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Abstract

Distributed Interactive Simulation (DIS) is a legacy IEEE standard for defining

and structuring Protocol Data Unit (PDU)s in large scale distributed wargames. Al-

though the standard specifies various Qualities of Service (QoS) appropriate for cer-

tain PDUs, a one-size-fits-all transport strategy is traditionally employed via User

Datagram Protocol (UDP). Since the inception of DIS, the Object Management

Group (OMG) has produced a standard for a Data Distribution Service (DDS) which

has been implemented by several middleware vendors. DDS middleware offers an

abstraction for network communications that allows applications and developers to

easily employ configurable QoS by topic. Adoption and use of these QoS in DIS ap-

plications may introduce greater compliance with the IEEE standard and enrich the

service features available to distributed wargames and their developers. In this the-

sis, current use cases of DIS and DDS are examined. The cost, network burden, and

performance of DDS is measured and analyzed through experimentation and support

DDS’s eligibility to promote greater compliance with the IEEE standard for DIS.
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1.1 Problem Background

This section serves to expand upon the challenges facing DIS today and introduce

the key concepts explored throughout this thesis. Fundamentally, this thesis revolves

around two key subjects. They are Distributed Interactive Simulation (DIS) and

Data Distribution Service (DDS). Each of these subjects is explained in the following

sections.

1.1.1 Distributed Interactive Simulation

DIS in the general sense is an overloaded concept described by many synony-

mous terms. These terms include Distributed Virtual Simulation, Networked Envi-

ronments, Distributed Virtual Environments, Synthetic Battlespace, etc. A common

theme among these terms is an architecture consisting of several interconnected nodes

(i.e. simulations) that share data using a network. In military simulations, usually

real systems such as aircraft are modeled. Each node is responsible for creating a

representation of a shared virtual world to the degree necessary to accomplish the

goals of the simulation. Changes made to the world by individual nodes trigger data

exchanges between nodes in order to maintain a common shared virtual world.

DIS in the military context implies a specific communication protocol which is

described by a family of standards governed by the Institute of Electrical and Elec-

tronics Engineers (IEEE). The family is comprised of 4 specific IEEE documents,

enumerated below. The most relevant two are the first two because they fully specify

the structure of Protocol Data Unit (PDU)s used within the protocol and associated

service profiles. Notably, the second document in the family specifies communication

classes that users may employ. The third class of profile is reliable unicast, meaning

that a transmitted PDU would be resent if not successfully received by an intended

recipient.

2



(1) IEEE-Std-1278.1 - IEEE Standard for Distributed Interactive Simulation - Ap-

plication Protocols [1]

(2) IEEE-Std-1278.2 - IEEE Standard for Distributed Interactive Simulation - Com-

munication Services and Profiles [2]

(3) IEEE-Std-1278.3 - IEEE Recommended Practice for Distributed Interactive

Simulation - Exercise Management and Feedback

(4) IEEE-Std-1278.4 - IEEE Trial-Use Recommended Practice for Distributed In-

teractive Simulation - Verification, Validation, and Accreditation

In practice, many users opt to use exclusively best-effort service classes through

User Datagram Protocol (UDP) because of its deterministic performance, lightweight

overhead, and simplicity. Determinism is desired in DIS exercises because real people

are interacting with the virtual world. Too much latency in communications would

mean remote nodes receive late information and degraded speed through their decision

loops. Although this method of using exclusively UDP may satisfy many normal

operating requirements when the underlying network is already 95% reliable, it is

not without downfall. Not all information sent should have the same Qualities of

Service (QoS). Lozes, et. al., suggest reliable QoS would be beneficial to all simulation

management PDUs in a DIS exercise [3]. In fact, Holbrook, et. al., investigated the

use of a logging server to enable reliable multi-cast [4]. The most common PDU in

DIS exercises is the entity state PDU. Throughout normal operation, entity state

PDUs are sent repeatedly. If one is lost, a new one will follow shortly. Other PDUs,

such as detonations, are not sent as frequently, and a dropped PDU may cause an

event to never reach remote nodes. This would certainly disrupt an outcome from the

simulation. Although some may suggest solving this challenge by opening a reliable

Transmission Control Protocol (TCP) communication channel for PDUs that require

3



reliability, TCP has been known to induce loss for other UDP traffic [5].

In DIS exercises, it is common for one PDU to be transmitted to many remote

nodes. While one method of ensuring the right data gets to the right nodes is via

multicast groups, it is often more challenging to establish than simply broadcasting

the PDU to all nodes and requiring each node to filter out PDUs it does not need.

Basiouni and Chiu explored the challenges introduced by relying on this filtering,

particularly in real-time environments such as DIS [6]. Additionally, they showed the

connection between traffic size and delay required for receipt of data. In the face

of relevance filtering as a fix to broadcasting, Deb Fullford from MAK Technologies

highlights bandwidth management as a key element for the future of DIS [7].

1.1.2 Data Distribution Service

DDS is also described by standards. In this case, the standards are provided

by the Object Management Group (OMG) [8] [9]. These standards are referenced

in chapter VI. Fundamentally, DDS is a middleware aimed at providing real-time

communication between nodes of distributed applications. The middleware is based

on a publish/subscribe programming pattern. Nodes communicate by publishing to

topics to which other nodes subscribe. DDS recognizes that not all data must be sent

the same way, so nodes must meet requirements for matching, specified by levels of

QoS. These QoS represent contracts between publishers and subscribers. For example,

a node may offer best-effort publish messages to a given topic. If another node wishes

to subscribe to that topic but requests reliable service, then the node will not be

matched with the publisher because the publisher did not offer reliability.

Reliability is not the only QoS supported by DDS. The middleware offers many

other QoS such as latency budget, ownership strength, and history policy to name a

few. Latency budget allows a subscriber to require a maximum latency for updates

4



allowed into its data queue. In order for such a subscriber to be matched with a

publisher, the publisher must offer less than or equal to the latency budget required by

the subscriber. Ownership strength solves a distributed programming challenge where

multiple nodes are capable of publishing to the same topic. If two nodes attempt to

publish to the same topic, the node possessing a higher ownership strength takes

precedence. History policy supplements reliability by specifying how many previous

updates will be saved by a publisher. This behavior is useful for instances where nodes

may lose connectivity and return to a connected status desiring missed updates.

Research has shown the performance of DDS to meet the high level QoS param-

eters suggested for DIS by IEEE [10] [11] [12]. Other research has considered using

DDS to distribute DIS data and found that DDS offered promising capabilities to

applications served by DIS [13]. The research performed by Hakiri, et. al., evaluated

DDS in terms of latency and jitter but did not differentiate results based on reliability

as is done in this research.

1.2 Research Objectives

The objectives of this thesis are as follows:

1. Evaluate the impact of latency on DIS traffic from using DDS

2. Experiment with publishing and subscribing to topics in DDS

3. Explore means of achieving reliable transmission of DIS PDUs using DDS

1.3 Document Overview

The following chapters present various works either published or expected to be

published, leading to chapter VII where final conclusions are discussed. In chapter II,

5



one of DIS’s customer frameworks is explored. An initial exploration of DDS over-

head is provided in chapter III. Publications involving a DDS evaluation strategy

are provided in chapter IV and chapter V. Finally, chapter VI provides a specific

examination of using DDS to distribute DIS PDUs.
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II. Paper I: AFSIM’s Distributed Communications

The following paper, “AFSIM’s Entry into Aircraft Hardware in the Loop,” was

published at the 2021 World Congress in Computer Science, Computer Engineering,

and Applied Computing (CSCE’21). For the purposes of considering DDS in the

domain of DIS, AFSIM served as a framework to examine the favorability of DIS

in one of its software users. The eXperimental Input Output (XIO) interface was

developed by the framework developers for users to use as a simpler alternative to

full DIS. The presence and efficacy of the XIO interface illustrates the pull for a

simpler application of DIS protocols or an abstract middleware to allow employment

of DIS using application layer API such as DDS.

7
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Abstract— Hardware in the loop (HIL) simulations benefit
from a 3D world to visualize their state. This research
presents a basic entry point for the Advanced Framework for
Simulation, Integration, and Modeling (AFSIM) as a solution
to visualize aircraft state. This research highlights AFSIM’s
XIO capabilities (a network interface) as a potential path to
support simulations with integrated hardware.

Keywords: AFSIM, XIO, HIL

1. Introduction
Hardware-in-the-Loop (HIL) simulations are becoming

more widely used in Department of Defense (DoD) test
campaigns and in-house demonstrations. This trend is also
being adopted by the commercial sector [1]. The authors
describe the motivations for HIL experiments in terms of
the environment faced by aircraft designers. Architects of
HIL simulations must decide what software will interact with
their hardware to best support their tests. This decision is
based on many factors such as changing requirements. Under
tight schedule and budget constraints, software architects are
seldom afforded enough time, budget, and detail to survey
available options to support HIL development. This can lead
to a number of pitfalls which this research aims to help avoid
by suggesting a look at a framework owned by the Air Force
Research Laboratory (AFRL).

AFRL has acquired a software framework which it hopes
will become more ubiquitous in the M&S community [2].
The purpose of this research is to evaluate and illuminate
AFSIM as a candidate software product that supports a
military aircraft HIL infrastructure. This research seeks to
answer some of the questions of interest to HIL architects.

2. Background
The next couple of sections provide an overview of the

technologies used to perform this work.

2.1 AFSIM
A high-level overview of AFSIM can be found here [3].

AFSIM is a software product that includes a framework
designed to support a broad range of modeling and simula-
tion (M&S) solutions. The AFSIM package includes many
products, such as a framework to build new simulation
applications and a set of software applications that can
be extended for a particular purpose. Two applications of

interest are wizard and warlock. This research focuses on
using warlock. Section 2.3 discusses that application, where
the reason for our focus will become evident. The extensible
applications included within the AFSIM package allows
DoD customers to add their niche functionality.

Owned and managed by AFRL, AFSIM is a freely avail-
able (DoD open-source) solution to HIL architects seeking
advanced, capable, flexible, and inter-operable software.
While freely available to users, the authors caution readers
not to assume it is low quality software product. Develop-
ment of the AFSIM product is an investment of more than
$56M, with an additional commitment of $6M per year [2].
When used as a software development framework, or even an
extensible application, [4] details the connection between a
conceptual model and expected simulation representation to
support experimental objectives. Obtaining AFSIM source
code and various supported training courses are described
in [2]. In short, AFRL is encouraging the use of AFSIM
across the DoD and its partners. They make AFSIM available
from version controlled repositories via Information Transfer
Agreements (ITAs) and “sweeten the deal” by offering the
source code with free user and developer training courses
and content. While [2] was published as recent as 2020,
AFSIM continues to grow more capable thanks to its grow-
ing developer community and research like this.

Most notably for this research, AFSIM provides highly
flexible operational simulation for aircraft in a wide variety
of operational contexts. This flexibility is accessible via a
scripting language, interface, and IDE exposed in the user
training course and material. Ops researchers can and do
perform extensive simulations to understand the effective-
ness of one or many aircraft (platforms) in relevant and
realistic scenarios ranging from single engagements to full
campaigns. It is this range of realistic aircraft operation that
makes it attractive as a software foundation for aircraft HIL
experiments.

Traditionally, the simulations used by ops researchers are
constructive in nature, but AFSIM is capable of much more.
[5] describes the capabilities available to support “pseudo”
real-time requirements. [6] provides a widely used survey of
the simulation categories used by the DoD based on which
entities in a simulation are real and which are simulated.
This construct typically assigns a category of live, virtual, or
constructive to simulations. The authors of [6] suggested the
existence of a fourth category called automated simulations
and admitted use of a simulation type that does not fit well



within the LVC construct. The authors referred to this type
as environmental simulations. The authors connected this
new simulation category with the HIL paradigm. Literature
review indicates little work has been published using AFSIM
to interact with real hardware.

Next, we provide a brief background of HIL, its purpose in
the aircraft development cycle, and connects its requirements
in the military setting to the capabilities offered by AFSIM.

2.2 HIL
Hardware-in-the-Loop (HIL) is a class of simulation

where one or more objects in the simulation are real hard-
ware. As noted by [6], HIL simulations are focused on
simulating an environment for the hardware under test and
don’t fit well into the LVC categorization construct. For
example, a HIL simulation designed to test the response
of an autonomous vehicle to the inputs from sensors might
simulate environmental signals from the sensors rather than
relying on say a real test in the real environment. This
substitution provides a lower level of risk by allowing the
hardware room to fail in a virtual, controlled environment.

With the trend of modern aircraft increasing in capability
and sophistication, design margins are narrowing. This nar-
rowing is pushing subsystem designers tasked with providing
the right capabilities to better understand the real require-
ments on their designs. Historically, wider size, weight, and
power (SWAP) margins afforded designers the opportunity
to rely on conservative over-design to ensure requirements
satisfaction. Modern aircraft designers now can rely less
on over designing their respective subsystems and must
understand more precisely the actual operational demands
rather than conservative, rule-of-thumb estimates of experts.
In the military context, simulating the operational environ-
ment of an aircraft involves more than merely simulating air,
weather, and flight characteristics. It involves understanding
the tempo and requirements of possible combat maneuvers,
weapon deployments, and custom payloads.

There are many reasons to perform HIL experiments at
the aircraft level. Suppose an aircraft is about to undergo
an avionics modernization program. Managers would likely
want to test the effect of a newly developed payload on
a digital twin of the aircraft and weigh the cost of a new
module against simulated battlefield impact. Managers could
select from the operational scenarios with the most, least,
and average dynamic load content to allow the hardware the
opportunity to respond in a range of operational scenarios.
The allows hardware developers advance feedback to better
tune control parameters and capacity reserves to fit the right
demands. Of course, connecting simulation software to hard-
ware imposes a real-time requirement on the software. In this
context, real-time means that one second of simulation time
must advance over the span of one second in the physical
world.

2.3 Warlock
Warlock is one of the applications available in the AFSIM

package. It is a real-time operator in the loop (OITL)
application. It can read scenario files used for the construc-
tive application, but execute it with timing commands and
execution control to support real-time operation.

Human operators generally operate at reaction speeds
much slower than those required of automated control
hardware. For that reason, this research aims to stress the
maximum throughput of warlock while keeping up with at
least the visual appearance of smooth real-time operation.

2.4 XIO
This section provides a brief overview of XIO, AFSIM’s

eXternal Input/Output (XIO) mechanism - an interface to
external input and output. For example, it provides an
interface to the network, so that, for example, communica-
tions between different AFSIM-based applications can take
place. The developers emphasize its ability to communi-
cate between AFSIM applications because it introduces its
own serialization and deserialization technology. Since these
technologies are specific to AFSIM, simulation applications
are compiled and linked to it. As written, XIO implements
communications using both User Datagram Protocol (UDP)
and Transmission Control Protocol (TCP). As with other
AFSIM objects, XIO configurations can be read from user
written script files. In one implementation, this input config-
uration would take the form of a script block declaring the
required inputs. An example script input would declare mul-
ticast, unicast, or broadcast with an associated IP address,
send port, and receive port.

The AFSIM developer training course provided by AFRL
includes a module focused on demonstrating the use of XIO.
In this module, developers write a plugin for Warlock which
uses XIO to listen for operator input in the form of key
strokes. These key strokes trigger behavior changes as if the
programmer is a pilot of a simulated aircraft.

3. Application Design
AFSIM developers commonly begin with plugins written

during the developer training as a launch point for their
intended new functionality. For this research, the target is to
slightly modify the XIO module from the developer training
to take inputs from transmitted UDP packets containing air-
craft position state rather than key strokes from a developer
representing stick input to a flight dynamics model. Of the
modules covered in the training, it was the only one to
use the real-time Warlock application. In this way, AFSIM
will essentially function as the visualizer for an active HIL
simulation.

The XIO module previously relied on an external flight
controller application running alongside the primary AFSIM
application. This external application constantly waited for



key inputs and responded by sending an XIO packet over the
loopback interface at IP address 127.0.0.1. Once the packet
reached the AFSIM application, it triggered a custom written
callback function to process the input command. The modi-
fied flight controller instantiated a socket using the WinSock
library which persistently made blocking calls to wait for an
input UDP packet containing aircraft state. In an aircraft
HIL testbed, this state would come from a flight control
computer’s believed state. The flight controller application
would then transmit an XIO packet to the primary AFSIM
application, where the state would get written to the aircraft
object in simulation.

To allow repeated tests at various transmission speeds,
a Windows Powershell script was used to generate and
transmit UDP packets containing serialized aircraft state.
This state consisted of latitude, longitude, altitude, roll, pitch,
and heading. Each was represented using a 64-bit floating
point number. The script uniformly distributed the state
across a smooth aircraft trajectory. The trajectory consisted
of a northern flight path with a 360 degree roll. Figure 1
illustrates the layout of the applications used for testing.

Fig. 1: Test Layout

4. Results
Windows Powershell was used to transmit up to 1,000

state packets over the period of 1 second. The AFSIM sim-
ulation successfully maintained the appearance of a smooth
execution at the 1 kHz transmission rate.

5. Final Thoughts
This research examined the rate AFSIM could receive

and visualize aircraft state. While AFSIM was found to
maintain the appearance of smooth operation at 1 kHz state
transmission rate, higher rates were prevented by Windows
Powershell. AFSIM may be capable of higher input rates
with additional testing. Further, the plugin developed during
this research did not complete the loop back to the hardware.
In this case, the ability of AFSIM to receive 48 bytes of state
at a rate of 1 kHz was confirmed. Follow-on steps would
involve further modification to the plugin to allow another

transmission of an XIO packet from the application back to
the hardware. This transmission could involve a request for
payload activation. The strength of XIO in this case was the
ability to continuously execute UDP listen calls external to
the primary AFSIM application.

6. Disclaimer
The views expressed in this paper are those of the authors

and do not reflect the official policy or position of the United
States Air Force, the Department of Defense, or the U.S.
Government.
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III. Paper II: DDS Network Overhead

The following paper, “Quantifying DDS Network Overhead,” was published at

the 2021 World Congress in Computer Science, Computer Engineering, and Applied

Computing (CSCE’21). The purpose of the work in the scope of this thesis was to

perform initial examination of the usage and performance cost of DDS. The periodic

traffic required by the DDS discovery mechanism was highlighted.
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Abstract— The Data Distribution Service (DDS) is an
emerging distributed communication middleware which aims
to simplify and enhance the communication between dis-
tributed applications. While DDS may simplify the creation
of such communication mechanisms that include quality
of service (QoS) controls, some developers have expressed
concern about introduced runtime overhead. This research
seeks to measure some of the network overhead paid as a
penalty for supporting this type of communication style with
QoS characteristics. We examine the communication traffic
associated with DDS over a fixed period of time in various
configurations.

Keywords: DDS, RTPS, Network, Communication, Overhead,
Wireshark, JSON, Powershell

1. Introduction
Previous work has been done to compare the runtime

performance of DDS to that of raw sockets. This work
is presented in a paper [1] and a master’s thesis [2].
The work presented DDS (a publish-subscribe pattern) as a
simplification for complex network connections in complex
environments. What if a designer favors minimum network
loads to design simplicity and is willing to spend the
time upfront to architect a legacy communication strategy?
Perhaps there are use cases where DDS is simply overkill
for the simple communication requirements of, say, one-to-
one communication instances. Sometimes designers are so
motivated to use emerging technologies that they pigeonhole
new technologies designed for new problems onto older
problems better answered by legacy technologies.

The research provided by [1], [2] compare the differences
in performance between DDS and raw sockets by varying
the size of a common packet transmitted using both DDS
and traditional sockets. The research focused on measuring
latency and jitter. While the research did test the performance
of DDS on a network with extra load, it did not compare
the extra load placed on the network by DDS relative to
the raw socket approach. [3] also provides evaluation of
DDS performance, tracking latency, jitter, and throughput.
The formula used in that case to calculate throughput char-
acterized the bandwidth of the WiFi hardware rather than
degree of network congestion incurred by using DDS.

This research evaluates the extra load placed on a network
by DDS using eProsima’s implementation of DDS in their

shapes demonstration [4]. While this work does not pro-
vide a general-case quantification of the network overhead
incurred by all implementations of DDS, it does present
the methods used to obtain a measure of overhead given
an implementation. This information may be useful to those
wanting to understand whether or not their network provides
sufficient capability to handle a DDS implementation.

2. Background
The next couple of sections provide an overview of the

concepts and technologies used throughout this work.

2.1 Overhead
The subject of overhead can take on many forms. When

the subject of overhead occurs in design discussion, it is
usually because there is some finite supply of a particular
resource, and designers want to understand precisely how
much of that resource is consumed to provide a desired
feature or benefit. Different metrics are better suited to
support discussions of different types of overhead. The point
of this paper is not to provide an exhaustive overview of
the different types of overhead associated with reaping the
numerous benefits of the DDS. Rather, the authors focus
on a particular type of network overhead which has not yet
gleaned many publications in the community.

Previous research has focused on the performance of the
DDS using metrics such as latency, jitter, and throughput [2],
[3]. [3] notes that they controlled the amount of traffic on a
wireless network to get a measure of throughput. They note
network congestion can prove harmful to performance of
mission-critical or time-sensitive systems. For this reason,
this paper focuses on the price paid in network traffic for
the convenience of the services offered by DDS. In some
cases, this overhead is measured only in what some refer to
as protocol overhead, or the packet size allocated to header
or metadata information. While this paper will include some
information on protocol overhead, the main focus will be on
specifically network overhead. The authors define network
overhead as a combination of packet size allocated to DDS
wire protocol headers and extra messages required to provide
the QoS.

2.2 DDS
The Data Distribution Service is a standard established

by the Object Management Group (OMG) to guide imple-
mentations of distributed real-time communication middle-



ware using a publish-subscribe pattern [5]. The standard
offers high-level data-centric interfaces in lieu of message
(object) oriented programming. The standard has received
the attention of numerous software development companies,
leading to several implementations. Some implementations
are free and open, some are free but closed-source, others are
licensed. For ease of access, this research uses exclusively
the free and open implementation offered by eProsima’s
shapes demonstration, described in section 2.5.

As a middleware, DDS is implemented in layers. In the
case of DDS, it is implemented as an abstraction layer
above an operating system. As an abstraction above an
operating system, DDS aspires to simplify the creation of
and access to communication mechanisms such as sockets.
This abstraction layer provides off-the-shelf access to more
advanced types of configurations for the runtime behavior of
the underlying communication infrastructure. These behav-
iors are provided through DDS Qualities of Service (QoS).

2.3 QoS
This section is not meant to provide exhaustive coverage

of the Qualities of Service (QoS) offered by DDS. Rather,
this section focuses on those which lead to additional packet
traffic over the communication network. These extra packets
will be considered network overhead.

Above the configurable QoS, DDS standard requires
dynamic participant discovery as part of the abstraction
to operating system communication infrastructure. Vendors
may implement this dynamic discovery in different ways,
but in general this dynamic discovery must rely on periodic
network traffic above that required of a legacy communi-
cation strategy by the author’s intuition. This intuition was
tested by one of the tests described in section 3.

2.4 RTPS Protocol
The Real-Time Publish Subscribe (RTPS) protocol is the

wire protocol specified by the DDS standard for interoper-
ability. RTPS sits above the transport layer of choice. RTPS
protocol may concatenate multiple payloads in a single
packet. When wireshark exports packets with concatenated
payloads to JSON, Windows Powershell requires at least
version 7.1 to utilize the ’AsHashTable’ command switch
on the ConvertFrom-Json command to correctly parse the
concatenated payloads.

2.5 Shapes Demo
Several DDS implementations provide a standard demon-

stration illustrating the functionality of the publish-subscribe
pattern by exposing users to the creation of subscribers
(readers) and publishers (writers) of various shapes moving
through a space. eProsima provides a graphical user interface
to not only see the shapes in the demonstration, but create
new publishers and subscribers with various QoS. Their
implementation is open-source and available on GitHub. It

provides a simple means of testing interoperability with other
DDS implementations. Users are able to create publishers for
a variety of shapes with a variety of colors, sizes, and QoS.

2.6 Wireshark
Wireshark is a free application used to monitor and collect

network traffic. The free version of wireshark supports
recognition and filtering of RTPS packets and allows users
to parse fields of its content. The application allows users
to export collections to various formats. In this research,
JavaScript Object Notation (JSON) format files will be
exported for analysis in Windows Powershell.

3. Testing & Results
Wireshark version 3.4.6 was used to collect wireless

packet traffic for approximately 1 minute of activity in
various stages and configurations of the eProsima shapes
demonstration, version 2.3.0. Windows Powershell version
5.1 was used to process Wireshark’s exported JSON data
files. Because RTPS allows multiple sub-messages to be
serialized in a single packet, the exported JSON files from
Wireshark contained duplicate keys. These duplicate keys
presented a problem when importing into Powershell objects.
Only the first or last value associated with a duplicated key
was converted to an object. A custom module was written for
Powershell to "normalize" the JSON files from Wireshark
by incrementing an index at the end of duplicated keys.
The first set of collections was executed with the eProsima
software using default application settings. All possible
application settings are represented using a capture of the
settings window, shown in Figure 1. The capture displays
the persistent default settings that return once the application
is closed and reopened. As shown, default transport occurs
using UDP with a domain ID of 0, an update interval for
shape movements of 75 milliseconds (ms), and a shape
movement speed set to the 7th value from the left starting
at 0. The fastest update interval possible was 1 ms and the
slowest was 9,999 ms. Subsequent collections added various
configurations of publishers and subscribers to the network
for observation of network traffic. Figures 2 and 3 display
the available configurations for publishers and subscribers,
respectively.

First, traffic was monitored for one minute while the
shapes demo was initialized with no publishers or sub-
scribers in the domain. This test was executed to test the
author’s intuition of the discovery network traffic required
to offer dynamic participant discovery. In legacy communi-
cation designs where the designer knows the desired number
of participants, say a simple one-to-one communication, this
discovery traffic is present only until the pre-determined
number of connections have been made. In the many-to-
many environment for which DDS was intended, this traffic
continues in order to offer dynamic discovery of additional
participants. Initially, the eProsima software sends 6 packets,



Fig. 1: Application Settings

each being 336 bytes on wire at a rate of one packet roughly
every 100 ms. This equates to 12 packets on the network
totaling 4012 bytes in the first 500 ms of activity. Each
transmission is sent to the traffic controller and then from
the traffic controller to the network. Therefore, each packet
transmitted by DDS equates to 2 packets on the network.
Following this burst of initial packet traffic, the software
continues to send 336 byte discovery packets at a slower
rate of one every 3 seconds. An additional collect performed
using a shape update interval of 1 ms was performed
to determine whether this impacted the rate of dynamic
discovery packet transmission. This rate was found to be
a constant rate, independent of the application settings for
shape update interval.

The default publisher QoS included a history of 1 state,
reliable transport, volatile durability, and infinite lease dura-
tion, announcement period, deadline, and lifespan.

Second, traffic was monitored for one minute with merely
one subscriber to the square topic using default QoS. Third,
traffic was monitored for one minute with merely one
publisher using default QoS on the triangle topic. Fourth,
traffic was monitored for one minute with both a publisher
and a subscriber of different topics. Lastly, one minute of
traffic was collected for the case where a publisher and
subscriber exists for the same topic.

Because we are not interested in measuring latency or
jitter, the other traffic on the WiFi network did not need to
be controlled. We simply apply a Wireshark filter for RTPS
traffic so we capture only DDS communication in our packet
traffic for summation on size and observation of transmission
frequency. In our case, the only caveat to our summation is
caution for repeated transmission of dropped packets. These
packets should not be double counted in the summation of
total network traffic.

Fig. 2: Publisher QoS Settings

4. Final Thoughts
This research has presented the findings of one metric of

network overhead incurred by the eProsima implementation
of DDS at various stages of the common shapes demonstra-
tion. While this serves as a basic quantification to aid users
in understanding their decision to use DDS, it should not be
considered a complete or comprehensive quantification of
overhead required of DDS as a standard. The methods used
to collect and process these measurements of overhead are
presented as a means to repeat the process on other DDS im-
plementations or configurations. Not insignificantly, this re-
search has not yet provided the complimentary quantification
of the other side of the trade- the extra design cost incurred
by opting not to use the simplified interfaces offered by DDS
or its QoS. Such a quantification would likely be highly
subjective and dependent on the programmer implementing
the legacy communication mechanisms. Overall, DDS as a
standard provides an agreed upon means to separate the
work of designing and implementing a large distributed
communication system and may be worth the price paid in
overhead to glean access to standardized qualities of service.

Future enhancements could pursue controlling the subject



Fig. 3: Subscriber QoS Settings

application via application programming interface to enable
a broader range of more consistent collections. Only a
fraction of the possible QoS configurations and application
settings from the test matrix was observed with a priority
based only on author’s intuition. A more formal targeting
of key setting/configuration combinations could uncover
more informative conclusions and offer a more conclusive
characterization of the eProsima implementation’s network
overhead. To supplement those conclusions, a carefully de-
signed legacy communication infrastructure should be tested
as a comparison. Without that comparison, designers relying
only on these results have only to decide whether their
network has enough headroom to pay for the DDS QoS
benefits.

5. Disclaimer
The views expressed in this paper are those of the authors

and do not reflect the official policy or position of the United
States Air Force, the Department of Defense, or the U.S.
Government.
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IV. Paper III: DDS-C Network Overhead

The following paper, “Quantifying DDS-Cerberus Network Control Overhead,”

is expected to be submitted for publication. Contributions to the following work

included establishing the surrogate performance measure using total packet traffic,

post-processing collected data, and executing statistical modeling on data to provide

conclusions on the significance of overhead for a security enhanced mode of operation

relative to base operation without security measures.
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Abstract

Selecting a secure and efficient middleware to process data is critical
to assure the security properties and quality of service for communica-
tions between nodes within modern distributed systems and applications.
Researchers have determined that Data Distribution Service (DDS) (a
popular middleware used in industry, government, and military applica-
tions) is vulnerable to data and node integrity attacks. In contrast, DDS-
Cerberus (DDS-C) is a novel security layer with foundational DDS com-
ponents designed to mitigate impersonation attacks by requiring node
authentication with Kerberos. This research provides an analysis of DDS-
C, evaluating the layer’s overhead and security features, by assessing total
packet traffic generated in a robotics network. The experiment has a 2:1
publisher to subscriber node ratio, varying the number of subscribers and
publisher nodes from three to eighteen. By categorizing the traffic from
these nodes into either data message, security, or discovery+ with Qual-
ity of Service (QoS) best effort and reliable, the mean security traffic
from DDS-C has minimal impact to DDS operations when compared to
the other traffic. The results reveal that applying DDS-C to a represen-
tative distributed network does not substantially impact performance.

Keywords: Kerberos, DDS, ROS 2, Cyclone DDS, QoS, reliability



2 Quantifying DDS-Cerberus Network Control Overhead

1 Introduction

Internet of Things (IoT) technologies and cyber-physical systems rely on real-
time and efficient communication capabilities across various environments to
support consumer, agricultural, and military use cases. Thermostats, audio,
and video devices increase consumers’ quality of life through smart home envi-
ronments [1]. Industry depends on low-power IoT devices to monitor crop
yield, improve livestock health, and reduce environmental threats to agricul-
tural success [2]. The military depends on a dynamic network connecting air,
land, sea, and space assets [3]. In addition to reliability and security challenges,
these networks need to account for connectivity and power issues.

Data Distribution Service (DDS) is a robust, flexible, open middleware
standard designed to manage real-time communication between various cyber-
physical devices. Its popularity is evident from the wide adoption in public
and private sectors, including military and finance frameworks [4]. DDS offers
configurable Qualities of Service (QoS) associated with data. Topics are key-
words chosen by the user to differentiate and categorize messages. Subscribers
that specify the same topic can only read that type of message. Topics are
used in Machine-to-Machine (M2M) communication to effectively allow pub-
lishers and subscribers to send and read data in a global space [5]. While DDS
meets robustness, reliability, and efficiency requirements, it lacks some secu-
rity features. The main security vulnerability in DDS, impersonation, allows a
motivated adversary to gain unauthorized access to reading and sending data
by posing as a trusted entity and node [6–8].

With security lacking as a foundation component in the standard, attackers
have multiple methods to attack DDS through QoS policies, network par-
ticipant discovery, and node impersonation. This research focuses on node
impersonation through impersonation attacks. Attackers create rogue DDS
nodes to send disruptive messages to other nodes. A solution is to authenticate
publisher and subscriber node components before they send messages. DDS-
Cerberus (DDS-C), a novel secure distributed communication layer, adds this
additional authentication mechanisms to DDS that improve security authen-
tication to prevent impersonation attacks [9, 10]. DDS-C secures the network
by integrating DDS node authentication with Kerberos tickets. The motiva-
tion of this research to add security stems from the desire to use the real-time
communication properties of DDS with DDS-C authentication. No previous
work in DDS has used Kerberos tickets to authenticate nodes.

This research’s experiment measures the DDS-C traffic imposed on a
network compared to regular DDS operations to determine if incorporating
DDS-C into DDS hinders these operations. The goal of the experiment is to
characterize the total network traffic to analyze, categorize, and process the
number of packets per protocol. The network traffic types of interest include
data message, security, and discovery+. The data message has the topic, secu-
rity refers to the DDS-C authentication messages, and discovery+ corresponds
to the DDS node discovery messages and additional network packets. When
testing, the packets are collected for two network configurations. The purpose
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of the first configuration is to transmit messages on the same system, and the
purpose of the second is to send messages through the network. Different QoS
settings are selected for each configuration to show that DDS-C authentication
traffic does not substantially delay sent DDS messages. The QoS of interest is
reliability with two message behaviors, best effort and reliable.

The results of the experiment use a set p-value of α 0.05 to quantify packet
traffic statistically. If the results are statistically significant, DDS-C authentica-
tion affects DDS message traffic. The various packet protocols are categorized
into data message, security, and discovery+ and compared to determine the
DDS-C security traffic trends. This paper contributes to existing DDS work in
security and performance. It presents a security layer that others can explore
and add to their DDS implementations.

This paper is organized as follows. Section 2 outlines DDS and DDS-C.
It also lists related research on performance and security for DDS, Kerberos,
and ROS 2. Section 3 explains the set up for the experiment, research assump-
tions and limitations, and gathering and processing captured packet data.
It also explores and analyzes the data. Section 4 provides future research
recommendations.

2 Background

This section provides background information on the functionality and purpose
of Data Distribution Service (DDS) and DDS-Cerberus (DDS-C). Understand-
ing how middleware services function is essential to improving security in
real-world applications.

Other researchers have compared DDS to various communication protocols,
highlighting performance, latency, and throughput differences. What makes
DDS-C different is its fusing of both DDS’ efficiency and Kerberos’ authen-
tication capabilities. Additionally, it is important to focus on the security
and efficiency of Kerberos and ROS 2 (Robot Operating System). These past
works form the foundation for understanding the research methodology and
evaluation of DDS-C in this paper.

2.1 Data Distribution Service (DDS)

DDS, a standardized specification maintained by the Object Management
Group (OMG), is available from the DDS Foundation website and offers
both a Platform Independent Model (PIM) and a Platform Specific Model
(PSM) [11]. The standard guides for vendors to produce compliant implemen-
tations using five distinct modules: infrastructure, domain, topic-definition,
publication, and subscription modules. The modules with the Real-Time
Publish-Subscribe (RTPS) wire protocol collectively define the commonality
between vendor implementations that enable interoperability as a distributed
middleware solution.

DDS supports distributed applications serving a many-to-many communi-
cation architecture. The standard employs a Data-Centric Publish-Subscribe
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(DCPS) communication pattern between domain participants using topics.
Figure 1 is a partially reproduced model of the significant domain entities from
the DDS specification, version 1.4. All domain participants are either publish-
ers or subscribers to a given topic. Communication includes a series of cache
change messages accepted into a participant’s history cache. Quality of Service
(QoS) policies configure the mechanics governing these cache changes and are
tied to publishers, subscribers, and topics. Comparison of the QoS offered by
publishers to those required by subscribers determines whether participants
can be matched for communication. The standard defines the results for com-
parisons between QoS levels so that publishers match subscribers for which
they are overqualified but never match with subscribers that promise less than
the service required by those subscribers.

Fig. 1 Partial DDS Entity Model [12]

Developers using DDS have already accepted a degree of network control
overhead to access the rich set of QoS available for tuning communication
behavior between distributed entities. The overhead is configurable beyond
mandatory headers and allows developers to add canned behaviors by allocat-
ing network resources to the topics that require them. After developers have
elected to use DDS as a middleware, they may add a layer of security to the
distributed communication. That layer is not without its overhead additions
and is the subject of the comparisons made in this research. While DDS deliv-
ers the correct data at the right time, security can be viewed as a possible QoS
not yet included in the standard list, ensuring the right participants receive
the data rather than actors.
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2.2 DDS-Cerberus (DDS-C)

DDS-C is a novel security layer incorporating Kerberos ticketing with DDS
publishers and subscribers [9, 10]. It provides additional security by validating
nodes and preventing impersonation attacks.

Kerberos is an open authentication protocol that uses tickets to control
communication in a network. Each Kerberos setup has a specific realm name.
Users who want to authenticate using a network need to know the realm’s
name and have a registered principal, basically a username.

DDS-C utilizes long-term keys, named keytabs that Kerberos provides to
create tickets. These tickets are the products of the successful authentication
of publishers and subscribers. The benefit of using DDS-C is that once a node
is registered and authenticated, there is no extra need to communicate with
the central Kerberos server. For example, in a real-time operational network
with IoT devices, this authentication would happen before a node publishes
or subscribes.

Figure 2 presents the process for creating, storing, and using keytabs. In
step 1, the Kerberos server is responsible for the credentials corresponding
to each or a set of publishers and subscribers. A Kerberos server consists of
a Key Distribution Center (KDC) that includes two main components: the
Authentication Server (AS) and Ticket Granting Server (TGS). An admin
would create credentials that nodes use to authenticate. When authenticating,
the node first messages the AS to receive a ticket from the TGS. A ticket has
a default time-to-live of 24 hours; however, an admin can change this to a
shorter or longer time.

During step 2, an admin queries and saves the keytabs to the appropri-
ate machine where DDS resides before a node can send data. The keytabs
do not expire, which is essential in operations where time is sometimes not
determined.

In step 3, the DDS-C device has a Kerberos server to communicate with
the central server. Additionally, an admin can host the Kerberos server in the
cloud to provide authentication for the nodes and support keytab generation.

At step 4, publishers and subscribers use a keytab for authentication. This
keytab would preferably be created just for a single node to use. The node
containing the publishers and subscribers would receive the Kerberos server’s
response. If a ticket is received, the node is authorized to send and read data.
Otherwise, the node is not permitted to send or access any data.

Figure 3 is a sequence diagram outlining the flow of the authentication
messages transmitted when Publisher1 and Subscriber1 publish and read mes-
sages. The leftmost gray area, “Node utilizing KDC”, represents the keytabs
that were created and stored for Publisher1 and Subscriber1. The DDS node
leverages the keytabs to request and receive tickets from the rightmost gray
area, the central Kerberos server “Kerberos Server KDC.” Messages flow as
follows:
A. Publisher1 Authentication:
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Fig. 2 DDS-C Keytab Process [10]

(0) Publisher1 authenticates and requests a ticket using a keytab. The
AS receives Publisher1’s message.

(1) The AS sends a message back for the TGS. A shared key, only known
between the AS and TGS, encrypts this message. Publisher1 sends
this message to the TGS to get a ticket.

(2) The TGS sends a ticket to the Kerberos Server KDC.
B. Publisher1 Authenticated:

(3) Afterwards, Publisher1 is successfully authenticated and can send its
messages to the DDS domain. Server KDC.

C. Subscriber1 Authentication:
(4) Subscriber1 authenticates and requests a ticket using a keytab. The

AS receives Subscriber1’s message.
(5) The AS sends a message back for the TGS. A shared key, only known

between the AS and TGS, encrypts this message. Subscriber1 sends
this message to the TGS to get a ticket.

(6) The TGS sends a ticket to the Kerberos Server KDC.
D. Subscriber1 Authenticated:

(7) Afterwards, Subscriber1 is successfully authenticated and can read
messages. In this case, it would be reading data sent from Publisher1.

E. Subsequent Messages:
(8) Since Publisher1 and Subscriber1 authenticated, no further authen-

tication is needed.
(9) Message i with Topic is sent from Publisher1 and received by

Subscriber1.
(10) Message i + 1 with Topic is sent from Publisher1 and received by

Subscriber1.
The Publisher1 and Subscriber1 authentication sequence can be redone as

many times as needed. The admin has the choice to re-authenticate new tickets
at any interval of time—for example, a check with the central Kerberos server
after 24 hours for all nodes; however, this research does not go into this use
case and is considered for future work.
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Fig. 3 DDS-C Authentication Process [10]

The inability to validate nodes is a security concern for DDS [6–8]. By
implementing DDS-C, all nodes need to authenticate with the Kerberos server
before sending or receiving messages. DDS-C invalidates a node if Kerberos
sends back an error message resulting in no sent ticket. Additionally, an
attacker wanting to send or read data would have to communicate with the
Kerberos Server to get a ticket. Figure 4 presents DDS-C mitigating an attacker
using an impersonation attack. In step 1, an attacker gets on the same net-
work where DDS-C resides. In step 2, the attacker creates an impersonated
node; however, any node on the server needs to get a ticket before performing
any operations. In steps 3 and 4, since the attacker did not provide the correct
keytab, it cannot get a valid ticket; therefore, DDS-C prevents the unauthen-
ticated node from interacting with other nodes. Kerberos stores the keytabs
and tickets in \tmp and when the system shuts down, those files are deleted.

DDS-C is a security layer added onto DDS to authenticate DDS nodes
with Kerberos tickets. The following three subsections explore other pieces of
literature that aid in understanding DDS-C experiments.
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Fig. 4 DDS-C Mitigating Impersonation [10]

2.3 DDS Performance Evaluations

Other researchers have measured the performance qualities of DDS, such as
latency [13–16]. While measuring latency is an essential benchmark for real-
time communication middleware, there are methods to collect the information
and many other factors that influence end-to-end latency. The cited works all
measure latency, but they collect slightly different information that provides
unique insights into the middleware’s performance in various environments
and configurations.

Relatively early works used wired networks to conduct experiments.
In 2012, Yang et al. compared DDS communication performance to that
obtainable using traditional sockets [13]. They used the OpenSplice DDS
implementation provided by Prism Tech to accomplish distributed commu-
nication mapped within the IEC 61499 standard. The authors examined the
impact of message size, network load, and QoS configurations on latency.
They also provide the distribution of latency observed over 1 million itera-
tions. The experiment measured latency by placing timestamps in a message
making a round-trip to and back from a node on an Ethernet network con-
nected via a switch. They defined latency as half the measured round-trip
time. The test environment used real-time patched Ubuntu operating systems
on all nodes. The authors performed tests in this environment to gain insight
relevant to distributed industrial control systems which can be realized using
similar environments. The results measured roughly 10 times the latency stan-
dard deviation of DDS compared to sockets (109 microseconds compared to
10) and a smaller message size before the rapid growth of latency. The authors
concluded that DDS offered more favorable simplification for complex network
architectures than a traditional socket implementation. DDS began to incur
rapid latency growth after message sizes exceeded 2048 bytes but were less sen-
sitive to network load than traditional sockets. Finally, results illustrated the
successful capability of DDS to tailor communication performance according
to latency budget and transport priority QoS.

Later, works began to include wireless topology in DDS evaluation exper-
iments. In 2015, Almadani et al. evaluated DDS-based middleware over a
wireless channel for re-configurable manufacturing systems (RMS) [14]. With
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Real-Time Innovations (RTI) DDS implementation, the authors measured
latency, jitter, and throughput for payload and headers sent over industrial-
grade WiFi and Bluetooth wireless channels. Rather than a simple one-to-one
communication architecture, these authors used one-to-many and many-to-
many. The experimental setup used simulation to mimic the endpoint behavior
of an RMS and measured traffic over the physical channels. Results illus-
trated that although DDS over WiFi obtained lower latency and tighter jitter,
Bluetooth enabled much greater throughput because the peer-to-peer com-
munication strategy was not funneled through an access point. Notably, the
processing speed of the access point was not provided and could be the source
of some throughput limitation. Although the WiFi throughput was lower, it
achieved roughly 7 Mbps and may be sufficient for some applications.

Other works used virtual networks to collect performance in deliberately
degraded environments. In 2016, Chen and Kunz compared the performance
of DDS to other IoT protocols, including Constrained Application Protocol
(CoAP), Message Queuing Telemetry Transport (MQTT), and a custom User
Datagram Protocol (UDP) [15]. The intended environment for evaluation in
this work was a constrained network used for medical monitoring of multiple
sensors. The test environment consisted of various sensors connected to an
Arduino in series with a Raspberry Pi device connected to a Linksys router
with a laptop acting as a central server. They used virtual networking software
to simulate various packet loss, bandwidth, and system latency conditions.
Testing observed bandwidth consumption, experienced latency, and experi-
enced packet loss over multiple combinations of environment settings. The
authors selected OpenDDS as the implementation of DDS. They also com-
pared the protocols by their quantity of control overhead as a percentage of
the payload size. The research showed that DDS experienced the most signif-
icant portion of control overhead, but the payload size was held constant at a
relatively small 409 bytes. Again, latency was measured as half the round trip
time experienced by a single message.

As recent as 2019, works began comparing DDS performance while examin-
ing the effects of network and computational loads. Profanter et al. conducted
performance comparisons between DDS, Open Platform Communications Uni-
fied Architecture (OPC UA), ROS, and MQTT [16]. These authors selected
eProsima’s FastDDS implementation of DDS. They began by examining the
traffic required in bytes to connect the listed protocols. ROS and DDS required
the most traffic to connect with 8915 and 8348 bytes, respectively. For DDS,
this number resulted from a summation over discovery traffic before pub-
lisher/subscriber matching. The authors continued to measure the impact of
network and CPU loads on RTT for the various protocols over increasing mes-
sage sizes. DDS latency was dependent on CPU and network load, but the
significance of their impact was not statistically evaluated. All latency mea-
surements appeared relatively constant for small message sizes but exhibited
a rise when message sizes surpassed a fixed point, potentially related to the
Maximum Transmission Unit (MTU).
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2.4 Kerberos Evaluations

Al-Masri et al. surveyed various IoT messaging protocols that reside on the
application layer of the Open System Interconnection (OSI) model [5]. Com-
paring these protocols reinforces the benefits of choosing the proper lightweight
communication protocol for low-power IoT devices, reliability, network traf-
fic, and latency. No one protocol is universally used. Zorkadis presented the
OSI security architecture guidelines [17]. There are five classes of security:
authentication, access control, confidentiality, integrity, and non-repudiation.
Zorkadis explained performance costs due to security by using the queuing
theory. The author offered optimization recommendations for securing these
communication protocols.

Any added security to DDS should not interrupt real-time communication
performance. Also, security features added should not hinder the performance
of Kerberos. Kirsal et al. coauthored and published three papers that proposed
increasing Kerberos security by using frequent key renewal for a local area
network [18–20]. They utilized CASPER for the first paper’s security anal-
ysis. Subsequent papers used Markov Reward models to illustrate Kerberos
states. The papers provide a methodology for understanding a novel protocol
in Kerberos; however, they do not contain substantial information on what
applications and setup they used to gather such data.

Researchers Harbitter and Menascé evaluate public-key performance in
Kerberos with Cross-Realm (PKCROSS) and Public Key Utilizing Tickets for
Application Servers (PKTAPP) with a five-step approach in the server and
network [21]. They measured both proposals by their messages with the KDC.
The first step was to create a testbed with code that monitored service times
and message sizes. Then they developed a closed queuing network to represent
public key extensions. They compared the testbed results with the queuing
model to determine the accuracy with several realms and servers. Finally, they
analyzed the changes in service time and network delay to understand depen-
dencies. The results from comparing the two proposals showed that PKCROSS
outperformed PKTAPP.

Evaluating existing Kerberos implementations is essential for research, but
the development of new Kerberos mechanisms is also equally important. Eum
and Choi proposed a new authentication mechanism in Extensible Authenti-
cation Protocol (EAP) named EAP-Kerberos II [22]. This protocol mitigated
three security concerns of wireless local area networks (WLANs) for an 802.11
network: rogue access points (APs), unprotected messages, and message delay.
802.11i has existing security measures using Transport Layer Security (TLS)
and Authentication and Key Agreement (AKA) over EAP. Instead of TLS or
AKA, EAP-Kerberos II utilized Kerberos’s function as a trusted third party
in a mutual authentication by adapting it into EAP. The reason to use Ker-
beros tickets is that Kerberos does not require significant computational power
or memory space to store a certificate. They measured the number of mes-
sages sent between EAP-TLS, EAP-AKA, and EAP-Kerberos II. They also
compared the message’s round trip times (RTT), processing delay in clocks
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per message, and RTTs when the access point is far from the Authentication
Server. They concluded that EAP-Kerberos II is more efficient than the other
two protocols since it requires fewer authentication servers and sends fewer
RTTs.

2.5 ROS 2 Evaluations

ROS 2 evolved from ROS 1, and both primarily differ at the communication
layer. [23] ROS and ROS 2 both support robotics and IoT communication use
cases. They can be used and set up together, but the main difference is that
ROS 2 has the capability for real-time communication between devices. This
paper uses ROS 2 for its real-time capability and recent development.

Kronauer et al. measured latency on ROS 2 middleware to provide guide-
lines on designing ROS 2 architectures and reducing traffic overhead. They
utilized three DDS implementations, eProsima FastRTPS, Eclipse Cyclone
DDS, and RTI Connext, using ROS 2 Foxy Fitzroy [24]. Their selected
BEST EFFORT QoS does not require re-transmitting lost frames since the
majority will go through; this is emulating their use case of using sensors. They
measured latency via node scalability on localhost using a ping-pong scenario
with payloads of 128 B and 500 KB sent over UDP. Afterward, they provided
a list of techniques that affect latency.

In addition to the previously mentioned DDS implementations, Maruyama
et al. compared ROS 1 and ROS 2 by measuring latency, throughput, number
of threads, and memory consumption [25] across three different DDS imple-
mentations: Connext, OpenSplice, and FastRTPS. They choose different QoS
policies to get varied results for each DDS implementation.

Other research measured latency and throughput in different network set-
tings. Park et al. compared ROS 1 and ROS 2 characteristics by measuring the
real-time performance of the software stack and communication [26]. Utilizing
various nodes, they collected message loss rates and latency times and rep-
resented them through statistical mean, maximum, minimum, and standard
deviation. The authors also utilized a multi-agent service robot to verify the
real-time performance. Their results showed that ROS 1 did not meet real-time
requirements.

In addition to measuring latency, Thulasiraman et al. set up a small net-
work of two and five nodes in ROS 2 to measure performance in a lossy wireless
environment [27]. They utilized NS-3, an open-source network simulator, to
measure latency and message drop rate. By varying QoS and security configu-
rations, they concluded that enabling more security features leads to a higher
messaged drop rate with any QoS policies and that scaling with more nodes
leads to increased message latency.

Researching the impact of other security implementations should be consid-
ered when experimenting DDS-C. Kim et al. concentrate on the performance
of additional security implementations on top of default ROS 2 and DDS secu-
rity features since the default DDS middleware in ROS 2 does not conform to
security specifications set by OMG [28]. They have two performance metrics:
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estimated latency and estimated throughput. Additionally, they configured
them into both wired and wireless configurations when setting up performance
benchmark scenarios. The three security situations include using no secu-
rity, cryptographic algorithms, and Secure Sockets Layer (SSL)/TLS through
OpenVPN. The authors also used Cppcheck, a static analysis error checking
tool, to conduct further security analysis. They concluded that using a VPN
is a secure choice in simple system architectures.

This section explained DDS and DDS-C architecture and core functions. It
also presented other pieces of literature to support the motivation for testing
DDS performance and security. This information helps understand the research
experiment setup, execution, and analysis.

3 Experiment

Table 1 outlines sequential experimental steps measuring the security packet
traffic from DDS-Cerberus (DDS-C). First, the statistical approach for the
Design of Experiments (DoE) is determined. Next is setting up the experiment
testbed with the appropriate software which includes Kerberos and ROS 2
(Robot Operating System). Afterwards, the assumptions and limitations are
listed. The final step is to process captured packets using scripts on a Windows
machine.

Table 1 Experiment Parts

Subsection Step Description

3.1 Statistical
Approach

DoE theory used to draw statistical conclusions regard-
ing the significance of the burden imposed by security.

3.2 Apparatus The equipment, Kerberos, and ROS 2 setup experimen-
tation.

3.3 Assumptions
and
Limitations

Considering what are the research assumptions and lim-
itations of the experiments.

3.4 Data
Processing

The general steps to collect and process the data.

3.1 Statistical Approach

Design of Experiment (DoE) methods provide experimenters with an unbiased,
mathematical framework to evaluate the significance of statistical results [29].
DoE offers statistical mechanisms to test on hypotheses concerning response
variables of different types. Many research measure latency as Round Trip
Time (RTT) for Data Distribution Service (DDS); however, this approach
is not consistent in different network environments. Instead, using a more
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portable response variable such as packet traffic overhead provides stan-
dardized results. Sadjadi et al. introduce the need for environment agnostic
performance measures, particularly in the distributed system arena [30]. They
introduce a statistical model to estimate the execution time for a task at a
distributed node. The following two paragraphs expound upon the deficiencies
of RTT to evaluate the performance of DDS across environments, especially
when compared to itself.

Several vendors provide DDS implementations. ROS 2 supports several of
these vendors. Unless vendors use the same code, their implementations require
different instructions to execute standard behavior. While a given implemen-
tation affects one component of the end-to-end latency experienced by a DDS
application, the overall RTT depends on more factors. Profanter et al. showed
that central processing unit (CPU) and network loads also impact the RTT
experienced by a DDS message [16].

At each stage of the end-to-end process, the RTT experienced is pro-
portional to the amount and size of traffic, the computational hardware’s
performance, and the efficiency of the software controlling the hardware. Fur-
ther, the actual RTT of a message is influenced by the distance it must travel
through the communication medium. For these reasons, RTT can make a
reasonable response variable when comparing DDS to other communication
solutions in a fixed environment. However, this research compares the perfor-
mance of DDS to itself with a change in security. To increase the portability of
these results to other environments, RTT is not used. Since the standard spec-
ifies the behavior of the middleware to be interoperable, the message quantity
and content are expected to be far less variable between environments and
implementations than RTT. Therefore, the response variable is the total net-
work traffic in bytes required to send a fixed quantity of published messages
containing a fixed size payload between a set number of participants.

The Student’s t-test is one of the tools used in DoE. It is uniquely suited
to test hypotheses on means where the population variance is unknown. Test-
ing whether the population mean traffic in bytes generated by DDS to execute
a fixed quantity of published messages without authentication, µ0, is signif-
icantly different than the population mean traffic required to complete the
same communication with authentication, µ1. The p-value from the calculated
test statistic is compared to alpha to determine whether a null hypothesis, H0,
can be rejected. α is commonly set to 0.05 and 0.01, an acceptable probabil-
ity for an incorrect rejection. The null hypothesis is that there is no difference
between the population means. If the null hypothesis is rejected, sufficient
evidence suggests a difference in population mean traffic in bytes generated
by DDS to execute a fixed quantity of published messages with and without
authentication.

3.2 Experiment Apparatus

The experiment testbed for DDS-C utilizes ROS 2 Foxy Fitzroy and Kerberos
[31, 32]. Foxy Fitzroy was selected because of its long-term support and its



14 Quantifying DDS-Cerberus Network Control Overhead

use of eProsima Fast-RTPS [33]. Four pieces of apparatus are used—a Netgear
R6100 router, a Dell XPS 13 Laptop personal computer (PC), and two Rasp-
berry Pi 4B devices. Table 2 lists the main equipment and its specifications.
The names from the table distinguish the three main pieces of equipment:
Foxy1, Foxy2, and Kerby. All three devices need Kerberos installed; however,
Kerby’s Kerberos is the main KDC of interest for the experiments. Foxy1 and
Foxy2 additionally have ROS 2 Foxy Fitzroy installed, architectures amd64
and arm64, respectively [34]. Figure 5 is the testbed network diagram. The
three devices connect wirelessly to the same router and are logically on the
same network subnet. Foxy1 and Foxy2’s nodes have to request and receive
tickets from Kerby to authenticate prior to sending messages to each other.

Table 2 Equipment Specifications

Laptop PC: ROS 2 Raspberry Pi:
ROS 2

Raspberry Pi:
KDC

Name Foxy1 Foxy2 Kerby

Machine XPS 13 9310 Raspberry Pi 4B Raspberry Pi 4B

OS Ubuntu 20.04.3 LTS Ubuntu 20.04.3 LTS Ubuntu 20.04.3 LTS

CPU 11th Gen i7-1185G7 ARM Cortex-A72 ARM Cortex-A72

Disk
Space

2 TB 64 GB 256 GB

RAM 31 GB 8 GB 8 GB

Each ROS 2 node has either one publisher or subscriber. Each publisher to
one subscriber sends a total of 10 messages at 0.5-second intervals. For scala-
bility, there are six sets of publisher and subscriber nodes with a two publisher
to one subscriber ratio: 2:1, 4:2, 6:3, 8:4, 10:5, and 12:6. The total amount of
messages for each ratio: 20, 40, 60, 80, 100, 120. Each subscriber node receives
10 messages from two publisher nodes for a total of 20 messages, as shown in
Figure 6. Every 2:1 node pairing has a unique topic. The message payload is a
“Hello World: i” string where i is the message counter. Other payload sizes are
not experimented with because they do not impact authentication, starting at
the beginning of a node’s life cycle.

All nodes have set Quality of Service (QoS) policies for queue size, reliabil-
ity, and durability as shown in Table 3. These three are set to ensure different
node and message behaviors. ROS 2 sets all other QoS settings to their default
values [35]. The experiment modifies reliability, switching between best effort
and reliable. Queue size is 10 messages, and durability is transient local. Every
node has a unique credential that is created and managed by Kerby. When
authenticating, a node needs to know their Kerberos principal and realm and
access their respective keytab.
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Fig. 5 Experiment Testbed Network Diagram

Table 3 Experiment QoS Settings

QoS Selected Description

Depth Queue size = 10 Queues messages for a subscriber based on message
traffic to it.

Reliability
Best Effort Some messages may be lost due to the network.
Reliable Messages are guaranteed to be sent through retries.

Durability Transient Local Publisher persists messages for subscribers that join
the network late.

There are two different network configurations. The first configuration uses
only Foxy1 and Kerby, and the second configuration uses Foxy1, Foxy2, and
Kerby. Each configuration is tested with the dependent variables listed in Table
4.
1. Foxy1 with Kerby : Foxy1’s publisher and subscriber nodes are on the

same laptop PC and authenticate with Kerby. Before each node operation,
they authenticate through Kerby by receiving a ticket. Afterward, the
publishers send messages to the subscribers.

2. Foxy1/Foxy2 with Kerby : All publisher nodes are on Foxy1, and all
subscribers are on Foxy2. Once the nodes authenticate through Kerby,
the publishers send messages, and the subscribers read them.
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Table 4 Configuration Dependent Variables

Variables Description

QoS Option to lose some messages with best effort or guar-
antee all messages are sent with reliable.

Node Count and Ratios Increasing number of nodes with each larger ratio
increases number of messages.

With and Without DDS-C Run experiments with and without DDS-C to analyze
its security traffic impact.

Fig. 6 Experiment Node Layout [10]

3.3 Assumptions and Limitations

This subsection outlines the experiment’s assumptions and limitations,
byproducts of the setup, configurations, and processing. The list of assump-
tions are as follows:

• For ROS 2, nodes do not fail authentication and that an attacker does
not compromise nodes.

• All publishers send all 10 messages, and all subscribers receive the
specified messages.

• No Kerberos principals were renewed with new keys or keytabs; the same
ones were used in all test iterations.

• For data processing, only pertinent captured packet protocols such as
Real-Time Publish-Subscribe (RTPS) were included in packet analysis.
Protocols such as NetBIOS Name Service (NBNS), whichWireshark sends
out when it starts to sniff, and Simple Service Discovery Protocol (SSDP),
discovery of plug and play devices, are excluded and deemed extraneous
due to low packet captures and low relevancy to DDS-C security.

• All RTPS packets without the predefined publish payload were catego-
rized as discovery+.

Limitations of the experiment include:
• The experiments occur in a local area network with the same subnet,
thereby confining the nodes to a controlled network with less outside
packet noise. In future work, more packet noise could be desired if DDS-C
is tested in a more lossy environment or different networks.
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• Nodes send fixed size payloads with a set time interval of 0.5 seconds for
all network configurations, which is appropriate since packet quantity was
measured regardless of latency.

• Selected QoS limits the message’s behavior, and more combinations could
be implemented. Using the reliability QoS is essential because it allows
for message retransmissions. Still, the scope could widen to other QoS
properties if other DDS-C properties were explored.

• Selection of total categorized network traffic as the response variable for
statistical testing provides one component of the overall overhead of using
DDS-C. The remaining overhead components are environment-dependent.

• Default usage of simple discovery protocols changes the total traffic com-
pared to other discovery methods. Other discovery methods may change
the sensitivity of statistical tests to the mean difference in traffic-induced
by authentication.

3.4 Data Processing

Data processing is the final step. The data is successfully collected first on
Foxy1 and Foxy2 and then transferred to a separate Windows machine for
processing and formatting.

The ROS 2 launch command executes a modifiable script that specifies
which nodes to run simultaneously at the start of each configuration. When
the nodes run, Wireshark, used on Foxy1, and tcpdump, used on Foxy2, collect
the packets sent from Kerberos and ROS 2 [36, 37]. The .pcap files are then
sent to a Windows machine for processing.

The Power Shell Tabluation Script, as shown in Listing 1, filters the packet
capture files into columns of data fields via tshark [38, 39]. Next, it automati-
cally sums the total bytes captured for each category, dumping the results to a
comma-separated value (CSV) files. This example pseudocode does not display
all the column fields extracted but includes two to show that the command
can accept additional fields.

Listing 1 Tabulation Script

ForEach( $file in $list_of_files )

{

tshark.exe -2 -r $file -T fields ...

-E "Separator=," ...

-e "frame.protocols" ...

-e "frame.len"

}

The research extracted message sizes to identify and categorize messages
transmitting the published payload. The published data had a fixed message
size of 44 bytes in these experiments. This size was unique to data pub-
lish messages and presented a suitable criterion to categorize a packet as a
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data message. The protocols field identified packets belonging to the secu-
rity category as they were the only packets sent using either Domain Name
System (DNS) or Kerberos protocol. All other packets sent using the Real-
Time Publish-Subscribe (RTPS) protocol were categorized as discovery+. This
category represented the traffic associated with typical DDS network traffic
overhead.

Python was used to apply Student’s T-tests to the summed traffic for
each configuration’s participant count [40]. The SciPy.Stats module provides
the stats.t.cdf function to evaluate the p-values given the test statistic
and degrees of freedom [41]. To better understand the software used, Table 5
presents information about the names, locations, versions, and descriptions of
all the software.

Table 5 Experiment Software Information

Name Version Location

ROS 2 Foxy Fitzroy Foxy1, Foxy2

Kerberos V5 Foxy1, Foxy2, Kerby

Wireshark 3.2.3 Foxy1

tcpdump 4.9.3 Foxy2

tshark 3.4.7 Windows

PowerShell 5.1.19041.1237 Windows

Python 3.9.7 Foxy1, Foxy2, Windows

SciPy 1.7.0 Windows

3.5 Experiment Results

This section summarizes the experiment’s results. Plots illustrate the growth
of three categories of network traffic, data message, security, or discovery+,
resulting from increased participants. Although nodes sent relatively small
data amounts, security traffic was indistinguishable due to the dominant
discovery+ traffic and its associated variance.

To illustrate the magnitude of the differences in means relative to the sam-
ple variances required to reject the null hypothesis, Figure 7 plots the observed
spread of the traffic quantity observed in MB for each participant count with
and without security. The relative magnitude of the difference erodes as more
participants enter the domain. These values are used to calculate the p-values
in Table 6.

Table 6 lists the p-values for the two different configurations with the best
effort and reliable QoS. In all cases with three participants, the addition of
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Table 6 Configuration p-values

Participants Best Effort
Foxy1 with
Kerby

Reliable
Foxy1 with
Kerby

Best Effort
Foxy1/Foxy2
with Kerby

Reliable
Foxy1/Foxy2
with Kerby

3 0.0221 0.0271 0.0071 0.0071

6 0.0151 0.134 0.170 0.197
9 0.218 0.249 0.445 0.357
12 0.290 0.614 0.651 0.274
15 0.742 0.603 0.440 0.546
18 0.610 0.482 0.532 0.339

1Statistically significant p-values with α 0.05.

Fig. 7 Experiment Results. Top row: Best Effort Foxy1 with Kerby Variance 3 and 6.
Middle row: Best Effort Foxy1 with Kerby Variance 9 and 12. Bottom row: Best Effort Foxy1
with Kerby Variance 15 and 18.
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security imposed a statistically significant change in mean traffic on the net-
work. However, in most cases, the difference in mean traffic set by security
was not statistically significant by six participants. For the statistically signif-
icant values, the discovery traffic growth with each participant dominated the
other traffic sources. Although one of the configurations with six participants
indicated significant traffic due to security, the significance was diminished by
nine participants.

Multiple factors could have influenced the delayed insignificance experi-
enced by the best effort configuration using Foxy 1 with Kerby. The best effort
configurations generally resulted in less traffic, making the conclusion more
sensitive to minor differences. Additionally, the configuration using only Foxy 1
with Kerby was less lossy than the configuration involving Foxy 2. The reduced
loss resulted in less variance, further sensitizing the test to smaller differences
in means. Combining these effects required more participants before the secu-
rity traffic could be considered insignificant. The p-values show that adding
DDS-C requires statistically insignificant additional traffic for reasonably sized
experiments.

Figures 8 and 9 layout both configurations, Foxy1 with Kerby and
Foxy1/Foxy2 with Kerby, with QoS best effort and reliable. They plot the
packet traffic categorized as data message, security, and discovery+:

• Data message : traffic represents the captured packets for messages sent
from publishers to subscribers.

• Security traffic: represents packets for Kerberos server communication.
• Discovery+ traffic: includes all additional traffic that consists of a
majority of but is not limited to DDS node discovery messages. Other
traffic categorized as discovery+ has meta traffic used by DDS to ensure
QoS, such as heartbeat messages and acknowledgments.

In both figures, the traffic grows with increased participants. Visually, dis-
covery+ traffic is about two orders of magnitude greater than data message
and security traffic. It also has a steeper slope than the other two categories
and could fit a higher-order model. Notably, the plotted discovery+ traffic
uses units of MB while the other two are in KB. If not considering discovery+
traffic in the statistical calculations, the security traffic would be statistically
significant for all participant configurations. This observation would be accu-
rate if nodes sent messages with User Datagram Protocol (UDP) rather than
RTPS as provided by DDS. However, in this case, due to the overwhelming
collection of discovery+ messages, the security overhead is shown to not be
statistically significant for the majority of all participant sets. Due to a lossy
network configuration and reliability QoS, Figure 9 best effort data message
traffic is different from the relative reliable plot. This reliable plot is simi-
lar to Figure 8’s data message traffic plots for both best effort and reliable.
Reliability QoS does not significantly change the amount of traffic in all per-
formed configurations. Nonetheless, even with a lossy environment, the overall
trend indicates that security traffic does not produce enough traffic overhead
to significantly deter the use of security mechanisms in both QoS reliabilities.
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Fig. 8 Experiment Results. Left column: Best Effort Foxy1 with Kerby. Right column:
Reliable Foxy1 with Kerby.

This section outlined how the statistical model, network and ROS 2 setup,
and processing software support the experiment results. It illustrated the
defined process and setup to efficiently acquire, process, and analyze data, and
examined the results collected by these methods and software. DDS-C is not
statistically significant enough, as seen with the majority of configurations, to
hinder DDS.

4 Conclusion

This research explored the cost of using DDS-Cerberus (DDS-C) to provide
security. The experiment hosted DDS-C in a local subnet by authenticating
publisher and subscriber nodes. The results revealed the mean security traf-
fic incurred by DDS-C to send a given amount of data between authenticated
nodes is indistinguishable from traffic quantity observed from comparable
experiments without authentication. Analyzing results from both Quality of
Service (QoS) best effort and reliable show that the difference in mean traffic
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Fig. 9 Experiment Results. Left column: Best Effort Foxy1/Foxy2 with Kerby. Right col-
umn: Reliable Foxy1/Foxy2 with Kerby.

is insignificant for use cases involving anything more than small numbers of
participants sharing a few messages of small size. These results indicate that
DDS-C applied to other Data Distribution Service (DDS) implementations
adds extra benefit without substantial performance costs. Understanding this
information is crucial in applying DDS-C to future research.

Future research could improve the existing DDS-C design and integrate it
into real-time systems. For instance, creating a Kerberos node that facilitates
ticket retrieval to handle a more significant number of nodes. This idea can
also lead to experimenting with re-authentication throughout the lifetime of
a node to observe the authentication traffic impact. Another proposal could
integrate DDS-C into a QoS policy or experimenting with other QoS policies
besides reliability. Also, DDS-C can be experimented with integrating authen-
tication with other ROS 2 (Robot Operating System) components: services
and actions. DDS-C is still in development and requires more real-world use
case experimentation before operational use.
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Concerning analysis, future work could include regression tests to estimate
model parameters for linear and non-linear models. As the effect of authenti-
cation was found to diminish to insignificance for reasonably sized domains,
its parameter was not estimated. Instead, future work could further investi-
gate the discovery+ category of traffic and any factors affecting its component
of the response variable. These parameters would facilitate the application of
these results to predict performance in other scenarios. The process of applying
the predictive power of this response variable could be refined and validated
in the following work, similar to that of Sadjadi et al. [30].

Technologies and middleware are constantly evolving. Further research
is needed to improve DDS security and performance. DDS-C is one option
that provides that extra security to any DDS implementation, increasing data
integrity and node trust.
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V. Paper IV: Application of DDS-C

The following paper, “Distribution of DDS-Cerberus Authenticated Facial Recog-

nition Streams,” is expected to be submitted to a journal for publication. Con-

tributions include repeated application of previously developed surrogate measure,

post-processing methods, and statistical analysis techniques. Repeated use of the

aforementioned contributions demonstrate the portability and generality of the ap-

proach for multiple applications.
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Abstract

Whether it be for humanitarian or military purposes, mission suc-
cess often relies upon information and communication technologies.
Securing and selecting the middleware that handles the messages sent
between network nodes and applications is essential. One such mid-
dleware is Data Distribution Service (DDS) which employs a publish-
subscribe model. However, researchers have found several security
vulnerabilities in DDS implementations. DDS-Cerberus (DDS-C) is
a novel security layer implemented into DDS to mitigate imperson-
ation attacks using Kerberos authentication and ticketing. This paper
extends our previous work by analyzing the performance of DDS-
C in a use case implementation. The use case covers an artificial
intelligence (AI) scenario that connects edge sensors across a commer-
cial network. Specifically, it characterizes DDS-Cerberus in unmanned
aerial vehicles (UAV), the cloud, and video streams for facial recog-
nition. An evaluation of network traffic using DDS-C revealed that it
was not statistically significant compared to DDS for the majority of
the configuration runs. The results demonstrate that DDS-C provides
security benefits without significantly hindering the overall performance.

Keywords: Kerberos, DDS, Cyclone DDS, UAV, AI, QoS, reliability
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1 Introduction

Networked sensor devices typically follow the paradigm where one node tasks
and receives input from multiple Internet of Things (IoT) devices. For exam-
ple, a command node sends operational messages and receives sensor data from
multiple unmanned aerial vehicles to conduct a search and rescue operation.
These messages, ranging from simple commands to video frames, could have
Quality of Service (QoS) attributes such as retransmitting unreceived mes-
sages to ensure nodes that joined late or have re-started receive all messages.
For example, a UAV requires specific messages to navigate search and rescue
missions correctly in lossy environments. Remotely operated bases use forward-
deployed unmanned aerial vehicles (UAV) to support battlespace surveillance
in contested environments [1]. The inter-communication links between UAVs
and external links to cloud support services need to be robust enough to send
and process video and images given terrain diversity and secure enough to
thwart adversary attacks [2, 3]. Other messages could have QoS as best effort
when a system can handle not receiving every message. For example, artificial
intelligence (AI) facial recognition software on an IoT device may not require
all frames from a live video feed to detect entities correctly. These use cases
are essential in understanding DDS-Cerberus’s (DDS-C) impact on real-world
operations.

Data Distribution Service (DDS) is an open-source middleware that has
been used in many sectors like finance, healthcare, and the military [4]. For
real-time communication, DDS messages do not need to include the intended
recipient but have a topic, represented as a unique string, from publisher to
subscriber. The subscribers receive messages based on the associated topic. The
messages have QoS properties to determine the sender and messages’ behavior.
Despite its efficient and real-time message sending capabilities, DDS is prone
to impersonation attacks which allow an attacker to gain unauthorized access
to messages [5–7].

DDS-C, a security layer for DDS, handles the authentication of DDS
participants using Kerberos tickets [8–10]. This authentication mitigates
impersonation attacks by verifying the identity of authenticated participants.
This research’s experiment captures network traffic from DDS and DDS-C to
assess if DDS-C significantly impacts regular DDS performance. It uses the
Bright Apps cloud architecture and network layout to evaluate DDS-C [11].

The experiment testbed relies on Cyclone DDS (an implementation of the
DDS Standard) and the a commercial network infrastructure. The goal is to
demonstrate that DDS-C is mature enough to support commercial artificial
intelligence (AI) applications, specifically evaluating the impact on transmit-
ting video frames. This impact is quantified by capturing total network traffic.
The experiment emulates a network of unmanned aerial vehicles (UAV) with
Raspberry Pi devices that send video frames. In conjunction with Bright Apps,
this experiment aims to support UAV deployment in the field with DDS-C,
such as in search and rescue. There are three use-cases detailing real-world
scenarios for Bright Apps network infrastructure applications. To address the
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three use-cases, the experiment has one network configuration whose goal is
to send video frames processed by AI over a Virtual Private Network (VPN).
The network setup consists of a Raspberry Pi device, Elastic Compute Cloud
(EC2), and laptop PC. First, the Raspberry Pi device sends video frames to
the EC2 for facial recognition AI processing, and then the PC displays the
processed frames. The same message types of interest are selected. The QoS
of interest is best effort to mimic use case scenarios. The data collected is
categorized by equipment to determine the traffic impact on each device.

This research builds on the previous paper, Park et al.’s Quantifying DDS-
Cerberus Network Control Overhead, by collecting network packet quantities
for facial recognition streams [10]. The collected traffic is split into three cat-
egories: data message, security, and discovery+. The research determines if
DDS-C security traffic has a significant impact on the other DDS traffic by
comparing the three through statistical analysis. This paper aims to contribute
to other DDS research in use case applications.

This paper is organized as follows. Section 2 outlines DDS, DDS-C, and
related works. Section 3 contains the experiment setup, assumptions and
limitations, and results. Section 4 provides future research recommendations.

2 Background

This section provides background information on the design and implementa-
tion of DDS-Cerberus (DDS-C) by explaining Data Distribution Service (DDS)
and Kerberos. Additionally, it presents other similar application works that
support the development of this research’s experiment.

2.1 DDS-Cerberus (DDS-C)

DDS-C is a security layer that mitigates impersonation attacks [8–10]. It is
integrated into DDS to provide participant authentication through Kerberos.

DDS is managed by Object Management Group (OMG) and is open-
source, allowing for several implementations from different vendors. Its primary
function is to handle message delivery between communicating entities. The
communication is done through topics, or unique strings, that are sent by
publishers and received by subscribers. Subscribers receive a message by spec-
ifying a unique string a message has. Quality of Service (QoS) policies dictate
publisher and subscriber behavior on how to send messages. The policies are
adapted to different network setups, such as having subscribers only read the
most recent message.

The research focuses on the Data-Centric Publish-Subscribe (DCPS) layer
containing the following components: publishers, subscribers, and domain par-
ticipants. The components are seen in Figure 1 where domain participants can
contain any number of publishers and subscribers. The messages are sent with
topics to the DDS domain to be read by subscribers. Previous DDS-C research
focused on authenticating publisher and subscriber nodes, but this experiment
focuses on authenticating domain participants. Two reasons to use domain
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participants are adding and authenticating nodes becomes less of a hassle, and
they allow for easy integration into the Bright Apps architecture. Domain par-
ticipants assist with executing publishers and subscribers in parallel, which
helps send multiple video frames.

Fig. 1 DCPS Layout [8]

Kerberos is an authentication protocol used on distributed networks to
authenticate users or nodes who request to talk on the network [12]. Kerberos
servers have a realm name that is used to specify where the authentication is
taking place. The kinit command grants tickets with the correct principal,
or username, realm, and password. When the command runs, the requesting
device or node communicates with Kerberos’s Key Distribution Center (KDC),
which has two main components: the Authentication Server (AS) and Ticket
Granting Server (TGS). The requester authenticates with the AS if their cre-
dentials are in the server. If credentials match, the authenticated can gain a
ticket from the TGS by a special message granted by the AS. The lifetime of
a ticket is default of 24 hours, but it is possible to change the lifetime to add
ticket security.

One important function of Kerberos that DDS-C leverages are keytabs,
long-term keys to aid in creating tickets. Each domain participant in DDS is
paired with a unique keytab for seamless authentication. These keytabs are
encrypted using AES-256. When running the kinit command, the password
has to be manually entered; however, manually typing the password is not
required if run with passing in the long-term key. This authentication is impor-
tant in mitigating impersonation attacks because if the attacker does not have
access to the keytab, DDS-C does not allow them to impersonate a node or
domain participant [5–7]. The attacker would have to either replicate or steal
the long-term key, which would be difficult due to the key’s encryption and
additional network security.

Figure 2 shows these keytabs in action with a sequence diagram of two
domain participants, DP1 and DP2, authenticating with a KDC. The leftmost
gray area, “Domain Participants utilizing KDC”, represents the keytabs that
were created and stored for DP1 and DP2. DP1 contains one publisher, and
DP2 contains one subscriber. Messages flow as follows:
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A. DP1 Authentication:
(0) DP1 authenticates and requests a ticket using a keytab. The AS

receives DP1’s message.
(1) The AS sends a message back for the TGS. A shared key, only known

between the AS and TGS, encrypts this message. DP1 sends this
message to the TGS to get a ticket.

(2) The TGS sends a ticket to the Kerberos Server KDC.
B. DP1 Authenticated:

(3) Afterwards, DP1 is successfully authenticated, and the publisher can
send its messages to the DDS domain. Server KDC.

C. DP2 Authentication:
(4) DP2 authenticates and requests a ticket using a keytab. The AS

receives DP2’s message.
(5) The AS sends a message back for the TGS. A shared key, only known

between the AS and TGS, encrypts this message. DP2 sends this
message to the TGS to get a ticket.

(6) The TGS sends a ticket to the Kerberos Server KDC.
D. DP2 Authenticated:

(7) Afterwards, DP2 is successfully authenticated, and the subscriber can
read messages. In this case, it would be reading data sent from DP1’s
publisher.

E. Subsequent Messages:
(8) Since DP1 and DP2 authenticated, no further authentication is

needed.
(9) Message i with Topic is sent from DP1’s publisher and received by

DP2’s subscriber.
(10) Message i + 1 with Topic is sent from DP1’s publisher and received

by DP2’s subscriber.
DDS-C authentication executes at the beginning of a domain participant’s

lifecycle; however, this authentication can run more than once based on an
administrator’s needs. Additionally, this can be performed in conjunction with
shorter ticket lifespans. This research does not integrate these scenarios with
the experiment and is possibly integrated into future work.

2.2 Related Use Case Applications

DDS-C’s application and use cases are inspired by search and rescue and bat-
tlefield operations. Many papers provide solutions to these complex problems,
but this research focuses on those that offer solutions using unmanned aerial
vehicles (UAV). Understanding the other researchers’ proposed designs and
experiments helps craft the experiment use cases and real-world application.

The first paper to inspire the experiment design was Munir et al.’s research
on proposing FogSurv, a fog-assisted architecture to be used in urban areas for
real-time surveillance using artificial intelligence (AI) [13]. They constructed
a centralized cloud server with fog nodes to offload communication and com-
putation power burdens. Their use cases mention battlefield applications for
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Fig. 2 DDS-C Authentication Process with domain participants [10]

security and control, which this paper’s research does on a more specific scale
with DDS-C. The experiment has two scenarios with an Internet of Things
(IoT) device where in the first scenario, it offloads tasks to a fog node and
the second where it offloads it to the cloud server. They measure latency in
different experiment runs with data fusion and AI. The results revealed that
offloading to a fog node is 37% more efficient than to the cloud. The use cases
and design for broad low-power surveillance helped motivate DDS-C use case
research.

In 2017, Ribeiro et al. conducted simulated and physical experiments with
UAVs and DDS [14]. They also used a cloud architecture but focused on using
a DDS communication infrastructure. They designed a two-layer UAV network
for UAVs closer to the ground and those far away from the ground. They
selected sensors ranging from those that work near the ground to those far
away. The types of sensors on the UAV categorized what layer it would operate
in. The simulated experiments tested different network links for low bandwidth
and lossy environments in wired and wirelessly configurations. They tested
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with both QoS best effort and reliable and found more throughput with reliable
QoS acknowledgments. The physical experiment only utilized one UAV with
ROS (Robot Operating System) for DDS communication with a base station
on the cloud. They observed high signal attenuation and loss of connectivity
since they used default DDS QoS policies. For future work, they plan to extend
the experiment to four UAVs.

ROS is a middleware with two versions: ROS 1 and ROS 2. The difference
is that ROS 2 uses DDS for real-time communication. In 2019, Sandoval and
Thulasiraman’s research goal was to use simulated experiments to test ROS
2’s ability to protect against cyber attacks for UAV communication [15]. This
work was to help support the integration of ROS 2 into the U.S. Navy’s UAV
swarms. Since ROS 1 was still in use for Naval UAV control, they simulated
an environment where ROS 1 and ROS 2 were connected with a bridge to con-
trol three UAVs. The first two UAVs were susceptible to rogue node attacks,
unwanted disabling and landing, due to ROS 1, but the third UAV used the
bridge with ROS 2 and its security plugins to prevent these attacks. Even
though the plugins mitigated the attacks, there was significant latency over-
head due to the bridge setup. This work contributes to DDS-C by highlighting
the need for node authentication when controlling UAVs.

The related works relate to DDS-C design and experiments regarding AI,
network environments, and security. The following experiment combines these
three elements to measure DDS-C’s performance in a cloud-based network.

3 Experiment

Bright Apps developed Azoth artificial intelligence (AI) with UAVs for facial
recognition in real-world use cases like search and rescue [11]. It uses Cyclone
DDS, a variation of Data Distribution Service (DDS) developed by the Eclipse
Foundation, to send live video frames in lossy environments to be processed
by Azoth AI [16, 17]. Cyclone DDS is related to ROS 2 (Robot Operating
System) because it is a tier-1 ROS 2 Middleware Interface (RMW). It uses a
python binding which helps integrate DDS-C and the AI [18]. Bright Apps uses
unmanned aerial vehicles (UAV) connected to and controlled by Raspberry Pi
devices. These devices communicate with Amazon Web Services (AWS) Elas-
tic Compute Cloud (EC2) instances for facial recognition processing by Azoth
AI [19]. This configuration is to mimic operations where UAVs send live video
feeds. OpenVPN connects this framework by providing additional security
and network maintenance [20]. DDS-Cerberus (DDS-C) authenticates domain
participants to allow for multiple node executions. Integrating it with Bright
Apps technology is still in development, and this research presents initial work
in this integration with a real-world commercial network infrastructure. The
experiment’s results aim to support this paper’s previous experiment results
and if DDS-C authentication traffic adds negligible latency overhead to affect
normal DDS message traffic significantly.
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3.1 Experiment Apparatus

The experiment testbed for DDS-C uses Cyclone DDS and Kerberos. There are
three pieces of apparatus-one Raspberry Pi 4B device, a Dell XPS 13 Laptop
personal computer (PC), and one EC2 instance. These labels distinguish the
three pieces of equipment: Cyclone1, Cyclone2, and KerAzoth. Table 1 lists
the main equipment and its specifications. All devices have Kerberos installed.
Additionally, to communicate with each other, Cyclone1 and Cyclone2 are
OpenVPN clients, and KerAzoth is the OpenVPN server; all traffic routes
through KerAzoth from the other two. KerAzoth is located in the AWS region
code us-west-2a within Oregon. Figure 3 is this equipment’s testbed network
diagram. All components are connected wirelessly through OpenVPN and use
Cyclone DDS to communicate.

Table 1 Equipment Specifications

Raspberry Pi:
Cyclone DDS

Laptop PC:
Cyclone DDS, KDC

EC2:
Cyclone DDS, KDC

Name Cyclone1 Cyclone2 KerAzoth

Machine Raspberry Pi 4B XPS 13 9310 t3.2xlarge [21]

OS Ubuntu 20.04.3 LTS Ubuntu 20.04.3 LTS Ubuntu 20.04.3 LTS

CPU ARM Cortex-A72 11th Gen i7-1185G7 Intel Xeon E5-2676 v3

Disk
Space

64 GB 2 TB 58 GB

RAM 8 GB 31 GB 32 GB

Cyclone1’s domain participants authenticate with KerAzoth’s Key Distri-
bution Center (KDC) before sending messages. Similarly, KerAzoth’s domain
participants authenticate with Cyclone2’s KDC. Cyclone1 represents the UAV
with Raspberry Pi device, Cyclone2 represents command and control (C2),
and KerAzoth represents a network bridge and AI processing.

This experiment covers three main use cases that encompass the apparatus
used in the commercial network infrastructure.

• Use Case 1 : Perform DDS-C authentication on a Raspberry Pi device
and EC2, and after authentication, both devices communicate using
Cyclone DDS. This tests communication from a Raspberry Pi device to
an EC2 on the cloud.

• Use Case 2 : Authenticate using DDS-C over a Virtual Private Network
(VPN). OpenVPN clients utilize unique credentials to communicate with
the OpenVPN server. This tests communication using a VPN between
devices and the cloud.

• Use Case 3 : Send a video feed to be processed by AI for face recog-
nition. The video feed is sent over DDS with compressed video frames.
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Fig. 3 Experiment Network Diagram

These frames are sent with best effort reliability QoS to handle lossy
environments. This tests sending video frames over DDS for AI processing.

There is one network configuration to encompass these three use cases. It is run
with QoS best effort to mimic real-world UAV use when sending video frames.

• Cyclone with KerAzoth : All domain participants authenticate either
with Cyclone2 and KerAzoth when starting up. Cyclone1 sends com-
pressed video frames to KerAzoth for AI processing, and when finished,
KerAzoth sends the processed frames to Cyclone2.

The scalability goal of Cyclone with KerAzoth is to increment the number
of domain participants in KerAzoth to increase DDS-C authentication traffic
and highlight the use of Azoth AI. Figure 4 and Table 2 illustrate how the
configuration participants are set up and how the frames are passed. The
figure illustrates Set 1 from the table. Cyclone1’s domain participant has one
publisher in the figure but increases, as seen in the table, by one as each set is
tested to handle video frame publishing. KerAzoth’s publisher and subscriber
node count also increases based on the experimented set. KerAzoth has one
publisher to one subscriber increasing with subsequent runs: 1:1, 2:2, 3:3, 4:4,
5:5, 6:6. Each of these ratios has a unique domain participant. Cyclone2’s one
subscriber with one domain participant does not increase in number, and it
receives all AI processed video frames to display on the laptop screen.

Cyclone1’s publishers send 100 messages with frames as data to Cyclone2.
Figure 4’s Publisher1 sends a frame with a topic, and as more publishers
are added to Cyclone1, they send different frames with unique topics. The
subscribers in KerAzoth receive these topics. Subscriber1 receives Topic1 and
applies facial recognition AI to the frame. Other subscribers would be waiting
for their respective topics. Afterward, Publisher2 sends the processed video
frame with Topic2 to Subscriber2. In this case, the publishers in KerAzoth
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Fig. 4 Experiment Node Layout

Table 2 Experiment Participants

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Cyclone1
Domain participants 1 1 1 1 1 1
Nodes (Pub/Sub) 1 2 3 4 5 6

Cyclone2
Domain participants 1 1 1 1 1 1
Nodes (Pub/Sub) 1 1 1 1 1 1

KerAzoth
Domain participants 1 2 3 4 5 6
Nodes (Pub/Sub) 2 4 6 8 10 12

send the processed video frame with a topic that only Cyclone2’s subscriber
uses.

To incorporate the AI, the configuration was designed to parallelize AI pro-
cesssing with domain participants. With the number of messages set to 100
for every experiment iteration, the messages were divided up so each publisher
in Cyclone1 sends a unique frame to the subscriber in Cyclone2. For exam-
ple, Table 2’s Set 2 has two publishers in Cyclone1’s domain participant. One
publisher would publish only odd frames and the other even frames. For subse-
quent Sets, the frames are divided by every third or every fourth frame for the
newly added publishers. This parallel processing is an important aspect of this
network configuration to showcase Azoth AI while also increasing participant
count for DDS-C authentication.

On all three pieces of equipment, tcpdump captured the use case exper-
iment’s data and was sent to a separate Windows machine to be processed
[22]. The data is first run with Windows Powershell scripts involving tshark,
a Wireshark filtering tool [23, 24]. Afterward, the Student’s t-test is used to
analyze the results with a α of 0.05 using Python and SciPy [25, 26]. Since the
population variance is unknown, this test is applicable to the population of
DDS use cases discussed in this paper. Table 3 lists all the software mentioned
for the experiment.
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Table 3 Software Information

Name Version Location

Cyclone DDS 0.8.1 Cyclone1, Cyclone2, KerAzoth

OpenVPN 2.4.7 Cyclone1, Cyclone2, KerAzoth

Kerberos V5 Cyclone1, Cyclone2, KerAzoth

tcpdump 4.9.3 Cyclone1, Cyclone2, KerAzoth

tshark 3.4.7 Windows

PowerShell 5.1.19041.1237 Windows

Python 3.9.7 Cyclone1, Cyclone2, KerAzoth, Windows

SciPy 1.7.0 Windows

3.2 Assumptions and Limitations

These are the experiment’s assumptions and limitations to execute the
specified network setup. The assumptions are as follows:

• Domain participants do not fail authentication and that an attacker does
not compromise them.

• Cyclone1 publishers send all 100 video frames, and KerAzoth subscribers
receive the specified messages.

• Keytabs were not renewed or changed between experiment runs.
• Relevant packet protocols such as Real-Time Publish-Subscribe (RTPS)
and Kerberos (KRB5) were selected. Protocols such as Simple Service
Discovery Protocol (SSDP) were excluded because they did not contribute
to any of the three traffic categories in analyzing DDS-C.

• All RTPS packets without the video frame payload were categorized as
discovery+.

• Azoth AI detected only one human face during experimentation. Other
experiments may incorporate more faces to analyze the AI’s processing
load on the EC2.

The limitations are as follows:
• The experiment is only performed with the us-west-2a zone. If other zones
were used, the experiment may differ with a lossier environment.

• RTPS messages containing video frames were fragmented, resulting in
more packet traffic.

• The experiment only experimented with reliability QoS of best effort. Best
effort fits the use cases; however, future experimentation could include
other QoS policies.

• Collecting the total packet traffic is only one factor in determining DDS-
C’s impact on DDS. Other factors could include latency and location of
equipment. The appartus in this experiment were in the same immediate
area while the EC2 was not.
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• The default discovery protocols were used. The discovery+ traffic could
differ if other discovery protocols were invoked.

3.3 Experiment Results

The data is organized based on the three used equipment as seen in Figure
5 for Cyclone1 and Cyclone2 and 6 for KerAzoth. The figures use the three
data categories: data message, security, and discovery+ traffic. The figures’
independent variable uses the total number of domain participants for each
participant set in Table 2, and the dependent variable is based on the traf-
fic amount for each data category. The security traffic bytes in the use case
experiment are indistinguishable compared to the greater data message and
discovery+ traffic.

Table 4 shows the p-values for all three equipment. Overall, the quantity
of participants was not statistically significant; however, for seven partici-
pants, two cases were statistically significant for Cyclone2 and KerAzoth. The
network and experiment setup could have influenced this situation. The exper-
iment setup and best effort QoS use resulted in a more lossy environment
and no packet retransmissions. The use of an EC2 brings possible unreliabil-
ity with its network. With the addition of using a VPN, the sent video frames
could be lost over the network. Cyclone1 did not have a statistically significant
p-value because it is the starting point for all message traffic by sending cap-
tured video frames; only the components receiving the messages were affected.
Even though the p-values were statistically significant, the results reveal that
choosing the correct network and equipment setup is important in ensuring all
components function as intended. Also, the other participant p-values show
that this significance is uncommon and that DDS-C’s additional security traffic
did not impose a statistically significant change in the overall traffic. Instead,
the Cyclone DDS and network setup contributed to this change.

Table 4 Configuration p-values

Participants Cyclone1 Cyclone2 KerAzoth

3 0.911 0.888 0.785
4 0.9 0.77 0.751
5 0.09 0.114 0.8
6 0.946 0.905 0.899
7 0.315 0.0021 0.0031

8 0.234 0.82 0.8

1Statistically significant p-values with α 0.05.

Figure 5 and 6’s data message traffic for all three components show no dra-
matic change overall because Cyclone1 sends out 100 video frames regardless
of participant count. Cyclone1 and Cyclone2 send traffic through KerAzoth’s
OpenVPN server; therefore, the average traffic of both Cyclone1 and Cyclone2
should be roughly equal to KerAzoth’s. For Cyclone1 and Cyclone2 the average
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Fig. 5 Experiment results. Left column: Cyclone1. Right column: Cyclone2.

is around 7,509 KB, which doubled is 15,018 KB. This byte average is roughly
equal to KerAzoth’s data message traffic’s byte average of 15,028 KB. The
figures’ security traffic is consistent with participants and their DDS-C authen-
tication. Cyclone1 has only one domain participant to authenticate; therefore,
overall traffic has no substantial change. Cyclone2 and KerAzoth’s domain
participant count increases for each experiment run, resulting in increased
authentication and a strong positive linear correlation. Due to the consistent
participant counts, all three components’ discovery+ traffic have positive linear
correlations.

The use case experiment results show that DDS-C’s security overhead is not
statistically significant enough to hinder normal DDS operations with send-
ing video frames. Using DDS-C in a real-world environment with architecture
similar to Bright Apps will benefit DDS security and expand its integration in
more use cases.
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Fig. 6 Experiment results for KerAzoth.

4 Conclusion

This research experimented DDS-Cerberus with use cases around unmanned
aerial vehicles (UAV), the cloud, and video streams. The background on Data
Distribution Service (DDS), Kerberos, and related works on UAV-related
papers culminated into the three use cases. The experiment tested these use
cases by connecting devices through a Virtual Private Network (VPN) and
used DDS-C to authenticate domain participants. The experiment’s configu-
ration emulated use cases for real-world operations such as using unmanned
aerial vehicles (UAV) for search and rescue. It used Cyclone DDS as its testbed
where the nodes in the domain participants deal with sending and receiving
video frames, emulating UAVs sending their video feeds for artificial intelli-
gence (AI) processing. The Quality of Service (QoS) used was best effort to
mimic an operational environment where some frames are not needed for the
facial recognition AI. To analyze the collected traffic from the configuration,
the packets were divided into three message categories: data message, secu-
rity, and discovery+ traffic. The security traffic quantity was low enough to
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not be statistically significant for the majority of the configuration runs. The
results show that the mean traffic from DDS-C overhead is insignificant when
constant video frames are sent over the network. The experiment shows that
DDS-C applied to other DDS implementations or even in conjunction with
other software adds security benefits without hindering overall performance.

Future work would incorporate middleware handling multiple Internet of
Things (IoT) devices for integration into real-time systems. The node authen-
tication provided by DDS-C would be beneficial for search and rescue and
battlefield operations. Future research aims to integrate the use case experi-
ment setup with multiple UAVs and more diverse AI. Additionally, as DDS-C
evolves with better functionality and features, future work could also include
experimenting with cyber attacks against it. These future work ideas could
develop, extend, and add to the use cases in this paper.

Governments, companies, and people are looking to improve existing tech-
nologies through future works. DDS-C is still in development and requires more
real-world experimentation before operational use to improve DDS security
and development.
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VI. Paper V: DDS Distribution for DIS

The following paper, “Distributing DIS PDUs via UDP vs DDS,” is expected to

be submitted to a journal for publication. As noted in its future work section, the

testing will be broadened to include additional QoS combinations and exploration for

reducing discovery traffic.
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Abstract— As computer programs and simulations scale
in reach and capability, developers must ensure efficient
employment of computing resources and segregation of
complexity to avoid self-imposed scalability limitations. As
improved technologies become available, legacy software
systems must be updated or replaced to maintain competitive
standing in the domain of their applications. The IEEE
Distributed Interactive Simulation (DIS) standard defines a
protocol and semantics for communication in large scale
distributed simulations, which are widely used in the Depart-
ment of Defense. The Object Management Group’s (OMG’s)
Data Distribution Service (DDS) is a standard that seeks to
simplify and expand capability in the domain of distributed
communications. This research examines DDS capabilities,
resource cost, and potential for scale against the benchmark
of DIS today. Findings indicate that DDS offers a rich set
of Quality of Service (QoS) configurations at a minimal cost
which simplify the creation and operation of large scale DIS
exercises, all while maintaining the primary specifications
for DIS by IEEE 1278.1 - Application Protocols and intro-
ducing the configurability for greater compliance with IEEE
1278.2 - Communication Services and Profiles.

Keywords: Distributed, Interactive, Simulation, Data, Distribu-
tion, Service, DIS, DDS, Network, Control, Overhead, Qualities,
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1. Introduction
Since the emergence of modeling and simulation (M&S),

the Department of Defense has aspired to best utilize its
advantages to acquire more advanced capabilities and pro-
vide more competitive training at reduced cost and risk and
accelerated schedules. While early efforts to leverage M&S
resulted in many isolated strategies, the need for efficient use
of resources drove the formation and push for standards. One
such standard is the IEEE Distributed Interactive Simulation
(DIS). The standard defines a protocol and the semantics for
how distributed simulation applications should interact with
each other.

Initially, DIS offered a basic set of words or Protocol
Data Units (PDUs) that cooperating simulations could send
to each other. Over time, demand for increased fidelity led
to the creation of additional PDUs. The growth in fidelity
eventually illuminated a communication bottleneck requiring
a change. The easiest and fastest way to send data was
for all entities to broadcast all updates and interactions.

While initially manageable, growth in traffic led to filtering.
While careful filtering and multicast groups have helped
ensure the right information gets to the right entities, the
use of a publish subscribe communication pattern may help
overcome one of the major survival challenges facing DIS.

Further, IEEE Standard 1278.2 specifies communication
profiles that should be used for given PDUs. While certain
PDUs should be delivered reliably, blanket use of UDP limits
packet delivery to best effort. In clean network environments,
best effort transport can achieve near reliable performance,
but in larger simulations with congested networks packets
can be dropped. For most DIS PDUs a periodically dropped
packet does not cause significant disruption. In the case
of interaction PDUs such as detonations, a dropped packet
can significantly disrupt the outcome of a simulation and
require correction. To overcome this challenge, a middleware
abstraction of the transport reliability would enable seamless
interchangeability between reliability levels of PDUs. DDS
appears to offer a well suited solution of this type.

2. Background
This section provides a shallow dive into the basic el-

ements of this research. Beginning with an introductory
explanation of the concept of networking layers, this section
provides a brief background in key protocols and QoS at
the transport layer and above as well as an entry level
background to DDS and DIS.

2.1 OSI Model
The concept of layers is central to understanding the

comparison between UDP and DDS distribution. DDS does
not compete at the same conceptual layer as UDP and
therefore, does not present an either/or comparison. Rather,
it exists at a higher layer of abstraction to underlying
infrastructure which could include UDP. The Open Systems
Interconnection (OSI) model, depicted in Figure 1, is a
common conceptual framework used to divide the plethora
of networking tasks into manageable layers. This division
reduces the scope of knowledge required of individual
engineers to cohesively integrate highly complex systems
spanning multiple engineering disciplines. For example, an
electrical engineer need only focus on defining the concept
of a bit and offering an interface for interacting with bits to
engineers at higher layers.

In the OSI model, the concept of a bit exists at the first
and lowest layer- the Physical Layer. A total of 7 layers were



Fig. 1: OSI 7-Layer Model

defined, each introducing definitions of increasingly abstract
concepts up to the application layer. The first layer deals
with physical interconnection of distributed, communicating
nodes. It defines the concept of a bit and offers interfaces for
using bits up to the second layer. The Data Link layer resides
above the physical layer and introduces the concepts of bit
streams and frames being sent over a physical channel in
finite sets limited by a Maximum Transmission Unit (MTU).
The Network layer further abstracts the functions of the Data
Link layer by introducing the concept of a packet. The IP
protocol resides at the Network layer.

Above the Network layer lies the Transport layer. At this
layer, packets may have types and are not all associated with
data. For example, transport protocols such as TCP send
acknowledgement type packets (ACK), which do not carry
data. Rather, they carry metadata in support of layer func-
tions or Qualities of Service (QoS) like reliability. Transport
headers include machine port numbers which enable more
granular communication. Beyond machine-to-machine, the
presence of port numbers enables parallel communication
between sub-processes on a single machine. The session
layer provides the concept of a connection between two
communicating nodes capable of sending and receiving mes-
sages which exceed a channel’s MTU. This layer provides
nodes with a service for accepting or rejecting messages that
belong to a particular session or connection.

In DDS, the session layer’s services are implemented by
the publish/subscribe behavior and node discovery. At the

presentation layer, structures are offered to applications and
presented in a common data format. This is achieved via
serialization. At the application layer, much of the verbiage
and concerns of networking has been fully abstracted and
applications share information using data types custom tai-
lored to their purposes.

As noted by Kumar in 2014, the number of layers used
was a balancing point [1]. While the addition of layers
further subdivided responsibilities, too many layers can over
inflate the processing overhead experienced by applications.
For this reason, some applications have opted to only use
up to layer 4 in their communication protocol stacks. In
practice, protocols don’t always have a one-to-one correla-
tion with OSI layers. Some protocols span multiple layers.
Middleware often spans layers 4 through 7 and above.

2.2 User Datagram Protocol
One of the most common transport layer protocols is

the User Datagram Protocol (UDP). Its popularity, in part,
stems from its simplicity. Packets are sent on a best-effort
basis, offering minimal error detection and no correction
in addition to that already provided by lower layers. UDP
does not rely on the formation of a connection between
communicating nodes. It is said to be connectionless. This
fact simplifies the ability to send one packet to multiple
recipients via broadcasting or multicasting.

Since UDP minimizes the added functionality, it is able to
minimize the amount of overhead required by header fields,
making it an extremely lightweight transport protocol option.
Figure 2 shows the header structure for UDP datagrams. The
structure displays the protocol’s reliance on lower layers by
only requiring port numbers rather than the address infor-
mation already included by the underlying network protocol.
The length field enables efficient use of network time and
resources by allowing variable datagram sizes to be sent and
received without relying on a fixed packet size and large
padding. The unit of the length field is in bytes, meaning
the maximum amount of padding, or wasted bits, is 7. The
benefit of this field arises when considering the possible
variance of datagrams. In the general sense, the variance of
datagrams is likely to exceed 2 bytes. Therefore, the length
field allows UDP to fit user needs without imposing a largely
unused padding requirement. UDP presents a good example
of a protocol embodying the principles of layering and fitting
within a single conceptual layer.

Fig. 2: UDP Header Structure



2.3 Transmission Control Protocol
A direct contradiction to the use of UDP is the Trans-

mission Control Protocol (TCP). TCP offers an alternative
higher layer protocol that relies on an underlying network
protocol. This reliance is revealed by the protocol’s header
structure in Figure 3. Similar to UDP, TCP headers do not
require lower layer addressing because it must be provided
by the underlying protocol. While TCP acts as an alternative
to other transport layer protocols like UDP, it is not an
apples-to-apples trade because TCP as a protocol combines
functions from multiple OSI conceptual layers into one
protocol, namely the session layer. TCP is a connection-
oriented protocol and therefore makes broadcasting more
difficult.

Fig. 3: TCP Header Structure

Transmission Control Protocol (TCP) offers a reliable
quality of service (QoS). The reliability offered by TCP is
essentially built into the protocol and does not allow for
much tailoring beyond its strict definition of reliability. This
strict interpretation of reliability causes the protocol to con-
tinuously attempt to send packets until all sent information
is at least received. In the default application of the protocol,
sent packets are also required to be received in order such
that ordering of delivery is guaranteed. The options in TCP
headers allow for a slightly relaxed interpretation of relia-
bility in which packets may be selectively acknowledged.
This option enables greater efficiency in the communication
channel because packets sent after a dropped packet may not
have to be resent. However, even this relaxed interpretation
of reliability is still relatively strict because all sent packets
are delivered even if by the time of delivery the information
is outdated or irrelevant. In many cases (e.g., interaction with
websites, email exchange, etc.) strict reliability is a desired
feature. In others, it is an overly burdensome interpretation of
reliability. An expansion of the reliability concept is deferred
to the next section.

2.4 Reliability
Although it has been widely employed, the topic of

reliability is still a matter of exploration. Some applications
require more strict interpretation of reliability than others.
For example, a user would demand strict reliability of a
banking application, particularly in the form of guaranteed
delivery and sequenced delivery. If a user makes a deposit,
then makes a purchase using those funds and the order is
flipped at the processing center, the user may be wrongly
subject to overdraft fees. On the other hand, the distributed
simulation and gaming communities requires a more flexible
interpretation and heterogeneous application of reliability.
Strict reliability may actually degrade performance relative
to a more relaxed interpretation due to increased latency.

In the case of visual representation of entities in virtual
worlds, state is usually sent periodically, and in moments
more current information is sent again. In the case of
interactions between entities, a single interaction may be
all that is sent from one entity to another. This information
should be sent with a greater guarantee of delivery because
without it, the outcome of an interaction could be affected.

Perhaps one of the central details to levels of reliability is
when to require or allow a packet to be resent. The ability
to offer reliability hinges on an application’s ability to store
state on the information being sent reliably. If a distributed
simulation or networked game allows users to join late and
receive earlier state from the shared virtual environment,
developers may need to consume memory to store history.
The freedom to choose how many states or how much
history is one method of allowing scalable interpretations
of reliability.

Another point of interpretation for reliability is assump-
tions regarding acknowledgement. A sender may assume
a packet to be dropped unless it receives a positive ac-
knowledgement (ACK) from a receiver. Alternatively, the
sender could assume a packet to have been delivered unless
it receives a negative acknowledgement from a perspective
receiver. Each method has its pros and cons. In an inherently
reliable network, packets may be infrequently dropped, lead-
ing to an overabundance of positive ACK packets congesting
the network. Alternatively, a negative ACK system requires
an alternative means of notifying listeners of what sequence
numbers to expect. This is commonly termed a heartbeat. By
reducing the ratio of heartbeat messages to data transmis-
sions, networks can be less congested at the cost of reduced
response rates to dropped packets.

Not all data should be sent the same way. Glenn Fiedler
details the pitfall of assuming the ability to use two separate
transport mechanisms in his short article on gaming pro-
tocols [2]. In short, the downside stems from the negative
impact TCP has on UDP traffic. Still, the ability to have
heterogeneous reliability QoS would be desirable. This is
where a higher layer protocol could rely on UDP as a
transport protocol and build a reliability QoS above it. This



is the case with the Real-Time Publish Subscribe Protocol
(RTPS).

2.5 Real-Time Publish Subscribe Protocol
The central documentation for the Real-Time Publish

Subscribe (RTPS) protocol exists in an OMG Standard for
DDS Interoperability, DDSI-RTPS [3]. It was established
as an interoperability wire protocol for DDS. RTPS is
a higher layer communication protocol that relies on an
underlying transport protocol. This fact is evident from the
RTPS headers, displayed in Figure 4. The headers lack any
source port or destination port information because they
must be provided by the underlying transport. As such,
the transport is specified in the standard as intended to be
UDP. Certain vendors like eProsima have enabled switching
between transport options such as UDP, TCP, or other user
transports.

Fig. 4: RTPS Header Structure

As shown in Figure 4, RTPS headers are not the only
overhead paid to send a payload. Rather, a payload is con-
tained in a DATA submessage which has its own structure.
Using RTPS, a data payload is not simply sent using a DATA
submessage, but it requires a timestamp submessage with
each DATA submessage. The sizes of these submessages are
shown in Figure 5. If UDP over IP is used as the underlying
network stack on an Ethernet network, Figures 2, 4, and 5
can be used to calculate the minimum overhead required to
send an RTPS payload. The IP, UDP, and RTPS contribute
34, 8, and 56 bytes of headers, respectively, totaling 98 bytes
of header overhead for each RTPS payload sent.

2.6 Data Distribution Service
DDS is a middleware standard for an abstraction layer

above RTPS. Its main describing document is an OMG
standard [4]. While RTPS layer entities include readers and
writers, DDS abstracts these classes with publishers and
subscribers. Various works have been done to evaluate the
performance of DDS compared to other means. Most use
measures of latency, throughput, and jitter. In these regards,

Fig. 5: RTPS Minimum Submessage Header Structure

DDS has been shown to provide comparable performance
to other means in the domain. In 2012, Yang et al. mapped
DDS entities to IEC 61499 and compared DDS performance
to that of raw sockets [5].

2.7 Distributed Interactive Simulation

Distributed Interactive Simulation (DIS) in the general
sense is the connection of a set of individual simulations to
create a common virtual environment (i.e., world, situation)
in which multiple hosted entities can interact. DIS is an over-
loaded concept; for example, these systems are also referred
to as Distributed Virtual Environments (DVE) or Networked
Virtual Environments (NVE). IEEE Std 1278 for DIS defines
a specific protocol for how to construct and manage such a
geographically distributed interactive system. The standard
exists in 4 separate documents covering different pieces of
the whole. The four documents comprising the standard
are as follows, of which the first and second are the most
important for this research.

(1) IEEE-Std-1278.1 - IEEE Standard for Distributed In-
teractive Simulation - Application Protocols [6]

(2) IEEE-Std-1278.2 - IEEE Standard for Distributed In-
teractive Simulation - Communication Services and
Profiles [7]

(3) IEEE-Std-1278.3 - IEEE Recommended Practice for
Distributed Interactive Simulation - Exercise Manage-
ment and Feedback

(4) IEEE-Std-1278.4 - IEEE Trial-Use Recommended
Practice for Distributed Interactive Simulation - Veri-
fication, Validation, and Accreditation

DIS currently specifies the data in terms of Protocol Data
Units (PDUs) and the semantics for how each individual
simulation should (act or react) transmit and receive such
data items. In 1996 all PDUs were broadcast to all entities.
[8] Various methods of managing network traffic were sug-
gested, including DIS Lite and a publish subscribe pattern
through multicast traffic management. In 2010, researchers
compared the performance of HLA to that of DDS to send
DIS data [9].



3. Trade Space
Application developers usually must consider the desires

of their intended customers. Unfortunately, meeting these
desires usually imposes conflicting requirements. For exam-
ple, coding techniques which produce faster performance or
lightweight products often conflict with techniques aimed at
producing robust performance or feature-rich products. This
trade-off is apparent in the comparison between UDP and
TCP. While these these two protocols seem to offer two
levels of trade space configurations at the transport layer,
DDS at the application layer enables many more levels to
the trade-off.

4. Test Setup
To minimize human error in results, a computer automated

test routine was employed. Capture of transmitted data
using Wireshark required the use of at least two separate
computing environments. Without separate environments,
DDS discovery caused the communicating endpoints to use
shared memory rather than remote transmission protocols. In
order to control two separate computing environments, one
environment served as a master and the other a slave. The
slave received commands from the master via a dedicated
TCP control socket. This TCP control stream existed on
port 1234 and was filtered from Wireshark collections.
A Powershell script was used on both master and slave
machines to send and interpret the control commands.

5. Results
The test system described in Section 4 was used to send

100 payloads of 4 bytes using all four configurations listed
in Table 1. The total amount of traffic in bytes observed over
the entire collection is reported. Of note, the total quantity
of data sent in each case was 400 bytes. Figure 6 provides
a graphical comparison of the cost of reliability when im-
plemented at the transport layer versus the application layer
using DDS. Notably, the price of reliability in overhead is
less when paid at the application layer using DDS compared
to the transport layer using TCP.

Table 1: Observed Traffic by Configuration

6. Discussion
While applications communicating using a maximum of

UDP, such as plain DIS, are simple to troubleshoot because

Fig. 6: Plotted Effects from Table 1

each packet corresponds to a single message transmission of
data, introduction of middleware overhead reduces the like-
lihood of needing to troubleshoot by preemptively sending
the required information for the applications to use for error
corrections and re-transmissions where necessary.

7. Conclusions
RTPS is a very capable wire protocol provided by DDS

which could help bring DIS simulations into greater compli-
ance with IEEE 1278.2 via reliability QoS. The protocol re-
quires minimal overhead which still provides ample payload
capacity in most common MTU sizes to accommodate DIS
PDUs without fragmentation. However, a custom middle-
ware designed for DIS could more efficiently utilize channel
bandwidth by avoiding redundancies and more appropriately
sizing fields. For example, the Entity State PDU only re-
quires a timestamp field with 4 bytes, but RTPS requires
each packet to contain a timestamp field with 12 bytes.

8. Future Work
Future work could include broader exploration of addi-

tional QoS offered by DDS. Additionally, a wider range of
payload sizes could be used to run a mock simulation using
payloads mimicking the sizes of DIS PDUs. Further, the total
amount of overhead could be further reduced by fine tuning
the discovery phase and matching. In traditional DIS simu-
lations, participants are organized prior to simulation. This
could enable static endpoint discovery in lieu of dynamic
discovery to save overhead traffic.

9. Disclaimer
The views expressed in this paper are those of the authors

and do not reflect the official policy or position of the United
States Air Force, the Department of Defense, or the U.S.
Government.
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VII. Conclusions

Although there are definite pros to adopting DDS as a distribution service for DIS

data, there are still cons to be either accepted or addressed. First, DDS is not the

only higher layer protocol that would serve as a candidate for distributing DIS data.

Second, DDS operation can be further tailored to maximize efficiency of the network

resources. Until additional work could confirm or create a most optimal distribution

service, DDS makes a suitable candidate for DIS data in the interim. DIS packets are

already sized well below common MTUs to avoid fragmentation. The cost of the DDS

headers does not sufficiently reduce the payload available to require fragmentation

for DIS PDUs.

7.1 Future Work

Publications in this thesis provide an entry into a much deeper and ever progress-

ing world of data distribution. There are many possible avenues that remain to be

explored in this domain. Below are a few examples.

• The work in Chapter VI can be continued as noted within.

• Real simulations involving DIS can be observed for practical use examples and

suggestions.

• Other alternatives to DDS can be explored and compared.

• Custom middleware protocols could be based on RTPS to provide more efficient

use of network resources. As UDP relies on IP layer information, a custom

protocol rely on data already required in DIS PDUs.
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Appendix A. Powershell Sockets Module

$default_IP = [IPAddress]::Loopback

########################

#### Section: UDP ####

########################

$(

# Example:

# Listening machine

## £> ipconfig (gather listener IPv4 Address

## £> import this module

## £> Start-Listen (optional) -Port #### # Defaults to 3000

# Sending machine

## £> import this module

## £> Send-UdpDatagram -EndPoint {Address}

## -Port [3000](or optional other)

## -Message "Hello!"

# Send-UDP -IP 192.168.188.155 -Port 8888 -Send "Are we having fun yet?"

function Send-UDP

{

Param (

[ValidateSet("Text","Bytes")]$Mode="Text",

$Send='Sample Text',$IP=$default_IP,

$Port=3000,

$existing_handle,

[switch]$return_handle
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)

if( -not $existing_handle)

{

$existing_handle = New-Object psobject

$endpoint = New-Object System.Net.IPEndPoint ([IPAddress]$IP,$Port)

$existing_handle | Add-Member "Endpoint" $endpoint

$client= New-Object System.Net.Sockets.UdpClient

$existing_handle | Add-Member "Client" $client

}

if($Mode -ceq "Text")

{

$Send=[Text.Encoding]::ASCII.GetBytes($Send)

}

$bytesSent=$existing_handle.Client.Send($Send,

$Send.length,

$existing_handle.Endpoint)

if( -not $return_handle )

{

$existing_handle.Client.Close()

}else{

return $existing_handle

}

}Export-ModuleMember -Function Send-UDP

function Receive-UDP

{
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Param (

[Parameter(Mandatory=$false, Position=0)]

[ValidateNotNullOrEmpty()]

[int] $Port = 3000,

[Parameter(Mandatory=$true, Position=1)]

[ValidateSet("Message_Quantity",

"Single_Message",

"Until_Message_Equals")]

[string]$Stop_Condition,

$Value

)

if($($Stop_Condition -cne "Single_Message") -and $( -not $Value ) )

{

Write-Host "Error! You specified Stop_Condition=",$Stop_Condition,

" but failed to specify value..."

$Value = Read-Host -Prompt $("Enter value: "+$Stop_Condition+"=")

}

$endpoint = New-Object System.Net.IPEndPoint ([IPAddress]::Any,$Port)

$client= New-Object System.Net.Sockets.UdpClient $Port

$message_quantity = 0

[bool]$stop_condition_met = $false

while ( -not $stop_condition_met )

{

$content=$client.Receive([ref]$endpoint)

$result = [Text.Encoding]::ASCII.GetString($content)

Write-Host $result
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if ($Stop_Condition -ceq "Single_Message")

{

$stop_condition_met = $true

}

if ($Stop_Condition -ceq "Until_Message_Equals")

{

if($result -ceq $Value){ $stop_condition_met = $true }

}

$message_quantity++

if ($Stop_Condition -ceq "Message_Quantity")

{

if($message_quantity -ge $Value){ $stop_condition_met = $true }

}

}

$client.Close()

$client.Dispose()

}Export-ModuleMember -Function Receive-UDP

)

########################

#### Section: TCP ####

########################

$(

function Send-TCP

{
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Param(

[ValidateSet("Text","Bytes")]$Mode="Text",

$Send='Sample Text',

$IP=$default_IP,

$Port=2500,

$existing_handle,

[switch]$return_handle

)

if( -not $existing_handle)

{

$endpoint = New-Object System.Net.IPEndPoint ([IPAddress]$IP,$Port)

$existing_handle = New-Object psobject

$client = New-Object System.Net.Sockets.TcpClient

$existing_handle | Add-Member "Client" $client

try{

$existing_handle.Client.Connect($endpoint)

}catch{

Write-Host "Something went wrong connecting to client."

}

$stream = $existing_handle.Client.GetStream()

$existing_handle | Add-Member "stream" $stream

}

if($Mode -ceq "Text")

{

$Send=[Text.Encoding]::ASCII.GetBytes($Send)

}
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$existing_handle.stream.Write($Send,0,$Send.length)

$existing_handle.stream.Flush()

if( -not $return_handle )

{

$existing_handle.stream.Close()

$existing_handle.Client.Close()

}else{

return $existing_handle

}

}Export-ModuleMember -Function Send-TCP

Function Receive-TCP {

Param (

[Parameter(Mandatory=$true, Position=0)]

[ValidateNotNullOrEmpty()]

[int] $Port,

[Parameter(Mandatory=$true, Position=1)]

[ValidateSet(

"Message_Quantity",

"Single_Message",

"Until_Message_Equals")]

[string]$Stop_Condition,

[string]$reactive_command_interpreter_module_path,

$Value

)

Import-Module $reactive_command_interpreter_module_path -Force

76



if($($Stop_Condition -cne "Single_Message") -and $( -not $Value ) )

{

Write-Host "Error! You specified Stop_Condition=",

$Stop_Condition,

" but failed to specify value..."

$Value = Read-Host -Prompt $("Enter value: "+$Stop_Condition+"=")

}

Try{

# Set up endpoint and start listening

$endpoint = new-object System.Net.IPEndPoint([ipaddress]::any,$port)

$listener = new-object System.Net.Sockets.TcpListener $EndPoint

$listener.start()

# Wait for an incoming connection, return a TcpClient upon accept.

$Client = $listener.AcceptTcpClient()

# Stream setup

$stream = $Client.GetStream()

[bool]$stop_condition_met = $false

[int]$message_quantity = 0

$bytes = New-Object System.Byte[] 1024

while ( $( -not $stop_condition_met ) -and

$( ($i = $stream.Read($bytes, 0, $bytes.Length) ) -ne 0)

)
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{

$EncodedText = New-Object System.Text.ASCIIEncoding

$data = $EncodedText.GetString($bytes,0, $i)

Write-Host "Message=",$data

execute-command -command $data

if ($Stop_Condition -ceq "Single_Message")

{

$stop_condition_met = $true

}

if ($Stop_Condition -ceq "Until_Message_Equals")

{

if($data -ceq $Value){ $stop_condition_met = $true }

}

$message_quantity++

if ($Stop_Condition -ceq "Message_Quantity")

{

if($message_quantity -ge $Value){ $stop_condition_met = $true }

}

}

if( -not $stop_condition_met )

{

Write-Host "Detected socket closure by sender!"

}

# Close TCP connection and stop listening

Write-Host "Closing connection objects..."
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$stream.close()

Write-Host "Successfully closed stream. Closing listener..."

$listener.stop()

Write-Host "Successfully closed listener."

if ($Stop_Condition -ceq "Seconds_Open"){ $stopwatch.Stop() }

}

Catch {

"Receive Message failed with: `n" + $Error[0]

}

}Export-ModuleMember -Function Receive-TCP

)
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Appendix B. Powershell Slave Command Interpreter
Module

# This module is to be used on a slave machine

# Set the master machine's IP address below for responses from the interpreter.

$master_machine_ip = "192.168.0.1"

$master_machine_listen_port = 2500

function execute-command

{

param([string]$command)

Switch ($command)

{

"Start Reliable Publisher" {

$cmd = {

cmd /c start powershell -Command {

$host.ui.RawUI.WindowTitle = "Unique Title"

# Call the compiled executable using path on machine.

}

}

Start-Job -ScriptBlock $cmd | Out-Null

Break

}

"Start Unreliable Publisher" {

$cmd = {

cmd /c start powershell -Command {

$host.ui.RawUI.WindowTitle = "Unique Title"

# Call the compiled executable using path on machine. }
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}

Start-Job -ScriptBlock $cmd | Out-Null

Break

}

"Start Unreliable Subscriber" {

$cmd = {

cmd /c start powershell -Command {

$host.ui.RawUI.WindowTitle = "Unique Title"

# Call the compiled executable using path on machine. }

}

}

Start-Job -ScriptBlock $cmd | Out-Null

Break

}

"Start Reliable Subscriber" {

$cmd = {

cmd /c start powershell -Command {

$host.ui.RawUI.WindowTitle = "Unique Title"

# Call the compiled executable using path on machine. }

}

}

Start-Job -ScriptBlock $cmd | Out-Null

Break

}

"Initiate" {

C:\Temp\Send_Go.exe
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Break

}

"Terminate" {

C:\Temp\Send_Quit.exe

Break

}

"Start Unreliable Transport" {

Import-Module {Path To}\Peck_Sockets_v1.0.psm1 -Force

[int32]$val = 30

$bytes = [BitConverter]::GetBytes($val)

$handle = $( Send-UDP

-Mode Bytes

-Send $bytes

-IP $master_machine_ip

-Port $master_machine_listen_port

-return_handle

)

For($i = 0; $i -lt 98; $i++)

{

Start-Sleep -Milliseconds 7

$handle = $( Send-UDP

-Mode Bytes

-Send $bytes

-IP $master_machine_ip

-Port $master_machine_listen_port

-existing_handle $handle
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-return_handle

)

}

Start-Sleep -Milliseconds 7

$( Send-Udp

-Mode Bytes

-Send $bytes

-IP $master_machine_ip

-Port $master_machine_listen_port

-existing_handle $handle

)

Break

}

"Start Reliable Transport" {

Import-Module {Path To}\Peck_Sockets_v1.0.psm1 -Force

[int32]$val = 30

$bytes = [BitConverter]::GetBytes($val)

$handle = $( Send-TCP

-Mode Bytes

-Send $bytes

-IP $master_machine_ip

-Port $master_machine_listen_port

-return_handle

)

For($i = 0; $i -lt 98; $i++)

{
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Start-Sleep -Milliseconds 7

$handle = $( Send-TCP

-Mode Bytes

-Send $bytes

-IP $master_machine_ip

-Port $master_machine_listen_port

-existing_handle $handle

-return_handle

)

}

Start-Sleep -Milliseconds 7

$handle = $( Send-TCP

-Mode Bytes

-Send $bytes

-IP $master_machine_ip

-Port $master_machine_listen_port

-existing_handle $handle

-return_handle

)

Start-Sleep -Seconds 3

$( Send-TCP

-Mode Text

-Send "stop"

-IP $master_machine_ip

-Port $master_machine_listen_port

-existing_handle $handle
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)

Break

}

default {

Write-Host "Error! ",$command," is not a valid implemented command!"

}

}

}Export-ModuleMember -Function execute-command
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