
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Theses and Dissertations Student Graduate Works 

3-2022 

Training LOGIC and Random Forest Models to Predict IT Spending Training LOGIC and Random Forest Models to Predict IT Spending 

Jacob P. Batt 

Follow this and additional works at: https://scholar.afit.edu/etd 

 Part of the Operational Research Commons 

Recommended Citation Recommended Citation 
Batt, Jacob P., "Training LOGIC and Random Forest Models to Predict IT Spending" (2022). Theses and 
Dissertations. 5337. 
https://scholar.afit.edu/etd/5337 

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been 
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more 
information, please contact richard.mansfield@afit.edu. 

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5337&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=scholar.afit.edu%2Fetd%2F5337&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5337?utm_source=scholar.afit.edu%2Fetd%2F5337&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


TRAINING LOGIT AND RANDOM FOREST
MODELS TO PREDICT IT SPENDING

THESIS

Jacob P. Batt, Captain, USAF

AFIT-ENS-MS-22-M-117

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.



AFIT-ENS-MS-22-M-117

TRAINING LOGIT AND RANDOM FOREST MODELS TO PREDICT IT

SPENDING

THESIS

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Masters of Science in Operations Research

Jacob P. Batt, B.A.M.

Captain, USAF

March 24, 2022

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



AFIT-ENS-MS-22-M-117

TRAINING LOGIT AND RANDOM FOREST MODELS TO PREDICT IT

SPENDING

THESIS

Jacob P. Batt, B.A.M.
Captain, USAF

Committee Membership:

Raymond Hill, Ph.D
Chair

Maj Phillip Jenkins, Ph.D
Member



AFIT-ENS-MS-22-M-117

Abstract

The ever-present need to modernize is imperative for the Air Force, but the distri-

bution of funds for technology remains tight. To this end, the Air Force Audit Agency

is looking to utilize machine learning techniques to enhance their capabilities. This

research explores Logistic Regression and Random Forest modeling to streamline data

collection and cost classification. The final Logistic Regression model identified 4 sig-

nificant attributes out of the 36 given and was 85% accurate in predicting whether

a purchase amount was over or under $10,000. To expand beyond binary classifica-

tion, a six-category classification Random Forest model was developed. It identified

6 significant attributes and was 34% accurate in predicting whether a purchase was

within 1 of 6 amount categories. Due to the class imbalance of the given data, it was

necessary to use a class weighting and over-sampling technique to enhance the Ran-

dom Forest model. The final class-balanced model identified the same 6 significant

attributes but was 78% accurate in predicting whether a purchase was within 1 of

6 amount categories. However, no models were able to predict whether a purchase

should be classified as an information technology purchase of not.

iv
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TRAINING LOGIT AND RANDOM FOREST MODELS TO PREDICT IT

SPENDING

I. Introduction

1.1 Motivation

Managing government spending continues to be an important task for agencies at

every level. The Air Force Audit Agency is looking for accurate and efficient ways to

predict Information Technology (IT) spending across the Air Force. Governmental

budgeting relies on spending projections to build yearly requirements, models that

provide spending insight are beneficial to this end. The fast pace in which technology

grows requires constant updating and modernization of the Air Force’s technological

infrastructure. To rise to this challenge, IT spending will increase across the board.

With limited government resources, it is imperative to carefully plan and distribute

IT equipment as need dictates.

The Audit Agency has determined it needs to explore machine learning techniques

to assist in its data collection, purchase predictions and spending classifications. Data

collection and storage can be optimized by understanding the important attributes

of the data. Removing features that do not add significant detail or help models

make predictions lessens the amount of data needed, saving time and money for the

data collection process and database maintenance. When beginning an audit, it is

helpful to have estimations that drive expectations of the results. Knowing whether

a purchase should be IT or not and the approximate amount of that purchase allows

the Audit Agency to more quickly identify possible discrepancies while also providing

1



preemptive snapshots of activities to leaders up and down the chain of command.

Both Logistic Regression (LOGIT) and Random Forest (RF) techniques are efficient

at identify important variables, classifying observations and have utility in predictive

modeling, making them prime candidates for this research.

1.2 Research Objectives

There are three primary goals of this research. First, it is important to verify

that the Audit Agency is collecting the right data to answer the questions they are

posing. Insufficient data will not yield useful results and too much data could be a

wasteful use of resources. This will be addressed by finding the important variables

contained within the given data, first with the data pre-processing and then by al-

lowing the models to select the most informational attributes. The second goal is to

show whether or not machine learning models are effective for addressing the Audit

Agency’s needs. If they are not suitable, other options will need to be explored.

Lastly, it is necessary to verify whether LOGIT and RF models specifically are

viable options for the Audit Agency. This goal is measured by establishing whether

or not the models can predict specific purchase amounts and the characterization of a

purchase, whether it is IT or not. If the models cannot predict purchase amounts, this

research will explore how precise a spending amount is able to be predicted and if that

is useful for the Audit Agency. Being able to accurately predict whether a purchase

falls into a specific expense range provides a useful groundwork for budgeting.

1.3 Research Overview

The organization for this research is as follows. Chapter II discusses the back-

ground research on LOGIT and RF modeling techniques and the efficacy measures

that will be used to evaluate the results of this research. It will also include various

2



examples of RF modeling beyond the scope of this project discussing similarities and

differences between each approach. Chapter III contains the data description and pre-

processing before detailing the construction methodology and results of the LOGIT

modeling performed in this study. Chapter IV focuses on the RF modeling used in

this research. It covers the methodology for binary and multi-category RF models,

the enhancement and excursion techniques performed and discusses the results of

each. Chapter V discusses the overall results and implications for the research. It

details the limitations of this research and lays the groundwork for future research on

this topic. Finally, a generic guide for repeating this research is included to help the

Agency duplicate the models.

1.4 Tools

This research is conducted in R Studio, which was chosen for its power, simplicity

and open source availability. The LOGIT modeling was conducted using the “caret”

package, which is a powerful tool for data processing, model training and variable

importance detection [1]. For the RF modeling, “H2O” is the primary package that

will be used. This package is powerful machine learning tool available for R and

Python. It using its own self-contained data type for seamless integration, but is

easily transferable to other R data types [2]. The Audit Agency uses SAS as its

primary analysis tool and does currently have access to R. While the R code is not

directly transferable to SAS syntax, the process laid out by this research should be

repeatable using available SAS packages. For the full list of R packages considered

and the code used for each model can be found in the Appendices B - D.
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II. Background and Literature Review

2.1 Machine Learning Algorithms

While typical modeling or programming involves construction and manual adjust-

ing designs, Machine Learning is a field of study built around an algorithm’s ability

to improve autonomously. In this way, an algorithm will get better at performing its

task through a training process that increasing the efficiency of the model over time.

Training a machine learning algorithm requires training and validation data sets, the

former helps the algorithm teach itself how to properly classify the data while the

later provides a check for how well that data was classified. Training and validation

sets can either be separate data sets describing the same system, or partitioned sub-

sets of the original data. This section includes brief overviews of the two machine

learning techniques applied in this research and their key elements.

2.2 Logistic Regression Algorithm

Logistic Regression (LOGIT) is a subset of generalized least squares linear regres-

sion focused primarily on binary relationships. The LOGIT model uses the Natural

LOG of the odds ratio (chance of an event happening or not) as its prediction function

[3]. The advantage to using LOGIT for this research is that predictor variables do not

need to be linearly related and normally distributed with equal within-group variance

[4]. This research is interested in predicting specific spending amounts, which must

be more precise than the binary categorization offered by LOGIT. However, LOGIT

models provide useful insight for the relationships between variables. This research

runs several models over different data partitions to compare all the variables and

ascertain which provide worthwhile insight. Two metrics are used to determine the

validity of a LOGIT model; model accuracy, which is displayed via confusion matrices

4



and goodness-of-fit described by McFadden’s Psuedo R2.

2.3 Random Forest Algorithm

The Random Forest (RF) algorithm is an ensemble method based off of a Decision

Tree structure. A Decision Trees utilizes a sequential decision process to start at a

“root” and evaluate the “branches” until final “leaf” is reached, identifying the final

classification target [5]. A root is an observation from the data set and the branches

at each level are values of a particular attribute (or predictor variable). The algorithm

will iterate through each attribute attempting to select the best fit for the observation

by minimizing the impurity of the choice at each level and runs until it is unable to

make any improvement [6].

For decision trees, impurity is a ratio between the number of variables belonging

to a class and assigned to a node [5]. This research uses the Gini-Impurity index,

which looks at the probability an observation belongs to a particular class. Each

observation here forms a root and splits are determined by the importance of predictor

variables, see below for the formulation calculated by pi = |Ci, D|, |D|, where pi is

the probability an observation in D belongs to class Ci [6].

Gini (Node D) = 1−
m∑
i=1

p2i (1)

While decision trees are simple to understand, they are prone to data irregularities

and usually have poor prediction accuracy. An imbalanced data set or slight changes

to given data can have a large impact of the prediction results of these models. The

tendency it has to over-fit data or introduce bias contributes to the prediction errors.

A RF ensemble method expands the capability of Decision Trees by generating

and aggregating groups of trees into a single model. Different trees are built from

randomly selected subsets of predictor variables, and the majority of classifications are

5



recorded [6]. Iterations of RF models are tuned using hyperparameters based on the

resulting important variables and accuracy of previous iterations. RF models suffer

from high complexity with longer run times and are susceptible to imbalanced data.

They are also difficult to interpret and explain circumstances of resulting accuracy.

Despite these disadvantages, RF models are highly accurate and less likely to over-fit.

RF modeling was used in this research because it is accurate and the disadvantages

were mitigated by the data set’s relatively small size and artificially balanced classes.

2.3.1 Hyperparameters

RF models use several hyperparameters to enhance performance. In this research

the hyperparameters tuned were: mtry, sample size, replacement, node size, and

number of trees (ntrees). This section uses p to represent the number of variables

and n as the number of observations. mtry represents the number of randomly drawn

variables for each split when growing a tree. Low mtry builds distinct and stable

trees, but these trees often perform worse because of the variable variety in their

construction. It is best for mtry to be balanced, a typical start point is
√
p. Sample

size determines the number of observations per tree. It is closely related to mtry

and has a similar impact on the model. Using more samples per tree increases RF

accuracy, n is often used because it maximizes the sampling size while minimizing

the risk of over-fitting. Replacement couples with sample size to ensure randomness

by selecting some observations multiple times and not selecting others [7].

Node size sets the number of observations within a terminating node or leaf.

For classification problems, a node size of one is necessary to ensure that a single

observation is placed into a single category. Finally, the number of trees is the size of

the forest. More trees will smooth out inconsistencies within the model, but increase

run time. The number of trees used depends on the size of the data and processing

6



power, it simply must be large enough to converge. The data for this research is

small, so large numbers of trees is not a problem for the model’s run time [7].

This research utilizes K-fold cross validation to estimate true error and build more

accurate models. Cross validation is the process of dividing a data set into randomly

constructed training and validation sets, where the training set builds the model and

the validation set checks the model accuracy. K-fold cross validation is repeating the

cross validation process k-times (with k different randomly constructed training and

validation sets) then taking the average of those models [8]. For efficiency, H2O uses

a setting called stopping tolerance that stops modeling if improvement is below a

certain threshold.

2.3.2 Splitting Rule

The splitting rule determines how the model chooses the best variable for each new

branch. Decision Trees commonly seek to maximize information gain when splitting

its branches. For classification problems, and this research, RF models minimize Gini-

impurity because it uses classification probabilities specifically. Information gain and

Gini-impurity are both measures of model entropy (randomness), which is the measure

of distinction between correct and incorrect classifications. Cleaner or more obvious

distinctions makes choosing the correct classification easier. Equation 2 represents

entropy in this context, with pi representing the probability distribution of items in

class i with m classes [9].

Entropy (Node D) = −
m∑
i=1

pilog(pi) (2)
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2.4 Efficacy Measures

For this research, model effectiveness is measured using confusion matrices and

McFadden’s Pseudo R2. Traditional R2 goodness-of-fit measurements do not apply

to LOGIT models, so pseudo R2 values were developed to provide a similar measure

for the log likelihood. McFadden’s Pseudo R2 is based off a “likelihood ratio index”

that compares a model with no predictors to a model with all the predictors and is

defined in Equation 3 where LLfitted is the log likelihood value of the fitted model

and LLnull is the log likelihood value of the empty model [10].

R2 = 1− LLfitted/LLnull (3)

Confusion matrices are useful for observing the predictive value of a model. They

display how many observations the model chooses correctly against its incorrect

choices. The three measures of concern for this research are the accuracy (TN +

TP/TN+FP+FN+TP ), sensitivity (TP/TP+FN) and specificity (TN/TN+FP ),

referencing Table 1. For classification models, the diagonal of the confusion matrices

indicates the number of correct predictions for each class.

Table 1: Confusion Matrix Example

Predicted: No Predicted: Yes
Actual: No True Negative (TN) False Positive (FP)
Actual: Yes False Negative (FN) True Positive (TP)

While confusion matrices and Psuedo R2 values were generated for each LOGIT

model, the purpose of the full LOGIT models is sufficiently encapsulated with its

Psuedo R2. When determining the important variables to keep, the model’s predic-

tion capability explained by the confusion matrix is less important than how well the

variable fit the data. The reduced LOGIT models constructed from all the impor-
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tant variables generally have a stronger predictive capability and thus provides more

insight. The results of the RF models are displayed using confusion matrices as they

provide sufficient detail on a model’s predictive capability.

2.5 Machine Learning Applications

There is a plethora of literature on LOGIT and RF modeling, but this literature

review has not uncovered any sources that use these techniques as they are applied

to auditing, like this research. The following is a compilation of RF modeling studies

that either shares aspects with this research or highlights other useful applications.

Due to the high density of research covering linear and logistic regression, this section

focuses on RF modeling approaches with the goal of establishing credibility for its

use in various applications.

2.5.1 Imbalanced Data

Many machine learning techniques perform better with balanced data because it

provides an easier opportunity for the algorithm to train on all the possible outcomes.

Realistically, imbalanced data is commonplace as research is often more interested

in deviations from the norm, which occur rarely. Thus, it is necessary to develop

techniques that help circumvent imbalance.

Ruiz-Gazen and Villa (2008) used LOGIT and RF modeling to predict storms with

an imbalanced data set. They used two methods for overcoming data imbalance; re-

balancing with weights then over/under-sampling and creating thresholds that help

group final answers. These thresholds function similar to re-sampling techniques by

setting an expected probability of an event occurring and inserting that into the

model. For example, if the probability of a storm occurring is 5%, a threshold of 0.05

is used to indicate to the model how often to expect an irregular occurrence. The focus
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of their research was to compare the accuracy of LOGIT and RF models in storm

prediction. They concluded that the accuracy of the RF models was skewed due to

overfitting and the interpretability and speed of LOGIT models was likely more useful

to meteorologists [11]. The research presented in this thesis, shares common themes

with the work of Ruiz-Gazen and Villa [11], but has different goals and methodology.

This thesis uses LOGIT and RF models jointly in an iterative process to provide

information on the data by narrowing down important variables and attempting to

provide precise dollar amount predictions. While there is a comparison between

the binary RF model and the LOGIT models in this research, the RF models were

the primary focus as they provided the needed precision when predicting spending

amounts with smaller and more numerous classes.

Medical data are a common source of imbalanced and much of the available

work of balancing data for RF modeling is performed in medical research. Khalilia,

Chakraborty and Popescu (2011) published a disease risk prediction study that com-

pared the results of both support vector machine and RF models. The data set was

highly imbalanced, so a random sub-sampling method was employed. This method

divided the data set into sub-samples consisting of randomly chosen “active” and

“inactive” observations such that each sub-sample was 70% inactive and 30% active.

They then trained the model on each sub-sample. The resulting RF model outper-

formed the SVM model in seven of the eight the disease categories. They concluded

that the RF model was not only more accurate in modeling, but was overall more

useful as it provided additional information on the important variables [12].

Zhu et al. (2018) provide another example of the RF algorithm being applied to

imbalanced medical data. In this study, a class weight voting RF algorithm (CWsRF)

was employed to combat the data imbalance. The “votes”, as used in this paper, are

essentially what an observation indicates the classification should be for an input
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and traditionally the votes of the majority class have greater bearing on the models

outcome. The CWsRF was constructed by building a traditional RF model, using

its results to identify majority and minority classes, calculating weights for each class

based on score and accuracy of an observation, and then calculate “votes” based on

criteria established in the designated voting methodology. In this case, threshold

voting was chosen over simple majority. The resulting CWsRF model showed better

accuracy over the traditional RF model it was compared against [13].

All of the aforementioned articles used a variation of weighting to combat im-

balanced data. Two of them combined weighting with over/under-sampling, which

is the approach of this project’s excursion models. However, in contrast to these

methods, this research provides an opportunity to artificially balance the data. Be-

cause the range of each class is unimportant for the Audit Agency, the classes can be

constructed such that they similar in size.

2.5.2 Other Random Forest Applications

For a demonstration of RF predicting specific dollar amounts, Antipov and Pokry-

shevskaya (2012) used a combination of continuous and categorical data to appraise

apartments in Russia. They used three different accuracy measures to validate their

model: average sales ratio (estimated value over the actual sales price), coefficient of

dispersion (percentage deviation of the sales ratio from the median value), and the

mean average percentage error (MAPE) between the observed and predicted value.

The results of this study produced an appraisal error rate between 9% and 20%,

depending on the apartment district [14].

A similar study was done by Hong, Choi, Heeyoul and Kim (2020) were the ac-

curacy of the hedonic pricing model is compared to a RF model for valuing South

Korean houses. Both studies used MAPE as the primary appraisal measure and
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shared many common attributes. However, this study included only continuous data

and thus did not need to reconcile categorical data for the models. This study pro-

duced an approximate 5.5% error rate with the RF model and an approximate 20%

with the hedonic pricing model [15]. In contrast to the research presented in this

paper and the data from the Audit Agency, the data for both the Russia and South

Korea housing studies had several measures of price to compare and significantly

smaller price intervals. But despite this difference, the work done in these studies

provide an indication of the utility of RF models for predicting specific dollar values,

which is the goal of the Audit Agency sponsored research.

There is literature available that demonstrates use of RF models in market and

purchase predictions. To help retailers understand online customers and develop

marketing strategy, Joshi et al. (2018) developed a RF model to categorize customer

purchases and predict behavior based on preferences. The data used for this study

were collected from a survey that used a mix of categorical and Likert scaled-response

questions based on attitude, motive and intent of purchases. A separate RF model was

run for each of the eight purchase categories surveyed, with the intent of establishing

relationships between the various factors and predicting buying behavior. The results

of this study revealed the top three important variables for each model and error rates

ranging from approximately 1% to 35% [16].

Baati and Mohsil (2020) similarly attempted to predict online shopper intent by

using categorical data that a website gathers on visitors, such as region, day of week

and browser. They sought to compare the accuracy of a Näıve Bayes, C4.5 classifier

and RF model when attempting to predict an online shopper’s intent. Because the

original data collected was imbalanced, each model type was run twice. The first set of

models used the unchanged imbalanced data and the second set used oversampling to

artificially balance the data. With imbalanced data, the Näıve Bayes model performed
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the best with 90% accuracy and the RF performed worst with an approximate 84%

accuracy. With oversampling, all three models performed about the same with an

approximate 87% accuracy [17]. Both of these examples show the utility of RF models

in behavior prediction with categorical data, which is a similar purpose and data type

used for the modeling in this research.

Another application of RF modeling is found in manufacturing. Instead of a pre-

dictive model, Liu et al. (2021) uses RF models for classifying feature importance

and correlation for lithium battery manufacturing. This research is important to im-

proving the manufacturing process due to the high complexity and inter-dependencies

of the different components. The process used for this research included analysing

feature importance with Gini Impurity, analyzing feature correlation with predictive

measures of association (PMOA) and reconstructing classifications with the reduced

feature set. This data provided useful insight to the manufacturers for the important

features and pinpointed focus areas to improve the manufacturing process [18].
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III. Data Cleaning and Logistic Regression Modeling
Results

3.1 Data Pre-Processing

The data provided by the Audit Agency contained 6000 data entries, each with

36 attributes, that detailed the purchases from a sample of 30 different bases. To

reduce the initial attribute count to something more manageable, input from the

Audit Agency and dimensionality reduction techniques were applied. The variables

removed from this initial reduction are detailed in Table 2.

Table 2: Removed Attributes

Attribute Name Status Reason

Unique ID Removed Uninformative
Primary ID Removed Uninformative
CRIS Appropriation Removed Uninformative
CRIS PEC Removed Uninformative
OAC OBAN Removed Uninformative
CRIS Expense Only Removed Uninformative
Contract No Long Removed Uninformative
Document No Removed Uninformative
DOV Voucher Removed Uninformative
Post Date/CRIS Report Date Combined (Date Difference) Uninformative
ITPECNEW(1and 2) Removed Blank or redundant
FT Is FSRM Removed Uninformative
FT Is ZZEEIC Removed Miscellaneous
FT Is ITBPAC Removed Imbalanced data
FT Is ITEEIC Removed Redundant
FT Is ITNAICS Removed Redundant
FT ITPSC Removed Uninformative
FT Known Removed Uninformative
Sub Cost Pool Removed Redundant
IT Tower Removed Redundant
Sub IT Tower Removed Redundant
Service Type Removed Uninformative
Date Diff Added Relevant
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Removed attributes that were labeled uninformative add nothing to the data.

That is, the attribute assigns a unique value to each data point or the information is

more significantly encapsulated in another attribute. There were also some attributes

removed for having imbalanced data. These attributes were too skewed to a partic-

ular value to add significantly to the models. The Date Diff attribute was created

to combine the post and report dates for each expense. The rationale behind this

addition was to see if longer lengths of time between post and report dates, which

would be the processing time, gave an indication of the amount purchased.

In addition to the removed attributes, the Post Date column had 206 blanks.

Because of the relatively small number of blanks, the cells were filled with dates

representing the first day of the same month and year of the CRIS Report Date. If a

CRIS Report Date was labeled 2019-08-20, the assigned Post Date would be 2019-08-

01. While this imputation method is imperfect, all the report CRIS Report Date were

the last day of the month so this method gave the largest possible time differential

between Post Date and CRIS Report Date. Thus, the bias and smoothing downsides

of constant value imputation are mitigated by the relatively low volume of blanks.

The benefit of having those data points available without blanks made the models in

R easier to work with. Finally, the Tier column had a number of NA’s; these were

changed to 0 values to ease the categorical modeling.

The two attributes used as independent variables to measure the success are IT

Expenditure (x9) and Expense Amount Validated (y). The IT Expenditure was con-

verted into a binary attribute where all affirmative IT Purchases were conditioned

“Yes”, while all negative or unknown IT purchases were conditioned as “No”. The

Expense Amount Validated attribute was used to predict the amount spent on a pur-

chase, with values that ranged from $0 to over $162 million. Thus, to improve the

efficiency of the model without compromising the integrity of its values, Expense
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Amount Validated was converted to a nominal data type categorizing the dollar

amounts into ranges. It was confirmed with the Audit Agency that there are no

particular purchase amounts of interest, so the value ranges were structured with the

purpose of evenly binning the data and thus avoiding imbalanced data.

3.2 Logistic Regression Modeling

Introduction

The use of LOGIT models served a dual purpose. First was to identify any

insignificant attributes that remained from the data pre-processing and remove them

to enhance the parsimony of the model. Additionally, this will help the Audit Agency

focus on attributes important in future data collection. The second purpose was to

provide the Audit Agency with a potential analytical method for exploring the data

and helping them reach insightful conclusions. LOGIT models tend to be easier to

build and run, and are a nice alternative to competing machine learning models.

Each LOGIT series was run twice. A baseline model, which identifies the sig-

nificant attributes over the given range, and a reduced model, which uses only the

significant attributes from the baseline model over the same range. This two-step

process helps evaluate the best possible model at each range by accounting for differ-

ences between ranges and how they may affect significant values. The baseline models

1, 2 and 3 all use the same list of attributes (Table 3) and regression equation (Equa-

tion 4). The goodness-of-fit for all baseline models is measured with McFadden’s

Psuedo R2.

y =
10∑
i=1

bixi (4)
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Table 3: Baseline Attributes

Attribute Variable Data Type Number of Categories

Audit Location x1 Nominal 28
Cost Pool x2 Nominal 8
Subservice Category x3 Nominal 22
Date Difference x4 Continuous —
FT is Contract x5 Logical 2
FT ITPEC x6 Nominal 3
ITPECNEW3 x7 Nominal 2
FT ITRCCC x8 Nominal 4
IT Expenditure x9 Nominal 2
Tier x10 Nominal 3
Expense Amount Validated y Logical Variable

Note: Expense Amount Validated is continuous, but was converted to nominal for each
series. The ”Number of Categories” column displays the number of possible categories
for which an observation could be placed within that specific attribute.

3.2.1 Series 1 Methodology and Results

Both the full and reduced models in this series used the full set of 6000 observa-

tions. Expense Amount Validated was converted into a logical value that was split

at the $5, 000 mark to be used as the dependent variable. Anything ≥ $5, 000 was

labeled true and less than $5, 000 were false. The $5, 000 pivotal amount was chosen

to give an approximate 50/50 split of the data. The reduced models were run with

a 70/30 train/test ratio, and model validity was measured using resulting confusion

matrices and accuracy.

Any values with a p-value< 0.05 were regarded as significant and used to construct

the reduced model. If any of the categories found within a certain attribute were

significant, then that entire attribute was retained in the reduced model. The baseline

model identified four significant attributes, as listed in Table 4, with a McFadden’s

Pseudo R2 value of ≈ 0.5067.
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Table 4: Series 1 Significant Attributes

Attribute Category Estimate P-value

Cost Pool Internal Labor −2.57 2e−16
Cost Pool NA −4.71 2.65e−16
Subservice Category Client Computing −1.56 0.032
Subservice Category Comm and Collab −1.72 0.013
FT is Contract TRUE 0.617 9.47e−11
Tier N1 −0.338 0.036
Expense Amount Validated — — —

Before running the reduced model, Sub-service Categories was removed because

it is an imbalanced attribute set and caused model estimation problems. Removing

this attribute had no significant impact on the resulting model. Model 1 reduced,

produced a validation set accuracy of 85.48% with a sensitivity of 81.52% and a

specificity of 91.95%. The training set had an accuracy of 85.08% with a sensitivity

of 80.63% and a specificity of 92.47%.

Table 5: Series 1 Reduced Model Training Confusion Matrix

FALSE TRUE ERROR
FALSE 2114 119 5.63%
TRUE 508 1461 34.77%

Table 6: Series 1 Reduced Model Validation Confusion Matrix

FALSE TRUE ERROR
FALSE 909 55 5.71%
TRUE 206 628 24.70%
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3.2.2 Series 2 Methodology and Results

Of the 6,000 original observations, 2,455 had $0 expense amounts. With nearly half

of the total observations having the same value, there is a chance that the resulting

model could have over-inflated accuracy. To verify whether or not this had an effect

on model performance, Series 2 models use just the 3,545 non-zero observations.

Additionally, the pivotal amount was raised from $5, 000 to $10, 000. Anything ≥

$10, 000 was labeled true, all else were false. This maintains the approximate 50/50

split of the data around ‘expense amount validated’. This series used the same p-

value and significance guidelines for the keeping attributes as Series 1. The baseline

model for this series identified four significant values and had a McFadden’s Pseudo

R2 of ≈ 0.1499.

Table 7: Series 2 Significant Attributes

Attribute Category Estimate P-value

FT is Contract TRUE −1.22 2e−16
FT ITRCCC N1 −0.694 1.83e−9
IT Expenditure N1 0.906 0.028
Tier N1 −0.952 4.39e−12
Expense Amount Validated — — —

The reduced models ran a 70/30 train/test split for training and validation. The

third category for Tier was redundant, but every other category had a significant

p-value and contributed to the model. Overall, the model had an validation accuracy

of 69.87%, a sensitivity of 59.31% and a specificity of 78.15%. The model’s training

accuracy was 66.53% with a sensitivity of 64.72% and a specificity of 68%.
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Table 8: Series 2 Reduced Model Training Confusion Matrix

FALSE TRUE ERROR
FALSE 719 439 61.06%
TRUE 392 933 42.02%

Table 9: Series 2 Reduced Model Validation Confusion Matrix

FALSE TRUE ERROR
FALSE 277 130 32.94%
TRUE 190 465 29.01%

3.2.3 Series 3 Methodology and Results

The original data set contained some high expense values that were removed for

the Series 3 models. These large values are near outliers for the Expense Amount Val-

idated variable. This series used all observations that ranged between 0 and $500, 000

yielding 3,343 observations. The pivotal amount changed to $15, 000 to maintain a

50/50 split, where values ≥ $15, 000 are labeled true and all others are false. Using

the same significance criterion as Series 1 and 2, the baseline model identified five

significant values with a McFadden’s Psudeo R2 of ≈ 0.1826.

The Sub-service Categories and Cost Pool attributes were removed from the data

set to allow the 70/30 train/test split. Removing these attributes allowed the model

to be run without losing much data, as less than half of the possible Sub-service

Categories (8/22) and Cost Pool (2/8) categories were identified as significant by

the baseline model. The resulting reduced model produced an validation accuracy of

61.1% with a sensitivity of 44.58% and a specificity of 76.53%. The training accuracy

was 69.47% with a sensitivity of 51.10% and a specificity of 83.06%.
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Table 10: Series 3 Significant Attributes

Attribute Category Estimate P-value

Cost Pool Internal Labor −2.64 2e−16
Cost Pool Telecom −1.08 0.031
Subservice Category Data 1.79 0.027
Subservice Category Depot 1.73 0.041
Subservice Category Development 1.63 0.016
Subservice Category Network and Connect 1.62 0.033
Subservice Category Other 2.08 0.006
Subservice Category Security and Compliance 1.35 0.046
Subservice Category Storage 1.69 0.033
Subservice Category Weapon System 2.01 0.003
FT is Contract TRUE −0.716 1.4e−13
FT ITRCCC N1 −0.427 2.29e−4
Tier N1 −0.556 1.14e−3
Expense Amount Validated — — —

Table 11: Series 3 Reduced Model Training Confusion Matrix

FALSE TRUE ERROR
FALSE 509 228 44.79%
TRUE 487 1118 43.56%

Table 12: Series 3 Reduced Model Validation Confusion Matrix

FALSE TRUE ERROR
FALSE 259 146 36.05%
TRUE 322 476 40.35%
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3.2.4 Series 4 Methodology and Results

One of the goals of the Audit Agency was to predict whether or not a purchase

was IT. To accomplish this, the Series 4 models tested the IT Expenditure attribute

against all others within Table 3. This model was run over each of the ranges used

in Series 1, 2 and 3. The baseline model for each of the ranges produced no results.

None of the variables were significant based on the criteria used up to this point.

3.3 Discussion

This section examines the results of the LOGIT models by comparing them side-

by-side. This helps draw conclusions about that data, assumptions and testing

methodology. Table 13 displays the important results for each series of models.

Table 13: LOGIT Model Comparisons

Model Accuracy Sensitivity Specificity

Series 1 Reduced 85.48% 81.52% 91.95%
Series 2 Reduced 69.87% 59.31% 78.15%
Series 3 Reduced 61.1% 44.58% 76.53%
Series 4 No Results No Results No Results

Each series produced worse accuracy, sensitivity (how well the model accurately

predicted the proper category of a value) and specificity (how exact a category was

predicted) than its predecessor. The only difference between the full models for each

series were the ranges used, where Series 1 used all 6,000 observations, Series 2 used

3,545 and Series 3 used 3,343 observations. Each full model produced a different

McFadden’s Pseudo R2 (Series 1 Full = 0.5067, Series 2 Full = 0.1499 and Series

3 Full = 0.1826) and set of significant variables (see Tables 4, 7, and 10). The

McFadden’s Pseudo R2 from the full models follow a similar trend to the reduced

model’s accuracy, which indicates that the range used for a model is more impactful
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than the variables and that these models do not struggle with over-fitting.

Comparing the confusion matrices of the reduced models (Tables 6, 9, and 12),

each series accumulates more error (5.71%, 32.94% and 36.05%, respectively) while

attempting to predict values less than the pivotal value (FALSE). Thus we know

that the models predict $0 expenses well, but after those values are removed, the

models struggle with getting better than 70% overall accuracy. Note that since the

$0 expenses make up over 1/3 of the total values, they could be inflating the model

and creating a false accuracy. Removing the $0 expenses for Series 2 created a more

realistic model because it has better class balance. The Series 3 models are not useful

as they are the least accurate and provide little to no additional information than the

Series 2 models.

Overall, the Series 2 reduced model can predict whether a purchase will be above

or below $10, 000 with 70% accuracy. The micro-purchase limit for military card

holders is $10, 000, so this model may be valuable if the Audit Agency is trying to

predict whether a purchase is considered a micro-purchase or not [19]. The Series

4 models produced no usable results, these data are not suited for the predicting

whether a purchase will be IT or not. Each variable in the model produced either a

singularity or a p-value of one.
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IV. Random Forest Modeling and Results

The Audit Agency data were also modeled using random forest methods. The

binary predictions of Logistic Regression (LOGIT) models provide only broad expense

predictions which are not sufficiently detailed for the Audit Agency’s purpose. The

Audit Agency’s mission necessitates a model with narrower prediction intervals. To

this end, seven random forest models were trained over five different expense ranges.

First, two binary models were built to compare the results of the previous LOGIT

models. Next, models were built at three, four, five and six expense ranges to test

how many are necessary to maintain model accuracy. Certain attributes caused the

LOGIT models problems due to lack of presence in the training data. In an attempt

to combat this, all of the Random Forest (RF) models use a 75/25 train/test split of

the data.

To minimize potential over-fitting and reduce model size, each random forest

model is run twice, once with the full set of variables identified in Table 3 and again

with only the variables which had more than 5% importance percentage in the full

model. H2O calculates variable importance by looking at how often a variable is

chosen when building a tree and then calculating the degree to which the squared

error increased or decreased [2]. Both the full and reduced models are measured by

the classification error rate and confusion matrix of the training set, but the reduced

models will additionally test the accuracy of the validation set to verify consistency

within the final results. Random Forest models suffer from data imbalance because

the decision trees used in the forests are measured by information gain and forests

themselves use Gini-splitting criteria which are both susceptible measures to data

skew [20]. Since the $0 purchase amounts makes up over a third of the observations,

only values > $1 are used to build the models.
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4.1 Binary Models

4.1.1 Series 1 Full and Reduced Models

The binary RF models were built similarly to the LOGIT models. Model 1 Full

takes the variables from Table 3 over all the non-zero expense values using ten folds of

cross validation. To keep an approximately even split of the data over the dependent

variable, any expense greater than the pivotal value $10, 000 was labeled true, all

others were false. This model identified six variables that had an importance rating

of over 5% (see Table 14). It resulted in a Root Mean Square Error (RMSE) of

approximately 0.46, a training set classification error rate of 30.17% and a validation

set classification error rate of 25.59%; see Table 15 and Table 16 for the confusion

matrices.

Table 14: Full Binary Model 1 Important Variables

Attribute Importance Percentage Data Type

Audit Location 20.51% Nominal
Date Diff 19.53% Continuous
Subservice Category 14.92% Nominal
FT Is Contract 14.31% Nominal
Tier 11.68% Nominal
Cost Pool 9.93% Nominal

Table 15: Full Binary Model 1 Training Confusion Matrix

FALSE TRUE ERROR
FALSE 459 726 61.27%
TRUE 76 1397 5.16%

Model 1 Reduced used the six variables from Table 14 with the same range, pivotal

expense amount and train/test split with ten folds of cross validation. This model had
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Table 16: Full Binary Model 1 Validation Confusion Matrix

FALSE TRUE ERROR
FALSE 152 244 61.61%
TRUE 33 458 6.72%

similar results to the full model with a RMSE of approximately 0.47 and a training

set classification error rate of 31.38%. The resulting confusion matrices for this model

are given in Tables 17 and 18. The validation set produced an error rate of 34.05%,

which is consistent with these results. The results of this model are not significantly

different from the full model.

Table 17: Reduced Binary Model 1 Training Confusion Matrix

FALSE TRUE ERROR
FALSE 447 738 61.28%
TRUE 96 1377 6.52%

Table 18: Reduced Binary Model 1 Validation Confusion Matrix

FALSE TRUE ERROR
FALSE 113 283 71.46%
TRUE 19 472 3.87%

4.1.2 Series 2 Full and Reduced Models

The Series 2 binary full and reduced models only use expense values that fall

between $0 and $500, 000. To account for this new range, and keep an approximately

even split of the data, the pivotal expense value was changed to $15, 000. As such,

expense values over $15, 000 were labeled true and all else labeled false. The Full

Model for this series identified the same six important variables from Table 14, with
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only small differences in importance percentage. Utilizing ten folds of cross valida-

tion, the resulting RMSE was approximately 0.44 with confusion matrices displayed

in Tables 19 and 20, a training classification error rate of 29.99% and a validation

classification error rate of 34.21%.

Table 19: Full Binary Model 2 Training Confusion Matrix

FALSE TRUE ERROR
FALSE 656 667 50.42%
TRUE 85 1099 9.18%

Table 20: Full Binary Model 2 Validation Confusion Matrix

FALSE TRUE ERROR
FALSE 213 251 54.09%
TRUE 35 337 9.41%

The reduced model for this series utilized the six most important variables while

maintaining the same range, pivotal expense value and ten folds of cross validation.

This model resulted in a RMSE of approximately 0.47, a training set classification

error rate of 31.38% and a validation set error rate of 34.45%. As seen in the confusion

matrices 21 and 22, the results of this model are not significantly different from the

other binary models.

Table 21: Reduced Binary Model 2 Training Confusion Matrix

FALSE TRUE ERROR
FALSE 447 738 62.28%
TRUE 96 1377 6.52%
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Table 22: Reduced Binary Model 2 Validation Confusion Matrix

FALSE TRUE ERROR
FALSE 203 261 56.25%
TRUE 27 345 7.26%

4.2 Multi-Categorical Models

Initial models treated the expense values as continuous data. However, the range

of the data was so vast that the resulting models produced unusable results. Thus,

multi-categorical models were used to test the capability to categorize and predict

expense values for smaller intervals. The models for this section were constructed in

three series using three, four and five expense categories. All models were constructed

following the pattern of the binary models, where full models were constructed to

identify any variables that had an importance score over 5%.

Each of the models was constructed over all non-zero expenses. Each series used

the same train/test split percentage and ten folds of cross validation. The full model

for each series yielded the same six important variables as all the other models (see

Table 14). The expense categories for each model along with the resulting RMSE and

error rate are displayed in Table 23. The results of the models show a clear trend of

growing RMSE and error rate with each additional category. For brevity, only the

validation and training confusion matrices for the five category model are displayed.

Due to the downward trend, adding more categories is unnecessary.
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Table 23: Model Expense Categories

Category Reference Ranges RMSE Error Validation

3 ONE
TWO
THREE

$5K ≥ x > $0
$50K ≥ x > $5K
x > $100K

0.5752 42.89% Null

4 ONE
TWO
THREE
FOUR

$3K ≥ x > $0
$15K ≥ x > $3K
$100K ≥ x > $15K
x > $100K

0.6536 52.74% Null

5 ONE
TWO
THREE
FOUR
FIVE

$1K ≥ x > $0
$5K ≥ x > $1K
$20K ≥ x > $5K
$100K ≥ x > $20K
x > $100K

0.7421 65.61% Null

Table 24: Reduced 5 Category Training Confusion Matrix

ONE TWO THREE FOUR FIVE ERROR
ONE 140 101 38 56 53 63.92%
TWO 88 205 62 118 99 64.16%
THREE 33 74 96 125 115 78.33%
FOUR 32 72 88 254 193 61.63%
FIVE 36 95 70 196 219 63.07%

Table 25: Reduced 5 Category Validation Confusion Matrix

ONE TWO THREE FOUR FIVE ERROR
ONE 57 33 12 27 22 62.25%
TWO 29 81 22 27 26 56.22%
THREE 16 29 22 28 36 84.40%
FOUR 20 29 22 67 67 67.32%
FIVE 14 19 22 62 88 57.07%
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4.3 Model Enhancements

4.3.1 Gridsearch

A random forest algorithm uses a set of hyperparameters to fine-tune its perfor-

mance. H2O’s default hyper-parameters were sufficient for all the previous models

built, adding ten folds of cross validation was the only change. Given the poor

model results thus far, it is unlikely that adjustments in hyper-parameters will render

more useful models, however, the tuning process is examined regardless. Gridsearch

methodology is a function that constructs a Cartesian plane of test values for a given

variable and trains a separate model on each value. The Caret package accomplishes

this with its “expand.grid” and “train” functions [1].

The full list of inputs H2O uses to build its random forest models are found within

the online manual [2]. The hyper-parameters used focus on are mtry, sample size,

node size, number of trees and splitting rule. For classification random forest models,

defaults for node size (1), sample size (n), and the splitting rule (Gini impurity) are

sufficient. The number of trees for a model determines the size of the sampling forest,

when large enough, this parameter converges and does not add anything new to the

model. Since the data set here is relatively small, and run time is not an issue, 1000

trees is defined. Lastly, mtry determines the number of variables in each split and

is the focus of this gridsearch operation. A typical value for mtry in a classification

model is
√
p (where p is the number of predictor values) [7]. The gridsearch run uses

a range of values from 2-12 to ensure a thorough exploration of the parameter. The

gridsearch models were run using the full range of variables identified in Table 3,

ten folds of cross validation and repeated three times. The results are displayed in

Table 26, which reveals that a mtry value of 11 produced the model with the highest

accuracy. The difference between the accuracy of the gridsearch and default models

is marginal.
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Table 26: Gridsearch Results for 5 Category Model

mtry Accuracy Kappa

2 36.39% 0.1803812
3 38.45% 0.2093152
4 39.5% 0.2241431
5 40.11% 0.2330828
6 40.66% 0.2411802
7 40.81% 0.2442773
8 41.13% 0.2491956
9 41.16% 0.2504337
10 41.39% 0.2539497
11 41.4% 0.2545487
12 41.2% 0.2524946

4.3.2 Imbalanced Data Correction Methods

Operating under the assumption that the random forest algorithm is susceptible to

imbalanced data, the models were constructed to exclude all $0 expenses, which makes

up over a third of the data set. The remaining values were artificially categorized into

near even categories so the models could be run without the need for imbalance fixes.

However, removing such a large quantity of observations can have an adverse impact

on how well the model can be trained. This section explores balancing data with

H2O.

When working with classification random forest models, the effects of imbalanced

data can be mitigated by changing the sampling method [21]. Sampling adaptations

of this nature are achieved by weighting either individual values or entire classes

such that the algorithm will balance its selections from each class. The “balance

classes” option weights appropriately and over-samples the minority classes to create

an artificially even distribution of each class within the model [2]. This option inflates

the overall sample space producing more training opportunity for the model.

Two models test the utility of this option; the five category model from Section 4.2
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and a six category model that includes all the $0 expenses that were removed as

the sixth category. The full range of variables identified in Table 3 were used for

this section in order to provide the most complete picture of the data. Apart from

the aforementioned changes, all other factors are identical to the previous random

forest models. The results and confusion matrices for these models are displayed in

Tables 27, 28, 29, 30, and 31. The accuracy for the five category model increased

by over 10% and the six category model nearly doubled the accuracy of any of the

previous random forest models.

Table 27: Enhanced Categorical Models

Categories Reference Ranges RMSE Error Validation

5 ONE
TWO
THREE
FOUR
FIVE

$1K ≥ x > $0
$5K ≥ x > $1K
$20K ≥ x > $5K
$100K ≥ x > $20K
x > $100K

0.7421 65.61% Null

6 ONE
TWO
THREE
FOUR
FIVE
SIX

x = $0
$1K ≥ x > $0
$5K ≥ x > $1K
$20K ≥ x > $5K
$100K ≥ x > $20K
x > $100K

0.4611 21.63% Null

Table 28: Enhanced 5 Category Training Confusion Matrix

ONE TWO THREE FOUR FIVE ERROR
ONE 381 90 38 65 69 40.75%
TWO 88 302 54 108 85 52.59%
THREE 31 64 326 120 101 49.22%
FOUR 33 82 90 244 187 61.64%
FIVE 24 53 56 185 304 51.13%
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Table 29: Enhanced 5 Category Validation Confusion Matrix

ONE TWO THREE FOUR FIVE ERROR
ONE 174 26 15 14 12 27.80%
TWO 14 144 17 43 22 40.00%
THREE 9 15 122 44 35 45.78%
FOUR 8 32 31 95 69 59.57%
FIVE 4 17 21 67 125 46.58%

Table 30: Enhanced 6 Category Training Confusion Matrix

ONE TWO THREE FOUR FIVE SIX ERROR
ONE 1844 0 0 1 0 0 0.11%
TWO 7 1295 281 29 133 97 29.7%
THREE 3 147 1339 80 174 106 27.58%
FOUR 10 52 102 1190 296 202 35.75%
FIVE 4 28 55 85 1461 221 21.2%
SIX 1 30 11 48 195 1564 15.41%

Table 31: Enhanced 6 Category Validation Confusion Matrix

ONE TWO THREE FOUR FIVE SIX ERROR
ONE 608 0 1 1 1 1 0.65%
TWO 0 536 34 20 13 7 12.13%
THREE 0 20 524 29 25 16 14.66%
FOUR 0 18 22 497 51 28 19.32%
FIVE 0 6 18 29 524 39 14.94%
SIX 0 7 16 22 41 526 14.05%
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4.4 Discussion

Overall the random forest algorithm used for this paper shows potential utility

for the Audit Agency and provides some useful insights about the data. The bi-

nary LOGIT and RF models demonstrated similar prediction accuracy, but a binary

categorization of expenses is too broad to be helpful to the Audit Agency. The sub-

sequent three, four, and five category models further break down the expenses into

smaller categories, but with each additional category the accuracy drops significantly

(see Table 32). The three, four and five category models are not effective as none of

them have 60% or more accuracy, making them little better than a random guess.

The five category gridsearch model did theoretically increase accuracy, however the

mtry (number of features chosen per split) recommended by the model is not feasible

because the data cleaning removed all but ten dependent features.

Table 32: Random Forest Model Comparisons

Model Error Validation

2 Category (1) 31.38% 70.96%
2 Category (2) 31.38% 76.56%
3 Category 42.89% 56.98%
4 Category 52.74% 40.97%
5 Category 65.61% 24.83%
5 Category Gridsearch 42.4% —
5 Category Class Balanced 65.61% 33.93%
6 Category Class Balanced 21.63% 68.23%

Note: The class balancing algorithm in H2O does not include the validation set. Without
balancing the validation set accuracy was 36.47%. The validation set was then used to
train the model, generating 100% accuracy. The validation percentage presented for the
6 Category Class Balance model is an average of these two values.

The systematic decline in accuracy between models highlights the limitations of

the given data to predict specific expense amounts. The data set is small and does

not have many duplicate values. Outside of the $0 expense values, there are only 181
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observations with the same expense values. This means that machine learning models

do not have many reference points to compare and categorize similarly. This work

attempted to combat this by utilizing classification categories instead of continuous

amounts to give the model larger pools of observations to sort and compare. However,

as indicated previously, this method has minimal impact.

The class balanced models presented a second approach for getting around the

data problem using weights and oversampling. Categories were weighted in propor-

tion to their size and then over-sampled until each category had the same number

of observations. This method created a data set with 11,070 points (six categories

with 1,845 observations each) with nearly 80% training and 68% validation accuracy.

Because H2O only weighted the categories and used random sampling with each cat-

egory, this indicates that larger data sets will likely produce more accurate models

and supports the theory that the variables recorded in the data are sufficient. Also

potentially indicating that the small size of the data caused the previous model in-

adequacies. Overall, with the given data, the 6 Category Class Balance model could

be adequate for the purposes of the Audit Agency.
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V. Conclusion

5.1 Research Results and Implications

This work shows promising results for the Audit Agency. Both of the Logistic Re-

gression (LOGIT) and Random Forest (RF) produced usable models with ≈ 70−80%

prediction accuracy and produced very similar lists of important variables. Models

this accurate make good contextual reference frameworks for budgeting and verifica-

tion of the Audit Agency’s purchase data. However these models are categorical and

limited by the parameters and data used to build them, they are not accurate enough

to provide answers detailing specific expense amounts or purchase types.

Many attributes from the original data-set were identified as unnecessary and

removed (see Table 2). To save time and effort, it would behoove the Audit Agency

to focus data collection efforts on the attributes identified in Table 3 as they brought

the most utility to the modeling process. To maximize efficiency, only collect data

on the identified attributes for the model of choice, LOGIT - (Table 7) and RF -

(Table 14).

5.2 Limitations

This work is limited to the scope of the needs of the Audit Agency and the data

provided. The techniques used within this paper are exploratory and not exhaustive of

all possible machine learning or regression analytical tools. As such, these models are

subject to the disadvantages of their respective techniques as discussed in Chapter II.

The RF models used classification criteria in construction, and as such, limits the

effects of certain hyperparameters (node size, sample size, and splitting rule) being

tuned and the information that could be gained by them from the models.

IT procurement is a slow process and one that is constantly in motion because
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of the speed technology advances. The data provided only covers expenses made in

2018 and 2019. This leaves gaps where a few more years of data could enhance the

results or at least provide more observations for the models to utilize. The small data

set created a problem for the RF models with not enough observations in some of the

variables. This was remedied with class balancing via oversampling to build a larger

artificial data set.

Lastly, this work utilized commercial random forest packages within R, H2O and

caret. As such, the algorithm was not tailored to the data set. Commercial software

is useful, but can be hard to troubleshoot or observe specific parts of the model if it

becomes necessary. For example, H2O uses replacement when oversampling and thus

does not maintain the expanded data frame at the end of the algorithm. This made

it challenging to observe how the sampling was done and identify possible sources of

data errors.

5.3 Future Research

There are several directions one could expand upon this work. Machine learning

techniques outside of LOGIT and RF could be applied to this problem. Support

Vector Machines (SVMs) is one possible classification algorithm that could be applied,

however, it grows in complexity with more categories to parse. It is unlikely to

out-perform random forests. Neural networks could be employed for classifying or

predicting specific dollar amounts from the data. These networks are often more

complex and take longer to run, but can be trained and re-trained to obtain better

results each iteration. This is a promising avenue if the Audit Agency wishes to

expand the number of expense categories. Balanced data are important for all of

these algorithms, as such, either more actual data is needed or artificial data will

have to be generated based on inputs from subject matter experts.
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In addition to different algorithms, the problem can also be approached in different

ways. For instance, the pivotal expense values used to create the categories were

chosen to create artificially balanced groups, but these expense values have no other

significance. Exploring different pivotal expenses could provide more detail on the

data and create tighter classification intervals. Another possible approach is to move

away from classifications and towards regression. By rounding each expense value to

the nearest 100th or 1000th dollar amount, the similarities between expense values

could become more obvious and make it easier for an algorithm to train. It should

be noted that however that there are many expense between $0 - $100 and $0 -

$1000, and rounding could remove some important data points, making the answer

less precise.

5.4 Summary

Overall, this work was able to provide useful answers to the research questions

posed. The Audit Agency is collecting a lot of data for their questions; the variables

in Table 2 could be removed from the data collection without much statistical con-

sequence to the end results. Machine learning models can efficiently model the data

and provide answers, but their accuracy is vulnerable to the small and imbalanced

data set. Outside of providing insight on significant variables, LOGIT is not useful

for the Audit Agency. While maintaining fair accuracy, binary classification is not

informative enough to provide other useful insights. By contrast, RF models allow

for more classes and thus more precise expense predictions. While still limited, the

ability to place a cost prediction into increasingly smaller intervals is a useful tool for

the Audit Agency. Neither the LOGIT or RF were able to predict with any amount

of accuracy whether a particular purchase was IT related.
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Table 33: Specifications of the Final Balanced Class Random Forest Model

Setting/Parameter Value

Seed 29
Training set 75%
Validation set 25%
Cross-validation folds 10
Node size 1
Sample size n
Splitting rule Gini impurity
ntrees 100
mtry Use all features
Stopping tolerance 0.001

While this work was done in R, the Audit Agency must be able to reproduce

this in SAS. While SAS does have a random forest algorithm, HPFOREST, with a

balanced classes option, it does not over-sample the same way that H2O does. To

remedy this, it is necessary to artificially duplicate observations to create a larger

data frame with similar characteristics to the one created by H2O’s class balancing

option. When balancing, H2O sampled enough to bring all the classes to the same

size as the largest class sample, use the following steps to build an artificial balanced

class data frame in Microsoft Excel.

1. Assign each expense value observation into a class.

2. Calculate the size difference between the largest class and each smaller class.

3. For each observation within a smaller class, assign and random number such

that all the random numbers for that class add up to its difference calculated

in Step 2.

4. Duplicate each observation equal the value of its random number assigned in

Step 3.
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Appendix

Appendix A: Important Data Name Descriptors

Below are the names and meanings for some important indicator random variables

or attributes.

• FT is ZZEEIC - Expense code

• FT ITBACK - Budget program activity code - the code for the major program

has something that suggests IT (cyber, IT, etc.).

• FT ITEEIC - EEIC (Element of Expense Identification Code) is the expense

code (investment codes tells what the investment is for) - EEIC suggests IT

expense.

• FT ITNAICS - NAICS (North American Industry Classification System) code

is contract specific - shows if ”FT is contract” is true. NAICS code contains

something that suggests IT.

• FT ITPEC - PEC - Program element code name of program suggests IT spend-

ing.

• FT ITPSC - PSC is the product service code - suggests IT spending.

• FT ITRCCC - RCCC - Responsibility cost center code - transaction name at

unit level - suggests IT spending.
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Appendix B: R Code for LOGIT Models

#Packages

l i b r a r y ( readx l )

l i b r a r y ( car )

l i b r a r y ( ca r e t )

l i b r a r y (MASS)

l i b r a r y (FactoMineR )

l i b r a r y ( caTools )

l i b r a r y ( ggp lot2 )

l i b r a r y ( aod )

l i b r a r y ( p s c l )

## Overa l l t e s t o f a l l a t t r i b u t e s

dta <− r e ad ex c e l (” c ://R/RData Thesis1 . x l sx ” ,3) #a l l amounts

dta 1 <− cbind . data . frame ( dta [ 3 : 1 3 ] )

sapply ( dta 1 , c l a s s )

dta 1 <− transform ( dta 1 ,

Audit . Locat ion=as . f a c t o r ( Audit . Locat ion ) ,

Cost . Pool=as . f a c t o r ( Cost . Pool ) ,

SubService . Category=as . f a c t o r ( SubService . Category ) ,

Date . D i f f . Cont=as . i n t e g e r (Date . D i f f . Cont ) ,

FT. I s . Contract .N=as . l o g i c a l (FT. I s . Contract .N) ,

FT. ITPEC.N=as . f a c t o r (FT. ITPEC.N) ,

ITPECNEW3.N=as . f a c t o r (ITPECNEW3.N) ,

FT.ITRCCC.N=as . f a c t o r (FT.ITRCCC.N) ,

IT . Expenditure .N=as . f a c t o r ( IT . Expenditure .N) ,

Tier .N=as . f a c t o r ( Tier .N) ,

Expense .Amount . Val idated .N=as . f a c t o r ( Expense .Amount . Val idated .N) )

## Reduced Data with no 0 e n t r i e s

no 0 <− r e ad ex c e l (” c ://R/RData Thesis1 . x l sx ” ,4) #no ze ro s l e f t

no 0 1 <− cbind . data . frame ( no 0 [ 3 : 1 3 ] )

sapply ( no 0 1 , c l a s s )

no 0 1 <− transform ( no 0 1 ,

Audit . Locat ion=as . f a c t o r ( Audit . Locat ion ) ,

Cost . Pool=as . f a c t o r ( Cost . Pool ) ,

SubService . Category=as . f a c t o r ( SubService . Category ) ,

Date . D i f f . Cont=as . i n t e g e r (Date . D i f f . Cont ) ,

FT. I s . Contract .N=as . l o g i c a l (FT. I s . Contract .N) ,

FT. ITPEC.N=as . f a c t o r (FT. ITPEC.N) ,

ITPECNEW3.N=as . f a c t o r (ITPECNEW3.N) ,

FT.ITRCCC.N=as . f a c t o r (FT.ITRCCC.N) ,

IT . Expenditure .N=as . f a c t o r ( IT . Expenditure .N) ,

Tier .N=as . f a c t o r ( Tier .N) ,

Expense .Amount . Val idated .N=as . f a c t o r ( Expense .Amount . Val idated .N) )

## Reduced Data with no 0 e n t r i e s or e n t r i e s >500000 around $15K

no 0or500 <− r e ad ex c e l (” c ://R/RData Thesis1 . x l sx ” ,5) #no ze ro s or above 500K

no 0or500 1 <− cbind . data . frame ( no 0or500 [ 3 : 1 3 ] )

sapply ( no 0or500 1 , c l a s s )

no 0or500 1 <− transform ( no 0or500 1 ,

Audit . Locat ion=as . f a c t o r ( Audit . Locat ion ) ,

Cost . Pool=as . f a c t o r ( Cost . Pool ) ,
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SubService . Category=as . f a c t o r ( SubService . Category ) ,

Date . D i f f . Cont=as . i n t e g e r (Date . D i f f . Cont ) ,

FT. I s . Contract .N=as . l o g i c a l (FT. I s . Contract .N) ,

FT. ITPEC.N=as . f a c t o r (FT. ITPEC.N) ,

ITPECNEW3.N=as . f a c t o r (ITPECNEW3.N) ,

FT.ITRCCC.N=as . f a c t o r (FT.ITRCCC.N) ,

IT . Expenditure .N=as . f a c t o r ( IT . Expenditure .N) ,

Tier .N=as . f a c t o r ( Tier .N) ,

Expense .Amount . Val idated .N=as . f a c t o r ( Expense .Amount . Val idated .N) )

##################################################################################

##Se r i e s 1 Train/ t e s t s p l i t s

trn m1 <− c r ea t eDataPar t i t i on ( dta 1$Tier .N, p=0.7 , l i s t=FALSE)

t r1 <− dta 1 [ trn m1 , ]

t s t 1 <− dta 1 [ −trn m1 , ]

#Overa l l Model 1 ba s e l i n e

m1 base <− glm ( Expense .Amount . Val idated .N ˜ Audit . Locat ion + Cost . Pool +

SubService . Category + Date . D i f f . Cont + FT. I s . Contract .N +

FT. ITPEC.N + ITPECNEW3.N + FT.ITRCCC.N + IT . Expenditure .N + Tier .N,

data=dta 1 , fami ly=”binomial ”) ; summary(m1 base )

#McFadden ’ s R2

m1b MF <− pR2(m1 base ) ;m1b MF

#Overa l l Model 1 reduced

m1 red <− t r a i n ( Expense .Amount . Val idated .N ˜ Cost . Pool + FT. I s . Contract .N + Tier .N,

data=tr1 , method=”glm” , fami ly = ”binomial ”) ; summary(m1 red )

m1r pr <− pr ed i c t (m1 red , newdata=t s t 1 )

#Model 1 reduced con fus ion matrix

confus ionMatr ix (m1r pr , tst1$Expense .Amount . Val idated .N)

##Se r i e s 2 Train/ t e s t s p l i t s

trn m2 <− c r ea t eDataPar t i t i on ( no 0 1$Tier .N, p=0.7 , l i s t=FALSE)

t r2 <− no 0 1 [ trn m2 , ]

t s t 2 <− no 0 1 [ −trn m2 , ]

#Overa l l Model 2 ba s e l i n e

m2 base <− glm ( Expense .Amount . Val idated .N ˜ Audit . Locat ion + Cost . Pool +

SubService . Category + Date . D i f f . Cont + FT. I s . Contract .N +

FT. ITPEC.N + ITPECNEW3.N + FT.ITRCCC.N + IT . Expenditure .N + Tier .N,

data=no 0 1 , fami ly=”binomial ”) ; summary(m2 base )

#McFadden ’ s R2

m2b MF <− pR2(m2 base ) ;m2b MF

#Overa l l Model 2 reduced

m2 red <− t r a i n ( Expense .Amount . Val idated .N ˜ FT. I s . Contract .N + FT.ITRCCC.N +

IT . Expenditure .N + Tier .N,

data=tr2 , method=”glm” , fami ly=”binomial ”) ; summary(m2 red )

m2r pr <− pr ed i c t (m2 red , newdata=t s t 2 )

#Model 2 reduced con fus ion matrix

confus ionMatr ix (m2r pr , tst2$Expense .Amount . Val idated .N)

##Se r i e s 3 Train/ t e s t s p l i t s

trn m3 <− c r ea t eDataPar t i t i on ( no 0or500 1$Tier .N, p=0.7 , l i s t=FALSE)

t r3 <− no 0 1 [ trn m3 , ]
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t s t 3 <− no 0 1 [ −trn m3 , ]

#Overa l l Model 3 ba s e l i n e

m3 base <− glm ( Expense .Amount . Val idated .N ˜ Audit . Locat ion + Cost . Pool +

SubService . Category + Date . D i f f . Cont + FT. I s . Contract .N +

FT. ITPEC.N + ITPECNEW3.N + FT.ITRCCC.N + IT . Expenditure .N + Tier .N,

data=no 0or500 1 , fami ly=”binomial ”) ; summary(m3 base )

#McFadden ’ s R2

m3b MF <− pR2(m3 base ) ;m3b MF

#Overa l l Model 3 reduced

m3 red <− t r a i n ( Expense .Amount . Val idated .N ˜ FT. I s . Contract .N + FT.ITRCCC.N + Tier .N,

data=tr3 , method=”glm” , fami ly=”binomial ”) ; summary(m3 red )

m3r pr <− pr ed i c t (m3 red , newdata=t s t 3 )

#Model 3 reduced con fus ion matrix

confus ionMatr ix (m3r pr , tst3$Expense .Amount . Val idated .N)

#Se r i e s 4 − Overa l l Model 4 Base l ine

m4 base <− glm ( IT . Expenditure .N ˜ Audit . Locat ion + Cost . Pool +

SubService . Category + Date . D i f f . Cont + FT. I s . Contract .N +

Expense .Amount . Val idated .N + FT. ITPEC.N + ITPECNEW3.N +

FT.ITRCCC.N + IT . Expenditure .N + Tier .N,

data=dta 1 , fami ly = ”binomial ”) ; summary(m4 base )

#McFadden ’ s R2

m4b MF <− pR2(m4 base ) ;m4b MF
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Appendix C: R Code for Random Forest Models

# Packages

l i b r a r y ( readx l )

l i b r a r y ( car )

l i b r a r y (MASS)

l i b r a r y (FactoMineR )

l i b r a r y ( randomForest )

l i b r a r y ( caTools )

l i b r a r y ( h2o )

l i b r a r y ( j s o n l i t e )

l i b r a r y ( dplyr )

l i b r a r y ( ggp lot2 )

l i b r a r y ( t i dy r )

l i b r a r y ( ca r e t )

### Binary S e r i e s ###

## Binary around $10000 and no ze ro s

bin1 <− r e ad ex c e l (” c ://R/RData Thesis1 . x l sx ” ,4)

binary1 <− cbind . data . frame ( bin1 [ 3 : 1 3 ] )

sapply ( binary1 , c l a s s )

binary1 <− transform ( binary1 ,

Audit . Locat ion=as . f a c t o r ( Audit . Locat ion ) ,

Cost . Pool=as . f a c t o r ( Cost . Pool ) ,

SubService . Category=as . f a c t o r ( SubService . Category ) ,

Date . D i f f . Cont=as . i n t e g e r (Date . D i f f . Cont ) ,

FT. I s . Contract .N=as . l o g i c a l (FT. I s . Contract .N) ,

FT. ITPEC.N=as . f a c t o r (FT. ITPEC.N) ,

ITPECNEW3.N=as . f a c t o r (ITPECNEW3.N) ,

FT.ITRCCC.N=as . f a c t o r (FT.ITRCCC.N) ,

IT . Expenditure .N=as . f a c t o r ( IT . Expenditure .N) ,

Tier .N=as . f a c t o r ( Tier .N) ,

Expense .Amount . Val idated .N=as . f a c t o r ( Expense .Amount . Val idated .N) )

sample1 = sample . s p l i t ( b inary1$Tier .N, Sp l i tRat i o = 0 .75 )

t r a in1 = subset ( binary1 , sample1 == TRUE)

t e s t 1 = subset ( binary1 , sample1 == FALSE)

h2o . i n i t ( nthreads = 20 , max mem size = ”6g”)

t r n 1 f <− as . h2o ( t r a in1 )

t s t 1 f <− as . h2o ( t e s t 1 )

r f 1 f <− h2o . randomForest ( y=”Expense .Amount . Val idated .N” ,

t r a i n i ng f r ame=trn1 f , s topping rounds = 5 , s t opp ing t o l e r an c e = 0 .001 ,

s topp ing met r i c = ”AUC” , seed = 29 , b a l a n c e c l a s s e s = FALSE, n f o l d s =

10)

t rn1 r <− as . h2o ( s e l e c t ( as . data . frame ( t r n 1 f ) , Audit . Location , Date . D i f f . Cont , SubService . Category

, FT. I s . Contract .N, Tier .N, Cost . Pool , Expense .Amount . Val idated .N) )

t s t 1 r <− as . h2o ( s e l e c t ( as . data . frame ( t s t 1 f ) , Audit . Location , Date . D i f f . Cont , SubService . Category

, FT. I s . Contract .N, Tier .N, Cost . Pool , Expense .Amount . Val idated .N) )

r f 1 r <− h2o . randomForest ( x=1:6 , y=”Expense .Amount . Val idated .N” ,

t r a i n i ng f r ame=trn1 r , va l i da t i on f r ame=t s t 1 r , s topping rounds = 5 ,

s t opp ing t o l e r an c e = 0 .001 ,

s topp ing met r i c = ”AUC” , seed = 29 , b a l a n c e c l a s s e s = FALSE, n f o l d s =
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10)

p e r f 1 f <− h2o . performance ( r f 1 f ) ; p e r f 1 f

h2o . varimp ( r f 1 f )

p r in t ( h2o . auc ( r f 1 f , v a l i d = TRUE) )

p r in t ( h2o . auc ( r f 1 r , va l i d = TRUE) )

## Binary around $15000 and no ze ro s or >$500K

bin2 <− r e ad ex c e l (” c ://R/RData Thesis1 . x l sx ” ,5)

binary2 <− cbind . data . frame ( bin2 [ 3 : 1 3 ] )

sapply ( binary2 , c l a s s )

binary2 <− transform ( binary2 ,

Audit . Locat ion=as . f a c t o r ( Audit . Locat ion ) ,

Cost . Pool=as . f a c t o r ( Cost . Pool ) ,

SubService . Category=as . f a c t o r ( SubService . Category ) ,

Date . D i f f . Cont=as . i n t e g e r (Date . D i f f . Cont ) ,

FT. I s . Contract .N=as . l o g i c a l (FT. I s . Contract .N) ,

FT. ITPEC.N=as . f a c t o r (FT. ITPEC.N) ,

ITPECNEW3.N=as . f a c t o r (ITPECNEW3.N) ,

FT.ITRCCC.N=as . f a c t o r (FT.ITRCCC.N) ,

IT . Expenditure .N=as . f a c t o r ( IT . Expenditure .N) ,

Tier .N=as . f a c t o r ( Tier .N) ,

Expense .Amount . Val idated .N=as . f a c t o r ( Expense .Amount . Val idated .N) )

sample2 = sample . s p l i t ( b inary2$Tier .N, Sp l i tRat i o = 0 .75 )

t r a in2 = subset ( binary2 , sample2 == TRUE)

t e s t 2 = subset ( binary2 , sample2 == FALSE)

h2o . i n i t ( nthreads = 20 , max mem size = ”6g”)

t r n 2 f <− as . h2o ( t r a in2 )

t s t 2 f <− as . h2o ( t e s t 2 )

r f 2 f <− h2o . randomForest ( y=”Expense .Amount . Val idated .N” ,

t r a i n i ng f r ame=trn2 f , s topping rounds = 5 , s t opp ing t o l e r an c e = 0 .001 ,

s topp ing met r i c = ”AUC” , seed = 29 , b a l a n c e c l a s s e s = FALSE, n f o l d s = 10)

t rn2 r <− as . h2o ( s e l e c t ( as . data . frame ( t r n 2 f ) , Audit . Location , Date . D i f f . Cont , SubService . Category

, FT. I s . Contract .N, Tier .N, Cost . Pool , Expense .Amount . Val idated .N) )

t s t 2 r <− as . h2o ( s e l e c t ( as . data . frame ( t s t 2 f ) , Audit . Location , Date . D i f f . Cont , SubService . Category

, FT. I s . Contract .N, Tier .N, Cost . Pool , Expense .Amount . Val idated .N) )

r f 2 r <− h2o . randomForest ( x=1:6 , y=”Expense .Amount . Val idated .N” ,

t r a i n i ng f r ame=trn2 r , va l i da t i on f r ame=t s t 2 r , s topping rounds = 5 ,

s t opp ing t o l e r an c e = 0 .001 ,

s topp ing met r i c = ”AUC” , seed = 29 , b a l a n c e c l a s s e s = FALSE, n f o l d s =

10)

p e r f 2 f <− h2o . performance ( r f 2 f ) ; p e r f 2 f

h2o . varimp ( r f 2 f )

p e r f 2 r <− h2o . performance ( r f 2 r ) ; p e r f 2 r

h2o . varimp ( r f 2 r )

p r in t ( h2o . auc ( r f 2 r , va l i d = TRUE) )
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### No ze ro s ###

## 5 cos t groups

cat6 <− r e ad ex c e l (” c ://R/RData Thesis1 . x l sx ” ,8)

cat6 1 <− cbind . data . frame ( cat6 [ 3 : 1 3 ] )

sapply ( cat6 1 , c l a s s )

ca t6 1 <− transform ( cat6 1 ,

Audit . Locat ion=as . f a c t o r ( Audit . Locat ion ) ,

Cost . Pool=as . f a c t o r ( Cost . Pool ) ,

SubService . Category=as . f a c t o r ( SubService . Category ) ,

Date . D i f f . Cont=as . i n t e g e r (Date . D i f f . Cont ) ,

FT. I s . Contract .N=as . l o g i c a l (FT. I s . Contract .N) ,

FT. ITPEC.N=as . f a c t o r (FT. ITPEC.N) ,

ITPECNEW3.N=as . f a c t o r (ITPECNEW3.N) ,

FT.ITRCCC.N=as . f a c t o r (FT.ITRCCC.N) ,

IT . Expenditure .N=as . f a c t o r ( IT . Expenditure .N) ,

Tier .N=as . f a c t o r ( Tier .N) ,

Expense .Amount . Val idated .N=as . f a c t o r ( Expense .Amount . Val idated .N) )

sample6 = sample . s p l i t ( ca t6 1$Tier .N, Sp l i tRa t i o = 0 .75 )

t r a in6 = subset ( cat6 1 , sample6 == TRUE)

t e s t 6 = subset ( cat6 1 , sample6 == FALSE)

h2o . i n i t ( nthreads = 20 , max mem size = ”6g”)

t r n 6 f <− as . h2o ( t r a in6 )

t s t 6 f <− as . h2o ( t e s t 6 )

r f 6 f <− h2o . randomForest ( y=”Expense .Amount . Val idated .N” ,

t r a i n i ng f r ame=trn6 f , s topping rounds = 5 , s t opp ing t o l e r an c e = 0 .001 ,

s topp ing met r i c = ”AUC” , seed = 29 , b a l a n c e c l a s s e s = FALSE, n f o l d s = 10)

t rn6 r <− as . h2o ( s e l e c t ( as . data . frame ( t r n 6 f ) , Audit . Location , Date . D i f f . Cont , SubService . Category

, FT. I s . Contract .N, Tier .N, Cost . Pool , Expense .Amount . Val idated .N) )

t s t 6 r <− as . h2o ( s e l e c t ( as . data . frame ( t s t 6 f ) , Audit . Location , Date . D i f f . Cont , SubService . Category

, FT. I s . Contract .N, Tier .N, Cost . Pool , Expense .Amount . Val idated .N) )

r f 6 r <− h2o . randomForest ( x=1:6 , y=”Expense .Amount . Val idated .N” ,

t r a i n i ng f r ame=trn6 r , va l i da t i on f r ame=t s t 6 r , s topping rounds = 5 ,

s t opp ing t o l e r an c e = 0 .001 ,

s topp ing met r i c = ”AUC” , seed = 29 , b a l a n c e c l a s s e s = FALSE, n f o l d s =

10)

p e r f 6 f <− h2o . performance ( r f 6 f ) ; p e r f 6 f

h2o . varimp ( r f 6 f )

p e r f 6 r <− h2o . performance ( r f 6 r ) ; p e r f 6 r

h2o . varimp ( r f 6 r )

########################### Build up cos t groups ###############################

## 3 cos t groups

cat3 <− r e ad ex c e l (” c ://R/RData Thesis1 . x l sx ” ,9)

cat3 1 <− cbind . data . frame ( cat3 [ 3 : 1 3 ] )

sapply ( cat3 1 , c l a s s )

ca t3 1 <− transform ( cat3 1 ,

Audit . Locat ion=as . f a c t o r ( Audit . Locat ion ) ,

Cost . Pool=as . f a c t o r ( Cost . Pool ) ,

SubService . Category=as . f a c t o r ( SubService . Category ) ,

Date . D i f f . Cont=as . i n t e g e r (Date . D i f f . Cont ) ,
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FT. I s . Contract .N=as . l o g i c a l (FT. I s . Contract .N) ,

FT. ITPEC.N=as . f a c t o r (FT. ITPEC.N) ,

ITPECNEW3.N=as . f a c t o r (ITPECNEW3.N) ,

FT.ITRCCC.N=as . f a c t o r (FT.ITRCCC.N) ,

IT . Expenditure .N=as . f a c t o r ( IT . Expenditure .N) ,

Tier .N=as . f a c t o r ( Tier .N) ,

Expense .Amount . Val idated .N=as . f a c t o r ( Expense .Amount . Val idated .N) )

sample3 = sample . s p l i t ( ca t3 1$Tier .N, Sp l i tRa t i o = 0 .75 )

t r a in3 = subset ( cat3 1 , sample3 == TRUE)

t e s t 3 = subset ( cat3 1 , sample3 == FALSE)

h2o . i n i t ( nthreads = 20 , max mem size = ”6g”)

t r n 3 f <− as . h2o ( t r a in3 )

t s t 3 f <− as . h2o ( t e s t 3 )

r f 3 f <− h2o . randomForest ( y=”Expense .Amount . Val idated .N” ,

t r a i n i ng f r ame=trn3 f , s topping rounds = 5 , s t opp ing t o l e r an c e = 0 .001 ,

s topp ing met r i c = ”AUC” , seed = 29 , b a l a n c e c l a s s e s = FALSE, n f o l d s =

10)

t rn3 r <− as . h2o ( s e l e c t ( as . data . frame ( t r n 3 f ) , Audit . Location , Date . D i f f . Cont , SubService . Category

, FT. I s . Contract .N, Tier .N, Cost . Pool , Expense .Amount . Val idated .N) )

t s t 3 r <− as . h2o ( s e l e c t ( as . data . frame ( t s t 3 f ) , Audit . Location , Date . D i f f . Cont , SubService . Category

, FT. I s . Contract .N, Tier .N, Cost . Pool , Expense .Amount . Val idated .N) )

r f 3 r <− h2o . randomForest ( x=1:6 , y=”Expense .Amount . Val idated .N” ,

t r a i n i ng f r ame=trn3 r , va l i da t i on f r ame=t s t 3 r , s topping rounds = 5 ,

s t opp ing t o l e r an c e = 0 .001 ,

s topp ing met r i c = ”AUC” , seed = 29 , b a l a n c e c l a s s e s = FALSE, n f o l d s =

10)

p e r f 3 f <− h2o . performance ( r f 3 f ) ; p e r f 3 f

h2o . varimp ( r f 3 f )

p e r f 3 r <− h2o . performance ( r f 3 r ) ; p e r f 3 r

h2o . varimp ( r f 3 r )

## 4 cos t groups

cat4 <− r e ad ex c e l (” c ://R/RData Thesis1 . x l sx ” ,10)

cat4 1 <− cbind . data . frame ( cat4 [ 3 : 1 3 ] )

sapply ( cat4 1 , c l a s s )

ca t4 1 <− transform ( cat4 1 ,

Audit . Locat ion=as . f a c t o r ( Audit . Locat ion ) ,

Cost . Pool=as . f a c t o r ( Cost . Pool ) ,

SubService . Category=as . f a c t o r ( SubService . Category ) ,

Date . D i f f . Cont=as . i n t e g e r (Date . D i f f . Cont ) ,

FT. I s . Contract .N=as . l o g i c a l (FT. I s . Contract .N) ,

FT. ITPEC.N=as . f a c t o r (FT. ITPEC.N) ,

ITPECNEW3.N=as . f a c t o r (ITPECNEW3.N) ,

FT.ITRCCC.N=as . f a c t o r (FT.ITRCCC.N) ,

IT . Expenditure .N=as . f a c t o r ( IT . Expenditure .N) ,

Tier .N=as . f a c t o r ( Tier .N) ,

Expense .Amount . Val idated .N=as . f a c t o r ( Expense .Amount . Val idated .N) )

sample4 = sample . s p l i t ( ca t4 1$Tier .N, Sp l i tRa t i o = 0 .75 )
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t r a i n4 = subset ( cat4 1 , sample4 == TRUE)

t e s t 4 = subset ( cat4 1 , sample4 == FALSE)

h2o . i n i t ( nthreads = 20 , max mem size = ”6g”)

t r n 4 f <− as . h2o ( t r a in4 )

t s t 4 f <− as . h2o ( t e s t 4 )

r f 4 f <− h2o . randomForest ( y=”Expense .Amount . Val idated .N” ,

t r a i n i ng f r ame=trn4 f , s topping rounds = 5 , s t opp ing t o l e r an c e = 0 .001 ,

s topp ing met r i c = ”AUC” , seed = 29 , b a l a n c e c l a s s e s = FALSE, n f o l d s =

10)

t rn4 r <− as . h2o ( s e l e c t ( as . data . frame ( t r n 4 f ) , Audit . Location , Date . D i f f . Cont , SubService . Category

, FT. I s . Contract .N, Tier .N, Cost . Pool , Expense .Amount . Val idated .N) )

t s t 4 r <− as . h2o ( s e l e c t ( as . data . frame ( t s t 4 f ) , Audit . Location , Date . D i f f . Cont , SubService . Category

, FT. I s . Contract .N, Tier .N, Cost . Pool , Expense .Amount . Val idated .N) )

r f 4 r <− h2o . randomForest ( x=1:6 , y=”Expense .Amount . Val idated .N” ,

t r a i n i ng f r ame=trn4 r , va l i da t i on f r ame=t s t 4 r , s topping rounds = 5 ,

s t opp ing t o l e r an c e = 0 .001 ,

s topp ing met r i c = ”AUC” , seed = 29 , b a l a n c e c l a s s e s = FALSE, n f o l d s =

10)

p e r f 4 f <− h2o . performance ( r f 4 f ) ; p e r f 4 f

h2o . varimp ( r f 4 f )

p e r f 4 r <− h2o . performance ( r f 4 r ) ; p e r f 4 r

h2o . varimp ( r f 4 r )

################################################################################

## Examples f o r p r e d i c i t i o n s and Confusion Matr ices

#Confusion Matr ices

h2o . confus ionMatr ix ( r f 3 )

h2o . confus ionMatr ix ( r f 4 )

#Pred ic tor s , use as needed

pred4 <− h2o . p r ed i c t ( r f 4 r , newdata=as . h2o ( t s t 4 r ) )

h2o . expo r tF i l e ( pred4 , path = ’ c :// Users /Ajax/Desktop/ r f e x cu r v a l i d . csv ’ , f o r c e = TRUE)

h2o . expo r tF i l e ( predbc2 , path = ’ c :// Users /Ajax/Desktop/ va l . csv ’ , f o r c e = TRUE)
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Appendix D: R Code for Random Forest Model Enhancement and Excur-

sion

## Gridsearch Packages and Code ##

l i b r a r y ( readx l )

l i b r a r y ( car )

l i b r a r y (MASS)

l i b r a r y (FactoMineR )

l i b r a r y ( randomForest )

l i b r a r y ( caTools )

l i b r a r y ( h2o )

l i b r a r y ( j s o n l i t e )

l i b r a r y ( dplyr )

l i b r a r y ( ggp lot2 )

l i b r a r y ( t i dy r )

l i b r a r y ( ca r e t )

### No ze ro s ###

## 5 cos t groups g r i d s ea r ch

gs <− r e ad ex c e l (” c ://R/RData Thesis1 . x l sx ” ,7)

gs1 <− cbind . data . frame ( gs [ 3 : 1 3 ] )

sapply ( gs1 , c l a s s )

gs1 <− transform ( gs1 ,

Audit . Locat ion=as . f a c t o r ( Audit . Locat ion ) ,

Cost . Pool=as . f a c t o r ( Cost . Pool ) ,

SubService . Category=as . f a c t o r ( SubService . Category ) ,

Date . D i f f . Cont=as . i n t e g e r (Date . D i f f . Cont ) ,

FT. I s . Contract .N=as . l o g i c a l (FT. I s . Contract .N) ,

FT. ITPEC.N=as . f a c t o r (FT. ITPEC.N) ,

ITPECNEW3.N=as . f a c t o r (ITPECNEW3.N) ,

FT.ITRCCC.N=as . f a c t o r (FT.ITRCCC.N) ,

IT . Expenditure .N=as . f a c t o r ( IT . Expenditure .N) ,

Tier .N=as . f a c t o r ( Tier .N) ,

Expense .Amount . Val idated .N=as . f a c t o r ( Expense .Amount . Val idated .N) )

#Control func t i on f o r t r a i n i n g with 10 f o l d s o f c r o s s v a l i d a t i on

con t r o l <− t ra inCont ro l (method=’ repeatedcv ’ ,

number=10,

r epea t s =3,

search=’ gr id ’ )

tunegr id <− expand . g r id ( . mtry=(1:12) )

r e g r i d s e a r c h <− t r a i n ( Expense .Amount . Val idated .N˜ . ,

data=gs1 ,

method=’ r f ’ ,

metr ic=’Accuracy ’ ,

tuneGrid=tunegr id )

p r in t ( r e g r i d s e a r c h )

## RF Packages and Code Excursion Model f o r Balanced Cla s s e s ##

l i b r a r y ( readx l )

l i b r a r y ( car )

l i b r a r y (MASS)

49



l i b r a r y (FactoMineR )

l i b r a r y ( randomForest )

l i b r a r y ( caTools )

l i b r a r y ( h2o )

l i b r a r y ( j s o n l i t e )

l i b r a r y ( dplyr )

l i b r a r y ( ggp lot2 )

l i b r a r y ( t i dy r )

l i b r a r y ( ca r e t )

## Excursion Balanced Cla s s e s

## Six Category RF model , f u l l range

bc <− r e ad ex c e l (” c ://R/RData Thesis1 . x l sx ” ,6)

bc1 <− cbind . data . frame ( bc [ 3 : 1 3 ] )

sapply ( bc1 , c l a s s )

bc1 <− transform ( bc1 ,

Audit . Locat ion=as . f a c t o r ( Audit . Locat ion ) ,

Cost . Pool=as . f a c t o r ( Cost . Pool ) ,

SubService . Category=as . f a c t o r ( SubService . Category ) ,

Date . D i f f . Cont=as . i n t e g e r (Date . D i f f . Cont ) ,

FT. I s . Contract .N=as . l o g i c a l (FT. I s . Contract .N) ,

FT. ITPEC.N=as . f a c t o r (FT. ITPEC.N) ,

ITPECNEW3.N=as . f a c t o r (ITPECNEW3.N) ,

FT.ITRCCC.N=as . f a c t o r (FT.ITRCCC.N) ,

IT . Expenditure .N=as . f a c t o r ( IT . Expenditure .N) ,

Tier .N=as . f a c t o r ( Tier .N) ,

Expense .Amount . Val idated .N=as . f a c t o r ( Expense .Amount . Val idated .N) )

samplebc = sample . s p l i t ( bc1$Tier .N, Sp l i tRat i o = 0 .75 )

t ra inbc = subset ( bc1 , samplebc == TRUE)

t e s tbc = subset ( bc1 , samplebc == FALSE)

h2o . i n i t ( nthreads = 20 , max mem size = ”6g”)

trnbc <− as . h2o ( t ra inbc )

t s tbc <− as . h2o ( t e s tbc )

r f b c <− h2o . randomForest ( y=”Expense .Amount . Val idated .N” ,

t r a i n i ng f r ame=trnbc , va l i da t i on f r ame=ts tbc , s topping rounds = 5 ,

s t opp ing t o l e r an c e = 0 .001 ,

s topp ing met r i c = ”AUC” , seed = 29 , b a l a n c e c l a s s e s = TRUE, n f o l d s = 10 ,

mtr i e s = −2, n t r e e s =100)

per fbc <− h2o . performance ( r f b c ) ; pe r fbc

h2o . varimp ( r fb c )

#Pred ic tor s , use as needed

predbc <− h2o . p r ed i c t ( r fbc , newdata=as . h2o ( t ra inbc ) ) ; predbc

predbc2 <− h2o . p r ed i c t ( r fbc , newdata=as . h2o ( t e s tbc ) ) ; predbc2

h2o . expo r tF i l e ( predbc2 , path = ’ c :// Users /Ajax/Desktop/ r f e x cu r v a l i d . csv ’ , f o r c e = TRUE)

h2o . expo r tF i l e ( h2o . getFrame (” t r a i nb c s i d a 4 9 3 9 ”) , path = ’ c :// Users /Ajax/Desktop/ r f ex cu r . csv ’ ,

f o r c e = TRUE)

################################################################################

## 5 cos t groups , no zero

cat6 <− r e ad ex c e l (” c ://R/RData Thesis1 . x l sx ” ,8)
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cat6 1 <− cbind . data . frame ( cat6 [ 3 : 1 3 ] )

sapply ( cat6 1 , c l a s s )

ca t6 1 <− transform ( cat6 1 ,

Audit . Locat ion=as . f a c t o r ( Audit . Locat ion ) ,

Cost . Pool=as . f a c t o r ( Cost . Pool ) ,

SubService . Category=as . f a c t o r ( SubService . Category ) ,

Date . D i f f . Cont=as . i n t e g e r (Date . D i f f . Cont ) ,

FT. I s . Contract .N=as . l o g i c a l (FT. I s . Contract .N) ,

FT. ITPEC.N=as . f a c t o r (FT. ITPEC.N) ,

ITPECNEW3.N=as . f a c t o r (ITPECNEW3.N) ,

FT.ITRCCC.N=as . f a c t o r (FT.ITRCCC.N) ,

IT . Expenditure .N=as . f a c t o r ( IT . Expenditure .N) ,

Tier .N=as . f a c t o r ( Tier .N) ,

Expense .Amount . Val idated .N=as . f a c t o r ( Expense .Amount . Val idated .N) )

sample6 = sample . s p l i t ( ca t6 1$Tier .N, Sp l i tRa t i o = 0 .75 )

t r a in6 = subset ( cat6 1 , sample6 == TRUE)

t e s t 6 = subset ( cat6 1 , sample6 == FALSE)

h2o . i n i t ( nthreads = 20 , max mem size = ”6g”)

t r n 6 f <− as . h2o ( t r a in6 )

r f 6 f <− h2o . randomForest ( y=”Expense .Amount . Val idated .N” ,

t r a i n i ng f r ame=trn6 f , s topping rounds = 5 , s t opp ing t o l e r an c e = 0 .001 ,

s topp ing met r i c = ”AUC” , seed = 29 , b a l a n c e c l a s s e s = TRUE, n f o l d s = 10)

p e r f 6 f <− h2o . performance ( r f 6 f ) ; p e r f 6 f

h2o . varimp ( r f 6 f )
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