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 Abstract 

 Acoustic theory is a branch of theoretical physics that attempts to explain the movement 

 of sound through models of fluid dynamics and derivations from the Navier-Stokes equation of 

 fluid movement. Foundational models of acoustic theory aimed to explain how sound moves on 

 a microscopic level but have been unable to find reasonable evidence of how models of particle 

 movement relate to what can be heard on a macroscopic scale. This thesis explores current 

 models and research spawned from original models while attempting to unify and apply micro 

 and macro aspects of acoustics, while finding applications of the unifying theory. There is an 

 emphasis on the proposition and predictions of sound movement within a constantly changing 

 environment. Findings illustrate potential links between the models of fluid dynamics and 

 characteristics of acoustics, while current gaps from both fluid dynamics and links between 

 topics prevent a fully cohesive theory from being established. Despite this, applications of how 

 this theory can be used in live sound were found and lay a foundation for new types of 

 technology and methods to be developed once the theory becomes fully established through 

 continued research. 
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 Introduction 

 Acoustics and audio engineering are often, erroneously, considered synonymous; 

 however, they share a definitive synergistic relationship. Acoustics act as a foundational concept 

 for the execution of audio engineering, ranging from creating studios to building arrays for a 

 show. Although acoustics encompasses the study of musical instruments and architectural 

 spaces, the scope of acoustics moves far beyond the studio or event spaces. The role of acoustics 

 is evident in earth sciences, medicine, physiology, and sonar systems. It impacts every aspect of 

 the day from traffic noise to seismic waves. Yet nowhere is it more noticeable than when 

 attending a theater or concert performance and the sound quality of what the audience hears is 

 either positively or negatively impacted by the venue and the environment. Acoustical physics 

 often deals with sound movement, and acoustical engineers tend to focus on morphing the 

 characteristics of sound to be pleasing to an audience. Acoustics play a critical role in the ability 

 to successfully engineer and execute the required sound, as every location and venue presents its 

 own unique set of challenges. 

 In the field of acoustic treatment, the movement of sound within a space is critical in 

 achieving the best auditory results. Diffusion panels and dampeners inside studios can change the 

 characteristics of the sound. Within a music venue, every aspect of design, ranging from drapes 

 to seating, hardscapes, and carpet, all impact the acoustics of that venue. Each venue, studio, 

 arena, and performance area comes with acoustic challenges that the audio engineer must deal 

 with to help produce quality sound. This is of key importance when planning any space 

 (Ramakrishnan & Dumoulin). The reflections that come with interactions between the sound and 

 acoustic material must be considered when evaluating the desired outcome of the sound being 
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 produced. Models such as the Sabine equation and measured values of materials, help create 

 approximate solutions to these acoustic problems, but they are not perfect (Long). 

 Aside from the various, traditional, acoustic impacts (physical structures, diffusion 

 panels, dampeners, etc), some additional considerations and factors influence the live production 

 of sound. Different environmental factors, like temperature, play a crucial role in how sound 

 travels as well as in the auditory perception of listeners. Sound is variable, and much like how 

 humidity and temperature change how the air feels on the skin, it also impacts the speed and 

 transmission characteristics of sound. System engineers often have to account for temperature 

 changes from crowds, as well as atmospheric changes like air temperature and wind speeds if the 

 show is in an open-air venue (McCarthy). Engineers that work in live sound may use predictive 

 software and run their soundcheck in an empty venue only to find that they must adjust and adapt 

 the sound once the audience is present. In this case, the audience causes changes in the sound in 

 the environment. Sound within any arena can be absorbed by the audience or reflected from 

 other surfaces, requiring further adaptations that may not have been taken into account. Live 

 sound engineers often describe live mixing as a battle with the environment when conditions are 

 less than optimal. The concept of fine-tuning systems in live sound gets “close” to optimal, but is 

 not quite perfectly accurate due to these external factors. 

 The interpretation of sound can be complicated depending on the environment through 

 which sound is moved. While the model of sound is often interpreted as a wave, which is 

 undeniably true, it is also defined as a disturbance of particles. This disturbance is seen as a 

 pressure change, and the wave interpretation comes from the periodic compression and 

 rarefaction of waves. A variety of factors can change sound qualities. While the wave motion 

 and direction are quantifiable, using Huygens’ Principle to describe propagation and Snell’s Law 
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 deriving refraction, it is difficult to create a set of equations for each venue or studio to determine 

 how best to create the optimal sound. Often generalizations and simplifications of these laws and 

 practices become much more common as a “quick fix” to a problem. There are additional 

 complications that come from the form of diffusion and absorption of sound, specifically with 

 their representation. Both diffusion and absorption tend to use a ray-based model of sound rather 

 than an analysis of waves or particles, in which sound is modeled as an individual line as 

 opposed to waves or a field. This is further complicated with frequency-dependent absorption 

 and diffusion, where the amount that sound spreads is dependent on frequency. Consequently, it 

 is this lack of cohesion in evaluation that causes many questions to remain unanswered within 

 these models and creates fragmented topics and methods within acoustics (Siltanen Lokki, & 

 Savioja). Evaluating the impact of acoustics from every physical perspective is a necessity within 

 all applications of acoustics.  There is currently no golden equation nor golden theory to describe 

 sound movement through all of these generalizations, leaving a vacancy in solid explanations of 

 techniques or adaptations. Determining the variety of physical factors that influence the sound 

 and finding a consistent manner to achieve optimal results across environments could improve 

 both live sound and acoustical treatment. 

 Many techniques and manipulation tactics take into account broad-based concepts in 

 acoustical physics, despite atomic properties such as heat and temperature which affect the 

 sound. When analyzing both the physics involved and the techniques used, the concept of 

 acoustics acting as a disturbance of the medium through which it travels should be considered 

 (Kumar, Azharudeen, Pothuri, Subramani). Acoustic theory uses the foundation of fluid 

 dynamics to determine sound movement through a fluid medium. Topics relating to the nature of 

 atomic particles and their relation to temperature and thermal energy further contribute to 
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 changes within the field. Through the current model, attempts to unify both perspectives of 

 acoustic movement have been made. The current model fails to account for the broader scale, 

 while successfully focusing on the atomic scale. The compelling question is whether there is any 

 way to unify these topics on the atomic and the broad scale. 

 The inability to unify the atomic and broader perspectives in acoustics has led to 

 additional gaps in what is being used in practice. The current model for Acoustic Theory has its 

 foundation in fluid dynamics. The original theory was presented by Epstein and Carhart in  The 

 Absorption of Sound in Suspensions and Emulsions  ,  where the equations of the acoustic field are 

 modeled on the Navier-Stokes equation used in fluid dynamics. Addendums to these equations 

 have been made based on a variety of principles that separate acoustics from fluid dynamics. 

 They are focused heavily on boundary conditions and diffraction problems while negating other 

 properties of sound. Further research has been conducted by Allan D. Pierce, who created a more 

 cohesive explanation for the mathematical foundations of acoustic theory in  Basic Linear 

 Acoustics.  Pierce expanded upon the original model  presented by Epstein and Carhart. Pierce’s 

 work has become one of the most highly respected textbooks in acoustics education.  Pierce’s 

 rigor in exploring the physical and mathematical aspects of sound to which he applied equations 

 of continuum mechanics in fluids, particularly the acoustic properties of water and air, furthered 

 the ability to quantify sound within a variety of mediums. Additional research on 

 frequency-domain effects of acoustic movement was investigated by Axel Kierkegaard. His 

 research regarding frequency intensity within small acoustic ducts enabled the examination of 

 possible extrapolation to larger acoustic ducts and fields. 

 Some research highlights the gaps that continue to exist in acoustic research. A model for 

 using the diffusion equation for acoustics proposed a possible solution for computing 
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 non-constant diffusion coefficients. The potential solutions were inconclusive and led to more 

 questions (Raúl Pagán Muñoz, Juan Miguel Navarro Ruiz, and Maarten Hornikx). While not 

 conclusive, the questions that come from such research informs future research. Supplementary 

 research on the diffusion equation model, however, found that the model had potential under the 

 constraints of constant diffusion coefficients but was not able to be applied to situations where 

 the coefficient was not constant (Juan Miguel Navarro, José Escolano, Jose Lopez). 

 While progress has been made, few solutions on how to utilize the plethora of 

 information to unify the micro and macro aspects of acoustic theory have emerged. Applications 

 of partial differential equations, multivariable calculus, and fluid dynamics serve as explanations 

 as to what is happening to sound as it travels, but the theory is not fully cohesive yet. The goal of 

 this thesis is to explore both sides of acoustic theory, evaluating the micro and macro properties 

 of acoustics together through mathematics and physics, and propose future research for a unified 

 acoustic theory in which all aspects are properly accounted for. 

 Mathematical Knowledge 

 Mathematics serves as a way to study problems within physics; however, what math 

 represents in the field of physics is different from that in the field of general mathematics. 

 Mathematics within the realm of physics is utilized to elucidate and expand physical theories, 

 such as acoustic theory, rather than being used simply as a manner to execute mathematical 

 operations. A rigorous mathematical framework can be used to represent the state of how an 

 object changes, and in turn, can expand and can more accurately define existing theories. While 

 acoustic theory has been studied within mathematical structure, it has yet to incorporate both 
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 micro and macro perspectives. Acoustic theory will be examined through the application of a 

 different schema of complex mathematics, and possibly expanded to incorporate both 

 perspectives, thereby improving the application of acoustic theory in real world situations. As 

 such, it is first necessary to define the mathematics that will be used for the purposes of this 

 paper, before defining the physics that is required in examining this. Much of the mathematics 

 used in this thesis covers vector calculus, complex analysis, and partial differential equations, 

 where foundations in ordinary differential equations and multivariable calculus will contribute 

 significantly to the mathematics presented. 

 Multivariable Calculus 

 In mathematics, the partial derivative for some function  can be denoted as either  𝑓 ( 𝑥 ,  𝑦 )

 or  .  In the context of this thesis,  the notation of  and  will be used for  vector  𝑓 
 𝑥 

∂ 𝑓 
∂ 𝑥  𝑓 

 𝑥 
    𝑓 

 𝑦 

 components, not partial derivatives. The standard form for vector components are represented as 

 and  to represent the direction of a  vector function in algebra, since this notation lends better  𝑓 
 𝑥 

    𝑓 
 𝑦 

 to algebraic manipulation. Additional topics included in this thesis use subscript notation to 

 denote other quantities, more specifically for tensor notation (Epstein & Carhart). Because of 

 this, The representation and notation to follow will be represented below. 

 𝑓 =<  𝑓 
 𝑥 
   ,  𝑓 

 𝑦 
,     𝑓 

 𝑧 
>

 𝑓 
 𝑥 

≠ ∂ 𝑓 
∂ 𝑥 ,     𝑓 

 𝑦 
≠ ∂ 𝑓 

∂ 𝑦 ,     𝑓 
 𝑧 

≠ ∂ 𝑓 
∂ 𝑧 

 The majority of the math involved for acoustic theory involves vector calculus, 

 multivariable calculus, and partial differential equations. Therefore, it is important to define 
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 some operators frequently used in these fields. An operator is a symbol that represents some 

 form of operation, simple ones being addition or subtraction. One of the most common operators 

 found in multivariable calculus is the gradient, or del operator, which is represented as  . This  ∇ 

 operator represents partial derivatives with respect to each variable of a function, of the form 

 (Stewart): 

 ∇  𝑓 ( 𝑥 ,  𝑦 ,  𝑧 ) = ( ∂ 𝑓 
∂ 𝑥 ,

∂ 𝑓 
∂ 𝑦 ,

∂ 𝑓 
∂ 𝑧 )

 The gradient is most often used in terms of vectors, as it is able to illustrate rates of 

 change based on direction. An important caveat about this notation is the distinction between 

 multiplication and the dot product. As previously mentioned, fluid dynamics and acoustic theory 

 deal with the manipulation of vector and use of vector operations, meaning notation becomes 

 crucial to distinguish these operations. The dot product results in a scalar value, while vector 

 multiplication does not. 

 ∇  𝑓 ≠  ∇ ·  𝑓 

 This concept also leads to divergence. Divergence is defined as the sum of the gradient 

 components. The concept of divergence often describes what is happening to a system, and 

 frequently appears in fields like thermodynamics, electromagnetism, and fluid mechanics 

 (Chabay & Sherwood). 

 𝑑𝑖𝑣     𝑓 =  ∇ ·  𝑓 ( 𝑥 ,  𝑦 ,  𝑧 ) = ∂ 𝑓 
∂ 𝑥 + ∂ 𝑓 

∂ 𝑦 + ∂ 𝑓 
∂ 𝑧 

 The divergence operator describes the tendency of a vector to diverge from that point. It 

 can also be defined as the “flux density” of the vector field, representing how much of a field is 

 flowing at some given point or area. This specific concept is important when divergence takes 

 the form: 

 𝑑𝑖𝑣     𝑓    =  0 
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 When this case occurs, it means that either there is no change in a system or the amount 

 of something entering into a system is the same as something exiting a system. Divergence of 

 gradients can also be found, and are represented a del operator squared  , also referred to  as ( ∇  2 )

 the Laplacian operator, and takes the form (Greiner, Ivrii, & Seco): 

 ∇  2  𝑓 ( 𝑥 ,  𝑦 ,  𝑧 ) = ∂ 2  𝑓 

∂ 𝑥  2 + ∂ 2  𝑓 

∂ 𝑦  2 + ∂ 2  𝑓 

∂ 𝑧  2 

 Both of these notations are used, but the  notation is not only preferred but generally  ∇  2 

 more common. For this reason, del squared will be the notation used. The Laplacian operator 

 often describes how the change of a quantity is changing in mathematics, which has great 

 significance when looking at changes in a physical system. Examples of how the Laplacian 

 operator is used in physics range from the Laplace and Poisson equations in electromagnetism, to 

 Schrodinger’s equation in quantum mechanics. 

 The final operation relating to the state of a system is that of curl. Curl is an operator 

 similar to divergence that measures the amount of rotation that occurs within a system. It is 

 defined as the determinant of a matrix involving the first partial derivatives of a vector  with  𝑓 

 components defined as  (Stewart):  𝑓 
 𝑥 
,     𝑓 

 𝑦 
,     𝑓 

 𝑧 

 𝑐𝑢𝑟𝑙     𝑓    =  ∇ ×  𝑓 

 ∇ ×  𝑓    =  𝑖 · (
∂ 𝑓 

 𝑧 

∂ 𝑦 −
∂ 𝑓 

 𝑦 

∂ 𝑧 ) +  𝑗 · (
∂ 𝑓 

 𝑧 

∂ 𝑥 −
∂ 𝑓 

 𝑥 

∂ 𝑧 ) +  𝑘 · (
∂ 𝑓 

 𝑦 

∂ 𝑥 −
∂ 𝑓 

 𝑥 

∂ 𝑦 )

<
∂ 𝑓 

 𝑧 

∂ 𝑦 −
∂ 𝑓 

 𝑦 

∂ 𝑧 ,    
∂ 𝑓 

 𝑧 

∂ 𝑥 −
∂ 𝑓 

 𝑥 

∂ 𝑧 ,    
∂ 𝑓 

 𝑦 

∂ 𝑥 −
∂ 𝑓 

 𝑥 

∂ 𝑦 >



 12 

 Curl defines the rotation of a system by looking at the change with respect to direction. If 

 the curl of a vector  is nonzero, then there is rotation in the system. When the curl is zero, then  𝑓 

 the vector  is considered to have irrotational  flow. As the name implies, irrotational flow means  𝑓 

 there is no rotation in the system. This is seen as a special case within vector field flow, and takes 

 the form of (Stewart): 

∂ 𝑓 
 𝑧 

∂ 𝑦 =
∂ 𝑓 

 𝑦 

∂ 𝑧 ,    
∂ 𝑓 

 𝑧 

∂ 𝑥 =
∂ 𝑓 

 𝑥 

∂ 𝑧 ,    
∂ 𝑓 

 𝑦 

∂ 𝑥 =
∂ 𝑓 

 𝑥 

∂ 𝑦 

 Additional concepts that are worth mentioning are those of a conservative vector field 

 and the potential function. While distinct concepts, they are mathematically related through 

 irrotational flow. If the curl of a vector function is zero, then the vector field is a conservative 

 vector field. Furthermore, a conservative field is represented as the gradient of some function, 

 called the potential function. 

 Complex Variables 

 Complex variables and complex graphing is essential for later in this text. Complex 

 graphing follows a different set of conditions than graphing real values. Cartesian coordinates 

 follow the notation of  for  where any  ordered pair of numbers represents a point ( 𝑥 ,  𝑦 )  𝑥 ,  𝑦 ∈  ℝ ,

 in the  plane. Complex graphing follows a similar  convention, but does not yield a  𝑥𝑦 

 one-dimensional result. For any complex number  the coordinate system is defined as  𝑥 +  𝑖𝑦 ,

 where the complex number  represents  a line from the origin to the number ( 𝑥 ,  𝑖𝑦 ),  𝑥 +  𝑖𝑦 

 . With this convention defined, the importance  of Euler’s identity becomes more apparent  𝑥 +  𝑖𝑦 

 (Brown & Churchill). 

 𝑒  𝑖 θ =  𝑐𝑜𝑠 (θ) +  𝑖 ·  𝑠𝑖𝑛 (θ)
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 Pictured above:  graphed in blue and  plotted in red  𝑒  𝑖 θ  1 +  𝑖 

 The identity functions as a way to draw a unit circle in the complex plane. By having 

 represent  and  represent  This means that for any  , Euler’s identity  𝑐𝑜𝑠 (θ)  𝑥 ,  𝑖 ·  𝑠𝑖𝑛 (θ)  𝑖 ·  𝑦 . θ

 represents any point on the unit circle that is  radians away from 1 in the counterclockwise θ

 direction. This understanding becomes crucial when dealing with frequencies in the auditory 

 spectrum, as its application assists in illustrating frequency strength. 

 Differential Equations 

 A differential equation is defined as an equation that involves one or more variables, as 

 well as their rates of change. The important distinction that makes differential equations unique 

 is that the solution must be a function, rather than an individual value. Ordinary differential 

 equations appear frequently in science, ranging from current equations for circuits to the 

 kinematic equations of classical mechanics (Graef, Henderson, Kong, et al.). Ordinary 

 differential equations generally deal with differential equations of one variable, like time or 

 distance. Partial differential equations take a similar form but require two or more variables, as 
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 well as their partial derivatives (Greiner Ivrii & Seco). These differential equations often 

 represent how some value changes with respect to space and time. For the sake of understanding 

 what partial differential equations represent, analyzing a common partial differential equation 

 and what it represents is imperative. One of the most common examples for illustrating partial 

 differential equations is the heat equation, due to the more simplistic nature and common uses in 

 mathematics. The heat equation represents the change in thermal energy of a material, defined as 

 (Carlslaw & Jaeger): 

∂ 𝑇 
∂ 𝑡 =  𝑘  ∇  2  𝑇 

 , for ∂ 𝑇 
∂ 𝑡 =  𝑘 · ( ∂ 2  𝑇 

 𝑑  𝑥  2 + ∂ 2  𝑇 

∂ 𝑦  2 + ∂ 2  𝑇 

∂ 𝑧  2 )  𝑇 ( 𝑥 ,  𝑦 ,  𝑧 ,  𝑡 )

 For the heat equation,  represents temperature  in three dimensions for some  𝑇 ( 𝑥 ,  𝑦 ,  𝑧 ,  𝑡 )

 time  and  represents the thermal conductivity  of any material, regarded as a constant value.  𝑡 ,  𝑘 

 The easiest way to envision how the heat equation works is to start by looking at a metal bar. The 

 function of the temperature  represents the  temperature  of the metal bar at every point  .  𝑇 ( 𝑥 )  𝑇  𝑥 

 The bar will reach thermal equilibrium as time continues, and all  values will become closer to  𝑇 

 being uniform across all  (Van Wylen & Sonntag).  A time variable  is therefore necessary for  𝑥  𝑡 

 in order to evaluate the change in temperature  of the metal bar over time, and  then  𝑇 ( 𝑥 )  𝑇 ( 𝑥 )

 becomes  The notation of  represents  how the function  changes with respect to  𝑇 ( 𝑥 ,  𝑡 ). ∂ 𝑇 
∂ 𝑡 ( 𝑥 ,  𝑡 )  𝑇 

 time, while  represents how the function  changes with respect to space (Carlslaw & ∂ 𝑇 
∂ 𝑥 ( 𝑥 ,  𝑡 )  𝑇 

 Jaeger). The expression  represents  differentials of differentials, or how the change of a ∂ 2  𝑇 

∂ 𝑥  2 ( 𝑥 ,  𝑡 )

 value is changing. For areas that have these higher rates of change, the movement of these values 

 towards equilibrium will be more drastic. Visually, thinking about a three-dimensional plot of 
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 helps further illustrate what the heat equation represents. Let  represent points on the ( 𝑥 ,  𝑇 ,  𝑡 )  𝑥 

 length of the rod,  represents the temperature  of the rod and  represents time. The plot would  𝑇  𝑡 

 show a curve of the temperature  at all points  in the  plane, while the  plane  𝑇  𝑥 ( 𝑥 ,  𝑇 ) ( 𝑥 ,  𝑇 ,  𝑡 )

 shows a the graph of a place that represents the temperature change towards thermal equilibrium 

 along the  axis. The idea of identifying different  types of changes is the same for any number of  𝑡 

 dimensions. In this example, defined functions of temperature are rarely ever found in applied 

 situations. The equation is not necessarily presented as a problem to be solved, but as a 

 description of an object (Van Wylen & Sunntag). This idea of using mathematics to represent the 

 state of a system rather than an equation to solve is a key concept for partial differential 

 equations. This helps conceptualize the physics that is happening in this text. 

 Physics 

 Acoustic Theory 

 It is necessary to be familiar with aerostatics and fluid mechanics. Sound represents 

 pressure changes in an environment, a foundational concept to aerostatics is the proportion of the 

 change in pressure, where the change in pressure is proportional to acceleration due to gravity 

 and density. The important caveat about this law is that this only applies to fluids at rest 

 (Schobieri). When the change in pressure is 0, it means that the fluid has a uniform density. This 

 is more for an understanding of what is happening due to changes in pressure, and the 

 relationship between density and pressure changes. 

 The foundation of fluid dynamics, and by extension acoustic theory, is the Navier-Stokes 

 equation. The Navier-Stokes equation represents the flow of a fluid, but the original form of the 
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 equation has many different notations. For the derivations most commonly used in this writing, 

 the Navier-Stokes equation is defined as (Peyret & Taylor): 

ρ · ( ∂ 𝑣 
∂ 𝑡 +  𝑣 ·  ∇  𝑣 ) +  ∇  𝑝 =  0 

∂ρ
∂ 𝑡 + ( ∇ · ρ 𝑣 ) =  0 

ρ ∂ 𝑢 
∂ 𝑡 + ρ 𝑣 ∂ 𝑢 

∂ 𝑥 +  𝑝  𝑑𝑢 
 𝑑𝑥 − Ψ

η
− ∂

∂ 𝑥 · ( 𝑘 ∂ 𝑇 
∂ 𝑥 ) =  0 

 The values represented in the Navier-Stokes equation are  as the fluid energy,  as the  𝑢 ρ

 fluid density,  as fluid pressure, and  as fluid  velocity. These equations represent basic fluid  𝑝  𝑣 

 motion in multiple directions over a period of time. Of note, the Navier-Stokes equations are 

 regarded as being notoriously difficult to solve, specifically with complicated or chaotic flow. 

 This is partially due to the nature of fluid dynamics becoming increasingly complex as 

 specificity of examination increases. However, the importance of such specificities cannot be 

 understated, as anomalies and inconsistencies tend to appear once the smallest particle scales are 

 questioned. 

 An additional concept to introduce is that of perturbation. By definition, perturbation is 

 synonymous with a disturbance, specifically within a system of equilibrium (Pierce). 

 Perturbation is a common topic within fluid dynamics, often representing differences in pressure 

 for the case of fluid dynamics. Given this definition, the concept of sound is nearly synonymous 

 with perturbation, as it represents disturbances in fluid pressure (Epstein & Carhart). 

 Mathematically, perturbations are denoted as a system in which there is an initial value and a 

 change of the system over space and time (Peyret & Taylor). In the example of a perturbation in 

 pressure, the system defining the perturbation is denoted with an initial pressure  and a ( 𝑝 
 0 
)

 function of the perturbation of pressure, also known as the perturbed pressure. For example, if a 
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 perturbation took place in three dimensions, it would take the form  . This  𝑝 =  𝑝 
 0 

+  𝑝 ( 𝑥 ,  𝑦 ,  𝑧 ,  𝑡 )

 definition is what allows for the application of concepts from fluid dynamics into acoustic 

 theory, and are the fundamentals from Epstein & Carhart’s writings. 

 The basic foundation of acoustic theory begins by defining the movement of the acoustic 

 field. The first proposed equation of the acoustic field was of the form (Epstein & Carhart): 

∂ρ
∂ 𝑡 + ρ( ∇ ·  𝑣 ) =  0 

 represents density, and  represents the velocity  function of the sound. The implications of this ρ  𝑣 

 equation illustrate conservation in any defined system, stating that the change in density of a 

 medium due to sound is proportional to the initial density multiplied by the total changes in the 

 velocity of the sound field. This means that the system is closed. Sound disturbs two main 

 components when traveling through a medium: pressure and density. As defined before, a change 

 in pressure is related to density (Batchelor). Given this, sound can be defined as a perturbation of 

 both density and pressure. Given these definitions, both the Navier-Stokes equation and the 

 conservation equation of the acoustic field can be updated as (Peyret & Taylor): 

(ρ
 0 

+ ρ) · ∂ 𝑣 
∂ 𝑡 + (ρ

 0 
+ ρ) ·  𝑣 ·  ∇  𝑣 +  ∇ ( 𝑝 

 0 
+  𝑝 ) =  0 

∂
∂ 𝑡 (ρ

 0 
+ ρ) + (ρ

 0 
+ ρ)( ∇ ·  𝑣 ) =  0 

 Where  represents the static density,  represents  the perturbed density,  represents the ρ
 0 

ρ  𝑝 
 0 

 static pressure,  represents the perturbed pressure,  and  represents the velocity vector of the  𝑝  𝑣 

 sound. Given that  and  both represent  constant values, and therefore their derivatives are 0. ρ
 0 

 𝑝 
 0 

 Given this, the equations can be further updated (Pierce): 

(ρ
 0 

+ ρ) · ∂ 𝑣 
∂ 𝑡 + (ρ

 0 
+ ρ) ·  𝑣 ·  ∇  𝑣 +  ∇  𝑝 =  0 



 18 

∂ρ
∂ 𝑡 + ρ

 0 
 ∇ ·  𝑣 +  ∇ · ρ 𝑣 =  0 

 The first equation represents the Navier-Stokes with the effect of pressure and density 

 perturbation. This equation acts as the motion equation for acoustic theory. The second equation 

 represents conservation in the acoustic field with the effect of density perturbation. 

 Further advancements can be found when linearization processes are applied to these 

 equations. Under the idea that  are all small  quantities and are constrained to being first  𝑣 , ρ,  𝑝 

 order, which would imply that  approaches 0 in  the conservation equation (Epstein & Carhart). ρ 𝑣 

 When analyzing the equation of motion, terms containing  would also approach zero since  is  𝑣  𝑣 

 considered small. These two linearizations result in simpler forms of both the conservation and 

 motion equations (Pierce): 

(ρ
 0 

+ ρ) · ∂ 𝑣 
∂ 𝑡 +  ∇  𝑝 =  0 

∂ρ
∂ 𝑡 + ρ

 0 
 ∇ ·  𝑣 =  0 

 The equation of motion can be further simplified based on the assumption that the air is 

 considered to have no changing effects from thermal expansion and that all atomic collisions 

 conserve energy. This assumption further demonstrates that perturbations do not occur based on 

 changes in temperature, and are solely based on disturbances of pressure and density (Batchelor). 

 Additionally, the speed of sound based of the medium can be defined via the concept of the bulk 

 modulus (Schobieri). 

 𝐾 = ∂ 𝑝 
∂ρ · ρ

 0 

 𝑐 =  𝐾 
ρ

 0 

 . All mediums are resistant to changes, and the bulk modulus measures how resistant a 

 fluid is to compression, which is important for sound propagation. Given this, a relation to the 
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 speed of sound can be found as the change in pressure with respect to the density, defined as 

 (Peyret & Taylor): 

 𝑐 = ( ∂ 𝑝 
∂ρ )

 With this definition, the speed of sound in relation to density and pressure can be established. 

 𝑝 = ρ
 0 
 𝑐  2 

 Given this information, the conservation equation can be updated to consider the changes 

 in pressure of the system, and by extension, the speed of sound within the medium. In order to 

 achieve this, the entire system is multiplied through  and results in a conservation equation  𝑐  2 

 accounting for the speed of sound. This does, however, require one additional addendum to be 

 made. 

 𝑑 
 𝑑𝑡 (ρ ·  𝑑𝑝 

 𝑑 ρ ) =  𝑑 
 𝑑𝑡 ( 𝑝 ) =  𝑑𝑝 

 𝑑 ρ ·  𝑑 ρ
 𝑑𝑡 =  𝑑𝑝 

 𝑑𝑡 

 This allows for a relationship between  the values  and  to be made. Now ∂ρ
∂ 𝑡 

∂ 𝑝 
∂ 𝑡 

 multiplying through by  , the equations of  the acoustic field can be established. The equation ∂ 𝑝 
∂ρ

 of motion currently remains unchanged, the density has been divided through so  stands on its ∂ 𝑣 
∂ 𝑡 

 own (Epstein & Carhart). 

( ∂ρ
∂ 𝑡 · ∂ 𝑝 

∂ρ
 0 

) + (ρ
 0 

∂ 𝑝 
∂ρ

 0 
( ∇ ·  𝑣 )) =  0 → ∂ 𝑝 

∂ 𝑡 + ρ
 0 
 𝑐  2 ·  ∇ ·  𝑣 =  0 

∂ 𝑣 
∂ 𝑡 +  1 

ρ
 0 

 ∇  𝑝 =  0 

 While the implications of this change may not seem evident currently, the importance of this 

 state will be explored later. 
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 Thermodynamics 

 When considering any medium that can change based on heat, simply negating the effects 

 is not sufficient. This is where the importance of analyzing the thermodynamic effect is 

 illustrated. Many fluid properties, such as changes in pressure or density, often have 

 thermodynamic causes that cannot be neglected. General kinetics dictates that thermal energy has 

 effects on the total energy of a system. There are several important concepts from 

 thermodynamics that are crucial to define when looking at their effects. Of note, many of these 

 concepts have definitions in English that apply to everyday life but have physical definitions that 

 are not the same. The first of these are thermal energy and heat. Thermal energy is defined as an 

 internal energy transfer between a set of bodies due to temperature (sometimes referred to as 

 translational kinetic energy), while heat measures this transfer of energies (Chabay & 

 Sherwood). Thermal energy can exist without a source, while heat generally has a source, such 

 as fire or gas, that causes these transfers. More specifically, thermal energy can occur from the 

 collisions of molecules. In this case, the system is the medium that sound passes through which, 

 for the purposes of this thesis, is air. Air, by definition, is a gas composed of molecules that 

 interact with each other, and their movement and interactions contain kinetic energy (Van Wylen 

 & Sonntag). As sound travels through a fluid medium, the dissipation of sound energy generates 

 thermal energy from the collisions of the atoms (Berg & Stork). This results in the fluid being 

 affected by the thermal energy increase that was generated by the sound. Because of these 

 interactions, the effects of thermal energy and temperature on a fluid must not be negated. 

 Macroscopic thermodynamics plays a key role in sound movement, as pressure and 

 density changes are directly affected by temperature. Further phenomena, like diffraction, 

 happen to the thermodynamic properties of the environment. It is a known fact that temperature 
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 has an effect on sound movement and propagation as well(Berg & Stork). While the 

 comprehensive relationship between temperature and sound movement is incredibly complex, 

 some surface-level relationships can be defined. For illustrative purposes, if a room at a constant 

 temperature has a heater that uniformly increases the temperature, the energy transfer of the 

 system will cause all of the individual air molecules to increase in kinetic energy. This, in turn, 

 increases the speed at which the particles interact with each other (Van Wylen & Sonntag). The 

 same concept applies to decreasing temperature, as negative heat transfer decreases the kinetic 

 energy of the particles. This is known as the conservation of energy. This concept is how sound 

 travels faster in higher temperatures. If molecules have higher kinetic energy due to temperature, 

 then the pressure change will be carried faster, assuming different forms of energy aside from 

 kinetic energy are negligible. Mathematically speaking, relationships between the speed of sound 

 in air and temperature are defined through frequency, air temperature, and wavelength (Berg & 

 Stork). 

 𝑣 =  𝑓 · λ

 𝑣 =  336 +.  6 ·  𝑇 

 336 +.  6 ·  𝑇 =  𝑓 · λ

 It is important to remember that certain characteristics of sound, such as frequency, are static. 

 They do not change based on temperature. Wavelength, however, changes as temperature 

 changes. This means that while oscillations do not change, the length of the wave does. This 

 further affects the motion of sound. 

 Any thermodynamic system has a measure of disorder known as entropy. Temperature is 

 defined as having a direct relationship with the change of energy and inversely related to entropy. 
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 In other words, if an entropic system has an increase in energy, then the temperature increases as 

 well. Mathematically speaking, temperature is inversely proportional to the change of entropy 

 with respect to energy (Chabay & Sherwood). 

 1 
 𝑇 = ∂ 𝑆 

∂ 𝐸 

 In standard English, thermal energy and temperature generally tend to be interchangeable 

 due to the defined relationship, as temperature generally increases or decreases when thermal 

 energy changes. This is usually interchangeable with heat since positive or negative heat transfer 

 results in changes in thermal energy. Despite this apparent interchangeability, it is crucial to 

 clarify that these three topics do not define the same thing, and are not interchangeable in the 

 context of physics. 

 In order to fully comprehend the effects of temperature and dissipative effects on the 

 Navier-Stokes equation, knowledge of tensors is required. Tensors often describe changes within 

 a body, usually in reference to internal forces, stress, or deformation (Schaschke). A simple 

 example of a tensor would be a stress tensor for a cube of length L. The stress tensor would 

 represent the deformation of a cube based on some force exerted on the cube, measured as force 

 per unit area. In order to understand a total deformation of the cube, each face of the cube must 

 be analyzed individually. A cube in  has six  faces, but is symmetric along the the  , and  ℝ  3  𝑥𝑦 ,     𝑥𝑧 

 planes, so three faces need to be accounted for  instead of six. Deformation of each face can  𝑦𝑧 

 happen in any direction in  , implying that  a total of 3  3 stress tensors can exist for the  cube.  ℝ  3 ×

 The largest caveat about tensors is that the components of a tensor cannot be added. This is 

 because stress in each direction affects the deformation differently, meaning directions for 

 individual deformations can be added, but not the tensors themselves (Dvorkin & Goldschmit). 

 The number of values in this 3  3 stress tensor represents  the degrees of freedom, rather than the ×
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 number of components with direction. In order to accurately depict stress tensors on an object, 

 tensor notation often involves the use of a matrix for describing components of each direction 

 (Schaschke). 

 Tensors are able to describe what is happening to a medium outside of a coordinate system. If a 

 standard coordinate system like  or  were  rotated in an arbitrary direction, the tensor would  ℝ  2  ℝ  3 

 continue to point in the same direction. Unlike space-dependent constructions like vectors, 

 tensors move independently of space and describe what is happening internally to a system, 

 rather than describing a specific direction in  or  which a particle is moving (Merrill).  ℝ  2  ℝ  3 

 Tensors are fundamental in describing stress or rates of change within fluids. Concepts like 

 strain-rate tensors and viscous stress tensors appear frequently and are used in the description of 

 internal properties of fluids (Thevenin & Jamiga). 

 With the concept of tensors defined, the Navier-Stokes equation of energy can begin to be 

 analyzed. Returning back to the conservation of energy for fluid dynamics (Peyret & Taylor): 

ρ ∂ 𝑢 
∂ 𝑡 + ρ 𝑣 ∂ 𝑢 

∂ 𝑥 +  𝑝  𝑑𝑢 
 𝑑𝑥 − Ψ

η
− ∂

∂ 𝑥 · ( 𝑘 ∂ 𝑇 
∂ 𝑥 ) =  0 

 The key points of interest in this equation come from the last two terms. Firstly,  is defined as Ψ
η

 the viscous dissipation function, defined as the product of the strain and viscous stress tensors, 

 representing the strain at rate of deformation around a given location (Batchelor). 

Ψ
η

=  1 
 2  𝑒 

 𝑖𝑗 
 𝑝 

 𝑖𝑗 
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 With these values defined, they can be substituted back into the conservation of energy equation. 

 In order to make notation simpler for the rest of these calculations, the notation below from 

 Epstein & Carhart will simplify some of these equations. 

∂ 𝑣 
∂ 𝑥 =− ( ∂

∂ 𝑡 +  𝑣 ∂
∂ 𝑥 )

 An entropy balance equation can be written for the changes in entropy over some arbitrary 

 volume, and the generation of entropy from different sources. This results  in integration over 

 volume (Epstein & Carhart). 

∂
∂ 𝑡 

 𝑉 
∫ ρ ·  𝑠     𝑑𝑉 =− ∂

∂ 𝑥 
 𝑉 
∫ ρ 𝑠𝑣     𝑑𝑉 + ∂

∂ 𝑥 
 𝑉 
∫  𝑘 

 𝑇 · ∂ 𝑇 
∂ 𝑥  𝑑𝑉 + ∂

∂ 𝑡 
 𝑉 
∫  𝑆     𝑑𝑘 

 The first term on the right represents entropy generation through heat flow, where  represents  𝑠 

 specific entropy. The second term represents entropy generated through heat transfer and thermal 

 effects, while the third term  represents entropy  generated from some dissipation process, also  𝑆 

 referred to as irreversible entropy (Chabay & Sherwood). If  represents any arbitrary material  𝑉 

 volume, but always equals zero, then the integrated argument must be zero at every point, and 

 the integrals can be removed (Epstein & Carhart; Thevenin & Jamiga). 

ρ 𝑠  𝑑𝑣 
 𝑑𝑡    − ∂

∂ 𝑥 (  𝑘 
 𝑇 · ∂ 𝑇 

∂ 𝑥 ) = ∂ 𝑆 
∂ 𝑡 → ρ( ∂

∂ 𝑡 −  𝑣 · ∂
∂ 𝑥 ) 𝑠    − ∂

∂ 𝑥 (  𝑘 
 𝑇 · ∂ 𝑇 

∂ 𝑥 ) = ∂ 𝑆 
∂ 𝑡 

 Returning back to the original equation, it is important to look at the effect of  . The first law of  𝑠 

 thermodynamics states  for some infinitely  long time period  results in the ∂ 𝑠 = ∂ 𝐸 
 𝑖𝑛𝑡 

+ ∂ 𝑤  𝑡 

 stress tensor becoming the pressure being exerted (  ), as velocity drops out of the tensors due −  𝑝 

 to this time (Matthews & Walker). In addition,  , therefore these values can be ∂ 𝑤 =  𝑝 · ∂(  1 
ρ )

 substituted into the above equation to result in a definition for irreversible entropy (Epstein & 

 Carhart). 
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ρ
 𝑇 ( ∂

∂ 𝑡 −  𝑣 · ∂
∂ 𝑥 ) 𝑢 +  𝑝 ( ∂

∂ 𝑡 −  𝑣 · ∂
∂ 𝑥 )

 1 
ρ = ∂

∂ 𝑥 · ( 𝑘 ∂ 𝑇 
∂ 𝑥 ))

 Returning back to the relationship previously established between entropy and temperature, a 

 relation for the energy dissipation function and irreversible entropy can be found (Batchelor; Van 

 Wylen & Sonntag). 

∂ 𝑆 
∂ 𝐸 =  1 

 𝑇 →  𝑇 · ∂ 𝑆 = ∂ 𝐸 

 𝑇 · ∂ 𝑆 
∂ 𝑡 = Ψ

η
+ Ψ

 𝑇 

∂ 𝑆 
∂ 𝑡 =  1 

 𝑇 (Ψ
η

+ Ψ
 𝑇 
)

 This expression represents the change in entropy generation S is related to some dissipation of 

 energy, represented as  and  . To simplify  further, the expression defining viscous Ψ
η

Ψ
 𝑇 

 dissipation function can be eliminated, as values within this expression are irrelevant when 

 evaluating thermal effects in this case. Through this elimination, thermal dissipation can be 

 found (Van Wylen & Sonntag). 

 1 
 𝑇 (Ψ

η
+ ∂

∂ 𝑥 · ( 𝑘 ∂ 𝑇 
∂ 𝑥 ) −  1 

 𝑇 Ψ
η

=  𝐸 

 1 
 𝑇 ( ∂

∂ 𝑥 · ( 𝑘 ∂ 𝑇 
∂ 𝑥 )) = Ψ

 𝑇 

Ψ
 𝑇 

=  𝑘 
 𝑇 ( ∇  𝑇 ) 2 

 There is a secondary derivation of this thermal dissipation function worth discussing for 

 conceptual understanding, independent of the Navier-Stokes. The second law of thermodynamics 

 states entropy can never decrease. Entropy production is related to any irreversible process, and 

 can be caused by a variety of actions, including the flow of a fluid. The formula to determine 

 entropy generation involves both the flow of heat and the temperature of the system itself 

 (Carlslaw & Jaeger). 
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Γ =  𝐽 ·  ∇ (  1 
 𝑇 ) → −  𝐽 

 𝑞 
·  ∇  𝑇 

 𝑇  2 

 Heat flow  is defined as the temperature gradient  between a system of objects. The flow is not ( 𝐽 
 𝑞 
)

 only determined by temperature, but also by the conductivity of the object itself (Brown & 

 Churchill). 

 𝐽 
 𝑞 

=−  𝑘  ∇  𝑇 

 In this case,  is thermal conductivity. Now that  heat flow has been defined, this can be put back  𝑘 

 into the equation to find entropy generation (Carlslaw & Jaeger). 

Γ =  𝑘  ∇  𝑇 ·  ∇  𝑇 

 𝑇  2 

Γ =  𝑘 

 𝑇  2 · ( ∇  𝑇 ) 2 

 Another form of the heat dissipation function is defined as temperature multiplied by entropy 

 production, which describes the energy and flow of heat (Van Wylen & Sonntag). 

Ψ
 𝑇 

=  𝑇 · Γ → Ψ
 𝑇 

=  𝑘 
 𝑇 ( ∇  𝑇 ) 2 

 Through both derivations, it proves that the thermal dissipation function is not only an 

 irreversible function, but that it holds true for both the Navier-Stokes and heat flow derivations. 

 This further proves the effect of stress and strain on a fluid, and that temperature does, in fact, 

 have an effect on the fluid. 

 Diffusion 

 Many applications of partial differential equations appear when describing complicated 

 systems. One of the most common examples is called the diffusion equation. This equation 

 represents changes in the movement of particles based on the density of the material and mass 
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 diffusivity, or the diffusion coefficient. More specifically, it represents systems of particles in 

 Brownian motion based on Fick’s laws of diffusion. This diffusion coefficient can be either a 

 function of the density or a constant value, which results in two different equations (Crank). 

 , for  is not  constant, ∂φ
∂ 𝑡 ( 𝑟 ,  𝑡 ) =  ∇ · ( 𝐷 (φ,  𝑡 ) ·  ∇ φ( 𝑟 ,  𝑡 ))  𝐷  𝑟 =  𝑥 ,  𝑦 ,  𝑧 

 , for  is constant ∂φ
∂ 𝑡 =  ∇ ·  𝐷 ( ∇ φ) → ∂φ

∂ 𝑡 =  𝐷 · ( ∂ 2 φ

∂ 𝑥  2 + ∂ 2 φ

∂ 𝑦  2 + ∂ 2 φ

∂ 𝑧  2 )  𝐷 

 In these equations,  represents the density of  the material that is diffusing, and  represents  the φ  𝐷 

 aforementioned diffusion coefficient. When the diffusion equation shows up for constant 

 diffusion coefficients, the form becomes identical to the heat equation. This is due to Fick’s laws 

 of diffusion. The first law states that a diffusive flux will travel from high regions of 

 concentration to low regions of concentration (Greiner, Ivrii, & Seco). Physically speaking, for 

 any amount of material passing through a region over some time, high concentrations of the 

 material will travel to low concentrations of the material. This travel happens upon some 

 gradient, also defined as the rate of change of the concentration. Mathematically speaking, Fick’s 

 first law is represented by (Crank): 

 in one dimension  𝐽 =  𝐷 · ∂φ
∂ 𝑥 

 in two or more dimensions  𝐽 =  𝐷 · ( ∇ φ)

 While this works as a solid basis for defining diffusive flux, it does not state any additional 

 information as to how the diffusion changes. However, here is where the similarities to the heat 

 equation appear. Fick’s first law states that the flux travels from regions of high concentration to 

 low concentration, which implies that eventually the flux will reach some sort of concentration 

 equilibrium. It can be further implied that regions of very high concentration or very low 

 concentration will reach this form of equilibrium faster than those closer in concentration. 
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 Similar to the heat equation, this is represented through  in one dimension. Now that the goal ∂ 2 φ

∂ 𝑥  2 

 of the equation has been stated, the diffusion of some material in one dimension can be described 

 by the equation (Drake): 

 is not constant ∂φ
∂ 𝑡 =  ∇ · ( 𝐷 (φ,  𝑡 ) ·  ∇ φ( 𝑟 ,  𝑡 )),     𝐷 

 is constant ∂φ
∂ 𝑡 =  𝐷 · ∂ 2 φ

∂ 𝑥  2 ,     𝐷 

 Besides the trivial difference that heat and diffusion are two different physical processes, one of 

 the most significant differences between the two equations is the dependence on flux density of 

 the diffusion coefficient. In this case, the analogue to the heat equation would be if the thermal 

 conductivity of a material depended on the temperature at given locations. Using this example, a 

 certain material could be defined by conducting heat better at higher temperatures or worse at 

 lower temperatures. Under this constraint, thermal conductivity would be defined as a function 

 . If the thermal conductivity depended on  temperature, the change in thermal conductivity  𝑘 ( 𝑢 ,  𝑡 )

 would also need to be evaluated, since it would not be uniform across the material. Given these 

 changes, the heat equation could now be represented as: 

 , in one dimension ∂ 𝑢 
∂ 𝑡 =  𝑘 · ∂ 2  𝑢 

∂ 𝑥  2 → ∂ 𝑢 
∂ 𝑡 = ∂ 𝑘 

∂ 𝑥 · ∂ 2  𝑢 

∂ 𝑥  2 

 , in two or more dimensions ∂ 𝑢 
∂ 𝑡 =  ∇ ( 𝑘 ( 𝑢 ,  𝑡 ) ·  ∇  𝑢 )

 Notice that this result is now identical to the diffusion equation.Therefore, in the diffusion 

 equation, the diffusion coefficient can change with respect to the density of the medium. 
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 Diffusion in Acoustics 

 The term “diffusion” is a word that is often used in the field of acoustic treatment, 

 generally unrelated to the diffusion equation itself. When considering studio treatment or venue 

 architecture, an important consideration is that of the acoustic sound field, specifically with 

 sound dispersion (Everest). The model of the diffusion equation acts, in some sense, as a 

 potential solution to representing the scattering of sound particles. The primary goal when 

 installing sound diffusers is to disperse sound energy in such a way that power post-contact is 

 equal in all directions (Everest). This goal and definition of a sound diffuser are misleading, as 

 diffusers accomplish the act of spreading the sound in random directions rather than creating 

 equal power in all directions. When this model of “sound particles” is involved, the particles 

 become disturbed by changes in pressure and change their motion, but the motion is still affected 

 by the air particles. This combines both perturbations of suspended particles and Brownian 

 motion of the particles themselves (Navarro & Escolano). The fluctuations would act similarly to 

 a force on the particles, but as a guide to determine their interactions rather than their motion. 

 The acoustic form of the diffusion equation came about from the idea of a “sound 

 particle” diffusing in a fluid medium rather than looking at sound from the wave-based 

 perspective. Current methods for prediction energy levels use sound movement with linear 

 motion to model reflection and diffusion. This is called ray-tracing, and can often fail due to its 

 simplistic nature (Visentin, Prodi, Valeau et al.). If sound followed perfect diffusion models, the 

 acoustic diffusion equation would look identical to the current diffusion equation (Valeau, Picaut 

 & Hodgson): 

∂ 𝑤 
∂ 𝑡 =  𝐷 ·  ∇  2  𝑤 ( 𝑟 ,  𝑡 )
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 Two significant issues arise when modeling acoustic diffusion using solely this equation. 

 is assumed to be constant, which is defined by the dimensions of the enclosure, but what  𝐷  𝐷 

 actually represents is still unanswered. The solution to finding  involves a concept within fluid  𝐷 

 dynamics, called mean-free path. Mean-free path represents the distance a particle travels in 

 between collisions with other particles before the direction of movement changes. In enclosed 

 spaces where  does not depend on pressure changes,  it can be represented by the mean-free  𝐷 

 path and speed of sound in air (Thevenin & Jamiga). This then raises the question of how the 

 mean-free path is determined. In the modification made for acoustic theory, it represents the 

 distance traveled before reflecting or diffusing against an object, usually the walls, floor, or roof. 

 This modification comes from looking at an acoustic particle moving through a fluid rather than 

 looking at fluid particles colliding with each other (Beranek). 

 𝐷 =  1 
 3 Λ ·  𝑐 

Λ =  4 · 𝑉 
 𝑆 

 𝑎 

 Through both of these definitions, definitive solutions for the mean-free path and the 

 diffusion coefficient can be found. It is important to note that these simplifications work for 

 enclosed spaces and that open spaces result in non-constant diffusion coefficients. What is 

 important to know is that non-constant diffusion coefficients create more complexities by 

 transforming the diffusion equation into a non-homogeneous equation. 

 The second problem with the “perfect diffusion” model arises in the physical nature of 

 sound versus the general description of what the diffusion equation represents. Standard 

 applications of the diffusion equation can be applied in the form of particles being introduced to 

 a medium that disperses across it, such as when drops of ink are dripped into a cup of water 

 (Greiner, Ivrii & Seco). With applications of sound, it defies this model because sound waves 
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 eventually dissipate, meaning the particles dissipate as well. If the current model of the diffusion 

 equation were left unchanged, it would imply that sound pressure would reach an equilibrium 

 that changes the medium itself, rather than dissipate and allow the medium to return to normal. 

 The dichotomy of wave-based perturbations and sound particle models becomes very apparent 

 with this model, as these two different methods of thought create inconsistencies on both sides of 

 the argument. 

 Continuum Mechanics 

 At its core, the Navier-Stokes equation is governed by a set of properties that follow from 

 continuum mechanics, while diffusion describes the movement and random nature of material 

 inside of a fluid. On a general level, these are both considered subtopics of fluid dynamics. 

 Navier-Stokes governs the general flow, while diffusion governs how something interacts in the 

 medium. Both of these topics fall under the broader field of continuum mechanics which to 

 understand their link is essential. 

 Continuum mechanics is a field that looks at models of objects as continuous elements 

 rather than discrete atoms in time. Components of a material such as strain, deformation, and 

 motion can be analyzed through these methods, allowing for more comprehensive descriptions 

 about the material itself (Merrill). When assuming continuity, solutions to differential equations 

 arise to define what physical properties are occurring. Continuum mechanics acts as the 

 foundation for both the diffusion and Navier-Stokes equations. Assumptions of uniformity within 

 a medium are required, as it is assumed that subdivisions of a material fully represent the 

 properties of the entire material (Dvorkin & Goldschmit). Topics like perturbations and 
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 deformations are what govern how these mediums change, leading to the foundation of acoustic 

 theory itself. One of the most important concepts within continuum mechanics is that physical 

 and mathematical representations are coordinate-independent. Descriptions tend to be more 

 abstract and reference how something changes over time with respect to the material, rather than 

 physical changes to a coordinate space (Merrill). Concepts like tensors and material derivatives 

 describe what is happening to the material and illustrate these concepts independently of a 

 coordinate system (Schaschke). Understanding their properties is essential to grasping the role in 

 both fluid dynamics and diffusion. 

 Representation of continuum mechanics is subdivided between Lagrangian and Eulerian 

 representations. These representations create a division between topics that are represented 

 mathematically. Lagrangian representation of deformation follows a particle throughout time, 

 with a frame of reference being the particle (Dvorkin & Goldschmit). Changes within a system 

 do not only happen by a defined function or value in a determined space. Using an example of 

 some object with a set of material coordinates  the deformation based on a stress tensor over a  𝑋 ,

 period of time does not happen solely based on a determination of a distance  The Ψ( 𝑋 ).

 deformation occurs over a period of time, resulting in the mapping of both displacement and time 

 (Dvorkin & Goldschmit). Ψ( 𝑋 ,  𝑡 )

 Eulerian representation of deformation deviates in the form of the coordinates used. 

 Eulerian deformation follows spatial coordinates, where the displacement  becomes ψ( 𝑟 ,  𝑡 )

 represented by unit vectors describing the frame for the material. This description follows a more 

 generalized concept of deformation, representing multiple particles defined in space but 

 constrained by the material (Smith, Hashemi & Wang). Lagrangian representation, by 

 comparison, lets the material define the space. An important note is that deformation over a time 
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 is considered to be continuous, therefore deformations happen gradually and the object will  𝑡 

 deform and have a different configuration at every time  𝑡 .

 The final concept necessary for understanding the basics of continuum mechanics used in 

 this writing is that of material and material derivatives. The term “material” in reference to 

 continuum mechanics can be anything related to the object. Referring back to what changes 

 represent, objects can deform and vary in shape, or flow can change depending on location 

 (Dvorkin & Goldschmit). General terms relating to material functions involve how an aspect of 

 the material can change with respect to time. An example of which relates to fluid flow based on 

 location. The material derivative represents a change in the aspect of a material, whether it be the 

 temperature of a solid or the flow rate of a fluid. This concept is where the two aspects of 

 Lagrangian and Eulerian deformation meet, as material derivatives serve as the bridge between 

 them (Peyret & Taylor). 

 𝐷 ψ
 𝐷𝑡 = ∂ψ

∂ 𝑡 +  𝑢 ·  ∇ ψ

 In the above equation,  is defined as a flow field  and  is defined as a generic field  The  𝑢 ψ ψ( 𝑥 ,  𝑡 ).

 importance of the material derivative is that it uses the Lagrangian representation of following a 

 particle through a material, but accounts for Eulerian flow fields, unifying both perspectives of 

 deformation and change (Dvorkin & Goldschmit). 

 With the basis of continuum mechanics covered, additional properties within fluid flow 

 can be defined. Starting with the pressure force, it is represented by the pressure multiplied by 

 the identity matrix. This accounts for the regions in which pressure changes within the tensor 

 (Thevenin & Jamiga). 

 𝑓 
 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 

=−  𝑝 · δ
 𝑖𝑗 

=−  𝑝 ·  𝐼 
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 The second component is the shear tensor, also called the friction tensor. The shear tensor is 

 generally associated with velocity changes, as kinetic friction is present only when velocity 

 changes are also present. Due to this relationship, the shear tensor has a direct relationship to the 

 deformation tensor (Peyret & Taylor). 

τ
 𝑖𝑗 

=  2 · µ ·  𝑑 
 𝑖𝑗 

−  2 
 3 µ · ( ∇ ·  𝑢 ) ·  𝐼 

 It is crucial to note that this description of the shear tensor does not assume incompressible flow. 

 If fluid flow is incompressible, then  and  is only related to the deformation tensor  ∇ ·  𝑢 =  0 τ
 𝑖𝑗 

 (Dvorkin & Goldwchmit). 

 𝑑 
 𝑖𝑗 

=  1 
 2 · (

∂ 𝑢 
 𝑖 

∂ 𝑥 
 𝑗 

+
∂ 𝑢 

 𝑗 

∂ 𝑥 
 𝑖 
)

τ
 𝑖𝑗 

= µ · (
∂ 𝑢 

 𝑖 

∂ 𝑥 
 𝑗 

+
∂ 𝑢 

 𝑗 

∂ 𝑥 
 𝑖 
)

 In this case,  represents the dynamic viscosity  of the fluid. The full stress tensor is defined as µ

 the sum of the pressure force and the shear stress tensor (Thevenin & Jamiga). 

σ
 𝑖𝑗 

=−  𝑝 · δ
 𝑖𝑗 

+ µ · (
∂ 𝑢 

 𝑖 

∂ 𝑥 
 𝑗 

+
∂ 𝑢 

 𝑗 

∂ 𝑥 
 𝑖 
)

 Additional information from the Navier-Stokes equation can be extracted through 

 changing notation. In order to do this, it is important to redefine what the original equation stated 

 (Peyret & Taylor). 

∂ 𝑣 
∂ 𝑡 +  𝑣 ·  ∇  𝑣 =−  ∇  𝑝 

ρ

 With some rearrangement of values, this expression can be written as density multiplied 

 by the material derivative of energy density. This representation of the Navier-Stokes equation 

 represents how an individual particle changes within the acoustic sound field (Batchelor). 

ρ · ∂ 𝑣 
∂ 𝑡 + ρ( 𝑣 ·  ∇  𝑣 ) =−  ∇  𝑝 
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ρ · (  𝐷𝑣 
 𝐷𝑡 ) =−  ∇  𝑝 

 ∇  𝑝 =− ρ · (  𝐷𝑣 
 𝐷𝑡 )

 One final point is that of vorticity. Vorticity often analyzes the rotation at a point within 

 the field flow, known as a continuum point. Vorticity can be measured as the curl of the velocity, 

 which is noted as  (Dvorkin & Goldschmit).  This can help aid in determining what ω =  ∇ ×  𝑢 

 happens with the Navier-Stokes equations for acoustics when irrotational flow cannot be 

 assumed.  It would illustrate what the rotation of the flow would look like, creating potential 

 solutions to rotational flow problems. 

 Audio Engineering 

 Spectral Properties 

 Frequency is a term that has implications in both auditory and non-auditory fields. 

 Frequency is defined as the rate at which an object oscillates, and is inversely proportional to the 

 period of oscillation. The physical implication of frequency in terms of sound is the rate at which 

 molecules are disturbed through a perturbation of pressure, then return back to a “normal” state, 

 where one period is defined through these compressions and rarefactions of pressure (Berg & 

 Stork). Mathematical representations of waves involving frequency often take the form of 

 periodic functions. 

 or  𝑝 =  𝐴 ·  𝑠𝑖𝑛 ( 2 π 𝑓 ·  𝑥 + ϕ)  𝑝 =  𝐴 ·  𝑐𝑜𝑠 ( 2 π 𝑓 ·  𝑥 + ϕ)

 General properties of sine and cosine dictate that there exists a phase offset of  between π
 2 

 and  leaving these formulas largely  interchangeable. The variable  , in this case,  𝑠𝑖𝑛 ( 𝑥 )  𝑐𝑜𝑠 ( 𝑥 ),  𝑓 

 represents the frequency. Fluctuations in pressure are not visible, but periodic waves functions 

 work as visual analogues to what is happening in the acoustic field. Peaks represent moments of 
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 highest compression, and troughs represent moments of lowest compression. Through this 

 interrelationship, it implies that the amplitude  A  of the wave represents the change in pressure of 

 the medium (Everest). This form works as a visual aid for simple low-dimensional 

 representations of what sound accomplishes; however, becomes trickier to define for 

 higher-dimensional representations. 

 Spectral properties of sound play an influential role in how it interacts with the 

 environment. The interpretation of frequency from a sound engineering perspective is unique in 

 comparison to other characteristics of sound. Reverberation, delay, and amplitude are measured 

 over a period of time, known as time domain. While frequency can be measured over the time 

 domain, it proves much more difficult to analyze frequency in this manner (Case). Modern 

 spectral processors tend to analyze sound waves in terms of intensity per frequency band, using 

 time to illustrate changes in intensity. In this case, the time-dependent definition would depend 

 on the fluctuation of pressure based on a periodic function. A model for pressure fluctuation of a 

 periodic function was previously introduced for a static frequency value (Stewart). Despite this, 

 sounds are rarely pure tones of one frequency, but are instead composed of a variety of 

 frequencies. 

 Periodic functions, like waves, have incredibly unique properties that relate to functional 

 addition and how waves interact with each other. Given any set of periodic wave functions, the 

 sum of the functions creates a new wave based on the individual values at every point on the 

 waves (Berg & Stork). This is the definition of wave summation, often referred to as Fourier 

 synthesis (Berg & Stork; Case). The difference arises when sound becomes involved. Rates at 

 which pressure changes can vary depending on the frequencies of the waves. Complicated 

 sounds that contain base waves of multiple discrete frequencies can be summed together to 
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 create a new wave that oscillates based on the summation of amplitude, frequency, and phase of 

 the base waves that create it (Everest). This is a concept known as wave synthesis and is 

 commonly seen in modern synthesizers to create unique waves, like square and triangle waves. 

 This signal synthesis is great for describing the intensity of the pressure at these points, which is 

 useful from the perturbation perspective, but dictates nothing about frequency intensity. The goal 

 would be to describe at what frequencies the intensity of the pressure is greatest, rather than 

 stating how the pressure changes for a complex wave (Brown & Churchill). 

 Transform functions commonly appear in several different branches of mathematics, with 

 differential equations being no exception. The goal of a transform function is to transform a 

 function into a different function space that could result in easier operations or less complicated 

 solutions. In the case of frequency analysis, this would be the Fourier transform. The Fourier 

 transform is what transforms periodic acoustic functions from a time-based domain into a 

 domain centered around frequency intensity (Pierce). 

 𝑓 (ξ) =
−∞

∞

∫  𝑓 ( 𝑡 ) ·  𝑒 − 2 π 𝑖 ξ 𝑡  𝑑𝑡 →  𝑓 (ω
 𝑓 
) =

−∞

∞

∫  𝑓 ( 𝑡 ) ·  𝑒 
− 𝑖 ω

 𝑓 
 𝑡 
 𝑑𝑡 ,    ω

 𝑓 
=  2 πξ,    ξ ∈  ℝ    

 Often the substitution of  is used to denote  angular frequency in radians per second. There are ω
 𝑓 

 several complicated components that exist within the Fourier transform, and the methods of the 

 Fourier transform are rather non-intuitive. The Fourier transform uses complex values in order to 

 transfer from periodic motion to frequency.  As previously mentioned,  creates a circle within  𝑒  𝑖 θ

 the complex plane of radius 1 (Brown & Churchill). The inclusion of some time value  𝑡 

 represents where the point on the unit circle would lie at some arbitrary time, while  represents ξ

 the rate at which the point moves around the circle. The goal of the Fourier transform is to 

 analyze a function of time and transform it to a function of frequency. The relevance of including 
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 the frequency  within the expression is to represent the rate at which the point moves on the unit ξ

 circle over some time  . On its own, the expression  represents where at some time  t  a  𝑡  𝑒 − 2 π 𝑖 ξ 𝑡 

 point will lie on the unit circle based on some frequency  . When the time-dependent pressure ξ

 function  is added, the expression  maps the wave function  around the complex  𝑓 ( 𝑡 )  𝑒 − 2 π 𝑖 ξ 𝑡  𝑓 ( 𝑡 )

 unit circle, with higher intensities reaching values close to or above 1 (Pierce). 

 Pictured above: the graph of  , where  and  𝑓 ( 𝑡 ) ·  𝑒 − 2 π 𝑖 ξ 𝑡  𝑓 ( 𝑡 ) =  𝑠𝑖𝑛 ( 2 π *  20  𝑡 ) ξ =  45     𝐻𝑧 

 The goal is to find the strength of the frequency  among the function  meaning a ξ  𝑓 ( 𝑥 ),

 sampling of points of the function is necessary to find where it is the strongest. This process can 

 be done with either an increasing sample of points discretely or done continuously across the 

 entire function, which is where the derivation for the Fourier transform comes from (Brown & 

 Churchill). 

 𝑁 ∞
lim
→

 1 
 𝑁 

 𝑗 = 1 

 𝑁 

∑  𝑓 ( 𝑡 
 𝑗 
) 𝑒 

− 2 π 𝑖 ξ 𝑡 
 𝑗 =

−∞

∞

∫  𝑓 ( 𝑡 ) ·  𝑒 − 2 π 𝑖 ξ 𝑡  𝑑𝑡 
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 An important caveat about the transition from summation to integration is that the number of 

 points  becomes infinity, therefore the expression  becomes  . This results in the final form  𝑁  1 
 𝑁  𝑑𝑡 

 of the Fourier transform (Pierce). 

 𝑓 (ξ) =
−∞

∞

∫  𝑓 ( 𝑡 ) ·  𝑒 − 2 π 𝑖 ξ 𝑡  𝑑𝑡 

 The goal of the Fourier transform is to analyze the strength of the frequency over a period of 

 time, or in this case, the frequency over an infinite amount of time to see all frequencies. It is 

 reasonable to conclude that the frequencies will be the strongest at the frequencies of the 

 summed waves in  . While this is true, suppose  the input function was a complex sound wave  𝑓 ( 𝑥 )

 where the summed waves were unknown. In order to figure out which waves composed the 

 sound, the Fourier transform can be used to determine points where the intensity of a frequency 

 is the strongest. Through this process, strong frequencies can be determined and the simple 

 waves composing the complex wave of various frequencies could be expanded and unscrambled 

 (McCarthy). This equation is how spectral processors function and reasonably determine 

 frequency intensity based on a signal captured by a microphone. 

 Temporal Properties 

 Reverb is a simple concept that is unusual to define. An oversimplification of reverb is 

 the amount of time a sound takes to disappear, but that definition skips many key factors in 

 defining reverb. To comprehend reverb, it is important to understand reflections and time of 

 arrival. When sounds are emitted from a source, it emits in multiple directions rather than just a 

 straight line. When sounds reflect off of surfaces and arrive at a given location, they are 



 40 

 categorized under reflections. These reflections are further split into early reflections and late 

 reflections (Berg & Stork). Early reflections are defined as reflected sounds that arrive at a 

 location at a time at or before 30ms, while late reflections are those that arrive at the same 

 location at a time greater than 30ms. The intensity of these early and late reflections causes the 

 sound to have a perceived “decay” rather than abruptly ending (Everest). Another concept often 

 explored with acoustics and reverb is RT60, also known as “reverb time 60 (dB)” (Thompson). 

 The concept of RT60 is defined as the amount of time that a sound takes to reduce by 60dB in 

 level, and is often used in current calculations of sound absorption and acoustic treatment. One 

 of the most widely used methods to calculate the RT60 of a room is the Sabine equation, using 

 dimensions and absorptivity of the objects in the room to determine how fast the sound will 

 decay (Beranek). 

 (feet)  𝑅  𝑇 
 60 

= . 049 · 𝑉 
 𝑆  𝑎 

 (meters)  𝑅  𝑇 
 60 

= . 161 · 𝑉 
 𝑆  𝑎 

 𝑆  𝑎 =
 𝑖 = 1 

 𝑛 

∑  𝑠 
 𝑛 
 𝑎 

 𝑛 

 In both of these cases, V in both of these cases represents the volumes of the rooms,  𝑠 
 𝑛 

 represents the boundaries for a given object with absorption coefficient  where  and  𝑎 
 𝑛 
,  𝑛 ∈  ℤ +

 represents the number of different objects in a given space. Absorption coefficients are static 

 values inherent to materials that represent the effectiveness of a material for absorbing sound, 

 found by the ratio of incident energy to absorbed energy. Absorption coefficients appear 

 frequently in both simple and complicated calculations related to reverb and diffusion, while 

 their values can describe rates and effectiveness of sound energy absorption (Everest). This 
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 formula stands on its own as a sufficient measure of RT60 but describes little about what is 

 happening at the particle level. 

 As previously mentioned, sound is defined as a pressure wave. A common measurement 

 of sound comes in the form of Sound Pressure Level, also shortened to SPL. SPL is considered 

 to be an objective measurement of sound intensity by measuring the deviations of air pressure 

 caused by sound waves to a reference pressure, defined to be  Pa. The ratio of the  2 ·  1  0 − 5 

 pressure is calculated then converted to a logarithmic scale. The general SPL equation takes the 

 form (Berg & Stork): 

 𝑑  𝐵 
 𝑆𝑃𝐿 

=  20 ·  𝑙𝑜  𝑔 
 10 

(
 𝑃 

 𝑚 

 𝑃 
 𝑅 

)

 Where  is the measured pressure and  is the reference pressure of  Pa. This  𝑃 
 𝑚 

 𝑃 
 𝑅 

 2 ·  1  0 − 5 

 ratio is used in a multitude of different areas for acoustics and functions great for measurement 

 purposes, but only measures deviations or SPL level at specific discrete points rather than across 

 a region. 

 Results 

 Derivation of the Wave Equation 

 The implications of the linearized Navier-Stokes equation that serves as the foundation of 

 acoustic theory is the basis for further exploration for the acoustic field. Despite this foundation, 

 more information can be found if the propagation of energy is considered to be uniform. By 

 doing this, it is assumed that the field has irrotational flow. By definition of irrotational flow, 

 and there exists a potential function  such that  or in this case,  ∇ ×  𝑣 =  0     𝑉  𝑣 =  ∇  𝑉 ,  𝑣 =−  ∇  𝑉 .
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 When substituting these values into the two acoustic field equations, it results in two systems of 

 partial differential equations (Rival): 

∂ 𝑝 
∂ 𝑡 − ρ

 0 
 𝑐  2 ·  ∇  2  𝑉 =  0 

−  ∇ ∂ 𝑉 
∂ 𝑡 +  1 

ρ
 0 

 ∇  𝑝 =  0 

 The bottom equation can be solved in terms of  by performing operations on each side  𝑝    

 to yield an equation in terms of  The importance  of this allows for substitution back into the  𝑝 .

 first equation and subsequent solutions to this second-order space and time partial differential 

 equation (Fetter & Walecka): 

−  ∇ ∂ 𝑉 
∂ 𝑡 +  1 

ρ
 0 

 ∇  𝑝 =  0 →  1 
ρ

 0 
 ∇  𝑝 =  ∇ ∂ 𝑉 

∂ 𝑡 

 ∇  𝑝 = ρ
 0 
 ∇ ∂ 𝑉 

∂ 𝑡 

 𝑝 = ρ
 0 

∂ 𝑉 
∂ 𝑡 

 This finding states that the pressure perturbation is proportional to the change in velocity 

 potential over time and the density of the initial medium. As previously stated, this result can be 

 utilized for  now having an illustration  of how the pressure behaves in relation to other ∂ 𝑝 
∂ 𝑡 ,

 values. 

ρ
 0 

∂ 2  𝑉 

∂ 𝑡  2 − ρ
 0 
 𝑐  2 ·  ∇  2  𝑉 =  0 →  1 

 𝑐  2 · ∂ 2  𝑉 

∂ 𝑡  2 −  ∇  2  𝑉 =  0 

 1 

 𝑐  2 · ∂ 2  𝑉 

∂ 𝑡  2 =  ∇  2  𝑉 

 This outcome has important implications in the form of the wave equation. The wave 

 equation is a standardized model of acoustic sound movement and governs acoustic wave 
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 movement through a medium. From this finding, it illustrates that the energy potential function 

 obeys the laws of the wave equation under linearizations and assumptions of the fluid medium. 

 Vorticity Diffusion 

 Having seen these cases where irrotational flow has been assumed, it is important to see 

 what would happen when irrotational flow cannot be assumed. Due to viscosity being a measure 

 of deformation, the value is represented as a stress tensor of a fluid. In order to analyze these 

 effects, an equation for changes fluid momentum over some arbitrary volume  can be written.  𝑉 

 The change must be proportional to the dissipative effects of pressure forces and deformation of 

 the fluid itself. The result defines this momentum within a material volume (Thevenin & 

 Jamiga). 

∫∫
 𝑉 
∫ ρ · ( ∂ 𝑢 

∂ 𝑡 + ( ∇ ·  𝑢 ) ·  𝑢 )    𝑑𝑉 = ∫∫
 𝑉 
∫ ρ ·  𝑔     𝑑𝑉 + ∫

 𝐴 
∫ σ

 𝑖𝑗 
    𝑑𝐴 

∫∫
 𝑉 
∫ ρ · (  𝐷𝑢 

 𝐷𝑡 )    𝑑𝑉 = ∫∫
 𝑉 
∫[ρ ·  𝑔 +  ∇ ( 𝑝 · δ

 𝑖𝑗 
)]    𝑑𝑉 + ∫∫

 𝑉 
∫ µ ·  ∇ (

∂ 𝑢 
 𝑖 

∂ 𝑥 
 𝑗 

+
∂ 𝑢 

 𝑗 

∂ 𝑥 
 𝑖 
)]    𝑑𝑉 

∫∫
 𝑉 
∫[ρ · (  𝐷𝑢 

 𝐷𝑡 )   − ρ ·  𝑔 +  ∇ ( 𝑝 · δ
 𝑖𝑗 

) − µ ·  ∇ (
∂ 𝑢 

 𝑖 

∂ 𝑥 
 𝑗 

+
∂ 𝑢 

 𝑗 

∂ 𝑥 
 𝑖 
)]    𝑑𝑉 =  0 

 The significance of having the entire integral equate to zero has implications about the 

 state of what is being integrated. If  represents  any arbitrary material volume, but always equals  𝑉 

 zero, then the integrated volume must be zero at every point within the defined space. 

ρ · (  𝐷𝑢 
 𝐷𝑡 )   − ρ ·  𝑔 +  ∇ ( 𝑝 · δ

 𝑖𝑗 
) − µ ·  ∇ (

∂ 𝑢 
 𝑖 

∂ 𝑥 
 𝑗 

+
∂ 𝑢 

 𝑗 

∂ 𝑥 
 𝑖 
) =  0 
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 Rearranging the equation results in a partial differential equation that represents 

 momentum conservation of viscous flow. Further simplifications and mathematical operators can 

 be performed to alleviate the notation and transform the stress tensors (Merrill). 

ρ · (  𝐷𝑢 
 𝐷𝑡 ) = ρ ·  𝑔 −  ∇ ( 𝑝 · δ

 𝑖𝑗 
) + µ ·  ∇ (

∂ 𝑢 
 𝑖 

∂ 𝑥 
 𝑗 

+
∂ 𝑢 

 𝑗 

∂ 𝑥 
 𝑖 
)

ρ · (  𝐷𝑢 
 𝐷𝑡 ) = ρ ·  𝑔 −  ∇  𝑝 + µ · (

∂ 2  𝑢 
 𝑖 

∂ 𝑥 
 𝑗 
 2 +

∂ 2  𝑢 
 𝑗 

∂ 𝑥 
 𝑖 
 2 )

ρ · (  𝐷𝑢 
 𝐷𝑡 )   = ρ ·  𝑔 −  ∇  𝑝 + µ ∇  2  𝑢 

 At this point, the momentum conservation equation within a given material has been 

 established with the current simplification. This equation can be taken further when the material 

 derivative is expanded and solved for the change in velocity over time. 

ρ · ( ∂ 𝑢 
∂ 𝑡 + ( ∇ ·  𝑢 ) ·  𝑢 )   = (ρ ·  𝑔 −  ∇  𝑝 ) + µ ∇  2  𝑢 

ρ · ∂ 𝑢 
∂ 𝑡 =−  ∇  𝑝 + (ρ ·  𝑔 ) − ρ( ∇ ·  𝑢 ) ·  𝑢 + µ ∇  2  𝑢 

 Having established the momentum conservation with the above simplification, considering 

 incompressible flow allows for more simplifications. In the case of incompressible flow, 

 continuity is written as  stating that nothing  is leaving or entering the system. The  ∇ ·  𝑢 =  0 ,

 previous equation can then be further simplified as (Pierce): 

ρ · ∂ 𝑢 
∂ 𝑡 =−  ∇  𝑝 + (ρ ·  𝑔 ) + µ ∇  2  𝑢 

 This equation is often seen as the simplest form of the Navier-Stokes equation. However, 

 one more additional modification can be made. It comes in the form of vorticity. If the flow is no 

 longer considered irrotational, then  would have  to exist and abide by some form of motion. In ω

 order to achieve this, the curl of both sides can be taken. The value  has been accounted for, ρ

 isolating  to the left hand side. ∂ 𝑢 
∂ 𝑡 
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 ∇ × ∂ 𝑢 
∂ 𝑡 =  ∇ × [−  ∇  𝑝 ·  1 

ρ +  1 
ρ · (ρ ·  𝑔 ) +  1 

ρ · µ ∇  2  𝑢 ]

 ∇ × ∂ 𝑢 
∂ 𝑡 =  ∇ × [−  ∇  𝑝 ·  1 

ρ +  1 
ρ · (ρ ·  𝑔 )] +  1 

ρ ·  ∇ × µ ∇  2  𝑢 

 The effect that curl has on each set of values must be considered. Operators involving 

 derivatives and curl can be rearranged in such a way that the curl of a time-dependent partial 

 derivative is the same as taking the partial derivative with respect to time of the curl of a vector. 

 A similar operation can be performed with the curl of a Laplacian operator. 

 ∇ × ∂ 𝑢 
∂ 𝑡 → ∂

∂ 𝑡 ( ∇ ×  𝑢 ) → ∂ω
∂ 𝑡 

 ∇ ×  ∇  2  𝑢 →  ∇  2 ( ∇ ×  𝑢 ) →  ∇  2 ω

 The final values to consider are those of the pressure change and density. These values all 

 represent constant values; therefore, their curl is 0. Pressure is not a function of density change 

 provided that the density is uniform. 

∂ω
∂ 𝑡 = ( µ

ρ ) ·  ∇  2 ω

 After all of the operations are finished, the result is an equation with identical form to the 

 Diffusion equation in one dimension, with  acting as the analogue to the diffusion coefficient. µ
ρ

 Thermodynamics 

 Identifying the full effects of temperature on acoustics requires the equation of energy to 

 be written in terms of the acoustic field and linearized in similar fashion to the original 

 Navier-Stokes equations (Peyret & Taylor). 

ρ
 0 

· ∂ 𝑢 
∂ 𝑡 +  𝑝 

 0 
( ∇ ·  𝑣 ) −  𝑘 ·  ∇  2  𝑇 =  0 
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 When dealing with concepts of thermodynamics, it is important to remember that energy 

 density and pressure are both functions of density and temperature. When analyzing how these 

 functions change over time, the change in both density and temperature must also be analyzed. 

 Both of these derivations are written below, both of which will be analyzed later. 

∂ 𝑢 
∂ 𝑡 = ∂ 𝑢 

∂ρ · ∂ρ
∂ 𝑡 + ∂ 𝑢 

∂ 𝑇 · ∂ 𝑇 
∂ 𝑡 

 𝑑𝑝 
 𝑑𝑡 = ∂ 𝑝 

∂ρ · ∂ρ
∂ 𝑡 + ∂ 𝑝 

∂ 𝑇 · ∂ 𝑇 
∂ 𝑡 

 Two important terms are crucial for the next set of operations. In thermodynamics, a 

 process is termed “adiabatic” if a process occurs and heat is not exchanged during the process. 

 Thermal expansion is the tendency at which an object or fluid changes shape, volume, and 

 density in response to a change in temperature. Thermal expansion plays a critical role in 

 determining the compressibility of a fluid. The thermal expansion coefficient is defined as the 

 change in density due to temperature multiplied by the negative reciprocal of the density 

 unaffected by temperature (Thevenin & Jamiga). 

ϑ =−  1 
ρ

 0 
· ∂ρ

∂ 𝑇 

∂ρ
∂ 𝑇 =− ρ

 0 
ϑ

 , ∂ 𝑝 
∂ρ =

 𝑣 
 𝑞 

 2 

γ γ =
 𝐶 

 𝑝 

 𝐶 
 𝑣 

 In this formula,  is defined as the ratio of specific  heat. The term  is defined as the γ    𝐶 
 𝑝 

 specific heat at a constant pressure, while  is defined as the specific heat at a constant volume.  𝐶 
 𝑣 

 An important fact is that within any fluid, the ratio of specific heat defines the speed of sound in 

 a system.  This is evident based on the definition of  (Thevenin & Jamiga; Van Wylen & ∂ 𝑝 
∂ρ

 Sonntag). 
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∂ 𝑢 
∂ 𝑇 =  𝐶 

 𝑣 

∂ 𝑝 
∂ 𝑇 = ∂ 𝑝 

∂ρ · (− ∂ρ
∂ 𝑇 ) =

 𝑣 
 𝑞 

 2 

γ · ρ
 0 
ϑ =

 𝑣 
 𝑞 

 2 ρ
 0 
ϑ

γ

 In order to solve the equation involving  the corresponding values that compose  must  be ∂ 𝑢 
∂ 𝑡 ,

∂ 𝑢 
∂ 𝑡 

 solved first, giving the following relation (Epstein & Carhart). 

ρ
 0 

 2 · ∂ 𝑢 
∂ρ =  𝑝 

 0 
−  𝑇 

 0 
· ∂ 𝑝 

∂ 𝑇 → ρ
 0 

 2 · ∂ 𝑢 
∂ρ =  𝑝 

 0 
−  𝑇 

 0 
(

 𝑣 
 𝑞 

 2 ρ
 0 
ϑ

γ )

 Returning to the previously mentioned equations, the known values can now be substituted for 

 values and for the energy conservation equation. ∂ 𝑢 
∂ 𝑡 

∂ 𝑢 
∂ 𝑡 = ∂ 𝑢 

∂ρ · ∂ρ
∂ 𝑡 + ∂ 𝑢 

∂ 𝑇 · ∂ 𝑇 
∂ 𝑡 

ρ
 0 

· ∂ 𝑢 
∂ 𝑡 +  𝑝 

 0 
( ∇ ·  𝑣 ) −  𝑘 ·  ∇  2  𝑇 =  0 → ρ

 0 
· ∂ 𝑢 

∂ 𝑡 =−  𝑝 
 0 
( ∇ ·  𝑣 ) +  𝑘 ·  ∇  2  𝑇 

 Proper substitutions can be made based on what was determined to result in a linearized 

 form of the energy equation. Since  has been  defined, the substituted values can be added into ∂ 𝑢 
∂ 𝑡 

 the equation for energy. The proper substitution values are listed below, as well as the resulting 

 equations that follow from them (Van Wylen & Sonntag). 

 , ∂ 𝑢 
∂ 𝑇 =  𝐶 

 𝑣 
∂ρ
∂ 𝑇 = ρ

 0 
ϑ

 Now that the proper values have been substituted for  , the energy conservation ∂ 𝑢 
∂ 𝑡 

 equation can be updated by the values represented. Before this occurs, the value for  must  be ∂ρ
∂ 𝑡 

 accounted for. Returning to the conservation equation for the acoustic field,  can be solved for ∂ρ
∂ 𝑡 

 proper substitution. 

∂ρ
∂ 𝑡 + ρ

 0 
 ∇ ·  𝑣 =  0 
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∂ρ
∂ 𝑡 =− ρ

 0 
 ∇ ·  𝑣 

 Now that all of these values have been appropriately covered,  can properly be ∂ 𝑢 
∂ 𝑡 

 substituted. The first equation represents the fully substituted values, while the second and third 

 equations are there to give proper form. 

∂ 𝑢 
∂ 𝑡 = ∂ 𝑢 

∂ρ · (− ρ
 0 
 ∇ ·  𝑣 )+  𝑝 

 0 
· ( ∇  𝑣 ) +  𝐶 

 𝑣 
· ∂ 𝑇 

∂ 𝑡 

∂ 𝑢 
∂ 𝑡 =− ρ

 0 
( ∂ 𝑢 

∂ρ ·  ∇ ·  𝑣 ) +  𝑝 
 0 

· ( ∇  𝑣 ) +  𝐶 
 𝑣 

∂ 𝑇 
∂ 𝑡 

 In order to properly finish this equation,  must be represented in the form of a ∂ 𝑢 
∂ρ

 non-partial derivative. Using the substitution that was previously explored and multiplying by 

 density, the derivation can be solved. 

ρ
 0 

· (− ρ
 0 

∂ 𝑢 
∂ρ  ∇ ·  𝑣 ) +  𝐶 

 𝑣 
∂ 𝑇 
∂ 𝑡 +  𝑝 

 0 
· ( ∇  𝑣 ) −  𝑘 ·  ∇  2  𝑇 =  0 

− (ρ
 0 

 2 · ∂ 𝑢 
∂ρ ) ∇ ·  𝑣 +  𝐶 

 𝑣 
∂ 𝑇 
∂ 𝑡 +  𝑝 

 0 
· ( ∇  𝑣 ) −  𝑘 ·  ∇  2  𝑇 =  0 

(− ( 𝑝 
 0 

−  𝑇 
 0 
(

 𝑣 
 𝑞 

 2 ρ
 0 
ϑ

γ )) ∇ ·  𝑣 +  𝐶 
 𝑣 

∂ 𝑇 
∂ 𝑡 ) +  𝑝 

 0 
· ( ∇  𝑣 ) −  𝑘 ·  ∇  2  𝑇 =  0 

( ∇ ·  𝑣 )(−  𝑝 
 0 

+  𝑇 
 0 
(

 𝑣 
 𝑞 

 2 ρ
 0 
ϑ

γ ) +  𝑝 
 0 
) +  𝐶 

 𝑣 
∂ 𝑇 
∂ 𝑡 −  𝑘 ·  ∇  2  𝑇 =  0 

( ∇ ·  𝑣 )( 𝑇 
 0 

·
 𝑣 

 𝑞 
 2 ρ

 0 
ϑ

γ ) +  𝐶 
 𝑣 

∂ 𝑇 
∂ 𝑡 −  𝑘 ·  ∇  2  𝑇 =  0 

( ∇ ·  𝑣 )( 𝑇 
 0 

·
 𝑣 

 𝑞 
 2 ρ

 0 
ϑ

γ ) =  𝑘 ·  ∇  2  𝑇 −  𝐶 
 𝑣 

∂ 𝑇 
∂ 𝑡 

 ∇ ·  𝑣 = γ 𝑘 

 𝑇 
 0 
 𝑣 

 𝑞 
 2 ρ

 0 
ϑ

( ∇  2  𝑇 − ∂ 𝑢 
∂ 𝑇 · ∂ 𝑇 

∂ 𝑡 )

    ∇ ·  𝑣 =  𝑘 
 𝑇 

 0 
· ∂ 𝑇 

∂ρ (( ∇  2  𝑇 ) − ∂ 𝑢 
∂ 𝑡 )
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 In the equation above, it states that the divergence of the sound velocity is proportional 

 the change in temperature with respect to density, multiplied by how the temperature changes 

 with respect to space, while removing how the temperature changes over time. 

 Spectral Properties 

 The Fourier Transform can be applied to the pressure waves that propagate from a given 

 source to determine at which frequencies the pressure wave is the strongest (Pierce). 

 𝑝 (ξ) =
−∞

∞

∫  𝑝 ( 𝑡 ) ·  𝑒 − 2 π 𝑖 ξ 𝑡  𝑑𝑡 

 In the case of  being a summation of any arbitrary  number of sinusoidal functions. Any  𝑝 ( 𝑥 )

 complex value consists of two components: the real and imaginary components. When analyzing 

 the results of the Fourier Transform it is important to look at the real-valued solutions in order to 

 extract information about frequency intensity. Imaginary solutions have no importance here, as 

 frequency intensity is concerned with only the real-valued solutions of the Fourier Transform 

 (Kierkegaard; Pierce). 

 𝑝 =  𝑅𝑒 { 𝑝 ·  𝑒 − 2 π 𝑖 ξ 𝑡 }

 Where the term  represents the real valued parts,  and  represents the intensity of  𝑅𝑒  𝑝 

 acoustic pressure in terms of frequency. In addition, it is possible to take the Fourier Transform 

 of a velocity function as well, resulting in a value  . This describes frequency intensity based  𝑣 (ξ)

 on the velocity. Similar to the acoustic pressure, the interest in what the Fourier Transform of 

 velocity describes is represented only by the real-valued solutions of  (Pierce).  𝑣 

 𝑣 =  𝑅𝑒 { 𝑣 ·  𝑒 − 2 π 𝑖 ξ 𝑡 }
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 The idea of a velocity function having a frequency seems unusual since velocity usually 

 is not a periodic function, the definition of  serves as a function for  in the complex-valued  𝑣  𝑣 

 function space. The representations of both  and  act as real-valued time-dependent analogues  𝑣     𝑝 

 to the real-valued frequency-dependent values that are produced by the Fourier Transform. 

 Returning back at the linearized acoustic forms of the Navier-Stokes equations, both velocity and 

 pressure are now defined with values (Pierce). Despite this, the time-dependent partial 

 derivatives have not yet been defined. To define the complex-valued analogue, the operation ∂
∂ 𝑡 

 will be treated as the input argument for  Through  this process, the partial derivative can be  𝑓 ( 𝑡 ).

 taken inside the Fourier Transform, and an expression to define  can be found (Brown & ∂
∂ 𝑡 

 Churchill; Kierkegaard). 

−∞

∞

∫  𝑓 ( 𝑡 ) ·  𝑒 − 2 π 𝑖 ξ 𝑡  𝑑𝑡 =
−∞

∞

∫ ∂
∂ 𝑡 ·  𝑒 − 2 π 𝑖 ξ 𝑡  𝑑𝑡 

∂
∂ 𝑡 ·  𝑒 − 2 π 𝑖 ξ 𝑡 =−  2 π 𝑖 ξ ·  𝑒 − 2 π 𝑖 ξ 𝑡 

∂
∂ 𝑡 =−  2 π 𝑖 ξ

 Given what has been found, starting from the Fourier Transforms of both pressure and velocity, 

 the linearized Navier-Stokes equations is as follows: 

 𝑝 (ξ) =
−∞

∞

∫  𝑝 ( 𝑡 ) ·  𝑒 − 2 π 𝑖 ξ 𝑡  𝑑𝑡 

 𝑣 (ξ) =
−∞

∞

∫  𝑣 ( 𝑡 ) ·  𝑒 − 2 π 𝑖 ξ 𝑡  𝑑𝑡 

 Converting the respected values for both pressure, velocity, and  updated forms of the ∂
∂ 𝑡 ,

 Navier-Stokes equations for frequency are produced. 
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∂ 𝑝 
∂ 𝑡 + ρ

 0 
 𝑐  2 ·  ∇ ·  𝑣 =  0 → −  2 π 𝑖 ξ ·  𝑝 + ρ

 0 
 𝑐  2 ·  ∇ ·  𝑣 =  0 

∂ 𝑣 
∂ 𝑡 +  1 

ρ
 0 

 ∇  𝑝 =  0 → −  2 π 𝑖 ξ ·  𝑣 +  1 
ρ

 0 
 ∇  𝑝 =  0 

 These two forms are significant in that the equations are no longer time-dependent, and instead 

 are frequency dependent representations of acoustic movement. 

 Diffusion Models 

 To account for the problems found within the diffusion models for sound dissipation, 

 values must be subtracted from the changes in sound energy density. The reasoning is that sound 

 energy is not only changing, it is also dissipating. In regards to absorption in the environment not 

 caused by air, a mean absorption coefficient is taken by the sum of all absorption coefficients 

 divided by the mean free path. Taking all of this into consideration, a potential new model for the 

 diffusion of sound in a simple closed system can be modeled (Navarro & Escolano). 

∂ 𝑤 
∂ 𝑡 =  𝐷 ·  ∇  2  𝑤 ( 𝑟 ,  𝑡 ) − α 𝑐 ·  𝑤 ( 𝑟 ,  𝑡 ) −  𝐶 

 𝑎 
 𝑐 ·  𝑤 ( 𝑟 ,  𝑡 )

α =  𝑎 
Λ → α =  𝑎 · 𝑆 

 4  𝑉 

 In this equation,  represents the absorption  of air and  is the speed of sound. This equation  𝐶 
 𝑎 

 𝑐 

 illustrates loss over a unit volume, something initially unaccounted for. In order to resolve this, a 

 function of the sound energy per unit volume must be added, acting as an “initial value” from 

 which sound can begin dissipating. 

∂ 𝑤 
∂ 𝑡 =  𝐷 ·  ∇  2  𝑤 ( 𝑟 ,  𝑡 ) − α 𝑐 ·  𝑤 ( 𝑟 ,  𝑡 ) −  𝐶 

 𝑎 
 𝑐 ·  𝑤 ( 𝑟 ,  𝑡 ) +  𝐸 

 0 
( 𝑟 ,  𝑡 )

 With the addition of energy per unit volume  the acoustic diffusion equation is  𝐸 
 0 
( 𝑟 ,  𝑡 ),

 properly modified. The concept behind this modified partial differential equation is that the 
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 change in sound energy density over time does not simply reach equal energy dispersion, but 

 loses energy as time continues (Jing & Xiang). This is via absorption of energy from air and 

 boundaries in a closed system, such as a room, closed venue, or studio. It further states that this 

 absorption is dependent on the properties of the closed system, like volume of and materials 

 present in the room. 

 It is important to address the case in which  ,  as the diffusion coefficient is not a constant  𝐷 

 value. Possible solutions to this problem have been theorized and presented, but have resulted in 

 additional questions or inconsistencies (Muñoz, Navarro-Ruiz, & Hornikx). One possible 

 solution is a wave-addition-based method in which the values for  can be taken at discrete  𝐷 

 points. The values would result in a function  that predicted the diffusion coefficient at  𝐷 ( 𝑟 )

 different regions in several dimensions (Navarro, Escolano, & López). Additional assumptions 

 would have to be made, such as if changes in  is  minimal and sound decay is smooth.  𝐷 

∂ 𝑤 
∂ 𝑡 =  ∇ ( 𝐷 ( 𝑤 ,  𝑟 ) ·  ∇  𝑤 ( 𝑟 ,  𝑡 )) − α 𝑐 ·  𝑤 ( 𝑟 ,  𝑡 ) −  𝐶 

 𝑎 
 𝑐 ·  𝑤 ( 𝑟 ,  𝑡 ) +  𝐸 

 0 
( 𝑟 ,  𝑡 )

 Analyzing the gradient of the diffusion function in this context is valid since it describes how 

 diffusion of energy density would change with respect to space. However, it must be noted that 

 this is based on the original diffusion equation, and is simply a conjecture as to what the 

 modification for a diffusion function would look like. 

 Based on potential solutions to this diffusion equation model, a new measurement for 

 looking at a sound pressure levels based on this diffusion model arises: 

 𝑆𝑃𝐿 ( 𝑟 ,  𝑡 ) =  20 ·  𝑙𝑜  𝑔 
 10 

(  𝑤 ( 𝑟 , 𝑡 )·ρ 𝑐  2 

 𝑃  2 )
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 Under the assumption that real valued solutions exist,  represents the bulk modulus of ρ 𝑐  2 

 the medium, and  represent the static sound  pressure, acting as a reference pressure level in  𝑃  2 

 which no disturbances occur. 

 Discussion 

 The mathematics that describes Acoustic Theory has proven to be incredibly complex, 

 but it is important to discuss how it relates to other properties of sound as well. Starting from the 

 linearized Navier-Stokes equation, the mathematics that governs fluid flow eventually leads to 

 something that governs sound, which in this case, is the wave equation. In the derivation of the 

 wave equation, the potential function of some velocity function has been shown to follow 

 behaviors similar to those of standing waves. This illustrates a link to wave behavior that comes 

 from the equations of the acoustic field under constraints of irrotational flow. The derivation of 

 the wave equation from the linearized Navier-Stokes equation shows the mathematical backing 

 of the acoustic theory itself. 

 The theory-based links between the Navier-Stokes equations and vorticity of a sound 

 field resulting in a diffusion-like model show interest in how this model of vorticity can affect 

 the sound field. Through this process, the diffusion equation was able to be related to the 

 Navier-Stokes equation under the constraint that rotational flow occurs. What resulted is an idea 

 that any kind of rotation within the fluid field would diffuse throughout the field, traveling from 

 high-density levels to lower density levels. Implications of what this could mean for acoustics is 

 a topic in which further research could be considered. What is significant, however, is that 

 diffusion happens under constraints of the Navier-Stokes, linking the two equations together. 
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 This link can act as a reasonable implication that acoustic movement could obey models of the 

 diffusion equation, something that would provide a crucial bridge between these two models. 

 The effect of temperature on sound movement is incredibly complex, but an attempt 

 toward defined descriptions of the original equations can be made. The Navier-Stokes equation 

 of energy conservation through a fluid field represents how energy is preserved through the 

 acoustic field with respect to thermal expansion and temperature. The derivation of finding the 

 divergence of sound with respect to temperature and density helps illustrate how sound is 

 affected by thermodynamic properties but remains a question in terms of its significance. 

 Comprehensively, this model would work well for closed-system areas, such as studios or inside 

 venues. Open systems, including open-air venues, are more complicated to handle, as there is no 

 definitive equation or method to determine how the flow will move due to an indeterminable 

 number of external factors. Of biggest importance is that temperature is not something that can 

 simply be factored out when evaluating acoustic movement, as thermal dissipation and the 

 effects of temperature on sound contribute to changes in sound movement. 

 Applications on how temperature affects sound tend to appear heavily in system 

 placement, tuning, and mixing. Much of these applications tend to be highly focused on 

 predictive and preventative measures since the temperature is constantly changing, especially in 

 large or  open venues. Live sound engineers often use the basic principles of how sound changes 

 due to temperature, rather than looking at properties of thermal expansion or specific heat. This 

 is generally acceptable, as the specificities of topics like thermal expansion and dissipation 

 become infinitely more complex depending on the openness of an environment. These 

 assumptions further exist within current prediction software for live sound engineers as well. 

 Most softwares utilize the assumption that the air temperature does not change based on location, 
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 and that uniform temperature exists throughout a given volume. Even though the software tends 

 to result in decently accurate predictions, this oversimplification of an environment is incredibly 

 unlikely to occur in the real world. However, it would not necessarily be impossible to consider 

 simpler closed environments for these types of thermodynamic analyses. Closed systems with 

 relatively small numbers of people could help determine both sound direction, speed, and travel 

 with predictive software to higher degrees of accuracy. This could further extend into finding and 

 accounting for anticipated changes in this process. As environments become more open, like 

 large outdoor venues that require multiple sets of speaker arrays, these predictions become much, 

 much more difficult and less accurate. Atmospheric temperature and pressure changes happen 

 constantly, and it is known that engineers may have to make changes to system properties to 

 account for these changes. Possible solutions to open venues would be evaluating the divergence 

 of sound, given all of the accountable factors that exist. 

 A more simplified potential solution to this problem could be to treat an open 

 environment like a closed environment and evaluate the characteristics as an individual point in 

 time. Evaluating multiple of these individual points in time can result in a set of these points that 

 illustrate the changes in the environment. Based on this, realistic changes that can be made could 

 be implemented as time continues. This method would result in an average of what changes over 

 time or a more accurate “best fit” for the environment. This may be the best option given the 

 current knowledge base but is more heavily dependent on more uncontrollable factors. It is 

 important to recognize that as the field of acoustic theory advances, the effects of 

 thermodynamics may be more accurately accounted for in new theories and models. 

 The Fourier Transforms in relation to the linearized Navier-Stokes equation have 

 illustrated connections to the frequency domain and the propagation of sound. What results from 
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 this are relationships between frequency strength, pressure change, and spatial dependence that 

 results in models of frequency strength from acoustic movement. Current testing and simulations 

 are being made; but most of these simulations and computations have been restricted to two 

 dimensions due to limitations of computational ability. In addition, the current focus on using 

 and testing these equations involves looking into ducts and industrial applications, rather than a 

 production setting. Despite this, as more research continues, the ability to extrapolate from ducts 

 to full-sized venues is not unreasonable, and would allow additional strides with acoustic tuning 

 to be made. These would include frequency strength within boundary conditions, leading to 

 predictions in the form of acoustic dampeners within modeled rooms. Furthermore, by modeling 

 defined signals in enclosed spaces or venues, frequency strength at given locations based on an 

 input signal would be possible to map. The result would be more accurate predictions for 

 acoustic tuning. The previously stated limitations of the Navier-Stokes equation carry over into 

 the time-independent frequency domain.  Gaps in the current model, therefore, cause additional 

 gaps in the frequency domain in the form of transformations of the time-dependent gaps having 

 unknown implications in the frequency-dependent domain. This implies that what the gaps 

 represent will not be known until they are filled, thereby only being able to evaluate these 

 implications in retrospect. Despite this, research is still being conducted on how well the model 

 fits (Kierkegaard). Currently, this representation of a frequency-dependent Navier-Stokes 

 equation is not commonly found since frequency generally does not occur in fluid flow as it does 

 for sound. Despite this, it could lead to the representation of frequency change by the equations 

 serving as the models for acoustic theory. 

 Research on the use of the diffusion equation has illustrated definitive links between 

 sound propagation and diffusion in relatively-controlled environments. Current research focuses 
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 on urban acoustics and industrial applications, including soundproofing in architectural 

 applications and loudness control between buildings and streets. As previously mentioned, the 

 current diffusion model fails for outdoor solutions and incredibly large rooms due to 

 non-constant diffusion coefficients as the sound continues to move. Current research focuses on 

 this aspect of modifying and creating a diffusion equation that works for both of these 

 applications. In terms of the proposed equation, having a non-homogeneous diffusion coefficient 

 would result in changes also present in the original diffusion equations. Similar to the situation 

 with the Navier-Stokes equation, research on acoustics and the diffusion equation include gaps in 

 current knowledge, specifically regarding the previously mentioned non-constant diffusion 

 factors. Current estimations on calculations focus on statistical methods for predicting 

 spatial-dependent diffusion coefficients. While this has worked with relative degrees of success, 

 testing is limited and inconssistencies in calculations have currently rendered these methods 

 inconclusive. 

 In terms of smaller environments like smaller venues, the acoustic diffusion equation 

 could work as an accurate model for acoustic treatment, given known absorption coefficients in 

 the room. Based on these factors, sound pressure level estimations could be made within the 

 environment based on these findings. Treatment elements could be placed in rooms based on 

 these predictions. Returning back to the shortcomings of prediction software, they often do not 

 take into account reflections and interference patterns of sound. This results in sharp cutoffs 

 where surfances should be, acting as a boundary rather than a place for reflection and absorption. 

 These results fail considerably in real-world applications, as sound does not simply disappear 

 once a boundary is reached, while further interferes in the form of reflections. Using this 

 diffusion model, the issues with boundary cutoffs would not be an issue, as the diffusion method 
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 would illustrate how sound diffuses within the room itself while accounting for the surfaces 

 themselves. In the case of outdoor venues, the focus may need to be less on acoustical treatment 

 with more focus on system design and optimization. Audio equipment characteristics could be 

 more carefully selected based on the constraints of the venue. Optimizing proper dispersion and 

 adequate coverage while constrained to a budget helps not only for engineers but also for venues 

 and concertgoers. 

 The link between the microscopic and macroscopic perspectives of using the diffusion 

 equation could exist based on the sound pressure level equation. Solutions to this modified 

 diffusion equation would come with the creation of boundary conditions for the sound particles, 

 and result in a function  to describe the  scattering of these particles. The result of this  𝑤 ( 𝑟 ,  𝑡 )

 function would model the energy levels from a sound source as a function of time given a set of 

 constraints. Furthermore, this can be converted to a  function, and systems within  𝑆𝑃𝐿 ( 𝑟 ,  𝑡 )

 rectangular rooms could be calculated, as well as finding sound decay values. 

 The most important topic to evaluate is the background of the Navier-Stokes equation 

 itself. The Navier-Stokes equation is indeed an unsolvable problem. Despite this reputation, the 

 Navier-Stokes equation is capable of producing limited time-dependent results of laminar flow in 

 two and three dimensions. Turbulent flow is one of the biggest questions that physicists are 

 trying to answer today about the Navier-Stokes equation, as nonlinear flow is unaccounted for in 

 the equation. The significance of this question is how reflecting sound could create some form of 

 turbulence within the fluid medium. If this were true, it would severely complicate acoustic 

 theory and would rely on solutions of the turbulent flow for general fluid movement first before 

 additional progress can be made. In the future, solutions to the Navier-Stokes equation may be 

 found, which could give greater insight into the complexity of sound movement. Given both of 
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 these outcomes, solutions that either ratify or disprove elements of acoustic theory still serve to 

 further the understanding of acoustics. Positive solutions can serve to further concepts within the 

 fluid-based sound model; elements that are reasonably disproved expand knowledge of what 

 does not work, allowing for revisions and further conjectures to be made. This is not to say that 

 the basis for acoustic theory is flawed, but rather that the foundation is unfinished. Answers to 

 current questions can be revealed by what is currently unknown with future research. 

 Several questions continue unresolved: how do all of these concepts come together into 

 one cohesive theory? The goal of acoustic theory is to unify topics across all aspects of sound on 

 both a microscopic and macroscopic level. The acoustic field equations represent how the flow 

 of the sound moves, which relates down to the particle level. The diffusion equation also 

 represents particles of sound diffusing within the sound field, but with more of a focus on the 

 dispersion of the particles rather than their motion. Both of these relate to the particle level. The 

 Fourier transform of the Navier-Stokes equation represents both the oscillation of pressure and 

 flow of the frequencies, relating to both particle states and what people can hear within the 

 frequency spectrum. The disconnect comes in the form of describing the singular particle theory 

 and extrapolating upwards from single particles to multiple particles, then from multiple particles 

 to all particles. The diffusion equation model relating to sound pressure level attempts to 

 combine these, but has not been fully successful. The more research that is performed on these 

 aspects, the closer a more accurate and inclusive acoustic theory becomes. Conversely, it is also 

 plausible that the term “acoustic theory” might shift from describing the current macro-aspects of 

 acoustics, to becoming a term that describes a branch of acoustical physics. Another 

 transformation could be to have math and models that govern the motion of the particles 

 resulting in equations and models of interaction with other objects within the parameters of 
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 motion. This process could also lead to a set of  “Navier-Stokes-Diffusion” equations for the 

 acoustic process of diffusion within a medium. Not only could this result in the advancement of 

 acoustic theory, but it would also have implications within the broader field of fluid dynamics. 

 The new model could potentially be able to describe motion while also describing interference 

 and “turbulence” of the particle motion within the fluid. Other possibilities could result in 

 essentially splitting acoustic theory into two different aspects: acoustic movement and acoustic 

 interaction. Acoustic movement would be governed by the previously found Navier-Stokes 

 equations of acoustic movement, while the interactions of sound would be governed by the 

 diffusion equations. 

 From a theoretical perspective, the continued research of acoustic theory in math and 

 physics is a necessity, but the underlying question of how acoustic theory can be applied by 

 audio engineers and sound engineers remains. Aspects of live sound have been addressed, but 

 mostly in a predictive sense. Given the current knowledge of acoustic theory, it would be 

 difficult to describe every facet of what this kind of software could hold. Of key importance 

 would be possible different methods of describing acoustic movement. Additionally, applications 

 of temperature and pressure could be used to generate predictions of flow with reflections and 

 diffusion. Other elements that this software could include might be frequency strength based on 

 given parameters of a room, which would help immensely for adding absorption elements to help 

 create a more even frequency distribution. 

 Moving away from solely the applications within predictive software, there are further 

 applications of acoustic theory within system optimization. Tuning a sound system is to improve 

 responsiveness within a room or venue. If frequencies are determined to be too strong in certain 

 locations within the venue through the presented methods, and absorption panels are not viable 
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 options, then using spectral processors to eliminate those strong frequencies is a method of 

 system tuning using this model, illustrating how these theories can be used in practice. 

 Additional applications within system design would take the form of system creation itself. 

 Directionality and placement of loudspeakers can affect the energy density of sound in a room. 

 The concepts of beamforming and beam-steering are synonymous with line arrays, as the 

 directionality of sound movement becomes more narrow with the strength of the beam that forms 

 from the speaker arrays. As stronger beams are formed, sound energy density increases towards 

 the center of the beam. Using the equations of motion can help with beam-steering and speaker 

 placement to optimize coverage within a room. Taking into account everything from the thermal 

 effects of an audience to how sound would diffuse within a complex environment, proper 

 placement, angling, and tuning will yield better coverage and better listening experiences for the 

 audience. This allows for better equipment selection, as having an understanding of optimal 

 coverage results in proper equipment selection. By using equipment that properly fits these 

 parameters, it can result in more cost-effective equipment selection, optimizing coverage under 

 potential financial constraints. 

 To summarize, understanding what has been presented through the seemingly disjoint 

 topics helps illustrate the current state of acoustic theory. The current models show significant 

 promise in furthering the advancement of software and techniques used in production settings, 

 but still remain inconclusive from a lack of answers. Ultimately, this all comes down to testing 

 rooted in new mathematical equations and physics. If solutions can be found and connected 

 through research, then significant changes to the world of production seem highly likely. Despite 

 the lack of definitive connection, as research is ongoing, the hope for the development of a 

 robust acoustic theory seems likely for the future. 
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 Conclusion 

 Acoustic theory has shown to be a very complicated topic with considerable potential 

 applications. The foundation of acoustic theory itself, however, has a dearth of information in 

 general representation and special cases that create a substantial knowledge void. Its 

 interdisciplinary nature undoubtedly serves as part of the reason acoustic theory appears so 

 disjoint, as elements from several fields must interact and be represented cohesively. Theories 

 that sit at the intersection of multiple fields are not only difficult from a physical standpoint but 

 vary in the application within these distinctive fields. Multiple sections of acoustic theory focus 

 on finding linear analogues to wave-based properties. The current theory is successful in this 

 application. Additional aspects of acoustics, such as frequency, are time-independent whereas 

 equations of motion and energy are not. Due to this, the transformation from a time-dependent to 

 a time-independent representation requires an additional set of equations to be analyzed. This 

 further complicates acoustic theory. Particle diffusion models have been studied, suggesting links 

 between diffusion and sound movement, requiring yet another layer of calculations and equations 

 to be included within the current theory. If links can be discovered providing support for both, it 

 could potentially create additional support for model testing and ultimately prove or disprove 

 acoustic theory in its current state. It also could conceivably increase the scope of the current 

 theory to include both macro and micro acoustic influences. The current challenge with acoustic 

 theory is linking particle movement to the scale at which sound is experienced. Current 

 extrapolations within the diffusion model have been found for sound intensity but have yet gone 

 untested. Frequency intensity based on acoustic movement has been hypothesized and tested, but 

 ultimately was inconclusive and requires more scrutiny. Ultimately, the theory sits in a place of 
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 uncertainty due to current cracks and inconsistencies but leaves hope for the future once these 

 become resolved. 

 The applications of acoustic theory stretch far beyond just general representations of 

 theoretical physics. Acoustic theory would serve as the underlying physics for new types of 

 predictive software that can be applied for both concert venues and general studio treatment. 

 Through this software, proper system placement and tuning can be determined for concerts, as 

 well as potential problems that could arise from these choices. Furthermore, techniques for 

 combating issues within environments can be advanced, changing the methodology and current 

 techniques of sound engineers in the industry in the process. Acoustic treatment would benefit 

 from illustrations of problems and inconsistencies of sound propagation, determining placement 

 for acoustical panels and diffusers to ensure uniform energy spread or decreasing frequency 

 strength at certain locations. These applications also produce more cost-effective methods for 

 both system equipment and treatment equipment. As these methods are further studied, more 

 solutions and techniques for optimization in both equipment and action may appear for audio 

 engineers. Currently, they serve as the framework for what would be the intersection of complex 

 physics and practice for audio engineers. While currently there is no straightforward equation or 

 rule for acoustic theory, the hope is that as time continues, establishing these foundations can 

 hopefully be achieved. 
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