
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2022

Ground Vehicle Navigation with Depth Camera and Tracking Ground Vehicle Navigation with Depth Camera and Tracking

Camera Camera

Hongseok Kim

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Navigation, Guidance, Control, and Dynamics Commons

Recommended Citation Recommended Citation
Kim, Hongseok, "Ground Vehicle Navigation with Depth Camera and Tracking Camera" (2022). Theses and
Dissertations. 5401.
https://scholar.afit.edu/etd/5401

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5401&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1409?utm_source=scholar.afit.edu%2Fetd%2F5401&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5401?utm_source=scholar.afit.edu%2Fetd%2F5401&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

GROUND VEHICLE NAVIGATION WITH
DEPTH CAMERA AND TRACKING

CAMERA

THESIS

Hongseok, Kim, Major, ROKAF

AFIT-ENV-MS-22-M-217

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author(s) and do not re-
flect the official policy or position of the United States Air Force, Department of
Defense, United States Government, the corresponding agencies of any other govern-
ment, NATO, or any other defense organization.

AFIT-ENV-MS-22-M-217

GROUND VEHICLE NAVIGATION WITH

DEPTH CAMERA AND TRACKING CAMERA

THESIS

Presented to the Faculty

Department of System Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in System Engineering

Hongseok, Kim, B.S.

Major, ROKAF

March 2022

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENV-MS-22-M-217

GROUND VEHICLE NAVIGATION WITH

DEPTH CAMERA AND TRACKING CAMERA

THESIS

Hongseok, Kim, B.S.
Major, ROKAF

Committee Membership:

approved:

date: 18 Feb 2022
David R. Jacques, PhD (Chairman)

date: 18 Feb 2022
LtCol Warren J. Connell, PhD (Member)

date: 18 Feb 2022
Mr. Jeremy Gray (Member)

AFIT-ENV-MS-22-M-217

Abstract

The aim of this research is to provide autonomous navigation of a 4 wheel vehicle us-

ing commercial, off-the-shelf depth and tracking cameras. Some sensitive operations

need accuracy within a few inches of navigation ability for indoor or outdoor scenar-

ios where GPS signals are not available. Combination of the Visual Odometry(VO),

Distance-Depth(D-D), and Object Detection data from the cameras can be used for

accurate navigation and object avoidance. The Intel RealSense D435i, a depth cam-

era, generates depth measurements and the relative position vector of an object. The

Intel RealSense T265, a tracking camera, generates its own coordinate system and

grabs coordinate goals. Both of them can generate Simultaneous Localization and

Mapping (SLAM) data. The cameras share their data to provide a more robust capa-

bility. Combining the Intel cameras with a Pixhawk autopilot, it was demonstrated

that the vehicle can follow a desired path and avoid objects along that path.

iv

AFIT-ENV-MS-22-M-217

This thesis dedicate the development and demonstration of ground vehicle of

autonomous navigation using depth camera and tracking camera.

v

Acknowledgements

There is always trembling in taking on a challenge for the first time. Living abroad

and studying for a master’s degree with a language barrier was a challenge to me. The

people surrounding me helped me overcome through this challenge. My instructor,

Professor Jacques, always encouraged me to keep going on the process. Thanks to

my wife; she always cheers me up when I am frustrated with the language barrier.

And my two little sons; always think their daddy does not know how to give up.

Hongseok, Kim

vi

Table of Contents

Page

Abstract . iv

Dedication . v

Acknowledgements . vi

List of Figures . ix

List of Tables . x

I. Introduction . 1

1.1 Intro and Motivation . 1
1.2 Problem Statement . 2
1.3 Research Objective . 2

1.3.1 Investigative Questions . 2
1.4 Methodology. 3
1.5 Assumptions and Limitations . 3
1.6 Documents Overview . 5

II. Background and Literature Search . 6

2.1 Visual Odometry and Simultaneous Localization And
Mapping . 6
2.1.1 Limitation and Application . 8

2.2 Coupling of Localization and Depth Data for Mapping
using Intel RealSense T265 and D435i Cameras . 9
2.2.1 Limitation and Application . 9

2.3 Autonomous Spatial Exploration with Small Hexapod
Walking Robot using Tracking Camera Intel RealSense
T265 . 10
2.3.1 Limitations and Application . 10

III. Methodology . 11

3.1 Overview . 11
3.2 Hardware Description . 12
3.3 Software Description . 13

3.3.1 Overview . 13
3.3.2 Object Detection Code . 16
3.3.3 Object Avoidance Code . 19

3.4 Experimental Test Plan . 21
3.4.1 Evaluation Metrics . 21

vii

Page

3.4.2 Design Variables . 21
3.4.3 DOE Matrix . 21

IV. Results and Analysis . 23

4.1 Overview . 23
4.2 Object Detection Analysis . 23
4.3 Route and SLAM Analysis . 25
4.4 Statistical Analysis . 26
4.5 Qualitative Analysis . 27

4.5.1 Quantitative data . 28
4.6 DOE Analysis . 29

V. Conclusion . 32

5.1 Overview . 32
5.2 Recommendation for Further Research . 33

Appendix A. Distance Results . 35

Appendix B. Total Routes . 36

Bibliography . 37

viii

List of Figures

Figure Page

1 Visual Odometry . 6

2 Stereo Camera and Epipolar Line . 8

3 Architecture View . 11

4 Vehicle Hardware . 12

5 Python Functions . 14

6 Feature Detection . 24

7 3 Meters Box . 25

8 Histogram . 28

9 SLAM data . 34

ix

List of Tables

Table Page

1 Turn Directions . 20

2 Statistic Description . 27

3 DOE matrix index . 29

4 DOE matrix . 29

x

GROUND VEHICLE NAVIGATION WITH

DEPTH CAMERA AND TRACKING CAMERA

I. Introduction

1.1 Intro and Motivation

Tragically, natural and man-made disasters are very harsh conditions for people

to perform rescue operations and search for survivors. Often debris is scattered

everywhere in the unknown area, it is very hard to find a way to a safe path, and

sometimes it is too narrow for a direct human approach. A small vehicle can be used

in these harsh conditions, and situations not conducive to human function. Vehicles

must avoid crashing into obstacles in order to avoid adding to the debris field, so the

desired path has to be modified in real time. For these reasons, position accuracy

within a few inches and the ability to navigate and avoid obstacles is important for

the small vehicles. Disasters like the collapse of a Florida building in 2021 should

never happen again, but when it inevitably does, quick search and rescue is very

important. It should be noted that small ground vehicles were used in the aftermath

of the Florida building collapse [1].

GPS is widely used for navigation, and it is often taken for granted that GPS will

always be available. But considering our operational environments, the GPS signal

may not be accessible by the small vehicles. Furthermore, GPS accuracy depends

on the surrounding area. While normal GPS accuracy is about 2.1 ft [2], it can be

significantly degraded due to multipath environment. Further, considering the length

of the vehicle may be less than 2 ft, the GPS error is almost the same as the length of

1

the vehicle. For these reason, GPS accuracy is not sufficient for vehicles that require

only navigation accuracy within inches.

The navigation ability of the vehicle can be increased by adding Visual Odometry

(VO) sensors; examples of these are depth and tracking cameras. The depth camera

is a stereo camera, where two cameras are taking pictures at the exact same time from

different vantage points. The stereo camera calculates the Distance-Depth (D-D) and

relative position from the target to the camera. A tracking camera can set the visual

reference point for navigation. Simultaneous Localization and Mapping (SLAM) is

generated using these data. Beyond the localization and positioning, SLAM allows

the construction of global maps base on the combined images obtained from the

operations area.

1.2 Problem Statement

There are many situations where small, autonomous vehicle will have to navigate

within tight spaces without the benefit of GPS. These vehicles will need to avoid

obstacles while still ensuring arrival at specified locations.

1.3 Research Objective

Demonstrate autonomous navigation using VO with a combination of depth and

tracking cameras and a low cost commercial autopilot. Determine how factors such

as distance, path circuits, path shape, and obstacle avoidance impact the navigation

accuracy.

1.3.1 Investigative Questions

1) How can depth and tracking cameras be integrated with a low cost, commercial

autopilot to support autonomous navigation without the aid of GPS?

2

2) How do factors such as path geometry, distance, path circuits and obstacle

avoidance impact the accuracy of navigation?

3) Is the demonstrated navigation system appropriate for vision-based guidance

of SUAV using low-cost componentry?

1.4 Methodology

The experiments implemented VO using a depth camera and a tracking camera

on 4 wheel vehicle for calculating the distance by the computer when the vehicle

reached a final waypoint after following the path. The tests was conducted in several

circumstances for assuming the vehicles’ harsh operation area; two different lengths

of the paths, single and repeated closed circuit path, triangle shape and square shape

path, and with and without obstacle. All tests recorded vehicles parameters (vehicle’s

position and velocity, and detected object’s position), pictures from the both cameras,

and point cloud data at every certain point.

1.5 Assumptions and Limitations

A test expedient vehicle was tested indoors in a constrained environment. A single

location was used for all measured tests, and time to complete all test points was 5

minutes or less. While a variety of obstacles were used for development, all measured

tests used the same obstacles. Because of time constraints, testing was limited to 4

variables and 6 repetitions for each test point. A more comprehensive test plan would

be required to fully evaluate a proposed system.

The vehicle does not have gimbals for moving cameras. The cameras were fixed

and aligned with the vehicle forward axis. Therefore, the camera angular field of

regard for detecting an object is limited by the field of view of the camera lens and

the fixed camera position.

3

The vehicle uses 4 wheels for locomotion [3]. The front 2 wheels have a 45° steering

angle limitation [4]. That means the vehicle cannot make a sharp turn at a corner

waypoint. Therefore, the vehicle overshoots turns necessitating a recovery maneuver

to the get back on the path. An alternative would have been to initiate the turn prior

to the waypoint (an undershoot), but that was not implemented for this research.

The depth camera, D435i, has limitations. First, for capturing object features

both indoors and outdoors, the ideal range is 0.3-3m; therefore, objects outside this

range were ignored. It should be noted that the measurement error for the depth

data is 2 percent at 2m. An additional limitation is due to the depth data update

rate of 90fps being faster than the RGB frame rate of 30fps [5]. For this reason, the

algorithms for following the route and avoiding objects are limited to the RGB frame

update rate.

The board used for this research is the UP Squared board with Intel Atom X7-

E3950 processor, onboard 8GB DDR4, and 64GB eMMC [6]. The Atom board gener-

ates movement commands by analyzing the data from the pictures, which are taken

from both depth and tracking cameras. It sends the movement commands to the

Pixhawk autopilot, which then commands wheel and steering motions. The latency

between taking pictures and sending commands to the Pixhawk will affect the ve-

hicle’s navigation accuracy. The line of the Python code for movement command

and saving pictures and data is about 1500 lines, which takes too long to calculate.

This caused a significant limitation in the movement command rates that could be

achieved, sometimes as low as 2 Hz.

Robotic Operating System (ROS) use is popular for real-time SLAM. The Atom

board [6] uses Ubuntu 18.04 LTS (Bionic Beaver). Ubuntu 18.04 is only compatible

with ROS Melodic [7]. ROS Melodic is limited to Python version 2.7 [8]. The code

for the depth camera and tracking camera in this research is based on Python 3.x

4

or above for saving and demonstrating the pictures. This caused limitations in using

Python code for real-time SLAM.

1.6 Documents Overview

This thesis divided into the following five chapters: Introduction, Background and

Literature Search, Methodology, Results and Analysis, Conclusion. And the following

are brief descriptions of the chapters.

Chapter 1: Introduction - Describes the motivation, problem statement, research

objective, methodology, assumption, and limitations.

Chapter 2: Background and Literature Search - Paper reviews of the processing

of Visual Odometry (VO) and Simultaneous Localization And Mapping (SLAM) and

thesis using the T265 and D435.

Chapter 3: Methodology - This chapter will discuss architectural view, hardware

description, software description, and experimental test plan.

Chapter 4: Results and Analysis - This chapter shows the object detection anal-

ysis, route and SLAM analysis, statistical analysis, qualitative analysis, and DOE

analysis of the experimental results.

Chapter 5: Conclusion - Focuses on answering the three investigative questions.

5

II. Background and Literature Search

2.1 Visual Odometry and Simultaneous Localization And Mapping

Visual Odometry (VO) is used to improve the positioning and orientation capa-

bility of a robot, vehicle, or human using camera images. Early odometry used data

from rotary encoder on a wheel of a vehicle. However, wheel odometry has errors

from wheel slip in uneven terrain or other adverse conditions. Visual Odometry has

advantages over wheel odometry because it is not affected by wheel slip. The VO

processing is summarized below (see Figure 1).

Figure 1. Visual Odometry

For VO, images are taken in a timed sequence. The VO algorithm then detects

features in the image frame. and matches those features with those from the previous

frames. Using the movement of the features in the image frames, the third step

consists of computing the relative motion of the camera between the time instants

t and t+1. The camera position is computed by concatenation of the movement

with the previous pose. Finally, an iterative refinement can be done over the last

frames to obtain a more accurate estimate of the local trajectory [9]. VO uses the

sequenced images with time from monocular or binary cameras. The images are used

6

to determine the translation and rotation. The translation and rotation are used to

estimate a camera trajectory. It is possible to calculate from the ‘image t’ the position

of camera using Equation 1.

XC = RC
W (XW − CW) (1)

The position of the object in image (XC) is rotated by the world frame to cam-

era frame rotation matrix (RC
W) after subtracting the position of the camera (CW) in

world frame from the position of the object in world frame (XW). The camera trajec-

tory can be calculated by rearranging Equation1 for the position of the camera in the

world frame, adding a homogeneous solution, and substituting the object coordinates

of the camera frame and the object coordinate of the world frame [9] [10]. Typical

accuracy for VO is about from 0.5 percent to 2 percent of distance traveled. For VO

to work effectively, there should be sufficient illumination of the environment and a

static scene with enough texture to allow apparent motion to be extracted. Further-

more, consecutive frames should be captured by ensuring that they have sufficient

scene overlap. The VO uses Random sample consensus (RANSAC) to speed up its

ability to capture objects [9] [10]. For relative 3-D positioning, most of the current

research uses a stereo camera. The stereo camera has two cameras with a baseline

distance between them, which take pictures at the exact same time. The two camera

images can be compared by constructing epipolar lines and planes as shown in Figure

2. The relative 3-D positions of the features in the images are directly measured by

triangulation at every robot location.

Simultaneous Localization And Mapping (SLAM) means the robot locates itself

in unknown environments and scans surroundings. The main difference between VO

and SLAM is that VO mainly focuses on local consistency and aims to incrementally

estimate the path of the camera from one position to the next. SLAM aims to obtain

7

Figure 2. Stereo Camera and Epipolar Line

a globally consistent estimate of the camera trajectory and map. Global consistency

is achieved by realizing that a previously scanned region has been traversed (closed-

loop). This will decrease the drift errors. Recent advancements with SLAM use rich

visual information from passive low-cost video sensors compared to LASER scanners.

However, the trade-off is a higher computational cost and the requirement for more

sophisticated algorithms for processing the images and extracting the necessary in-

formation. Due to recent advances in CPU technology, the real-time implementation

of the required complex algorithms is no longer an insurmountable problem [9] [11].

2.1.1 Limitation and Application

Robust feature detection and continuous tracking of the object are important for

the accurate calculation of camera position. For feature detection the code developed

for this research used a library of OpenCV Findcontour [12]. However, the camera

missed objects closest to the vehicle because of the properties of the random sampling.

At a certain time, the Atom board calculated with no objects or objects which is not

closest object. So depth-based code was added for correcting this problem.

Other researchers have used SLAM with Robot Operating System (ROS). We had

tried to build ROS with another vehicle. But there were many errors in building the

8

code with the vehicle as well as board computer limitations. Therefore we changed

to the Traxxas vehicle and Pixhwak autopilot which was used in another thesis.

The Atom board computer was retain for the new configuration. The Atom board

computer only supports ROS melodic which is not compatible with Python version

3.x or above. The RealSense camera is only used in python version 3.x or above.

Python code was written without ROS for the camera to work and save the data.

The scanned SLAM data is saved as point cloud data, but it is not used directly for

navigation in the experiment. Its processing speed was very slow when used to avoid

objects and navigate, so it only was used to analyze and create maps after the test.

2.2 Coupling of Localization and Depth Data for Mapping using Intel

RealSense T265 and D435i Cameras

Tsykunov, et.al., used 2 cameras, t265 and D435i to navigate an autonomous

robot in unknown environment. Tsykunov, et.al. built a 3D map to perform the real-

time localization and path planning using two cameras. For this purpose they used

an algorithm that fused data from two cameras into a 3D occupancy map. For the

real-time localization, they compared different point cloud (PC) alignment methods

and frame transformations to obtain different trajectories. They then created the

whole scene by combining the depth data and PC data. They used an overlap of 80

percent and two methods, Iterative closest point (ICP) solution family and RSME,

to achieve their point cloud [13].

2.2.1 Limitation and Application

Tsykunov, et.al focused on building a 3D map for movement, allowing vehicle

navigation. Current research requires a way to align the point cloud data for the 3D

map in real-time.

9

2.3 Autonomous Spatial Exploration with Small HexapodWalking Robot

using Tracking Camera Intel RealSense T265

Bayer and Faigl used a small hexapod walking robot with T265 and D435 cameras

to navigate through harsh and unknown terrain. To reach the waypoints, they used

ground mapping for terrain avoidance and a coordinate system for navigation to the

goal. This paper focused on the development of computationally efficient solutions

for the full navigation system including localization, mapping, planning, and decision-

making in exploration missions [14].

2.3.1 Limitations and Application

Bayer and Faigl did not comment on the transformation between the two data

frames associated with the D435 and T265 cameras. The difference between the

attached locations of the cameras on the vehicle can contribute errors if not properly

accounted for.

10

III. Methodology

3.1 Overview

Figure 3. Architecture View

The overall architecture view of the vehicle for this research is shown in Figure

3. This research uses a four wheel ground vehicle that follows a planned route and

avoids obstacles in its path using a depth camera and a tracking camera. The planned

route is a simple set of ordered waypoints specified in the reference frame of the

tracking camera. Finally, when the Atom board recognized the vehicle reached the

final waypoint, the computer stops the vehicle and calculates the positional error from

11

the vehicle’s current position to the final waypoint. The calculated distance is always

positive because the vehicle approach is nondirective.

3.2 Hardware Description

The vehicle for this research was previously built for another thesis. Additions to

the existing vehicle included an attached board computer, an additional battery to

power the board computer, a depth camera, and a tracking camera. The vehicle is

shown in Figure 4.

Figure 4. Vehicle Hardware

The depth camera and the tracking camera are fixed using a camera mount in the

front of the vehicle aligned with the vehicle’s longitudinal (forward) axis. Because

the Pixhawk autopilot IMU data was not being used these experiments, the offset

distance between the autopilot and the tracking camera did not need to be accounted

12

for. The tracking camera has its own internal IMU. The camera mount designed by

the Intel RealSense team was 3D printed. The mount for both cameras is given with

an extrinsic matrix for referencing and/or transforming their data [15]. The depth

camera, Intel D435i, has an IR projector, left and right stereo cameras, and an RGB

camera. Both stereo cameras take pictures for the depth information used to produce

point clouds of objects in the image [5]. The tracking camera, Intel T265, has two

fisheye cameras for generating coordinates and SLAM. The ATOM board produces

move commands using Python code developed as part of this research, and the move

commands are sent to the Pixhawk autopilot through the USB interface [16].

The Python code is initiated using a ground control computer via Wi-Fi using

SSH protocol. When the move command reaches the Pixhawk, the Pixhawk holds

the move commands until two conditions are solved. The first condition is controlled

by the manual safety switch which must be armed. The second condition is the vehicle

control mode must be manual or guided for activation [16]. The manual control mode

was used for this research. The vehicle mode can be changed by the ground control

computer using RF modems at 915 MHz or an RC transmitter and receiver pair

operating at 2.4 GHz. The vehicle condition can be monitored using the Mission

Planner application at the ground computer.

3.3 Software Description

3.3.1 Overview

Some of the code used in this thesis was posted on GitHub [17]. Beyond that

existing code, eight functions were developed in Python for showing images and saving

data from the tracking and depth cameras, and making a move command for vehicle

movement. The software functions for these processes are shown in Figure 5. The

move command functions required a connection between the ATOM board and the

13

Figure 5. Python Functions

Pixhawk autopilot, and this was accomplished using Dronekit and Pymavlink libraries

[16] [18]. All commands to the autopilot are in the form of a pulse width modulated

(PWM) signal. Three commands are required for movement: a turn command which

moves the steering servo, a transmission command which ensures the vehicle stays in

low gear, and a throttle command which goes to the motor speed controller. A test

was conducted to check the vehicle start and stop movements.

Code for image frame processing of the depth and tracking cameras had to be

developed. This involved displaying the video from both cameras, and capturing and

saving pictures from the cameras for evaluating after experiments. These routines are

based on Python code samples provided by the Intel RealSense team [19]. The stored

data includes image frames from both cameras, point cloud files from the tracking

camera, time, position coordinates, velocity, acceleration, vehicle heading, current

goal’s coordinate, object’s coordinate, and coordinate of an object’s edge. This code

used NumPy, Pyrealsense2, OpenCV, Time, NumPy, matplotlib, PLY, and JSON

libraries.

Additional code was developed to grab objects from the images, draw a box around

the objects, extract depth data from the grabbed objects, and transform this infor-

14

mation to the tracking camera coordinate system. This code will be discussed further

in the “Object Detection Code” section of this chapter.

The vehicle was operating in a manual control mode; therefore, code needed to be

written to facilitate autonomous waypoint following. Initially this involved moving

to a commanded waypoint and stopping when it reaches a threshold distance from

that waypoing, with the threshold set to 0.3 meters for this research. Too small of

a threshold can be incompatible with the turn radius of the vehicle. If there is more

than one coordinate goal, the coordinate goal is changed to the next waypoint when

the distance threshold to the current goal is met. The RELATIVE MOVE function

makes move commands utilizing the RELATIVE POSITION and SMOOTH TURN

functions. The RELATIVE POSITION function returns relative angle and distance

from a certain point to vehicle position and vehicle’s heading by using the vehicle’s

coordinated position and a certain point. The SMOOTH TURN function returns the

vehicle’s steering angle relative to the vehicle’s heading. In the RELATIVE MOVE

function, the turn direction and wheel steering angle is determined using data from

RELATIVE POSITION and SMOOTH TURN functions.

Finally, object avoidance code was developed and tested. A standoff distance

and direction for avoidance maneuvers had to be established. This code shall be

discussed further in the Object Avoidance Code section of this chapter. Because the

depth camera attempts to grab all things in the image frame regardless of how close

they are, an IN ROUTE function was developed to compensate for that feature. The

IN ROUTE function checks the current position and current goal to determine if an

object is within 50 centimeters of the path from the current position to the current

goal.

15

3.3.2 Object Detection Code

The main steps of the VO processing are as follows: first, taking sequenced im-

ages; second, feature detection; third, feature matching or tracking; fourth, motion

estimation; and fifth, local optimization [9]. The object detection code covers all VO

processing steps. The vehicle can avoid objects when it detects and tracks them from

image to image continuously. This research started with code to detect colored balls,

a feature based code[20][21]. The feature based code sometimes missed objects from

image to image, so depth based code was added. The feature code and depth based

code was combined to make the algorithm more reliable.

Feature Based Code

Feature Based Code is based on the color ball code [20] [21]. After taking pictures

with the depth camera, the images take four steps of image processing in the color

ball code to find the object’s outline and draw a box on the detected object. The

first step is to store the frameset for later processing at step 3. Second, set the color

and extract the depth data corresponding to the color using the ‘bitwise’ function of

the Opencv operation by comparing the images from the color frame in the frameset.

From step one to step two are VO’s feature detection and feature matching or track-

ing. Third, proceed with the image processing to find the absolute difference between

step 1 frameset and step 2 frameset. This step is the same as VO’s motion estimation

step. In this step, it uses five functions of Opencv; absdiff, cvtColor, GaussianBlur,

threshold, and dilate function. The absdiff function is calculating the difference be-

tween images [22]. The cvtColor function (COLOR BGR2GRAY) changes the image

to gray because the next function requires gray scale images [23]. The GaussianBlur

function is blurring images with various low pass filters for getting smooth images

[24]. The threshold function is to obtain a distinct image regardless of the amount of

16

light within the image frame [25]. The dilate function is useful for filling in the image

of objects to remove gaps [26]. The last step is to find the outline of an object from

the step three result using the findContours library [12].

Two thing were changed from the above steps. First, color was deleted in order

to detect objects regardless of their color. Considering operational environments, it

is not possible to designate an object as having one specific color. The color ball code

is based on the set color range with RGB for image processing of OpenCV [12] for

detecting objects. The ball code rejects the other object based on the color range.

However, the image processing of openCV finds the object and extracts the four points

on the border of the object from the image frames with or without color. Therefore,

it is possible to detect all color objects. The second modification was to add Otsu’s

Binarization threshold method for the third step. Otsu’s Binarization enhanced the

detection features [25]. It was a found in earlier test, that Otsu’s method provided

more continuous tracking of objects, and a better match of the actual objects outline.

Depth Based Code

The feature-based code grabs all the objects but draws the contoures of only one

object. When multiple objects are detected in the image frame, the object chosen to

draw contours of can change from image to image. It is useless for tracking the object

and avoiding the object. For this reason, it required the addition of the depth based

code. The depth based code uses the shortest depth length inside of 3 meters in the

image frame. The code determines the height and width of an object by finding pixels

with depth information less than or equal to twenty percent of the shortest depth in

the frame. Three filters were added for improving the depth accuracy. The three fil-

ters are a Spatial Filter, Temporal Filter, and Hole Filling filter. The Spatial Filter is

a fast implementation of Domain-Transform Edge Preserving Smoothing. The Tem-

poral Filter implements basic temporal smoothing and hole-filling. It is meaningless

17

when applied to a single frame, so it captures several consecutive frames. The Hole

Filling filter offers an additional layer of depth extrapolation [27].

Comparison of Feature and Depth Based Object Detection

Object detection uses two methods which are the depth based method and the

feature-matching method. Both methods attempt to draw boxes around objects in

the image. The Depth based method is more stable when grabbing the object, but

it takes more time when drawing the box and does not draw precise contours. The

feature-matching method is less stable when grabbing the objects, but it is faster

and produces a more precise contour. When using only the feature based method,

obstacles were sometimes missed.

Data Transfer Between Depth and Tracking cameras

When the main code is started, the tracking camera establishes the origin position

and generates its own coordinate system, and the depth camera starts VO processing.

When the detection of features and extraction of depth data from the image frame is

completed, the data is ready to transfer and use to generate move commands. Trans-

ferring data from depth camera to tracking camera is performed by the DEPTH TO

TRACKING function. This function includes generating relative angle and distance

and then generating coordinates in the tracking camera coordinate system. The rel-

ative angle and depth are calculated using this pixel point position, depth camera

pixels, and field of view. This is facilitated by the extrinsic camera matrix provided

by the Intel RealSense team for the camera mount [15]. The matrix, which is 3 by 4,

allows transformation from the tracking camera frame to the depth frame (T depth
tracking).

18

The matrix consist of rotation matrix (Rdepth
tracking), which is a 3 by 3 matrix, and trans-

lation matrix (tdepthtracking), which is a 3 by 1 vector. The translation matrix is the relative

distance from the axis center of the tracking camera, on each axis, to the equivalent

axis center of the depth camera. The rotation matrix is made of the tracking and

depth camera axis direction. The depth camera and tracking camera both are using

a right-hand rule coordinate frame, but the directions are different from each other.

For the depth camera and IMU coordinate frame, the positive x-axis points to the

right, the positive y-axis points down, and the positive z-axis points forward. For the

tracking camera coordinate frame, the positive x-axis points to the right, the positive

y-axis points up, and the positive z-axis points backward. For the tracking camera

IMU frame, the x-axis and z-axis directions are opposite but the y-axis direction is

the same as the tracking camera coordinate frame [28]. The transformation matrix

from the depth camera to tracking camera (T tracking
depth) is defined by adding the in-

verse matrix of rotation matrix (Rtracking
depth) and the translation matrix from the depth

camera to the tracking camera (ttrackingdepth).

3×4T
tracking
depth =

[
3×3R

tracking
depth |3×1t

tracking
depth

]
(2)

3.3.3 Object Avoidance Code

Initially, the Object Detection code was catching too many objects, many of which

were not along the path. To correct for this, a 3 meter range was established for

object avoidance. If the detected object is further than 3 meters from the vehicle,

the code draws the box on the detected object and gets the depth information, but

it waits before it generates an avoidance command. The code determines and saves

the coordinates of detected objects and the edges of the object when the detected

object is within 3 meters. The code checks the current detected target and previously

19

detected target interference with the vehicle movement using the IN ROUTE function.

If either one of them interferes with movement, avoid the obstacle first.

The object avoidance code uses the object’s center coordinate and the object’s edge

coordinate for avoidance. The coordinates of the center of the object and the object’s

edge are generated from the Object Detection code. Whether to grab coordinates of

the left or right edge of an object depends on where the object’s center is located

in the image frame. When the center of the object is located on the left side of the

camera frame, the code saves coordinates of the center and left edge coordinate of the

object. And then calculate the avoid clearance point using depth data, coordinate

of object edge, and a pad for minimum clearance. To avoid the object, the vehicle

turns right until the left edge of the object in the camera frame meets the offset limit.

When the left offset limit is reached, the vehicle is rotated in the opposite direction

to place the detected object within the image frame. The offset limits have both

side bumpers for compensating calculation time limitations. The turn directions are

shown in Table 1. The vehicle continues with an avoidance turn and a recover turn for

Object location Left Left limit Center Right limit Right

Turn Direction Turn left Turn right Turn right Turn left Turn right

Table 1. Turn Directions

placing an object within the image frame. When the x or z coordinate of the vehicle

reaches the x or z coordinate of the object, the vehicle breaks out of the avoidance

turn to continue movement towards the current goal waypoint. If the vehicle loses

the object, the code checks to determine if the coordinates of the previously detected

object is on the path by using the IN ROUTE function. If the previously detected

object interferes with the vehicle’s movement, the vehicle moves to avoid the object

20

by the required clearance distance calculated from the object edge.

3.4 Experimental Test Plan

3.4.1 Evaluation Metrics

The evaluation metric for this research is the distance from the final vehicle posi-

tion to the final goal waypoint. The vehicle follows the given route and avoid obstacles

when they are detected and attempts to stop at the final waypoint. The Atom board

saves the current position using the coordinates when the tracking camera frame

is updated. From this, the error distance between those coordinates and the final

waypoint is calculated.

3.4.2 Design Variables

The vehicle is tested indoors with four independent variables: distance, path

circuits, path shape, and obstacle avoidance. The path shapes are triangular and

square. These routes were chosen to provide variation in the turn angles required.

The presence of obstacles means when the vehicle detects objects, the vehicle must

avoid them and then return to the following the desired path. The vehicle is tested

with two different path leg lengths, and different numbers of circuits of the path. Path

leg length will be kept short to ensure battery voltage does not very widely during a

trial or across different trials.

3.4.3 DOE Matrix

We used the Design Of Experiment (DOE) matrix for analyzing and assessing

the results. The DOE matrix helps us to understand the influential variables and

interactions among variables. The DOE matrix allows us to analyze and quantify the

21

effect of the outputs of the variable. In this research, the DOE matrix has 4 variables,

with each variable having 2 values, total of 16 factors.

22

IV. Results and Analysis

4.1 Overview

Using indoor experiments, the distance from the vehicle to the final waypoint is

used to measure accuracy of navigation around a closed path. For these measurements

we set 4 path variables; path shape, number of circuits, path leg length, and presence

of objects. Each variable has 2 values for a total of 16 factors. Each combination

of factors was tested with 6 repetitions. The experiments were analyzed based on

object detection, route and SLAM analysis, statistical analysis, qualitative analysis

and the DOE matrix for evaluating accuracy. The DOE matrix with statistical results

is shown as Table 2. A more complete set of results are shown in Appendix A.

4.2 Object Detection Analysis

The camera has to track continuously the object which is closest to the vehicle in

order to avoid it. Feature based and depth based code are used for tracking objects.

The feature based code was not able to track continuously the objects during early

tests. The depth based code tracked objects continuously. In Figure 6, The red box

is the actual object boundary, which was added after the experiments to improve

understanding of code behavior. The green box is the detected object. The green

box with depth information on the top is produced by the feature based code, and

the green box with depth information on the bottom is produced by the depth based

code. The feature based code catches the floor as an object in the top left picture of

Figure 6, detects another part of the floor in the top right picture, detects another

spot in the bottom left picture, and grabs the light reflection in the bottom right

picture. In all of these images, the boxes detected by the feature based code do not

overlap the object. The depth based code is able to continuously track the object.

23

Figure 6. Feature Detection

The green box from the depth based code does not perfectly align with the real object,

but it is mostly within the object boundary. The closer the camera is to the object,

the better the green box size fits the actual object outline. Even for the image with

the smallest green box, upper left of Figure 6, the coordinate location of the detected

object is enough to avoid it. At the indoor test before the lobby experiment and

without vehicle movement, the green box from depth based code had matched the

real object’s contour. The other green box from the feature based code was better

matched the with the real object’s contour but sometimes not stable from image to

image. The detection abilities of both codes were weak in the presence of bright lights

and reflections.

24

4.3 Route and SLAM Analysis

Figure 7. 3 Meters Box

Figure 7 shows the 3 meter box routes base on the computer generated position

information. The other routes are shown in Appendix B. The upper two pictures are

without enroute objects and the bottom two pictures are with an enroute object. In

the bottom pictures, the blue arrow points from the vehicle to the object when the

vehicle detects an object within a set distance of its path, left or right 50 centimeters.

The red dots are detected edges of the object. The light blue shade depicts the +/-

30 cm corridor on either side of the intended path. The vehicle was able to follow the

route in order and properly stop at the starting point, the final goal. In the upper left

pane of Figure 7, the vehicle started at the bottom left and proceeded in a clockwise

25

direction, returning to the starting point. The red text is the distance from the final

goal to the vehicle when the vehicle stopped. For cases when the camera detects

an object, it saves coordinates of points on the boundary of the detected object. If

another object is not detected, it checks the saved points to determine if the object

will interfere with the intended vehicle path from its current position to the next

waypoint. If the saved object points interfere with the movement of the vehicle, the

vehicle uses the set clearance to define a path around the object. This is shown in

the bottom right pane of Figure 7.

The vehicle should gain more accurate position information using SLAM updates

when the vehicle makes a closed-loop path [9]. This corrects for the drift errors of

the inertial measurement unit of the tracking camera which increase with time. The

corrections resulting from the closed loop path should more than compensate for the

drift errors associated with the inertial measurement unit, thus improving accuracy

for closed loop paths. However, this requires the building of global map to realize the

improved accuracy for close loop paths. For reason associated with memory limitation

and computing power a global map was not constructed for these experiments.

4.4 Statistical Analysis

As shown in Table 2 , the vehicle positioning error at the final waypoint is 6.88

centimeters on average. The maximum positioning error is 10.49 centimeters which

occurs for the 3 meter box pattern with three circuits and the presence of obstacles.

The minimum is 4.91 centimeters for the 5 meter triangle pattern with one circuit.

Analyzing the skewness column of Table 2, it is seen that most of the values are

positive. Positive skewness means that the mean value of the data set is greater than

the median value of the data set. And the mode value of the data is less than the

median of data set. There are three cases that resulted in negative skewness values.

26

Factor Minimum Maximum Mean Std Skewness
(cm) (cm) (cm) deviation

3m/Single Box 0.18 13.07 7.25 4.37 -0.52
3m/Triple Box 2.41 19.20 8.57 6.11 1.19
3m/Single Triangle 0.17 19.50 6.67 7.36 1.28
3m/Triple Triangle 0.58 14.63 5.20 4.91 1.83
3m/Single Box Object 0.29 15.29 6.45 6.64 0.70
3m/Triple Box Object 5.58 19.82 10.49 5.09 1.44
3m/Single Triangle Object 3.41 15.55 7.74 5.27 0.99
3m/Triple Triangle Object 2.27 12.31 7.04 4.18 0.04
5m/Single Box 1.00 15.16 6.24 5.52 0.79
5m/Triple Box 0.17 18.56 8.43 6.39 0.53
5m/Single Triangle 1.52 15.65 4.91 5.47 2.09
5m/Triple Triangle 0.10 9.92 5.20 3.74 -0.28
5m/Single Box Object 0.19 15.89 7.31 6.55 0.07
5m/Triple Box Object 1.39 19.39 8.70 6.86 0.84
5m/Single Triangle Object 0.03 14.64 7.70 5.98 -0.39
5m/Triple Triangle Object 5.69 11.93 8.66 2.54 0.17

Table 2. Statistic Description

The negative skewness means that the mean of the data set is less than the median of

the data set. In graphical terms, positive skew indicates that the tail is on the right.

In cases where one tail is long. The standard deviation has an average of 5.44. This

indicates that the distribution does not follow the standard normal deviation.

4.5 Qualitative Analysis

Qualitative data gathered during the experiment provided ideas regarding possible

experimental errors and what should be changed if the test was to be repeated. All

experiments were conducted in the same area, a building lobby, in order to remove

a possible confounding variable associated with varying frictional coefficients of the

floor. The lobby was not very large, so there were times when the camera mistook the

wall for an object. In order to avoid this, the route should stay at least 50 centimeters

27

from the wall. The lobby is not large enough to accommodate a 5 meter box pattern

while maintaining the required standoff distance from the wall. For this reason, the

box pattern was changed to a 5 x 3 meter rectangle. For the triangular pattern it

was necessary to align the vehicle with the first leg of the triangle to accommodate

the limited turn radius of the vehicle relative to the leg length available.

4.5.1 Quantitative data

Figure 8. Histogram

The histogram presented in Figure 8, shows the positional errors are concentrated

from 2 to 5.5 centimeter. Considering the average of final position error, 6.88 cen-

timeters, the distance frequently lies below the average. This shows the distribution

of the experiment’s result does not follow the standard normal distribution. Frequent

lower-than-average values indicate that most of the skewness values are positive as

would be expected based on the small amounts of error and the fact that the error is

only measured in a positive sense.

28

Symbol Variables (+) (–)

A Length 5 meters 3 meters
B Circuit Triple Single
C Route Triangle Box
D Object Yes No

Table 3. DOE matrix index

factor A B C D Y-BAR
(cm)

1 -1 -1 -1 -1 7.25
2 -1 1 -1 -1 8.57
3 -1 -1 1 -1 6.67
4 -1 1 1 -1 5.20
5 -1 -1 -1 1 6.45
6 -1 1 -1 1 10.49
7 -1 -1 1 1 7.74
8 -1 1 1 1 7.04
9 1 -1 -1 -1 6.24
10 1 1 -1 -1 8.43
11 1 -1 1 -1 4.91
12 1 1 1 -1 5.20
13 1 -1 -1 1 7.31
14 1 1 -1 1 8.70
15 1 -1 1 1 7.70
16 1 1 1 1 8.66

(+) 7.14 7.79 6.64 8.01
(–) 7.42 6.78 7.93 6.56
delta 0.28 -1.00 1.29 -1.45

Table 4. DOE matrix

4.6 DOE Analysis

The DOE matrix index for the experiment is shown in Table 3. A value of -1

indicates the low value for the variable, whereas a value of +1 indicates the high

value for the variable. Using these indices, the results of the DOE analysis are shown

in the Table 4. All experimental distance results were calculated by the code and

29

appear in the final column of the table. The last column of Table 4, Y-BAR, is the

experiments’ average distance from the waypoint for the test point associated with

the set of factors for a given row. For instance, the second row of Table 4, factor

1 row, are all ‘-1’. It is interpreted by the Table 3 as ‘test at 3 meters in length of

one leg of the box pattern route with a single circuit and no objects’. For the last

three rows of the Table 4, the (–) row is the experiment’s distance results average of

the column corresponding to the -1 values, the (+) row is the experiments’ distance

results average of the column corresponding to the +1 values, the delta row is the (–)

row minus the (+) row. The average positional error associated with (–) of symbol A,

3 meter leg length, is larger than (+), 5 meter leg length. This result appears to be

related to steering error, and the ability of the vehicle to correct for these errors given

a longer leg length. The single circuit had lower final error than the three circuit

trials, and the triangle route had lower positional error than the square route. This

was an unexpected results and can not be explained from the observed data. Had a

global map been constructed, it would be expected that the three circuit trials would

have reduced error versus the single circuit trials. Finally, the positional error was

lower when no objects were encountered than it was with detected objects.

The absolute value of the delta row represents how the positional error was im-

pacted by the factor represented in the column. If the absolute value of delta for a

specified column is larger than deltas associated with other columns/factors, it sug-

gests the factor associated with the specified column has a greater impact on the

experimental results. The most impactful independent variable in our experiments is

object avoidance. The absence of an object on the intended vehicle route resulted in

a lower positional error result than the cases where an object was present. When the

vehicle followed a route without an object, the positional error was 1.45 centimeters

less than that achieved for the route with an object. The least impactful variable

30

is the leg length of the path. The trials showed that the longer path length only

improved the positional error by .28 centimeters.

31

V. Conclusion

5.1 Overview

The objective of this research was to demonstrate autonomous navigation using

VO and SLAM from depth and tracking cameras combined with a commercial autopi-

lot on a ground vehicle without GPS signals in an unknown area. Three investigative

questions are used to outline this objective.

How can depth and tracking cameras be integrated with a low cost,

commercial autopilot to support autonomous navigation without the aid

of GPS? The depth and tracking cameras were integrated using Python code. The

data from each camera can be transferred to another camera by using a transition

matrix, which was defined for this research. An Atom processor board generates

the movement command using data from the cameras, and it sends it to a Pixhawk

autopilot using Mavlink and Dronekit. The vehicle was able to avoid objects and

follow a specified set of waypoints around a closed path.

How do factors such as path geometry, distance, path circuit and obsta-

cle avoidance impact the accuracy of navigation? The presence or absence of

objects was demonstrated to have the greatest impact on final positional error upon

arrival at the terminal waypoint. The leg length of the route was demonstrated to be

the least impactful factor on positional error. It should be noted, however, that the

average positional error for all test points was approximately 7 cm.

Is the demonstrated navigation system appropriate for vision-based

guidance of SUAV using low-cost componentry? The time for calculating

one cycle of code takes about 0.5 sec. This will be a limitation for utilization on a

SUAV if the code can not be made to run faster because the SUAV requires a more

frequent update of the movement commands for path following or obstacle avoid-

32

ance. This thesis does, however, demonstrate how to combine a depth camera, a

tracking camera, and an autopilot. Further research will find a way to decrease the

computational times for using on a SUAV.

5.2 Recommendation for Further Research

Further research must consider the impact of uneven lighting and sunshine. The

capability of the depth camera depends on the brightness of the light. The depth

camera sometimes catches the bright lights or reflections, causing it to miss an actual

object. The test area floor used in this research is slightly reflective (shiny). The

depth camera detected objects well on cloudy days or when the sun was high because

the sunlight did not reflect much. Other times the floor reflects sunlight, degrading

the depth capability. The depth camera would see the sunlight as an object and take

action to avoid it.

It takes, on average, about 0.5 to 0.6 seconds to compute the entire code once.

Considering the vehicle’s velocity, 30 to 33 centimeters per second, when one cycle of

code is complete, the vehicle moves 15 to 17 centimeters. During this latency period,

the vehicle is traveling blindly, and is not able to determine where it is relative to

a waypoint. Vehicle velocity could be reduced but this would required additional

memory to save images for a given trial. Computing time needs to be decreased using

shorter lines of code or upgrading the processor board. Adapting the code for parallel

processing would also improve processing time.

Both the depth data based code and the feature based code have their drawbacks.

The depth based code depends on the brightness of light. The feature based code

is not stable for certain objects. It is possible that adding code for color range or

restricting object shapes will help detect objects.

The computer board saved PLY files, which include point cloud data, and JSON

33

files with position data of the vehicle. A single PLY file shows point cloud data at

a certain time. By combining PLY files over all time steps, it should be possible to

make a whole scanned 3D map for more accurate navigation. The current research

effort was not able to do that in the time available for the effort. In this research,

only compiled 3 points of positional data and point cloud data like Figure 9 using

Meshlab program [29].

Figure 9. SLAM data

34

Appendix A. Distance Results

(cm)

Factors 1 2 3 4 5 6 Mean

3m/Single Box 5.26 7.49 9.98 13.07 7.50 0.18 7.25
3m/Triple Box 4.49 11.75 5.62 2.41 7.94 19.20 8.57
3m/Single Triangle 5.44 10.94 19.50 1.61 2.35 0.17 6.67
3m/Triple Triangle 5.76 14.63 3.05 3.78 3.38 0.58 5.20
3m/Single Box Object 0.53 0.29 4.05 15.29 4.37 14.15 6.45
3m/Triple Box Object 6.63 11.78 9.87 5.58 9.28 19.82 10.49
3m/Single Triangle Object 4.40 13.34 4.50 5.23 3.41 15.55 7.74
3m/Triple Triangle Object 2.49 7.11 6.99 12.31 11.06 2.27 7.04
5m/Single Box 1.44 8.99 8.02 1.00 2.81 15.16 6.24
5m/Triple Box 4.72 12.20 18.56 0.17 8.84 6.11 8.43
5m/Single Triangle 15.65 2.50 5.58 2.62 1.52 1.57 4.91
5m/Triple Triangle 0.10 9.92 1.62 8.06 6.00 5.48 5.20
5m/Single Box Object 15.89 0.38 12.21 0.19 10.62 4.59 7.31
5m/Triple Box Object 14.59 1.39 4.33 5.24 7.27 19.39 8.70
5m/Single Triangle Object 11.08 7.33 0.03 1.21 14.64 11.91 7.70
5m/Triple Triangle Object 9.24 6.29 5.69 7.73 11.10 11.93 8.66

Total Average = 6.88 cm

35

Appendix B. Total Routes

36

Bibliography

1. N. Boston. (2021) Mass. company sends robot to help florida building collapse

rescue efforts. [Online]. Available: https://www.nbcboston.com/news/local/

mass-company-sends-robot-to-help-florida-building-collapse-rescue-efforts/

2415473/ [Accessed: 2021-6-26]

2. GPS.gov. (2021) Gps accuracy. [Online]. Available: https://www.gps.gov/

systems/gps/performance/accuracy/ [Accessed: 2021-11-2]

3. wiki. (2021) Ackermann steering geometry. [Online]. Available: https:

//en.m.wikipedia.org/wiki/Ackermann steering geometry [Accessed: 2021-10-

21]

4. Traxxas. (2021) Trx4. [Online]. Available: https://traxxas.com/products/

landing/trx-4/ [Accessed: 2021-11-1]

5. I. Corporation. (2021) Intel realsense d400 series product fam-

ily datasheet. [Online]. Available: https://dev.intelrealsense.com/docs/

intel-realsense-d400-series-product-family-datasheet [Accessed: 2021-11-2]

6. A. T. Inc. (2021) Up squared specifications. [Online]. Available: https:

//up-board.org/upsquared/specifications/ [Accessed: 2021-12-6]

7. C. C. A. 3.0. (2021) Ubuntu install of ros melodic. [Online]. Available:

http://wiki.ros.org/melodic/Installation/Ubuntu [Accessed: 2020-3-25]

8. . C. L. Ubuntu and C. are registered trademarks of Canoni-

cal Ltd. (2021) Psa for ros users: Some things to know as

python 2 approaches eol. [Online]. Available: https://ubuntu.com/blog/

37

psa-for-ros-users-some-things-to-know-as-python-2-approaches-eol [Accessed:

2019-10-28]

9. D. Scaramuzza and F. Fraundorfer, “Visual odometry [tutorial],” IEEE Robotics

Automation Magazine, vol. 18, no. 4, pp. 80–92, 2011.

10. C. C. A.-S. License. Visual odometry. [Online]. Available: https://en.wikipedia.

org/wiki/Visual odometry [Accessed: 2021-6-2]

11. K. Yousif, A. Bab-Hadiashar, and R. Hoseinnezhad, “An overview to visual odom-

etry and visual slam: Applications to mobile robotics,” Intelligent Industrial Sys-

tems, vol. 1, no. 4, pp. 289–311, 2015.

12. doxygen. (2021) Structural analysis and shape descriptors. [Online].

Available: https://docs.opencv.org/4.x/d3/dc0/group imgproc shape.html#

gadf1ad6a0b82947fa1fe3c3d497f260e0 [Accessed: 2021-12-21]

13. E. Tsykunov, V. Ilin, S. Perminov, A. Fedoseev, and E. Zainulina, “Coupling

of localization and depth data for mapping using intel realsense t265 and d435i

cameras,” arXiv preprint arXiv:2004.00269, 2020.

14. J. Bayer and J. Faigl, “On autonomous spatial exploration with small hexapod

walking robot using tracking camera intel realsense t265,” in 2019 European Con-

ference on Mobile Robots (ECMR). IEEE, 2019, pp. 1–6.

15. Intel. (2021) Intel RealSense Developer Documentation. [Online]. Available:

https://dev.intelrealsense.com/docs/depth-and-tracking-cameras-alignment [Ac-

cessed: 2021-11-1]

16. A. D. Team. (2021) Rover. [Online]. Available: https://ardupilot.org/rover/

index.html [Accessed: 2021-11-1]

38

17. H. Kim. (2022) Thesiscode. [Online]. Available: https://github.com/

hongseok-kim-afit/GroundVehilceDepthTracking [Accessed: 2022-2-21]

18. I. 3D Robotics. (2021) Dronekit python. [Online]. Available: https:

//github.com/dronekit/dronekit-python/ [Accessed: 2021-2-18]

19. I. RealSense. (2021) Python. [Online]. Available: https://dev.intelrealsense.com/

docs/python2 [Accessed: 2021-4]

20. M. Aboulhair. (2021) Tracking depth ball realsensel515. [Online].

Available: https://github.com/michael-ab/Tracking Depth ball RealSenseL515/

blob/master/realsense tracking ball.py [Accessed: 2020-7-9]

21. ——. (2021) Realsense l515 - simple object tracking + depth. [Online]. Available:

https://www.youtube.com/watch?v=eeKkrWj55Bg [Accessed: 2020-9-1]

22. doxygen. (2022) Operations on arrays. [Online]. Avail-

able: https://docs.opencv.org/3.4/d2/de8/group core array.html#

ga6fef31bc8c4071cbc114a758a2b79c14 [Accessed: 2022-1-19]

23. ——. (2022) Color space conversions. [Online]. Available: https://docs.opencv.

org/3.4/d8/d01/group imgproc color conversions.html [Accessed: 2022-1-19]

24. eastWillow. (2016) Smoothing images. [Online]. Avail-

able: https://opencv24-python-tutorials.readthedocs.io/en/latest/py tutorials/

py imgproc/py filtering/py filtering.html [Accessed: 2016]

25. e. OpenCV. (2016) Image thresholding. [Online]. Avail-

able: https://opencv24-python-tutorials.readthedocs.io/en/latest/py tutorials/

py imgproc/py thresholding/py thresholding.html [Accessed: 2021-7-13]

39

26. doxygen. (2022) Morphological transformations. [Online]. Available: https:

//docs.opencv.org/3.4/d9/d61/tutorial py morphological ops.html [Accessed:

2022-1-19]

27. I. R. Team. (2021) depth filters. [Online]. Available: https://github.com/

IntelRealSense/librealsense/blob/jupyter/notebooks/depth filters.ipynb [Ac-

cessed: 2021-7-13]

28. I. RealSense. (2021) How-to:getting imu data frome d435i

and t265. [Online]. Available: https://www.intelrealsense.com/

how-to-getting-imu-data-from-d435i-and-t265/ [Accessed: 2019-2-4]

29. P. Cignoni and A. Muntoni. (2022) Meshlab. [Online]. Available: https:

//www.meshlab.net/ [Accessed: 2022-1-25]

40

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

24–03–2022 Master’s Thesis Sept 2020 — Mar 2022

Ground vehicle navigation with depth camera and tracking camera

Hongseok, Kim, Major, ROKAF

Air Force Institute of Technology
Graduate School of System Engineering (AFIT/ENV)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENV-MS-22-M-217

Air Force Research Laboratory
Munitions Directorate

AFRL/RW

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The aim of this research is to provide autonomous navigation of a 4 wheel vehicle using commercial, off-the-shelf depth
and tracking cameras. Some sensitive operations need accuracy within a few inches of navigation ability for indoor or
outdoor scenarios where GPS signals are not available. Combination of the Visual Odometry(VO), Distance-Depth(D-D),
and Object Detection data from the cameras can be used for accurate navigation and object avoidance. The Intel
RealSense D435i, a depth camera, generates depth measurements and the relative position vector of an object. The Intel
RealSense T265, a tracking camera, generates its own coordinate system and grabs coordinate goals. Both of them can
generate Simultaneous Localization and Mapping (SLAM) data. The cameras share their data to provide a more robust
capability. Combining the Intel cameras with a Pixhawk autopilot, it was demonstrated that the vehicle can follow a
desired path and avoid objects along that path.

Visual Odometry(VO), Simultaneous Localization and Mapping (SLAM), Visual aided navigation

U U U UU 52

Dr. David Jacques, AFIT/ENV

(937) 255 6363 x3329; david.jacques@au.af.edu

	Ground Vehicle Navigation with Depth Camera and Tracking Camera
	Recommended Citation

	tmp.1657569214.pdf.dG8QF

