
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-1-1999

Implementation of the Metaheuristic Tabu Search in Route Implementation of the Metaheuristic Tabu Search in Route

Selection for Mobility Analysis Support System Selection for Mobility Analysis Support System

David M. Ryer

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Operations Research, Systems Engineering and Industrial Engineering Commons

Recommended Citation Recommended Citation
Ryer, David M., "Implementation of the Metaheuristic Tabu Search in Route Selection for Mobility Analysis
Support System" (1999). Theses and Dissertations. 5293.
https://scholar.afit.edu/etd/5293

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5293&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=scholar.afit.edu%2Fetd%2F5293&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5293?utm_source=scholar.afit.edu%2Fetd%2F5293&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

AFIT/GOA/ENS/99M-07

IMPLEMENTATION OF THE METAHEURISTIC
TABU SEARCH IN ROUTE SELECTION

FOR MOBILITY ANALYSIS SUPPORT SYSTEM

THESIS

David M. Ryer, Major, USAF

AFIT/GOA/ENS/99M-07

Approved for public release; distribution unlimited

^«MOTfflSKffiD» 19990409 018

THESIS APPROVAL

NAME: David M. Ryer, Major, USAF CLASS: GOA-99M

THESIS TITLE: Implementation of the Metaheuristic Tabu Search in Route Selection
for Mobility Analysis Support System

DEFENSE DATE: 2 March 1999

COMMITTEE: NAME/TITLE/DEPARTMENT

Advisor

Reader

Reader

T. Glenn Bailey, Lieutenant Colonel, USAF
Assistant Professor of Operations Research
Department of Operational Sciences
Air Force Institute of Technology

James T. Moore
Associate Professor of Operations Research
Department of Operational Sciences
Air Force Institute of Technology

William B. Carlton, Lieutenant Colonel (P), USA
Adjunct Assistant Professor of Operations Research
Department of Operational Sciences
Air Force Institute of Technology

idikSQA^

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U. S. Government.

IMPLEMENTATION OF THE METAHEURISTIC
TABU SEARCH IN ROUTE SELECTION

FOR MOBILITY ANALYSIS SUPPORT SYSTEM

THESIS

Presented to the Faculty of the Graduate School of Engineering
Air Force Institute of Technology

Air University
In Partial Fulfillment of the

Requirements for the Degree of
Master of Science in Operations Research

David M. Ryer, B.S.
Major, USAF

March 1999

Approved for public release; distribution unlimited

Acknowledgements

This project and the year and a half of school that accompanied it would not have

been possible without the love and support of my wife, Rita. I hope I am able to return

the favor to you someday soon. My son, Shaun, is a perfect blessing that helped remind

me what is important and how to have fun.

I must also thank my advisor, Lt Col Glenn Bailey, whose direction and ideas

always gave me the right focus. I would also like to thank my committee, LTC Carlton

for helping me extend his initial work and Dr. Moore for his constructive reviews.

Finally, I would like to thank my partner, Capt Kevin O'Rourke whose programming

expertise was invaluable in completing this "straightforward" coding project.

Table of Contents

Page

Acknowledgments ü
List of Figures iv
List of Tables v
Abstract vi

Chapter 1 1

1.1 Introduction 1
1.2 Background 1
1.3 Scope 4

Chapter 2. .5

2.1 Air Mobility Command's Mobility Model - MASS 5
2.2 Problem Formulation - The Vehicle Routing Problem 7
2.3 Methodology 10

2.3.1 Tour Structure 11
2.3.2 Starting Solution 12
2.3.3 Solution Neighborhood 13
2.3.4 Tabu Criteria 15
2.3.5 Algorithm Complexity 16

2.4 Testing and Validation 17
2.5 Extensions for Solving Mobility Routing Problems 24
2.6 Dimensions of the Mobility Routing Problem 26
2.7 Future Research 33
2.8 Conclusion 34

Appendix A: Extended Problem Formulation 37

A.l Traveling Salesman Problem 38
A.2 Multiple Traveling Salesman Problem 40
A.3 Vehicle Routing Problem 41
A.4 Multiple Depot VRP 44
A.5 Pickup and Delivery Problem 45

Appendix B: Java Documentation 49

Bibliography 99

Vita 102

in

List of Figures

Figure Page

1. MASS Regions 6

2. Routes that Link Region Pairs 6

3. Disjunctive Graph Representation of Tour 12

4. RTS Pseudocode 16

5. Calculation of Groundspeed to Account for Winds 25

6. Solution of Simple TSP comprised of the 50 U. S. Capitals 29

7. Mobility Problem Constraints and their Effect on Route Selection 30

8. Southwest Asia Scenario 32

9. Pacific Scenario 33

IV

List of Tables

Table Page

l.Solomon mTSPTW 25 Customers 18

2. Solomon mTSPTW 50 Customers 19

3. Solomon mTSPTW 100 Customers 20

4. Solomon VRPTW 25 Customers 21

5. Solomon VRPTW 50 Customers 22

6. Solomon VRPTW 100 Customers 23

AFIT/GOA/ENS/99M-07

Abstract

This thesis employs a reactive tabu search heuristic implemented in the Java

programming language to solve a real world variation of the vehicle routing problem with

the objective of providing quality routes to Mobility Analysis Support System (MASS).

MASS is a stochastic simulation model used extensively by Air Mobility Command

(AMC) to analyze strategic airlift capabilities and future procurement decisions. This

dynamic real world problem of strategic and tactical airlift possesses a number of side

constraints such as vehicle capacities, route length and time windows in a sizeable

network with multiple depots and a large fleet of heterogeneous vehicles. Finding

optimal solutions to this problem is currently not practical. Currently, MASS requires all

possible routes used in its simulation to be manually selected. As a result, the route

selection process is a tedious and time consuming process that relies on experience and

past performance of the model to obtain quality routes for the mobility system.

VI

Chapter 1

1.1 Introduction

Mobility Analysis Support System (MASS) is a simulation model used

extensively by Air Mobility Command (AMC) to analyze strategic airlift capabilities and

future procurement decisions, whose routes are calculated by an experienced analyst

through trial and error. This thesis employs a reactive tabu search heuristic implemented

in the Java programming language to solve the vehicle routing problem with the objective

of providing quality routes to MASS that are as good or better than those currently used.

1.2 Background

Most vehicle routing problems (VRP's) are NP-hard combinatorial problems for

which no polynomially bounded algorithm has yet been found (Baker 1986). Convergent

algorithms can rarely solve problems larger than 50 customers, and often require

relatively few side constraints (Gendreau et al. 1997). Unfortunately, real world

problems such as strategic airlift possess a number of side constraints such as precedence,

route and vehicle capacities, route length and time windows in a sizeable network with

multiple depots, and a large fleet of heterogeneous vehicles. Therefore, finding optimal

solutions using such techniques as branch and bound or dynamic programming is

currently not practical.

On the other hand, many heuristic approaches can provide excellent solutions

with reasonable computational times. Greedy algorithms, which prove to be very useful

in simpler problems, fail to achieve the desired results with respect to solution quality,

while simulated annealing (SA) displays large variance with regard to computational time

and quality due the to random nature of its search strategy (Osman 1993). Genetic

algorithms (GAs) are difficult to apply to VRP's with capacity, distance, and time

window constraints because they were designed to solve numerical optimization

problems rather than combinatorial optimization problems (Gendreau et al. 1997).

Conversely, tabu search (TS) has provided excellent results on this type of problem with

the implementation of intensification and diversification strategies (Gendreau et al.

1997). Intensification uses choice rules to encourage move combinations that incorporate

good solution features, while diversification forces the solution search to unexplored

regions or to solutions significantly different than those already found (Glover and

Laguna 1997). The literature shows TS is a robust approach to solving many variations of

the VRP and dominates current studies of routing problems (Gendreau et al. 1997, Xu

and Kelly 1996, Rochat and Semet 1994, Renaud et al.1996, Osman 1993, Garcia et al.

1994, Chiang and Russell 1997, Carlton 1995).

Recent modeling efforts in the military airlift community emphasize simulation

over optimization, in part due to the ease in which simulation can represent the stochastic

nature of the problems being studied (Rosenthal et al. 1997, Morton et al. 1996).

However, more recent efforts look at combining simulation and optimization, particularly

with regard to the Air Mobility Command's legacy model Mobility Analysis Support

System (MASS). MASS simulates the strategic airlift environment for analysis of

doctrine, strategic airlift capability, current AMC airlift assets and future AMC

acquisitions. This simulation analysis supports the activities of the AMC Commander,

the United States Transportation Command (USTRANSCOM), and a wide variety of

theater and campaign level commanders. In addition, proprietary organizations like

Lockheed-Martin and Boeing use MASS to analyze future airlift systems. Possessing a

global domain, MASS simulates up to 300 bases at any latitude and longitude in the

world, using up to ten types of aircraft, with the entire fleet of strategic airlift aircraft

tracked by tail number and cargo classified by weight, dimension and special handling

instructions (Boeing 1996). In short, the model's domain is the world and it spans all

strategic aircraft in the USAF inventory and CRAF with virtually every cargo

combination (Boeing 1996).

The primary component of MASS is the Airlift Flow Model (AFM), which

orchestrates the simulation of mission events throughout the entire system. Supporting

this core element are various loading, ground crew, command and control, and tanker

models. Current validation efforts include output comparisons between MASS and the

Naval Postgraduate School/RAND Mobility Optimizer (NRMO) by crossfeeding relative

information between the two models in a series of repetitive simulations and then

observing if the two models converge on the same solution (Wright 1998).

Extending the work of Ryan (1999) and Carlton (1995), we implement the

metaheuristic of reactive TS (RTS) in an object-oriented (00) programming language.

The RTS route solution represents the input to MASS for comparison with current

routing selection methods. Our goal is to improve the route selection process used for

MASS by using RTS-based routing inputs instead of NRMO or manually derived routing

solutions.

1.3 Scope

Earlier attempts at route generators employ the optimal k-shortest path method

and route length restrictions representing aircraft type maximum flight legs. This effort,

coded in two separate computer-programming languages, has shown limited results in

large realistic scenarios (Rink 1998). Extending this effort to include additional route

selection criteria requires an efficient and robust method currently not achievable by

convergent algorithms. In order to improve the overall quality of route selection, AMC

Studies and Analysis (XPY) proposes adding international airspace routing constraints,

crew staging and air-refueling constraints to the routing problem formulation.

Following the hierarchy scheme introduced by Carlton (1995) this problem can be

treated as a VRP with multiple depots (MD), multiple non-homogenous vehicles (MHV),

and route length constraints (RL). As with most heuristic techniques, the algorithm, once

constructed, will have to be fine-tuned to accurately represent the most important routing

considerations as modeled by MASS.

Chapter 2

2.1 Air Mobility Command's Mobility Model - MASS

Currently route segments are fed into MASS in an ordered list (one of many input

files required for a single simulation run) determined solely by the user. The Aircraft

Routing Algorithm (ARA) of MASS checks these route segments in file order for a

feasible crew plan. Then the Aircraft Flight Plan Algorithm (AFPA) determines if a

route can be feasibly mission planned (flying hour availability, aircraft target use rate,

route length, ramp space or maximum on ground (MOG)) (Boeing 1996). If this route

segment is not feasible, then the next route in the file is checked. If no feasible route

segment is found, the planning phase returns to a previous planned enroute segment and

restarts the process. If no feasible crew plan or mission plan exists on the routes

provided, the aircraft is scheduled for a "Part rV" mission; i.e., it flies from its present

position to its home station base as a recovery.

Because of the importance of crew feasibility in MASS, a constraint to this

problem prioritizes routes with available crews to avoid unnecessary recovery missions.

Listed in the order of importance, the following considerations must be evaluated by any

route generator: distance, route length restriction, crew availability, route or airspace

restrictions, winds, and air refueling capability. All locations that make up a route (Home

Station, Onload, Offload, Enroute, and Recovery) are further characterized by the

geographical region in which they are located (Figure 1).

jp^^^Sj^ X^'
r r

\1 30 %f
AS-3'

—lA*\ 3}f > ^ 45 ^ Jl^vT?"^ '
/ 1/46

H

Figure 1. MASS Regions

In order to avoid the task of explicitly listing all possible route permutations from

each on-load base to each off-load base, the Airlift Flow Model (AFM) deals with region

pairs. With this representation, it is not necessary to specify every possible route joining

the departure base to the destination base, but instead only the routes joining the

respective regions (Brigantic 1998).

Region 1

Base A

BaseC

Aerial Refueling
Point 1 (AR1) Region 20

Figure 2. Routes that Link Region Pairings

2.2 Problem Formulation - The Vehicle Routing Problem

The VRP can be viewed as an extension of the basic traveling salesman problem

(TSP) that adds capacity constraints to multiple salesman or vehicles. (For a more in-

depth discussion on building the formulation for this family of problems see Appendix

A.) The VRP involves w vehicles leaving a depot and servicing n customers, each with a

unique demand dt. Each vehicle v has a limited capacity Kv and maximum time length for

a route Tv that constrains their closed delivery routes. This particular instance of the VRP

is commonly known as the general vehicle routing problem (GVRP). If the route length

or range constraints are removed, then we refer to this problem as the standard vehicle

routing problem (SVRP) (Bodin et al. 1983). We also define the time required for

vehicle v to deliver or service at node i as s,v, travel time for vehicle v from node i to node

j as tif, xij = 1 if arc i-j is used by vehicle v (xt/ = 0, otherwise), and Cy as the cost of

travelling from node / to node j.

n n vi

Minimize^^^CyXl (1)
i=l /=1 v=l

Subject to Y£xl=l (j = 2,...,n) (2)
1=1 v=l

2£xj=ifi = 2,...,«; 0)
7=1 v=l

IX "IX =° <v = l.-MP = I-*) (4)
>'=1 7=1

n n

£4(X4)<*V (v = l,...,w) (5)
i=l 7=1

n n n n

X^Z^+SX'W^v (v = l,...,w) (6)
1=1 7=1 '=1 ;=i

£*;,.< i (v = i,..,w) (7)

X^<1 (v = l,..,w) (8)
1=2

IeS x,/ = 0 or 1 for all i, j, v

The objective function (1) minimizes the cost (travel distance) for all vehicles.

Equations (2) and (3) ensure every customer is visited by one and only one vehicle. We

assume that a customer's demand does not exceed vehicle capacity and each customer is

fully serviced by its one visiting vehicle. Equation (4) checks the continuity of our routes

while (5) maintains the capacity constraint on all of the vehicles. Since we represent

route length restrictions by time, (6) ensures maximum route times are not exceeded.

Equations (7) and (8) insure we do not exceed vehicle fleet size. Next, let N" c N

represent the nodes from N assigned to vehicle v such that for any vehicle v that is not

used, iV" = 0; N1 uN2 u ... uN"v = N; and, N1 niV2 n ... niV"v = 0. The subtour

breaking constraints are then defined and included in the model as

xl '• X X x'j - * f°r every nonempty subset Qof Nv V v = 1 ..nv.

This states that for every proper subset Q of nodes must be connected to the other nodes

in the network of the solution.

We eliminate some redundant constraints by recognizing that (2) and (4) enforces

(3), while (4) and (7) imply (8) (Bodin et al. 1983).

Finally, we add time window considerations to the VRP. Let a,- represent the

arrival time to node;', e, the earliest delivery time allowable, and lj the no-later-than-time

for delivery such that

v i

cu = 0

ej<aj<lj (j = 2,...,n).

For each;', one of the xt/ variables equals 1, so a, sums the previous arrival time

(a,), the service time at node / (s?), and the travel time from i to; (/,/). Alternatively,

from Bodin et al. (1983), we can use the linear representation of time windows constraint

in the formulation

Uj > (at + st
v + t/) - (1 - xj) Tmax

v V

CLj <(di + S? + ti/) + (1 - Xi/) Tmax
v

Vi,j, v

When xi/ = 1, a,- is equal to the summation of the previous arrival time, previous service

time and the travel time between the nodes. Conversely, when xt/ = 0 the constraints are

redundant.

There are many alterations that could be added to this formulation to represent

common real world problems. One such consideration takes into account the duty

limitations of the crew that flies the vehicles. This can be done through inserting rest

nodes that must be visited during the route that incur no travel cost, but impose service

time equal to the mandatory rest break. Hard time windows for these rest nodes insure

that the maximum duty hours will not be exceeded.

While the time windows defined in this formulation are hard, modeling the early

time window as "soft" allows vehicles to arrive early, thus introducing a waiting time.

Therefore, we use arrival times to calculate a waiting time that must be included in the

precedence constraints along with service time and travel time.

Several changes are made to finalize the formulation of the strategic airlift system

as modeled by MASS. First, we eliminate or soften time window constraints for the

depots unless they are fixed and implement a version of the route length constraint (6) to

insure route length limitations for a particular aircraft are not exceeded.

2.3 Methodology

The intent of this project is to explore the application of the Reactive Tabu Search

(RTS) metaheuristic to routing problems, specifically the vehicle routing problem with

time windows (VRPTW). This project has been coded in the object-oriented (00) Java

programming language for several reasons. First, the OO design of software allows us to

reuse and modify existing code and libraries to reduce development time of new

software. Second, Java programs are portable (Flanagan 1997). Finally, as an added

benefit, the documentation tool, javadoc, links program documentation directly to the

code for a hassle free method of updating and maintaining documentation. Javadoc

extracts embedded comments in the code and creates an html file that is viewable with a

web browser. This tool allows you to automatically create and maintain a single source

file for accurate and useful documentation in the form of a web page (Eckel 1998).

The Java program represents a continuation of RTS code improvements starting

with Carlton's (1995) C code through Ryan et al. (1999) MODSBVI implementation.

10

RTS follows the basic TS scheme but adjusts the tabu length based on the quality of the

search, as determined by the number of iterations before a solution is revisited. (For

example, a "high quality" search typically does not tend to revisit past solutions.) When

the search moves to a neighbor solution that has been visited within the designated

number of iterations or cycle length, the tabu length is increased by a multiplicative

factor.

Conversely, if the solution has not been visited previously, tabu length is

decreased by the multiplicative factor. When a solution is revisited within the maximum

cycle length, a moving average of cycle lengths is calculated. If this average is less than

the number of iterations without a change in tabu length, the current tabu length is

decreased by the multiplicative factor. This concept from Battiti and Tecchiolli (1994)

enforces the ultimate objective a broad exploration of the search space.

Finally, if all candidate solutions are tabu and aspiration criteria is not met, the

search escapes to a solution with the smallest move value regardless of tabu status and

then decreases the tabu length. This entire search routine is then continued for a

designated number of iterations.

2.3.1 Tour Structure

The objective of the VRPTW is to find a tour in which each customer is visited

within its stated time window by one vehicle, with a finite capacity, while minimizing the

total cost. A tour is defined by the order in which the n customers are served by the m

vehicles and is represented as an ordered list of the sequence of customers and vehicles,

or "disjunctive graph" (Figure 3).

11

Node 0, Depot
Depot Vehicle

Thiele #1 #2

Node
n + 1
Depot (Excess unused vehicles)

Figure 3. Disjunctive Graph representation of Tour

Positions 0 and n + 1 in this sequence represent depots, but are internally modeled

as vehicles. Initially, the customers occupy positions between 1 and rij. Excess vehicles

occupy positions after the last depot.

2.3.2 Starting Solution

Several methods are used to generate starting, but not necessarily feasible,

solutions for the RTS algorithm. The time window "midpoint" is defined as halfway

between the end service time (a no later than time) and the earlier begin service time (a

no earlier than time) for a particular customer. In order starting tour (OST), we generate

a "starting solution" by sorting the customers into an increasing time window midpoint

value while enforcing the time window feasibility condition. Since the RTS is not

limited to feasible starting solutions, the initial solution can sequentially read the initial

list of customers (OST OFF), or this list can be randomly reordered and read to create a

random-starting tour (RST) with a different staring point (and possibly an improved

solution).

12

2.3.3 Solution Neighborhood

This search routine uses a disjunctive graph formulation internally to represent

solution tours. From this representation the solution neighborhood is defined by the use

of swap and insertion moves. A swap move is performed by exchanging the position of

two adjacent nodes, while an insertion uses a series of successive swap moves to

relocates a specific customer forwards or backwards in the tour by a number of steps

called the insertion depth (d).

Through the systematic use of these moves the RTS explores the vast solution

space of the VRPTW. Starting with the initial solution, the algorithm searches insertion

depths d > 1 later in the tour (for customers 1 to n-\) and explores earlier insertions for

depths d < -2 (for customers 3 to n), comparing the candidate's change in objective

function from that of the incumbent tour. To reduce the vast set of candidate moves in a

neighborhood, redundant tours are eliminated and the restriction of strong time window

infeasibility is applied.

Redundant tours are tracked through the use of a two-attribute hashing scheme.

The first attribute, hashing function (f(T)), is the objective function value Z(T). The

second attribute, the tour hashing value (thv), takes the tour vector and calculates an

integer value based on random integer values, *F(i), and the index of the customer

assigned to tour position i, T, (Woodruff and Zemel 1993), such that

;=o

The tour hashing value attempts to minimize the possibility of a collision, or the incorrect

identification of two tours as being identical or redundant when in fact they are distinct.

13

Additional attributes used to identify a solution are the tour cost, travel time, time

window penalty, and total penalties. These integer values are concatenated in a string

object that is uniquely identified in the Java programming language (java.util package)

using the Hashtable class (Grand and Knudsen 1997). This unique numerical value is the

"key" to identifying past solutions efficiently as well as accessing the "hash record",

where solution attributes are stored in their original form.

Strong window infeasibility states that whenever a vehicle leaves one node it can

never arrive at the next node within its desired time window. Conversely, weak time

window infeasible tours occur when only some departure times preclude a timely arrival

at the next node. Unlike strong time window infeasibility, weak time window infeasible

tours are evaluated in the search since insertion moves can ultimately reduce the amount

of infeasibility in the overall tour. This is critical since past research has shown that

feasible solution regions are isolated or disjoint in the solution space of these problems.

In order to obtain an effective search, the method must investigate or accept infeasible

solutions. This search of the infeasible region is facilitated through the use of penalty

factors.

The ability to explore infeasible solutions represents a major advantage of this

method for effectively exploring the solution space. First, instead of being restricted to

regions of feasibility, RTS can traverse the regions of infeasibility to include using an

infeasible initial solution. Second, the infeasible solutions recorded can be used in real

world applications. For instance, an infeasible solution that produces very good results

overall may become feasible with the relaxation of a constraint controlled by the

decision-maker. These infeasible solutions represent the difficult choices faced by

14

managers trying to balance competing constraints when developing routes (this occurred

in a delivery problem solved by Rochat and Semet in 1994).

From a solution neighborhood, the algorithm chooses the solution that results in

the smallest move value. The move value is the difference between the incumbent tour's

objective function value and the candidate's objective function value. The objective

function value used in these initial tests includes change in travel time, change in waiting

time, change in the time window penalty (lateness) and load penalty. With a relatively

small amount of coding, the objective function can be expanded to include additional

penalties, changed to represent several different weighted objective functions, or

combined in a hierarchical objective function.

2.3.4 Tabu Criteria

Tabu search uses short-term memory to determine if a particular tour or attribute

has already been visited by examining the attributes that comprise the tour. The

examination must efficiently and reliably store and identify solution attributes previously

visited during the search. We employ a "Tabulist" matrix of (n+l)*(n+l) dimensions

with row numbers corresponding to customer identification number and columns

corresponding to the index or position of the customer in the solution tour. The data

elements in this array store a value equal to the iteration number that existed when the

customer moved into this position, plus the tabu length. Later in the search, this value

will be compared to the current iteration to determine if this attribute is tabu.

15

2.3.5 Algorithm Complexity

The size of the neighborhood considered at each step is O (nd) and the

computation of the move value for each neighbor is O (n). If the depth of the insertion

moves is restricted to 1, the algorithm achieves a computational complexity of O (n).

Thus, the worst case complexity is O (n2d), where d is the depth of the allowable

insertion moves. When the insertion depth is expanded, the computational complexity

expands with it to O (ra3). However, testing has shown empirically that considerably

better times than O (n3) can be achieved, due to the strong time window infeasibility

restriction (Carlton 1995).

1. Initialize starting variables (k max iterations) and structures
2. Compute time matrix
3. Select starting tour

a. Compute initial tour cost (Tour cost = Travel time + Penalty term)
b. Compute initial hashing values

4. While (k < niters)
a. Look for incumbent tour in the hashing structure

1) If found, update the iteration when found, increase the tabu length if
applicable

2) If not found, add to the hashing structure, decrease the tabu length, if
applicable

b. Evaluate all later insertions (d > 1, for customers 1 to n-V)
c. Evaluate all earlier insertions (d < -2, for customers 3 to n)
d. Move to the non-tabu neighbor. If all tours are tabu, move to the neighbor with

the smallest move value, and reduce the tabu length.
e. Update the search

1) Incumbent tour schedule
2) Incumbent tour hashing value
3) Retain the best feasible solution found and the tour with the smallest tour

cost regardless of feasibility
f. k = k+1

5. Output results

Figure 4. RTS Pseudocode (Carlton 1995)

16

2.4 Testing and Validation

Initial testing and validation uses the Solomon VRPTW/mTSPTW problem test

set; specifically the 25, 50 and 100 customer problems with random, clustered, and

random clustered distribution patterns. Computational results are compared to optimal

answers obtained by Desrochers et al. (1992) (Tables 1-6). The first column identifies

the problem instance. The second through fifth columns present the results obtained with

the Java implemented RTS algorithm, i.e., the objective function value of minimum

travel time, number of vehicles required, iteration of best feasible solution and the time

(seconds) at which the solution was found, respectively. Similar information is presented

in columns six through eight for the optimal solutions obtained by Desrochers et al.

(1992). Columns 9 and 10 display the difference in travel time and the percentage

difference between the optimal answer (when known) and the result obtained from the

RTS algorithm. The last column shows the RTS starting method used to achieve the

solution. OST is the ordered starting tour (arranged by time window midpoints). RST is

the random arrangement of customers followed by the integer seed used. Listed order

(LO) indicates that the initial solution is taken in exact order presented in the problem.

All problems were solved by the RTS algorithm using 2500 iterations, with an

overall solution quality better than 99% of optimal in a fraction of the computational time

required for the optimal solution. The increase in computational time from the mTSPTW

algorithm to the VRPTW algorithm was negligible because most of the structure for the

VRPTW was already included in the Java code for the mTSPTW algorithm.

17

Table 1. Solomon mTSPTW (25 Customers)

Prob Set1 Rver & O'Rourke Optimal Difference
A A%

Start

UT) Used Iter2 Time3
UT) Used Time4 Method5

R101 867.1 8 317 3 867.1 8 5.8 0.0 0.00% OST

R102 797.1 7 35 1 191.1 7 20.3 0.0 0.00% OST

R103 704.6 5 132 1 704.6 5 22.2 0.0 0.00% OST

R104 666.9 4 86 1 666.9 4 46.0 0.0 0.00% OST

R105 780.5 6 95 1 780.5 6 22.6 0.0 0.00% OST

R106 715.4 5 28 0 715.4 5 205.2 0.0 0.00% RST0

R107 674.3 4 2080 23 674.3 4 304.1 0.0 0.00% RST2

R108 647.3 4 45 0 647.3 4 307.4 0.0 0.00% OST

R109 691.3 5 21 0 691.3 5 14.4 0.0 0.00% OST

R110 694.1 5 91 2 679.8 4 64.3 14.3 2.10% RST0

Rill 678.8 4 178 2 678.8 4 330.3 0.0 0.00% RST0

R112 643.0 4 25 0 643.0 4 623.3 0.0 0.00% LO

C101 2441.3 3 23 0 2441.3 3 18.6 0.0 0.00% OST

C102 2440.3 3 379 4 2440.3 3 79.9 0.0 0.00% LO

C103 2440.3 3 72 1 2440.3 3 134.7 0.0 0.00% OST

C104 2436.9 3 797 8 2436.9 3. 223.9 0.0 0.00% OST

C105 2441.3 3 209 2 2441.3 3 25.6 0.0 0.00% OST

C106 2441.3 3 26 1 2441.3 3 20.7 0.0 0.00% OST

C107 2441.3 3 28 1 2441.3 3 31.7 0.0 0.00% OST

C108 2441.3 3 1421 15 2441.3 3 43.1 0.0 0.00% OST

C109 2441.3 3 148 1 2441.3 3 585.4 0.0 0.00% OST

RC101 711.1 4 214 3 711.1 4 225.4 0.0 0.00% LO

RC102 601.7 3 20 1 596.0 3 18.1 5.7 0.96% OST

RC103 582.8 3 2193 24 582.8 3 103.0 0.0 0.00% RST2

RC104 556.6 3 604 6 556.6 3 177.9 0.0 0.00% OST

RC105 661.2 4 79 1 661.2 4 37.4 0.0 0.00% RST1

RC106 595.5 3 60 1 595.5 3 248.4 0.0 0.00% RST1

RC107 548.3 3 69 1 548.3 3 113.9 0.0 0.00% RST0

RC108 544.5 3 2203 23 544.5 3 256.0 0.0 0.00% OST

Average 1218.19 3.93 402.7 4.38 1184.8 3.90 148.6 0.69 0.11% —

1 Maximum number of vehicles: m = 10. Time window penalty: p-rw = 1.0.
Maximum iterations: k = 2500.

3 Seconds on a Pentiun n II400 M Hz system . Total runtime - 28 seconds each.
4 Seconds on a SUN SPARK 1.
5 OST is ordered starting tour. RST # is random starting tour where # is the seed value. LO is listed ordering.

(O'Rourke 1999)

18

Table 2. Solomon mTSPTW (50 Customers)

Prob Set1 Rver & O'Rourke Optimal Difference
A A%

Start

Z,(7) Used Iter2 Time3 ZfJ) Used Time4 Method5

R101 1543.8 12 239 9 1535.2 12 66.7 8.6 0.56% RSTO

R102 1409.0 11 1939 78 1404.6 11 67.8 4.4 0.31% RSTO

R103 1282.7 9 871 36 1272.5 9 8939.1 10.2 0.80% OST

R104 1131.9 6 734 31 — — — — — RSTO

R105 1401.6 9 402 15 1399.2 9 362.6 2.4 0.17% LO

R106 1293.0 8 2294 94 1285.2 8 386.4 7.8 0.61% RST1

R107 1211.1 7 1786 75 1211.1 7 7362.1 0.0 0.00% RSTO

R108 1117.7 6 1698 75 — — — — — RSTO

R109 1286.7 8 1452 58 — — — — — RSTO

R110 1207.8 7 1853 78 1197.0 7 4906.1 10.8 0.90% RST1

Rill 1216.6 7 1775 72 — — — — — RST2

R112 1140.5 6 1784 78 — — — — — RST2

C101 4862.4 5 119 4 4862.4 5 67.1 0.0 0.00% LO

C102 4861.4 5 607 19 4861.4 5 330.2 0.0 0.00% LO

C103 4855.8 5 1699 57 — — — — — OST

C104 4884.1 5 1253 43 — — — — — LO

C105 4861.2 5 232 7 — — — — — OST

C106 4862.4 5 308 9 4862.4 5 91.3 0.0 0.00% LO

C107 4861.2 5 382 12 — — — — — LO

C108 4861.2 5 92 3 — — — — — LO

C109 4860.9 5 301 9 — — — — — OST

RC101 1444.0 8 1252 38 — — — — RST1

RC102 1325.1 7 754 23 — — — — — RST1

RC103 1216.2 6 1589 54 — — — — — RSTO
RC104 1046.5 5 860 31 — — — — — RST2

RC105 1355.3 8 248 8 — — — — — OST

RC106 1223.2 6 1921 61 — — — — — RST2

RC107 1146.0 6 189 7 — — — — — LO

RC108 1098.1 6 1821 65 — — — — — OST

Average 2374.7 6.66 1050 39.6 — — — — — —

1 Maximum number of vehicles: R sets m = 15; C sets m = 6; RC sets m = 8. Time window penalty: pnv =3.0.
2 Maximum iterations: k = 2500.
3 Seconds on a Pentium II400 MHz system. Total runtime ~ 100 seconds each.
4 Seconds on a SUN SPARK 1.
5 OST is ordered starting tour. RST # is random starting tour where # is the seed value. LO is listed ordering.

(O'Rourke 1999)

19

Table 3. Solomon mTSPTW (100 Customers)

Prob Set1 Rver & O'Rourke Optimal Difference
A A%

Start

W) Used Iter2 Time3 Z,(7) Used Time4 Method5

R101 2689.6 20 2167 371 2607.7 18 1064.2 81.9 3.14% RSTO

R102 2522.9 18 1783 322 2434.0 17 756.9 88.9 3.65% RSTO

R103 2266.8 15 1797 351 — — — — — RST2

R104 2010.6 11 1401 311 — — — — — RST2

R105 2418.0 16 560 93 — — — — — RST1

R106 2256.9 14 1403 252 — — — — — LO

R107 2091.6 12 1462 278 — — — — — LO

R108 1980.3 10 2325 491 — — — — — RSTO

R109 2191.4 13 2149 398 — — — — — RST1

R110 2121.1 12 1479 291 — — — — — RST2

Rill 2082.1 12 1882 370 — — — — — RST2

R112 1986.1 11 2325 507 — — — — — RST1

C101 9827.3 10 285 45 9827.3 10 434.5 0.0 0.00% OST

C102 9820.3 10 237 42 — — — — — OST

C103 9813.7 10 256 49 — — — — — OST

C104 9809.0 10 2495 536 — — — — — RST2

C105 9821.2 10 313 50 — — — — — OST

C106 9827.3 10 455 75 9827.3 10 724.8 0.0 0.00% OST

C107 9818.9 10 292 48 — — — — — OST

C108 9818.9 10 662 115 — — — — — OST

C109 9818.6 10 1381 262 — — — — — LO

RC101 2685.7 16 897 144 — — — — OST

RC102 2534.0 15 2410 434 — — — — — OST

RC103 2352.3 13 1047 195 — — — — — RSTO

RC104 2209.1 11 1311 272 — — — — — RST2

RC105 2538.0 15 2327 412 — — — — — RST1

RC106 2457.8 14 443 74 — — — — — RSTO

RC107 2236.9 12 1822 344 — — — — — RSTO

RC108 2115.9 11 2206 451 — — — — — RST1

Average 4624.9 12.45 1365 261.48 — — — — — —

Maximum number of vehicles: m = 25. Time window penalty: prw =8.0.
Maximum iterations: k = 2500.

• 550 seconds each. 3 Seconds on a Pentium II400 MHz system. Total runtime -
4 Seconds on a SUN SPARK 1.
5 OST is ordered starting tour. RST # is random starting tour where # is the seed value. LO is listed ordering

(O'Rourke 1999)

20

Table 4. Solomon VRPTW (25 Customers)

Prob Set1 Rver & O'Rourke Optimal Difference
A A%

Start

T,(T) Used Iter2 Time3 UT) Used Time4 Method5

R101 867.1 8 317 4 867.1 8 5.8 0.0 0.00% OST

R102 797.1 7 35 1 797.1 7 20.3 0.0 0.00% OST

R103 704.6 5 132 1 704.6 5 22.2 0.0 0.00% OST

R104 666.9 4 86 2 666.9 4 46.0 0.0 0.00% OST

R105 780.5 6 95 1 780.5 6 22.6 0.0 0.00% OST

R106 715.4 5 1149 12 715.4 5 205.2 0.0 0.00% RST0

R107 674.3 4 2080 24 674.3 4 304.1 0.0 0.00% RST2

R108 647.3 4 58 1 647.3 4 307.4 0.0 0.00% OST

R109 691.3 5 32 1 691.3 5 14.4 0.0 0.00% OST

R110 694.1 5 91 1 679.8 4 64.3 14.3 2.10% RST0

Rill 678.8 4 178 3 678.8 4 330 0.0 0.00% RST0

R112 643.0 4 25 1 643.0 4 623.3 0.0 0.00% LO

C101 2441.3 3 23 0 2441.3 3 18.6 0.0 0.00% OST

C102 2440.3 3 106 1 2440.3 3 79.9 0.0 0.00% LO

C103 2440.3 3 72 1 2440.3 3 134.7 0.0 0.00% OST

C104 2436.9 3 741 8 2436.9 3 223.9 0.0 0.00% OST

C105 2441.3 3 170 1 2441.3 3 25.6 0.0 0.00% OST

C106 2441.3 3 35 1 2441.3 3 20.7 0.0 0.00% OST

C107 2441.3 3 51 0 2441.3 3 31.7 0.0 0.00% OST

C108 2441.3 3 455 4 2441.3 3 43.1 0.0 0.00% OST

C109 2441.3 3 197 2 2441.3 3 585.4 0.0 0.00% OST

RC101 711.1 4 214 2 711.1 4 225.4 0.0 0.00% LO

RC102 601.7 3 149 1 596.0 3 18.1 5.7 0.96% OST

RC103 582.8 3 134 2 582.8 3 103.0 0.0 0.00% RST2

RC104 556.6 3 29 1 556.6 3 177.9 0.0 0.00% LO

RC105 661.2 4 24 1 661.2 4 37.4 0.0 0.00% RST1

RC106 595.5 3 60 1 595.5 3 248.4 0.0 0.00% RST1

RC107 548.3 3 179 2 548.3 3 113.9 0.0 0.00% RST1

RC108 544.5 3 353 3 544.5 3 256.0 0.0 0.00% LO

Average 1218.2 3.93 250.7 2.86 1184.8 3.90 148.6 0.69 0.11% LO

1 Maximum number of vehicles: m=10. Time window penalty: prw = 8.0; load penalty pto =10.0.
2 Maximum iterations: k = 2500.
3 Seconds on a Pentium II400 MHz system. Total runtime ~ 28 seconds each.
4 Seconds on a SUN SPARK 1.
5 OST is ordered starting tour. RST # is random starting tour where # is the seed value. LO is listed ordering.

(O'Rourke 1999)

21

Table 5. Solomon VRPTW (50 Customers)

Prob Set1 Rver & O'Rourke Optimal Difference
A A%

Start

Z,(T) Used Iter2 Time3 Z,(7) Used Time4 Method5

R101 1543.8 12 239 9 1535.2 12 66.7 8.6 0.56% RSTO

R102 1409.0 11 1939 82 1404.6 11 67.8 4.4 0.31% RSTO

R103 1278.7 9 1935 87 1272.5 9 8939.1 6.2 0.49% OST

R104 1137.4 6 1533 69 — — — — — RST2

R105 1401.6 9 402 16 1399.2 9 362.6 2.4 0.17% LO

R106 1293.0 8 2294 99 1285.2 8 386.4 7.8 0.61% RST1

R107 1211.1 7 1786 79 1211.1 7 7362.1 0.0 0.00% RSTO

R108 1117.7 6 1698 78 — — — — — RSTO

R109 1286.7 8 1451 61 — — — — — RSTO

R110 1207.8 7 1853 84 1197.0 7 4906.1 10.8 0.90% RST1

Rill 1216.6 7 1775 76 — — — — — RST2

R112 1135.0 6 1456 68 — — — — — RST2

C101 4862.4 5 74 3 4862.4 5 67.1 0.0 0.00% LO

C102 4861.4 5 232 9 4861.4 5 330.2 0.0 0.00% LO

C103 4861.4 5 2035 87 4861.4 5 896.0 0.0 0.00% RSTO

C104 4882.8 5 1727 79 — — — — — RSTO

C105 4862.4 5 494 19 4862.4 5 99.1 0.0 0.00% OST

C106 4862.4 5 91 4 4862.4 5 91.3 0.0 0.00% LO

C107 4862.4 5 154 6 4862.4 5 170.6 0.0 0.00% LO

C108 4862.4 5 95 4 4862.4 5 245.6 0.0 0.00% LO

C109 4862.4 5 643 26 — — — — — OST

RC101 1446.8 8 1613 60 — — — — OST

RC102 1331.8 7 1508 60 — — — — — RST2

RC103 1210.9 6 2194 94 — — — — — OST

RC104 1046.5 5 412 18 — — — — — LO

RC105 1355.3 8 104 4 — — — — — OST

RC106 1223.2 6 1454 58 — — — — — RST2

RC107 1144.4 6 898 36 — — — — — RST1

RC108 1098.1 6 1361 58 — — — — — OST

Average 2375.01 6.66 1153 49.4 — — — — — —

1 Maximum number of vehicles: m=15. Time window penalty: prw = 1.0; load penalty piD =10.0.
2 Maximum iterations k = 2500.
3 Seconds on a Pentium II400 MHz system. Total runtime ~ 100 seconds each.
4 Seconds on a SUN SPARK 1.
5 OST is ordered starting tour. RST # is random starting tour where # is the seed value. LO is listed ordering.

(O'Rourke 1999)

22

Table 6. Solomon VRPTW (100 Customers)

Prob Set1 Rver & O'Rourke Optimal Difference
A A%

Start

Z,(T) Used Iter2 Time3 Z,{T) Used Time4 Method5

R101 2676.2 20 2271 414 2607.7 18 1064.2 68.5 2.63% RST2
R102 2502.4 19 492 96 2434.0 17 756.9 68.4 2.81% RSTO
R103 2265.0 15 1091 228 — — — — — RST2
R104 2039.6 12 1488 338 — — — — — OST
R105 2399.4 16 1974 378 — — — — — RSTO
R106 2268.4 14 2431 491 — — — — — LO
R107 2129.0 13 1905 406 — — — — — RST1
R108 1956.8 10 2415 565 — — — — — RSTO
R109 2181.0 14 1587 311 — — — — — RST1
R110 2133.2 13 1548 328 — — — — — RST2
Rill 2077.3 12 2248 491 — — — — — RST2
R112 1971.6 11 1898 460 — — — — — RST2

C101 9827.3 10 263 43 9827.3 10 434.5 0.0 0.00% OST
C102 9827.3 10 1317 253 9827.3 10 1990.8 0.0 0.00% OST
C103 9828.9 10 2500 535 — — — — — RSTO
C104 9949.6 10 2194 509 — — — — — RST2
C105 9827.3 10 378 65 — — — — — OST
C106 9827.3 10 309 55 9827.3 10 724.8 0.0 0.00% OST
C107 9827.3 10 1144 210 9827.3 10 1010.4 0.0 0.00% OST
C108 9827.3 10 1638 321 9827.3 10 1613.6 0.0 0.00% OST
C109 9853.3 10 2202 463 — — — — — RSTO

RC101 2669.9 16 2110 381 — — — — — OST
RC102 2498.4 15 2136 419 — — — — — LO
RC103 2363.6 13 1333 270 — — — — — RST1
RC104 2179.2 11 1365 308 — — — — — LO
RC105 2557.4 15 2482 473 — — — — — OST
RC106 2432.8 13 2222 434 — — — — — RST2
RC107 2266.1 12 2024 417 — — — — — RST2
RC108 2175.1 12 2122 475 — — — — — RST1

Average 4632.3 12.62 1693 349.6 — — — — — —

1 Maximum number of vehicles: m = 25. Time window penalty: prw = 8.0; load penalty pLD = 10.0.
2 Maximum iterations k = 2500.
3 Seconds on a Pentium II400 MHz system. Total runtime ~ 550 seconds each.
4 Seconds on a SUN SPARK 1.
5 OST is ordered starting tour. RST # is random starting tour where # is the seed value. LO is listed ordering.

(O'Rourke 1999)

23

2.5 Extensions for Solving Mobility Routing Problems

The first step in transforming this algorithm from solving academic test problems

to tackling global routing problems is transitioning from the x-y plane to geographic

coordinates. This is accomplished in conjunction with the ability to determine an

aircraft's groundspeed based on its associated true airspeed, the prevalent wind direction

and speed.

To incorporate the effect of winds on the RTS algorithm, the distance and bearing

is first calculated as shown in Departments of the Air Force and Navy's AFR 51-40.

Given the departure latitude (L/) and longitude (fa) and destination latitude (L2) and

longitude (fa), the great circle distance in nautical miles (D) can be found using the

following formulation.

D = 60 * cos"1 [sin U * sin L2 + cos U * cos L2 *cos (fa - fa)]

Using this distance, the heading angle (H) in degrees is

_. sin L, - sin L, * cos(Z>/ 60)
H = cos

sin(D/60)*cosZ1

Correcting this angle to the proper quadrant the initial true heading (@XY) is

0XY = Hifsm(fa-fa)<O

or

0XY =360-H if sin (fa - fa) > 0.

Finally, using the bearing from the departure point to the destination point, current

airspeed, wind speed and direction, a ground speed can be calculated. The true heading

of the wind is represented by 0WS and the course offset from true heading from X to Y is

24

denoted by y, thus adjusting heading for the wind drift. When the wind direction results

in a headwind component, the angle between 0Xy and 0Ws (8) is less than 90 degrees,

The wind component of the groundspeed (A) becomes negative and thus reduces the

overall groundspeed. Conversely, when winds result in a tailwind component, 8 is

greater than 90 degrees (Figure 5), A becomes positive and increases the overall

groundspeed.

0XY

cos(l 80- S) = A/WS

A = WS-cos(180-<5)

sin(180-<5) = C/WS

C = WSsin(180-<5)

B2 + C2 = AS2

B = ^AS2-C2

GS = A + B

GS=WS-cos(180-8) + JAS2-WS2-sin2(ISO-Ö)

GS

0ws

Figure 5. Calculation of Groundspeed to Account for Winds

With the translation to a real-world geographical coordinate representation complete, the

time matrix used by the RTS can be updated to tackle realistic routing problems.

25

The second algorithm extension adds a restriction on possible routes based on the

maximum leg distance for a vehicle. A simple search of those time matrix values that

exceed the maximum leg distance, with the subsequent substitution of a very large value

for such elements of the time matrix, precludes the RTS from selecting those routes in its

final solution (unless no other feasible solution exists). In a similar manner we can

restrict prohibited international flight routes by accessing the time matrix directly and

assigning the same large value.

The next critical dimension of handling a global routing problem is an extension

to handle multi-depot problems. This required additional logic to ensure vehicles

assigned to different depots return to their respective starting depot while accounting for

the change in travel time based on their respective depot location. Each vehicle node can

be considered an aggregation of a return node for the previous vehicle and a start node for

the next vehicle with zero cost between the two. Cost calculation "into" the node is

assigned the distance from the customer back to its appropriate depot. This is allowed

since multi-depot position integrity is maintained due the fact that vehicle ordering is

strictly enforced by the algorithm. As implemented in this algorithm, multiple depots are

modeled with the restriction that available vehicles be assigned to desired depots at the

onset. Regardless of depot location, only those vehicles resulting in the best solution will

be chosen.

2.6 Dimensions of the Mobility Routing Problem

When MASS flight plans a route, it evaluates the feasibility of fuel requirements,

allowable cabin load (ACL), maximum on ground (MOG) feasibility, crew duty day

26

(CDD), and then updates the crew plan. This Aircraft Flight Plan Algorithm (AFPA) is

capable of incorporating many of these considerations when selecting the routes during

its search. Vehicle fuel requirement is implemented by the maximum leg restriction

discussed earlier. Capacity constraints that represent the VRPTW can be extended in the

future to include precedence for a pickup and delivery problem (PDP) version if required.

Currently, MOG is captured by service and wait times. Crew duty day (not currently

implemented) can be tracked by individual aircraft (since crews are modeled in MASS as

a single entity), with a CDD clock refreshed either through mandatory waiting times or at

bases that have rested crews available.

Time windows become necessary for two reasons. First, every AMC airlift

scenario uses a document known as the Time-Phased Force Deployment Data (TPFDD)

document, which specifies origins, destinations, cargo types, and their required delivery

times (Cox 1998). Although these delivery times define the "not-earlier-than-time"

(NET) and the "not-later-than-time" (NLT) for each individual piece of cargo, the NET

and NLT can be used to derive the time window boundaries for origins and destinations.

Time windows can also take into account normal operating hours of bases that are subject

to the constraint of quiet hours.

Finally, the apparent problem of applying a VRP format (all destinations must be

visited once - no more, no less) to an aircraft routing problem can be overcome with the

inclusion of multiple customers at the same location. These customers share the total

demand between them and may or may not have similar time windows. The algorithm

determines the number of aircraft needed to service these destinations based on the

capacity requirements and time window restrictions. Air refueling points are

27

incorporated as customers, with zero demand and service time, at strategic locations in

the scenario, or at established air refueling tracks.

All these considerations are important and have a direct impact on route selection.

Ignoring them and determing routes based on distance alone can not accurately represent

the best routes needed for MASS. By starting with a simple scenario and adding these

constraints, the effect on route selection becomes readily apparent. Deterministic

approaches often reach their limit in ability to solve very basic VRPTW's when their size

exceeds 50 customers.

The computational advantages of solving a real world problem, as well as the

effect of additional constraints on route selection are shown using a notional problem

involving the 50 United States capitals. A good feasible solution was obtained in less

than 30 seconds on a Dell 266 Pentium II lap top computer (Figure 6). With the

additional considerations of time windows, servicing, capacity and the possible use of

multiple depots, the solution to the 50 U. S. capitals problem is altered dramatically

(Figure 7).

The algorithm presented thus far uses a reactive tabu length to intensify and

diversify the search. With the expansion of the algorithm to include additional

constraints, the need for reactive penalty functions becomes essential. Reactive penalty

functions presented by Gendreau and Laporte (1996) offer the benefit of incorporating

reactive penalty parameters in their RTS algorithm. The penalty coefficients are set at an

initial value p and then multiplied every ten iterations by 2[(t/5H], where t is the number of

feasible solutions among the last ten solutions. Based on the number of feasible solutions

p is either increased or decreased accordingly. The resulting mix of feasible and

28

Figure 6. Solution of Simple TSP comprised of the 50 U. S. Capitals

29

Relaxed Scenario
(1 vehicle required)

Time Window and
Service Time Constraints
(4 vehicles required)

Capacity Constraints
(5 vehicles required)

Multiple Depots
(2 Depots - 5 vehicles required)

Figure 7. Mobility Problem Constraints and their Effect on Route Selection

30

infeasible solutions improves the overall quality of the search (Gendreau and Laporte

1996).

The penalty terms used in the initial testing were previously determined to be

effective by Carlton (1995). Usually, the process of determining these parameters is a

difficult and tedious process. Reactive penalties update the penalty parameters associated

with vehicle capacity, route duration, and time windows automatically during the

execution of the algorithm. All of these penalty factors are relevant to the mobility

problem and a reactive search based exploring these penalties is essential to exploring the

solution space of these complex problems.

Two notional MASS scenarios are presented and solved in Figures 8 and 9. The

first solution to a scenario was solved in 18 seconds but is too small to display the

advantages of determining routes with a heuristic approach. The larger scenario (Figure

9) provided a solution in 36 seconds and was obtained after implementing the reactive

penalties in addition to previous extensions of the initial algorithm. This scenario is

taken from the hub and spoke mixed integer programming model presented by Cox

(1998). The scope of this multi depot problem starts to display the enhanced capabilities

of a heuristic approach. We note that integer-programming approach for this scenario

required 18 to 94 hours to solve using version 3.0 CPLEX solver on a Sun Sparc station

10.

31

fan Ttom
en ^ CN

o c^ >n
<N ^ CN

O ■* CN
CN CN •*

>r> o

^W^^^W^^^WWWW^

H ooiem vo _,■ f-
cn s en O CN f-

r- en >o vo oo o O en O
«Ohm

»o\w^

O Ov O ^H

zzzzzzzzzzzzzz

CN m u-)
vo cK ©
(S N rH

o>or-
"* ■* en

oo-oo
CO rt CN

VO O ^H
en >n m

en Ov T|- en
en oo vo
m en ^H

(N O vo
en ■* es

l" 2 M N

vo -^ vo O
CN (N en ■*

Or<Nm^vivot^ooo\ O — CN en

en
vo
VO
■*

O X
co 1>
r- h t-
•* w

£. >
o o ^
T—1 c_) r-i N

00 T—1 (D 1) ON
0) i-I fcl B T—1 ■* H o (j o i-i o ij e_>

S3
i—(

0)
o o

TS 1 co
no

B
3

> UL, > *-* O t/1
1—1

i—i

'S

! o o
CN

>>
■4-»

"e3
C
U

1 •a c

fi
D

PH

OS

O u
ü

0
13
S

3

>

s
s
p

§

4-»

■6

00
3

T—1

(L)

I»
3 s a)

3 3
a)
3 3

o
u
6

"e3

3
6 'S a, I

> o
01

oj 3 oj oS cd
<L> O CL> CL> CL>

IA » (A IA IA

cd

V3 « es O <U <U o u D a> O
U H J PQ PQ m P3 pa m H

V* / \ /

CN
cn

\\
D 00fe??Mffl00000000

m

CM m

7^
3 1

H
T3

'&
c
m

LULULLILiJUJlUIJJULlLlJgLLlgLlJgUJg

T-<0(\ir\|l*-f"-°°c>o0o0000 cvlTj.CVJ(MncOTt.^.coOcoOmoc(Do

O>l^r--^CDCDC000(D00CDC0CD00CD00

>>2

|@
ram
On

.as
£ O

«i
®
in

>

Wi
m
m

-i

zzzzzzzzzzzzzzzz

mioNSuiiflininionmniDnion nwnmconnnmminmmioinin

i 1«
e

SO
w
3
Ü
is

cccccccc
CO 9 SSmm'o'o'o'o'o'o O o

B c < < as (o = ^ cc V re cc cr re cc cc o <D E c (o o) D) cn't E? St ;? St St St St

>-^OO^^I-HZCOZWZODZ<Z)

i-tMto^inioMorooi-wn^intD

CO
CO

6 .° '3
"g "I g. e 'S a ts ts a 2
SäüHJfflfflBBH

2.7 Future Research

As heuristic research advances, it is more common to see two heuristic methods

combined in a composite algorithm to achieve a better overall performance, as first

observed by Ball and Magazine (1981). The benefits of randomness enjoyed by SA

approaches can be employed in this RTS by an automatic restart capability. This

extension would employ a random starting tour when a fixed number of iterations fails to

find an improving solution. Based on testing, this addition appears to be more useful in

solving smaller problems (25 customer). In larger problems, the best RTS solutions were

obtained with a greater number of iterations; consequently, a reset feature would only be

useful for searches involving large number of iterations. An approach similar to this

using several constructive algorithms as starting points for solving TSP problems is

presented by the Jump Search algorithm (Tsubakitani and Evans 1998). Using several

good starting points and a simple local search, this algorithm shows improved results

compared to a pure TS algorithm. The development of these composite approaches show

promise in solving today's applied combinatorial problems.

One important extension of this project that can be employed is the explicit

consideration of non-homogeneous vehicles. Modeling nonhomogenous vehicles is

straightforward since the defining attributes are capacity and airspeed. Specifically,

capacity can be based on a vehicle type, while airspeed requires another time matrix to be

calculated for each vehicle.

The multiple depot problems presented are intended only to show the promise of

the RTS algorithm. Extending the algorithm to an approach similar to that of Renaud et

al. (1996) should be accomplished to efficiently solve larger multiple depot vehicle

34

routing problems. In this Fast improvement Intensification and Diversification algorithm

(FIND) each customer is initially assigned to its nearest depot, and then a heuristic is

applied to each depot's customer set. The fast improvement is accomplished by

repeatedly applying three different types of exchanges, inter-depot (2-route exchanges

between routes of different depots), intra-depot (2-route exchange between routes of the

same depot) and 3-route (exchange vertices between three routes). The intensification

step works on one depot at a time employing the intra-depot step to each depot in turn

until no improvement is accomplished for 300 consecutive iterations. Finally, the

diversification is accomplished through the repeated steps of best reinsertion between

depots and inter-depot and intra depot steps while preventing moves that are tabu using a

random tabulength.

2.8 Conclusion

Currently no optimization efforts are employed in MASS simulations. Earlier

approaches tackled this same problem by considering only distance and route length

constraints using two separate programs with run times exceeding half an hour. By

contrast, our RTS algorithm can efficiently pick routes while explicitly incorporating

distance, time windows, winds, vehicle capacity, vehicle range, service time, multiple

depots, and — with minor alterations — heterogeneous vehicles. Written in the object-

oriented Java programming language, it is a metaheuristic algorithm capable of running

on any computer and solving large problems on a standard laptop PC in a fraction of the

time required by deterministic approaches.

35

Previous route selection efforts outside of stochastic simulation, has centered

deterministic efforts with the k-shortest path (Rink 1997), math programming (Cox 1998)

and NRMO with a direct delivery deterministic linear programming model. Although

useful for the purpose for which they were designed, all efforts are limited by the

excessive computational time and effort required to solve complex routing problem in a

mobility scenario.

The final goal of this research effort was to provide a software application that

will provide a set of prioritized routes that will be used as a direct input into MASS. This

automated and efficient route selection tool will provide quick and near optimum route

selection without the need for an experienced analyst and numerous simulation

replications needed in a trial and error approach. Although further development and

calibration is necessary to accurately model the mobility system, many of the

characteristics and considerations that comprise this complicated system can effectively

be employed in this efficient yet powerful heuristic.

The benefits of optimizing tools are currently being realized throughout various

transportation networks from snowplows to garbage trucks and from Delta Airlines to the

United Parcel Service. In today's world of increasing technology and shrinking route

infrastructure, the United States Air Force and Air Mobility Command can hardly afford

not to implement available, proven, and smart algorithms in its modeling and airlift

operations to increase efficiency, capability and Global Reach.

36

Appendix A: Extended Problem Formulation

Throughout my research I have encountered many good articles that are in turn

used as reference sources for other published journals. But there is one particular

reference that is used time and time again, in almost every article, journal or book written

on the vehicle routing problem. This is the special issue "Routing and Scheduling of

Vehicles and Crews, The State of the Art", Computers & Operations Research written by

Lawrence Bodin, Bruce Golden, Arjang Assad, and Michael Ball (1983).

This 146-page special edition makes up the entire journal issue and covers a range

of related problems such as the traveling salesman problem, vehicle routing problem,

crew scheduling problem and combined routing and scheduling problems. The topics

included in each section include a review of the problem background, formulation, and

algorithms used to solve the problem. Although the content of this article is extensive

and thorough, some sections such as current heuristic approaches suffer from the fact that

it was published 16 years ago. Fortunately, the underlying basic formulation is

unaffected and as relevant as ever.

Bodin et al. continues the discussion of routing problems into combining crew

scheduling problems and vehicle routing problems. Unfortunately, the problem I want to

formulate involves an expansion of the multiple depot VRP with multiple non-

homogeneous vehicles. With minor changes in notation, I am able to pick up the

formulation of this problem with the aid of Carlton's dissertation "A Tabu Search

Approach to the General Vehicle Routing Problem" (1995).

37

A.l Traveling Salesman Problem

The basic building block for studying the VRP is the traveling salesman problem

(TSP). Without fully understanding the TSP, you can not hope to formulate and solve the

more complex problem of the VRP. For this reason it is important to review the basic

formulation of this problem. The first step is defining the TSP. Let G be our network

with the set of nodes (N) and a set of branches (A) where and the associated costs of these

branches is C = QJ. Let's also assume that the costs are symmetric (Cy = c,i). The

objective of this problem is to form a tour over all the nodes beginning and ending at the

origin (node 1), which gives the minimum total tour length or cost.

The first half of this problem is the formulation of an assignment problem with

only one arc (jcy) starting at node i, and only one arc (*,,) terminating at node;', for every

node in N.

' 1 if arc i-j is in the tour

0 otherwise

Minimize^ ^ ctj xtj
i=l 7=1

X*„ =bj=l (/=l,..,n)
1 = 1

n

J Xy = a,. = 1 (i= I,.--,«)
7 = 1

X=(xjj)(=S Xij = 0orl (i,j=l,...,n)

This is not the complete problem however, because subtours are not eliminated by this

formulation. This is accomplished by the inclusion of subtour breaking constraints.

38

These constraints along with the assignment formulation prevent subtours from being

formed. There are basically three different ways to represent the subtour breaking

constraint (Bodin et al. 1983).

S = {(xij): Y Y Xy > 1 for every nonempty proper subset Q of N};
feß jeQ

S = {(xtj): X S xy - N ~~ * ^or every nonempty subset R of {2,3,...,«}};
ieR j<=R

S = {(xtj): y. -y}+ nxu <n-\ for 2 <i*j< n for some real numbers yi}.

The first representation states that every node subset (Q) of the set of nodes N

must be connected to the other nodes in the solution. The second representation states

that the arcs selected in our solution contain no cycles because if a cycle is present on R

nodes, the solution must contain at least \R\ arcs. The third constrain is not so

straightforward and needs a little more explanation. For this constraint let's define yt as:

t if node i is visited on the tth step in a tour

y,; = "\ 0 otherwise.

If an arc in the solution tour (xy = 1), this constraint becomes

t-(t+ l) + n<n-l.

Conversely, everything outside the solution (xy = 0) simply reduces to

yi-yj<n-l.

This third representation does have an advantage over the other two, adding only

n2 - 3« + 2 constraints, whereas the previous two add 2" subtour breaking constraints to

the problem's formulation (Bodin et al. 1983).

39

A.2 MultipleTraveling Salesman Problem

The next level of complexity in building up to the VRP is the addition of more

salesman to the problem, creating the multiple traveling salesman problem (MTSP). Let

M be the number of salesman or vehicles that make up our fleet. Our objective, once

again, is to minimize the total distance traveled. We will assume that M salesman depart

from the same depot and that each customer must be visited only once, and by only one

salesman. Even with these changes the formulation is only an extension of the basic TSP

presented earlier and is displayed below.

n n

Minimize^ 2^ cij xij

Mif/=1

]T Xy =bj =\ lif/ = 2, 3,...,n

' Mifi=l
n

]T Xy = at =\ 1 if i = 2, 3,...,«
7 = 1

X=(Xij)sS

Xij = 0ovl (i,j=l,...,ri)

The first constraint in the formulation requires that all salesmen be used by

forcing them to leave the depot. Likewise the second constraint requires all salesman to

return to the depot. Any one of the subtour breaking constraints used earlier in the TSP

can be used for the MTSP.

The apparent complexity of this new problem can be solved by simply reducing

the MTSP to M copies of the TSP. This is accomplished by creating dummy depots

(A.---,DM) all connected to the original network. These Mcopies are either not

connected, or are connected by cost prohibitive arcs. By transforming these single TSP

40

copies back to one common depot, the problem is now a series of M subtours, which is

the MTSP. This relatively straightforward transformation of the MTSP helps us

understand why an algorithm used to solve a TSP, can be used to solve a MTSP (Bodin et

al. 1983).

A.3 Vehicle Routing Problem

The VRP can be viewed as an extension of the TSP, obtained by adding a

capacity constraint to the salesman or vehicles. The VRP involves a number of vehicles

(w) leaving a depot and servicing a number of customers (n), each with a unique demand

(di). Each vehicle (v) has a limited capacity (Kv) and maximum time length for a route

(Tv) that constrains their closed delivery routes. This particular instance of the VRP is

commonly known as the general vehicle routing problem (GVRP). If the route length or

range constraints are removed, then we refer to this problem as the standard vehicle

routing problem (SVRP) (Bodin et. al, 1983). In addition to the cost (c#) or travel time of

using and arc, consider the time required to for a vehicle v to deliver or service at node i

is siv, travel time for vehicle v from node / to node; as tt/, and finally */ = 1 if arc i-j is

used by vehicle v. From this, the formulation of the GVRP follows:

n n w

Minimize^^^CyXl (3.1)
i=l 7=1 v=

n w

Subject to ££** = l 0' = 2,...,n) (3.2)
1=1 v=l

££x!;=l(i = 2,...,«) (3.3)
7=1 v=l

41

J4x;-±x;j=0(v=l,...,w;p=l,...,n) (3.4)

n n

^dtCZxl)<Kv (v=l,..,w) (3.5)
<=l ;=l

re n

IS^IZ^^ (v=l....,W) (3-6)
i=i y=i i=i 7=1

£^.<1 (v=l,.,w) (3.7)
7=2

J^<1 (v=l,..,w)' (3.8)
i=i

X e S XiJ = 0 or 1 for all i, j, v

The objective function (3.1), minimizing the overall distance, remains the same

but is formulated by summing over all the vehicles. Equations (3.2) and (3.3) make sure

every customer is visited by one and only one vehicle. It is important to note that we are

assuming that a customer's demand does not exceed vehicle capacity and each customer

is fully serviced by the one vehicle that visits it. Equation (3.4) checks the continuity of

our routes while (3.5) maintains the capacity constraint on all of the vehicles. Since we

are representing route length restrictions by time, we use Equation (3.6) to insure

maximum route time is not exceeded. Finally, Equations (3.7) and (3.8) insure that we

do not use more vehicles than we have.

In addition to these equations we must once again include our subtour breaking

constraints that will entail a slight modification to those used earlier in the TSP. Since

the third subtour representation is the most efficient, we will use that formulation and

expand it.

42

S = {(xi/y. y,-v - yv + nx.J <n-\ for 2 < i *j < n for some real numbers y,y]

This simply applies the original subtour breaking constraint to each vehicle in turn. We

can also eliminate some redundant constraints from the formulation above. Using (3.2)

and (3.4) enforces (3.3) automatically and makes it unnecessary (Bodin et al. 1983).

Likewise (3.4) and (3.7) imply (3.8) so this too can be eliminated from the formulation

(Bodin et al. 1983).

Finally, one common restriction added to the VRP is time windows. Let a; be the

arrival time to node j, e, be the earliest delivery time allowable and lj be the no later than

time for delivery. Using a nonlinear representation we get:

V=l 1=1

ej<cij<lj (j = 2,...,n)

For each j, one of the xj variables equals 1, so a7 is the sum of the previous

arrival time (a,), the service time at node i (s,v), and the travel time from i to j (%v).

Alternatively we can use the linear representation of time windows constraint in the

formulation (Bodin et al. 1983). _

aj> (flI- + Jl-v + f(/
v)-(l-x(/

v)7,
m«

v

aj < (at + st
v + hf) + (1 - Xi/) Tma^jT for all i, j, v

When xt/= 1, the second half of the equation is eliminated and a, is simply

determined from the previous arrival time, previous service time and the travel time

between the nodes. On the other hand, when *,/ = 0, the constraints are redundant.

43

A.4 Multiple Depot VRP

Expanding the previous GVRP to account for multiple bases of operation or

depots gives us the multiple depot VRP. This problem can be formulated with only minor

changes. Let M be the number of depots in our problem. First the original VRP

formulation indexes are changed for equation (3.2), (j = M+ 1,...,»), and equation (3.3),

(i = M+ 1,...,«). Next the constraints (3.7) and (3.8) must be changed to sum over all the

depots individually in order to check that the number of vehicles being used does not

exceed the number of vehicles on hand.

M n

X£^<1 (v=l,..,w)
;=1 j=M+l

M n

X2>;<i (v=i,...,w)
„=1 i=M+\

Of course, this change also includes an adjustment of the subtour breaking constraint.

Although only one is used, we will show the changes for all three (Bodin et al. 1983).

S = {(xij): V V Xy > 1 for every non empty proper subset Q of {1,2,... ,n}
feß jzQ

containing nodes 1,2,..., M};

S = {(xtj): X X xu ~ N - * ^or everv nonempty subset R of {M +1 ,M+2,... ,n}};
ieR jeR

S = {(xtj): y. - y; + nxy <n-\ for M + 1 < i *j < n for some real numbers y,}.

At this point the article, Bodin et al.continues into the discussion of combining

crew scheduling problems and vehicle routing problems. Unfortunately, the problem I

want to formulate involves an expansion of the multiple depot VRP to a multiple non-

44

homogeneous vehicle pick up and delivery problem. With minor changes in notation, I

am able to pick up the formulation of this problem with the aid of Carlton (1995).

A.5 Pickup and Delivery Problem

The pickup and delivery problem (PDP) is a VRP that adds the precedence

constraint. Precedence means that a package must be picked up at node i before it can be

delivered to node;'. With this added constraint, and some minor changes in notation, we

finally arrive at the one of the most general routing problems studied. Simpler problems

that must be formulated are simply a relaxation of this problem.

In this formulation, a superscript of (v, r) will be used corresponding to the

specific vehicle v assigned to depot r. The customers are still indexed by i or;', each

requiring a load dt, to be picked up and delivered from node i to location n + i. The set of

all depots is defined as D and the set of all vehicles as V.

The set of pickup locations are P+, where \P+\ = n, and the pickup locations will

be numbered from 1 to n. The set of delivery locations are F, where \P'\ = n, and these

delivery locations will be numbered from n + 1 to 2n. The set of all pickup and delivery

locations, (P+ u P"), will be P and the set of all modeled pickup and delivery locations,

customers and depots, will be referred to as N. Customer subscripts referring to a depot

at the beginning of a tour are annotated as 0 and those at the end of a tour are labeled

2n+l.

We also introduce a load variable Yt indicating the total vehicle load at customer i.

With these changes, the formulation of the multiple depot, multiple non-homogeneous

vehicle, route length constrained, PDP with time windows is:

45

Objective Function

Minimize^ XXX cuxv
reD veV ieN jeN

Subject to:

Tour constraints:

XXX*r=1 v<'^+ w
reDveV jeN

X4r~X4r=0 VzeP,veV,reD (4.2)
ye AT ye/V

JEP+

>oO=1 VveV,reZ) (4.3)

,<2n+i=l VveV,reZ) (4.4)
fep+

X4r - X*r- = ° v J
'
GP+

'
vev'reZ) (4-5)

jeN jeN

Precedence constraints:

ai+si+tZ+i<an+i VieP+ (4.6)

If xj/ = 1 then: a,. + j. +1™ < a,. V ie P, ve V, re D (4.7)

If ^ = 1 then: a0
vr + ^ < a} V ie P+, ve V, reD (4.8)

If <2„+i =1 then: a,. + Jf + ^„+1 < <+1 V ieF, veV, reZ) (4.9)

Capacity constraints:

If jc*r = 1 then: Yt
vr + d} = Yjr V ie P, je P+, ve V, re D (4.10)

If xvJ = 1 then: F.vr +dj = YY V ieP, jeF, ve V, reD (4.11)
y i j ri J

If *£, = 1 then: F0
vr + d} = Yjr V;eF+, ve V, reD (4.12)

46

Y0
W =0 \/veV,reD (4.13)

0 < Yt
w <Kvr V ieP+, ve V, reD (4.14)

Time Window Constraints:

el<ai<ll \fieP (4.15)

elr < av
0
r < llr V ve V, re D (4.16)

ev
2
r

n+^aZ+l<lZ+1 VveV,reD (4.17)

Binary Constraints:

jc,;re{0,l} Vi,jeN,veV,reD

With the exception of the expanded notation, many of the constraints remain the

same as those presented in earlier problems. The first group of constraints (4.1) - (4.5)

are responsible for building the tours. Constraints (4.3) and (4.4) are responsible for

making sure all vehicles are used by making them leave and return to the depot. If it is

not necessary to use all vehicles in the problem then we can change the equality to a less

than or equal to sign (Carlton, 1995). Finally constraint (4.5) requires the same vehicle

that picks up a package to deliver it.

The precedence constraints (4.6) - (4.9) are the next group of constraints. When

presented this way, the subtour breaking constraint used before, is essentially included in

this formulation (Carlton, 1995). The use of service time and travel time insures a time

order sequence of routes. The capacity constraints (4.10) - (4.14) are now tracked at

every node as well as by vehicle. Finally, the representation of time windows (4.15) -

47

(4.17) is expanded to include hard time windows leaving and returning to the depots

which enforces a limit on the possible route length.

48

Appendix B: Java Documentation

Class Hierarchy

class java.lang.Object
class Convert
class CoordTvpe
class CycleOut
class HashMod
class InFromKeybd
class KeyObj
class KeyToString
class MTSPTW
class BestSolnMod
class TsptwPen
class NoCycleOut
class NodeType
class PrintCalls
class PrintFlag
class ReacTabuObi
class ReadFile
class SearchOut
class StartPenBestOut
class StartTourObi
class TabuMod
class TimeMatrixObi
class Timer
class TsptwPenOut
class TwBestTTOut
class ValueObi
class VrpPenType

Index of all Fields and Methods

assignlnputFile(String). Static method in class ReadFile
assignlnputFile sets up the FilelnputStream.

B
bearingXY(CoordType, CoordType, double). Static method in class Convert

bearingXY calculates the true bearing (in degrees) from one coordinate point to the second
coordinate point and returns the value as a double precision number.

bestCost. Variable in class SearchOut
bestCost. Variable in class StartPenBestOut

49

Penalty related value.
bestCost. Variable in class TwBestTTOut

best tour related value.
bestiter. Variable in class SearchOut
bestiter. Variable in class StartPenBestOut

Penalty related value.
bestiter. Variable in class TwBestTTOut

best tour related value.
bestnv. Variable in class SearchOut
bestnv. Variable in class StartPenBestOut

Penalty related value.
bestnv. Variable in class TwBestTTOut

best tour related value.
BestSolnModQ. Constructor for class BestSolnMod
bestTime. Variable in class SearchOut
bestTime. Variable in class StartPenBestOut

Penalty related value.
bestTime. Variable in class TwBestTTOut

best tour related value.
bestTour. Variable in class SearchOut
bestTour. Variable in class StartPenBestOut

Saved tour.
bestTour. Variable in class TwBestTTOut

best tour related value.
bestTT. Variable in class SearchOut
bestTT. Variable in class StartPenBestOut

Penalty related value.
bestTT. Variable in class TwBestTTOut

best tour related value.
bfCost. Variable in class SearchOut
bfCost. Variable in class StartPenBestOut

Penalty related value.
bfCost. Variable in class TwBestTTOut

best tour related value.
bfiter. Variable in class SearchOut
bfiter. Variable in class StartPenBestOut

Penalty related value.
bfiter. Variable in class TwBestTTOut

best tour related value.
bfnv. Variable in class SearchOut
bfnv. Variable in class StartPenBestOut

Penalty related value.
bfnv. Variable in class TwBestTTOut

best tour related value.
bfTime. Variable in class SearchOut
bfTime. Variable in class StartPenBestOut

Penalty related value.
bfTime. Variable in class TwBestTTOut

best tour related value.
bfTour. Variable in class SearchOut
bfTour. Variable in class StartPenBestOut

Saved tour.
bfTour. Variable in class TwBestTTOut

best tour related value.
bjTT. Variable in class SearchOut
bJTT. Variable in class StartPenBestOut

50

Penalty related value.
bfTT. Variable in class TwBestTTOut

best tour related value.

compPensCNodeTypefl, int). Static method in class NodeType
compPens computes the vehicle capacity overload and time window penalties.

compPens(NodeTvpe[l, int). Method in class VrpPenTvpe
compPens computes the vehicle capacity overload and time window penalties.

ConvertQ. Constructor for class Convert
CoordTypeQ. Constructor for class CoordTvpe

Default constructor.
CoordType(String, double, double). Constructor for class CoordTvpe

Lat/long constructor.
COPVO. Method in class NodeType
countVeh(NodeType[]). Static method in class NodeType

Method countVeh finds the number of vehicles being used in the current tour by counting the
vehicle to demand transitions.

countVehicles(NodeTypen)• Static method in class TabuMod
countVeh method calculates the number of vehicles used in the current tour by counting the
number of vehicle (type 2) to demand (type 1) transitions.

cycle(ValueObj, double, int, int, int, double, int, int, PrintFlag). Static method in class TabuMod
cycle method updates the search parameters if the incumbent tour is found in the hashing structure.

CvcleOutO. Constructor for class CvcleOut
Default constructor.

CycleOut(int, int, double, ValueObj). Constructor for class CvcleOut
Specified constructor.

cvclePrint. Variable in class PrintFlag
print flag.

D
distanceXY(CoordTvpe, CoordType). Static method in class Convert

distanceXY calculates the great circle distance (in nautical miles) between two coordinate points
and returns the value as a double precision number.

DMMmtoDddnt, double). Static method in class Convert
DMMmtoDd converts a number in "Degrees Minutes Decimal Minutes" (D.MMm) format to
"Degrees Decimal Degrees" (D.d) format.

DMMmtoDddnt, double, String). Static method in class Convert
DMMmtoDd converts a number in "Degrees Minutes Decimal Minutes" (D.MMm) format to
"Degrees Decimal Degrees" (D.d) format.

DMMSSstoDd(int, int, double). Static method in class Convert
DMMSSstoDd converts a number in "Degrees Minutes Seconds Decimal Seconds" (D.MMSSs)
format to "Degrees Decimal Degrees" (D.d) format.

DMMSSstoDd(int, int, double, String). Static method in class Convert
DMMSSstoDd converts a number in "Degrees Minutes Seconds Decimal Seconds" (D.MMSSs)
format to "Degrees Decimal Degrees" (D.d) format.

E
endTime. Variable in class Timer

end time.
endTimeO. Method in class Timer

endTime assigns end time.
equals(KevObi). Method in class KeyObi

Overloaded equals(), check only attribute fields.
equais(ValueObj). Method in class ValueObj

Overloaded equals(), check only attribute fields.

51

firstHashVal(int). Static method in class HashMod
firstHashVal method assigns the primary hashing value.

G
getEaQ. Method in class NodeType
getldO. Method in class NodeType
getLaO. Method in class NodeType
getLoadQ. Method in class NodeType
getMQ. Method in class NodeType
getOtyQ. Method in class NodeType
getTypeQ. Method in class NodeType
getWaitO. Method in class NodeType
groundSpeed(double, double, double, double). Static method in class WindAdiust

groundSpeed method returns the ground speed given the heading between points, the wind
heading, the wind speed, and the aircraft's airspeed.

H
hashCodeO. Method in class KevObi

Overloaded hashCode method.
hashCodeO. Method in class ValueObi

Overloaded hashCode method.
HashModO. Constructor for class HashMod
HHMMtoMM(int). Static method in class Convert

HHMMtoMM converts a military time to the equivalent number of minutes (i.e., 0630 hours to
390 minutes) for use in time window and service time calculations.

HMMtoHh(int). Static method in class Convert
HMMtoHh converts a military specified time to the equivalent decimal hour equivalent (i.e., 0630
hours to 6.5 hours) for use in time window and service time calculations.

InFromKevbdO. Constructor for class InFromKevbd
insert(NodeType[], int, int). Static method in class NodeType

Method insert allows the element designated by "chl" to be shifted by "chD" elements.
iterPrint. Variable in class PrintFlag

print flag.

K
kevDouble(String). Static method in class InFromKevbd

keyDouble allows user to enter a double from the keyboard.
kevFloat(String). Static method in class InFromKevbd

keyFloat allows user to enter a float from the keyboard.
keylnt(String). Static method in class InFromKevbd

keylnt allows user to enter an integer from the keyboard.
KevObi (int, int, int, int, int, int). Constructor for class KeyObj

Specified constructor.
kevString(String). Static method in class InFromKevbd

keySting allows user to enter a string from the keyboard.
KevToStringQ. Constructor for class KeyToString
kevToString(int, int, int, int, int, int). Static method in class KeyToString

KeyToString Class converts the attributes of tour to a concatenated string used as a key to the
hashtable of tours.

loadPrint. Variable in class PrintFlag
print flag.

52

lookForCHashtable, int, int, int, int, int, int, int). Static method in class HashMod
lookFor method searches for the current tour in the hashing structure, if the tour is found a true
value for the boolean "found" is returned, if not found, the tour is added to the hashtable.

M
main(String[]). Static method in class MTSPTW

main executes MTSPTW problem.
mavg. Variable in class CvcleOut

moving average.
MMtoHHMM(int). Static method in class Convert

MMtoHHMM converts a given number of minutes to a military time hour format (i.e., 390
minutes to 0630 hours) for human friendly output.

movePrint. Variable in class PrintPlag
print flag.

moveVa]TT(int, int, NodeType[], NodeType[], int[][]). Static method in class NodeTvpe
Method moveValTT computes the incremental change in the value of the travel time from the
incumbent tour to the proposed neighbor tour, and computes the neighbor schedule parameters
preparing for computation of penalty terms.

moveValTT(int, int, NodeType[], NodeType[], int[][]). Static method in class TabuMod
Method moveValTT computes the incremental change in the value of the travel time from the
incumbent tour to the proposed neighbor tour, and computes the neighbor schedule parameters
preparing for computation of penalty terms.

MTSPTWO. Constructor for class MTSPTW

N
noCvcleCdouble, int, double, int, int, PrintFlag). Static method in class TabuMod

noCycle method updates the search parameters if the incumbent tour is not found in the hashing
structure.

NoCvcleOutO. Constructor for class NoCvcleOut
Default constructor.

NoCycleOut(int, int). Constructor for class NoCvcleOut
Specified constructor.

NodeTypeQ. Constructor for class NodeTvpe
Default constructor.

NodeTypednt, int, int, int, int, int, int). Constructor for class NodeTvpe
Specified constructor.

numfeas. Variable in class SearchOut

penTrav. Variable in class SearchOut
penTrav. Variable in class StartPenBestOut

Penalty related value.
penTrav. Variable in class TsptwPenOut

Penalty related value.
printO. Method in class NodeTvpe
PrintCallsQ. Constructor for class PrintCalls
PrintFlagQ. Constructor for class PrintFlag

Default PrintFlag constructor sets all to "true".
PrintFlag(boolean). Constructor for class PrintFlag

Additional PrintFlag constructor allows specification of either "true" or "false".
printlnitValsdnt, int, int, double, String). Static method in class PrintCalls
printTourfNodeTypeH)■ Static method in class NodeTvpe

R
randWtWZ(int, int, int). Static method in class HashMod

randWtWZ method computes Woodruff & Zemel random weights between 1 & range for all

53

nodes.
ReacTabuObi Q. Constructor for class ReacTabuObi
ReadFile(). Constructor for class ReadPile
readNC(String). Static method in class TimeMatrixObi

readNC is used to read from the first token from the input file (the number of customers (nc)).
readNextDouble(StreamTokenizer). Static method in class ReadFile

readNextString method gets the next token and returns it as a double.
readNextlnt(StreamTokenizer). Static method in class ReadFile

readNextString method gets the next token and returns it as a integer.
readNextString(StreamTokenizer). Static method in class ReadFile

readNextString method gets the next token and returns it as a string.
readNV(String). Static method in class TimeMatrixObi

readNV is used to read from the second token from the input file (the number of vehicles (nv)).
readTSPTW(double, int, int, String, CoordType[], int[]). Static method in class TimeMatrixObi

readTSPTW reads in the geographical coordinates and time window file and calculates the time
between each node

readTSPTWdepot(double, int, int, String, CoordTypef], int[]). Static method in class TimeMatrixObi
readTSPTWdepot reads in the geographical coordinates, load quantity, service time, and time
window information associated with depot and customer locations from the input file.

rtsStepPrint(int, int, int, int, int, int, int, int). Static method in class PrintCalls

search(double, double, double, double, int, int, int, int, int, int, int, int, int, int, int, VrpPenType, int[][],
PrintFlag, int, int, int, int, int, int, int, int, int, int, int, int, int, int, int, NodeType[], NodeType[],
NodeType[]). Static method in class ReacTabuObi

ReacTabuObj steps through iterations of the reactive tabu search.
SearchOutO. Constructor for class SearchOut

Default constructor.
SearchOut(int, int, int, int, int, int, int, int, int, int, int, int, int, int, int, VrpPenType, NodeTypef],
NodeType[], NodeType[]). Constructor for class SearchOut

Specified constructor.
secondHashVaKint, int, int, NodeType[], int[]). Static method in class HashMod

secondHashVal updates the Woodruff & Zemel second hashing value based on the tour insertion
move.

setld(int). Method in class NodeTvpe
setLoad(int). Method in class NodeTvpe
setQtv(int). Method in class NodeTvpe
setType(int'). Method in class NodeTvpe
setWait(int). Method in class NodeTvpe
ssltlc. Variable in class CvcleOut
ssltlc. Variable in class NoCvcleOut

cycle related variable.
startPenBestdnt, int, int, NodeType[], double, double, int, int, int, int, VrpPenType, int, int, int, int, int, int,
int, int, int, int, NodeType[], NodeType[]). Static method in class StartTourObj

startPenBest initializes "best" values and their times.
StartPenBestOutQ. Constructor for class StartPenBestOut

Default constructor.
StartPenBestOut(int, int, int, int, int, int, int, int, int, int, int, int, int, VrpPenType, NodeType[],
NodeType[]). Constructor for class StartPenBestOut

Specified constructor.
startPrint. Variable in class PrintFlag

print flag.
startTime. Variable in class Timer

begin time.
startTimeO. Method in class Timer

startTime assigns start time.

54

startTour(NodeTvpe[l, int[][], int, int). Static method in class NodeType
Method startTour will bubble sort the initial tour based on the average time window time.

StartTourObiO. Constructor for class StartTourObi
stepLoopPrint. Variable in class PrintFlag

print flag.
stepPrint. Variable in class PrintFlag

print flag.
sumWait(NodeType[1). Static method in class NodeType

Method sumWait calculates the total "waiting" time in a particular tour by summing the wait
values for each individual node.

swapdnt, int). Static method in class MTSPTW
Swap allows generic swap of integers.

swaplntdnt, int). Static method in class NodeType
Method swaplnt switches two integers

swapNode(NodeType[], int, int). Static method in class NodeType
Method swapNode allows the node array elements "a" and "b" to be swapped in the Node Array
"z".

tabuLen. Variable in class CvcleOut
tabuLen. Variable in class NoCvcleOut

cycle related variable.
TabuModO. Constructor for class TabuMod
timeMatrix(int, int, double, int, CoordType[], int[]). Static method in class TimeMatrixObi

timeMatrix computes simple two-dimensional time/distance matrix.
timeMatrixDepot(int, int, double, int, CoordTypef], int[]). Static method in class TimeMatrixObi

timeMatrixDepot computes the two-dimensional array used as the "time" matrix.
TimeMatrixObi(). Constructor for class TimeMatrixObi
timePrint. Variable in class PrintFlag

print flag.
TimerO. Constructor for class Timer

Default constructor.
toStringQ. Method in class KevObi

toString changes a KeyObj to a string for use in the hashTable.
toStringQ. Method in class ValueObi

toString changes a ValueObj to a string for use in the hashTable.
totalSeconds. Variable in class Timer

duration of run.
totalSecondsQ. Method in class Timer

totalSeconds returns duration.
totPenalty. Variable in class SearchOut
totPenalty. Variable in class StartPenBestOut

Penalty related value.
totPenalty. Variable in class TsptwPenOut

Penalty related value.
tour. Variable in class SearchOut
tourCost. Variable in class SearchOut
tourCost. Variable in class StartPenBestOut

Penalty related value.
tourCost. Variable in class TsptwPenOut

Penalty related value.
tourHVwzCNodeTypen, int[]). Static method in class HashMod

tourHVwz method computes the Woodruff & Zemel hashing value from the sum of adjacent node
id multiplication.

tourPen. Variable in class SearchOut
tourPen. Variable in class StartPenBestOut

55

Tour penalty values.
tourScheddnt, NodeType[], int[][]). Static method in class NodeTvpe

Method tourSched should be called with the syntax tourLen = tourSched(nodeArray, time) from
the orderS tartingTour method.

TsptwPenO. Constructor for class TsptwPen
tsptwPen(int, NodeType[], VrpPenType, double, double, int, int, int, int). Static method in class TsptwPen

tsptwPen method uses the TW and load penalties to computes tourCost of tour as tour length +
scaled penalty for infeasibilities.

tsptwPenNormalizedfint, NodeTypef], VrpPenType, double, double, int, int, int, int). Static method in
class TsptwPen

tsptwPenNormalized method uses the TW and load penalties to computes tourCost of tour as tour
length + scaled penalty for infeasibilities.

TsptwPenOutO. Constructor for class TsptwPenOut
Default constructor.

TsptwPenOutdnt, int, int, int). Constructor for class TsptwPenOut
Specified constructor.

tvl. Variable in class SearchOut
tvl. Variable in class TsptwPenOut

Penalty related value.
twBestTT(int, int, int, int, int, int, NodeType[], int, int, int, int, int, int, int, int, NodeType[], NodeTypef],
int, int). Static method in class BestSolnMod

twBestTT compares current tour with previous best and best feasible tours and updates records
accordingly.

TwBestTTOutO. Constructor for class TwBestTTOut
Default constructor.

TwBestTTOut(int, int, int, int, int, int, int, int, int, int, NodeType[], NodeType[]). Constructor for class
TwBestTTOut

Specified constructor.
twrdPrint. Variable in class PrintFlag

print flag.

V
ValueObidnt, int, int, int, int, int, int). Constructor for class ValueObi

Specified constructor.
VrpPenTypeO. Constructor for class VrpPenType

Default constructor.
VrpPenType(int, int). Constructor for class VrpPenType

Specified constructor.
VrpPenTypednt, int, int). Constructor for class VrpPenType

Specified constructor.

w
WindAdiustO. Constructor for class WindAdiust

56

Class BestSolnMod

j ava.lang.Obj ect

+ MTSPTW

+ BestSolnMod

public class BestSolnMod
extends MTSPTW BestSolnMod class retains the tours with the best travel times and tour costs.
Version:

vl.lMar99
Author:

Kevin P. O'Rourke, David M. Ryer

Constructor Index

BestSolnModO

Method Index

twBestTT(int, int, int, int, int, int, NodeType[], int, int, int, int, int, int, int, int, NodeTypef], NodeType[],
int, int)

twBestTT compares current tour with previous best and best feasible tours and updates records
accordingly.

Constructors

BestSolnMod

public BestSolnModO

Methods

twBestTT

public static TwBestTTOut twBestTT(int numnodes,
int totPenalty,
int penTrav,
int tvl,
int nvu,
int iter,
NodeType tour[],
int bfCost,
int bfTT,
int bfnv,
int bfiter,
int bestCost,
int bestTT,
int bestnv,
int bestiter,
NodeType bfTour[],
NodeType bestTourf],
int bfTime,
int bestTime)

57

twBestTT compares current tour with previous best and best feasible tours and updates records
accordingly.

Returns:
returns packages output object.

Class Convert

j ava.lang.Ob j ect

I
+ Convert

public class Convert
extends Object Convert contains general conversion formulas applicable to location and distance
calculations. Included are conversions between decimal format and hours-minutes-seconds format, great
circle distance between two specified coordinates, and bearing from one point to another.

Version:
vl.lFeb99

Author:
Kevin P. O'Rourke, David M. Ryer

Constructor Index

Convert()

Method Index

bearingXYfCoordType, CoordType, double)
bearingXY calculates the true bearing (in degrees) from one coordinate point to the second
coordinate point and returns the value as a double precision number.

distanceXYCCoordType, CoordType)
distanceXY calculates the great circle distance (in nautical miles) between two coordinate points
and returns the value as a double precision number.

DMMmtpDd(int, double)
DMMmtoDd converts a number in "Degrees Minutes Decimal Minutes" (D.MMm) format to
"Degrees Decimal Degrees" (D.d) format.

DMMmtoDd(int, double, String)
DMMmtoDd converts a number in "Degrees Minutes Decimal Minutes" (D.MMm) format to
"Degrees Decimal Degrees" (D.d) format.

DMMSSstoDd(int, int, double)
DMMSSstoDd converts a number in "Degrees Minutes Seconds Decimal Seconds" (D.MMSSs)
format to "Degrees Decimal Degrees" (D.d) format.

DMMSSstoDddnt. int, double, String)
DMMSSstoDd converts a number in "Degrees Minutes Seconds Decimal Seconds" (D.MMSSs)
format to "Degrees Decimal Degrees" (D.d) format.

HHMMtoMM(int)
HHMMtoMM converts a military time to the equivalent number of minutes (i.e., 0630 hours to
390 minutes) for use in time window and service time calculations.

HMMtpHh(int)
HMMtoHh converts a military specified time to the equivalent decimal hour equivalent (i.e., 0630
hours to 6.5 hours) for use in time window and service time calculations.

MMtpHHMM(int)
MMtoHHMM converts a given number of minutes to a military time hour format (i.e., 390
minutes to 0630 hours) for human friendly output.

58

Constructors

Convert

public Convert()

Methods

DMMmtoDd

public static double DMMmtoDd(int degrees,
double minutes)

DMMmtoDd converts a number in "Degrees Minutes Decimal Minutes" (D.MMm) format to
"Degrees Decimal Degrees" (D.d) format. The D.MMm is the "human friendly" form of the data.
The D.d format is required to readily perform distance calculations.

Parameters:
degrees - integer degree value of coordinate.
minutes - double minute value of coordinate.

Returns:
returns double Dd coordinate in the "degrees decimal degrees" format.

DMMmtoDd

public static double DMMmtoDd(int degrees,
double minutes,
String name)

DMMmtoDd converts a number in "Degrees Minutes Decimal Minutes" (D.MMm) format to
"Degrees Decimal Degrees" (D.d) format. The D.MMm is the "human friendly" form of the data.
The D.d format is required to readily perform distance calculations. This version of the method
considers hemisphere and assigns a negative value if appropriate to south and east coordinates.

Parameters:
degrees - integer degree value of coordinate,
minutes - double minute value of coordinate.
name - string hemisphere value of coordinate (either "E", "W", "N", or "S").

Returns:
returns Dd coordinate in the "degrees decimal degrees" format.

DMMSSstoDd

public static double DMMSSstoDd(int degrees,
int minutes,
double seconds)

DMMSSstoDd converts a number in "Degrees Minutes Seconds Decimal Seconds" (D.MMSSs)
format to "Degrees Decimal Degrees" (D.d) format. The D.MMSSs is the "human friendly" form
of the data. The D.d format is required to readily perform distance calculations.

Parameters:
degrees - integer degree value of coordinate,
minutes - integer minute value of coordinate,
seconds - double second value of coordinate.

Returns:
returns Dd coordinate in the "degrees decimal degrees" format.

DMMSSstoDd

public static double DMMSSstoDd(int degrees,
int minutes,
double seconds,
String name)

DMMSSstoDd converts a number in "Degrees Minutes Seconds Decimal Seconds" (D.MMSSs)
format to "Degrees Decimal Degrees" (D.d) format. The D.MMSSs is the "human friendly" form

59

of the data. The D.d format is required to readily perform distance calculations. This version of the
method considers hemisphere and assigns a negative value if appropriate to south and east
coordinates.

Parameters:
degrees - integer degree value of coordinate.
minutes - integer minute value of coordinate.
seconds - double second value of coordinate.
name - string hemisphere value of coordinate (either "E", "W", "N", or "S").

Returns:
returns Dd coordinate in the "degrees decimal degrees" format.

HMMtoHh

public static double HMMtoHh(int time)
HMMtoHh converts a military specified time to the equivalent decimal hour equivalent (i.e., 0630
hours to 6.5 hours) for use in time window and service time calculations.

Parameters:
time - integer whole minute "military format" (0630 hours) time value.

Returns:
returns Hh double fractional hour (6.5 hours) time value.

HHMMtoMM

public static int HHMMtoMM(int time)
HHMMtoMM converts a military time to the equivalent number of minutes (i.e., 0630 hours to
390 minutes) for use in time window and service time calculations.

Parameters:
time - integer whole minute "military format" (0630 hours) time value.

Returns:
returns MM integer number of minutes (390 minutes) time value.

MMtoHHMM

public static int MMtoHHMM(int time)
MMtoHHMM converts a given number of minutes to a military time hour format (i.e., 390
minutes to 0630 hours) for human friendly output.

Parameters:
time - integer number of minutes (390 minutes) time value.

Returns:
returns HHMM integer whole minute "military format" (0630 hours) time value.

distanceXY

public static double distanceXY(CoordType x,
CoordType y)

distanceXY calculates the great circle distance (in nautical miles) between two coordinate points
and returns the value as a double precision number.

Parameters:
x - CoordType coordinate of first position.
y - CoordType coordinate of second position.

Returns:
returns distanceXY double distance between the two points in nautical miles.

bearingXY

public static double bearingXY(CoordType x,
CoordType y,
double dXY)

bearingXY calculates the true bearing (in degrees) from one coordinate point to the second
coordinate point and returns the value as a double precision number.

60

Parameters:
x - CoordType coordinate of first position.
y - CoordType coordinate of second position.
dXY - double distance between the first and second position, in nautical miles.

Returns:
returns thetaXY double initial true heading from the first point to the second point measured from
true north in degrees.

Class CoordType

j ava.lang.Object

+ CoordType

public class CoordType
extends Object CoordType is used to hold coordinate location for customer/vehicle nodes. It contains fields
for both x, y integer data and lat/long data, although only one set will be used.
Version:

vl.lFeb99
Author:

Kevin P. O'Rourke, David M. Ryer

Constructor Index

CoordTypeO
Default constructor.

CoordType(String, double, double)
Lat/long constructor.

Constructors

CoordType

public CoordTypeO
Default constructor. Assigns name to null and all values to zero.

CoordType

public CoordType(String nameLabel,
double lat,
double Ion)

Lat/long constructor. Assigns name, latitude, and longitude as specified.

Class CycleOut

j ava.lang.Obj ect

+ CycleOut

public class CycleOut
extends Object CycleOut is used as a package to output multiple fields from the class Cycle.
Version:

vl.lMar99
Author:

61

Kevin P. O'Rourke, David M. Ryer

Variable Index

mavg
moving average.

ssltlc
tabuLen

Constructor Index

CvcleOutO
Default constructor.

CycleOutfint, int, double, ValueObj)
Specified constructor.

ssltlc

public int ssltlc

tabuLen

public int tabuLen

mavg

public double mavg
moving average.

Constructors

CycleOut

public CycleOut()
Default constructor. Assigns all values to zero.

CycleOut

public CycleOut(int ssltlc,
int tabuLen,
double mavg,
ValueObj matchPtr)

Specified constructor. Values set as passed.

Class HashMod

java.lang.Obj ect

+ HashMod

public class HashMod
extends Object HashMod Class contains methods to assign first and second hashing values (used in the
hashtable) and the search method to search the hashtable.
Version:

vl.lMar99
Author:

Kevin P. O'Rourke, David M. Ryer

62

Constructor Index

HashModO

Method Index

firstHashVal(int)
firstHashVal method assigns the primary hashing value.

lookFor(Hashtable, int, int, int, int, int, int, int)
lookFor method searches for the current tour in the hashing structure, if the tour is found a true
value for the boolean "found" is returned, if not found, the tour is added to the hashtable.

randWtWZ(int, int, int)
randWtWZ method computes Woodruff & Zemel random weights between 1 & range for all
nodes.

secondHashValfint, int, int, NodeType[], int[])
secondHashVal updates the Woodruff & Zemel second hashing value based on the tour insertion
move.

tourHVwz(NodeType[], int[])
tourHVwz method computes the Woodruff & Zemel hashing value from the sum of adjacent node
id multiplication.

Constructors

HashMod

public HashModO

Methods

lookFor

public static boolean lookFor(Hashtable daHashTab,
int fhv,
int shv,
int cost,
int tvl,
int twPen,
int loadPen,
int lastlter)

lookFor method searches for the current tour in the hashing structure, if the tour is found a true
value for the boolean "found" is returned, if not found, the tour is added to the hashtable.

Parameters:
daHashTab - hashtable object,
fhv - First hashing value (objective function),
shv - Second hashing value (Woodruff & Zemel).
tourCost - Tour cost,
tvl - Travel time.
twPen - Time window penalty.
loadPen - Load overage penalty.
lastlter - Iteration on which the tour was previously found.

Returns:
returns true boolean value if the tour was previously found.

randWtWZ

public static final int[] randWtWZ(int ZRANGE,
int nc,
int numnodes)

randWtWZ method computes Woodruff & Zemel random weights between 1 & range for all
nodes.

63

Parameters:
ZRANGE - maximum weight value.
nc - number of customers (targets).
numnodes - total number of nodes.

Returns:
returns integer array of "z" weights.

tourHVwz

public static final int tourHVwz(NodeType tour[],
int zArr[])

tourHVwz method computes the Woodruff & Zemel hashing value from the sum of adjacent node
id multiplication.

Parameters:
tour - tour node array to be processed.
zArr - "z" array of random weights.

Returns:
returns secondary hashing value function (thv).

firstHashVal

public static final int firstHashVal(int zT)
firstHashVal method assigns the primary hashing value. Currently, it assigns the objective
function as the first hashing value (fhv). Method can be updated as desired.

Parameters:
zT - objective function value.

Returns:
returns first hashing value (fhv).

secondHashVal

public static final int secondHashVal(int shv,
int chl,
int chD,
NodeType tour[],
int zArr[])

secondHashVal updates the Woodruff & Zemel second hashing value based on the tour insertion
move.

Parameters:
shv - current tour hashing value,
chl - node insertion position.
chD - node insertion depth,
tour - tour node array for processing.
zArr - "z" array of random weights.

Returns:
returns updated hashing value to reflect insertion.

Class InFromKeybd

j ava.lang.Obj ect

+ InFromKeybd
public class InFromKeybd
extends Object InFromKeybd class allows us to enter strings, integers, doubles and floats from the
keyboard with a specified prompt.
Version:

vl.lFeb99

64

Author:
Kevin P. O'Rourke, David M. Ryer

Constructor Index

InFromKeybdO

Method Index

keyDouble(String)
keyDouble allows user to enter a double from the keyboard.

keyFloat(String)
keyFloat allows user to enter a float from the keyboard.

keylnt(String)
keylnt allows user to enter an integer from the keyboard.

keyString(String)
keySting allows user to enter a string from the keyboard.

Constructors

InFromKeybd

public InFromKeybdO

Methods

keyString

public static final String keyString(String prompt)
keyString allows user to enter a string from the keyboard.

Parameters:
prompt - Text prompt printed on screen.

Returns:
returns user entered string.

keylnt

public static final int keylnt(String prompt)
keylnt allows user to enter an integer from the keyboard.

Parameters:
prompt - Text prompt printed on screen.

Returns:
returns user entered integer.

keyDouble

public static final double keyDouble(String prompt)
keyDouble allows user to enter a double from the keyboard.

Parameters:
prompt - Text prompt printed on screen.

Returns:
returns user entered double.

keyFloat

public static final float keyFloat(String prompt)
keyFloat allows user to enter a float from the keyboard.

Parameters:
prompt - Text prompt printed on screen.

Returns:
returns user entered float.

65

Class KeyObj

j ava.lang.Obj ect

+ KeyObj

public final class KeyObj
extends Object KeyObj Class is used to access tour attributes in the hashtable for comparison.
Version:

vl.lMar99
Author:

Kevin P. O'Rourke, David M. Ryer

Constructor Index

KevObiCint, int, int, int, int, int)
Specified constructor.

Method Index

eguals(KeyObj)
Overloaded equals(), check only attribute fields.

hashCodeO
Overloaded hashCode method.

toStringQ
toString changes a KeyObj to a string for use in the hashTable.

Constructors

KeyObj

public KeyObj(int fhv,
int shv,
int cost,
int tvl,
int twPen,
int loadPen)

Specified constructor. Values set as passed.

Methods

equals

public final boolean equals(KeyObj a)
Overloaded equals(), check only attribute fields. Do not check first two data elements to keep
inline with hashCode overload.

Parameters:
a - element compared calling object.

Returns:
returns true if objects are equal, false otherwise.

toString

public final String toString()
toString changes a KeyObj to a string for use in the hashTable.

Returns:
returns concatenated String.

Overrides:
toString in class Object

hashCode

66

public final int hashCode()
Overloaded hashCode method. Note: if two objects are equal according to the equals method, then
calling the hashCode method on each of the two objects must produce the same integer result.
Only check first two data elements because of size limitations of Integer.

Returns:
returns integer hashcode value.

Overrides:
hashCode in class Object

Class KeyToString

j ava.lang.Object

+ KeyToString

public class KeyToString
extends Object KeyToString Class converts the attributes of tour to a concatenated string used as a key to
the hashtable of tours.
Version:

vl.lMar99
Author:

Kevin P. O'Rourke, David M. Ryer

Constructor Index

KevToStringQ

Method Index

kevToStringfint, int, int, int, int, int)
KeyToString Class converts the attributes of tour to a concatenated string used as a key to the
hashtable of tours.

Constructors

KeyToString

public KeyToString()

Methods

keyToString

public static String keyToString(int fhv,
int shv,
int tourCost,
int tvl,
int twPen,
int loadPen)

KeyToString Class converts the attributes of tour to a concatenated string used as a key to the
hashtable of tours.

Parameters:
fhv - First hashing value (objective function),
shv - Second hashing value (Woodruff & Zemel).
tourCost - Tour cost.

67

tvl - Travel time.
twPen - Time window penalty.
loadPen - Load overage penalty.

Class MTSPTW

Java.lang.Object

+ MTSPTW

public class MTSPTW
extends Object MTSPTW is the main part that implements the multiple traveling salesperson problem with
time windows solve algorithm. This version calls the specific methods to read file input and generate the
appropriate time matrix.
Version:

vl.lMar99

Author:
Kevin P. O'Rourke, David M. Ryer

Constructor Index

MTSPTWO

Method Index

main(String[])
main executes MTSPTW problem.

swapfint, int)
Swap allows generic swap of integers.

Constructors

MTSPTW

public MTSPTWO

Methods

swap

public static void swap(int a,
int b)

Swap allows generic swap of integers.
Parameters:

a- integer
b-integer

Returns:
returns void

main

public static void main(String argv[])
main executes MTSPTW problem. Initializes global variables, calls methods to read data and wind
files, calls method to compute time matrix, calls tabu search method, writes output to file.

Parameters:
nv - number of vehicles, overridden by file information
iters - number of iterations

68

integer - precision scaling factor
file - data file name, without extension (actual filename must end with .dat).
wind - file name, without extension (actual filename must end with .dat).
reroute - identifier. Use 111 (one one one) to specify reroute.

Class NoCycleOut

j ava.lang.Obj ect

I
+ NoCyc 1 eOut

public class NoCycleOut
extends Object NoCycleOut is used as a package to output multiple fields from the method NoCycle.
Version:

vl.lMar99
Author:

Kevin P. O'Rourke, David M. Ryer

Variable Index

ssltlc
cycle related variable.

tabuLen
cycle related variable.

Constructor Index

NoCvcleOutO
Default constructor.

NoCycleOut(int, int)
Specified constructor.

Variables

ssltlc

public int ssltlc
cycle related variable.

tabuLen

public int tabuLen
cycle related variable.

Constructors

NoCycleOut

public NoCycleOut()
Default constructor. Assigns all values to zero.

NoCycleOut

public NoCycleOut(int ssltlc,
int tabuLen)

Specified constructor. Values set as passed.

Class NodeType

69

j ava.lang.Obj ect

+ NodeType

public class NodeType
extends Object NodeType defines the relevant information of each particular node.
Version:

vl.lFeb99
Author:

Kevin P. O'Rourke, David M. Ryer

Constructor Index

NodeTypeO
Default constructor.

NodeTypefint, int, int, int, int, int, int)
Specified constructor.

Method Index

compPens(NodeType[], int)
compPens computes the vehicle capacity overload and time window penalties.

COPVO
countVeh(NodeType[])

Method countVeh finds the number of vehicles being used in the current tour by counting the
vehicle to demand transitions.

getEaO
getldO
getLaQ
getLoadO
geMO
getQtyQ
getTypeO
getWaitO
insert(NodeType[], int, int)

Method insert allows the element designated by "chl" to be shifted by "chD" elements.
moveValTT(int, int, NodeType[], NodeType[], int[][])

Method moveValTT computes the incremental change in the value of the travel time from the
incumbent tour to the proposed neighbor tour, and computes the neighbor schedule parameters
preparing for computation of penalty terms.

printO
pjrintTpur(NodeType[])
setld(int)
setLoad(int)
setOtvfint)
setType(int)
setWait(int)
startTour(NodeType[], int[][], int, int)

Method startTour will bubble sort the initial tour based on the average time window time.
sumWait(NodeType[])

Method sumWait calculates the total "waiting" time in a particular tour by summing the wait
values for each individual node.

swaplnt(int, int)
Method swaplnt switches two integers

swapNode(NodeType[], int, int)
Method swapNode allows the node array elements "a" and "b" to be swapped in the Node Array
"z".

tourSchedfint, NodeType[], int[][])

70

Method tourSched should be called with the syntax tourLen = tourSched(nodeArray, time) from
the orderStartingTour method.

Constructors

NodeType

public NodeType()
Default constructor. Assigns all values to zero.

NodeType

public NodeType(int id,
int ea,
int la,
int qty,
int type,
int wait,
int load)

Specified constructor. Values set as passed.

Methods

copy

public final NodeType copy()

swaplnt

public static final void swaplnt(int a,
int b)

Method swaplnt switches two integers

swapNode

public static final NodeType[] swapNode(NodeType z[],
int a,
int b)

Method swapNode allows the node array elements "a" and "b" to be swapped in the Node Array
"z".

Parameters:
z - node array to be updated,
a - element to be swapped,
b - element to be swapped.

Returns:
returns updated node array.

insert

public static final NodeType[] insert(NodeType z[],
int chl,
int chD)

Method insert allows the element designated by "chl" to be shifted by "chD" elements. chD may
be positive or negative.

Parameters:
z - node array to be updated,
chl - location of node to be moved.
chD - depth of move.

Returns:
returns updated node array.

71

countVeh

public static final int countVeh(NodeType tour[])
Method countVeh finds the number of vehicles being used in the current tour by counting the
vehicle to demand transitions.

Parameters:
tour - node array to be processed.

Returns:
returns integer number of vehicles used in the tour.

sumWait

public static final int sumWait(NodeType tour[])
Method sumWait calculates the total "waiting" time in a particular tour by summing the wait
values for each individual node.

Parameters:
tour - node array to be processed.

Returns:
returns integer value of total wait time in the tour.

compPens

public static final VrpPenType compPens(NodeType tour[],
int capacity)

compPens computes the vehicle capacity overload and time window penalties.
Parameters:

tour[] - current tour used to calculate penalties,
capacity - maximum vehicle load.

Returns:
returns the VrpPenType object which the method was called on with updated values.

tourSched

public static final int tourSched(int is,
NodeType tour[],
int time[][])

Method tourSched should be called with the syntax tourLen = tourSched(nodeArray, time) from
the orderStartingTour method. This will use the listing of nodes to return the new tourLen value
(tour duration). Additionally, the node Array will be updated to reflect the new arrival and
departure times.

Parameters:
is - insertion/starting location for computation of schedule,
tour - node array to be processed,
time - time matrix used to determine schedule.

Returns:
returns integer total tour duration. Updates tour node array as appropriate.

startTour

public static final int startTour(NodeType tour[],
int time[][],
int nc,
int nv)

Method startTour will bubble sort the initial tour based on the average time window time. No
swap is made if the move would violate strong time window infeasibility.

Parameters:
tour - node array to be processed.
time - time matrix used to determine schedule.
nc - number of customers.

72

nv - number of vehicles.
Returns:

returns integer total tour duration. Updates tour node array as appropriate.

getld

public final int getld()

getEa

public final int getEa()

getLa

public final int getLa()

getQty

public final int getQty()

getType

public final int getType()

getWait

public final int getWait()

getLoad

public final int getLoad()

getM

public final double getM()

setld

public final void setld(int id)

setWait

public final void setWait(int wait)
setType

public final void setType(int type)
setQty

public final void setQty(int qty)

setLoad

public final void setLoad(int load)

print

public final void print()

printTour

public static final void printTour(NodeType tour[])

moveValTT

public static int moveValTT(int i,
int d,
NodeType tour[],

73

NodeType nbrtour[],
int time[][])

Method moveValTT computes the incremental change in the value of the travel time from the
incumbent tour to the proposed neighbor tour, and computes the neighbor schedule parameters
preparing for computation of penalty terms.

Parameters:
i - node position.
d - move depth.
tour - incumbent tour node array to be processed.
nbrtour - neighbor tour node array to be processed.
time - time matrix used to determine schedule.

Returns:
returns integer move value which is the resultant change in the objective function resulting from
the proposed move.

See Also:
compPens

Class PrintCalls

j ava.lang.Object

I
+ PrintCalls

public class PrintCalls
extends Object PrintCalls is to display on the screen initial values and rts steps as required.
Version:

vl.lMar99
Author:

Kevin P. O'Rourke, David M. Ryer

Constructor Index

PrintCallsO

Method Index

printlnitValsdnt, int, int, double, String)
rtsStepPrintdnt, int, int, int, int, int, int, int)

Constructors

PrintCalls

public PrintCallsO

Methods

printlnitVals

public static void printlnitVals(int nv,
int iters,
int numcycles,
double factor,
String file)

rtsStepPrint

public static void rtsStepPrint(int id,
int i,

74

int d,
int k,
int moveVal,
int totNbrPen,
int tabu,
int numnodes)

Class PrintFlag

j ava.lang.Obj ect

+ PrintFlag

public class PrintFlag
extends Object PrintFlag contains all print out flags as boolean attributes.
Version:

vl.lMar99
Author:

Kevin P. O'Rourke, David M. Ryer

Variable Index

cvclePrint
print flag.

iterPrint
print flag.

loadPrint
print flag.

movePrint
print flag.

startPrint
print flag.

stepLoopPrint
print flag.

stepPrint
print flag.

timePrint
print flag.

twrdPrint
print flag.

Constructor Index

PrintFiagQ
Default PrintFlag constructor sets all to "true".

PrintFIag(boolean)
Additional PrintFlag constructor allows specification of either "true" or "false".

Variables

movePrint

public boolean movePrint
print flag.

startPrint

public boolean startPrint
print flag.

75

timePrint

public boolean timePrint
print flag.

stepPrint

public boolean stepPrint
print flag.

stepLoopPrint

public boolean stepLoopPrint
print flag.

twrdPrint

public boolean twrdPrint
print flag.

cyclePrint

public boolean cyclePrint
print flag.

iterPrint

public boolean iterPrint
print flag.

loadPrint

public boolean loadPrint
print flag.

Constructors

PrintFlag

public PrintFlag()
Default PrintFlag constructor sets all to "true".

PrintFlag

public PrintFlag(boolean set)
Additional PrintFlag constructor allows specification of either "true" or "false".

Class ReacTabuObj

j ava.lang.Obj ect

+ ReacTabuObj

public class ReacTabuObj
extends Object ReacTabuObj class contains the method to perform the reactive tabu search.
Version:

vl.lMar99
Author:

Kevin P. O'Rourke, David M. Ryer

76

Constructor Index

ReacTabuObiO

Method Index

search(double, double, double, double, int, int, int, int, int, int, int, int, int, int, int, VrpPenType, int[][],
PrintFlag, int, int, int, int, int, int, int, int, int, int, int, int, int, int, int, NodeType[], NodeType[],
NodeType[])

ReacTabuObj steps through iterations of the reactive tabu search.

Constructors

ReacTabuObj

public ReacTabuObj()

search

public static SearchOut search(double TWPEN,
double LDPEN,
double INCREASE,
double DECREASE,
int HTSIZE,
int CYMAX,
int ZRANGE,
int DEPTH,
int capacity,
int minTL,
int maxTL,
int tabuLen,
int iters,
int nc,
int numnodes,
VrpPenType tourPen,
int time[][],
PrintFlag printFlag,
int tourCost,
int penTrav,
int totPenalty,
int tvl,
int bfTourCost,
int bfTT,
int bfnv,
int bfiter.
int bestCost,
int bestTT,
int bestnv,
int bestTime,
int bestTimeF,
int bestiter,
int numfeas,
NodeType tour[],
NodeType bestTour[],
NodeType bestTourF[])

ReacTabuObj steps through iterations of the reactive tabu search. This method will perform tabu
search for VRP with capacity as well as TSP without capacity.

Returns:

77

returns packaged output object.

Class ReadFile

j ava.lang.Obj ect

+ ReadFile

public class ReadFile
extends Object ReadFile Class reads appropriate data from a text file. Methods exist to read specific data
types (file format must be known in advance).
Version:

vl.lMar99
Author:

Kevin P. O'Rourke, David M. Ryer

Constructor Index

ReadFileO

Method Index

assignlnputFile(String)
assignlnputFile sets up the FilelnputStream.

readNextDouble(StreamTokenizer)
readNextString method gets the next token and returns it as a double.

readNextlnt(StreamTokenizer)
readNextString method gets the next token and returns it as a integer.

readNextString(StreamTokenizer)
readNextString method gets the next token and returns it as a string.

Constructors

ReadFile

public ReadFileO

Methods

assignlnputFile

public static final FilelnputStream assignlnputFile(String filename)
assignlnputFile sets up the FilelnputStream.

readNextString

public static final String readNextString(StreamTokenizer st)
readNextString method gets the next token and returns it as a string.

Parameters:
st - string tokenizer.

Returns:
returns next string from file.

readNextDouble

public static final double readNextDouble(StreamTokenizer st)
readNextString method gets the next token and returns it as a double.

Parameters:
st - string tokenizer.

Returns:

78

returns next double from file.
readNextlnt

public static final int readNextlnt(StreamTokenizer st)
readNextString method gets the next token and returns it as a integer.

Parameters:
st - string tokenizer.

Returns:
returns next integer from file.

Class SearchOut

j ava.lang.Obj ect

+ SearchOut

public class SearchOut
extends Object SearchOut is used as a package to output multiple information from the Search method in
ReacTabuObj.
Version:

vl.lMar99
Author:

Kevin P. O'Rourke, David M. Ryer
See Also:

Search

Variable Index

bestCost
bestiter
bestnv
bestTime
bestTour
bestTT
bfCost
bfiter
bfnv
bfTime
bfTour
bfTT
numfeas
penTrav
totPenaltv
tour
tourCost
tourPen
tvl

Constructor Index

SearchOutO
Default constructor.

SearchOutfint, int, int, int, int, int, int, int, int, int, int, int, int, int, int, VrpPenType, NodeTypef],
NodeType[], NodeType[])

Specified constructor.

79

Variables

totPenalty

public int totPenalty
penTrav

public int penTrav
tourCost

public int tourCost

bfiter

public int bfiter

bfCost

public int bfCost

bfTT

public int bfTT

bestnv

public int bestnv

bestiter

public int bestiter

bestCost

public int bestCost

bestTT

public int bestTT

bfnv

public int bfnv

bfTime

public int bfTime

bestTime

public int bestTime

tvl

public int tvl

numfeas

public int numfeas

tourPen

public VrpPenType tourPen

tour

public NodeType tour[]

80

bfTour

public NodeType bfTour[]

bestTour

public NodeType bestTour[]

Constructors

SearchOut

public SearchOut()
Default constructor. Assigns all values to zero.

SearchOut

public SearchOut(int totPenalty,
int penTrav,
int tourCost,
int bfiter,
int bfCost,
int bfTT,
int bestnv,
int bestiter,
int bestCost,
int bestTT,
int bfnv,
int bfTime,
int bestTime,
int tvl,
int numfeas,
VrpPenType tourPen,
NodeType tour[],
NodeType bfTour[],
NodeType bestTour[])

Specified constructor. Values set as passed.

Class StartPenBestOut

j ava.lang.Object

+ StartPenBestOut

public class StartPenBestOut
extends Object StartPenBestOut is used as a package to output multiple penalty information from method
startPenBest.
Version:

vl.lMar99
Author:

Kevin P. O'Rourke, David M. Ryer

Variable Index

bestCost
Penalty related value.

bestiter
Penalty related value.

81

bestnv
Penalty related value.

bestTime
Penalty related value.

bestTour
Saved tour.

bestTT
Penalty related value.

bfCost
Penalty related value.

bfiter
Penalty related value.

bfnv
Penalty related value.

bfTime
Penalty related value.

bfTour
Saved tour.

bfTT
Penalty related value.

penTrav
Penalty related value.

totPenaltv
Penalty related value.

tourCost
Penalty related value.

tourPen
Tour penalty values.

Constructor Index

StartPenBestOutO
Default constructor.

StartPenBestOut(int, int, int, int, int, int, int, int, int, int, int, int, int, VrpPenType, NodeType[],
NodeTypef])

Specified constructor.

Variables

totPenalty

public int totPenalty
Penalty related value.

penTrav

public int penTrav
Penalty related value.

tourCost

public int tourCost
Penalty related value.

bfiter

public int bfiter
Penalty related value.

bfCost

82

public int bfCost
Penalty related value.

bfTT

public int bfTT
Penalty related value.

bestnv

public int bestnv
Penalty related value.

bestiter

public int bestiter
Penalty related value.

bestCost

public int bestCost
Penalty related value.

bestTT

public int bestTT
Penalty related value.

bfnv

public int bfnv
Penalty related value.

bfTime

public int bfTime
Penalty related value.

bestTime

public int bestTime
Penalty related value.

tourPen

public VrpPenType tourPen
Tour penalty values.

bfTour

public NodeType bfTour[]
Saved tour.

bestTour

public NodeType bestTour[]
Saved tour.

Constructors

StartPenBestOut

public StartPenBestOut()
Default constructor. Assigns all values to zero.

StartPenBestOut

83

public c StartPenBestOut(int
int
int

totPenalty,
penTrav,
tourCost,

int bf iter,
int bfCost,
int bfTT,
int bestnv,
int bestiter,
int bestCost,
int bestTT,
int bfnv,
int bfTime,
int bestTime,
VrpPenType tourPen,
NodeType bfTour[],
NodeType bestTour[])

Specified constructor. Values set as passed.

Class StartTourObj

j ava.lang.Obj ect

+ StartTourObj

public class StartTourObj
extends Object StartTourObj class begins timing, computes an initial schedule and initial tour cost (Tour
Cost = Travel time + Waiting Time + Penalty Term), computes the initial hashing values: Z(i) and thv(t),
and produces a tour based on a sort of increasing avg time windows at each node. The customers are
ordered by increasing avg time window value, and the nv vehicle nodes are appended to the end of the tour.

Constructor Index

StartTourObiO

Method Index

startPenBestdnt, int, int, NodeType[], double, double, int, int, int, int, VrpPenType, int, int, int, int, int, int,
int, int, int, int, NodeType[], NodeType[])

startPenBest initializes "best" values and their times.

Constructors

StartTourObj

public StartTourObj()

Methods

startPenBest

public static StartPenBestOut startPenBest(int numnodes,
int tvl,
int tourLen,
NodeType tour[],
double TWPEN,
double LDPEN,
int capacity,
int totPenalty,
int penTrav,

84

int tourCost,
VrpPenType tourPen,
int bfiter,
int bfTourCost,
int bfTT,
int bfnv,
int bestiter,
int bestCost,
int bestTT,
int bestnv,
int bestTimeF,
int bestTime,
NodeType bestTour[],
NodeType bestTourF[])

startPenBest initializes ' best' values and their times. Computes cost of initial tour as tour length
with added penalty for infeasibilities.

Returns:
returns StartPenBestOul wrapper object for multiple values.

Class TabuMod

java.lang.Obj ect

+ TabuMod

public class TabuMod
extends Object TabuMod Class contains methods used in the TabuSearch. countVeh calculates the number
of vehicles used in the current tour. noCycle updates the search parameters if tour is not found in the
hashtable. cycle updates the search parameters if tour is found in the hashtable. moveValTT computes the
incremental change in the value of the travel time.
Version:

vl.lMar99
Author:

Kevin P. O'Rourke, David M. Ryer

Constructor Index

TabuModO

Method Index

countVehiclesCNodeTypen)
countVeh method calculates the number of vehicles used in the current tour by counting the
number of vehicle (type 2) to demand (type 1) transitions.

cvcle(ValueObj, double, int, int, int, double, int, int, PrinfFlag)
cycle method updates the search parameters if the incumbent tour is found in the hashing structure.

moyeValTT(int, int, NodeType[], NodeType[], int[][])
Method moveValTT computes the incremental change in the value of the travel time from the
incumbent tour to the proposed neighbor tour, and computes the neighbor schedule parameters
preparing for computation of penalty terms.

noCyc|e(double, int, double, int, int, PrintFlag)
noCycle method updates the search parameters if the incumbent tour is not found in the hashing
structure.

Constructors

TabuMod

85

public TabuMod()

Methods

countVehicles

public static final int countVehicles(NodeType tour[])
countVeh method calculates the number of vehicles used in the current tour by counting the
number of vehicle (type 2) to demand (type 1) transitions.

Parameters:
tour - node array to be processed.

Returns:
returns integer number of vehicles used in the tour.

noCycle

public static NoCycleOut noCycle(double DECREASE,
int minTL,
double mavg,
int ssltlc,
int tabuLen,
PrintFlag printFlag)

noCycle method updates the search parameters if the incumbent tour is not found in the hashing
structure.

Parameters:
DECREASE - adjustive scaling factor to reduce tabu length.
minTL - minimum tabu length,
mavg - moving average between cycles,
ssltlc - steps since last tabu length change.
tabuLen - current tabu length.
printFlag - option to print cycle information.

Returns:
returns noCycleOut wrapped object.

cycle

public static CycleOut cycle(ValueObj matchPtr,
double INCREASE,
int maxTL,
int CYMAX,
int k,
double mavg,
int ssltlc,
int tabuLen,
PrintFlag printFlag)

cycle method updates the search parameters if the incumbent tour is found in the hashing structure.
Parameters:

matchPtr - matched information for previously found identical tour
INCREASE - adjustive scaling factor to increase tabu length
maxTL - maximum tabu length
CYMAX - maximum allowable cycle frequency
k - current iteration
mavg - moving average between cycles,
ssltlc - steps since last tabu length change.
tabuLen - current tabu length.
printFlag - option to print cycle information.

Returns:
returns cycleOut wrapped object.

86

moveValTT

public static int moveValTT(int i,
int d,
NodeType tour[],
NodeType nbrtour[],
int time[][])

Method moveValTT computes the incremental change in the value of the travel time from the
incumbent tour to the proposed neighbor tour, and computes the neighbor schedule parameters
preparing for computation of penalty terms.

Parameters:
i - node position,
d - move depth.
tour - incumbent tour node array to be processed,
nbrtour - neighbor tour node array to be processed,
time - time matrix used to determine schedule.

Returns:
returns integer move value which is the resultant change in the objective function resulting from
the proposed move.

See Also:
compPens

Class TimeMatrixObj

j ava.lang.Obj ect

+ TimeMatrixObj

public class TimeMatrixObj
extends Object TimeMatrixObj contains methods to calculate the distance/time matrix based on the
problem parameters.
Version:

vl.lMar99
Author:

Kevin P. O'Rourke, David M. Ryer

Constructor Index

TimeMatrixObj 0

Method Index

readNC(String)
readNC is used to read from the first token from the input file (the number of customers (nc)).

readNV(String)
readNV is used to read from the second token from the input file (the number of vehicles (nv)).

readTSPTW(double, int, int, String, CoordType[], int[])
readTSPTW reads in the geographical coordinates and time window file and calculates the time
between each node

readTSPTWdepot(double, int, int, String, CoordTypef], int[])
readTSPTWdepot reads in the geographical coordinates, load quantity, service time, and time
window information associated with depot and customer locations from the input file.

timeMatrix(int, int, double, int, CoordType[], int[])
timeMatrix computes simple two-dimensional time/distance matrix.

timeMatrixDepot(int, int, double, int, CoordType[], int[])
timeMatrixDepot computes the two-dimensional array used as the "time" matrix.

87

Constructors

TimeMatrixObj

public TimeMatrixObj()

Methods

readNC

public static int readNC(String filein)
readNC is used to read from the first token from the input file (the number of customers (nc)).

Parameters:
filein - - name of input file

Returns:
returns nc number of customers

readNV

public static int readNV(String filein)
readNV is used to read from the second token from the input file (the number of vehicles (nv)).

Parameters:
filein - - name of input file

Returns:
returns nv number of vehicles

readTSPTW

public static NodeType[] readTSPTW(double factor,
int nv,
int nc,
String filein,
CoordType coord[],
int s[])

readTSPTW reads in the geographical coordinates and time window file and calculates the time
between each node

Parameters:
factor - - integer scaling factor used to increase precision,
nv - - number of aircraft available (vehicles),
nc - - number of targets/route points (customers),
filein - - name of input file.
coord - - blank array where coordinates will be stored upon method completion.
s - - blank array where service times will be stored upon method completion.

Returns:
returns the tour array reflecting file data.

readTSPTWdepot

public static NodeType[] readTSPTWdepot(double factor,
int nv,
int nc,
String filein,
CoordType coord[],
int s[])

readTSPTWdepot reads in the geographical coordinates, load quantity, service time, and time
window information associated with depot and customer locations from the input file. This
information is returned as a tour array.

Parameters:
factor - - integer scaling factor used to increase precision.
nv - - number of aircraft available (vehicles).

88

nc - - number of targets/route points (customers),
filein - - name of input file.
coord - - blank array where coordinates will be stored upon method completion.
s - - blank array where service times will be stored upon method completion.

Returns:
returns the tour array reflecting file data.

timeMatrix

public static int[][] timeMatrix(int nc,
int gamma,
double factor,
int numnodes,
CoordType coord[],
int s[])

timeMatrix computes simple two-dimensional time/distance matrix.
Parameters:

nc - - number of targets/route points (customers),
gamma - - additional vehicle usage penalty (set to ZERO only),
factor - - integer scaling factor used to increase precision,
coord - - blank array where coordinates will be stored upon method completion,
s - - blank array where service times will be stored upon method completion.

Returns:
returns the time matrix specific to the problem.

timeMatrixDepot

public static int[][] timeMatrixDepot(int nc,
int gamma,
double factor,
int numnodes,
CoordType coordf],
int s[])

timeMatrixDepot computes the two-dimensional array used as the "time" matrix. This time matrix
contains the travel times between respective nodes, general setup for multiple depot problem.

Parameters:
nc - - number of targets/route points (customers),
gamma - - additional vehicle usage penalty (set to ZERO only),
factor - - integer scaling factor used to increase precision,
coord - - blank array where coordinates will be stored upon method completion.
s - - blank array where service times will be stored upon method completion.

Returns:
returns the time matrix specific to the problem.

Class Timer

java.lang.Obj ect

+ Timer

public class Timer
extends Object Timer Class is used to time overall computation time.
Version:

vl.lMar99
Author:

Kevin P. O'Rourke, David M. Ryer

89

Variable Index

endTime
end time.

startTime
begin time.

totalSeconds
duration of run.

Constructor Index

TimerQ
Default constructor.

Method Index

endTimeQ
endTime assigns end time.

startTimeQ
startTime assigns start time.

totalSecondsQ
totalSeconds returns duration.

Variables

startTime

public long startTime
begin time.

endTime

public long endTime
end time.

totalSeconds

public long totalSeconds
duration of run.

Constructors

Timer

public Timer()
Default constructor. Assigns all values to zero.

Methods

startTime

public long startTime()
startTime assigns start time.

Returns:
returns start time.

endTime

public long endTime()
endTime assigns end time.

Returns:
returns end time.

totalSeconds

90

public long totalSeconds()
totalSeconds returns duration.

Returns:
returns duration.

Class TsptwPen

j ava.lang.Obj ect

+ MTSPTW

+ TsptwPen

public class TsptwPen
extends MTSPTW tsptwPen class: Given the TW and load penalties, this procedure personalizes the
penalties to the mTSPTW; Computes tourCost of tour as tour length + scaled penalty for infeasibilities.

Constructor Index

TsptwPenO

Method Index

tsptwPenfint, NodeType[], VrpPenType, double, double, int, int, int, int)
tsptwPen method uses the TW and load penalties to computes tourCost of tour as tour length +
scaled penalty for infeasibilities.

tsptwPenNormalizeddnt, NodeType[], VrpPenType, double, double, int, int, int, int)
tsptwPenNormalized method uses the TW and load penalties to computes tourCost of tour as tour
length + scaled penalty for infeasibilities.

Constructors

TsptwPen

public TsptwPenO

Methods

tsptwPen

public static final TsptwPenOut tsptwPen(int tourLen,
NodeType tour[],
VrpPenType tourPen,
double TWPEN,
double LDPEN,
int totPenalty,
int tourCost,
int penTrav,
int tvl)

tsptwPen method uses the TW and load penalties to computes tourCost of tour as tour length +
scaled penalty for infeasibilities. This method is used with the absolute penalty factors.

Parameters:
tourLen - tour duration.
tour - node array to be processed.
tourPen - current tour penalty value.
TWPEN - time window penalty factor.
LDPEN - load overage penalty factor.
totPenalty - sum total penalties.

91

tourCost - total tour cost.
penTrav - travel time penalty,
tvl - travel duration.

Returns:
returns wrapped multiple objects.

tsptwPenNormalized

public static final TsptwPenOut tsptwPenNormalized(int tourLen,
NodeType tour[],
VrpPenType tourPen,
double TWPEN,
double LDPEN,
int totPenalty,
int tourCost,
int penTrav,
int tvl)

tsptwPenNormalized method uses the TW and load penalties to computes tourCost of tour as tour
length + scaled penalty for infeasibilities. This method is uses penalty factors of one and is called
when the insertion move is made. Penalty values are then comparable from iteration to iteration.

Parameters:
tourLen - tour duration.
tour - node array to be processed.
tourPen - current tour penalty value.
TWPEN - time window penalty factor (IGNORED, set to 1).
LDPEN - load overage penalty factor (IGNORED, set to 1).
totPenalty - sum total penalties.
tourCost - total tour cost.
penTrav - travel time penalty.
tvl - travel duration.

Returns:
returns wrapped multiple objects.

Class TsptwPenOut

j ava.lang.Obj ect

+ TsptwPenOut

public class TsptwPenOut
extends Object TsptwPenOut is used as a package to output multiple penalty information from class
TsptwPen.
Version:

vl.lMar99
Author:

Kevin P. O'Rourke, David M. Ryer

Variable Index

penTrav
Penalty related value.

totPenalty
Penalty related value.

tourCost
Penalty related value.

tvl
Penalty related value.

92

Constructor Index

TsptwPenOutO
Default constructor.

TsptwPenOutfint, int, int, int)
Specified constructor.

Variables

totPenalty

public int totPenalty
Penalty related value.

tourCost

public int tourCost
Penalty related value.

penTrav

public int penTrav
Penalty related value.

tvl

public int tvl
Penalty related value.

Constructors

TsptwPenOut

public TsptwPenOutO
Default constructor. Assigns all values to zero.

TsptwPenOut

public TsptwPenOut(int totPenalty,
int tourCost,
int penTrav,
int tvl)

Specified constructor. Values set as passed.

Class TwBestTTOut

j ava.lang.Obj ect

+ TwBestTTOut

public class TwBestTTOut
extends Object TwBestTTOut is used as a package to output multiple information from the TWBestTTOut
method.
Version:

vl.lMar99
Author:

Kevin P. O'Rourke, David M. Ryer

Variable Index

bestCost

93

best tour related value.
bestiter

best tour related value.
bestnv

best tour related value.
bestTime

best tour related value.
bestTour

best tour related value.
bestTT

best tour related value.
bfCost

best tour related value.
bfiter

best tour related value.
bfnv

best tour related value.
bfTime

best tour related value.
bfTour

best tour related value.
bfTT

best tour related value.

Constructor Index

TwBestTTOutO
Default constructor.

TwBestTTOut(int, int, int, int, int, int, int, int, int, int, NodeType[], NodeTypef])
Specified constructor.

Variables

bfCost

public int bfCost
best tour related value.

bfTT

public int bfTT
best tour related value.

bfnv

public int bfnv
best tour related value.

bfiter

public int bfiter
best tour related value.

bestCost

public int bestCost
best tour related value.

bestTT

public int bestTT
best tour related value.

94

bestnv

public int bestnv
best tour related value.

bestiter

public int bestiter
best tour related value.

bfTime

public int bfTime
best tour related value.

bestTime

public int bestTime
best tour related value.

bfTour

public NodeType bfTour[]
best tour related value.

bestTour

public NodeType bestTour[]
best tour related value.

Constructors

TwBestTTOut

public TwBestTTOut()
Default constructor. Assigns all values to zero.

TwBestTTOut

public TwBestTTOut(int bfCost,
int bfTT,
int bfnv,
int bfiter,
int bestCost,
int bestTT,
int bestnv,
int bestiter,
int bfTime,
int bestTime,
NodeType bfTour[],
NodeType bestTour[])

Specified constructor. Values set as passed.

Class ValueObj

j ava.lang.Obj ect

+ ValueObj

public final class ValueObj

95

extends Object ValueObj Class is used to store tour attributes in the hashtable for comparison.
Version:

vl.lMar99
Author:

Kevin P. O'Rourke, David M. Ryer

Constructor Index

ValueObj(int, int, int, int, int, int, int)
Specified constructor.

Method Index

equals(ValueObj)
Overloaded equals(), check only attribute fields.

hashCodeO
Overloaded hashCode method.

toStringQ
toSrting changes a ValueObj to a string for use in the hashTable.

Constructors

ValueObj

public ValueObj(int fhv,
int shv,
int tourCost,
int tvl,
int twPen,
int loadPen,
int lastlter)

Specified constructor. Values set as passed.

Methods

equals

public final boolean equals(ValueObj a)
Overloaded equals(), check only attribute fields. Do not check first two data elements to keep
inline with hashCode overload.

Parameters:
a - element compared calling object.

Returns:
returns true if objects are equal, false otherwise.

toString

public final String toString()
toString changes a ValueObj to a string for use in the hashTable.

Returns:
returns concatenated String.

Overrides:
toString in class Object

hashCode

public final int hashCode()
Overloaded hashCode method. Note: if two objects are equal according to the equals method, then
calling the hashCode method on each of the two objects must produce the same integer result. Do
not checking first two data elements because of size limitations of Integer.

Returns:
returns integer hashcode value.

96

Overrides:
hashCode in class Object

Class VrpPenType

j ava.lang.Object

+ VrpPenType

public class VrpPenType
extends Object VrpPentype class provides the object structure for load and time window penalties.
Version:

vl.lFeb99
Author:

Kevin P. O'Rourke, David M. Ryer

Constructor Index

VrpPenTypeO
Default constructor.

VrpPenTypefint, int)
Specified constructor.

VrpPenTypefint, int, int)
Specified constructor.

Method Index

compPens(NodeType[], int)
compPens computes the vehicle capacity overload and time window penalties.

Constructors

VrpPenType

public VrpPenTypeO
Default constructor. Assigns all values to zero.

VrpPenType

public VrpPenType(int tw,
int Id)

Specified constructor. Values set as passed.
VrpPenType

public VrpPenType(int tw;

int Id,
int nvu)

Specified constructor. Values set as passed.

Methods

compPens

public final VrpPenType compPens(NodeType tour[],
int capacity)

compPens computes the vehicle capacity overload and time window penalties.
Parameters:

tour[] - current tour used to calculate penalties,
capacity - maximum vehicle load.

97

Returns:
returns the VrpPenType object which the method was called on with updated values.

Class WindAdjust

j ava.lang.Obj ect

+ WindAdjust

public class WindAdjust
extends Object WindAdjust will provides the adjusted ground speed given the desired heading from
location A to location B, and the wind heading.
Version:

vl.lFeb99
Author:

Kevin P. O'Rourke, David M. Ryer

Constructor Index

WindAdiustO

Method Index

groundSpeedfdouble, double, double, double)
groundSpeed method returns the ground speed given the heading between points, the wind
heading, the wind speed, and the aircraft's airspeed.

groundSpeedAFCdouble, double, double, double)
groundSpeedAF is an experimental method that uses a different formula.

Constructors

WindAdjust

public WindAdjust()

Methods

groundSpeed

public static final double groundSpeed(double headingAtoB,
double windDir,
double airspeed,
double windSpeed)

groundSpeed method returns the ground speed given the heading between points, the wind
heading, the wind speed, and the aircraft's airspeed.

Parameters:
headingAtoB - heading between points in degrees.
windDir - wind heading in degrees.
airSpeed - aircraft air speed in knots.
windSpeed - wind speed in knots.

Returns:
returns ground speed in knots.

98

Bibliography

Baker, E.K., and J. R. Schaffer. "Solution Improvement Heuristics for the Vehicle
Routing and Scheduling Problem," American Journal of Mathematical and
Management Sciences, 16: 261-300 (February 1986).

Ball M. and M. Magazine. "The Design and Analysis of Heuristics," Networks, 11: 215-
219(1981).

Battiti, R., R., and G. Tecchiolli. "The Reactive Tabu Search," ORSA Journal on
Computing. 6: 126-140(1994).

Bodin, Lawrence, Bruce Golden, A. Assad, and M. Ball. "Routing and Scheduling of
Vehicles and Crews; The State of the Art," Computers and Operations Research,
10: (1983).

Boeing Information Services Inc. Mobility Analysis Support System (MASS) Migration
Technical Report. Contract Number: DC Al 00-94-D-0016. Vienna, VA,
September 1996.

Brigantic, Robert. HQ AMC/XPY Studies and Analysis. "Airlift Flow Model Route
Generation Algorithm." Electronic Message. 28 May 1998.

Carlton, William B. A Tabu Search to the General Vehicle Routing Problem. Ph.D.
dissertation. University of Texas, Austin TX, 1995.

Cox, David W. An Airlift Hub-and- Spoke Location-Routing Model with Time
Windows. MS thesis, AFJT/GOR/ENS/98M. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, March 1998.

Chiang, W. C, and R. Russell. "A Reactive Tabu Search Metaheuristic for the Vehicle
Routing Problem with Time Windows," ORSA Journal on Computing, 9: 417
(1997).

Desrochers, M., J. Desrosiers, and M. Solomon. "A New Optimization Algorithm for the
Vehicle Routing Problem with Time Windows," Operations Research, 40: 342-
353 (1992).

Departments of the Air Force and Navy. Flying Training, Air Navigation. AFR 51-40.
Washington: HQ USAF, 15 Mar 1983.

Eckel, Bruce. Thinking in Java. Saddle River NJ: Prentice-Hall, 1998.

Flanagan, David. Java in a Nutshell. A Desktop Quick Reference (Second Edition).
Sebastopol CA: O'Reilly & Associates, 1997.

99

Garcia, B. L., J. Y. Potvin, and J. M. Rousseau. "A Parallel Implementation of the
Tabu Search Heuristic for Vehicle Routing Problems with Time Window
Constraints." Computers and Operations Research, 21: 1025-1033 (1994).

Gendreau, M., and G. Laporte. "A Tabu Search Heuristic for the Vehicle Routing
Problem with Stochastic Demands and Customers," Operations Research, 44:
469-477 (May 1996).

Gendreau, M., G. Laporte and G. Potvin. "Vehicle Routing: Modern Heuristics," in Local
Search in Combinatorial Optimization. Eds. Aarts, E. and J. K. Lenstra.
Chichester: Wiley, 1997.

Glover, Fred and M. Laguna. Tabu Search. Boston: Kluwer Academic Publishers, 1997.

Grand, Mark and Jonathan Knudsen. Java Fundamental Classes Reference. Sebastopol
CA: O'Reilly & Associates, 1997.

Morton, D., R. Rosenthal and L. Weng. "Optimization Modeling for Airlift Mobility,"
Military Operations Research, 1: 49-67 (Winter 1996).

Osman, I. H. "Metastrategy Simulated Annealing and Tabu Search Algorithms for
the Vehicle Routing Problem," Annals of Operations Research, 41: 421-451
(1993).

Renaud, J., G. Laporte and F. Boctor. "A Tabu Search Heuristic for the Multi-Depot
Vehicle Routing Problem," Computers and Operations Research, 23: 229-235
(1996).

Rink, Kathy. Washington University. "Route Generation." Electronic Message. 4 Aug
1998.

Rochat, Y. and F. Semet. "A Tabu Search Approach for Delivering Pet Food and
Flour in Switzerland," Journal of Operations Research Society, 45: 1233-1246
(1994).

Rosenthal, R. E., S. F. Baker, L. T. Weng, D. F. Fuller, D. Goggins, A. O. Toy, Y.
Turker, D. Horton, D. Briand, D. P. Morton. "Application and Extension of the
Thruput II Optimization Model for Airlift Mobility," Military Operations
Research. 3: 55-74 (1997).

Ryan, J L., T. G. Bailey, J. T. Moore, and W. B. Carlton. "Unmanned Aerial Vehicle
(UAV) Route Selection Using Reactive Tabu Search," to appear in Military
Operations Research (1999).

100

Tsubakitani, S. and J. Evans. "An Empirical Study of a New Metaheuristic for the
Traveling Salesman Problem," European Journal of Operations Research, 104:
113-128(1998).

Woodruff, D., and E. Zemel. "Hashing Vectors for Tabu Search," Annals of
Operations Research, Vol. 41: 123-137 (1993).

Wright, Samuel A. Covalidation of Dissimilarly Structured Models. Undefended
Dissertation. Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
1999.

Xu J. and J. Kelly. "A Network Flow-Based Tabu Search Heuristic for the Vehicle
Routing Problem," Transportation Science, 30: 379-393 (November 1996).

101

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 1999

3. REPORT TYPE AND DATES COVERED

Master's Thesis
4. TITLE AND SUBTITLE

Implementation of the Metaheuristic Tabu Search in Route Selection for Mobility
Analysis Support System

6. AUTHOR(S)

Ryer, David M., Major, USAF

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology
2950 P Streeet
WPAFB, OH 45433

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GOA/ENS/99M-07

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Major Robert Brigantic
AMC/XPY
402 Scott Drive
Unit 3L3
SCOTT AFB IL 62225

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited
12b. DISTRIBUTION CODE

13. ABSTRACT (Max/mum 200 words)

This thesis employs a reactive tabu search heuristic implemented in the Java programming language to solve a real world
variation of the vehicle routing problem with the objective of providing quality routes to Mobility Analysis Support System
(MASS). MASS is a stochastic simulation model used extensively by Air Mobility Command (AMC) to analyze strategic
airlift capabilities and future procurement decisions. This dynamic real world problem of strategic and tactical airlift
possesses a number of side constraints such as vehicle capacities, route length and time windows in a sizeable network with
multiple depots and a large fleet of heterogeneous vehicles. Finding optimal solutions to this problem is currently not
practical. Currently, MASS requires all possible routes used in its simulation to be manually selected. As a result, the route
selection process is a tedious and time consuming process that relies on experience and past performance of the model to
obtain quality routes for the mobility system.

14. SUBJECT TERMS

Tabu Search, Vehicle Routing Problem, Java, MASS, Mobility Modeling, Mobility Analysis
Support System

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

111
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

	Implementation of the Metaheuristic Tabu Search in Route Selection for Mobility Analysis Support System
	Recommended Citation

	/tardir/tiffs/A361669.tiff

