered for both area and area ratio (n = 2,433). d, Contour plots of unfiltered data, data filtered for area, 
and data filtered for both area and area ratio. Solid lines indicated 95% density contour, and dashed lines indicate 
50% density contour. 

Area ratio. Cells with protrusions and cells whose contours are not tracked correctly often have 

overestimated deformation values, what may lead to wrong conclusions about their mechanical 

properties. To avoid this, events should be filtered using the area ratio parameter (Figure 2.15b–c). 

Area ratio is defined as the ratio between area of the convex hull of the detected contour and the area 

of raw contour (Figure 2.16a,b). The more protrusions and concave sections are present in the 

contour, the higher the area ratio value (Figure 2.16c). Strongly deformed cells with smooth surface 

will have low area ratio, thus, filtering for this parameter does not bias the mechanical measurement. 

The area ratio takes values ≥ 1, and is usually set for values below 1.05−1.10, depending on the sample. 
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Figure 2.16 | Graphical representation of the area ratio parameter. a, An exemplary raw cell contour as 
detected by the thresholding algorithm (top) and the same contour encircled by its convex hull (bottom). 
b, Graphical representation of the area ratio parameter, which is defined as the ratio between the convex hull and 
measured area. c, Example of contours with area ratio above 1.05 (left), typically excluded from analysis, and with 
area ration below 1.05 (right). The area shaded in green in the bottom row corresponds to the area difference 
between convex hull and measured area. This figure is modified from Urbanska, Rosendahl, Kräter et al.316. 

Aspect ratio. Aspect ratio is defined as the ratio between the length and the height of the cell contour’s 

bounding box (size x to size y). It is useful for excluding elongated objects, and particularly well suited 

for filtering out red blood cells (RBCs) in analysis of whole blood samples. RBCs are present in the 

whole blood ~1,000 times excess with respect to white blood cells (WBCs), thus, when analyzing WBCs 

is of interest, it is recommended to gate out RBCs during the measurement to avoid recording of 

excessive amount of data. Due to their shape and their softness, RBCs have much larger aspect ratio 

values compared to other cells, and setting the aspect ratio to values between 0.5 and 2 effectively 

excludes RBCs from the measurement5. Aspect ratio can also assist in filtering out cell doublets and 

cell aggregates, those however, are also discarded using area and area ratio filters as described above. 

2.7.2. Statistical analysis 

Large cell numbers evaluated in RT-DC measurements lead to low standard errors of the analyzed 

parameters and, as a consequence, overestimated significance in standard statistical tests such as 

Student’s t-test or Mann-Whitney U test361. Thus, rather than comparing the cell populations measured 

in the individual experiments or pooled from many experiments, it is more appropriate to test the 

reproducibility of the observed differences among several replicates. A statistical approach that enables 

replicate-based analysis that has proven to be well suited for the RT-DC data analysis is the 

implementation of linear mixed-effects models with random intercept and random slope. Such models 

set the random variation caused by experimental noise and day-to-day variation into relation with the 

difference that might be induced by the treatment/sample type, and estimates a meaningful p-value. 

The linear mixed-effects model analysis can be used in Shape-Out, and is based on the lme4 package362 

for R (R Core Team; http://www.r-project.org/).  Its implementation for RT-DC data analysis is 

discussed in detail elsewhere361.
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— Chapter 3 — 
A comparison of three deformability cytometry classes 

operating at different timescales 

Deformability cytometry encompasses a class of microfluidics-based approaches for mechanical 

characterization of single cells at throughputs orders of magnitude higher than classical methods (see 

Table 1.1). Such microfluidic approaches allow for robust assessment of the ability of cells to change 

shape under applied forces — their deformability — and enable comprehensive characterization of 

homogenous and heterogenous cell populations in short time. The high throughput of the 

deformability cytometry methods, together with the ease of the instrument handling and the high 

automatization potential, render these approaches suitable for applications not only in basic research 

but also in clinical settings294. 

The three major deformability cytometry classes, introduced in Section 1.5.5, include constriction-

based deformability cytometry (cDC), shear flow deformability cytometry (sDC) and extensional flow 

deformability cytometry (xDC). These classes differ in type and magnitude of applied stress, the rate at 

which cells are deformed, and the way deformability is parametrized. Thus, it is not straightforward to 

draw conclusions about the results obtained with different methods. The variability in types of analyzed 

samples and preparation conditions in the published datasets additionally limit the possibility to directly 

compare the performance of the methods using previous results. Despite many demonstrated 

applications of the respective methods and substantial work on identifying cellular structures that 

contribute to deformability changes within the individual methods, a direct comparison of their 

performance is still missing. 

To address this gap, we performed a highly-standardized cross-laboratory study comparing 

representatives of the three deformability cytometry classes: (i) an SMR-based cDC variant9, 

(ii) RT-DC21 as an example of sDC, and (iii) DC1 as an example of xDC. With these methods, we 

evaluated deformability of human promyelocytic leukemia (HL60) cells — from the same source and 

passage number — in two standardized assays, subjecting the cells to osmotic changes and to 

latrunculin B (LatB)-induced actin disassembly. I have performed the RT-DC measurements and 

coordinated the project. The cDC measurements were performed by Josephine Shaw Bagnall in the 

group of Prof. Scott R. Manalis at Massachusetts Institute of Technology, Cambridge, MA, USA, and 

the xDC measurements were performed by Hector E. Muñoz in the group of Prof. Dino Di Carlo at 

University of California, Los Angeles, CA, USA. The comparative analysis was performed by myself in 

collaboration with Hector E. Muñoz.
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3.1. Results 

3.1.1. Representatives of the three deformability cytometry classes 

As a cDC representative, we used an SMR-based variant utilizing a silicon microcantilever with an 

embedded microfluidic channel9. The microchannel features a constriction smaller than the cell size 

(6 μm wide, 15 μm high, and 50 μm long; Figure 3.1a) close to the cantilever tip. The cell suspension 

is driven through the channel by a constant pressure of 1 kPa, and the cells are in contact with the 

channel wall when passing the constriction. The time taken by the cell to enter and pass through the 

constriction is assessed using changes in the resonance frequency of the SMR (Figure 3.1a). For cDC, 

cell deformability 𝐷𝐷 is defined as the inverse of cell passage time (Figure 3.1a). The method operates 

with a throughput of a few cells per second and a strain rate of 0.04 kHz. 

In sDC and xDC — here represented by RT-DC21 and DC1, respectively — cells are deformed in a 

contactless manner by hydrodynamic forces, and the assessment of cell deformability is based on 

high-speed imaging. Yet, these two methods differ in the type of channel geometries used, and more 

importantly, in the probing timescales and Reynolds numbers characterizing their operation 

(see Table 3.1). The dimensionless Reynolds number (Re = 𝜌𝜌𝜌𝜌𝜌𝜌
 𝜂𝜂

, where 𝜌𝜌 is the fluid density, 𝑣𝑣 the mean 

flow velocity, 𝐿𝐿 the characteristic length of the flow system, and 𝜂𝜂 the dynamic viscosity of the fluid) 

expresses the relative importance of inertial and viscous forces at given flow conditions. For the 

experimental parameters used in this study, Re is equal to 0.4 for sDC and 150 for xDC. The very low 

Re in case of sDC (<< 1) indicates a dominance of viscous forces, characteristic for the type of laminar 

flow called Stokes flow. xDC, in turn, operates in an inertial flow regime, where inertial forces cannot 

be neglected and can lead to useful effects such as cell focusing299. 

The operation of sDC is described in great detail in Chapter 2. In brief, cells are driven through a 

funnel-like constriction into a narrow microfluidic channel where they are deformed by shear forces 

and pressure gradients into a bullet-like shape21,298 (Figure 3.1b). The steady-state cell deformation 

evaluated at the end of the 300-μm long channel, defined as 1−circularity (Figure 3.1b), constitutes 

the measure of cell deformability. It takes a few milliseconds for each cell to translocate through the 

deformation channel, which gives an estimate of the strain rate of 0.2 kHz. Typically, over 100 cells per 

second can be analyzed. For HL60 cells, chips with a 20 μm × 20 μm channel were used; which, 

together with hydrodynamic focusing implemented upstream of the deformation channel, assures that 

cells are not in contact with the channel walls. The stress acting on the cells during the deformation in 

the 20-μm channel and 0.04 μl s−1 flow rate reaches values close to 1 kPa (see 

Supplementary Figure A.3). 

In xDC, cells are deformed into ellipsoids by an extensional flow at a cross-junction of a microfluidic 

chip (Figure 3.1c). The cells arrive at the cross-junction with a speed of several meters per second, 

from which they are fully decelerated and deformed via inertial forces within a few microseconds. 
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In that way, over 1,000 cells per second can be analyzed. Cell size is determined from images recorded 

before the cell extension, and deformability, 𝐷𝐷, is defined as the maximal aspect ratio observed in the 

extensional flow region. The channels forming the junction have a rectangular cross-section of 

60 μm × 30 μm. Before entry to the analysis region, cells are aligned via inertial focusing in serpentine 

channels, and do not interact with the channel walls. Compared to sDC and cDC, xDC applies several 

times higher stress, and reaches a strain rate of 20 kHz (see Table 3.1 and Appendix A). 

 
Figure 3.1 | Representatives of the three deformability cytometry classes used in this study. a–c, 
Operation principle of cDC (a), sDC (b) and xDC (c). Each panel includes a schematics of chip geometry (upper 
row), the definition of deformability 𝐷𝐷 (middle row), and a typical scatter plot of 𝐷𝐷 versus cell diameter (lower 
row). Color maps in scatter plots correspond to event density The numbers 1–5 in the plot of frequency vs time 
correspond to the cell positions in the cDC microchannel indicated in the scheme above. The strain rates and 
stresses applied to the cells in the respective methods are indicated on the axes at the bottom. This figure is 
reprinted from Urbanska, Muñoz et al.363.  

The cell size and deformability data obtained during the measurements are typically displayed on scatter 

plots (Figure 3.1). Hallmark parameters of the three deformability cytometry classes are summarized 

in Table 3.1. The estimation of applied stresses and induced strains for the respective methods is 

outlined in Appendix A. 
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Table 3.1 | Characteristic operation parameters of cDC, sDC, and xDC. This table is adapted from 
Urbanska, Muñoz et al.363 

3.1.2. Osmotic shock-induced deformability changes are detectable in all three 

methods 

To compare cDC, sDC, and xDC side-by-side, we first performed a series of hyper- and hypo-osmotic 

shock experiments on HL60 cells. In hyperosmotic shock, in which the buffer osmolarity exceeds 

physiological one, water is driven out of cells to compensate for the difference in osmolyte 

concentrations between the cell interior and the exterior364 (Figure 3.2). This leads to decreased cell 

size and increased molecular crowding inside the cell, what has been linked to elevated cell 

stiffness228,229,231,232. On other hand, in hypo-osmotic conditions water is driven into the cell to 

compensate for the higher osmolyte concentration in the cell interior364. This causes cell swelling and 

dilution of intracellular material (Figure 3.2). Hypo-osmotic swelling has been shown to cause a 

decrease in cell stiffness228,229,231. 

To induce an osmotic shock response, the buffer’s osmolarity was altered with respect to the 

physiological osmolarity of HL60 cells (300 mOsm). Hyperosmotic solutions with osmolarities ranging 

from 400 to 700 mOsm were prepared by adding mannitol to the measurement buffer. Hypo-osmotic 

solutions with osmolarities of 250 and 200 mOsm were prepared by diluting osmolytes in the respective 

measurement buffer in water. To minimize biological batch-to-batch variability in cell properties, we 

utilized a fast-growing HL60 cell subline (HL60/S4) shared between the three participating laboratories 

at the same passage number and used within 10 passages. Cells were exposed to altered osmolarity 

10 minutes prior to the measurements. Consistently across the methods, cell size and deformability 

 cDC sDC xDC 

deformability measure passage time-1 1−circularity aspect ratio 

detection frequency shift imaging imaging 

analysis offline real-time offline 

throughput (cells s−1) 1 100 1,000 

timescale of cell deformation, 𝜏𝜏(ms) 10 1 0.01 

cell contact with channel walls yes no no 

channel width × height (μm) 6 × 15 20 × 20 60 × 30 

mean flow velocity, 𝑣𝑣 (m s−1) 0.01 0.1 3.5 

viscosity of measuring buffer,  𝜂𝜂 (mPa s) 1 5.7 1 

Re in the measuring channel 0.1 0.4 150 

mean absolute strain, 𝜀𝜀 ̅ 37% 17% 24% 

strain rate, �̇�𝜀 (kHz) 0.04 0.2 20 

applied stress, σ (kPa) ~ 1 ~ 1 ~6 
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were decreased in the hypertonic conditions, while increase of both parameters was observed in 

moderate hypo-osmotic challenge (Figure 3.3, Supplementary Figure B.1 and B.2). 

 
Figure 3.2 | Schematic representation of the osmotic shock assay. Decreased extracellular osmolarity 
(hypo-osmotic condition, left-hand side) with respect to the iso-osmotic condition (middle) causes cell swelling 
and dilution of intracellular material. Elevated extracellular osmolarity (hypertonic condition, right-hand side) 
causes cell shrinkage and an increase in macromolecular crowding inside the cell. Arrows indicate the direction 
of water flow. This figure is modified from Urbanska, Muñoz et al.363.  

The response of cells to an osmotic shock is a dynamic process and, after initial cell swelling or 

shrinking, cells are known to undergo a regulatory volume response364. Using sDC, we observed that, 

while in the hypertonic conditions deformability response saturated quickly, in the hypo-osmotic 

conditions the response showed non-monotonic evolution over time (Supplementary Figure B.3), 

with peak appearing at different times after exposure for different conditions. Thus, to avoid 

uncertainty whether or not at the fixed measurement time we captured the magnitude of the response 

accurately, we excluded the hypo-osmotic conditions from data fitting. 

Since deformability is parametrized differently in the respective methods and takes values in different 

ranges, we introduced a normalized value called relative deformability 𝑅𝑅𝐷𝐷 calculated with respect to the 

control condition (see Materials and methods and Supplementary Figure B.2). 

For each method, the relationships between 𝑅𝑅𝐷𝐷 and the normalized extracellular osmolarity in the 

hyperosmotic shock were fit with an exponential curve (Figure 3.3d, Supplementary Table B.1) of 

a following formula: 

 𝑅𝑅𝐷𝐷 = 𝑒𝑒𝜆𝜆(1 − 𝑂𝑂𝑠𝑠𝑂𝑂 𝑂𝑂𝑠𝑠𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖⁄ ), 3.1 

where 𝜆𝜆 is the decay constant that describes the sensitivity of 𝑅𝑅𝐷𝐷 to the change in the osmolarity, 𝑂𝑂𝑠𝑠𝑠𝑠, 

normalized to the isosmotic condition, 𝑂𝑂𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖. We decided to perform the exponential fit because, 

compared to linear and power law fits, it provided the best description of the obtained results across 

methods (Supplementary Figure B.4). 



Chapter 3 

 

 72 

 
Figure 3.3 | Effects of osmolarity changes on cell deformability. a–c, Plots of deformability D vs cell 
diameter for HL60 cells exposed to different osmolarity in an exemplary cDC (a), sDC (b) and xDC (c) 
experiment. Contours delineate 50% density and are accompanied by deformability and cell diameter histograms. 
The osmolarity values are color-coded as indicated in the respective legends. d, Relative deformability, RD, as a 
function of normalized osmolarity, 𝑂𝑂𝑠𝑠𝑠𝑠/𝑂𝑂𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖, for cDC (purple), sDC (green) and xDC (yellow) measurements. 
Data points represent means of medians of multiple experimental replicates (n = 3, 4, and 4, for cDC, sDC, and 
xDC, respectively), and error bars represent standard deviation. Lines represent exponential fits to data. 
Hypoosmotic shock data excluded from the fitting procedure is shaded in gray. This figure is modified from 
Urbanska, Muñoz et al.363. 

We observed the same trend of decreasing 𝑅𝑅𝐷𝐷 with increasing osmolarity in all three methods, however, 

the decay constants λ, describing the sensitivity of 𝑅𝑅𝐷𝐷 to the osmolarity changes, differed between the 

methods. The pairwise F-tests on the pairs of curves showed that there is a significant difference 

between the cDC and xDC curves (F2,33 = 167.893, p < 0.001), cDC and sDC curves (F2,33 = 26.856, 

p < 0.001), as well as between sDC and xDC curves (F5,33 = 17.839, p < 0.001). The sensitivity of the 

exponential decay was the highest for cDC, reaching values 1.5 and 3 times higher than the ones 

obtained for sDC and xDC, respectively (Supplementary Table B.1).  
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3.1.3. Ability to detect actin disassembly is method-dependent 

The comparability of the deformability measurements in cDC, sDC, and xDC, was further tested in a 

LatB-induced actin disassembly assay. As described in Section 1.3.1, actin cytoskeleton is a major 

contributor to the mechanical properties of cells, and its destabilisation with chemical agents causes a 

decrease in cell stiffness17,178–180. In suspended cells such as HL60, actin filaments are organised 

predominantly into an actin cortex—a thin, crosslinked filament network underlaying the inner leaflet 

of the plasma membrane32. The marine toxin LatB binds free actin monomers thereby hindering actin 

polymerization and destabilizing actin filaments in a dose-dependent manner365,366 (Figure 3.4). 

 

Figure 3.4 | Schematic representation of the actin disassembly assay. LatB binds to globular actin 
monomers (G-actin) and prevents their polymerization into filamentous actin (F-actin), what leads to dose-
dependent disassembly of actin cytoskeleton. This figure is modified from Urbanska, Muñoz et al.363. 

HL60 cells were treated with a range of LatB concentrations (1−100 ng ml−1, corresponding to 

2.53−253 nM) and DMSO as a vehicle control, and measured using the three respective methods 

(Figure 3.5). Analysis of variance showed that the increasing concentration of LatB had a significant 

effect on the deformability of the cells as measured with cDC (F6,16 = 17.2, p = 3.6 × 10−6) and sDC 

(F6,28 = 34.3, p = 1.2 × 10−11), however, the deformability measured with xDC did not show significant 

changes upon LatB treatment (F6,21 = 0.38, p = 0.89). Though, in xDC a slight decrease in deformability 

was observable for the highest LatB dose (Figure 3.5c–d, Supplementary Figure B.5). Of note, 

treatment with LatB concertations beyond 100 ng ml−1 resulted in lowering of measured 

deformabilities in cDC and xDC (Supplementary Figure B.6). Such high LatB concentrations are 

related to drug-induced substrate detachment observed for adherent cells1,365, and thus may be 

connected to more extensive changes within the actin structure leading to changes in cell integrity. The 

measured cell size remained constant for low LatB concentrations, and decreased slightly for LatB 

concentrations of 50 ng ml−1 (in cDC) and 100 ng ml−1 (in all three methods) (Supplementary 

Figure B.7).  

To parametrize the sigmoidal dose-response of 𝑅𝑅𝐷𝐷 to LatB treatment, we have used a four-parameter 

log-logistic regression model367 of the following formula: 

 𝑅𝑅𝐷𝐷�[LatB], (𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒)� = 𝑐𝑐 + 𝑑𝑑−𝑐𝑐
1+exp �𝑏𝑏(log([LatB])−log (𝑠𝑠))�

, 3.2 
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where [LatB] is the concentration of the drug, and b, c, d, e are the fit parameters, corresponding to: 

b – the steepness of the dose-response curve, c, d –the lower and upper limits of the 𝑅𝑅𝐷𝐷 response, and 

e – the effective EC50 dose at which half-maximum response is obtained. This model yielded a 

significant fit for the cDC and sDC data, which was not the case for the xDC results (Figure 3.5d, 

Supplementary Table B.2).  

 

Figure 3.5 | Effects of LatB-induced disassembly of actin cytoskeleton on cell deformability. a–c, Plots 
of deformability 𝐷𝐷 vs cell diameter for HL60 cells treated with increasing concentrations of LatB in an exemplary 
cDC (a), sDC (b) and xDC (c) experiment. Contours delineate 50% density and are accompanied by 
deformability and cell diameter histograms. The LatB concentrations are color-coded as indicated in the 
respective legends. d, Relative deformability, 𝑅𝑅𝐷𝐷, as a function of LatB concentration for cDC (purple), 
sDC (green) and xDC (yellow) measurements. Data points represent means of medians of multiple experimental 
replicates (n = 3, 5, and 4, for cDC, sDC, and xDC, respectively), and error bars represent standard deviation. 
Lines represent four-parameter log-logistic fits, open circles indicate EC50 values. This figure is modified from 
Urbanska, Muñoz et al.363. 

The EC50 reached similar values for cDC and sDC: 11.9 ng ml−1 (95% CI [6.8, 17.0]) and 15.2 ng ml−1 

(95% CI [9.9, 20.4]), respectively. cDC and sDC also showed comparable magnitude of the maximum 

𝑅𝑅𝐷𝐷 response, as illustrated by the upper limit of the sigmoidal curve yielding 1.5 (95% CI [1.4, 1.5]) for 
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cDC and 1.6 (95% CI [1.5, 1.7]) for sDC. The fits obtained for sDC and cDC did not show significant 

difference in a pairwise F-test (F4,50 = 0.6, p = 0.69), whereas cDC and xDC curves (F4,43 = 44.3, 

p = 1.0 × 10−14), as well as sDC and xDC curves (F4,55 = 63.7, p = 5.3 × 10−20) were significantly 

different. 

3.1.4. Strain rate increase decreases the range of deformability response to actin 

disassembly in sDC 

Each of the three deformability cytometry classes employed in this study has an optimal flow rate range 

at which it operates, thus, achieving corresponding strain rates or stress rate in the respective methods 

is not feasible. Notwithstanding, we decided to test whether increasing the flow rate in sDC 

measurements (within the range conventionally used in this method) would influence the magnitude of 

the measured deformability response to LatB treatment. We assessed the LatB dose-response curves, 

for both deformability and relative deformability, at three different flow rates (fr1 = 2.4 µl min-1, 

fr2 = 4.8 µl min-1, and fr3 = 7.2 µl min-1), and observed that the responses decreased in range with 

increasing flow rate (Figure 3.6). To confirm this observation quantitatively we calculated the response 

range (∆𝐷𝐷,∆𝑅𝑅𝐷𝐷) as a difference between the upper (𝑒𝑒) and lower limits (𝑑𝑑) of the log-logistic regression 

fit (Equation 3.2). The obtained response ranges are summarized in Table 3.2. We further compared 

the relative deformability response curves using a pairwise F-test and could confirm that the curves for 

fr1 and fr2 (F4,62 = 3.1, p = 0.02), fr2 and fr3 (F4,62 = 3.6, p = 0.01), as well as fr1 and fr3 (F4,62 = 15.8, 

p = 5.6 × 10−9) significantly differ from one another. 

 
Figure 3.6 | Increasing the flow rate in sDC impacts the magnitude of deformability response to LatB 
treatment. a−b, Deformability, 𝐷𝐷 (a), and relative deformability, 𝑅𝑅𝐷𝐷 (b), as a function of LatB concentration at 
three different flowrates (fr1 = 2.4 µl min-1, fr2 = 4.8 µl min-1, and fr3 = 7.2 µl min-1). The different flowrates are 
color-coded as indicated in the figure legend (fr1 – gray, fr2 – blue, fr3 – green). Bold open circles indicate EC50, 
faint open circles indicate medians of individual measurements, lines connect means of measurement replicates 
for each flowrate (n = 5), error bars correspond to standard deviation of the mean distributions. Bin-selected data 
was used. This figure is modified from Urbanska, Muñoz et al.363. 
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Table 3.2 | Ranges of response to LatB treatment at different flowrates in sDC. The response range of 
deformability (∆𝐷𝐷) and relative deformability (∆𝑅𝑅𝐷𝐷) was determined as the difference between the upper and lower 
limit. The lower and upper limits of the four-parameter log-logistic model fit are reported together with their 95% 
confidence intervals. 

  deformability   relative deformability  
  lower limit upper limit ∆𝐷𝐷   lower limit upper limit ∆𝑅𝑅𝐷𝐷  

fr1 
 0.067 

[0.063, 0.071] 
0.1024 

[0.097, 1.108] 
0.035   0.99 

[0.94, 1.05] 
1.52 

[1.44, 1.60] 
0.53  

fr2 
 0.099 

[0.094, 0.103] 
0.131 

[0.126, 0.136] 
0.032   1.03 

[0.97, 1.08] 
1.37 

[1.30, 1.43] 
0.34  

fr3 
 0.124 

[0.121, 0.130] 
0.153 

[0.149, 0.158] 
0.029   1.02 

[0.98, 1.06] 
1.25 

[1.21, 1.29] 
0.22  

 

3.2. Discussion 

Establishment and validation of techniques that allow for reliable measurements of mechanical 

properties of cells is crucial for advancing the field of cell mechanics294. A recent comparison across a 

broad range of techniques revealed that the mechanical properties measured for the same cell line varied 

by three order of magnitudes when measured with different methods311. This comparison included a 

set of methods (AFM, magnetic twisting cytometry, particle tracking microrheology, parallel-plate 

rheometry, and optical stretching) that operate at different magnitude of stress and strain rate, use 

different probe size, probing length scale, and measure cells in either suspended or adherent states. 

Here we performed a similar comparison, but focused on microfluidics-based deformability cytometry 

methods for high-throughput mechanical phenotyping. All deformability cytometry classes probe 

whole-cell mechanical properties in suspended cells, what greatly reduces the potential sources of the 

variability compared to the previous study. However, the different methods vary in the magnitude of 

applied stress and the measurement timescale, which defines stress and strain rates (Table 3.1). We 

tested the performance of the three widely-used microfluidic deformability cytometry variants, cDC, 

sDC, and xDC, in two standardized assays of osmotic shock and actin disassembly. In total, half a 

million cells were measured in this study — a number impossible to achieved with traditional, 

low-throughput methods. 

An exponential decrease of deformability with increasing osmolarity was observed with all three 

deformability cytometry methods, though, each method showed a distinct sensitivity of the exponential 

decay (see Figure 3.3 and Supplementary Table B.1). Exposure to osmotic shocks leads to 

multifaceted changes in the cell interior, and influences not only the internal structure and molecular 

crowding within the cytoplasm, but also in the cell nucleus368,369. Furthermore, it was previously 

reported that the osmotic shock can elicit changes in the relative F-actin content122 and actin 

cytoskeleton structure228. The overall changes in mechanical properties were, however, shown to be 
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actin-independent and attributed to macromolecular crowding inside the cell230. Thus, we can conclude 

that all three methods all well suited for detecting changes in intracellular packing.  

LatB-induced actin disassembly resulted in dose-dependent increase of deformability in cDC and sDC 

measurements, while xDC measurements did not show deformability change upon treatment. The 

differences in the ability to detect actin cytoskeleton disassembly between cDC/sDC and xDC can 

likely be attributed to the different strain rates at which the methods are operating. cDC and sDC 

induce strain at the rate of 0.04 and 0.2 kHz, respectively, and show an almost identical change in the 

measured deformabilities upon LatB treatment, as demonstrated by comparable EC50 and maximum 

deformation values at high LatB concentrations (see Figure 3.5d and Supplementary Table B.2). 

The measured EC50 values of 15.2 ng ml−1 (38.5 nM) for sDC and 11.9 ng ml−1 (30.1 nM) for cDC 

correspond roughly to the 68 nM EC50 value reported for a stiffness-based dose-response relationship 

measured for LatB in adherent cells178. xDC, on the other hand, applies strain at a rate of 20 kHz, 

100 times faster than sDC and 500 times faster than cDC, and has been previously reported to not 

measure significant responses to actin cytoskeletal perturbations1. This is presumably due to fluidization 

observed for actin networks at high strains magnitudes and strain rates196,370. Increasing the flow rate 

— and through that the strain rate — decreases the range of deformability response in sDC 

measurements, what further supports the idea of strain rate-dependence of measured response to LatB 

(Figure 3.6). In addition, recent studies have demonstrated that adapting cross-slot xDC to operate at 

lower strain rates enables detection of deformability changes upon disruption of actin cytoskeleton17,181. 

Similarly, using another variant of xDC that relies on cells colliding with a channel wall at a T-junction, 

it was shown that deformation increase after actin disruption is measurable only at low flow rates301. 

Cell stiffness decrease in response to actin disassembly was shown to vanish at high probing frequencies 

also in AFM microrheology27. In particular, at frequencies exceeding 1 kHz, latrunculin-treated cells 

did not show decrease in their storage modulus upon treatment. AFM microrheology uses a very 

different probing modality (oscillatory measurements) and represents a local rather than whole-cell 

measurement. Nonetheless, it is interesting to note that the frequency at which the response to actin 

disassembly subsides lies between the probing frequencies of cDC/sDC and xDC.  

Even though it would be desirable to compare the tested methods when adjusted to operate at 

comparable strain rates, such adjustment is not feasible due to technical limitations. For example, in 

SMR-based cDC, the dynamic range of the measurements on easily deformable cells (such as HL60) is 

diminished at high flow rates, and the differences between treatments becomes hard to capture. With 

the 2-µs illumination time and up to 5,000 fps imaging rate enabled by current hardware in sDC, 

increasing the mean flow velocity beyond 30 cm s–1 would diminish the quality of acquired images by 

motion blurring. Additionally, increasing the flow rate would drive the system away from Stokes flow 

regime and challenge the real-time analysis. Decreasing the flow rate in sDC would require adjusting 

the imaging to avoid capturing the same cell twice and, for many cell types, no measurable deformation 

would be induced. In xDC, in turn, advantage is taken of inertial effects that can be achieved only at 
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Re exceeding 20-30299, and optimal focusing of cells is achieved at flow rates exceeding 700 µl min-1 

(mean flow velocity of 6.5 m s-1)1. Thus, in their standard operation, the measurement timescales of 

cDC, sDC, and xDC cannot be made equal. 

Beyond measuring cell deformability, every presented method offers an additional set of unique 

functionalities. In SMR-based cDC, additional parameters describing cell passage through the 

constriction such as entry and transit velocity can be obtained. More importantly, this method also 

provides a highly sensitive readout of cell buoyant mass9,371. Furthermore, since in cDC cells are in 

contact with channel walls, the measurements of passage dynamics can provide information about 

surface friction experienced by cells that can be relevant to processes such as cancer metastasis9. A 

unique feature of sDC is the real-time processing of acquired images that enables active sorting 

downstream of deformability analysis313. sDC also enables measurements of 1D fluorescence signal in 

three spectral channels in parallel with deformability characterization in a specialized setup312, and 

offers the possibility to extract Young’s moduli from deformability data298,317. Last but not least, a recent 

extension of the sDC method, dynamic RT-DC, enables assignment of viscosity to measured cells by 

analysing the time evolution of cell deformation over the channel length336. xDC offers a throughput 

one order of magnitude higher than sDC, and two orders of magnitudes higher than cDC, and is thus 

best suited for characterization of big cell populations and screening for rare cells. Finally, the bright-

field cell images recorded during sDC and xDC measurements can be used for extraction of additional 

image-based features for cell characterisation, or for AI training. 

Table 3.3 | Demonstrated applications of the different deformability cytometry classes. Summary of 
studies employing different types of deformability cytometry to investigate various processes in cell lines and in 
primary tissue samples. This table is adapted from Urbanska, Muñoz et al.363. 

method demonstrated biological applications 

cDC 

cytoskeleton perturbations3,9,180,295,296,372, chromatin reorganization295, nuclear envelope 
alteration295,373, inflammation mediation3, leukostasis3, cancer cell discrimination48,180, cancer 
cell invasion potential48, endothelial-mesenchymal transition374, osmotic stress372, protein 
synthesis inhibition372, cell cycle progression372, neutrophil differentiation373, oxidative damage 
of erythrocytes375, circulating tumor cells and blood cells dicrimination374,376 

sDC 

cytoskeleton perturbations21,179,377, cell cycle progression21,312, blood cell type 
discrimination5,21,336, cancer malignancy11,377, erythrocyte pathologies5,69, leukocyte 
activation5,6,124, leukemia subtypes discrimination5, stem cell differentiation81,378,379, yeast 
dormancy380, viral infection of a human cell line381, ability to pass through microcirculation28 

xDC 

cytoskeleton perturbation (at low probing rates)17,181, chromatin reorganization382, nuclear 
envelope alteration382, stem cell differentiation1,382,383, characterization of blood cells374 and 
cells in pleural fluids1,10, cancer malignancy10, leukocyte activation1,59, heat-treated 
erythrocytes384 
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The standardised comparison of the three microfluidic-based deformability methods presented in this 

study furthers our understanding of the dominant features responsible for measured deformations 

across different platforms, and can provide a guideline for choosing a method suitable for the specific 

scientific questions to be addressed. While all methods provide a good readout of stiffness changes 

induced by alterations in macromolecular crowding; cDC and sDC, but not xDC operated at high strain 

rates, are suitable for measuring actin cytoskeleton disassembly. xDC, however, was previously shown 

to provide a good readout of changes in structures localised deeper in the cells, such as the nucleus1,382. 

For further reference regarding suitability of individual methods for various applications, a 

comprehensive overview of up-to-date studies using the three different deformability cytometry classes 

is presented in Table 3.3.  

Given the ease of implementation and the different cell mechanics contributors probed, the two assays 

of osmotic compression and actin disassembly presented here, together with relative deformability as 

a normalized deformability metric, could be used as a benchmark validation protocol for microfluidic-

based deformability methods developed in other laboratories. Noteworthy, despite the variability in 

deformability measures used in the individual methods, the relative deformability changes enabled 

universal observation of trends and precise extraction of response parameters, such as shared EC50 

values between cDC and sDC for LatB dose-response experiments. 

In the future, this comparison study could be extended by including additional treatments targeting 

further cellular components. For example, the mechanical properties of the nucleus could be targeted 

by modulating chromatin condensation using drugs such as trichostatin A227,385, or by modulating the 

levels of lamins223–226. To further foster cross-method standardization, engineered particles that 

mechanically mimic cells could be utilized. Hydrogel beads made of polyacrylamide, with size and 

elastic properties similar to those of mammalian cells, are readily available323,386. Several bead batches 

with a range of Young’s moduli could be used to compare the ranges of deformability responses across 

the different platforms. Additionally, a production of gels with independently tunable storage and loss 

moduli (representing elastic and viscous component of the mechanical response) was recently 

demonstrated387. These gels were prepared by entrapping linear polyacrylamide in a permanently 

crosslinked polyacrylamide network. Using a similar approach, beads of comparable storage moduli, 

but varying loss moduli, could be manufactured and used to test how the viscous component of a 

viscoelastic material affects measured deformability at different measurement timescales. 

In sum, this validation study provides a context for interpreting deformability measurements across the 

various deformability cytometry platforms, highlights strengths and limitations of the respective 

methodologies, and fosters cell deformability as a powerful metric for mechanical assessment of single 

cells at high throughputs. 
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In the subsequent chapters of this thesis (Chapters 4 and 5), I performed AFM measurements to 

validate the mechanical differences observed with RT-DC for some of the cell lines probed in the 

respective chapters. The AFM measurements included both indentation experiments and oscillatory 

probing that covered further ranges of timescales (Figure 3.7). The AFM indentation was performed 

on a 0.2 s timescale (extension speed of 5 μm s−1 and indentation depth of approximately 1 μm), and 

the probing in AFM microrheology was performed on the timescale of 5 ms (200 Hz)–0.3 s (3 Hz). 

The results obtained with the different methods are compared in Chapters 4 and 5. 

 
Figure 3.7 | Comparison of timescales used in deformability cytometry and AFM-based probing 
techniques implemented in this thesis. The different deformability cytometry methods cover timescales of 
several μs to several ms, the 1-ms timescale characteristic for RT-DC is marked with darker shading; AFM 
microrheology was sued with 3–200 Hz frequencies that cover 5 ms–0.3 s timescale; AFM indentation 
experiments were performed on a timescale of 0.2 s. 

It is important to note that apart from the measurement timescales, there are further differences 

between deformability cytometry and AFM measurements: (i) while whole-cell deformability is 

measured in deformability cytometry, AFM performs local measurements (here with 5-μm bead), (ii) in 

deformability cytometry cells are always measured in the suspended state, whereases in AFM cells are 

typically measured on a substrate in either adherent or rounded state, (iii) in deformability cytometry a 

mean absolute strain of 17% is applied (Table 3.1), what for 13-μm cell corresponds to roughly 2 μm 

change in cell diameter, in AFM indentation a deformation of ca. 1 μm is induced, and in AFM 

microrheology the magnitude of cantilever oscillations was set to 10 nm (Table 3.4).  

Table 3.4 | Characteristic operation parameters of AFM as compared to RT-DC. 

 RT-DC AFM microrheology AFM indentation 

cell state suspended adherent | rounded adherent | rounded 

deformation scale whole-cell local (5 μm bead) local (5 μm bead) 

timescale 1 ms 5 ms (200 Hz)–0.3 s (3 Hz) 0.2 s 

induced strain 2 μm 10 nm 1 μm  

strain rate 2 mm s−1 0.03–2 μm s−1 5 μm s−1 
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3.3. Key conclusions 

• Three microfluidics-based deformability cytometry classes operating at different timescales 

and stress magnitudes — cDC, sDC, and xDC — were compared in two standardized assays 

of osmotic shock and actin disassembly. 

• All three methods detected exponential decrease in deformability with increasing hyperosmotic 

shock, though, they varied in the sensitivity of the response, which was higher for longer 

deformation timescales. 

• cDC and sDC, but not xDC operating at the highest strain rate, detected deformability increase 

upon actin disassembly. 

• Increasing strain rate in sDC decreased the range of the deformability response to actin 

disassembly. 

• These results suggest that at fast probing timescales (𝜏𝜏 ≪ 1 ms) cellular elements other than 

actin cytoskeleton dominate the response. 
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3.4. Materials and methods 

3.4.1. Cell culture and treatments 

Cell culture 

Stocks of HL60/S4 cell line (RRID: CVCL_II77; a kind gift from Donald E. Olins and Ada L. Olins, 

Department of Biology, Bowdoin College, Brunswick, Maine, 04101, USA) were shared between the 

three participating laboratories at the same initial passage number and were used within 10 passages. 

Cells were cultured in ATCC-modified RPMI 1640 medium (Gibco) supplemented with 1% 

penicillin/streptomycin (Gibco) and 10% heat-inactivated FBS (Gibco) at 37°C, with 5% CO2. 

Subculturing was performed every second day by spinning down the desired number of cells and 

resuspension in fresh medium, the cell concentration in culture was maintain between 105 and 

106 cells ml−1.  

Osmotic shock 

The isosmotic media (cell culture media and measurement buffers) had osmolarity of 300 mOsm as 

measured by freezing point osmomemeter (Fiske 210 Micro-Sample Osmometer, Advanced 

Instruments, MA, USA). Hyperosmotic media were prepared by adding 18.22, 36.43, 54.65, and 

72.86 mg of D-Mannitol (MW: 182.172 g mol−1, Sigma Aldrich, St. Louis, MO) per 10 ml of the 

measurement buffer to obtain solutions of 400, 500, 600, and 700 mOsm, respectively. Hypoosmotic 

media were prepared by adding deionized water to the measurement buffer in 1:2 or 1:5 ratio to obtain 

solutions with osmolarity of 200 and 250 mOsm, respectively. HL60/S4 cells at a culture density 

between 0.5–1.0 × 106 ml−1 were harvested for measurements by centrifugation at 180 × g for 

5 minutes. The cell pellet was resuspended in osmolarity-adjusted measurement buffer and the 

resuspended cells were incubated for 10 minutes at 37°C, 5% CO2 before the measurement. The 

measurements of cell deformability were performed at room temperature (22–24°C). 

LatB treatment  

Latrunculin B (MW 395.5 g mol−1, Sigma Aldrich) was dissolved in DMSO at a concentration of 

1 mg ml−1 to prepare the stock solution, which was then shared between the participating laboratories. 

The stock solution was pre-diluted in DMSO to 10,000 × the desired concentration, so that upon final 

dilution equal DMSO concentration was present in all treatments (0.01 % v/v) (see Table 3.5). 

Subsequently, LatB was diluted 10,000× in the appropriate measurement buffer to final LatB 

concentrations of 1, 5, 10, 25, 50 and 100 ng ml−1. HL60/S4 cells at a density between 0.5 and 

1.0 × 106 ml−1 were harvested by centrifugation at 180 × g for 5 minutes, resuspended in 

LatB-containing solution, and incubated for 30 minutes at 37°C, 5% CO2 prior to the measurements. 

The subsequent deformability measurements were conducted at room temperature (22–24°C). 
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Table 3.5 | Summary of mass and molar concentrations of LatB. 

 
 

mass concentration molar concentration total dilution factor 
pre-dilution 
in DMSO 

DMSO 0.01 % (v/v) - 10,000 × - 

LatB stock 1 mg ml−1 2.53 mM - - 

LatB 
treatment 

0.001 µg ml−1 2.53 nM 1 mln × 100 × 

0.005 µg ml−1 12.65 nM 200,000 × 20 × 

0.01 µg ml−1 25.3 nM 100,000 × 10 × 

0.25 µg ml−1 63.25 nM 40,000 × 4 × 

0.05 µg ml−1 126.5 nM 20,000 × 2 × 

0.1 µg ml−1 253 nM 10,000 × - 

 

3.4.2. Deformability cytometry measurements 

cDC measurements 

All the cDC measurements were performed by Josephine Shaw Bagnall in the group of Prof. Scott R. 

Manalis at the Massachusetts Institute of Technology, Cambridge, MA, USA. The SMR device, with 

overall design and fabrication procedures similar to the previously published ones9, featured a fluidic 

channel with a 6 μm wide, 50 μm long, and 15 μm deep constriction. Similar to more recent SMRs388,389, 

the device used in this study (fabricated by CEA-Leti, France) was operated via piezoceramic actuation 

and had a piezoresistive readout system to monitor cantilever vibration frequency. To avoid unspecific 

adhesion to the channel walls, the device interior was passivated with 1 mg ml−1 polyethylene glycol 

(PLL(20)-g[3.5]-PEG(2), SuSoS, Switzerland). A constant pressure of 1.0 kPa was applied throughout 

the experiment to drive cells through the fluidic channel. Single cell buoyant mass and passage time 

were determined from changes in the resonant frequency of the microcantilever. Individual cell 

diameters were estimated from cell volume obtained by combining SMR buoyant mass measurements 

with Coulter counter volume measurements (Multisizer 4, Beckman Coulter, CA, USA) as described 

previously9. 

sDC measurements 

The chip fabrication and experimental procedures connected to sDC measurements are described in 

detail in Chapter 2. In brief, cells were suspended in a viscosity-adjusted measurement buffer 

(0.5% methylcellulose in PBS) and introduced to the microfluidic chip via a syringe pump. The overall 

flow rate during the experiments was set to 0.04 μl s−1 (0.01 μl s−1 sample flow and 0.03 μl s−1 sheath 

flow) unless indicated otherwise. The imaging was performed at the end of a ~300 μm long channel 

with a 20 μm × 20 μm square cross-section with a high-speed camera. The cell area and deformation 

were determined from cell contours in real-time by an image processing algorithm developed in 

house21. Cell diameter was calculated during offline analysis from measured surface area and defined as 
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for a circle with an equivalent surface area. To discard events with rough or incomplete contours, the 

results were filtered for an area ratio between 1.00 and 1.05.  

xDC measurements 

All the cDC measurements were performed by Hector E. Muñoz in the group of Prof. Dino Di Carlo 

at the University of California, Los Angeles, CA, USA. Soft lithography was used to fabricate the xDC 

PDMS devices, which were then bonded to glass slides, according to procedures described in detail 

elsewhere1. Cell suspensions were injected into the microfluidic chip using a syringe pump set to 

750 μl min−1. The dimensions of microfluidic channels close to the cross-junction were equal to 

60 μm × 30 μm. The region of interest was imaged with a high-speed camera at approximately 

500,000 frames s−1, with sub-microsecond exposure time. Videos were analyzed by a MATLAB 

program in an automatized manner. Cell diameter was measured on the undeformed cells before the 

arrival at the junction, and cell aspect ratio was assessed during cell deformation at the junction. Cell 

diameter is estimated as a minimum value of diameters assessed at ±30° with respect to the direction 

perpendicular to the flow. 

3.4.3. Data analysis 

Relative deformability calculation 

Relative deformability, 𝑅𝑅𝐷𝐷, was calculated by dividing the deformability of the treated cells, 𝐷𝐷𝑑𝑑, by the 

median deformability of control cells from a given experimental set, 𝐷𝐷�𝑐𝑐𝑑𝑑𝑠𝑠𝑝𝑝: 𝑅𝑅𝐷𝐷 = 𝐷𝐷𝑡𝑡 
𝐷𝐷�𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐

. The measured 

deformability is influenced the cell size. To reduce the measurement bias for changing cell size across 

conditions, the 𝑅𝑅𝐷𝐷 calculations were based only on deformability values of cells contained with a 1-μm 

wide diameter bin that was most represented among all treatment and control samples for a given 

experimental set (see Supplementary Figure B.2 and B.5). To visualize the influence of the bin 

selection on the observed trends, 𝑅𝑅𝐷𝐷 response for data with no bin, 3-μm bin and 1-μm bin is presented 

in Supplementary Figure B.8 and B.9. 

Osmolarity data curve fitting 

Due to concerns about non-monotonic nature of 𝑅𝑅𝐷𝐷 response over time in hypo-osmotic conditions, 

only hypertonic conditions were used for curve fitting. To best describe 𝑅𝑅𝐷𝐷 as a function of 𝑂𝑂𝑠𝑠𝑠𝑠 𝑂𝑂𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖⁄  

we tested fitting three functions: (i) exponential, (ii) power law, and (iii) linear, constrained to pass 

through a fixed point (1,1) representing control measurement at the 𝑂𝑂𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 (Supplementary 

Figure B.4a–c). The fitting was performed using the nonlinear least-square nls function from the stats 

package in R (R Development Core Team). The goodness of the three respective fits was assessed by 

evaluating their mean absolute residuals and Bayesian information criterion, BIC (BIC function in stats 

package in R). Exponential functions gave best fitting results across the three methods 

(Supplementary Figure B.4d,e). For statistical analysis, exponential fit curves were compared in pairs 
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via the F-test in R390. To account for multiple pairwise comparison across the three datasets, Bonferroni 

adjusted p-values were calculated by multiplying p-values by three391. 

LatB dose–response curve fitting 

𝑅𝑅𝐷𝐷 values were calculated with respect to DMSO vehicle control. 𝑅𝑅𝐷𝐷 response to LatB concentration 

was fit with a four-parameter log-logistic regression curve with the formula presented in 

Equation 3.2367. The fitting was performed using drm function in drc package367 in R. Curves were 

compared in pairs via the F-test in R390. To account for multiple pairwise comparison across the three 

datasets, Bonferroni adjusted p-values were calculated by multiplying p-values by three391. 

Data and code availability.  

Dataset containing numerical values from all deformability measurements supporting findings of this 

study are publicly available on figshare under the following identifier: 

doi:10.6084/m9.figshare.11704119. MATLAB and R codes used to perform statistical analysis and 

generate data representations shown in this chapter are available on GitHub at 

https://github.com/dicarlo-lab/metadeformability. 
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— Chapter 4 — 
Mechanical journey of neural progenitor cells 

to pluripotency and back 

Early embryonic development is a fascinating process in which a blueprint of a body plan emerges 

from a single cell through a series of cell divisions, differentiation, and cellular rearrangements136,392–394 

(see Section 1.2.4). During this process, cells undergo fate transitions that are characterized not only 

by activation of specific gene expression programs, but also by remodeling of cellular architecture. The 

changes in cellular architecture are, in turn, inherently related to changes in cell morphology and 

mechanical properties, both of which can affect successful progression of embryogenesis392,394. 

Developmental cell fate transitions can be studied in vitro using pluripotent stem cells (PSCs) as a model 

system. PSCs have the unlimited ability to self-renew in culture and can develop into cells of all three 

primary germ layers — ectoderm, endoderm, and mesoderm — and therefore into all cells of an adult 

body, but cannot form extraembryonic tissues such as placenta395,396. Two types of PSCs can be 

established from mouse embryos: naïve embryonic stem cells (ESCs) derived from inner cell mass of 

preimplantation blastocyst (E3.5–4.5) and primed pluripotent epiblast stem cells (EpiSCs) derived from 

epiblast of post-implantation embryo (E5.5–7.5)396,397. Apart from isolation from the embryo, PSCs 

can be also obtained by dedifferentiation of (semi-)specialized cells back to the pluripotent state in a 

process called cellular reprogramming. Takahashi and Yamanaka showed in 2006 that it is sufficient to 

express four transcriptional factors: Oct4, Sox2, Klf4, and cMyc (OSKM) to rewire the transcriptional 

network of cells and generate induced pluripotent stem cells (iPSCs)398. Remarkably, ESCs and iPSCs 

can contribute to normal development when injected back into embryo and generate so-called 

chimeras395. iPSCs reprogramming is a dynamic remodeling process which has been widely 

characterized in terms of changes in gene expression patterns399–404, epigenetic landscape405,406 or 

cytoskeletal organization71,407. Yet, little is known about how cell mechanical properties change during 

that process. 

In the study presented in this chapter, I explored reprogramming to pluripotency and differentiation 

along neural lineage as a model to study mechanical phenotype changes in cell fate transitions. In 

particular, I characterized mechanical properties of murine fetal neural progenitor cells (fNPCs) isolated 

from E15.5 embryos during reprogramming towards iPSCs, and the mechanical properties of iPSC 

during differentiation towards the neural lineage. I further characterized mechanically an alternative 

pluripotent state called F-class and, using surface markers, identified mechanical subpopulation of cells 

at intermediate reprogramming stages. Finally, I compared the mechanical phenotype of iPSCs with 
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that of ESCs isolated from E3.5 embryo, to which iPSCs correspond in their potency. Together, the 

cell types characterized in this study span 12 days of murine development (Figure 4.1). 

Figure 4.1 | Stem cell model of developmental transition from neural precursor cells to pluripotent stem 
cells. Cellular reprogramming and differentiation along neural axis were studied in vitro. fNPCs isolated from 
E15.5 mouse embryos were reprogrammed to iPSCs. iPSCs correspond in their potency to ESCs derived from 
the inner cell mass of E3.5 embryos. F-class is an alternative pluripotent state that is a by-product of transgene-
induced reprogramming. iPSCs were differentiated back to NPCs to study the process reverse to reprogramming. 

4.1. Results 

4.1.1. fNPCs become progressively stiffer during reprogramming to pluripotency 

fNPCs with an integrated cassette for doxycycline (dox)-inducible expression of the OSKM  factors 

were used to follow mechanical phenotype changes during transition of specialized cells towards 

pluripotency. The timeline of the reprograming is summarized in Figure 4.2a. On day 0, OSKM 

expression was initiated by addition of dox to the fNPCs culture. Dox was supplemented daily until 

day 19, and removed afterwards to stabilize cells in a transgene-independent state. To guide the cells 

towards the ground state of pluripotency, starting on day 14 the medium was additionally supplemented 

with two inhibitors: PD0325901 and CHIR99021 (2i), targeting MEK1/2 and GSK3α/β, 

respectively408,409. From day 7 onwards formation of round, dome-like colonies characteristic of 

pluripotent stem cells was observed (Figure 4.2a). On the days indicated in Figure 4.2a, cells were 

harvested and characterized using RT-DC. Area-deformation scatter plots for four reference stages 

(day 0, 7, 14, and 28) along the reprogramming process are presented in Figure 4.2b. As visualized by 

the contour plots in area-deformation space (Figure 4.2c), the fNPCs increased in size and cross 

multiple isoelasticity lines towards the stiffer phenotype over the reprogramming process. The observed 

stiffening is further visualized by comparing the distributions of Young’s moduli extracted from the 

area-deformation data (Figure 4.2d, see also Supplementary Figure C.1 and C.2). 
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Figure 4.2 | fNPCs become progressively stiffer during reprogramming to pluripotency. a, Time course 
of reprogramming of fNPCs towards pluripotency. Bright field images show representative cell morphologies. 
Scale bar corresponds to 200 µm. b, Deformation–area scatter plots of cell populations characterized by RT-DC 
on reprogramming days 0, 7, 14, and 28. Color map indicates event density. c, Contour plots of cell populations 
from reprogramming days 0, 7, 14, 23, and 28. Solid lines delineate 95% density and dashed lines 50% density. 
The populations are color-coded as in a. d, Young’s moduli extracted for cell populations in c. Boxes on top of 
violins extend from 25th to 75th percentiles, with a dot at the median, whiskers indicate 1.5 × IQR. This figure 
is modified from Urbanska et al.378. 

To validate that fNPCs were successfully reprogrammed to iPSCs, changes in expression of neural 

markers and pluripotency-related genes were assessed at the final stage of reprogramming (after day 28) 

compared to the initial population of fNPCs. The qRT-PCR analysis showed upregulation of 

pluripotency genes (Nanog, endogenous Oct4 (Oct4*), and E-cadherin (Ecad)) and downregulation of 

neural markers (Sox1, Nestin, Vimentin (Vim) or N-cadherin (Ncad)), confirming the acquisition of 

pluripotent state (Figure 4.3). 
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Figure 4.3 | Expression signature of neural and pluripotency markers confirms successful 
reprogramming. Fold change of expression of selected neural markers (magenta) and pluripotency markers 
(green) assessed in fully reprogrammed iPSCs as compared to fNPCs using qRT-PCR. Bars represent means and 
error bars represent standard deviation for n = 3 biological replicates. This figure is adapted from 
Urbanska et al.378. 

Since iPSCs are pluripotent cells that morphologically, transcriptionally and functionally resemble 

ESCs, I wondered whether the mechanical phenotype of iPSCs is comparable to that of ESCs. To test 

that, I performed several measurement replicates on ESCs and compared the obtained results with that 

obtained for iPSCs. As illustrated in Figure 4.4, there is no significant difference between the Young’s 

moduli obtained for ESCs and iPSCs. 

 
Figure 4.4 | Mechanical phenotype of iPSCs is equivalent to that of ESCs. a–b, Area–deformation contour 
plots for multiple RT-DC measurements performed on iPSCs (a) and ESCs (b). Dark solid line outlines 95%-
density contour and dashed line outlines 50%-density contour of data pooled from all experiments. Shaded 
regions cover 95%-density areas for populations from individual experiments. c, Young’s moduli derived for 
iPSC and ESC. Data points represent medians of individual RT-DC measurements from a and b. Boxes extend 
from the 25th to 75th percentiles, with a line at the median, whiskers indicate 1.5 × IQR. Statistical analysis was 
performed using a linear mixed-effects model on all measurement replicates. This figure is modified from 
Urbanska et al.378.  

Next, I sought to confirm the mechanical phenotype difference between the terminal states of 

reprogramming using another established mechanical characterization technique, namely, AFM. iPSCs 

had higher stiffness than fNPCs as measured by AFM indentation on rounded cells (Figure 4.5b), 
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qualitatively reproducing the RT-DC results (Figure 4.5a). In terms of absolute values, the Young’s 

moduli of both fNPCs and iPSCs were higher when measured with RT-DC (Figure 4.5; 

Supplementary Table C.1). While AFM measurements on rounded cells settled on the substrate are 

more comparable with the suspended cell state measured in RT-DC, additional AFM measurements 

on adherent cells were performed to check if observed differences are influenced by substrate 

attachment (see Figure 4.5d–f for exemplary images of measured cells). Also in the adherent state, 

higher Young’s modulus values were observed for iPSCs than for fNPCs (Figure 4.5c). The summary 

of median Young’s moduli corresponding to Figure 4.5a–c is presented in Supplementary 

Table C.1. Together, the collected data show that iPSCs are stiffer than fNPCs across different 

methods and independent of measuring suspended or adhered cells. 

 
Figure 4.5 | iPSCs are stiffer than fNPCs in RT-DC measurements as well as in AFM measurements on 
rounded and adherent cells. a–c, Young’s moduli of fNPCs and iPSCs obtained in an RT-DC 
measurement (a), in an AFM measurement on rounded cells (b), and in an AFM measurement on adherent 
cells (c). d–f, Representative bright field images of fNPCs and iPSCs measured in suspension in RT-DC (d), 
measured in rounded state with AFM (e), and measured while adhering to the substrate in AFM (f). The dark 
triangle visible in the images in e and f is the AFM cantilever. Scale bars represent 40, 50, and 50 μm for d, e, and 
f, respectively. In a–c, boxes on top of the violins extend from 25th to 75th percentiles, with a dot at the median, 
whiskers indicate 1.5 × IQR. Data points indicate individual cells. Statistical analysis was performed using two-
sided Wilcoxon rank sum test. This figure is modified from Urbanska et al.378. 

Interestingly, iPSCs, that show round cell morphology also when attached to the substrate 

(Figure 4.5f), had similar Young’s modulus independent of measuring in suspended 



Chapter 4  

 

 92 

(0.853 ± 0.489 kPa, median ± MAD; Figure 4.5b) or adherent state (0.871 ± 0.599 kPa, 

median ± MAD; Figure 4.5c) (p = 0.25; two-sided Wilcoxon rank sum test). fNPCs, in turn, showed 

a change in morphology from spindle-shaped to rounded when detached from the substrate 

(Figure 4.5e,f), and accompanying increase in Young’s modulus in rounded (0.354 ± 0.109 kPa, 

median ± MAD; Figure 4.5b) as compared to adherent state (0.163 ± 0.075 kPa, median ± MAD; 

Figure 4.5c) (p = 1.45 × 10–10; two-sided Wilcoxon rank sum test).  

 
Figure 4.6 | F-class cells are more compliant than transgene-independent iPSCs. a, Time course of 
fNPCs reprogramming with two different routes leading to transgene-independent iPSCs (upper route) and 
transgene-dependent F-class cells (lower route). b, Contour plots of fNPCs on reprogramming day 0, and F-class 
cells as well as iPSCs at the end of reprogramming. Solid lines delineate 95% density and dashed lines 50% density. 
c, Phase-contrast images of cultures of F-class cells (fuzzy colonies, left panel) and iPSCs (compact colonies, right 
panel). Scale bars represent 200 μm. d, Young’s moduli estimated for fNPCs, F-class cells, and iPSCs from a 
representative RT-DC experiment. e, Young’s moduli estimated for fNPCs, F-class cells, and ESC-like iPSCs 
from a representative AFM indentation experiment on rounded cells. In d and e, boxes on top of violins extend 
from 25th to 75th percentiles, with a dot at the median, whiskers indicate 1.5 × IQR, data points indicate 
individual cells. Statistical analysis was performed using linear mixed-effects models on multiple measurement 
replicates (see Supplementary Figure C.3 and Supplementary Table C.2). This figure is modified from 
Urbanska et al.378. 
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4.1.2. Transgene-dependent F-class cells are more compliant than ESC-like iPSCs 

If dox is not removed from culture towards the end of reprogramming, the cells can stabilize in an 

alternative pluripotent state called F-class410 (Figure 4.6a). F-class cells depend on the ectopic 

expression of the OSKM factors, are highly proliferative, and grow in cell-contact independent manner. 

They form fuzzy colonies as opposed to compact, dome-like colonies characteristic for the dox-

independent ESC-like iPSCs, also referred to as C-class 410 (Figure 4.6c). I tested whether F-class cells 

show a different mechanical phenotype compared to the standard iPSCs and observed that F-class cells 

are more compliant than iPSCs, but less compliant than fNPCs in both RT-DC measurements 

(Figure 4.6b,d) and AFM indentation experiments on rounded cells (Figure 4.6e). Thus, the distinct 

pluripotent F-class cell state is not only characterized by different growth dynamics, but also by a 

distinct mechanical phenotype. 

Of note, even though the directionality of mechanical phenotype changes between the respective cell 

types was the same in AFM and RT-DC, the Young’s modulus values obtained from the RT-DC 

measurements were approximately twice as high as those obtained from the AFM indentation 

measurements on rounded cells (Figure 4.6d,e, Supplementary Table C.2). 

4.1.3. Surface markers unravel mechanical subpopulations at intermediate 

reprogramming stages 

Even though the emergence of pluripotent cells is asynchronous, i.e., at the intermediate 

reprogramming stages there is a mixture of flat adherent cells and pluripotent stem cell-like colonies 

(Figure 4.2a, d7–d23), clearly distinct mechanical subpopulations were not observed (Figure 4.2b,d, 

Supplementary Figure C.1 and C.2). To investigate whether more and less advanced cells present at 

the intermediate stages of reprogramming differ mechanically, I used SSEA1/CD24 surface marker 

staining and took advantage of RT-FDC312 to track cell identity and cell mechanics simultaneously. 

SSEA1 is a known pluripotency marker400,402,411, and CD24 was previously shown to be present in 

F-class cells but absent in iPSCs412.  

On day 0, fNPCs were positive for CD24 (CD24+) and negative for SSEA1 (SSEA1−) (a, day 0). As 

reprogramming progressed, an increasing number of CD24 +/SSEA1+ cells emerged (Figure 4.7a, 

day 2−10, Figure 4.7b). With continuous dox supplementation, F- class cells stabilized in a 

CD24+/SSEA1+ state, whereas upon dox withdrawal, the iPSCs stabilized in a CD24− state with 

moderate expression of SSEA1 (Figure 4.7a, day 28). The mechanical characterization of cells 

corresponding to the marker expression presented in Figure 4.7 is presented in Supplementary 

Figure C.2. 
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Figure 4.7 | The evolution of CD24/SSEA1 expression during fNPC reprogramming towards two 
pluripotency routes. a, Scatters of CD24 vs SSEA1 surface marker expression along the time course of 
reprogramming towards F-class and iPSCs. The signals of SSEA1-APC and CD24-FITC represent maximum 
fluorescence intensity recorded with fluorescence channels 1 and 3, respectively, of the RT-FDC setup. 
b, Graphical representation of gating for CD24+/SSEA1−, CD24+/SSEA1+ and CD24−/SSEA1+/− cells. 
c, Evolution of relative content of the respective populations gated as shown in b on days 0 to 28 of 
reprogramming towards iPSCs (top panel) and F-class cells (bottom panel). This figure is adapted from 
Urbanska et al.378. 

Interestingly, on day 23, shortly after dox withdrawal, cells were distributed among all three marker-

based phenotypes: CD24+/SSEA1− cells corresponding to the start of reprogramming, 

CD24+/SSEA1+ cells corresponding to intermediate reprogramming stage and F-class cells, and 

CD24− cells with moderate expression of SSEA1 that correspond to the ESC-like iPSCs (Figure 4.7a, 
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day 23). The mechanical phenotype of the measured cell population on this day showed a seemingly 

unimodal distribution (Figure 4.8a; Supplementary Figure C.2, day 23). However, when cells were 

classified into groups according to the CD24/SSEA1 expression, it became apparent that the respective 

cell populations differ in their mechanical properties. CD24+/SSEA1− cells were the most compliant 

ones, with phenotype similar to that of fNPCs, CD24+/SSEA1+ cells corresponding to F-class cells 

had intermediate stiffness and highest spread, and CD24− cells, corresponding to fully reprogrammed 

iPSCs were the stiffest (Figure 4.8b,c). The relative stiffness of the three cell groups roughly 

corresponds to the three terminal states of reprogramming (see Figure 4.6). It can be thus concluded 

that even though it is not apparent without surface marker-assisted classification, the distinct 

mechanical subpopulations of cells are present at the intermediate stages of reprogramming. 

 
Figure 4.8 | CD24/SSEA1-based gating reveals mechanical subpopulations on reprogramming day 23. 
a, Area-deformation plot of cell population on reprogramming day 23 (−dox +2i) with delineated 95%-density 
(solid line) and 50%-density (dashed line) contours. b, Color-coded 95%-density (solid lines) and 50%-density 
(dashed lines) contour plots of deformation versus cell area for the cell population from a subdivided into three 
groups based on the expression of CD24 and SSEA1 markers (see Figure 4.7b for the definition of gates). 
c, Distributions of Young’s moduli estimated for CD24+/SSEA1−, CD24 +/SSEA1+, and CD24-/SSEA1+/− 
cells. Boxes on top of the violins extend from 25th to 75th percentiles, with a dot at the median, whiskers indicate 
1.5 × IQR, data points indicate individual cells. Statistical analysis was performed using two-sided Wilcoxon rank 
sum test. This figure is modified after Urbanska et al.378. 

4.1.4. Neural differentiation of iPSCs mechanically mirrors reprogramming of fNPCs 

Next, I asked whether the mechanical phenotype of iPSCs could be reversed to that of fNPCs in the 

process of differentiation towards the neural lineage. Neural differentiation was induced by seeding 

cells at low density and culturing them in N2B27 medium. In the absence of Lif and 2i, pluripotent 

cells are known to spontaneously differentiate towards the neural lineage413. To further facilitate the 

commitment towards neural progenitors, the growth medium was supplemented with epidermal 

growth factor (EGF) and fibroblast growth factor 2 (FGF2) on differentiation day 7, when neural 

rosettes began to form (Figure 4.9a). Mechanical characterization with RT-DC revealed that, inversely 

to fNPC reprogramming, iPSCs became smaller and more compliant during the time course of 

differentiation towards the neural lineage (Figure 4.9b–d, Supplementary Figure C.4 and C.5).  
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Figure 4.9 | iPSCs become progressively softer during differentiation towards neural lineage. a, Time 
course of neural differentiation of iPSCs. Phase contrast images show representative cell morphologies. Scale bar 
represents 200 µm. b, Deformation–area scatter plots of cell populations characterized by RT-DC on 
differentiation days −2, 3, 7, and 11. Color map indicates event density. c, Contour plots of cell populations 
characterized on differentiation days −2, 3, 5, 7, 11, and 13. Solid lines delineate 95% density and dashed lines 
50% density. The populations are color-coded as in a. d, Violin plots of Young’s moduli extracted for cell 
populations in c. Boxes on top of the violins extend from 25th to 75th percentiles, with a dot at the median, 
whiskers indicate 1.5 × IQR. This figure is modified from Urbanska et al.378. 

The successful differentiation towards neural precursors was confirmed by verifying the expression of 

Nanog, Sox2, and Pax6 via immunofluorescence. dNPCs showed loss of pluripotency marker Nanog, 

maintained expression of Sox2 characteristic of the pluripotent state as well as neural fate, and acquired 

expression of neural transcription factor Pax6 (Figure 4.10). This combination of markers confirms 

successful guiding towards the neural lineage during differentiation. The comparison of the mechanical 

phenotype of terminal states of fNPCs reprogramming and neural differentiation of iPSCs illustrates 

that the two processes mirror each other mechanically (Figure 4.11a). 
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Figure 4.10 | The differentiated NPCs lose Nanog, maintain Sox2, and acquire Pax6 expression. 
Immunofluorescence staining for Nanog, Sox2 and Pax6 at the beginning (iPSC) and end (dNPC) of the 
differentiation. Ph, Phalloidin. Scale bars represent 50 μm. This figure is adapted from Urbanska et al.378. 

4.1.5. The closer to the pluripotency, the higher the cell stiffness 

Finally, I collected the mechanical characterization results obtained for various cell states spanning 

developmental stages from naïve pluripotency (represented by ESCs and iPSCs, and corresponding to 

E3.5) to early neural commitment (represented by fNPCs and dNPCs corresponding to E15.5) in 

mouse. Ordering cell states according to their decreasing commitment along neural lineage and 

increasing pluripotency revealed that measured cell stiffness increases with increasingly pluripotent 

character of cells (Figure 4.11b).  

 
Figure 4.11 | Mechanical phenotype along the neural progenitors-pluripotency axis. a, Young’s moduli 
derived from multiple RT-DC experiments for the terminal stages of reprogramming and differentiation. 
b, Young’s moduli derived from multiple RT-DC measurements for cells representing different developmental 
stages from early neural commitment to pluripotency. Data points represent medians of individual RT-DC 
measurements, the numbers of measurements are indicated at the bottom of the plots. Boxes extend from the 
25th to 75th percentiles, with a line at the median, whiskers indicate 1.5 × IQR. Statistical analysis was performed 
using linear mixed-effects models. This figure is modified from Urbanska et al.378.  
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4.2. Discussion 

Intrinsic and extrinsic mechanical cues are gaining recognition as prominent contributors to cell and 

tissue morphogenesis142,414–416. To deepen our understanding of the relationship between cell mechanics 

and cell fate and of the impact of cell mechanics on development, detailed studies on biomechanical 

aspects of cell identity changes are indispensible. To this end, I performed population-scale mechanical 

characterization of cells during cell fate transitions from early neural commitment to pluripotency in 

an in vitro setting. I found that fNPCs acquire stiffer phenotype while being reprogrammed towards 

iPSCs (Figure 4.2), and, conversely, iPSCs become more compliant and retrieve the fNPC phenotype 

during neural differentiation (Figure 4.9). I further showed that mechanically different subpopulations 

are present at intermediate reprogramming stages, and that transgene-dependent F-class cells are softer 

than ESC-like iPSCs (Figure 4.6). The majority of mechanical measurements were performed on 

suspended cells using RT-DC, however, the stiffer phenotype of iPSCs as compared to fNPCs was 

confirmed by AFM indentation measurements on rounded as well as adherent cells (Figure 4.5). By 

comparing a spectrum of cell types along the neural commitment — from the most specified fNPCs 

through EpiSCs and F-class cells to the pluripotent iPSCs and ESCs — we identified that the closer 

the cells are to the pluripotent state, the stiffer their phenotype (Figure 4.11b). 

Contrary to the observations presented here, murine ESCs have been reported to become stiffer during 

differentiation in several previous studies1,70,73. In contrast to differentiation towards neural lineage 

performed here, Pillarisetti et al.70 induced mesodermal differentiation, whereas Chowdhury et al.73 and 

Gossett et al.1 investigated heterogeneous population of differentiated progeny consigning, most likely, 

of cells from all three germ layers. Furthermore, the authors employed different methods for probing 

cell stiffness. Chowdhury et al.73 used optical magnetic twisting cytometry that relies on twisting 

magnetic beads anchored to the cytoskeleton via focal adhesions. Such probing modality characterizes 

local rather than global cell mechanical properties, and can be influenced by the differences in focal 

adhesion formation between measured cell types. Pillarisetti et al.70 employed AFM to probe mechanical 

changes in differentiated cells in adherent cell exclusively. Gossett et al.1 performed measurements with 

DC, which, same as RT-DC, relies on measuring single cells in suspension, but operates at much faster 

timescales and applies higher stress. These operation characteristics decrease the sensitivity of the 

method to cytoskeletal contributions, while potentially increasing chances of capturing nuclear 

contributions (see Chapter 3). Cell stiffening during differentiation observed by DC could therefore 

stem from previously reported increase in nuclear stiffness during differentiation417.  

Some other reports, however, point towards softening of PSCs in early differentiation. Two recent 

studies showed that membrane tension drop, concomitant with decreased RhoA activity and reduced 

membrane-to-cortex attachment, is necessary for early differentiation of ESCs134,135. Even though the 

authors did not measure whole-cell stiffness directly, the drop in membrane tension and, even more 

so, the drop in RhoA activity, are indicative of decreased cell stiffness — active RhoA promotes 



Mechanical journey of neural progenitor cells to pluripotency and back 

 

 99 

actomyosin contractility that increases cortical tension and overall cell stiffness33. Furthermore, other 

studies performed in parallel in our group revealed that early differentiation of PSCs can lead to 

decrease in cell stiffness. Firstly, ESC differentiation towards mesoderm and ectoderm was 

characterized in RT-DC using T-Brachyury and Sox1 reporters, respectively. Both lineages acquired 

softer phenotype during differentiation, with ectodermal fate — corresponding to neural differentiation 

— being associated to softer cell phenotype than mesodermal fate137. Secondly, induction of EMT in 

EpiSCs, that corresponds to differentiation of pluripotent EpiSCs towards mesoderm, was shown to 

result in decreased Young’s modulus of cells (Dr. Maria Winzi, unpublished data).  

The direction of stiffness change during differentiation is likely influenced by the specific fate towards 

which a cell differentiates. Mechanical properties of tissues as well as individual cells are connected with 

their origin. For example, load-bearing tissues such as bone, cartilage or skeletal muscle are 

characterized by high Young’s moduli, while other tissues such as breast or brain have relatively low 

stiffness418. On the level of single cells, osteocytes were shown to be much stiffer than chondrocytes 

or adipocytes77,419, and glial and neuron cells are much more compliant than other eucaryotic cells420. 

We hypothesize that cells from the early embryo exhibit high stiffness that provides for robustness and 

resistance to mechanical forces that promotes survival. The differentiating cells at gastrulation-stage 

embryo need to reorganize and migrate to new locations, for which cell softening could be of benefit 

as demonstrated, for example, for cancer metastasis7,44,103. Finally, the decreased stiffness of fNPCs 

corresponds well with the comparatively low stiffness reported for brain tissue418 and neural cells420. 

The molecular and structural determinants underlying mechanical differences between iPSCs and 

fNPCs observed in this study remain to be determined in the future. Mechanical properties of cells are 

influenced by the organization of cytoskeletal networks, with actin cytoskeleton and its Rho-regulated 

contractility playing a prominent role31–33,155. Thus, evaluation of relative F-actin levels by confocal 

microscopy or flow cytometry assay, imaging of phospho-myosin, as well as evaluation of Rho activity 

using bulk pull-down assays421 or fluorescence sensors422 could provide first insights into potential 

origins of mechanical differences. Furthermore, differences in nuclear-to-cytoplasmic ratio and 

cytoplasmic mass density between NPCs and iPSCs could be tested. Further mechanistic insights could 

be acquired by evaluating activity of the transcriptional co-regulators YAP/TAZ. YAP and TAZ are 

known for their role in mechanotransduction and were shown to respond to cell shape and the changes 

in the actin cytoskeleton tension423. When activated, YAP and TAZ change their localization from 

cytoplasmic to nuclear424. YAP has been shown to play a role in rigidity-dependent differentiation of 

human iPSC towards the neural lineage425,426 and in cell fate specification in the preimplantation stage 

mouse embryo131,427. On a global scale, RNA sequencing or proteomic analysis of iPSCs and fNPCs 

could be performed to screen for potential molecular targets involved in mechanical phenotype 

regulation. Of note, previously published microarray analysis of F-class cells versus iPSCs was used in 

the project aimed at identification of universal cell mechanics regulator presented in Chapter 5. 
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Cell stiffness is an inherent property, and as such could be used as a label-free marker of cell state to 

distinguish pluripotent from differentiated cells12 (see also Section 1.1.3). Procedures currently used 

for derivation of human iPSCs are often inefficient and yield a heterogenous populations of cells that 

include unreprogrammed source cells and reprogramming intermediates428. Thus, isolation of fully 

reprogrammed bona fide iPSCs is crucial for downstream differentiation and administration into 

patients. In turn, after the differentiation, it is important to exclude undifferentiated iPSCs from the 

therapeutic sample because of potential tumorigenicity of pluripotent cells429,430. Biochemical markers 

associated with pluripotency can be used for this purpose, however, most of them require either 

sacrification of cells (e.g. alkaline phosphatase staining431) or introduction of a labeling agent (antibodies 

against surface markers such as SSEA1 in mice411 or SSEA4 and TRA-1-60 in human428). In the light 

of our results, cell stiffness emerges as a marker for selecting fully reprogrammed, pluripotent cells or 

excluding incompletely differentiated cells from heterogeneous populations. Such cell 

enrichment/depletion could be achieved with the aid of mechanics-based cell sorters such as SSAW-

based soRT-FDC313 introduced in Chapter 2. 

As introduced in Section 1.2.4, mechanical properties of cells, apart from being an indicator of cell 

state, can also plays an active role in guiding developmental processes. For example, it has recently been 

shown that cell contractility drives the first lineage decision in the developing mouse embryo427. 

Additionally, the stiffness of individual cells contributes to the local microenvironment stiffness 

perceived by neighboring cells, and through that can influence the fate of cells432–435, or guide cell 

migration in the developing embryo139,140. Mechanical characterization of cells at different stages of 

embryonic development will aid in understanding of local mechanical landscapes in the embryo. In the 

future, with the aid of non-invasive techniques for measurement of cell and tissue mechanics such as 

Brillouin microscopy 305 and stem-cell-derived reconstitution models that recapitulate mammalian 

embryogenesis436–438, the cell-level findings obtained in the presented study could be verified in situ in 

the context of developing 3D structures.  

Taken together, the findings presented in this chapter establish a defined mechanical phenotype 

associated with the state of pluripotency that is shared between ESCs and iPSCs, and could be used as 

a marker of the pluripotent cell state. With respect to NPCs, this phenotype appears stiff. Further 

studies covering differentiation towards other lineages in vitro, as well as in situ mechanical 

characterization of cells in embryos or reconstitution models would be advantageous for creating a 

complete mechanical landscape of murine stem cells during early development. In the long term, such 

efforts will deepen our understanding of the role of cell mechanics in cell fate commitment and 

embryogenesis.  
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4.3. Key conclusions 

• fNPCs become progressively stiffer during reprogramming to pluripotency. 

• Mechanical phenotype of iPSCs is comparable to that of ESCs, suggesting that it could be used 

as a marker of pluripotency. 

• Alternative pluripotent cell state called F-class, maintained by exogenous expression of OSKM 

factors, is softer than ESC-like iPSCs. 

• With the aid of SSEA1/CD24 surface marker staining, mechanical subpopulations of cells 

corresponding to differently advanced cells are revealed at intermediate reprogramming stages.  

• Neural differentiation of iPSCs mechanically mirrors the reprogramming process, in that iPSCs 

become progressively softer and regain the phenotype of fNPCs. 

• Ordering all characterized cell states from the most advanced developmentally fNPCs to the 

most pluripotent iPSCs/ESCs reveals that the more pluripotent the cells are, the stiffer their 

mechanical phenotype.  
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4.4. Materials and methods 

4.4.1. Cell Culture 

fNPCs and ESCs were a kind gift of Prof. Konstantinos Anastasiadis, TU Dresden. Tet-On system for 

dox-inducible expression of OSKM factors in fNPCs was established by Dr. Katrin Neuman439.  

fNPCs 

fNPCs were originally obtained from the telencephalon of E15.5 mouse embryos (strain C57BL/6J)439 

and expanded in NPC medium (Euromed-N (Biozol, Germany), 1× N2 supplement (Gibco, Thermo 

Fisher Scientific, MA, USA), 0.5× B27 supplement (Gibco), 2 mM L-glutamine, 10 ng ml–1 EGF 

(Peprotech), 10 ng ml–1 recombinant FGF2 (MPI-CBG, Dresden, Germany)) on culture-grade dishes 

coated with laminin (2 μg ml–1, Sigma Aldrich). Passaging was performed using accutase (Sigma 

Aldrich). 

ESCs 

ESCs were isolated from E3.5 blastocysts (strain C57BL/6J) according to previously established 

procedures439 and cultured on 0.1% gelatin-coated dishes in FCS/LIF medium (DMEM+Glutamax 

(Gibco), 15% fetal calf serum (Pansera ES, PAN-Biotech), 100 µM β-mercaptoethanol (PAN-Biotech, 

Germany), 2 mM L-glutamine (Gibco), 1 mM sodium pyruvate (Gibco), 1x non-essential amino acids 

(Gibco), 15 ng ml–1 recombinant LIF (MPI- CBG)) with or without a mixture of MEK inhibitor 

PD0325901 (1 µM) and GSK3 inhibitor CH99021 (3 µM) known as 2i. Subculturing was performed 

using 0.1% trypsin solution.  

EpiSCs 

EpiSCs were derived from ESCs according to previously published protocol440 and cultured in N2B27 

medium (50% DMEM/F12, 50% Neurobasal medium (Gibco), 0.5× B27 supplement (Gibco), 0.5× 

N2 supplement (Gibco), 2 mM L-glutamine (Gibco), 100 μM β-mercaptoethanol (PAN-Biotech)) 

supplemented with 12 ng ml–1 recombinant FGF2 (MPI-CBG) and 30 ng ml–1 Activin A (MPI-CBG) 

on dishes coated with fibronectin (10 µg ml–1, Merck Milipore, MA, USA). Passaging was performed 

using accutase (Sigma Aldrich). 

4.4.2. Reprogramming and differentiation 

Reprogramming of fNPCs into iPSCs 

fNPCs with integrated Tet-On cassette for expression of OSKM factors (irtTA-neo PB-tetCMV-

OSKM) were seeded on dishes coated with laminin at a density of 35–70x 105 per cm2 in NPC medium 

with 1 µg ml–1 of dox (Sigma Aldrich) to initiate induction of OSKM expression. The NPC medium 

was replaced with FCS/LIF medium two days after the beginning of reprogramming and refreshed 

daily. For stabilizing of iPSCs, a mixture of MEK inhibitor PD0325901 (1 µM) and the GSK3 inhibitor 
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CH99021 (3 µM) known as 2i was supplemented to the medium on day 14. From day 17 on, dox was 

removed from the culture medium. For the reprogramming towards F-class, 2i was not added and dox 

was added to the culture medium continuously throughout the reprogramming process. The obtained 

iPSCs were cultured on gelatin-coated dishes. 

Neural differentiation of iPSCs 

For neural differentiation, iPSCs were seeded on 0.1% gelatin-coated dishes at a density of 5–

10x 105 per cm2 in FCS/LIF medium without 2i. After overnight incubation, to allow for cell adhesion, 

medium was exchanged to N2B27 and refreshed daily. From day 7 on, the culture was supplemented 

with 10 ng ml–1 of EGF (Peprotech) and 10 ng ml–1 recombinant FGF2 (MPI-CBG). Towards the end 

of differentiation (day 10 or 11), cells were detached using accutase and cultured over a few more 

passages in EGF/FGF2-supplemented N2B27 medium on gelatin-coated dishes. 

4.4.3. Differential expression analysis and immunofluorescent staining 

Quantitative reverse transcription polymerase chain reaction (qRT-PCR) 

For the qRT-PCR analysis, total RNA was isolated using the Aurum Total RNA Mini Kit (Bio-Rad, 

CA, USA), with a DNase treatment on the column. For each qRT-PCR reaction 1 µg of RNA was 

reverse transcribed using the High-Capacity cDNA Reverse Transcription Kit (Thermo Fisher 

Scientific). SYBR Green-based quantitative PCRs were run with the Absolute qPCR Mix (Thermo 

Fisher Scientific) on an Mx3000 qRT-PCR system (Stratagene, CA, USA). Measured transcript levels 

were normalized to Tbp. Samples were run in duplicates and three measurement replicates with samples 

originating from different passages were performed for each conditions. For primer sequences and 

lengths of obtained products see Table 4.1. The calculated fold change in expression corresponds to 

log2 of the ratio of the expression levels in iPSCs to the expression levels in the reference stage (fNPCs). 

Table 4.1 | List of primers used for qRT-PCR analysis. 

gene name sense primer (5’3’) antisense primer (3’5’) product 
length 

Ecad CGACCGGAAGTGACTCGAAA TGTCCGCCAGCTTCTTGAAT 289 bp 

Ncad CCGAGGCCCGCTATTTGTTA CACCAGAAGCCTCCACAGAC 287 bp 

Nestin GCAGGAGAAGCAGGGTCT AGGTGCTGGTCCTCTGGT 228 bp 

Nanog GGAAGCAGAAGATGCGGACT ATGCGTTCACCAGATAGCCC 291 bp 

Oct4* (endog.) TGGAAGCCCCCACTTCACCACA AGCATCCCCAGGGAGGGCTG 131 bp 

Sox1 CCTTGCTAGAAGTTGCGGTC TCACTCAGGGCTGAACTGTG 186 bp 

Vim GGATCAGCTCACCAACGACA AAGGTCAAGACGTGCCAGAG 178 bp 

Tbp CTTCCTGCCACAATGTCACAG CCTTTCTCATGCTTGCTTCTCTG 118 bp 
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Immunofluorescence staining 

For staining, 50 × 104 cells per well were seeded in ibiTreat 8 well µ-slides (ibidi, Germany), cultured 

for 1–2 days and fixed using 4% paraformaldehyde for 10 min. For permeabilization and blocking, cells 

were incubated in PBS with 0.3% Triton-X and 10% fetal calf serum for 30 min. Next, primary antibody 

staining—Nanog (1:200, RCAB002P-F, Reprocell, Japan), Sox2 (1:100, AB5603, Merck Millipore) and 

Pax6 (1:10, DSHB, TX, USA)—was performed overnight at 4°C in staining solution (0.3% Triton-X 

in PBS). Samples were washed several times with PBS and the secondary staining was performed using 

the staining solution containing Cy2-conjugated donkey secondary antibodies (1:500, Jackson 

ImmunoReserach, PA, USA), DAPI (1:5000, D1306, Molecular Probes, OR, USA), and Phalloidin-

TRITC (1:500, P1951, Sigma Aldrich) for 30 min at room temperature. Imaging was performed on an 

inverted confocal laser scanning microscope (LSM700, Zeiss) using a Plan-Apochromat 20×/0.8 air 

objective (Zeiss). 

4.4.4. Mechanical characterization of cells 

RT-DC measurements 

Mechanical characterization of cells using RT-DC was performed at room temperature using 0.5% MC 

measurement buffer and 20 µm chip according to procedures described in detail in Chapter 2. For 

plotting and further analysis, data were filtered for 50–500 µm2 cell area and 1.00–1.05 area ratio. Area 

ratio is defined as the ratio between the area enclosed by the convex hull of the contour and the area 

enclosed by the contour. Contour plots were generated using Shape-Out 1.0.1 (available at 

https://github.com/ZELLMECHANIK-DRESDEN/ShapeOut). Young’s modulus values were 

derived using lookup table from numerical simulations for an elastic solid317 implemented in Shape-Out 

1.0.1.  

RT-FDC measurements with fluorescence staining 

For simultaneous evaluation of surface marker expression and mechanical properties of single cells, an 

RT-FDC setup with integrated fluorescence detection was used312. Prior to loading into setup, detached 

cells were stained for 10 minutes with Anti-SSEA-1-APC (1:10, REA321, Miltenyi Biotec, Germany) 

and CD24-FITC (1:10, M1/69, Miltenyi Biotec) antibodies in a 0.3% BSA solution in PBS. 

Fluorescence was collected in channels 1 (excitation with 488 nm laser / emission band pass filter 

525/50 nm) and channel 3 (excitation with 640 nm laser / emission band pass filter 700/75 nm). Peak 

maxima served as an estimate of fluorescence intensity and were used for gating and plotting. 

Atomic force microscopy (AFM) 

AFM indentation experiments were performed using the Nanowizard 1 and 4 setups (JPK Instruments, 

Germany). Tip-less silicone cantilevers with a force constant in the range 0.35–0.45 N m–1(ArrowTM 

TL1, Nanoworld, Switzerland) were equipped with a 5 µm polystyrene beads (microParticles GmbH) 



Mechanical journey of neural progenitor cells to pluripotency and back 

 

 105 

each and used as indenters. Cantilever calibration was performed with the thermal noise method. 

Measurements were performed in CO2-independent medium (Gibco) at a constant temperature of 

37°C maintained using a petri dish heater (JPK Instruments). For measurements on rounded cells, cells 

were detached using 0.1% trypsin solution, placed onto a glass bottom petri dish (FD35100, World 

Precision Instruments, FL, USA) and allowed to settle onto the surface for approximately 10 minutes 

ahead of the measurements. For measurements of adherent cells, cells were plated on glass bottom 

petri dishes and allowed to adhere overnight. Indentation was performed roughly on the cell center 

with the extension speed of 5 µm s–1 to a maximum force of 2 nN. Force–distance curves were 

converted into force–indentation curves and analyzed with the JPK data processing software (JPK 

Instruments ) using Sneddon’s modification of the Hertz model for a spherical indenter442. The force-

indentation curves were fitted to a maximum indentation of 1.5 µm and 0.5 Poisson ratio was assumed. 

For rounded cells, the obtained Young’s modulus values were corrected with (i) an effective probe 

radius for the case of contact between two spherical objects, and (ii) a simplified double contact 

model443 accounting for compression arising from contact with the substrate at the bottom part of the 

cell. The obtained Young’s modulus values correspond to so-called effective/apparent values because 

some of the theoretical assumptions used for the implemented models are not fully satisfied in our 

setup; for example, we cannot assume that measured cells are fully homogenous and purely elastic.  

Statistical analysis  

For statistical analysis of multiple experiment replicates, linear mixed-effects models were implemented 

using the lme4-package in R (R Core Team, Austria). The model of choice included two fixed effects 

and one random effect. The fixed effects were attributed to the sample type and the experimental series; 

and the random effect was attributed to the measurement day. Both slope and intercept were set free 

for fitting. p-values were obtained by performing a likelihood ratio test comparing the model with a 

null model lacking the fixed effect attributed to the cell type. For statistical analysis of individual 

experiments, two-sided Wilcoxon rank sum test was implemented in MatLab (MATLAB R2020a, The 

MathWorks, MA, United States). 
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— Chapter 5 — 
Data-driven approach for  de novo identification of 

cell mechanics regulators 

Characterization of single-cell mechanical properties during cell state transitions, such as cell 

(de-)differentiation along neural lineage discussed in the previous chapter, brings valuable biophysical 

insights into cellular morphogenesis. However, to be able to thoroughly explore the impact of cell 

mechanics on physiological and pathological processes, it is necessary to not only characterize the 

mechanical properties of cells, but also to be able to control them294. Several structural elements of 

cells and regulatory pathways have been identified to contribute to mechanical properties of cells, with 

actomyosin cytoskeleton and its Rho-regulated contractility appearing as the most prominent players33 

(see Section 1.3.1). Targeting cytoskeletal structures when attempting to alter the mechanical properties 

of cells may, however, not be practical, as disruption of cytoskeleton can compromise overall cell 

integrity and function. Thus, it is desirable to identify novel targets that would enable subtle ways of 

intervening with cell stiffness. 

Most of our knowledge about the molecular origins of mechanical properties of cells has been derived 

from chemical or genetic perturbations targeting structures known a priori. Identification of novel 

targets is a challenging task and can be approached by performing large-scale screening using RNA 

interference157,312,444 or small-molecule compound libraries. Alternatively, a reverse-engineered 

mechanomics approach can be undertaken, in which omic profile changes accompanying alterations in 

mechanical phenotype are used for prediction of genes involved in the regulation of mechanical 

properties. The term mechanomics has, so far, been used in context of various studies related to the 

field of mechanobiology. For example, it was used to refer to changes in omics profiles in response to 

a mechanical stimuli such as shear flow, tensile stretch, or mechanical compression445–447, or to describe 

the entirety of the mechanical forces acting on or within cells448–452. Finally, mechanomics has also been 

used to address omics changes that accompany alterations of the mechanical properties of cells453,454 

— a context which is used in this study. 

Within the framework of this project, we developed a system-level inference strategy that enables 

hypothesis-free identification of genes involved in the regulation of mechanical phenotype — an 

approach that we refer to as mechanomics. This approach relies on machine-learning based 

discriminative network analysis termed PC-corr453 applied to transcriptomic signatures related to 

mechanical phenotype changes. First, the PC-corr results obtained for two datasets are overlaid to 

predict a network of target genes with putative roles in the regulation of mechanical phenotype. Next, 
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the identified genes are validated in silico on four further datasets. Finally, the ability of the top scoring 

gene to modify mechanical properties of cells is tested by following the effects of perturbing its 

expression. The computational approach for the identification of target genes was established by 

Dr. Yan Ge and Prof. Carlo Cannistraci (Biotec, TU Dresden). I supported the analysis, performed the 

mechanical characterization experiments and the experimental validation of the top scoring gene on 

cell mechanics. 

5.1. Results 

5.1.1. An overview of the mechanomics approach 

The full pipeline of our mechanomics approach consists of the following step: data curation, target 

prediction, computational validation and experimental validation of the predicted targets (Figure 5.1).  

In the data curation step, transcriptomic datasets encompassing two or more mechanically distinct cell 

states are collected (Figure 5.1). In the current implementation, six datasets originating from various 

mouse and human tissues, and encompassing processes from stem cell development to cancer 

progression, were collected (Table 5.1). RT-DC is employed as a method of choice for mechanical 

characterization of respective cell states. Due to its high throughput, RT-DC is perfectly suited for 

exploring a large variety of systems and states. Gene expression datasets, generated either by RNA 

sequencing (RNAseq) or microarray analysis, were retrieved from online databases (Table 5.1). In the 

target prediction step, selected transcriptomic datasets are used to identify a conserved network module 

of putative target genes involved in the regulation of cell mechanical phenotype (Figure 5.1b). To this 

end, an inference approach termed PC-corr453 is implemented. PC-corr predicts a network of features 

that explain the sample segregation along the principal component (PC) associated with a phenotypic 

change. An overlay of PC-corr analysis performed separately on selected datasets (here two) is used to 

derive a conserved module of genes that are potentially involved in the regulation of cell mechanics. 

The ability of the obtained target genes to correctly classify soft and stiff cell states is next tested in silico 

on the validation datasets (Figure 5.1c) using the area under the curve of the receiver-operator 

characteristics (AUC-ROC)455. The best scoring targets are validated experimentally by monitoring 

mechanical phenotype changes upon their overexpression and downregulation in the cells of choice 

(Figure 5.1d). 
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Figure 5.1 | Overview of a mechanomics approach for de novo identification of genes involved in cell 
mechanics regulation. a, Data curation. Datasets originating from different biological systems encompassing 
cell states with distinct mechanical phenotypes, as characterized by RT-DC, and associated transcriptomics 
profiles are collected. b, Target prediction. A subset of collected datasets is used to perform machine learning-
based network analysis on transcriptomic data and identify conserved module of genes associated with cell 
mechanics changes. PC – principal component. c, In silico validation. The classification performance of individual 
genes from module identified in b is evaluated on remaining datasets. TPR – true positive rate, FPR – false 
positive rate, ROC – receiver operating characteristic, AUC – area under the curve. d, Experimental validation. 
Targets with highest classification performance in silico are verified experimentally in perturbation experiments. 
This figure is modified from Urbanska, Ge et al.456. 
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5.1.2. Model systems characterized by mechanical phenotype changes 

To identify model systems that could be used for mechanomics analysis, we screened the projects 

ongoing in our group in search of cell transitions for which published transcriptomic data were 

available, and the concomitant mechanical phenotype changes were either already documented or 

implicated. A total of six datasets were curated (Table 5.1). The characterization of mechanical 

properties for all cell states in respective datasets was performed using RT-DC.  

The first characterized dataset encompassed patient-derived glioblastoma cell lines cultured in 

conditions supporting different levels of activation of the STAT3-Ser/Hes3 signaling axis involved in 

cancer growth regulation457. As previously demonstrated, the glioblastoma cells are the stiffer, the lower 

the activation of STAT3-Ser/Hes3454 (Figure 5.2a). The second system comprised small-cell and non-

small-cell human carcinoma cell lines originating from three different tissues (intestine, lung, and 

stomach). Small-cell carcinomas have relatively small cell sizes, short doubling times and higher 

metastatic potential connected with poor clinical prognosis in patients458,459. Consistently across tissues, 

small cell-carcinoma cells had a lower Young’s modulus compared to their non-small-cell counterparts 

(Figure 5.2b). In the third studied system, human hematopoietic stem and progenitor cells (HSPCs) 

isolated from mobilized peripheral blood showed a decrease in the Young’s modulus upon treatment 

with a histone deacetylase inhibitor, valproic acid (VPA), that allows for extensive expansion of HSPCs 

in vitro460 (Figure 5.2c). The fourth studied system included breast epithelium MCF10A cell lines 

bearing single-allele oncogenic mutations in the catalytic subunit alpha of the phosphatidylinositol-4,5-

bisphosphate 3-kinase (PIK3CA)461 . The studied mutations (E545K in exon 9 and H1047R in exon 

20) lead to constitutive activation of PIK3CA and an aberrant triggering of the PI3K–AKT–mTOR 

signaling pathway that leads to growth factor-independent proliferation462,463. Both cell lines with 

PIK3CA mutation showed increased stiffness compared to wild type control (Figure 5.2d). The fifth 

system included two states of murine iPSCs; the fuzzy-colony forming state (F-class) and the bone-fide 

compact-colony forming state (C-class)378 described in more detail in Chapter 4. C-class cells had 

higher Young’s modulus than F-class cells (Figure 5.2e). Finally, we characterized three stages of 

developing neurons isolated from embryonic mouse brain464. The stiffness of the cells increased 

progressively with increasing neurogenic commitment; with differentiating progenitors (DPs) 

exhibiting a higher Young’s modulus than proliferating progenitors (PPs) and newborn neurons (NNs) 

exhibiting the highest Young’s modulus (Figure 5.2f). Area-deformation plots of RT-DC data used 

for Young’s modulus extraction for all datasets are presented in Supplementary Figure D.1. 
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Figure 5.2 | Mechanical characterization of divergent cell states in six systems used for the 
mechanomics study. a, Human patient-derived glioblastoma cells with three distinct signaling states maintained 
by indicated culture conditions. b, Small-cell and non-small-cell (non-sc) human carcinoma cell types originating 
from intestine, lung, and stomach. Non-small cell carcinomas include squamous cell carcinomas (sq) and 
adenocarcinoma (ad). c, HSPCs mobilized from human bone marrow treated with valproic acid (VPA) or PBS 
as control. d, Human breast epithelium MCF10A cell lines bearing single-allele mutation in PIK3CA exon 9 
(E545K) or exon 20 (H1047R), together with parental wild type (wt) as a control. e, F- and C-class murine iPSCs 
cultured in the presence or absence of doxycycline (dox) activating ectopic expression of OSKM factors. 
f, Developing neurons isolated from murine embryonic brains at three stages of neural commitment: proliferating 
progenitors (PPs), differentiating progenitors (DPs) and newborn neurons (NNs). Young’s moduli, 𝐸𝐸, are derived 
from RT-DC measurments. In a–f, horizontal lines delineate medians with mean absolute deviation (MAD) as 
error, datapoints represent medians of individual replicates, numbers of replicates are indicated in the plots. 
Statistical analysis was performed using generalized linear mixed-effects model. Data in a and e were previously 
published in Urbanska et al.454 (Chapter 4) and Poser et al.378, respectively. Data in b and e were acquired by 
myself; data in other panels were acquired by collaborators as outlined in Materials and methods. This figure is 
modified from Urbanska, Ge et al.456. 



 

  

Table 5.1 | Mechano-transcriptomic datasets used in this study. P – prediction, V – validation, HT Seq – high-throughput RNA sequencing, CAGE – cap analysis gene 
expression. This table is adapted from Urbanska, Ge et al.456.  

 general information   transcriptomic data   mechanics data  

 dataset name used 
for cell states accession 

number reference technology unique 
entries 

total 
samples method reference 

hu
m

an
 

   

glioblastoma P FGFJI | EGF | 
serum 

GEO: 
GSE77751 Poser et al.454 HT seq 39400 27 RT-DC Poser et al.454 

carcinoma V small-cell | squamous 
| adeno * 

DDBJ: 
DRA000991§ 

FANTOM 
consorptium465 CAGE 18821 8 RT-DC | 

AFM this paper 

HSPCs V untreated | VPA-
treated 

GEO: 
GSE90552 

Arulmozhivarma
n et al.460 HT seq 40101 6 RT-DC this paper 

MCF10A V wt | PIK3CA 
mutation 

GEO: 
GSE69822 Kiselev et al.466 HT seq 38508 6 RT-DC this paper 

m
ou

se
 

 

iPSCs P F-class | C-class GEO: 
GSE49940 Tonge et al.410 microarray 18118 28 RT-DC | 

AFM 
Urbanska 

et al.378 

developing 
neurons V PPs | DPs | NNs GEO: 

GSE51606 Aprea et al.464 HT seq 21110 9 RT-DC this paper 

*from 3 tissues: intestine, lung, stomach 

§the data for samples of interest was extracted using TET tool from the FANTOM5 website https://fantom.gsc.riken.jp/5/ 
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The six mechano-transcriptomic datasets collected for our study (Table 5.1) represent a diverse 

spectrum of systems that come from two different species (human and mouse), several tissues (brain, 

intestine, lung, stomach, bone marrow, breast, as well as embryonic tissue) and are associated with 

processes ranging from cancerogenic transformations to stem cell development. The high diversity of 

datasets is important for directing the analysis towards genes universally connected to the change in 

mechanical properties, rather than on genes specific for processes captured by individual datasets. 

5.1.3. Discriminative network analysis on discovery datasets 

After characterizing the mechanical phenotype of the cell states, we set out to identify genes associated 

with the mechanical phenotype changes across the different model systems. For this purpose, we 

applied a previously established method for inferring phenotype-associated network modules from 

omics datasets termed PC-Corr453. PC-corr was performed individually on two selected discovery 

datasets, and the results were combined to obtain a conserved module of genes.  

Figure 5.3 | Separation of mechanically distinct cell states along PC axis in the discovery datasets. 
a, Visualization of the intersection of glioblastoma and iPSC transcriptomes. Only the 9,452 intersecting genes 
were used for further analysis. b–c, PCA separation along two first principal components of the mechanically 
distinct cell states in the glioblastoma (b) and iPSC (c) datasets. This figure is modified from Urbanska, Ge et al.456. 

For the network construction, we chose two datasets that originate from different species, concern 

unrelated biological processes, and have the highest number of samples included in the transcriptional 

analysis: human glioblastoma and murine iPSCs (Table 5.1). PC-corr analysis was performed on the 

discovery datasets individually using a subset of transcripts at which the two datasets intersect. First, 

the 9,452 unique genes from the intersection were used to perform PC analysis (PCA) (Figure 5.3).  
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Figure 5.4 | Schematic representation of the combined PC-corr analysis on two datasets. a, Processed 
PC loadings from the component providing good separation of mechanical cell states (here PC1, see 
Figure 5.3b,c) are combined with Pearson’s correlation to calculate 𝑃𝑃𝑃𝑃-𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟 value for each pair of genes 𝑖𝑖, 𝑗𝑗 for 
every dataset individually. b, PC-corr results obtained for the two datasets are integrated to obtain a combine 
value 𝑃𝑃𝑃𝑃-𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑠𝑠,𝑗𝑗𝑐𝑐𝑖𝑖𝑂𝑂𝑏𝑏. c, Gene pairs that show same directionality of 𝑃𝑃𝑃𝑃-𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟 value and for which the 𝑃𝑃𝑃𝑃-𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑠𝑠,𝑗𝑗𝑐𝑐𝑖𝑖𝑂𝑂𝑏𝑏 lays 
above specified cut-off are selected for network construction. This figure is modified from Urbanska, Ge et al.456. 

Next, the PC loadings for the component showing good separation between the different cell states 

(PC1 for both of presented datasets, see Figure 5.3b,c) were normalized and scaled (see Materials 

and methods). The processed PC loadings, 𝑉𝑉, were then combined with Pearson’s correlation 

coefficients, 𝑐𝑐, to obtain a 𝑃𝑃𝑃𝑃-𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟 value for each pair of genes 𝑖𝑖, 𝑗𝑗 for every 𝑛𝑛-th dataset according to 

the following formula453: 

 𝑃𝑃𝑃𝑃-𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑠𝑠,𝑗𝑗𝑛𝑛 = sgn�𝑐𝑐𝑠𝑠,𝑗𝑗𝑛𝑛 � min�|𝑉𝑉𝑠𝑠𝑛𝑛|, �𝑉𝑉𝑗𝑗𝑛𝑛�, �𝑐𝑐𝑠𝑠,𝑗𝑗𝑛𝑛 ��. 5.1 

The sign of the 𝑃𝑃𝑃𝑃-𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟 value corresponds to the correlated or anti-correlated expression of genes 𝑖𝑖, 𝑗𝑗, 

and the magnitude of 𝑃𝑃𝑃𝑃-𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟 conveys the combined information about the strength of the correlation 

and the contribution of the individual genes to the phenotype-based separation of samples. 

To integrate the PC-corr results obtained for the discovery datasets, a combined 𝑃𝑃𝑃𝑃-𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟 value, 

𝑃𝑃𝑃𝑃-𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑠𝑠,𝑗𝑗𝑐𝑐𝑖𝑖𝑂𝑂𝑏𝑏, was calculated either as a mean or as a minimum of the individual values. For 𝑛𝑛 datasets: 

 𝑃𝑃𝑃𝑃-𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑠𝑠,𝑗𝑗𝑐𝑐𝑖𝑖𝑂𝑂𝑏𝑏 = �
δ𝑠𝑠,𝑗𝑗  1

𝑁𝑁
∑ �𝑃𝑃𝑃𝑃-𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑠𝑠,𝑗𝑗𝑛𝑛 �𝑁𝑁
𝑛𝑛=1                                

δ𝑠𝑠,𝑗𝑗  min � �𝑃𝑃𝑃𝑃-𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑠𝑠,𝑗𝑗1 �, … , �𝑃𝑃𝑃𝑃-𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑠𝑠,𝑗𝑗𝑛𝑛 � �
 , 5.2 

where δ𝑠𝑠,𝑗𝑗 ∈ {−1,1} defines the sign of 𝑃𝑃𝑃𝑃-𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑠𝑠,𝑗𝑗𝑐𝑐𝑖𝑖𝑂𝑂𝑏𝑏, and is equal to the mode of 𝑃𝑃𝑃𝑃-𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑠𝑠,𝑗𝑗 signs over 

all individual datasets. For the implementation on two datasets, gene pairs with opposing 𝑃𝑃𝑃𝑃-𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟 signs 

were masked by setting their 𝑃𝑃𝑃𝑃-𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑖𝑖𝑂𝑂𝑏𝑏 values to zero. The schematic representation of the 

combined PC-corr analysis on two datasets is presented in Figure 5.4. 

To elucidate the network of target genes, a cut-off was applied to the absolute value of 𝑃𝑃𝑃𝑃-𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑖𝑖𝑂𝑂𝑏𝑏. 

We explored several cut-off strategies in order to obtain a wide overview of the meaningful conserved 

network modules. By looking at 𝑃𝑃𝑃𝑃-𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑖𝑖𝑂𝑂𝑏𝑏 calculated as mean and setting the threshold for its 

absolute value to 0.75, we obtained a network of 29 nodes connected by 30 edges (Figure 5.5a). The 

edges describe the connection between the genes in the network and their thickness is defined by the 
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𝑃𝑃𝑃𝑃-𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑖𝑖𝑂𝑂𝑏𝑏 values (Supplementary Table D.1). The node colors reflect the strength of the 

contribution of individual genes to the separation of the different classes as described by the mean of 

the processed PC loadings 𝑉𝑉. The obtained network can be made more restrictive by using the 

minimum 𝑃𝑃𝑃𝑃-𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑖𝑖𝑂𝑂𝑏𝑏 instead of the mean, or by changing the cut-off value. Using the 𝑃𝑃𝑃𝑃-𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑖𝑖𝑂𝑂𝑏𝑏 

calculated as minimum value (Supplementary Table D.2) and setting the cut-off value to 0.70, we 

obtained a network with 22 nodes connected by 29 edges (Figure 5.5b). Increasing the cut-off value 

to 0.75 resulted in a network of 9 genes connected by 12 edges (Figure 5.5c). The list of genes from 

the three networks presented in Figure 5.5a–c, together with their full names and processed PC 

loading values, is presented in Supplementary Table D.3. 

Figure 5.5 | Identified networks of genes putatively involved in cell mechanics regulation. a–c, Gene 
networks obtained by filtering gene pairs by |𝑃𝑃𝑃𝑃-𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑖𝑖𝑂𝑂𝑏𝑏|. The presented networks were obtained by setting the 
cut-off value to 0.75, when calculating 𝑃𝑃𝑃𝑃-𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑖𝑖𝑂𝑂𝑏𝑏 as mean (a), and to 0.70 (b) and 0.75 (c), when calculating 
𝑃𝑃𝑃𝑃-𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑖𝑖𝑂𝑂𝑏𝑏 as minimum value. The edge thicknesses represent the |𝑃𝑃𝑃𝑃-𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑖𝑖𝑂𝑂𝑏𝑏| and the colors of the nodes 
represent the average processed PC loadings. This figure is modified from Urbanska, Ge et al.456.  

To explore if the genes from obtained networks were related to specific biological process, we 

performed gene ontology (GO) enrichment analysis on the nodes of the network presented in 

Figure 5.5a (9 genes), as well as the union of all nodes presented in Figure 5.5a–c (34 genes). The top 

two significantly enriched terms in the 9-gene set were the negative regulation of transcription by 

polymerase II (GO: 000122) and negative regulation of endothelial cell proliferation (GO: 0001937) 
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(Figure 5.6). In the 34-gene set, apart from a broad term of signal transduction (GO: 0007165), the 

significantly enriched terms included negative regulation of transcription by polymerase II 

(GO: 000122), regulation of cell growth (GO: 0001558), and negative regulation of cell proliferation 

(GO: 0008285). These GO terms included predominantly genes with high expression in the stiff cell 

states. This suggests that transcriptional activity and growth/proliferation are downregulated in stiff 

compared to soft cells. 

 
Figure 5.6 | Gene ontology (GO) enrichment analysis of obtained target genes. a–b, Enriched GO terms 
of biological processes are summarized for 9 genes corresponding to the results from Figure 5.5a (a) and 34 
genes corresponding to all nodes presented in Figure 5.5a–c (b). The analysis was performed using DAVID 6.8 
functional annotation tool online, with Homo sapiens as background dataset, ENSMBL gene IDs as input, and 
focused on direct GO terms for biological processes. Color code of the blocks corresponds to the level of 
expression in stiff states with green corresponding to low expression and magenta corresponding to high 
expression. The reported p-values are the Fisher’s exact p-values obtained using a two tailed two sample t-test. 
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5.1.4. Conserved functional network module comprises five genes 

Regardless of the strategy chosen for the selection of gene pairs, a strongly interconnected module of 

5 genes, including CAV1, FHL2, IGFBP7, TAGLN, and THBS1 (Table 5.2, highlighted in yellow in 

Figure 5.5a–c), was present in the obtained networks. We focused on these five genes for further 

analysis.  

Table 5.2 | List of identified target genes comprising the conserved module. HGNC – HUGO gene 
nomenclature committee (https://www.genenames.org/), MGI – mouse genome informatics 
(http://www.informatics.jax.org/). 

symbol gene description HGNC ID MGI ID 

CAV1 caveolin-1 HGNC:1527 MGI:102709 

FHL2 four and a half LIM domains 2 HGNC:3703 MGI:1338762 

IGFBP7 insulin like growth factor binding protein 7 HGNC:5476 MGI:1352480 

TAGLN transgelin HGNC:11553 MGI:106012 

THBS1 thrombospondin 1 HGNC:11785 MGI:98737 

Caveolin-1, CAV1, is a protein most prominently known for its role as a structural component of 

caveolae. Caveolae are small cup-shaped invaginations in the cell membrane that are involved in the 

mechanoprotective mechanism of buffering the plasma membrane tension209,210,467. Apart from 

membrane organization and membrane domain scaffolding, CAV1 plays a role in an array of non-

caveolar functions such as metabolic regulation or Rho-signalling210,468,469. The second identified target, 

four and a half LIM domains 2, FHL2, is a multifaceted LIM domain protein with many binding 

partners and a transcription factor activity470. FHL2 has recently been shown to remain bound to actin 

filaments under high tension, and be shuttled to the nucleus when the cytoskeletal tension is low471,472 

— a property conserved among many LIM domain proteins472,473. The third target, Insulin-like growth 

factor binding protein 7, IGFBP7, is a secreted protein implicated in a variety of cancers474. It is 

involved in the regulation of processes such as cell proliferation, adhesion, and senescence474. 

Transgelin, TGLN, is an actin-binding protein known to be up-regulated by high cytoskeletal tension475 

and is also known to play a role in cancer476. Finally, thrombospondin 1, THBS1, is a matricellular, 

calcium-binding glycoprotein that mediates cell-cell and cell-matrix adhesions and has many regulatory 

functions477,478. 

The identified target genes show clear differences in expression levels between the soft and stiff cell 

states in both discovery and validation datasets, and provide for fairly good clustering of the samples 

according to cell stiffnesses (Figure 5.7). Of note, the direction of changes in the expression levels 

between the soft and stiff cell states in the validation datasets was not always following the same 
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direction (Figure 5.7c–f, Supplementary Figure D.2). This suggests that the genes involved in cell 

mechanics regulation may have non-monotonic relationship with cell stiffness. 

 
Figure 5.7 | Expression of identified target genes in the discovery and validation datasets. a–
f, Unsupervised clustering heat maps of expression data from transcriptomic datasets for glioblastoma (a), 
iPSCs (b), carcinoma (c), HSPCs (d), MCF10A (e), and developing neurons (f). sc – small-cell carcinoma, non-
sc – non-small-cell carcinoma, sq – squamous cell carcinoma, ad – adenocarcinoma, cnt – untreated control, VPA 
– valproic acid, wt – wild type, mut – mutant, PPs – proliferating progenitors, DPs – differentiating progenitors, 
NNs – newborn neurons. In c, all carcinoma cell lines available in the FANTOM5 dataset are included, the ones 
for which mechanical characterization was performed are highlighted with transparencies, color-coded for tissue 
of origin. This figure is modified from Urbanska, Ge et al.456. 

5.1.5. CAV1 performs best at classifying soft and stiff cell states in validation datasets 

The four remaining datasets (carcinoma, HSPCs, MCF10A and developing neurons) were used to test 

the performance of the five identified genes in classifying the individual samples into soft or stiff 

phenotypes based on the transcription levels of individual genes. For this purpose, we implemented 

AUC–ROC analysis455.  
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Table 5.3 | Results of in silico validation of the predicted targets using AUC-ROC. The table contains 
values of AUC-ROC for target genes obtained for every soft-stiff cell state pair. The average of AUC-ROC values 
obtained for all validation systems is included in the last table row. sc – small cell carcinoma, sq – squamous cell 
carcinoma, adeno – adenocarcinoma, wt, wild type, cnt – untreated control, VPA – valproic acid, PPs – 
proliferating progenitors, DPs – differentiating progenitors, NNs – newborn neurons. This table is adapted from 
Urbanska, Ge et al.456.  

dataset state CAV1 FHL2 IGFBP7 TAGLN THBS1 

carcinoma 

sc vs sq 1 0.84 0.87 0.77 1 

sq vs adeno 0.84 0.61 0.51 0.72 0.61 

sc vs adeno 1 0.90 0.82 0.91 0.74 

MCF10A wt vs H1047R 0.78 1 1 1 1 

HSPCs cnt vs VPA 1 0.94 1 0.84 0.63 

developing neurons 

PPs vs DPs 1 1 0.78 0.50 1 

DPs vs NNs 1 1 0.78 0.67 1 

PPs vs NNs 1 1 0.89 1 1 

mean 0.95 0.91 0.83 0.80 0.87 

The ROC curve is a graphical plot that illustrates the classification ability of a binary classifier system. 

On the 𝑥𝑥 axis of an ROC plot, the false positive rate (FPR) is represented, and on the 𝑦𝑦 axis the true 

positive rate (TPR). We built ROC curves for every soft-stiff pair of cell states from individual datasets 

by swiping through different thresholds of the expression of a given gene and calculating the TPR and 

FPR for classifying the soft and stiff cell states based on these thresholds (Supplementary 

Figure D.3). We then used the area under the ROC curve (AUC–ROC) as a proxy for the performance 

of these one-feature classifiers. AUC–ROC takes values from 0 to 1, with 1 corresponding to a perfect 

classifier and 0.5 to a random classifier. The AUC–ROC values obtained for each gene from the 

conserved module in the respective validation datasets are summarized in Table 5.3. We found that 

CAV1, with an average AUC–ROC score of 0.95, was the best performing classifier. Thus, we set out 

to test experimentally if modifying the levels of CAV1 in cells could elicit the predicted change in their 

mechanical phenotype.  

In most of our datasets, the stiffer phenotypes were associated with high CAV1 expression 

(Figure 5.7). Moreover, we characterized mouse embryonic fibroblasts isolated from CAV1 knock out 

mice (CAV1KO) and observed that their stiffness is lower than that of the wild type cells (WT) 

(Figure 5.8). This led us to hypothesize that artificially decreasing the levels of CAV1 causes cell 

softening, and conversely, increasing the level of CAV1 causes increase in cell stiffness. 
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Figure 5.8 | CAV1 knock-out mouse embryonic fibroblasts (CAV1KO) have lower stiffness compared to 
the wild type cells (WT). a, Western blot analysis of CAV1 expression levels in CAV1KO compared to WT 
cells. b, Plots of area vs deformation for CAV1KO and WT cells characterized with RT-DC. Contour plots 
delineate 95% and 50% density areas (solid lines and filled area, respectively) of data from individual measurement 
replicates (n = 3). The isoelasticity lines in the background (gray) indicate regions of the same Young’s moduli. c, 
Young’s modulus values estimated for WT and CAV1KO cells using area-deformation data in b. Horizontal lines 
delineate medians with mean absolute deviation (MAD) as error, datapoints represent medians of the individual 
replicates. Statistical analysis was performed using generalized linear mixed effects model. Data for this figure was 
acquired by Dr. Fidel-Nicolas Lolo from the group of Prof. Miguel Angel del Pozo (CNIC, Madrid, Spain). This 
figure is adapted from Urbanska, Ge et al.456. 

5.1.6. Perturbing expression levels of CAV1 changes cells stiffness 

To test whether modifying CAV1 expression has an impact on cell mechanical properties, we 

performed perturbation experiments in the cell lines representing two intestine carcinoma types: ECC4, 

the small-cell carcinoma with a comparably soft phenotype, and TGBC18TKB (TGBC), the 

adenocarcinoma with a comparatively stiff phenotype. First, we confirmed that TGBC cells have a 

higher level of CAV1 as compared to ECC4 on a protein level (Figure 5.9a) and that they are 

characterized by a stiffer phenotype, not only when measured with RT-DC (Figure 5.2b), but also 

AFM using both standard indentation experiments, as well as AFM microrheology (Figure 5.9b–c). 

The summary of Young’s modulus values obtained with the different probing techniques for ECC4 

and TGBC cell lines is presented in Supplementary Table D.4 and in Supplementary Figure D.4.  

Next, to decrease the levels of CAV1 in the TGBC cells, we performed knock-down experiments using 

two RNA interference (RNAi) systems, endoribonuclease-prepared siRNA (esiRNA) targeting three 

different parts of CAV1 transcript (esiCAV1-1, esiCAV1-2, and esiCAV1-3), and a pool of 

conventional siRNAs (CAV1-pool). All the RNAi approaches resulted in the decrease of the Young’s 

modulus of TGBC cells as measured by RT-DC (Figure 5.10a–b, Supplementary Figure D.5a–b), 

the most prominent effect was observed using esiCAV1-1. We further confirmed that CAV1 knock-

down with esiCAV1-1 resulted in decreased stiffness of TGBC cells using AFM indentation and AFM 

microrheology measurements (Supplementary Figure D.6). 
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Figure 5.9 | CAV1 expression and mechanical characterization with AFM of small-cell (ECC4) vs non-
small-cell (TGBC) carcinoma cell lines from intestine. a, ECC4 do not show detectable levels of CAV1, 
while TGBC have considerable basal CAV1 expression. For the Western blot analysis representative blots (top) 
as well as quantification (bottom, n = 3) are shown. b, ECC4 show lower Young’s moduli than TGBC in AFM 
indentation experiments. Box plots spread from 25th to 75th percentiles with a line at the median, whiskers span 
1.5 × interquartile range (IQR), individual datapoints correspond to values obtained for individual cells (number 
of measured cells n = 20 and 26 for ECC4 and TGBC, respectively). Statistical analysis was performed using two-
sided two-sample t-test (a) or two-sided Wilcoxon rank sum test (b). c, ECC4 show storage and shear moduli 
lower than TGBC in AFM microrheology measurements. Datapoints correspond to means ± standard deviation 
of all measurements at given oscillation frequencies (n = 18 and 27 for each frequency for ECC4 and TGBC, 
respectively). Lines connecting datapoints serve as guides for the eye. This figure is modified from 
Urbanska, Ge et al.456.  

Figure 5.10 | CAV1 downregulation in TGBC cells results in decreased cell stiffness. a, Western blot 
analysis of CAV1 after knock-down in TGBC cells. Representative blot (top) as well as quantification (bottom, 
n = 4) are shown. Bar plots show means ± standard deviation. Statistical analysis was performed using two-sided 
two-sample t-tests. b, Young’s modulus of TGBC cells upon CAV1 knock-down as measured by RT-DC, 
normalized to respective non-targeting controls (n = 5 and 4 for set 1 and 2, respectively). Horizontal lines 
delineate medians with mean absolute deviation (MAD) as error, datapoints represent medians of the individual 
replicates. Statistical analysis was performed using generalized linear mixed-effects models. This figure is modified 
from Urbanska, Ge et al.456. 

To investigate how CAV1 increase influences cell stiffness, we performed transient overexpression 

experiments of CAV1 with a dTomato reporter under independent ribosomal entry site, IRES, 

(CAV1iT) in both ECC4 and TGBC cell lines. At 72 hours post transfection, we observed elevated 
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levels of CAV1 in both cell lines on a protein level in bulk (Figure 5.11a). Since in the transient 

overexpression experiments not all of the cells are transfected, we leveraged the possibility to monitor 

the fluorescence of single cells in parallel with their mechanical phenotype offered by RT-FDC312and 

gated for the fluorescence-positive cells (T+, gate marked in magenta in Figure 5.11b). The 

fluorescence-positive cells in the CAV1-transfected sample, CAV1iT+, showed higher Young’s moduli 

as compared to fluorescence-negative cells in both control sample (mock) and CAV1-transfected 

sample (CAV1iT–, internal control) (Figure 5.11c, Supplementary Figure D.5c–d). The effect was 

observed in ECC4 as well as TGBC cells, however, it was more pronounced in the TGBC cells, 

suggesting that the cells may be more responsive to the artificial increase in CAV1 levels when natively 

expressing a basal level of this protein. 

 
Figure 5.11 | CAV1 overexpression in ECC4 and TGBC cell lines results in increased cell stiffness. 
a, Western blot analysis of CAV1 after overexpression in ECC4 and TGBC cells. Representative blots (top) as 
well as quantification (bottom, n = 3 and 9, for ECC4 and TGBC, respectively) are shown. Bar plots show means 
± standard deviation. Statistical analysis was performed using two-sided two-sample t-tests. b, Gating for 
fluorescence positive and negative cells based on dTomato expression in ECC4 (top) and TGBC (bottom) cells. 
Fluorescence positive cells correspond to cells expressing CAV1-IRES-dTomato. c, Young’s modulus of ECC4 
and TGBC cells upon CAV1 overexpression as measured by RT-DC, normalized to mock controls (n = 5 and 9 
for ECC4 and TGBC, respectively). Horizontal lines delineate medians with mean absolute deviation (MAD) as 
error, datapoints represent medians of the individual replicates. Statistical analysis was performed using 
generalized linear mixed-effects models. This figure is modified from Urbanska, Ge et al.456. 

Finally, we performed CAV1 perturbation experiments in a breast epithelial cell model of cancerous 

transformation, MCF10A-ER-Src cells, in which the Src proto-oncogene can be induced by treatment 

with tamoxifen (TAM). As previously shown, TAM addition triggers Src phosphorylation and  cellular 

transformation479, which is associated with F-actin cytoskeletal changes and, after a transient stiffening, 

the acquisition of a soft phenotype evident at 36 hours post induction11. We inspected a previously 

published microarray dataset and determined that the expression of CAV1 diminishes over time after 

TAM treatment480 (Figure 5.12a). We then showed that the decrease of CAV1 could be observed on 

protein level at 72 h post induction (Figure 5.12b), a timepoint at which the TAM-induced MCF10A-

ER-Src cells show a significant decrease in cell stiffness as measured by AFM (Tavares et al.11 and 

Figure 5.12c). Interestingly, RT-DC measurements showed an opposing trend, with induced cells 

appearing stiffer than uninduced ones at the 72-h timepoint (Supplementary Figure D.7a). We next 
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showed, using AFM, that decreasing the level of CAV1 by knock-down caused a decrease in stiffness 

of uninduced MCF10A-ER-Src cells similar to that caused by TAM induction (Figure 5.12d). We then 

performed an inverse experiment, in which we rescued the CAV1 levels in TAM-induced MCF10A-

ER-Src cells by transient overexpression. Cells overexpressing CAV1 had increased stiffness, similar to 

that of uninduced cells (Figure 5.12e). Also when measured using RT-DC, CAV1 knock-down in 

MCF10A-ER-Src with the esiCAV1-1 construct resulted in cell softening (Supplementary 

Figure D.7b), while CAV1 overexpression caused an increase in cell stiffness for both EtOH control 

and TAM-induced cells (Supplementary Figure D.7c). Taken together, the results obtained with the 

intestine carcinoma cell lines and MCF10A-ER-Src cells show that CAV1 not only correlates with, but 

also is causative of mechanical phenotype change. 

Figure 5.12 | Perturbations of CAV1 levels in MCF10A-ER-Src cells result in cell stiffness changes. a, 
Inducing transformation of MCF10A-ER-Src cells by tamoxifen (TAM) treatment, as opposed to vehicle control 
(ethanol, EtOH), causes a decrease of CAV1 expression over time, as captured by microarray analysis480. 
Datapoints with error bars represent means ± standard deviation (n = 2, unless indicated otherwise). b, Western 
blot analysis shows the decrease of CAV1 at protein level 72 h post induction. c, MCF10A-ER-Src cells show 
decreased Young’s moduli 72 h post TAM induction. d, CAV1 knock-down in uninduced MCF10A-ER-Src cells 
results in lowering of the Young’s modulus. e, Overexpression of CAV1 in TAM-induced MCF10A-ER-Src cells 
causes increase in the Young’s modulus and effectively reverts the softening caused by TAM induction (compare 
to panel c). Box plots in c–e spread from 25th to 75th percentiles with a line at the median, whiskers span 1.5 × 
interquartile range (IQR), individual datapoints correspond to values obtained for individual cells, the number of 
measured cells per conditions, pooled from n = 3 independent experiments, is indicated below each box. 
Statistical analysis was performed using a two-sided Wilcoxon rank sum test. Data for this figure was acquired by 
Dr. Maria Winzi, the figure is adapted from Urbanska, Ge et al.456. 
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5.2. Discussion 

Establishing ways of manipulating mechanical properties of cells is necessary to enable exploring their 

impact on cell and tissue function294. The increasing ease of screening for single-cell mechanical 

phenotypes thanks to the advent of high-throughput microfluidic methods such as RT-DC, together 

with growing availability of transcriptional profiles accompanying cell state transitions, offers an 

unprecedented opportunity for data-driven discovery of genes involved in the control of mechanical 

phenotype. Here we leveraged this opportunity and performed a discriminative network analysis of 

transcriptomic profiles associated with mechanical phenotype changes across different model systems. 

We elucidated a conserved module of five genes with putative roles in the regulation of cell mechanical 

phenotype, and evaluated the performance of the identified genes in classifying cells into soft and stiff 

states in silico. Finally, we demonstrated on the example of best performing gene, CAV1, that its 

experimental perturbations affect cellular stiffness in the predicted direction. The latter demonstrates 

that the level of CAV1 not only correlates with, but also is causative of mechanical phenotype change.  

The mechanomics approach presented here is a blueprint for hypothesis-free, data-driven strategy for 

the identification of cell mechanics regulators. Importantly, this approach enables integration of 

information from multiple datasets, what allows for focusing the analysis on genes that play a general 

role in cell mechanics regulation rather than on genes specific for the individual experimental models. 

Thanks to the combination of Pearson’s correlation and the discriminative information included in the 

PC loadings, the PC-corr analysis does not only consider gene co-expression — as is the case for 

classical co-expression network analysis481,482 — but also incorporates the relative relevance of each 

feature for discriminating between two or more conditions (in our case, the conditions representing 

soft and stiff mechanical phenotypes). Finally, PC-corr can be implemented on any type of omic data, 

including genomic, transcriptomic, proteomic and lipidomic profiles. 

Surprisingly, we did not observe enrichment of GO terms related to actin cytoskeleton, actomyosin 

contractility, cell adhesion or cell migration — processes that are typically associated with cell 

mechanics — among the elucidated genes (Figure 5.6). However, closer literature research on 

individual targets let us establish some links connecting our targets with cell mechanics and 

cytoskeleton. To begin with, CAV1, in addition to its role in buffering plasma membrane tension209,467, 

is known to interact with Rho-signalling and actin-related regulatory processes210,468,469, and was shown 

to correlate with cell stiffness in Ras-transformed fibroblasts47. Additionally, CAV1 was recently shown 

to modulate the activation of YAP in response to changes in stiffness of cell substrate483 and in the 

mechanical stretch-induced mesothelial to mesenchymal transition484. YAP is an established transducer 

of not only various mechanical stimuli, but also of cell shape and the changes in the actin cytoskeleton 

tension423, the latter being an important determinant of cell stiffness. Conversely, YAP is an essential 

co-activator of CAV1 expression485. In the extended gene networks (Figure 5.5a–b), we found three 

further genes that are identified (CYR61, ANKRD1)486,487 or implicated (THBS1)423 as transcriptional 
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targets of YAP. The next identified target, transgelin, TGLN (also known as SM22α) is an actin-binding 

protein, that stabilizes actin filaments and is positively correlated with cytoskeletal tension488. Transgelin 

is a member of the calponin protein family and one further member of this family, calponin 2, CNN2, 

is present among the genes identified with less stringent criteria (Figure 5.5a–b, Supplementary 

Table D.3). The expression of calponin 2, likewise, stabilizes actin filaments and is increased in cells 

with high cytoskeletal tension489,490. Finally, FHL2 is a transcriptional coactivator that is found, together 

with other LIM domain protein families such as zyxin and paxillin, to localize to actin filaments that 

are under stress471–473. When the cytoskeletal tension is low, FHL2 translocates to the nucleus, thus 

serving as a nuclear transducer of actomyosin contractility471. 

The change in expression of the identified targets is correlated with mechanical properties across all 

datasets, but it does not always follow the same direction (Figure 5.7c–f, Supplementary 

Figure D.2). This non-monotonic relationship between gene expression and the mechanical 

phenotype change suggests that there may be local optima of expression. Furthermore, the effect of 

expression change on cell stiffness may be contextual and depend on the state of cells. This observation 

carries some parallels to the described roles of several of our target genes in cancer progression. For 

example, CAV1 has been implicated to both promote and suppress cancer progression in various 

tissues. It is proposed that the change in CAV1 expression may have different roles depending on the 

stage of caner progression468,491,492. A similar ambiguity of their role in cancer progression was indicated 

for THBS1478 and IGFBP7474. In the future, the dependence of observed mechanical change on starting 

protein levels as well as magnitude of deviation from starting levels need to be studied. It will be further 

important to consider the temporal dynamics of cell response to the change in expression of a given 

gene. Pushing the cell out of its equilibrium may cause the system to respond actively to counterbalance 

the induced change, which, in turn, may lead to oscillations in both the expression levels of manipulated 

protein and its effectors, as well as the mechanical properties of the cell.  

CAV1 perturbations elicited consistent changes in mechanical phenotype in different cell lines. The 

downregulation of CAV1 by RNAi resulted in lowering of Young’s modulus in MCF10A-ER-Src and 

TGBC cell lines consistently across RT-DC (TGBC, Figure 5.10b; MCF10A-ER-Src, Supplementary 

Figure D.7b) and AFM measurements (TGBC, Supplementary Figure D.6; MCF10A-ER-Src, 

Figure 5.12d). Also, the upregulation of CAV1 by transient overexpression resulted in the increase of 

Young’s modulus in both RT-DC (TGBC, Figure 5.11c; MCF10A-ER-Src, Supplementary 

Figure D.7c) and AFM measurements (MCF10A-ER-Src, Figure 5.12e). Surprisingly, however, the 

72-h induction of MCF10A-ER-Src cells with TAM, concomitant with a decrease in CAV1 levels

(Figure 5.12b), resulted in lowering of Young’s modulus as measured by AFM (Figure 5.12c), while

increase of Young’s modulus was observed with RT-DC (Supplementary Figure D.7a). This

discrepancy may be caused by the detached vs substrate-adherent state in which cells are probed in RT-

DC and AFM, respectively. Detaching cells from substrate triggers rearrangements in actin

cytoskeleton that contribute to changes of the mechanical properties341,493. Additionally, previous AFM
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measurement have revealed that substrate-adherent MCF10A-ER-Src undergo softening at 36 h post 

induction with TAM, while no softening was observed for MCF10A-ER-Src cells grown in 3D 

spheroids and dissociated into single cells for mechanical characterization, even after 72 h11. To resolve 

whether the substrate detachment contributes to measured differences, additional AFM measurements 

on rounded cells could be performed. Alternatively, the observed discrepancy could be caused by the 

different probing timescales of AFM (0.2 s) and RT-DC (1 ms), and resulting higher strain rates applied 

by RT-DC.  

Mechanical properties of ECC4 and TGBC cell lines were compared across three methods operating 

at different timescales: RT-DC, AFM indentation and AFM microrheology (see Figure 3.7 and 

Table 3.4 for methods’ comparison). In all three methods, TGBC had higher Young’s modulus than 

ECC4 cells (see Supplementary Table D.4 and Supplementary Figure D.4). The absolute Young’s 

modulus values, however, differed between the methods: the values obtained from the RT-DC 

measurements were higher than for the AFM indentation, and the storage Young’s moduli obtained 

from AFM microrheology were frequency-dependent and took values between those obtained with 

AFM indentation and RT-DC (Supplementary Table D.4). Overall, the Young’s modulus values 

appeared to increase with the probing frequency across the methods (Supplementary Figure D.4). 

This corresponds well with previous reports of cell stiffening with increased probing rate observed 

both for AFM indentation23,24 and in microrheology assays22,25–27. 

Performing the mechanomics analysis on the level of transcriptome, as compared to other omic data, 

is advantageous and disadvantageous at the same time. The limitation of considering mRNA levels is 

that they do not necessarily reflect protein content in cells494. Furthermore, for many proteins it is not 

the absolute protein level that has a functional relevance, but rather the protein activation by, for 

example, phosphorylation or binding with co-activators, or its localization495,496. However, even though 

there are technologies that enable direct delivery of proteins into cells497, it is much more 

straightforward to modify mRNA levels using established genetic tool such as CRISPR-Cas technology 

or RNAi, especially for in vivo applications. Noteworthy, our analysis framework is readily applicable to 

other types of omics data, including proteomic, metabolomic, lipidomic, or glycomic data, the analysis 

of which would complement our study and provide different insights into the regulation of cell 

mechanics. Lipidomic data, for example, could reveal possible contributors to cell mechanics related 

to the composition of cell membrane.  

The experimental verification of the four untested genes (FHL2, IGFBP7, TAGLN, and THBS1) from 

the conserved module remains to be explored in future studies. Since the implemented discriminative 

network analysis elucidates modules of highly interconnected genes, it would be further interesting to 

investigate the regulatory relationships among the genes from the identified module. This could be 

approached by monitoring the expression levels of all genes from the module when one of the genes 

is perturbed. 
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Data-driven approaches such as the one pioneered in this study will become more powerful with 

increasing availability of annotated datasets of mechanical characterization of cells. With the growing 

use of high-throughput cell mechanical characterization techniques, such as deformability cytometry 

methods, the establishment of a database for cell mechanics gains immediate relevance. In our group 

alone, within the timespan of five years since the RT-DC method was originally published21, we have 

accumulated over 100,000 individual mechanical characterization experiments, comprising roughly a 

billion of single cells measured. Once a vast number of mechanics datasets connected to omics profiles 

is available, it will be straightforward to develop a next generation artificial intelligence algorithm 

predicting cell stiffness from given omics profiles. Apart from analyzing divergent cell states, the search 

for mechanical regulators could be complemented by looking into omics data of cells from unimodal 

populations sorted by their mechanical properties — a pursuit that with the advent of high-throughput 

methods for mechanics-based sorting of cells, such as soRT-FDC313 or passive filtration-based 

approaches498, becomes a realistic objective. 

In sum, this work brings together machine learning-based discriminative network analysis and high-

throughput mechanical phenotyping to establish a blueprint workflow for data-driven identification of 

novel targets involved in the regulation of cell mechanics. In the future, the identified targets will 

provide ways to tune the mechanical properties on demand and enable exploring the impact of 

mechanical properties on cellular functions in vitro and in vivo.  

5.3. Key conclusions 

• Mechanomics is a system-level inference strategy for hypothesis-free identification of genes

involved in the regulation of mechanical phenotype.

• Target identification is based on a discriminative network analysis method termed PC-corr that

allows for association of cell mechanical states with large-scale transcriptomic datasets.

• By intersecting the discriminative networks inferred from two selected datasets, a conserved

module of five genes (CAV1, FHL2, IGFBP7, TAGLN, and THBS1) with putative roles in

the regulation of cell mechanics was identified.

• Among the identified targets, CAV1 provides for the best classification of stiff and soft cell

states in computational validation on four further datasets.

• Up- and down-regulation of CAV1 expression induced changes in the mechanical phenotype

in experimental validation.

• Thus, CAV1 not only correlates with but is also causative of mechanical phenotype changes

and can be used for adjusting mechanical properties of cells.
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5.4. Materials and methods 

5.4.1. Cell culture 

Glioblastoma cell lines  

The glioblastoma dataset contained three primary human brain tumour cell lines (X01, X04, and X08) 

in three distinct signalling states. The cells were cultured and characterized within a framework of a 

previous study454. The respective cell states were maintained by growth media containing either fetal 

bovine serum (serum), epidermal growth factor (EGF), or basic fibroblast growth factor combined 

with a JAK inhibitor (FGFJI). Cells were collected for mechanical characterization and RNA 

sequencing after 5-day exposure to the respective culture conditions454. 

Carcinoma cell lines 

Small-cell and non-small-cell carcinoma cell lines from intestine, stomach and lung were acquired from 

RIKEN BioResource Research Center, Japan (see Table 5.4 for the list of cell lines and media). Cells 

were cultured in growth media supplemented with 5% (TGBC) or 10% (rest) heat-inactivated fetal 

bovine serum (10270106, Gibco, ThermoFisher Scientific, MA, USA) and 100 U ml−1/100 µg ml−1 

penicillin/streptavidin (15140122, Gibco), at 37°C and 5% CO2. Sub-culturing was performed using 

trypsin (25200072, Gibco). Cells were collected for mechanical characterization at 70% confluency. 

The RNAseq data was obtained from FANTOM5 consortium465. 

Table 5.4 | Carcinoma cell lines used in this study. List of all carcinoma cell lines acquired from RIKEN 
institute used in this study, together with the catalogue number, tissue of origin, carcinoma type, growth medium 
specification, and passage number at purchase. non-sc – non small-cell, sq – squamous cell carcinoma, ad – 
adenocarcinoma. 

cell line cat no tissue type medium (Gibco cat no) serum passage 

ECC4 RCB0982 intestine small-cell RPMI1640 (11875093) 10% 7 

TGBC18TKB RCB1169 intestine non-sc (ad) DMEM (11885084) 5% 5 

WA-hT RCB2279 lung small-cell MEM (11095080) 10% 54 

EBC-1 RCB1965 lung non-sc (sq) MEM (11095080) 10% 7 

A549 RCB0098 lung non-sc (ad) DMEM (11885084) 10% 92 

ECC10 RCB0983 stomach small-cell RPMI1640 (11875093) 10% 8 

MKN45 RCB1001 stomach non-sc (ad) RPMI1640 (11875093) 10% 6 

MKN1 RCB1003 stomach non-sc (ad) RPMI1640 (11875093) 10% 6 
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MCF10A cell lines with PIK3CA mutations 

MCF10A cell lines with single-allele PIK3CA mutation E545K in exon 9 (ex9) or H1024R in exon 20 

(ex20) were previously generated by homologous recombination by Horizon Discovery LTD, UK461 

and were kindly provided, together with an isogenic wild type (wt) control, by L.R. Stephens (Babraham 

Institute, Cambridge, UK). Cells used for mechanical characterization were prepared by Dr. Joanna 

Durgan and Dr. Oliver Florey (Babraham Institute, Cambridge, UK), and the mechanical 

characterization was performed by Dr. Nicole Toepfner (Universitätsklinikum Carl Gustav Carus 

Dresden). Cells were cultured in DMEM/F12 medium (31330038, Gibco) supplemented with 5% 

horse serum (PAA Laboratories), 10 μg ml−1 insulin (I9278, Sigma Aldrich, MO, USA), 0.2 μg ml−1 

hydrocortisone (H0888, Sigma Aldrich), 0.1 μg ml−1 cholera toxin (C8052, Sigma Aldrich), and 

100 U ml−1/100 µg ml−1 penicillin/streptomycin (15140122, Gibco). The wt cells were additionally 

supplemented with 10 ng ml−1 EGF (E9644, Sigma Aldrich), while mutant cell lines were maintained 

without EGF. Sub-confluent cells were collected for mechanical characterization using trypsin 

(25200056, Gibco). Mechanical characterization was performed on two independent passages with 

three technical repetitions for each passage. The RNAseq data for ex20 and wt cells were retrieved 

from a previous study466, in which cells were cultured in a reduced medium (DMEM/F12 

supplemented with 1% charcoal dextran treated fetal bovine serum, 0.2 μg ml−1 hydrocortisone and 

0.1 μg ml−1 cholera toxin). 

CD34+ hematopoietic stem and progenitor cells 

Hematopoietic stem and progenitor cells were prepared and measured by Dr. Martin Kräter. In brief, 

leukapheresis samples were obtained from G-CSF (granulocyte colony-stimulating factor) mobilized 

peripheral blood of healthy donors after informed consent (ethical approval no. EK221102004, 

EK47022007). CD34+ cells were isolated via magnetic-activated cell sorting (MACS) and cultured 

ex vivo as described in detail elsewhere499. 1 mM VPA, or PBS as a control, were administered to CD34+ 

cells after 24 h in culture. Cells were collected for mechanical characterization and RNA sequencing 

after 5-day exposure.  

Induced pluripotent stem cells 

F- and C-class iPSCs were derived through reprogramming of murine fetal neural progenitor cells with

Tet-On system for doxycycline-inducible expression of OSKM factors as described in details in

Chapter 4.

Developing Neurons 

Developing neurons were isolated and prepared for analysis by Dr. Martina Dori, from the group of 

Prof. Federico Calegari (Center for Regenerative Therapies, TU Dresden), and the mechanical 

characterization was performed by Dr. Maik Herbig. Double-reporter mouse line Btg2RFP/Tubb3GFP

was used to facilitate discrimination of proliferating progenitors (RFP−/GFP−), differentiating 
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progenitors (RFP+/GFP−), and newborn neurons (RFP+/GFP+). Lateral cortices dissected from 

E14.5 murine embryos were dissociated using a papain-based neural dissociation kit (Miltenyi Biotech, 

Germany) and the cell populations of interest were separated based on the RFP/GFP expression using 

FACS as described in detail elsewhere464. RNA sequencing was performed within a framework of a 

previous study464. 

Mouse embryonic fibroblasts 

Previously established, immortalized WT and CAV1KO mouse embryonic fibroblasts derived from 

WT and CAV1KO littermate C57BL/9 mice500 were cultured and characterized by Dr. Fidel-Nicolas 

Lolo from the group of Prof. Miguel Angel del Pozo (CNIC, Madrid, Spain). Cells were cultured in 

DMEM medium (11960044, Gibco), supplemented with 10% fetal bovine serum (10270106, Gibco), 

2 mM glutamine (25030081, Gibco), 100 U ml−1/100 µg ml−1 penicillin/streptomycin (15070063, 

Gibco), at 37°C and 5% CO2. Sub-confluent cells were collected for mechanical measurements by 

trypsinization (25200056, Gibco). 

MCF10A ER-Src cell line 

The MCF10A ER-Src cells were a kind gift from K. Struhl (Harvard Medical School, MA, USA). 

ER-Src is a fusion of the v-Src (viral non-receptor tyrosine kinase) with the ligand-binding domain of 

the estrogen receptor, that can be induced by cell treatment with tamoxifen (TAM)479. Cell preparation 

and characterization were performed by Dr. Maria Winzi. Cells were grown at 37°C under 5% CO2 in 

DMEM/F12 medium (11039047, Gibco), supplemented with 5% charcoal (C6241, Sigma-Aldrich)-

stripped horse serum (16050122, Gibco), 20 ng ml−1 EGF (AF-100-15, Peprotech), 10 mg ml−1 insulin 

(I9278, Sigma-Aldrich), 0.5 mg ml−1 hydrocortisone (H0888, Sigma Aldrich), 100 ng ml−1 cholera toxin 

(C8052, Sigma Aldrich), and 100 U ml−1/100 µg ml−1 penicillin/streptomycin (15070063, Gibco). To 

induce the Src expression cells were plated at 50% confluency, and after allowing to adhere for 24 h, 

treated with 1 µM 4OH-TAM (H7904, Sigma Aldrich) or with identical volume of ethanol as a control. 

Cells were characterized in adherent state using AFM at timepoints specified in the text. 

5.4.2. Mechanical characterization of cells 

Mechanical characterization of cells using RT-DC 

RT-DC measurements for mechanical characterization of cells were performed at room temperature 

according to procedures described in detail in Chapter 2. Young’s modulus values were assigned to 

each cell based on its area and deformation under given experimental conditions (flow rate, channel 

size, viscosity of the medium, temperature) using a look-up table obtained through numerical 

simulations of an elastic solid317 with the aid of Shape-Out (Shape-Out 1.0.1; Zellmechanik Dresden). 

Experimental details (channel sizes, flow rates, measurement buffers) and gates used for filtration in 

respective datasets are listed in Table 5.5. 
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Table 5.5 | RT-DC measurement conditions for the individual datasets. For each dataset experimental 
details of the measuring conditions are listed, including the widths of channel constriction (𝑤𝑤𝑐𝑐ℎ𝑝𝑝𝑛𝑛𝑛𝑛𝑠𝑠𝑝𝑝), total flow 
rates (𝑄𝑄𝑑𝑑𝑖𝑖𝑑𝑑𝑝𝑝𝑝𝑝), percentages of methylcellulose (MC) in the measurement buffer (buffer % MC), effective viscosity 
of the measurement buffer in the channel at the flowrate used (𝜂𝜂𝑠𝑠𝑓𝑓𝑓𝑓), according to Herold318), as well as gates used 
for data filtering. 

measurement conditions data filtering 

𝑤𝑤𝑐𝑐ℎ𝑝𝑝𝑛𝑛𝑛𝑛𝑠𝑠𝑝𝑝 
(μm) 

𝑄𝑄𝑑𝑑𝑖𝑖𝑑𝑑𝑝𝑝𝑝𝑝 
(μl s−1) 

buffer 
% MC 𝜂𝜂𝑠𝑠𝑓𝑓𝑓𝑓 

area 
(μm2) area ratio 

glioblastoma 30 0.16 0.5 5.4 50–600 1.0–1.05 

carcinoma 30 0.16 0.5 5.4 60–600 1.0–1.05 

HSPCs 20 0.06 0.6 6.3 50–175 1.0–1.08 
MCF10A 
PIK3CA 20 0.04 0.5 5.7 75–320 1.0–1.05 

iPSCs 20 0.04 0.5 5.7 50–500 1.0–1.05 

dev neurons 20 0.04 0.5 5.7 25–300 1.0–1.05 

MEFs 30 0.16 0.5 5.4 50–500 1.0–1.05 

MCF10A-ER-Src 30 0.16 0.5 5.4 50–500 1.0–1.11 

Mechanical characterization of cells using AFM 

For AFM measurements, cells were seeded on glass bottom dishes (FluoroDish; FD35100, WPI, FL, 

USA) at least one day in advance. Mechanical characterization was performed on adherent cells in a 

sub-confluent culture in CO2-independent medium (18045054, Gibco) at 37°C (temperature was 

maintained by a petri dish heater, JPK Instruments, Germany). AFM measurements on TGBC and 

ECC4 cell lines were conducted on a Nanowizard 4 (JPK Instruments). Tip-less cantilevers (PNP-TR-

TL, nominal spring constant k = 0.08 N m−1, Nanoworld, Switzerland) decorated a polystyrene bead 

of 5-µm diameter (PS-R-5.0, microParticles, Germany) each were used as the indenters. The cantilever 

spring constants were measured prior to each experiment using the thermal noise method implemented 

in the JPK SPM software (JPK Instruments). For each cell three indentation curves were recorded with 

a piezo extension speed of 5 μm s−1 to a maximum set force of 2 nN. For the microrheology analysis, 

the cantilever was lowered using a piezo extension speed of 5 μm s−1 until a force set point of 1 nN 

was reached, corresponding to an approximate indentation depth 𝛿𝛿0 of 1 µm. The lowered cantilever 

was then oscillated by a sinusoidal motion of the piezo elements at an amplitude of 10 nm for a period 

of 10 cycles. The oscillations were performed sequentially at different frequencies in the range of 3–

200 Hz. Indentation experiments on MCF10A ER-Src cells were conducted as described above, except 

different tip-less cantilevers (Arrow TL1, nominal spring constant k = 0.35–0.45 N m−1, Nanoworld) 

with a 5-µm bead glued at the end were used as the indenter. 
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AFM indentation data analysis 

Recorded force-distance curves were converted into force-indentation curves and fitted in JPK data 

processing software (JPK DP, JPK Instruments) using Sneddon’s modification of the Hertz model for 

a spherical indenter442: 

 𝐹𝐹 = 𝐸𝐸
1−𝜐𝜐2

�𝑝𝑝
2+𝑠𝑠2
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where 𝐹𝐹 denotes the indentation force, 𝐸𝐸 the elastic modulus, 𝜐𝜐 the Poisson's ratio, 𝑎𝑎 the radius of the 

projected contact area formed between the sample and the indenter, 𝑟𝑟 the radius of the indenter, and 

𝛿𝛿 the indentation depth. Poisson ratio was set to 0.5.  

AFM microrheology data analysis 

The force and indentation signals from oscillatory measurements were fitted using a sinusoidal function 

to extract the amplitude and phase angle of each signal. Data were analyzed analogously to the 

procedure described by Alcaraz et al.25 but for a spherical not a pyramidal indenter. Briefly, the method 

relies on the linearization of the Hertz model for a spherical indenter due to small oscillations by using 

the first term of the Taylor expansion and subsequent transformation to the frequency domain: 

 𝐹𝐹(𝜔𝜔) = 2
𝐸𝐸∗(𝜔𝜔)

(1 − 𝜈𝜈2)�𝑟𝑟𝛿𝛿0𝛿𝛿
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where 𝐹𝐹(𝜔𝜔) and 𝛿𝛿(𝜔𝜔) are the force and indentation signals in the frequency domain, respectively, 𝐸𝐸∗(𝜔𝜔) 

is the complex Young’s modulus, 𝜈𝜈 is the Poisson’s ratio assumed to be 0.5, 𝑟𝑟 is the radius of the 

indenter and 𝜔𝜔 is the angular frequency. The complex shear modulus 𝐺𝐺∗(𝜔𝜔) can be written using 

𝐺𝐺∗(𝜔𝜔) = 𝐸𝐸∗(𝜔𝜔)
2(1+𝜈𝜈)

501: 

 𝐺𝐺∗(𝜔𝜔) =  𝐺𝐺′(𝜔𝜔) + 𝑖𝑖𝐺𝐺′′(𝜔𝜔) =
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4�𝑟𝑟𝛿𝛿0

𝐹𝐹(𝜔𝜔)
𝛿𝛿(𝜔𝜔), 5.6 

where 𝐺𝐺′(𝜔𝜔) is the storage modulus and 𝐺𝐺′′(𝜔𝜔) is the loss modulus. The ratio of the force 𝐹𝐹(𝜔𝜔) and 

indentation 𝛿𝛿(𝜔𝜔) is calculated from the measured amplitudes 𝜋𝜋𝐹𝐹(𝜔𝜔) and 𝜋𝜋𝛿𝛿(𝜔𝜔) and the phase shifts 

𝜃𝜃𝐹𝐹(𝜔𝜔) and 𝜃𝜃𝛿𝛿(𝜔𝜔) of the oscillatory signals 502: 
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5.7 

where the difference of the phase shifts �𝜃𝜃𝐹𝐹(𝜔𝜔) − 𝜃𝜃𝛿𝛿(𝜔𝜔)� is in the range of 0º (elastic solid) and 90º 

(viscous fluid). Furthermore, the hydrodynamic drag contribution on the cantilever oscillation was 

estimated and subtracted from the complex shear modulus as previously described503: 
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𝐺𝐺∗(𝜔𝜔) =
(1 − 𝜈𝜈)
4�𝑅𝑅𝛿𝛿0

�
𝐹𝐹(𝜔𝜔)
𝛿𝛿(𝜔𝜔) − 𝑖𝑖𝜔𝜔𝑏𝑏(0)�,

 

5.8 

where 𝑏𝑏(ℎ) is the hydrodynamic drag coefficient function measured from non-contact oscillations of 

the cantilever at different distances ℎ from the sample, and 𝑏𝑏(0) is the extrapolation to distance 0 from 

the sample. For PNP-TR-TL cantilevers, the hydrodynamic drag coefficient was estimated to be 

𝑏𝑏(0) = 5.28 μN s m−1 .  

5.4.3. Perturbation experiments 

CAV1 knock-down 

For RNAi experiments, cells were transfected using RNAiMax reagent (13778030, Thermo Fisher 

Scientific) and a reverse transfection protocol. Per transfection, 200 ng of esiRNA (Eupheria Biotech, 

Germany) or 300 ng of ON-TARGETplus siRNA (Dharmacon, CO, USA) and 2 μl RNAiMax were 

prepared in OptiMEM (31985062, Gibco) according to the manufacturer’s instructions and pipetted 

onto 12-well plates (see Table 5.6 for list of siRNAs used). Cells in 1 ml of culture medium were plated 

on top of the transfection mix at a density allowing for sub-confluent growth within the experimental 

timeframe. 72 h post transfection, cells were collected for the mechanical characterization and Western 

blot analysis.  

Table 5.6 | siRNAs used in the CAV1 knock-down experiments. 

Plasmid for CAV1 overexpression 

The plasmid used for CAV1 overexpression was prepared in our group by Dr. Maria Winzi. The cDNA 

of CAV1 was amplified by PCR, introducing NheI and XhoI restriction sites in the flanking regions. 

The PCR product was then cloned into the pCGIT destination vector (a kind gift from P. Serup, 

University of Copenhagen, Denmark) under the CAG promoter and with dTomato fluorescent marker 

under internal ribosomal entry site (IRES) downstream of CAV1. 

name target commercial name cat no vendor 

rLuc Renilla 
Luciferase RLUC RLUC Eupheria Biotec 

esiCAV1-1 human 
caveolin 1 hCAV1 HU-03125-1 Eupheria Biotec 

esiCAV1-2 human 
caveolin 1 hCAV1, custom design HU-03125-2 Eupheria Biotec 

esiCAV1-3 human 
caveolin 1 hCAV1, custom design HU-03125-3 Eupheria Biotec 

nonT non-targeting ON-TARGETplus  
Non-targeting Pool D-001810-10-05 Dharmacon 

CAV1-pool human
caveolin 1 

ON-TARGETplus  
Human CAV1 siRNA, 
SMARTPool 

L-003467-00-0005 Dharmacon
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Transient CAV1 overexpression in ECC4 and TGBC cells 

ECC4 and TGBC cells were transiently transfected with the CAV1 overexpression plasmid by 

electroporation using Neon Transfection System (MPK5000, Thermo Fisher Scientific). Per 

transfection 0.3 × 106 ECC4 cells, or 0.2 × 106 TGBC cells were mixed with 1 μg of plasmid DNA in 

PBS. Electroporation was conducted using 10 μl Neon tips (MPK1096, Thermo Fisher Scientific) and 

a program of two pulses of 1050 V and 30 ms duration each. Electroporated cells were transferred to 

500 μl of fresh culture medium in a 24-well plate. The cells were collected for mechanical 

characterization and Western blot analysis 72 h post transfection. To identify fluorescent cells during 

mechanical characterization, the combined real-time fluorescence and deformability cytometry 

(RT-FDC)312 setup was used, and the maximum intensity of the fluorescence signal from channel 2 

(excitation 561 nm, 10% laser power; collection 700/75) was used for gating. 

Transient CAV1 overexpression in MCF10A-ER-src cells 

MCF10A-ER-src cells were transiently transfected with the CAV1 overexpressing plasmid using 

Effectene transfection reagent (301425, Qiagen). 24 h before transfection, cells were seeded on glass 

bottom dishes (35-mm; FluoroDish; FD35100, WPI, FL, USA) at a density of 20,000 cells per well. 

Transfection was performed according to the manufacturer’s instruction using following reagent 

volumes per well: 75 μl EC buffer, 0.6 μg plasmid DNA, 4.8 μl Enhancer and 6 μl Effectene reagent. 

24 h post transfection cells were induced with 1 μM TAM. Mechanical analysis was performed after 

additional 72 h of culture. 

Western blotting 

For Western blot analysis of carcinoma and MCF10A-ER-Src cell lines, cell pellets were collected in 

parallel with mechanical measurements and lysed using ice-cold RIPA buffer (89900, ThermoFisher 

Scientific) supplemented with protease/phosphatase inhibitor cocktail (78441, ThermoFisher 

Scientific) and benzonase (E1014, Sigma Aldrich). The lysates were cleared at 4°C by 10-minute 

sonication followed by 10-minute centrifugation at 16,900 g. Obtained supernatants were mixed with 

Laemmli buffer (final concertation: 62.5 mM Tris-HCl (pH 6.8), 2% SDS, 10% glycerol, 5% β-

mercaptoethanol, 0.01% bromophenol blue), boiled (5 min at 95°C), and separated by SDS-PAGE 

electrophoresis on 4–20% gradient gels (Mini-PROTEAN TGX Precast Gels; 4561093, Biorad, CA, 

USA) in MOPS SDS Running buffer (B0001, ThermoFisher Scientific). After transferring the proteins 

onto a PVDF membrane (Merck Millipore), the membranes were blocked in TBS-T (20 mM Tris, 

137 mM NaCl, 0.1% Tween) containing 5% w/v skimmed milk powder (T145.1, Carl Roth, Germany) 

for 40 minutes. Next, membranes were incubated with the primary anti-Cav1 (1:1000; D46G3; #3267, 

Cell Signaling Technology, MA, USA) and anti-GAPDH (1:5000; ab9485, Abcam, UK) antibodies at 

4°C overnight in 5% milk/TBS-T, washed, and incubated with anti-rabbit HRP-conjugated secondary 

antibody (1:4000; ab97069, Abcam). Chemiluminescence detection was performed using Pierce 

Enhanced Chemi-Luminescence (ECL) substrate (32109, ThermoFisher Scientific) and ECL films 
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(GE28-9068-37, Merck Millipore). Films were developed in an OptiMax X-ray film processor 

(KODAK, NY, USA). Quantitative analysis was performed on scanned films using the gel analysis tool 

in JmageJ version 2.0.0-rc-69/1.52p (https://imagej.nih.gov/). For western blot analysis of MEFs 

(performed by Dr. Fidel-Nicolas Lolo) the same anti-Cav1 antibody (1:1000; D46G3; #3267, Cell 

Signaling) was used, and anti-tubulin antibody (1:2000; DM1A; #3873, Cell Signaling) was used as a 

loading control. Goat anti-mouse 680 and goat anti-rabbit 800 (1:2000; A28183 and A32735, 

ThermoFisher Scientific) antibodies were used for secondary detection. Membranes were scanned with 

the Odyssey imaging system (LI-COR Biosciences, NE, USA). 

5.4.4. Computational analysis 

Transcriptomic datasets 

Transcriptomic datasets were retrieved from online databases (Gene Expression Omnibus, GEO and 

DNA Data Bank of Japan, DDBJ) with accession numbers listed in Table 5.1. Overview of 

experimental detail for RNA profiling procedures and data analysis in individual datasets is presented 

in Supplementary Table D.5. The IDs of samples used in respective categories in each dataset are 

listed in Supplementary Table D.6. In case of multiple entries for the same gene in a given 

transcriptomic dataset, the expression values were averaged, so that only one entry per gene and sample 

was available.  

PC-corr analysis 

PC-corr analysis procedure was established by and performed under guidelines of Dr. Yan Ge and 

Prof. Carlo Cannistraci from Biotec, TU Dresden. Before the analysis, glioblastoma and iPSC datasets 

were reduced to the common intersection (9,452 genes) and normalized by taking the log10 

(glioblastomna) or zscore (iPSC). PC-corr was conducted individually on respective datasets as 

described by Ciucci et al.453. PCA was performed using svd function in MATLAB (R2020a, MathWorks, 

MA, USA) on normalized datasets. For the iPSC dataset, only samples classified as F- and C-class (6 

and 22 samples, respectively; indicated in Supplementary Table D.6) were used for PCA, while the 

Pearson’s correlation was computed across all 51 samples available in the dataset. For the glioblastoma 

dataset, all 27 samples were used throughout. For each dataset, the original PC loadings from the 

component providing good separation of sample categories (PC1 for both analyzed datasets) were 

normalized and scaled. The processing of the PC loadings is performed to adjust the distribution of 

the loadings to the range corresponding to that of Pearson’s correlation values [–1,1]. The 

normalization was performed using a following previously function453: 

𝑉𝑉𝑠𝑠∗ = sgn(𝑉𝑉𝑠𝑠0) log10 �1 + �𝑉𝑉𝑖𝑖
0�

〈|𝑉𝑉0|〉
�  , 5.9 

where 𝑉𝑉𝑠𝑠∗ denotes the normalized loading corresponding to the 𝑖𝑖-th feauture, 𝑉𝑉𝑠𝑠0 the original loading 

corresponding to the 𝑖𝑖-th feauture, and 〈|𝑉𝑉0|〉 the average of all absolute loadings of the vector 𝑉𝑉0. 
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After normalization, the loadings were scaled to fall on the interval [–1,1] using a custom function453: 

 𝑉𝑉𝑠𝑠 = sgn(𝑉𝑉𝑠𝑠∗) �𝑉𝑉𝑖𝑖
∗�−min (|𝑉𝑉∗|)

max(|𝑉𝑉∗|)−min (|𝑉𝑉∗|)
 , 5.10 

where 𝑉𝑉𝑠𝑠 denotes the processed loading corresponding to the i-th feature, and |𝑉𝑉∗| the vector containing 

absolute values of all normalized loadings. 

The 𝑃𝑃𝑃𝑃-𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟 values for each pair of features were computed according to Equation 5.1. The PC-corr 

results of the glioblastoma and iPSC datasets were combined as described in the results section. Gene 

pairs showing different 𝑃𝑃𝑃𝑃-𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟 signs were masked by setting the 𝑃𝑃𝑃𝑃-𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑖𝑖𝑂𝑂𝑏𝑏 to zero. The genes and 

edges for network construction were obtained via thresholding strategies described in the main text. 

The network was visualized using cytoscape (cytoscape 3.8.0; https://cytoscape.org/)504. 

Statistical analysis 

RT-DC datasets were compared using generalized linear mixed-effects models in Shape-Out 

(Shape-Out 1.0.1; Zellmechanik Dresden). AFM datasets were compared using two-sided Wilcoxon rank 

sum test in MATLAB (R2020a, MathWorks). Western blot results were compared using a two-sided 

two-sample t-test in MATLAB (R2020a, MathWorks).  

Data and code availability 

The transcriptomic data used in this study were obtained from public repositories under accession 

numbers listed in Table 5.1. The mechanical characterization data are deposited on figshare 

(https://doi.org/10.6084/m9.figshare.c.5399826). The MATLAB code for performing the PC-corr 

analysis was based on the code deposited alongside a previous publication453, accessible on GitHub 

https://github.com/biomedical-cybernetics/PC-corr_net. 
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Conclusions and Outlook 

This thesis consolidates single-cell mechanical phenotyping using microfluidic-based methods across 

timescales and cell state transitions. First, it presents recent developments of RT-DC, its transformation 

into a versatile image-based cell characterization and sorting platform, and its validation against two 

other deformability cytometry platforms operating at different timescales. Next, it leverages the high-

throughput of RT-DC for population-wide tracking of mechanical phenotype changes in cell fate 

transitions on the example of (de-)differentiation along neural lineage. Finally, it introduces a systematic 

approach for hypothesis-free identification of molecular regulators of cell mechanics. In this section, I 

synthetize the main conclusions of the presented projects and highlight the most promising future 

research directions. 

RT-DC is a versatile method for single-cell characterization and sorting 

Throughout this thesis, a breadth of cell types undergoing transitions connected to mechanical 

phenotype changes was characterized using RT-DC. Across the different chapters, I performed 

measurements of blood cells (Chapter 2), promyelocytic leukemia cell line (HL60; Chapter 3), 

multipotent (NPCs) and pluripotent (ESCs, EpiSCs, iPSCs) cell lines derived from mouse (Chapter 4), 

cancer cell lines originating from different human tissues (breast, intestine, stomach, lung, and brain; 

Chapter 5), as well as developing neurons isolated from mouse fetus (Chapter 5). The studied cell 

state transitions included models of physiological (e.g., cell differentiation; Chapter 4) and pathological 

(e.g., cancerous transformation; Chapter 5) processes, as well as externally-induced perturbations such 

as pharmacological treatments (LatB; Chapter 3), expression perturbations (CAV1; Chapter 5), or 

exposure to osmotic shocks (Chapter 3). Together, these projects encompass a comprehensive 

overview of the applicability of RT-DC for mechanical characterization of cells and demonstrate the 

versatility of the method. 

I have further demonstrated, in two specific examples, the usefulness of parallel detection of 

fluorescence and cell mechanical properties offered by RT-FDC. First, I used SSEA1/CD24 surface 

marker staining to classify cells by their identity at intermediate stages of reprogramming from fNPCs 

to iPSCs (Chapter 4). Second, I used fluorescent protein marker co-expressed with CAV1 to identify 

successfully transfected cells in transient overexpression experiments (Chapter 5). Such classification 

based on marker expression is particularly useful when performing experiments with low transfection 

efficiency. The transfected cells can be identified based on their fluorescence signal directly during 

mechanical measurements, eliminating the need of pre-sorting.  
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The assessment of cell deformability in RT-DC is based on acquired images. These images are available 

for extraction of further parameters such as cell size, brightness, or aspect ratio in real-time during the 

experiment. The combination of two or more of these parameters can serve for efficient classification 

of cells in mixed populations, as illustrated on the example of the combination of deformation, size, 

and brightness for classification of blood cell types (Toepfner et al.5 and Sections 2.3.1 and 2.3.2). 

Thanks to the recent addition of SSAW-based deflection mechanism, all of the extracted parameters 

can be utilized for active sorting of cells (Section 2.2.2). Furthermore, the images generated during 

RT-DC experiments can be used to train NNets to classify and sort cells. To explore this possibility, 

we demonstrated that neutrophils can be sorted from whole blood using a NNet trained on a dataset 

labelled for cell identity with surface markers (Section 2.3.3). The transfer of molecular specificity 

conferred in surface markers to image-based label-free cell sorting is not restricted to neutrophils and 

can be applied to any other cell type. Sorting of cells without the need for extrinsic labels is of particular 

value for downstream application of cells for regenerative medicine purposes. 

Future of RT-DC will be driven by its integration with AI and its implementation for screening  

In every RT-DC measurement, thousands of events are captured within seconds, providing vast 

amounts of data that are perfectly suited for development of AI-based classification algorithms. Both, 

the parameters describing the cells314, as well as raw cell images313,315 can be used to train AI-based 

algorithms to distinguish cell types of interest in heterogenous populations in a label-free manner. 

Furthermore, clustering of events based on the parameters derived from RT-DC — for example, with 

an aid of dimensionality reduction techniques such as UMAP505 or t-SNE506 — could lead to 

identification of new, previously unknown cell populations, for which surface markers are not available.  

Apart from its use for the classification of cell types within samples, AI can also be employed for 

classification of samples originating from different conditions, for example to distinguish signatures of 

healthy and diseased patients, or to grade the severity of studied conditions10. With growing numbers 

of mechanical fingerprints attained with RT-DC from clinical studies, phenotyping cells from blood 

and other liquid as well as solid biopsies, such methods will become increasingly relevant. For successful 

implementation of the automated classification algorithms, it is important that the data is acquired in 

standardized way. Therefore, the conditions of the experiments should be carefully controlled for issues 

such as, for example, intensity of illumination or focus. Alternatively, the training datasets need to 

account for the potential sources of measurement variability. 

With the rapid acquisition of data and short sample processing time, RT-DC is predestined to be 

applied for screening. In particular, genetic perturbations (RNAi343/CRISPR344) or FDA-approved 

small molecule libraries could be used to screen for regulators of mechanical properties of cells or of 

other morphological features. Furthermore, for all conditions in which mechanical phenotype changes 
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are associated with disease, RT-DC could serve as a screening platform for drug targets. Performing 

large-scale screens will be further facilitated by parallelization and automatization of sample handing 

that are being developed for a future generation of the device. 

Measurement timescale affects outcomes of mechanical measurements 

The standardized comparative analysis of the three major microfluidics-based deformability cytometry 

classes (Chapter 3) showed that probing cells at high strain rates abolishes sensitivity to actin 

cytoskeleton disassembly. While all three tested methods detected osmotic shock-induced changes in 

cell deformability, the deformability increase upon drug-induced actin disassembly was detected by 

cDC and sDC operating at the timescales of 10 ms and 1 ms, respectively, but not by xDC operating 

at 10-μs timescale. These results highlight the need of careful choice of probing method depending on 

the studied research question. To gain further insights into the contributions of various cell component 

to the measurements with different methods, this comparative study could be extended by targeting 

other cellular structures, such as the cell nucleus. Furthermore, elastic beads mimicking cells323,386 could 

be used to study the range of the deformability responses obtained for beads with defined Young’s 

moduli across the different platforms. 

Apart from directly comparing three deformability cytometry methods operating at different timescales, 

this thesis also includes AFM-based measurements of cell stiffness that cover further timescales (in 

Chapters 4 and 5). While the deformability cytometry methods cover timescales from μs to ms, the 

AFM indentation was performed on a 0.2-s timescale and the cell probing in AFM oscillatory 

measurements was performed on the timescales of 5 ms (200 Hz)–0.5 s (3 Hz) (Figure 3.7). In 

general, the mechanical differences observed with AFM qualitatively confirm the results obtained with 

RT-DC. The absolute Young’s modulus values, however, appeared to increase with the probing 

frequency across the methods (Supplementary Table C.1, C.2, and D.4; Supplementary 

Figure D.4), with RT-DC yielding the highest Young’s moduli. While cell stiffening within increasing 

probing rate was reported for AFM indentation23,24 and microrheology assays22,25–27, a cross-method 

analysis of this effect, such as the one reported here, could be performed on a larger scale in the future.  

Changes in mechanical properties of cells accompany cell fate transitions and further studies 

on causality, in particular in the context of tissue, are required 

In the study of the developmental transitions along neural lineage (Chapter 4), I showed that fNPCs 

become progressively stiffer during reprogramming to pluripotency and that in the reverse process of 

neural differentiation iPSCs become softer and re-acquire the phenotype of fNPCs. Importantly, the 

phenotype of iPSCs corresponded to that of ESCs, the pluripotent cells established directly from mouse 

embryo. This suggests that the mechanical properties are inherent to the developmental stage of cells, 
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and thus could be used as a marker of pluripotency in regenerative medicine applications. Furthermore, 

the insights gained from this study can help to anticipate mechanical changes occurring during neural 

fate commitment in vivo and to speculate about the contribution of mechanical phenotype of cells to 

embryogenesis. 

To understand whether the changes in mechanical properties that accompany cell fate transitions have 

a causative role in developmental progression, future perturbation studies are required. For this 

purpose, newly established regulators of cell mechanics, such as CAV1 identified in the mechanomics 

approach presented in Chapter 5, could be used to interfere with mechanical properties of the cells. 

In in vitro studies, the tracking of cell fate changes upon perturbation of mechanical properties would 

shed light on the role of mechanical properties in establishing cell fate. To comprehensively tackle the 

influence of cell mechanics on development and morphogenesis, such perturbation studies could be 

further performed in a 3D context of developing tissue, for example in reconstitution systems 

mimicking embryogenesis436–438. 

Regulators of cell mechanics identified with data-driven approaches will provide tools for 

tuning of mechanical properties in physiologically relevant contexts 

In Chapter 5, we established a method for de novo identification of cell mechanics regulators that we 

termed mechanomics. Using discriminative network analysis of transcriptomic data associated with 

mechanical phenotype changes, we identified a module of five putative cell mechanics regulators 

(CAV1, FHL2, IGFBP7, TAGLN, and THBS1) and showed that CAV1 provides for the best 

classification of soft and stiff cell states in silico. We further showed in genetic perturbation experiments 

that CAV1 is not only correlated with, but also causative of mechanical phenotype change, thus, it 

could potentially serve as a knob for tuning cell stiffness. Providing tools that enable tuning of cell 

mechanical properties is important for exploring physiological and pathological roles of cell mechanics. 

Importantly, the genetic targets identified in our study are, in principle, compatible with in vivo use, and 

could be perturbed with spatial and temporal control in context of a tissue using drug inducible 

expression systems (such as Tet-On507), cell type-specific promoters, or optogenetic activation. 

The current implementation of the mechanomics approach constitutes a pilot study, that should be 

expanded in the future. With growing amount of available transcriptomic data and increasing popularity 

of mechanical characterization of cells, a much bigger database of mechanics-associated transcriptomes 

will likely be assembled and enable a next-generation analysis.  
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Single-cell mechanical properties are only one piece of a puzzle  

In this thesis, I have focused on characterization of whole-cell mechanical properties of individual cells. 

Such single-cell mechanical phenotype can serve as a marker of cell state and carry functional 

consequences. However, in a living organism, cells do not exist in isolation, and mechanical properties 

of individual cells interplay with many other factors to guide physiological processes. For example, the 

migration and invasiveness of cancer cells is influenced not only by the mechanical phenotype of the 

cells themselves, but also by the mechanical properties of the microenvironment, the interactions with 

neighboring cells, and the ability of the cells to form adhesions37,508. Similar complexity of biophysical 

factors plays a role in cell migration and positioning during developmental progression142,143,509. 

Moreover, in many instances cellular functions are driven not by the static, whole-cell mechanical 

properties, but by their dynamic evolution over time or local heterogeneities30. Thus, for a 

comprehensive understanding of physiological and pathological processes, whole-cell mechanical 

properties need to be integrated with broader biophysical characterization of cells and their 

environment.
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— Appendix A —                                                                  
Estimation of stress and strain characteristic for the 

different DC methods 

This Appendix is adapted with modifications from Urbanska, Muñoz et al.363. 

A.1. 3D geometry of deformed cells 

Upon entering the microfluidic channel, initially spherical cells undergo a three-dimensional shape 

change resulting in a prolate ellipsoid in case of cDC and xDC or a bullet-like shape in case of sDC 

(Supplementary Figure A.1). Depending on the channel geometry, the resulting cell shape can be 

rotationally symmetric with respect to the angle 𝜙𝜙 around the rotation axis 𝑥𝑥 aligned with the longest 

shape dimension, or rotationally asymmetric.  

 

Supplementary Figure A.1 | The 3D shapes obtained during microfluidic deformation of spherical 
objects and their rotational views. a–c, 3D projections of shapes obtained during cDC (a), sDC (b) and 
xDC (c) measurements presented from two rotational angles 𝜙𝜙. The 𝑥𝑥𝑦𝑦𝑧𝑧-directions are given for reference in the 
upper left corner of each image. The gray transparencies in the upper row indicate 𝑥𝑥𝑦𝑦-plane. Reprinted from 
Urbanska, Muñoz et al.363. 

In this work, we used cDC with 6 μm width and 15 μm height, what resulted in a deformation into a 

rotationally asymmetric ellipsoid (Supplementary Figure A.1a). sDC channels had a square 

cross-section of 20 μm × 20 μm resulting in a rotationally symmetric bullet-like shape 

(Supplementary Figure A.1b). xDC channels were 60 μm wide and 30 μm high, and the extensional 

flow caused the cells to compress in 𝑦𝑦, and extend in 𝑥𝑥 and 𝑧𝑧 in an asymmetric way. As a result, an 

ellipsoid that is not rotationally symmetric about the 𝑥𝑥 axis is obtained (Supplementary Figure A.1c).  
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A.2. Strain estimation 

Strain 𝜀𝜀 induced in the cells can be defined as a deviation of the local cell radius 𝑟𝑟 from the radius of 

an undeformed cell 𝑟𝑟0, and can be calculated for all polar angles 𝜃𝜃 and rotation angles 𝜙𝜙: 

 𝜀𝜀(𝜃𝜃,𝜙𝜙) =
𝑟𝑟(𝜃𝜃,𝜙𝜙) − 𝑟𝑟0

𝑟𝑟0
. A.1 

The local strains in 𝑥𝑥𝑦𝑦-plane, 𝜀𝜀𝑎𝑎𝑦𝑦, and 𝑥𝑥𝑧𝑧-plane, 𝜀𝜀𝑎𝑎𝑥𝑥, can be formalized as follows  

 𝜀𝜀𝑎𝑎𝑦𝑦(𝜃𝜃) = 𝜀𝜀(𝜃𝜃, 0), A.2 

 𝜀𝜀𝑎𝑎𝑥𝑥(𝜃𝜃) = 𝜀𝜀 �𝜃𝜃,
𝜋𝜋
2
�. A.3 

The maximum absolute strain experienced by the cell, 𝜀𝜀max, is defined as 

 𝜀𝜀max = max(|𝜀𝜀(𝜃𝜃,𝜙𝜙)|), A.4 

while the mean absolute strain, 𝜀𝜀 ̅, experienced over all polar angles 𝜃𝜃 ∈ (−𝜋𝜋,𝜋𝜋) at every rotation angle 

𝜙𝜙 ∈ (−𝜋𝜋,𝜋𝜋) can be denoted as 

 𝜀𝜀̅  = 〈|𝜀𝜀(𝜃𝜃,𝜙𝜙)|〉. A.5 

For cDC, 𝑟𝑟0 is estimated for each cell from the measured cell volume as described in Section 3.4.2, 

and 𝑟𝑟(𝜃𝜃,𝜙𝜙) is calculated assuming volume conservation and a deformation into an ellipsoid with the 

maximum size in 𝑦𝑦 and 𝑧𝑧 determined by the width (6 µm) and height (15 µm) of the constriction, 

respectively. The graphical representation of the cell deformation in 𝑥𝑥𝑦𝑦-plane together with the mean 

local strain estimates in 𝑥𝑥𝑦𝑦- and in 𝑥𝑥𝑧𝑧-planes are presented in Supplementary Figure A.2a. The 

maximum absolute strain, 𝜀𝜀𝑂𝑂𝑝𝑝𝑎𝑎, for an cDC measurement on untreated HL60 cells was located at the 

ellipse tip along the major axis and amounted to 92%, while the average absolute strain, 𝜀𝜀,̅ amounted 

to 37%. 

For sDC, 𝑟𝑟0 is estimated for each cell assuming a sphere of volume equivalent to the volume calculated 

by rotating a bullet-shaped contour of deformed cell around its symmetry axis. 𝑟𝑟(𝜃𝜃,𝜙𝜙) represents the 

distance of the fitted contour to the shape’s center of mass. The graphical representation of the cell 

deformation in the imaging plane 𝑥𝑥𝑦𝑦 as well as mean local strain estimates 𝜀𝜀𝑎𝑎𝑦𝑦(𝜃𝜃) and 𝜀𝜀𝑎𝑎𝑥𝑥(𝜃𝜃) are 

presented in Supplementary Figure A.2b. The maximum absolute strain, 𝜀𝜀𝑂𝑂𝑝𝑝𝑎𝑎, for an sDC 

measurement on untreated HL60 cells is located at the tip of bullet-like shape and amounted to 47%, 

while the mean absolute strain, 𝜀𝜀,̅ amounted to 17%. 



Estimation of stress and strain characteristic for the different DC methods 

 

 

 

 145 

 

Supplementary Figure A.2 | Radial representation of local strain experienced by untreated HL60 cells 
during microfluidic deformation experiments. a–c, A graphical representation of undeformed and deformed 
sphere cross-section in the 𝑥𝑥𝑦𝑦-plane together with local strain estimate in 𝑥𝑥𝑦𝑦- and 𝑥𝑥𝑧𝑧-planes along the polar angle 
𝜃𝜃 for cDC (a), sDC (b), and xDC (c). d, An overlay of local strain in 𝑥𝑥𝑦𝑦- (left-hand side) and 𝑥𝑥𝑧𝑧-planes (right-
hand side) for all three methods. For all plots, lines represent means over n = 1,428, 928, and 6,157 events for 
cDC, sDC and xDC, respectively, gathered in one representative experiment on untreated HL60 cells. Shaded 
areas represent standard deviations. Reprinted from Urbanska, Muñoz et al.363. 
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For xDC, 𝑟𝑟0 is specified for each cell based on the cell diameter estimated from images of undeformed 

cell, and 𝑟𝑟(𝜃𝜃,𝜙𝜙) is calculated assuming volume conservation and a deformation into an ellipsoid with 

the experimentally determined major and minor axes in the 𝑥𝑥𝑦𝑦-plane (𝑎𝑎 and 𝑏𝑏 in Figure 1c, 

respectively). The graphical representation of the cell deformation in the imaging plane 𝑥𝑥𝑦𝑦 as well as 

mean local strain estimates 𝜀𝜀𝑎𝑎𝑦𝑦(𝜃𝜃) and 𝜀𝜀𝑎𝑎𝑥𝑥(𝜃𝜃) are presented in Supplementary Figure A.2c. The 

maximum absolute strain, 𝜀𝜀𝑂𝑂𝑝𝑝𝑎𝑎, for a xDC measurement on untreated HL60 cells was located at the 

ellipse tip along the major axis and amounted to 60%, while the mean absolute strain, 𝜀𝜀,̅ amounted to 

24%. 

An overlay of 𝜀𝜀𝑎𝑎𝑦𝑦(𝜃𝜃) and 𝜀𝜀𝑎𝑎𝑥𝑥(𝜃𝜃) for all three methods is depicted in Supplementary Figure A.2d. 

A.3. Strain rate estimation 

The strain rate is calculated for the individual methods according to the following formula: 

 𝜀𝜀̇  =
𝑑𝑑𝜀𝜀
𝑑𝑑𝑡𝑡

=
𝜀𝜀̅
𝜏𝜏

 , A.6 

where 𝜀𝜀 ̅is the mean absolute strain defined in Equation A.5 and 𝜏𝜏 is the characteristic timescale of the 

measurement, i.e., the time in which the cell is deformed. 𝜏𝜏 amounts roughly to 10 ms for cDC, 1 ms 

for sDC, and 10 μs for xDC. 

A.4. Stress estimation 

The maximum value of the stress applied to cells passing through the microconstriction in a cDC 

measurement corresponds to the total applied pressure differential in the system, which was set to 

1 kPa. This stress is applied only if the cell tightly fills the entire cross-section of the constriction. In 

practice, the expected total applied stress is therefore close to, but below, 1 kPa. 

In an sDC channel, two types of stresses are acting on a cell: shear stress, 𝜎𝜎𝑠𝑠ℎ, arising from the gradient 

of velocity across the channel width and acting tangentially to the cell surface, and normal stress, 𝜎𝜎𝑛𝑛, 

which arises from pressure gradients and acts in the direction perpendicular to the cell surface. These 

stresses can be estimated analytically for a case of a channel with circular cross-section using a flow-field 

calculated with stream function approach as previously described298. The peak shear stress acting on 

the cell surface reaches 0.43 kPa, and the peak hydrodynamic pressure 0.78 kPa (see Supplementary 

Figure A.3 for the distribution of the stress). Thus, the deformation-relevant peak stresses in sDC are 

on the order of 1 kPa. 

In xDC, there are two type of forces acting on a cell at the cross-slot junction: the drag force and the 

shear force. The drag force is three order of magnitudes higher than the shear force and is estimated 
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to exceed 1 µN1. The corresponding stress acting on a cell with a diameter of 15 µm would reach values 

exceeding 5.7 kPa. 

 

 

Supplementary Figure A.3 | Analytical estimation of surface stresses acting on an undeformed sphere 
passing through a circular channel approximating an sDC experiment. a–b, A map of hydrodynamic shear 
stress (a) and normal stress (b) on a surface of a sphere of radius 6.5 µm passing through a cylindrical channel 
with a diameter of 20 µm at a flowrate of 0.04 µl s-1 and medium viscosity of 5.7 mPa s, corresponding to the 
shear-adjusted viscosity of the used measurement buffer318. The estimation was performed using previously 
developed approach298. Reprinted from Urbanska, Muñoz et al.363. 
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— Appendix B —                                                          
Supplementary Material for Chapter 3 

Supplementary Tables B.1 – B.2 

Supplementary Table B.1 | Fit results for osmotic shock treatment. The decay constants, λ, for the 
exponential curve fit to the relative deformability versus normalized osmolarity data for hyperosmotic shock. Fits 
were performed on medians from n = 3, 4, and 4 independent experiments, for cDC, sDC, and xDC, respectively. 
The fitted λ values are reported together with 95% confidence intervals, CI, and associated p-values from two-
sided t-tests for this parameter. 

 

 
cDC sDC xDC 

λ 

1.206 

95% CI [1.065, 1.366] 

t(16) = 17.26 

p = 9.14 × 10−12 

0.780 

95% CI [0.695, 0.873] 

t(19) = 18.14 

p = 1.86 × 10−13 

0.397 

95% CI [0.363, 0.433] 

t(19) = 24.02 

p = 1.12 × 10−15 
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Supplementary Table B.2 | Fit results for LatB treatment. Fit parameters for the four-parameter log-logistic 
regression fit to the relative deformability versus LatB concentration data obtained with cDC, sDC, and xDC. 
Fits were performed on medians from n = 3, 5, and 4 independent experiments, for cDC, sDC, and xDC, 
respectively. The fitted values are reported together with 95% confidence intervals, CI, and associated p-values 
from two-sided t-tests for each parameter. This table is adapted from Urbanska, Muñoz et al.363. 

 

 cDC sDC xDC 

b (slope) 

−4.47 ml ng−1 

95% CI [−14.13, 5.18] 

t(19) = −0.97 

p = 0.34 

−2.06 ml ng−1 

95% CI [−3.20, −0.94] 

t(31) = −3.74 

p = 7.57 × 10−4 

8.71 ml ng−1 

95% CI [−72.57, 89.99] 

t(24) = 0.22 

p = 0.83 

c (lower limit) 

1.04 

95% CI [0.97, 1.10] 

t(19) = 35.31 

p < 2.20 × 10−16 

1.00 

95% CI [0.95, 1.05] 

t(31) = 38.13 

p < 2.20 × 10−16 

0.96 

95% CI [0.54, 1.38] 

t(24) = 4.69 

p = 9.03 × 10−5 

d (upper limit) 

1.46 

95% CI [1.38, 1.53] 

t(19) = 39.71 

p < 2.20 × 10−16 

1.52 

95% CI [1.44, 1.60] 

t(31) = 37.73 

p < 2.20 × 10−16 

1.03 

95% CI [1.00, 1.06] 

t(24) = 77.72 

p < 2.20 × 10−16 

e (EC50) 

11.92 ng ml−1, 

95% CI [6.82, 17.01] 

t(19) = 4.90 

p = 9.93 × 10−5 

14.85 ng ml−1, 

95% CI [9.62, 20.07] 

t(31) = 5.80 

p < 2.20 × 10−16 

78.24 ng ml−1 

95% CI [−273.0, 430] 

t(24) = 0.46 

p = 0.65 
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Supplementary Figures B.1 – B.9 

 
Supplementary Figure B.1 | Diameter of HL60 cells upon exposure to altered osmolarity. a–c, Violin 
plots of cell diameter in a representative cDC (a), sDC (b) and xDC (c) experiment. Black boxes extend from 
25th to 75th percentiles, with a dot at the median, whiskers indicate 1.5 × IQR. d–f, Summary of median cell 
diameter values obtained in all experiment series with cDC (d), sDC (e) and xDC (f). Data points correspond to 
medians of individual experiments (n = 3, 4 and 4, for cDC, sDC and xDC, respectively). Conditions measured 
in the same experimental series are color-coded. Boxes span 2 × standard deviation with a line at the mean of all 
medians. In d–f statistical significance of overall differences among mean cell sizes at different osmolarities was 
tested using ANOVA and its result is shown on top of the horizontal line overarching all conditions. The p-values 
reported above each box come from comparison of the given treatment to the control condition (300 mOsm) 
obtained through post-hoc analysis using two-sided pairwise t-tests for multiple comparison with Benjamin-
Hochberg p-value adjustment. Reprinted from Urbanska, Muñoz et al.363.  
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Supplementary Figure B.2 | Visualization of bin selection and data processing for osmolarity 
experiments. (cont.) 
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a–c, 50%-density contour plots of deformability vs cell diameter for an exemplary experiment on HL60 cells 
subjected to different osmolarity conditions. The contour plots are accompanied by deformability and cell 
diameter histograms for cDC (a), sDC (b), and xDC (c). The most represented 1-μm wide diameter bins used 
for relative deformability, RD, calculations and the corresponding deformability histograms are outlined in grey. 
d–f, Jitter plots showing distribution of RD from cDC (d), sDC (e), and xDC (f) measurements for a single 
experiment. Boxes extend from 25th to 75th percentiles, with a dot at the median, whiskers indicate 1.5× IQR 
and each data point corresponds to an individual cell. g–i, Summary of RD values obtained in all experimental 
series with cDC (g), sDC (h) and xDC (i). Data points correspond to medians of every experiment and conditions 
measured in same experimental series are color-coded. Boxes span 2× standard deviation with a line at the mean 
of all medians. (j) Number of events in the selected 1-μm wide diameter bin for each condition and method. (k) 
Events selected within the 1-μm wide diameter as a percentage of all events measured. In j and k, the boxes span 
2× standard deviation with a line at the mean. In g-k, the statistics have been calculated for n = 3, 4 and 4 
independent measurement replicates, for cDC, sDC and xDC, respectively. Reprinted from Urbanska, 
Muñoz et al.363. 

 

 
Supplementary Figure B.3 | Time-resolved effect of osmotic shock on HL60 deformability and size as 
measured by sDC. a–c, The changes in HL60 deformability, D (a), and cell diameter (b) over time after 
exposure to medium with altered osmolarity as measured by sDC. The experiments were performed in 30-μm 
channels at a flowrate of 0.16 μl s−1. Data points represent medians of consecutive measurements taken at 
different times after the exposure to altered osmolarity medium. On average 3,000 events (and not less than 
1,800) are analyzed for each data point. Reprinted from Urbanska, Muñoz et al.363.  
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Supplementary Figure B.4 | Fitting of the relation between osmolarity and relative deformability for 
hyperosmotic shock data. a-c, Exponential (red), power law (green) and linear (blue) fits to relative 
deformability, RD, vs osmolarity data obtained with cDC (a), sDC (b) and xDC (c). Data points in a-c represent 
means of medians of multiple experimental replicates (n = 3, 4, and 4, for cDC, sDC, and xDC, respectively), 
error bars represent standard deviation. d-e, Bar graphs of mean absolute residuals (d) and Bayesian information 
criterion (BIC) (e), that assess the quality of different fits. Values estimated for each method, as well as mean of 
values for all methods (n = 3) for given fit function, are presented. The error bars on the mean plots represent 
standard deviation. Mean absolute residuals give an information on how much the values predicted by the fitted 
function deviate from the experimental data. Lower values of residuals indicate better agreement of experimental 
data with proposed function. In case of BIC, lower values indicate a better fit. Reprinted from Urbanska, 
Muñoz et al.363.  
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Supplementary Figure B.5 | Visualization of bin selection and data processing for LatB treatment 
experiments. (cont.) 
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a–c, 50%-density contour plots of deformability vs cell diameter for an exemplary experiment on HL60 cells 
treated with increasing concentration of LatB. The contour plots are accompanied by deformability and cell 
diameter histograms for cDC (a), sDC (b), and xDC (c). The most represented 1-μm wide diameter bins used 
for relative deformability, RD, calculations and the corresponding deformability histograms are outlined in grey. 
d–f, Jitter plots showing distribution of RD from cDC (d), sDC (e), and xDC (f) measurements for a single 
experiment. Boxes extend from 25th to 75th percentiles, with a dot at the median, whiskers indicate 1.5× IQR 
and each data point corresponds to an individual cell. g–i, Summary of RD values obtained in all experimental 
series with cDC (g), sDC (h) and xDC (i). Data points correspond to medians of every experiment and conditions 
measured in the same experimental series are color-coded. Boxes span 2× standard deviation with a line at the 
mean of all medians. (j) Number of events in the selected 1-μm wide diameter bin for each condition and method. 
(k) Events selected within the 1-μm wide diameter as a percentage of all events measured. In (j) and (k) the boxes 
span 2× standard deviation with a line at the mean. In g-k, the statistics have been calculated for n = 3, 5 and 4 
independent measurement replicates, for cDC, sDC and xDC, respectively. Reprinted from Urbanska, 
Muñoz et al.363. 

 

 

Supplementary Figure B.6 | Response to high LatB concentrations measured with cDC and sDC. The 
graph shows relative deformability, RD, as a function of LatB concentration. Dots represent medians of individual 
measurements. Error bars represent median absolute deviation. Bin-selected data was used. One measurement 
series was performed using cDC (purple, from left to right n = 296 and 271 analyzed cells in the selected size bin 
per data point) and two measurement series were performed using sDC (bright and dark green, from left to right 
n = 656, 537, 420, 550, and n = 734, 615, 336, 541 analyzed cells in the selected size bin, for bright and dark green 
data points, respectively). The concentration range used for main analysis is shaded in gray. Reprinted from 
Urbanska, Muñoz et al.363.  
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Supplementary Figure B.7 | Diameter of HL60 cells treated with different concentrations of LatB.  
a–c, Violin plots of cell diameter in a single experiment as measured by cDC (a), sDC (b) and xDC (c). Black 
boxes extend from 25th to 75th percentiles, with a dot at the median, whiskers indicate 1.5 × IQR. d–f, Summary 
of median cell diameter values obtained in all experiment series with cDC (d), sDC (e) and xDC (f). Data points 
correspond to medians of individual experiments (n = 3, 5 and 4, for cDC, sDC and xDC, respectively). 
Conditions measured in same experimental series are color-coded. Boxes span 2 × standard deviation with a line 
at the mean of all medians. In d–f statistical significance of overall differences among mean cell sizes at different 
concentrations was tested using analysis of variance (ANOVA) and its result is shown on top of the horizontal 
line overarching all conditions. The p-values reported above each box come from comparison of the given 
treatment to the control condition obtained through post-hoc analysis using pairwise two-sided t-tests for multiple 
comparisons with Benjamin-Hochberg p-value adjustment. Reprinted from Urbanska, Muñoz et al.363.  
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Supplementary Figure B.8 | The influence of size bin selection on relative deformability response to 
osmotic shock. For all three methods RD was calculated for either all data, 3-μm wide cell diameter bin or 1-
μm wide cell diameter bin. For the ease of comparison, the data is grouped based on binning strategy and all three 
methods are plotted together (a), or the data is grouped by method and all binning strategies are compared (b). 
The lines connect the data points representing means of medians from measurement replicates (n = 3, 4, and 4, 
for cDC, sDC, and xDC, respectively). Error bars present the standard deviation of the medians. Reprinted from 
Urbanska, Muñoz et al.363. 
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Supplementary Figure B.9 | The influence of size bin selection on relative deformability response to 
LatB treatment. For all three methods RD was calculated for either all data, 3-μm wide cell diameter bin or 1-
μm wide cell diameter bin. For the ease of comparison, the data is grouped based on binning strategy and all three 
methods are plotted together (a), or the data is grouped by method and all binning strategies are compared (b). 
The lines connect the data points representing means of medians from measurement replicates (n = 3, 5, and 4, 
for cDC, sDC, and xDC, respectively). Error bars present the standard deviation of the medians. Reprinted from 
Urbanska, Muñoz et al.363. 
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— Appendix C —                                                   
Supplementary Material for Chapter 4 

Supplementary Tables C.1 – C.2 

Supplementary Table C.1 | Young’s moduli of fNPCs and iPSC measured in suspended, rounded and 
adherent state. Young’s moduli of representative measurements performed with RT-DC and AFM in rounded 
as well as adherent state corresponding to plots in Figure 4.5a–c. The deformation timescales and mode of 
probing are indicated below method names. n – number of measured cells. MAD – mean absolute deviation of 
the median. 

 RT-DC AFM indentation 

 1 ms, whole-cell 0.2 s, local indentation  
suspended rounded adherent  

E (kPa) E (kPa) E (kPa)  
median ± MAD  median ± MAD median ± MAD 

fNPCs 0.928 ± 0.244 (n = 1573) 0.354 ± 0.109 (n = 51) 0.163 ± 0.075 (n = 41) 

iPSCs 1.574 ± 0.330 (n = 1386) 0.853 ± 0.489 (n = 57) 0.872 ± 0.599 (n = 35) 

 
 

Supplementary Table C.2 | Young’s moduli of three terminal reprogramming states measured across 
methods. Young’s moduli of fNPCs, F-class cells and iPSCs as measured by RT-DC and AFM indentation on 
rounded cells. The deformation timescales and mode of probing are indicated below method names. The values 
correspond to data presented in Supplementary Figure C.3b,d. n – number of individual measurement 
replicates, mean was taken over medians from individual measurement replicates, SD – standard deviation. 

 RT-DC AFM indentation 

 1 ms, whole-cell 0.2 s, local indentation  
suspended rounded  

E (kPa) E (kPa)  
mean ± SD mean ± SD 

fNPCs 0.885 ± 0.075 (n = 14) 0.446 ± 0.101 (n = 3) 

F-class 1.208 ± 0.062 (n = 12) 0.600 ± 0.254 (n = 6) 

iPSCs 1.381 ± 0.115 (n = 12) 0.776 ± 0.232 (n = 5) 

 



Appendix C 

 

 

 

162 

Supplementary Figures C.1 – C.5 

 

Supplementary Figure C.1 | Transition of mechanical phenotype of fNPC during reprogramming 
towards pluripotency, replicate 1. a, Deformation–area scatter plots of cell populations characterized by 
RT-DC at specified days within 28 days of reprogramming. Data points indicate individual cells. Color map 
indicates event density. Contours on top of scatter plots delineate 50% (dashed lines) and 95% (solid lines) 
densities. b, Violin plots of Young’s moduli derived from RT-DC data in a. Data points represent individual cells. 
Boxes on top of the violins extend from 25th to 75th percentiles, with a dot at the median, whiskers indicate 
1.5 × IQR. This figure is modified after Urbanska et al.378.   
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Supplementary Figure C.2 | Transition of mechanical phenotype of fNPC during reprogramming 
towards pluripotency, replicate 2. , Deformation–area scatter plots of cell populations characterized by RT-DC 
at specified days within 28 days of reprogramming. Data points indicate individual cells. Color map indicates 
event density. Contours on top of scatter plots delineate 50% (dashed lines) and 95% (solid lines) densities. 
b, Violin plots of Young’s moduli derived from RT-DC data in a. Data points represent individual cells. Boxes 
on top of violins extend from 25th to 75th percentiles, with a dot at the median, whiskers indicate 1.5 × IQR. 
This figure is modified from Urbanska et al.378. 
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Supplementary Figure C.3 | Cell stiffness at terminal reprogramming stages — summary of all 
replicates. a, Distributions of Young’s moduli derived from RT-DC measurement replicates of terminal 
reprogramming stages. Boxes represents individual measurements with n = 859–3413 cells each; a–w indicate 
measurement days; reprogramming 1 and 2 indicate independent reprogramming experiments. b, Summary of 
median Young’s moduli from RT-DC measurements. Data points represent medians of individual RT-DC 
measurements from panel a. c, Distributions of Young’s moduli derived from AFM measurement replicates of 
terminal reprogramming stages. Boxes represents individual measurements with n = 42–80 cells each; datapoints 
represent individual cells; a–g indicate measurement days; reprogramming 1 and 2 indicate independent 
reprogramming series. d, Summary of median Young’s moduli from AFM measurements. Data points represent 
medians of individual RT-DC measurements from panel c. In a and c, boxes extend from 25th to 75th 
percentiles, with a line at the median. Whiskers span 1.5 × interquartile range (IQR). In b and d, horizontal lines 
delineate means with standard deviation (SD) as error, datapoints represent medians of the individual replicates, 
the numbers of replicates are indicated below each box. Statistical analysis performed using a linear mixed-effects 
model on all measurement replicates. This figure is modified after Urbanska et al.378.   
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Supplementary Figure C.4 | Progression of iPSC stiffness during differentiation along the neural 
lineage. a, Deformation–area scatter plots of cell populations characterized by RT-DC at specified timepoints 
of the differentiation. Data points indicate individual cells. Color map indicates event density. Contours on top 
of scatter plots delineate 50% (dashed lines) and 95% (solid lines) densities. b, Violin plots of Young’s moduli 
derived from RT-DC data in a. Data points represent individual cells. Boxes on top of the violins extend from 
25th to 75th percentiles, with a dot at the median, whiskers indicate 1.5 × IQR. This figure is modified after 
Urbanska et al.378.   
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Supplementary Figure C.5 | Cell stiffness at terminal stages of neural differentiation — summary of all 
replicates. a, Distributions of Young’s moduli derived from RT-DC measurement replicates of terminal 
differentiation stages. Boxes represents individual measurements with n = 300–2776 cells each and extend from 
25th to 75th percentiles, with a line at the median; whiskers span 1.5 × interquartile range (IQR); diff 1 to 4 
indicate independent differentiation series. b, Summary of median Young’s moduli from RT-DC measurements. 
Horizontal lines delineate medians with mean absolute deviation (MAD) as error, datapoints represent medians 
of the individual replicates, the numbers of replicates are indicated at the bottom of each plot. Statistical analysis 
was performed using a linear mixed-effects model on all measurement replicates.
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Supplementary Tables D.1 – D.6 

Supplementary Table D.1 | Combined PC-corr values calculated as means of the two analysed sets. The 
𝑃𝑃𝑃𝑃-𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑠𝑠,𝑗𝑗𝑐𝑐𝑖𝑖𝑂𝑂𝑏𝑏 specify the values for network edges. Edges above a cut-off of 0.75 are displayed. The cut-off is 
indicated with a horizontal line at the bottom. 

 node i node j edge, 𝑃𝑃𝑃𝑃-𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑠𝑠,𝑗𝑗𝑐𝑐𝑖𝑖𝑂𝑂𝑏𝑏   

1 FHL2 THBS1 0.863  

2 ANKRD1 IL11 0.813  

3 MFAP5 THBS1 0.803  

4 FHL2 IGFBP7 0.788  

5 IGFBP7 THBS1 0.788  

6 C1QTNF1 IGFBP6 0.785  

7 FHL2 TAGLN 0.782  

8 IGFBP7 TAGLN 0.782  

9 TAGLN THBS1 0.782  

10 ATP8B1 FHL2 0.780  

11 CNN2 FHL2 0.774  

12 FHL2 MFAP5 0.767  

13 LRRC15 THBS1 0.766  

14 CAV1 FHL2 0.765  

15 CAV1 IGFBP7 0.765  

16 CAV1 TAGLN 0.765  

17 CAV1 THBS1 0.765  

18 C1QTNF1 CLIC3 0.762  

19 FHL2 IGFBP3 0.758  

20 DPYSL5 INSM1 0.758  

21 CLIC3 TRIM29 0.756  

22 C1QTNF1 KRT80 0.756  

23 FHL2 WISP2 0.754  

24 THBS1 WISP2 0.754  

25 CAV1 MRGPRF 0.754  

26 ARHGDIB IL7R 0.754  

27 CXXC4 DPYSL5 0.752  

28 ABCC3 IER3 0.752  

29 CLDN4 TACSTD2 0.751  

30 CYR61 MFAP5 0.751 ↑ cut-off 0.75 
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Supplementary Table D.2 | Combined PC-corr values calculated as minimum values of the two 
analysed sets. The 𝑃𝑃𝑃𝑃-𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑠𝑠,𝑗𝑗𝑐𝑐𝑖𝑖𝑂𝑂𝑏𝑏 specify the values for network edges. Edges above a cut-off of 0.70 are 
displayed. Cut-offs 0.70 and 0.75 are marked with a horizontal line. 

 

  

 node i node j edge, 𝑃𝑃𝑃𝑃-𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑠𝑠,𝑗𝑗𝑐𝑐𝑖𝑖𝑂𝑂𝑏𝑏 

1 FHL2 THBS1 0.803  

2 FHL2 IGFBP7 0.785  

3 IGFBP7 THBS1 0.785  

4 FHL2 TAGLN 0.782  

5 IGFBP7 TAGLN 0.782  

6 TAGLN THBS1 0.782  

7 ANKRD1 IL11 0.781  

8 CAV1 FHL2 0.759  

9 CAV1 IGFBP7 0.759  

10 CAV1 TAGLN 0.759  

11 CAV1 THBS1 0.759  

12 CLIC3 TRIM29 0.751 ↑ cut-off 0.75 

13 ATP8B1 FHL2 0.748  

14 CAV1 MRGPRF 0.736  

15 FHL2 IGFBP3 0.733  

16 ARHGDIB IL7R 0.726  

17 CYR61 MFAP5 0.725  

18 IGFBP3 TAGLN 0.718  

19 MAL TRIM29 0.718  

20 FHL2 LBH 0.717  

21 FHL2 MRGPRF 0.716  

22 MRGPRF THBS1 0.709  

23 CLIC3 SYT8 0.709  

24 LBH TAGLN 0.706  

25 IGFBP6 MRGPRF 0.705  

26 ASCL1 LRRN2 0.703  

27 ATP8B1 MRGPRF 0.702  

28 SYT8 TRIM29 0.701  

29 CYR61 THBS1 0.700 ↑ cut-off 0.70 
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Supplementary Table D.3 | List of target genes together with their processed PC loadings. 

 gene name gene description 𝑉𝑉𝑠𝑠1 𝑉𝑉𝑠𝑠2 𝑉𝑉�  

1 ABCC3 ATP binding cassette subfamily C member 3  0.849 0.693 0.771 

2 ANKRD1 ankyrin repeat domain 1  0.933 0.781 0.857 

3 ARHGDIB Rho GDP dissociation inhibitor beta 0.726 0.933 0.829 

4 ASCL1 achaete-scute family bHLH transcription factor 1 -0.703 -0.813 -0.758 

5 ATP8B1 ATPase phospholipid transporting 8B1 0.813 0.748 0.780 

6 C1QTNF1 C1q and TNF related 1 0.895 0.697 0.796 

7 CAV1 caveolin-1 0.772 0.759 0.765 

8 CLDN4 claudin 4  0.754 0.919 0.836 

9 CLIC3 chloride intracellular channel 3 0.827 0.794 0.810 

10 CNN2 calponin 2 0.673 0.920 0.796 

11 CXXC4 CXXC finger protein 4  -0.614 -0.891 -0.752 

12 CYR61 cellular communication network factor 1 0.777 0.754 0.765 

13 DPYSL5 dihydropyrimidinase like 5  -0.686 -0.970 -0.828 

14 FHL2 four and a half LIM domains 2 0.951 0.927 0.939 

15 IER3 immediate early response 3 0.841 0.918 0.879 

16 IGFBP3 insulin like growth factor binding protein 3 0.733 0.904 0.819 

17 IGFBP6 insulin like growth factor binding protein 6 0.879 0.749 0.814 

18 IGFBP7 insulin like growth factor binding protein 7 0.790 0.785 0.788 

19 IL11 interleukin 11 0.845 0.880 0.862 

20 IL7R interleukin 7 receptor 0.788 -0.786 0.001 

21 INSM1 INSM transcriptional repressor 1 -0.739 -0.979 -0.859 

22 KRT80 keratin 80  0.872 0.639 0.756 

23 LBH LBH regulator of WNT signaling pathway 0.731 0.717 0.724 

24 LRRC15 leucine rich repeat containing 15 0.916 -0.617 0.149 

25 LRRN2 leucine rich repeat neuronal 2 -0.721 -0.733 -0.727 

26 MAL mal, T cell differentiation protein  0.724 0.841 0.782 

27 MFAP5 microfibril associated protein 5 0.921 0.725 0.823 

28 MRGPRF MAS related GPR family member F  0.775 0.751 0.763 

29 SYT8 synaptotagmin 8  0.746 0.709 0.727 

30 TACSTD2 tumor associated calcium signal transducer 2 0.689 0.833 0.761 

31 TAGLN transgelin 0.782 0.782 0.782 

32 THBS1 thrombospondin 1 0.922 0.803 0.863 

33 TRIM29 tripartite motif containing 29 0.751 0.760 0.756 

34 WISP2 cellular communication network factor 5  0.834 0.674 0.754 
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Supplementary Table D.4 | Comparison of Young’s modulus values obtained for ECC4 and TGBC cell 
lines across different methods. Young’s moduli derived from RT-DC as well as AFM indentation and 
microrheology measurements. The deformation timescales and mode of probing are indicated below method 
names. AFM indentation and microrheology were performed on adherent cells. For AFM microrheology, storage 
Young’s moduli E’ were obtained from storage shear moduli (𝐺𝐺′) according to Equation 1.7, assuming a Poisson’s 
ratio of 0.5. In RT-DC, E is calculated as median over the medians from n measurement replicates; in AFM, E is 
calculated as median/mean of n measured cells. MAD – mean absolute deviation, SD – standard deviation. 

 RT-DC AFM microrheology AFM indentation  
1 ms, whole-cell 5 ms (200 Hz), local 0.3 s (3 Hz), local 0.2 s, local  

E (kPa) E ’(kPa) E ’(kPa) E (kPa)  
median ± MAD mean ± SD mean ± SD median ± MAD 

ECC4 0.928 ± 0.058* 

(n = 8) 
0.628 ± 0.370# 

(n = 18) 
0.479 ± 0.237# 

(n = 18) 
0.470 ± 0.153† 

(n = 20) 

TGBC 1.325 ± 0.028* 

(n = 5) 
1.145 ± 0.677# 

(n = 27) 
0.782 ± 0.467# 

(n = 27) 
0.905 ± 0.401† 

(n = 26) 

data correspond to: * Figure 5.2b; # Figure 5.9c; † Figure 5.9b. 
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Supplementary Table D.5 | Summary of details regarding transcriptomic profiling of the datasets used in this study. 

 glioblastoma carcinoma HSPCs MCF10A iPSCs developing neurons 

accession no GEO: GSE77751 DDBJ: DRA000991 GEO: GSE90552 GEO: GSE69822 GEO: GSE49940 GEO: GSE51606 

technology HT seq CAGE HT seq HT seq microarray HT seq 

instrument  Illumina HiSeq 2500 Helicos HeliScope Illumina HiSeq 
2500 Illumina HiSeq 2500 Illumina BeadArray 

Reader* Illumina HiSeq 2000 

platform ID GPL16791 GPL14761 GPL16791 GPL16791 GPL6885 GPL13112 

sequencing depth 26–35 million single-
end reads per sample 

4 million mapped tags 
per sample 

27–56 million 
fragments per 

pooled libraries 

31 million single-end 
reads per library N/A 30-40 million reads 

per sample 

RNA isolation 
total RNA, 

 High Pure RNA 
Isolation Kit (Roche) 

total RNA, 
miRNeasy Kit 

(Qiagen) 

total RNA, 
 trizol isolation 

total RNA, 
 RNeasy Kit 

(Qiagen) 

total RNA, 
RNeasy Kit (Qiagen) 

polyA RNA, 
μMACS™ mRNA 

Isolation Kit 
(Miltenyi) 

library preparation 
Ultra Directional 

RNA Library Prep 
(NEB) 

HeliScopeCAGE510 
TruSeq RNA 

Sample Prep Kit 
(Illumina) 

TruSeq RNA Sample 
Prep Kit (Illumina) labelling with biotin custom protocol 

alignment 
to GRCh38  

GSNAP 
(v 2014-12-17) 

to GRCh37 
Delve 

to GRCh38 
 GSNAP 

(v 2015-12-31) 

to GRCh37 
TopHat (v 2.0.10) BeadStudio (v 3.2) to MGSCv37  

BWA (v 0.5.9) 

counting featureCounts 
(v 1.4.6) 

decomposition peak 
identification 

(DPI)465,$ 

featureCounts 
(v 1.5.0) HTSeq (v 0.6.1)† BeadStudio (v 3.2) BEDtools (v 2.11) 

normalization 
size factor 

normalization  
(DESeq2 v 1.6.2) 

TPM - tags per milion 
(edgeR) 

size factor 
normalization 

(DESeq2 v 1.10.1) 

RPKM 
 (DESeq2 v 1.4.5) 

log2-scaling, qnt 
 (Lumi) 

size factor 
normalization  

(DESeq v 1.8.1) 

*with mouseRef-8 v2 expression BeadChips (Illumina), 

$available at https://github.com/hkawaji/dpi1/,  

†available at http://www-huber.embl.de/users/anders/HTSeq/doc/count.html
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Supplementary Table D.6 | List of sample IDs assigned to the different cell states in the respective 
transcriptomic datasets. sc – small-cell, sq – squamous cell, adeno – adenocarcinoma. 

*stomach, $lung, §intestine   

accession number cell state sample IDs 

glioblastoma 

GSE77751 

FGFJI (soft) 
GSM2058533 | GSM2058534 | GSM2058535 | GSM2058542 | 
GSM2058543 | GSM2058544 | GSM2058551 | GSM2058552 | 
GSM2058553 

EGF medium) 
GSM2058530 | GSM2058531 | GSM2058532 | GSM2058539 | 
GSM2058540 | GSM2058541 | GSM2058548 | GSM2058549 | 
GSM2058550 

serum (stiff) 
GSM2058536 | GSM2058537 | GSM2058538 | GSM2058545 | 
GSM2058546 | GSM2058547 | GSM2058554 | GSM2058555 | 
GSM2058556 

carcinoma 

DRA000991 

sc (soft) 10589 | 10610*| 10841 | 10541 | 10842 | 10562$| 10609§ 

sq (medium) 10717 | 10760 | 10692 | 10434 | 10550 | 10545 | 10544 | 
10463 | 10486$ 

adeno (stiff) 
10796 | 10643 | 10614*| 10612 | 10499$| 10408 | 10648 | 
10784 | 10437 | 10417§| 10639 | 11843 | 11841 | 10693 | 
10797 

HSPCs 

GSE90552 

VPA (soft) GSM2406738 | GSM2406739 | GSM2406740 | GSM2406741 

PBS (stiff) GSM2406734 | GSM2406735 | GSM2406736 | GSM2406737 

MCF10A 

GSE69822 

WT (soft) GSM1709515 | GSM1709516 | GSM1709517 

H1047R (stiff) GSM1709572 | GSM1709573 | GSM1709574 

iPSCs 

GSE49940 

F-class (soft) GSM1544134 | GSM1544135 | GSM1544139 | GSM1544140 | 
GSM1544146 | GSM1544160 

C-class (stiff) 

GSM1544136 | GSM1544137 | GSM1544138 | GSM1544141 | 
GSM1544142 | GSM1544143 | GSM1544144 | GSM1544145 | 
GSM1544147 | GSM1544148 | GSM1544149 | GSM1544150 | 
GSM1544151 | GSM1544152 | GSM1544153 | GSM1544154 | 
GSM1544155 | GSM1544156 | GSM1544157 | GSM1544158 | 
GSM1544159 | GSM1544161 

developing 
neurons 

GSE51606 

PPs (soft) GSM1249110 | GSM1249113 | GSM1249116 

DPs (medium) GSM1249111 | GSM1249114 | GSM1249117 

NNs (stiff) GSM1249112 | GSM1249115 | GSM1249118 
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Supplementary Figures D.1 – D.7 

 

Supplementary Figure D.1 | Plots of area vs deformation for different cell states in characterized 
systems. Panels correspond to the following systems: a, glioblastoma, b, carcinoma, c, human stem and 
progenitor cells (HSPCs), d, non-tumorigenic breast epithelia MCF10A, e, induced pluripotent stem cells (iPSCs), 
and f, developing neurons. 95%- and 50% density contours of data pooled from all measurements of given cell 
state are indicated by shaded areas and continuous lines, respectively. Datapoints indicate medians of individual 
measurements. The isoelasticity lines in the background (gray) indicate regions of the same Young’s moduli. DDs 
– differentiating progenitors, DPs – differentiating progenitors, NNs – newborn neurons.  
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Supplementary Figure D.2 | Relation between the magnitude of Young’s modulus change and the 
absolute change in the expression levels of target genes. a–e, Plots of normalized change in Young’s 
modulus ∆𝐸𝐸�  versus absolute value of change in expression for the target genes from conserved module: CAV1 
(a), FHL2 (b), IGFBP7 (c), TAGLN (d) THBS1 (e). Every soft-stiff state pair from the respective datasets is 

presented as an individual point. ∆𝐸𝐸� =
𝐸𝐸𝑖𝑖𝑡𝑡𝑖𝑖𝑠𝑠𝑠𝑠−𝐸𝐸𝑖𝑖𝑖𝑖𝑠𝑠𝑡𝑡

𝐸𝐸𝑖𝑖𝑡𝑡𝑖𝑖𝑠𝑠𝑠𝑠
, where 𝐸𝐸𝑠𝑠𝑑𝑑𝑠𝑠𝑓𝑓𝑓𝑓 and 𝐸𝐸𝑠𝑠𝑖𝑖𝑓𝑓𝑑𝑑 correspond to the Young’s moduli 

(mean of all measurements) of the stiff and soft states within the given pairs, respectively. The dashed lines 
correspond to linear fits to data, with gray-shaded areas representing 95% confidence intervals.  
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Supplementary Figure D.3 | ROC curves characterizing classification performance of the five genes 
from the conserved module. a–e, True positive rate was plotted against the false positive rate at different 
classification thresholds for each soft-stiff phenotype pair from the validation datasets for: CAV1 (a), FHL2 (b), 
IGFBP7 (c), TAGLN (d), and THBS1 (e). The insets in the upper left corners of the plot show the colors of all 
overlying curves with AUC = 1. The ROC curves were constructed using perfcurve function in MATLAB (R2020a, 
MathWorks). sc – small cell carcinoma, sq – squamous cell carcinoma, adeno – adenocarcinoma, wt, wild type, 
cnt – control, VPA – valproic acid, PPs – proliferating progenitors, DPs – differentiating progenitors, NNs – 
newborn neurons. 

 
Supplementary Figure D.4 | Young’s moduli of ECC4 and TGBC cell lines across methods. Young’s 
moduli derived from RT-DC as well as AFM indentation and microrheology measurements plotted against 
probing frequency. For AFM microrheology, storage Young’s moduli E’ were obtained from storage shear moduli 
(𝐺𝐺′) according to Equation 1.7, assuming a Poisson’s ratio of 0.5. For AFM microrheology, datapoints 
correspond to means ± SD of individual cells (number of measured cells n = 18 and 27 for each frequency for 
ECC4 and TGBC, respectively; data corresponds to Figure 5.9c). For AFM indentation, datapoints correspond 
to medians ± MAD (number of measured cells n = 20 and 26 for ECC4 and TGBC, respectively; data 
corresponds to Figure 5.9b). For RT-DC, datapoints correspond to medians ± MAD (number of measurement 
replicates n = 8 and 5 for ECC4 and TGBC, respectively; data corresponds to Figure 5.2b).  
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Supplementary Figure D.5 | Plots of area vs deformation from RT DC measurements of cells with 
perturbed CAV1 levels. a–b, CAV1 knock-down in TGBC cells using esiRNA (a) and ONTarget siRNA (b), 
c–d, transient CAV1 overexpression in ECC4 cells (c) and TGBC cells (d). Datapoints indicate medians of 
individual measurement replicates. The isoelasticity lines in the background (gray) indicate regions of same 
mechanical properties. 

 

Supplementary Figure D.6 | TGBC cells show decreased stiffness upon CAV1 knock-down as measured 
by AFM. a, After CAV1 knock-down (esiCAV1-1), the TGBC cells show lower Young’s moduli than control 
cells transfected with non-targeting esiRNA (rLuc). Box plots spread from 25th to 75th percentiles with a line at 
the median, whiskers span 1.5 × interquartile range (IQR), individual datapoints correspond to values obtained 
for individual cells (number of measured cells n = 29 and 17 for rLuc and esiCAV1-1 conditions, respectively). 
Statistical analysis was performed using two sample two-sided Wilcoxon rank sum test. b, After CAV1 knock-
down (esiCAV1-1), the TGBC cells show storage and shear modulus lower than the control cells (rLuc) in AFM 
microrheology measurements. Datapoints correspond to means ± standard deviation of all measurements at 
given oscillation frequencies (n = 32 and 18 for each frequency for rLuc and esiCAV1-1 conditions, respectively). 
Lines connecting datapoints serve as guides for the eye. 
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Supplementary Figure D.7 | RT-DC measurements of CAV1 perturbations in MCF10A-Er-Src. 
a, MCF10A-ER-Src cells show increased Young’s moduli 72 h post TAM induction as measured by RT-DC. 
Values normalized to EtOH control. b, CAV1 knock-down in uninduced MCF10A-ER-Src cells results in 
lowering of the Young’s modulus as measured by RT-DC. Values normalized to rLuc control. c, Overexpression 
of CAV1 in both EtOH-treated (uninduced) and TAM-induced MCF10A-ER-Src cells causes increase in the 
Young’s. All values are normalized to mock EtOH sample. CAViT– and CAViT+ indicate negative and positive 
cells from CAViT-transfected sample filtered based on maximum fluorescence intensity. In a and b, horizontal 
lines delineate medians with mean absolute deviation (MAD) as error, datapoints represent medians of the 
individual replicates (n = 4 and 5 for a and b, respectively). In c, boxes on top of violins extend from 25th to 
75th percentiles, with a dot at the median, whiskers indicate 1.5 × IQR, data originates from one replicate, number 
of cells analyzed for each condition is indicated in the plot. All experiments were performed using 30 μm channels 
and a flow rate of 0.16 μl s−1, filtering for area (50-500) and area ratio (1.0–1.1) was applied. Statistical analysis 
was performed using generalized linear mixed-effects models (a and b) or a two-sided Wilcoxon rank sum test (c). 
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