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AFIT/GOA/ENS/99M-07 

Abstract 

This thesis employs a reactive tabu search heuristic implemented in the Java 

programming language to solve a real world variation of the vehicle routing problem with 

the objective of providing quality routes to Mobility Analysis Support System (MASS). 

MASS is a stochastic simulation model used extensively by Air Mobility Command 

(AMC) to analyze strategic airlift capabilities and future procurement decisions. This 

dynamic real world problem of strategic and tactical airlift possesses a number of side 

constraints such as vehicle capacities, route length and time windows in a sizeable 

network with multiple depots and a large fleet of heterogeneous vehicles. Finding 

optimal solutions to this problem is currently not practical. Currently, MASS requires all 

possible routes used in its simulation to be manually selected. As a result, the route 

selection process is a tedious and time consuming process that relies on experience and 

past performance of the model to obtain quality routes for the mobility system. 

VI 



Chapter 1 

1.1 Introduction 

Mobility Analysis Support System (MASS) is a simulation model used 

extensively by Air Mobility Command (AMC) to analyze strategic airlift capabilities and 

future procurement decisions, whose routes are calculated by an experienced analyst 

through trial and error. This thesis employs a reactive tabu search heuristic implemented 

in the Java programming language to solve the vehicle routing problem with the objective 

of providing quality routes to MASS that are as good or better than those currently used. 

1.2 Background 

Most vehicle routing problems (VRP's) are NP-hard combinatorial problems for 

which no polynomially bounded algorithm has yet been found (Baker 1986). Convergent 

algorithms can rarely solve problems larger than 50 customers, and often require 

relatively few side constraints (Gendreau et al. 1997). Unfortunately, real world 

problems such as strategic airlift possess a number of side constraints such as precedence, 

route and vehicle capacities, route length and time windows in a sizeable network with 

multiple depots, and a large fleet of heterogeneous vehicles. Therefore, finding optimal 

solutions using such techniques as branch and bound or dynamic programming is 

currently not practical. 

On the other hand, many heuristic approaches can provide excellent solutions 

with reasonable computational times. Greedy algorithms, which prove to be very useful 

in simpler problems, fail to achieve the desired results with respect to solution quality, 

while simulated annealing (SA) displays large variance with regard to computational time 



and quality due the to random nature of its search strategy (Osman 1993). Genetic 

algorithms (GAs) are difficult to apply to VRP's with capacity, distance, and time 

window constraints because they were designed to solve numerical optimization 

problems rather than combinatorial optimization problems (Gendreau et al. 1997). 

Conversely, tabu search (TS) has provided excellent results on this type of problem with 

the implementation of intensification and diversification strategies (Gendreau et al. 

1997). Intensification uses choice rules to encourage move combinations that incorporate 

good solution features, while diversification forces the solution search to unexplored 

regions or to solutions significantly different than those already found (Glover and 

Laguna 1997). The literature shows TS is a robust approach to solving many variations of 

the VRP and dominates current studies of routing problems (Gendreau et al. 1997, Xu 

and Kelly 1996, Rochat and Semet 1994, Renaud et al.1996, Osman 1993, Garcia et al. 

1994, Chiang and Russell 1997, Carlton 1995). 

Recent modeling efforts in the military airlift community emphasize simulation 

over optimization, in part due to the ease in which simulation can represent the stochastic 

nature of the problems being studied (Rosenthal et al. 1997, Morton et al. 1996). 

However, more recent efforts look at combining simulation and optimization, particularly 

with regard to the Air Mobility Command's legacy model Mobility Analysis Support 

System (MASS). MASS simulates the strategic airlift environment for analysis of 

doctrine, strategic airlift capability, current AMC airlift assets and future AMC 

acquisitions. This simulation analysis supports the activities of the AMC Commander, 

the United States Transportation Command (USTRANSCOM), and a wide variety of 

theater and campaign level commanders. In addition, proprietary organizations like 



Lockheed-Martin and Boeing use MASS to analyze future airlift systems. Possessing a 

global domain, MASS simulates up to 300 bases at any latitude and longitude in the 

world, using up to ten types of aircraft, with the entire fleet of strategic airlift aircraft 

tracked by tail number and cargo classified by weight, dimension and special handling 

instructions (Boeing 1996). In short, the model's domain is the world and it spans all 

strategic aircraft in the USAF inventory and CRAF with virtually every cargo 

combination (Boeing 1996). 

The primary component of MASS is the Airlift Flow Model (AFM), which 

orchestrates the simulation of mission events throughout the entire system. Supporting 

this core element are various loading, ground crew, command and control, and tanker 

models. Current validation efforts include output comparisons between MASS and the 

Naval Postgraduate School/RAND Mobility Optimizer (NRMO) by crossfeeding relative 

information between the two models in a series of repetitive simulations and then 

observing if the two models converge on the same solution (Wright 1998). 

Extending the work of Ryan (1999) and Carlton (1995), we implement the 

metaheuristic of reactive TS (RTS) in an object-oriented (00) programming language. 

The RTS route solution represents the input to MASS for comparison with current 

routing selection methods. Our goal is to improve the route selection process used for 

MASS by using RTS-based routing inputs instead of NRMO or manually derived routing 

solutions. 



1.3 Scope 

Earlier attempts at route generators employ the optimal k-shortest path method 

and route length restrictions representing aircraft type maximum flight legs. This effort, 

coded in two separate computer-programming languages, has shown limited results in 

large realistic scenarios (Rink 1998). Extending this effort to include additional route 

selection criteria requires an efficient and robust method currently not achievable by 

convergent algorithms. In order to improve the overall quality of route selection, AMC 

Studies and Analysis (XPY) proposes adding international airspace routing constraints, 

crew staging and air-refueling constraints to the routing problem formulation. 

Following the hierarchy scheme introduced by Carlton (1995) this problem can be 

treated as a VRP with multiple depots (MD), multiple non-homogenous vehicles (MHV), 

and route length constraints (RL). As with most heuristic techniques, the algorithm, once 

constructed, will have to be fine-tuned to accurately represent the most important routing 

considerations as modeled by MASS. 



Chapter 2 

2.1 Air Mobility Command's Mobility Model - MASS 

Currently route segments are fed into MASS in an ordered list (one of many input 

files required for a single simulation run) determined solely by the user. The Aircraft 

Routing Algorithm (ARA) of MASS checks these route segments in file order for a 

feasible crew plan. Then the Aircraft Flight Plan Algorithm (AFPA) determines if a 

route can be feasibly mission planned (flying hour availability, aircraft target use rate, 

route length, ramp space or maximum on ground (MOG)) (Boeing 1996). If this route 

segment is not feasible, then the next route in the file is checked. If no feasible route 

segment is found, the planning phase returns to a previous planned enroute segment and 

restarts the process. If no feasible crew plan or mission plan exists on the routes 

provided, the aircraft is scheduled for a "Part rV" mission; i.e., it flies from its present 

position to its home station base as a recovery. 

Because of the importance of crew feasibility in MASS, a constraint to this 

problem prioritizes routes with available crews to avoid unnecessary recovery missions. 

Listed in the order of importance, the following considerations must be evaluated by any 

route generator: distance, route length restriction, crew availability, route or airspace 

restrictions, winds, and air refueling capability. All locations that make up a route (Home 

Station, Onload, Offload, Enroute, and Recovery) are further characterized by the 

geographical region in which they are located (Figure 1). 
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Figure 1. MASS Regions 

In order to avoid the task of explicitly listing all possible route permutations from 

each on-load base to each off-load base, the Airlift Flow Model (AFM) deals with region 

pairs. With this representation, it is not necessary to specify every possible route joining 

the departure base to the destination base, but instead only the routes joining the 

respective regions (Brigantic 1998). 

Region 1 

Base A 

BaseC 

Aerial Refueling 
Point 1 (AR1) Region 20 

Figure 2. Routes that Link Region Pairings 



2.2 Problem Formulation - The Vehicle Routing Problem 

The VRP can be viewed as an extension of the basic traveling salesman problem 

(TSP) that adds capacity constraints to multiple salesman or vehicles. (For a more in- 

depth discussion on building the formulation for this family of problems see Appendix 

A.) The VRP involves w vehicles leaving a depot and servicing n customers, each with a 

unique demand dt. Each vehicle v has a limited capacity Kv and maximum time length for 

a route Tv that constrains their closed delivery routes. This particular instance of the VRP 

is commonly known as the general vehicle routing problem (GVRP). If the route length 

or range constraints are removed, then we refer to this problem as the standard vehicle 

routing problem (SVRP) (Bodin et al. 1983). We also define the time required for 

vehicle v to deliver or service at node i as s,v, travel time for vehicle v from node i to node 

j as tif, xij = 1 if arc i-j is used by vehicle v (xt/ = 0, otherwise), and Cy as the cost of 

travelling from node / to node j. 

n     n     vi 

Minimize^^^CyXl (1) 
i=l   /=1 v=l 

Subject to Y£xl=l   (j = 2,...,n) (2) 
1=1   v=l 

2£xj=ifi = 2,...,«; 0) 
7=1  v=l 

IX "IX =° <v = l.-MP = I-*) (4) 
>'=1 7=1 

n n 

£4(X4)<*V (v = l,...,w) (5) 
i=l 7=1 

n n n     n 

X^Z^+SX'W^v  (v = l,...,w) (6) 
1=1      7=1 '=1 ;=i 



£*;,.< i (v = i,..,w) (7) 

X^<1 (v = l,..,w) (8) 
1=2 

IeS x,/ = 0 or 1    for all i, j, v 

The objective function (1) minimizes the cost (travel distance) for all vehicles. 

Equations (2) and (3) ensure every customer is visited by one and only one vehicle. We 

assume that a customer's demand does not exceed vehicle capacity and each customer is 

fully serviced by its one visiting vehicle. Equation (4) checks the continuity of our routes 

while (5) maintains the capacity constraint on all of the vehicles. Since we represent 

route length restrictions by time, (6) ensures maximum route times are not exceeded. 

Equations (7) and (8) insure we do not exceed vehicle fleet size. Next, let N" c N 

represent the nodes from N assigned to vehicle v such that for any vehicle v that is not 

used, iV" = 0; N1 uN2 u ... uN"v = N; and, N1 niV2 n ... niV"v = 0. The subtour 

breaking constraints are then defined and included in the model as 

xl '• X X x'j - * f°r every nonempty subset Qof Nv     V v = 1 ..nv. 

This states that for every proper subset Q of nodes must be connected to the other nodes 

in the network of the solution. 

We eliminate some redundant constraints by recognizing that (2) and (4) enforces 

(3), while (4) and (7) imply (8) (Bodin et al. 1983). 



Finally, we add time window considerations to the VRP. Let a,- represent the 

arrival time to node;', e, the earliest delivery time allowable, and lj the no-later-than-time 

for delivery such that 

v      i 

cu = 0 

ej<aj<lj    (j = 2,...,n). 

For each;', one of the xt/ variables equals 1, so a, sums the previous arrival time 

(a,), the service time at node / (s?), and the travel time from i to; (/,/). Alternatively, 

from Bodin et al. (1983), we can use the linear representation of time windows constraint 

in the formulation 

Uj > (at + st
v + t/) - (1 - xj) Tmax

v       V 

CLj <(di + S? + ti/) + (1 - Xi/) Tmax
v 

Vi,j, v 

When xi/ = 1, a,- is equal to the summation of the previous arrival time, previous service 

time and the travel time between the nodes. Conversely, when xt/ = 0 the constraints are 

redundant. 

There are many alterations that could be added to this formulation to represent 

common real world problems. One such consideration takes into account the duty 

limitations of the crew that flies the vehicles. This can be done through inserting rest 

nodes that must be visited during the route that incur no travel cost, but impose service 

time equal to the mandatory rest break. Hard time windows for these rest nodes insure 

that the maximum duty hours will not be exceeded. 



While the time windows defined in this formulation are hard, modeling the early 

time window as "soft" allows vehicles to arrive early, thus introducing a waiting time. 

Therefore, we use arrival times to calculate a waiting time that must be included in the 

precedence constraints along with service time and travel time. 

Several changes are made to finalize the formulation of the strategic airlift system 

as modeled by MASS. First, we eliminate or soften time window constraints for the 

depots unless they are fixed and implement a version of the route length constraint (6) to 

insure route length limitations for a particular aircraft are not exceeded. 

2.3 Methodology 

The intent of this project is to explore the application of the Reactive Tabu Search 

(RTS) metaheuristic to routing problems, specifically the vehicle routing problem with 

time windows (VRPTW). This project has been coded in the object-oriented (00) Java 

programming language for several reasons. First, the OO design of software allows us to 

reuse and modify existing code and libraries to reduce development time of new 

software. Second, Java programs are portable (Flanagan 1997). Finally, as an added 

benefit, the documentation tool, javadoc, links program documentation directly to the 

code for a hassle free method of updating and maintaining documentation. Javadoc 

extracts embedded comments in the code and creates an html file that is viewable with a 

web browser. This tool allows you to automatically create and maintain a single source 

file for accurate and useful documentation in the form of a web page (Eckel 1998). 

The Java program represents a continuation of RTS code improvements starting 

with Carlton's (1995) C code through Ryan et al. (1999) MODSBVI implementation. 

10 



RTS follows the basic TS scheme but adjusts the tabu length based on the quality of the 

search, as determined by the number of iterations before a solution is revisited. (For 

example, a "high quality" search typically does not tend to revisit past solutions.) When 

the search moves to a neighbor solution that has been visited within the designated 

number of iterations or cycle length, the tabu length is increased by a multiplicative 

factor. 

Conversely, if the solution has not been visited previously, tabu length is 

decreased by the multiplicative factor. When a solution is revisited within the maximum 

cycle length, a moving average of cycle lengths is calculated. If this average is less than 

the number of iterations without a change in tabu length, the current tabu length is 

decreased by the multiplicative factor. This concept from Battiti and Tecchiolli (1994) 

enforces the ultimate objective a broad exploration of the search space. 

Finally, if all candidate solutions are tabu and aspiration criteria is not met, the 

search escapes to a solution with the smallest move value regardless of tabu status and 

then decreases the tabu length. This entire search routine is then continued for a 

designated number of iterations. 

2.3.1 Tour Structure 

The objective of the VRPTW is to find a tour in which each customer is visited 

within its stated time window by one vehicle, with a finite capacity, while minimizing the 

total cost. A tour is defined by the order in which the n customers are served by the m 

vehicles and is represented as an ordered list of the sequence of customers and vehicles, 

or "disjunctive graph" (Figure 3). 

11 



Node 0, Depot 
Depot Vehicle 

Thiele #1 #2 

Node 
n + 1 
Depot      (Excess unused vehicles) 

Figure 3. Disjunctive Graph representation of Tour 

Positions 0 and n + 1 in this sequence represent depots, but are internally modeled 

as vehicles. Initially, the customers occupy positions between 1 and rij. Excess vehicles 

occupy positions after the last depot. 

2.3.2 Starting Solution 

Several methods are used to generate starting, but not necessarily feasible, 

solutions for the RTS algorithm. The time window "midpoint" is defined as halfway 

between the end service time (a no later than time) and the earlier begin service time (a 

no earlier than time) for a particular customer. In order starting tour (OST), we generate 

a "starting solution" by sorting the customers into an increasing time window midpoint 

value while enforcing the time window feasibility condition. Since the RTS is not 

limited to feasible starting solutions, the initial solution can sequentially read the initial 

list of customers (OST OFF), or this list can be randomly reordered and read to create a 

random-starting tour (RST) with a different staring point (and possibly an improved 

solution). 

12 



2.3.3 Solution Neighborhood 

This search routine uses a disjunctive graph formulation internally to represent 

solution tours. From this representation the solution neighborhood is defined by the use 

of swap and insertion moves. A swap move is performed by exchanging the position of 

two adjacent nodes, while an insertion uses a series of successive swap moves to 

relocates a specific customer forwards or backwards in the tour by a number of steps 

called the insertion depth (d). 

Through the systematic use of these moves the RTS explores the vast solution 

space of the VRPTW. Starting with the initial solution, the algorithm searches insertion 

depths d > 1 later in the tour (for customers 1 to n-\) and explores earlier insertions for 

depths d < -2 (for customers 3 to n), comparing the candidate's change in objective 

function from that of the incumbent tour. To reduce the vast set of candidate moves in a 

neighborhood, redundant tours are eliminated and the restriction of strong time window 

infeasibility is applied. 

Redundant tours are tracked through the use of a two-attribute hashing scheme. 

The first attribute, hashing function (f(T)), is the objective function value Z(T). The 

second attribute, the tour hashing value (thv), takes the tour vector and calculates an 

integer value based on random integer values, *F(i), and the index of the customer 

assigned to tour position i, T, (Woodruff and Zemel 1993), such that 

;=o 

The tour hashing value attempts to minimize the possibility of a collision, or the incorrect 

identification of two tours as being identical or redundant when in fact they are distinct. 

13 



Additional attributes used to identify a solution are the tour cost, travel time, time 

window penalty, and total penalties. These integer values are concatenated in a string 

object that is uniquely identified in the Java programming language (java.util package) 

using the Hashtable class (Grand and Knudsen 1997). This unique numerical value is the 

"key" to identifying past solutions efficiently as well as accessing the "hash record", 

where solution attributes are stored in their original form. 

Strong window infeasibility states that whenever a vehicle leaves one node it can 

never arrive at the next node within its desired time window. Conversely, weak time 

window infeasible tours occur when only some departure times preclude a timely arrival 

at the next node. Unlike strong time window infeasibility, weak time window infeasible 

tours are evaluated in the search since insertion moves can ultimately reduce the amount 

of infeasibility in the overall tour. This is critical since past research has shown that 

feasible solution regions are isolated or disjoint in the solution space of these problems. 

In order to obtain an effective search, the method must investigate or accept infeasible 

solutions. This search of the infeasible region is facilitated through the use of penalty 

factors. 

The ability to explore infeasible solutions represents a major advantage of this 

method for effectively exploring the solution space. First, instead of being restricted to 

regions of feasibility, RTS can traverse the regions of infeasibility to include using an 

infeasible initial solution. Second, the infeasible solutions recorded can be used in real 

world applications. For instance, an infeasible solution that produces very good results 

overall may become feasible with the relaxation of a constraint controlled by the 

decision-maker. These infeasible solutions represent the difficult choices faced by 

14 



managers trying to balance competing constraints when developing routes (this occurred 

in a delivery problem solved by Rochat and Semet in 1994). 

From a solution neighborhood, the algorithm chooses the solution that results in 

the smallest move value. The move value is the difference between the incumbent tour's 

objective function value and the candidate's objective function value. The objective 

function value used in these initial tests includes change in travel time, change in waiting 

time, change in the time window penalty (lateness) and load penalty. With a relatively 

small amount of coding, the objective function can be expanded to include additional 

penalties, changed to represent several different weighted objective functions, or 

combined in a hierarchical objective function. 

2.3.4 Tabu Criteria 

Tabu search uses short-term memory to determine if a particular tour or attribute 

has already been visited by examining the attributes that comprise the tour. The 

examination must efficiently and reliably store and identify solution attributes previously 

visited during the search. We employ a "Tabulist" matrix of (n+l)*(n+l) dimensions 

with row numbers corresponding to customer identification number and columns 

corresponding to the index or position of the customer in the solution tour. The data 

elements in this array store a value equal to the iteration number that existed when the 

customer moved into this position, plus the tabu length. Later in the search, this value 

will be compared to the current iteration to determine if this attribute is tabu. 

15 



2.3.5 Algorithm Complexity 

The size of the neighborhood considered at each step is O (nd) and the 

computation of the move value for each neighbor is O (n). If the depth of the insertion 

moves is restricted to 1, the algorithm achieves a computational complexity of O (n ). 

Thus, the worst case complexity is O (n2d), where d is the depth of the allowable 

insertion moves. When the insertion depth is expanded, the computational complexity 

expands with it to O (ra3). However, testing has shown empirically that considerably 

better times than O (n3) can be achieved, due to the strong time window infeasibility 

restriction (Carlton 1995). 

1. Initialize starting variables (k max iterations) and structures 
2. Compute time matrix 
3. Select starting tour 

a. Compute initial tour cost (Tour cost = Travel time + Penalty term) 
b. Compute initial hashing values 

4. While (k < niters) 
a. Look for incumbent tour in the hashing structure 

1) If found, update the iteration when found, increase the tabu length if 
applicable 

2) If not found, add to the hashing structure, decrease the tabu length, if 
applicable 

b. Evaluate all later insertions (d > 1, for customers 1 to n-V) 
c. Evaluate all earlier insertions (d < -2, for customers 3 to n) 
d. Move to the non-tabu neighbor. If all tours are tabu, move to the neighbor with 

the smallest move value, and reduce the tabu length. 
e. Update the search 

1) Incumbent tour schedule 
2) Incumbent tour hashing value 
3) Retain the best feasible solution found and the tour with the smallest tour 

cost regardless of feasibility 
f. k = k+1 

5. Output results 

Figure 4. RTS Pseudocode (Carlton 1995) 

16 



2.4 Testing and Validation 

Initial testing and validation uses the Solomon VRPTW/mTSPTW problem test 

set; specifically the 25, 50 and 100 customer problems with random, clustered, and 

random clustered distribution patterns. Computational results are compared to optimal 

answers obtained by Desrochers et al. (1992) (Tables 1-6). The first column identifies 

the problem instance. The second through fifth columns present the results obtained with 

the Java implemented RTS algorithm, i.e., the objective function value of minimum 

travel time, number of vehicles required, iteration of best feasible solution and the time 

(seconds) at which the solution was found, respectively. Similar information is presented 

in columns six through eight for the optimal solutions obtained by Desrochers et al. 

(1992). Columns 9 and 10 display the difference in travel time and the percentage 

difference between the optimal answer (when known) and the result obtained from the 

RTS algorithm. The last column shows the RTS starting method used to achieve the 

solution. OST is the ordered starting tour (arranged by time window midpoints). RST is 

the random arrangement of customers followed by the integer seed used. Listed order 

(LO) indicates that the initial solution is taken in exact order presented in the problem. 

All problems were solved by the RTS algorithm using 2500 iterations, with an 

overall solution quality better than 99% of optimal in a fraction of the computational time 

required for the optimal solution. The increase in computational time from the mTSPTW 

algorithm to the VRPTW algorithm was negligible because most of the structure for the 

VRPTW was already included in the Java code for the mTSPTW algorithm. 
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Table 1. Solomon mTSPTW (25 Customers) 

Prob Set1 Rver & O'Rourke Optimal Difference 
A         A% 

Start 

UT) Used Iter2 Time3 
UT) Used Time4 Method5 

R101 867.1 8 317 3 867.1 8 5.8 0.0 0.00% OST 

R102 797.1 7 35 1 191.1 7 20.3 0.0 0.00% OST 

R103 704.6 5 132 1 704.6 5 22.2 0.0 0.00% OST 

R104 666.9 4 86 1 666.9 4 46.0 0.0 0.00% OST 

R105 780.5 6 95 1 780.5 6 22.6 0.0 0.00% OST 

R106 715.4 5 28 0 715.4 5 205.2 0.0 0.00% RST0 

R107 674.3 4 2080 23 674.3 4 304.1 0.0 0.00% RST2 

R108 647.3 4 45 0 647.3 4 307.4 0.0 0.00% OST 

R109 691.3 5 21 0 691.3 5 14.4 0.0 0.00% OST 

R110 694.1 5 91 2 679.8 4 64.3 14.3 2.10% RST0 

Rill 678.8 4 178 2 678.8 4 330.3 0.0 0.00% RST0 

R112 643.0 4 25 0 643.0 4 623.3 0.0 0.00% LO 

C101 2441.3 3 23 0 2441.3 3 18.6 0.0 0.00% OST 

C102 2440.3 3 379 4 2440.3 3 79.9 0.0 0.00% LO 

C103 2440.3 3 72 1 2440.3 3 134.7 0.0 0.00% OST 

C104 2436.9 3 797 8 2436.9 3. 223.9 0.0 0.00% OST 

C105 2441.3 3 209 2 2441.3 3 25.6 0.0 0.00% OST 

C106 2441.3 3 26 1 2441.3 3 20.7 0.0 0.00% OST 

C107 2441.3 3 28 1 2441.3 3 31.7 0.0 0.00% OST 

C108 2441.3 3 1421 15 2441.3 3 43.1 0.0 0.00% OST 

C109 2441.3 3 148 1 2441.3 3 585.4 0.0 0.00% OST 

RC101 711.1 4 214 3 711.1 4 225.4 0.0 0.00% LO 

RC102 601.7 3 20 1 596.0 3 18.1 5.7 0.96% OST 

RC103 582.8 3 2193 24 582.8 3 103.0 0.0 0.00% RST2 

RC104 556.6 3 604 6 556.6 3 177.9 0.0 0.00% OST 

RC105 661.2 4 79 1 661.2 4 37.4 0.0 0.00% RST1 

RC106 595.5 3 60 1 595.5 3 248.4 0.0 0.00% RST1 

RC107 548.3 3 69 1 548.3 3 113.9 0.0 0.00% RST0 

RC108 544.5 3 2203 23 544.5 3 256.0 0.0 0.00% OST 

Average 1218.19 3.93 402.7 4.38 1184.8 3.90 148.6 0.69 0.11% — 

1 Maximum number of vehicles: m = 10. Time window penalty: p-rw = 1.0. 
Maximum iterations: k = 2500. 

3 Seconds on a Pentiun n II400 M Hz system . Total runtime - 28 seconds each. 
4 Seconds on a SUN SPARK 1. 
5 OST is ordered starting tour. RST # is random starting tour where # is the seed value. LO is listed ordering. 

(O'Rourke 1999) 
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Table 2. Solomon mTSPTW (50 Customers) 

Prob Set1 Rver & O'Rourke Optimal Difference 
A         A% 

Start 

Z,(7) Used Iter2 Time3 ZfJ) Used Time4 Method5 

R101 1543.8 12 239 9 1535.2 12 66.7 8.6 0.56% RSTO 

R102 1409.0 11 1939 78 1404.6 11 67.8 4.4 0.31% RSTO 

R103 1282.7 9 871 36 1272.5 9 8939.1 10.2 0.80% OST 

R104 1131.9 6 734 31 — — — — — RSTO 

R105 1401.6 9 402 15 1399.2 9 362.6 2.4 0.17% LO 

R106 1293.0 8 2294 94 1285.2 8 386.4 7.8 0.61% RST1 

R107 1211.1 7 1786 75 1211.1 7 7362.1 0.0 0.00% RSTO 

R108 1117.7 6 1698 75 — — — — — RSTO 

R109 1286.7 8 1452 58 — — — — — RSTO 

R110 1207.8 7 1853 78 1197.0 7 4906.1 10.8 0.90% RST1 

Rill 1216.6 7 1775 72 — — — — — RST2 

R112 1140.5 6 1784 78 — — — — — RST2 

C101 4862.4 5 119 4 4862.4 5 67.1 0.0 0.00% LO 

C102 4861.4 5 607 19 4861.4 5 330.2 0.0 0.00% LO 

C103 4855.8 5 1699 57 — — — — — OST 

C104 4884.1 5 1253 43 — — — — — LO 

C105 4861.2 5 232 7 — — — — — OST 

C106 4862.4 5 308 9 4862.4 5 91.3 0.0 0.00% LO 

C107 4861.2 5 382 12 — — — — — LO 

C108 4861.2 5 92 3 — — — — — LO 

C109 4860.9 5 301 9 — — — — — OST 

RC101 1444.0 8 1252 38 —   — — — RST1 

RC102 1325.1 7 754 23 — — — — — RST1 

RC103 1216.2 6 1589 54 — — — — — RSTO 
RC104 1046.5 5 860 31 — — — — — RST2 

RC105 1355.3 8 248 8 — — — — — OST 

RC106 1223.2 6 1921 61 — — — — — RST2 

RC107 1146.0 6 189 7 — — — — — LO 

RC108 1098.1 6 1821 65 — — — — — OST 

Average 2374.7 6.66 1050 39.6 — — — — — — 

1 Maximum number of vehicles: R sets m = 15; C sets m = 6; RC sets m = 8. Time window penalty: pnv =3.0. 
2 Maximum iterations: k = 2500. 
3 Seconds on a Pentium II400 MHz system. Total runtime ~ 100 seconds each. 
4 Seconds on a SUN SPARK 1. 
5 OST is ordered starting tour. RST # is random starting tour where # is the seed value. LO is listed ordering. 

(O'Rourke 1999) 
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Table 3. Solomon mTSPTW (100 Customers) 

Prob Set1 Rver & O'Rourke Optimal Difference 
A          A% 

Start 

W) Used Iter2 Time3 Z,(7) Used Time4 Method5 

R101 2689.6 20 2167 371 2607.7 18 1064.2 81.9       3.14% RSTO 

R102 2522.9 18 1783 322 2434.0 17 756.9 88.9       3.65% RSTO 

R103 2266.8 15 1797 351 — — — —        — RST2 

R104 2010.6 11 1401 311 — — — —        — RST2 

R105 2418.0 16 560 93 — — — —        — RST1 

R106 2256.9 14 1403 252 — — — —        — LO 

R107 2091.6 12 1462 278 — — — —        — LO 

R108 1980.3 10 2325 491 — — — —        — RSTO 

R109 2191.4 13 2149 398 — — — —        — RST1 

R110 2121.1 12 1479 291 — — — —        — RST2 

Rill 2082.1 12 1882 370 — — — —        — RST2 

R112 1986.1 11 2325 507 — — — —        — RST1 

C101 9827.3 10 285 45 9827.3 10 434.5 0.0       0.00% OST 

C102 9820.3 10 237 42 — — — —      — OST 

C103 9813.7 10 256 49 — — — —       — OST 

C104 9809.0 10 2495 536 — — — —       — RST2 

C105 9821.2 10 313 50 — — — —       — OST 

C106 9827.3 10 455 75 9827.3 10 724.8 0.0       0.00% OST 

C107 9818.9 10 292 48 — — — —       — OST 

C108 9818.9 10 662 115 — — — —       — OST 

C109 9818.6 10 1381 262 — — — —         — LO 

RC101 2685.7 16 897 144   — — —       — OST 

RC102 2534.0 15 2410 434 — — — —       — OST 

RC103 2352.3 13 1047 195 — — — —       — RSTO 

RC104 2209.1 11 1311 272 — — — —       — RST2 

RC105 2538.0 15 2327 412 — — — —       — RST1 

RC106 2457.8 14 443 74 — — — —       — RSTO 

RC107 2236.9 12 1822 344 — — — —       — RSTO 

RC108 2115.9 11 2206 451 — — — —        — RST1 

Average 4624.9 12.45 1365 261.48 — — — —     — — 

Maximum number of vehicles: m = 25. Time window penalty: prw =8.0. 
Maximum iterations: k = 2500. 

• 550 seconds each. 3 Seconds on a Pentium II400 MHz system. Total runtime - 
4 Seconds on a SUN SPARK 1. 
5 OST is ordered starting tour. RST # is random starting tour where # is the seed value. LO is listed ordering 

(O'Rourke 1999) 
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Table 4. Solomon VRPTW (25 Customers) 

Prob Set1 Rver & O'Rourke Optimal Difference 
A          A% 

Start 

T,(T) Used Iter2 Time3 UT) Used Time4 Method5 

R101 867.1 8 317 4 867.1 8 5.8 0.0 0.00% OST 

R102 797.1 7 35 1 797.1 7 20.3 0.0 0.00% OST 

R103 704.6 5 132 1 704.6 5 22.2 0.0 0.00% OST 

R104 666.9 4 86 2 666.9 4 46.0 0.0 0.00% OST 

R105 780.5 6 95 1 780.5 6 22.6 0.0 0.00% OST 

R106 715.4 5 1149 12 715.4 5 205.2 0.0 0.00% RST0 

R107 674.3 4 2080 24 674.3 4 304.1 0.0 0.00% RST2 

R108 647.3 4 58 1 647.3 4 307.4 0.0 0.00% OST 

R109 691.3 5 32 1 691.3 5 14.4 0.0 0.00% OST 

R110 694.1 5 91 1 679.8 4 64.3 14.3 2.10% RST0 

Rill 678.8 4 178 3 678.8 4 330 0.0 0.00% RST0 

R112 643.0 4 25 1 643.0 4 623.3 0.0 0.00% LO 

C101 2441.3 3 23 0 2441.3 3 18.6 0.0 0.00% OST 

C102 2440.3 3 106 1 2440.3 3 79.9 0.0 0.00% LO 

C103 2440.3 3 72 1 2440.3 3 134.7 0.0 0.00% OST 

C104 2436.9 3 741 8 2436.9 3 223.9 0.0 0.00% OST 

C105 2441.3 3 170 1 2441.3 3 25.6 0.0 0.00% OST 

C106 2441.3 3 35 1 2441.3 3 20.7 0.0 0.00% OST 

C107 2441.3 3 51 0 2441.3 3 31.7 0.0 0.00% OST 

C108 2441.3 3 455 4 2441.3 3 43.1 0.0 0.00% OST 

C109 2441.3 3 197 2 2441.3 3 585.4 0.0 0.00% OST 

RC101 711.1 4 214 2 711.1 4 225.4 0.0 0.00% LO 

RC102 601.7 3 149 1 596.0 3 18.1 5.7 0.96% OST 

RC103 582.8 3 134 2 582.8 3 103.0 0.0 0.00% RST2 

RC104 556.6 3 29 1 556.6 3 177.9 0.0 0.00% LO 

RC105 661.2 4 24 1 661.2 4 37.4 0.0 0.00% RST1 

RC106 595.5 3 60 1 595.5 3 248.4 0.0 0.00% RST1 

RC107 548.3 3 179 2 548.3 3 113.9 0.0 0.00% RST1 

RC108 544.5 3 353 3 544.5 3 256.0 0.0 0.00% LO 

Average 1218.2 3.93 250.7 2.86 1184.8 3.90 148.6 0.69 0.11% LO 

1 Maximum number of vehicles: m=10. Time window penalty: prw = 8.0; load penalty pto =10.0. 
2 Maximum iterations: k = 2500. 
3 Seconds on a Pentium II400 MHz system. Total runtime ~ 28 seconds each. 
4 Seconds on a SUN SPARK 1. 
5 OST is ordered starting tour. RST # is random starting tour where # is the seed value. LO is listed ordering. 

(O'Rourke 1999) 
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Table 5. Solomon VRPTW (50 Customers) 

Prob Set1 Rver & O'Rourke Optimal Difference 
A         A% 

Start 

Z,(T) Used Iter2 Time3 Z,(7) Used Time4 Method5 

R101 1543.8 12 239 9 1535.2 12 66.7 8.6 0.56% RSTO 

R102 1409.0 11 1939 82 1404.6 11 67.8 4.4 0.31% RSTO 

R103 1278.7 9 1935 87 1272.5 9 8939.1 6.2 0.49% OST 

R104 1137.4 6 1533 69 — — — — — RST2 

R105 1401.6 9 402 16 1399.2 9 362.6 2.4 0.17% LO 

R106 1293.0 8 2294 99 1285.2 8 386.4 7.8 0.61% RST1 

R107 1211.1 7 1786 79 1211.1 7 7362.1 0.0 0.00% RSTO 

R108 1117.7 6 1698 78 — — — — — RSTO 

R109 1286.7 8 1451 61 — — — — — RSTO 

R110 1207.8 7 1853 84 1197.0 7 4906.1 10.8 0.90% RST1 

Rill 1216.6 7 1775 76 — — — — — RST2 

R112 1135.0 6 1456 68 — — — — — RST2 

C101 4862.4 5 74 3 4862.4 5 67.1 0.0 0.00% LO 

C102 4861.4 5 232 9 4861.4 5 330.2 0.0 0.00% LO 

C103 4861.4 5 2035 87 4861.4 5 896.0 0.0 0.00% RSTO 

C104 4882.8 5 1727 79 — — — — — RSTO 

C105 4862.4 5 494 19 4862.4 5 99.1 0.0 0.00% OST 

C106 4862.4 5 91 4 4862.4 5 91.3 0.0 0.00% LO 

C107 4862.4 5 154 6 4862.4 5 170.6 0.0 0.00% LO 

C108 4862.4 5 95 4 4862.4 5 245.6 0.0 0.00% LO 

C109 4862.4 5 643 26 — — — — — OST 

RC101 1446.8 8 1613 60   — — — — OST 

RC102 1331.8 7 1508 60 — — — — — RST2 

RC103 1210.9 6 2194 94 — — — — — OST 

RC104 1046.5 5 412 18 — — — — — LO 

RC105 1355.3 8 104 4 — — — — — OST 

RC106 1223.2 6 1454 58 — — — — — RST2 

RC107 1144.4 6 898 36 — — — — — RST1 

RC108 1098.1 6 1361 58 — — — — — OST 

Average 2375.01 6.66 1153 49.4 — — — — — — 

1 Maximum number of vehicles: m=15. Time window penalty: prw = 1.0; load penalty piD =10.0. 
2 Maximum iterations k = 2500. 
3 Seconds on a Pentium II400 MHz system. Total runtime ~ 100 seconds each. 
4 Seconds on a SUN SPARK 1. 
5 OST is ordered starting tour. RST # is random starting tour where # is the seed value. LO is listed ordering. 

(O'Rourke 1999) 
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Table 6. Solomon VRPTW (100 Customers) 

Prob Set1 Rver & O'Rourke Optimal Difference 
A         A% 

Start 

Z,(T) Used Iter2 Time3 Z,{T) Used Time4 Method5 

R101 2676.2 20 2271 414 2607.7 18 1064.2 68.5 2.63% RST2 
R102 2502.4 19 492 96 2434.0 17 756.9 68.4 2.81% RSTO 
R103 2265.0 15 1091 228 — — — — — RST2 
R104 2039.6 12 1488 338 — — — — — OST 
R105 2399.4 16 1974 378 — — — — — RSTO 
R106 2268.4 14 2431 491 — — — — — LO 
R107 2129.0 13 1905 406 — — — — — RST1 
R108 1956.8 10 2415 565 — — — — — RSTO 
R109 2181.0 14 1587 311 — — — — — RST1 
R110 2133.2 13 1548 328 — — — — — RST2 
Rill 2077.3 12 2248 491 — — — — — RST2 
R112 1971.6 11 1898 460 — — — — — RST2 

C101 9827.3 10 263 43 9827.3 10 434.5 0.0 0.00% OST 
C102 9827.3 10 1317 253 9827.3 10 1990.8 0.0 0.00% OST 
C103 9828.9 10 2500 535 — — — — — RSTO 
C104 9949.6 10 2194 509 — — — — — RST2 
C105 9827.3 10 378 65 — — — — — OST 
C106 9827.3 10 309 55 9827.3 10 724.8 0.0 0.00% OST 
C107 9827.3 10 1144 210 9827.3 10 1010.4 0.0 0.00% OST 
C108 9827.3 10 1638 321 9827.3 10 1613.6 0.0 0.00% OST 
C109 9853.3 10 2202 463 — — — — — RSTO 

RC101 2669.9 16 2110 381 — — — — — OST 
RC102 2498.4 15 2136 419 — — — — — LO 
RC103 2363.6 13 1333 270 — — — — — RST1 
RC104 2179.2 11 1365 308 — — — — — LO 
RC105 2557.4 15 2482 473 — — — — — OST 
RC106 2432.8 13 2222 434 — — — — — RST2 
RC107 2266.1 12 2024 417 — — — — — RST2 
RC108 2175.1 12 2122 475 — — — — — RST1 

Average 4632.3 12.62 1693 349.6 — — — — — — 

1 Maximum number of vehicles: m = 25. Time window penalty: prw = 8.0; load penalty pLD = 10.0. 
2 Maximum iterations k = 2500. 
3 Seconds on a Pentium II400 MHz system. Total runtime ~ 550 seconds each. 
4 Seconds on a SUN SPARK 1. 
5 OST is ordered starting tour. RST # is random starting tour where # is the seed value. LO is listed ordering. 

(O'Rourke 1999) 
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2.5 Extensions for Solving Mobility Routing Problems 

The first step in transforming this algorithm from solving academic test problems 

to tackling global routing problems is transitioning from the x-y plane to geographic 

coordinates. This is accomplished in conjunction with the ability to determine an 

aircraft's groundspeed based on its associated true airspeed, the prevalent wind direction 

and speed. 

To incorporate the effect of winds on the RTS algorithm, the distance and bearing 

is first calculated as shown in Departments of the Air Force and Navy's AFR 51-40. 

Given the departure latitude (L/) and longitude (fa) and destination latitude (L2) and 

longitude (fa), the great circle distance in nautical miles (D) can be found using the 

following formulation. 

D = 60 * cos"1 [sin U * sin L2 + cos U * cos L2 *cos (fa - fa)] 

Using this distance, the heading angle (H) in degrees is 

_.  sin L, - sin L, * cos(Z>/ 60) 
H = cos  

sin(D/60)*cosZ1 

Correcting this angle to the proper quadrant the initial true heading (@XY) is 

0XY = Hifsm(fa-fa)<O 

or 

0XY =360-H if sin (fa - fa) > 0. 

Finally, using the bearing from the departure point to the destination point, current 

airspeed, wind speed and direction, a ground speed can be calculated. The true heading 

of the wind is represented by 0WS and the course offset from true heading from X to Y is 
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denoted by y, thus adjusting heading for the wind drift. When the wind direction results 

in a headwind component, the angle between 0Xy and 0Ws (8) is less than 90 degrees, 

The wind component of the groundspeed (A) becomes negative and thus reduces the 

overall groundspeed. Conversely, when winds result in a tailwind component, 8 is 

greater than 90 degrees (Figure 5), A becomes positive and increases the overall 

groundspeed. 

0XY 

cos(l 80- S) = A/WS 

A = WS-cos(180-<5) 

sin(180-<5) = C/WS 

C = WSsin(180-<5) 

B2 + C2 = AS2 

B = ^AS2-C2 

GS = A + B 

GS=WS-cos(180-8) + JAS2-WS2-sin2(ISO-Ö) 

GS 

0ws 

Figure 5. Calculation of Groundspeed to Account for Winds 

With the translation to a real-world geographical coordinate representation complete, the 

time matrix used by the RTS can be updated to tackle realistic routing problems. 
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The second algorithm extension adds a restriction on possible routes based on the 

maximum leg distance for a vehicle. A simple search of those time matrix values that 

exceed the maximum leg distance, with the subsequent substitution of a very large value 

for such elements of the time matrix, precludes the RTS from selecting those routes in its 

final solution (unless no other feasible solution exists). In a similar manner we can 

restrict prohibited international flight routes by accessing the time matrix directly and 

assigning the same large value. 

The next critical dimension of handling a global routing problem is an extension 

to handle multi-depot problems. This required additional logic to ensure vehicles 

assigned to different depots return to their respective starting depot while accounting for 

the change in travel time based on their respective depot location. Each vehicle node can 

be considered an aggregation of a return node for the previous vehicle and a start node for 

the next vehicle with zero cost between the two.   Cost calculation "into" the node is 

assigned the distance from the customer back to its appropriate depot. This is allowed 

since multi-depot position integrity is maintained due the fact that vehicle ordering is 

strictly enforced by the algorithm. As implemented in this algorithm, multiple depots are 

modeled with the restriction that available vehicles be assigned to desired depots at the 

onset. Regardless of depot location, only those vehicles resulting in the best solution will 

be chosen. 

2.6 Dimensions of the Mobility Routing Problem 

When MASS flight plans a route, it evaluates the feasibility of fuel requirements, 

allowable cabin load (ACL), maximum on ground (MOG) feasibility, crew duty day 
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(CDD), and then updates the crew plan. This Aircraft Flight Plan Algorithm (AFPA) is 

capable of incorporating many of these considerations when selecting the routes during 

its search. Vehicle fuel requirement is implemented by the maximum leg restriction 

discussed earlier. Capacity constraints that represent the VRPTW can be extended in the 

future to include precedence for a pickup and delivery problem (PDP) version if required. 

Currently, MOG is captured by service and wait times. Crew duty day (not currently 

implemented) can be tracked by individual aircraft (since crews are modeled in MASS as 

a single entity), with a CDD clock refreshed either through mandatory waiting times or at 

bases that have rested crews available. 

Time windows become necessary for two reasons. First, every AMC airlift 

scenario uses a document known as the Time-Phased Force Deployment Data (TPFDD) 

document, which specifies origins, destinations, cargo types, and their required delivery 

times (Cox 1998). Although these delivery times define the "not-earlier-than-time" 

(NET) and the "not-later-than-time" (NLT) for each individual piece of cargo, the NET 

and NLT can be used to derive the time window boundaries for origins and destinations. 

Time windows can also take into account normal operating hours of bases that are subject 

to the constraint of quiet hours. 

Finally, the apparent problem of applying a VRP format (all destinations must be 

visited once - no more, no less) to an aircraft routing problem can be overcome with the 

inclusion of multiple customers at the same location. These customers share the total 

demand between them and may or may not have similar time windows. The algorithm 

determines the number of aircraft needed to service these destinations based on the 

capacity requirements and time window restrictions. Air refueling points are 
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incorporated as customers, with zero demand and service time, at strategic locations in 

the scenario, or at established air refueling tracks. 

All these considerations are important and have a direct impact on route selection. 

Ignoring them and determing routes based on distance alone can not accurately represent 

the best routes needed for MASS. By starting with a simple scenario and adding these 

constraints, the effect on route selection becomes readily apparent. Deterministic 

approaches often reach their limit in ability to solve very basic VRPTW's when their size 

exceeds 50 customers. 

The computational advantages of solving a real world problem, as well as the 

effect of additional constraints on route selection are shown using a notional problem 

involving the 50 United States capitals. A good feasible solution was obtained in less 

than 30 seconds on a Dell 266 Pentium II lap top computer (Figure 6). With the 

additional considerations of time windows, servicing, capacity and the possible use of 

multiple depots, the solution to the 50 U. S. capitals problem is altered dramatically 

(Figure 7). 

The algorithm presented thus far uses a reactive tabu length to intensify and 

diversify the search.   With the expansion of the algorithm to include additional 

constraints, the need for reactive penalty functions becomes essential. Reactive penalty 

functions presented by Gendreau and Laporte (1996) offer the benefit of incorporating 

reactive penalty parameters in their RTS algorithm. The penalty coefficients are set at an 

initial value p and then multiplied every ten iterations by 2[(t/5H], where t is the number of 

feasible solutions among the last ten solutions. Based on the number of feasible solutions 

p is either increased or decreased accordingly. The resulting mix of feasible and 
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Figure 6. Solution of Simple TSP comprised of the 50 U. S. Capitals 

29 



Relaxed Scenario 
(1 vehicle required) 

Time Window and 
Service Time Constraints 
(4 vehicles required) 

Capacity Constraints 
(5 vehicles required) 

Multiple Depots 
(2 Depots - 5 vehicles required) 

Figure 7. Mobility Problem Constraints and their Effect on Route Selection 
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infeasible solutions improves the overall quality of the search (Gendreau and Laporte 

1996). 

The penalty terms used in the initial testing were previously determined to be 

effective by Carlton (1995). Usually, the process of determining these parameters is a 

difficult and tedious process. Reactive penalties update the penalty parameters associated 

with vehicle capacity, route duration, and time windows automatically during the 

execution of the algorithm. All of these penalty factors are relevant to the mobility 

problem and a reactive search based exploring these penalties is essential to exploring the 

solution space of these complex problems. 

Two notional MASS scenarios are presented and solved in Figures 8 and 9. The 

first solution to a scenario was solved in 18 seconds but is too small to display the 

advantages of determining routes with a heuristic approach. The larger scenario (Figure 

9) provided a solution in 36 seconds and was obtained after implementing the reactive 

penalties in addition to previous extensions of the initial algorithm.   This scenario is 

taken from the hub and spoke mixed integer programming model presented by Cox 

(1998). The scope of this multi depot problem starts to display the enhanced capabilities 

of a heuristic approach. We note that integer-programming approach for this scenario 

required 18 to 94 hours to solve using version 3.0 CPLEX solver on a Sun Sparc station 

10. 
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2.7 Future Research 

As heuristic research advances, it is more common to see two heuristic methods 

combined in a composite algorithm to achieve a better overall performance, as first 

observed by Ball and Magazine (1981). The benefits of randomness enjoyed by SA 

approaches can be employed in this RTS by an automatic restart capability. This 

extension would employ a random starting tour when a fixed number of iterations fails to 

find an improving solution. Based on testing, this addition appears to be more useful in 

solving smaller problems (25 customer). In larger problems, the best RTS solutions were 

obtained with a greater number of iterations; consequently, a reset feature would only be 

useful for searches involving large number of iterations. An approach similar to this 

using several constructive algorithms as starting points for solving TSP problems is 

presented by the Jump Search algorithm (Tsubakitani and Evans 1998). Using several 

good starting points and a simple local search, this algorithm shows improved results 

compared to a pure TS algorithm. The development of these composite approaches show 

promise in solving today's applied combinatorial problems. 

One important extension of this project that can be employed is the explicit 

consideration of non-homogeneous vehicles. Modeling nonhomogenous vehicles is 

straightforward since the defining attributes are capacity and airspeed. Specifically, 

capacity can be based on a vehicle type, while airspeed requires another time matrix to be 

calculated for each vehicle. 

The multiple depot problems presented are intended only to show the promise of 

the RTS algorithm. Extending the algorithm to an approach similar to that of Renaud et 

al. (1996) should be accomplished to efficiently solve larger multiple depot vehicle 
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routing problems. In this Fast improvement Intensification and Diversification algorithm 

(FIND) each customer is initially assigned to its nearest depot, and then a heuristic is 

applied to each depot's customer set. The fast improvement is accomplished by 

repeatedly applying three different types of exchanges, inter-depot (2-route exchanges 

between routes of different depots), intra-depot (2-route exchange between routes of the 

same depot) and 3-route (exchange vertices between three routes). The intensification 

step works on one depot at a time employing the intra-depot step to each depot in turn 

until no improvement is accomplished for 300 consecutive iterations. Finally, the 

diversification is accomplished through the repeated steps of best reinsertion between 

depots and inter-depot and intra depot steps while preventing moves that are tabu using a 

random tabulength. 

2.8 Conclusion 

Currently no optimization efforts are employed in MASS simulations. Earlier 

approaches tackled this same problem by considering only distance and route length 

constraints using two separate programs with run times exceeding half an hour. By 

contrast, our RTS algorithm can efficiently pick routes while explicitly incorporating 

distance, time windows, winds, vehicle capacity, vehicle range, service time, multiple 

depots, and — with minor alterations — heterogeneous vehicles. Written in the object- 

oriented Java programming language, it is a metaheuristic algorithm capable of running 

on any computer and solving large problems on a standard laptop PC in a fraction of the 

time required by deterministic approaches. 
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Previous route selection efforts outside of stochastic simulation, has centered 

deterministic efforts with the k-shortest path (Rink 1997), math programming (Cox 1998) 

and NRMO with a direct delivery deterministic linear programming model. Although 

useful for the purpose for which they were designed, all efforts are limited by the 

excessive computational time and effort required to solve complex routing problem in a 

mobility scenario. 

The final goal of this research effort was to provide a software application that 

will provide a set of prioritized routes that will be used as a direct input into MASS. This 

automated and efficient route selection tool will provide quick and near optimum route 

selection without the need for an experienced analyst and numerous simulation 

replications needed in a trial and error approach. Although further development and 

calibration is necessary to accurately model the mobility system, many of the 

characteristics and considerations that comprise this complicated system can effectively 

be employed in this efficient yet powerful heuristic. 

The benefits of optimizing tools are currently being realized throughout various 

transportation networks from snowplows to garbage trucks and from Delta Airlines to the 

United Parcel Service. In today's world of increasing technology and shrinking route 

infrastructure, the United States Air Force and Air Mobility Command can hardly afford 

not to implement available, proven, and smart algorithms in its modeling and airlift 

operations to increase efficiency, capability and Global Reach. 
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Appendix A: Extended Problem Formulation 

Throughout my research I have encountered many good articles that are in turn 

used as reference sources for other published journals. But there is one particular 

reference that is used time and time again, in almost every article, journal or book written 

on the vehicle routing problem. This is the special issue "Routing and Scheduling of 

Vehicles and Crews, The State of the Art", Computers & Operations Research written by 

Lawrence Bodin, Bruce Golden, Arjang Assad, and Michael Ball (1983). 

This 146-page special edition makes up the entire journal issue and covers a range 

of related problems such as the traveling salesman problem, vehicle routing problem, 

crew scheduling problem and combined routing and scheduling problems. The topics 

included in each section include a review of the problem background, formulation, and 

algorithms used to solve the problem. Although the content of this article is extensive 

and thorough, some sections such as current heuristic approaches suffer from the fact that 

it was published 16 years ago. Fortunately, the underlying basic formulation is 

unaffected and as relevant as ever. 

Bodin et al. continues the discussion of routing problems into combining crew 

scheduling problems and vehicle routing problems. Unfortunately, the problem I want to 

formulate involves an expansion of the multiple depot VRP with multiple non- 

homogeneous vehicles. With minor changes in notation, I am able to pick up the 

formulation of this problem with the aid of Carlton's dissertation "A Tabu Search 

Approach to the General Vehicle Routing Problem" (1995). 
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A.l Traveling Salesman Problem 

The basic building block for studying the VRP is the traveling salesman problem 

(TSP). Without fully understanding the TSP, you can not hope to formulate and solve the 

more complex problem of the VRP. For this reason it is important to review the basic 

formulation of this problem. The first step is defining the TSP. Let G be our network 

with the set of nodes (N) and a set of branches (A) where and the associated costs of these 

branches is C = QJ. Let's also assume that the costs are symmetric (Cy = c,i). The 

objective of this problem is to form a tour over all the nodes beginning and ending at the 

origin (node 1), which gives the minimum total tour length or cost. 

The first half of this problem is the formulation of an assignment problem with 

only one arc (jcy) starting at node i, and only one arc (*,,) terminating at node;', for every 

node in N. 

' 1 if arc i-j is in the tour 

0 otherwise 

Minimize^ ^ ctj xtj 
i=l   7=1 

X*„ =bj=l (/=l,..,n) 
1 = 1 

n 

J Xy = a,. = 1 (i= I,.--,«) 
7 = 1 

X=(xjj)(=S Xij = 0orl (i,j=l,...,n) 

This is not the complete problem however, because subtours are not eliminated by this 

formulation. This is accomplished by the inclusion of subtour breaking constraints. 
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These constraints along with the assignment formulation prevent subtours from being 

formed. There are basically three different ways to represent the subtour breaking 

constraint (Bodin et al. 1983). 

S = {(xij): Y Y Xy > 1   for every nonempty proper subset Q of N}; 
feß jeQ 

S = {(xtj): X S xy - N ~~ *   ^or every nonempty subset R of {2,3,...,«}}; 
ieR j<=R 

S = {(xtj): y. -y}+ nxu <n-\   for 2 <i*j< n for some real numbers yi}. 

The first representation states that every node subset (Q) of the set of nodes N 

must be connected to the other nodes in the solution. The second representation states 

that the arcs selected in our solution contain no cycles because if a cycle is present on R 

nodes, the solution must contain at least \R\ arcs. The third constrain is not so 

straightforward and needs a little more explanation. For this constraint let's define yt as: 

t  if node i is visited on the tth step in a tour 

y,; = "\  0  otherwise. 

If an arc in the solution tour (xy = 1), this constraint becomes 

t-(t+ l) + n<n-l. 

Conversely, everything outside the solution (xy = 0) simply reduces to 

yi-yj<n-l. 

This third representation does have an advantage over the other two, adding only 

n2 - 3« + 2 constraints, whereas the previous two add 2" subtour breaking constraints to 

the problem's formulation (Bodin et al. 1983). 
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A.2 MultipleTraveling Salesman Problem 

The next level of complexity in building up to the VRP is the addition of more 

salesman to the problem, creating the multiple traveling salesman problem (MTSP). Let 

M be the number of salesman or vehicles that make up our fleet. Our objective, once 

again, is to minimize the total distance traveled. We will assume that M salesman depart 

from the same depot and that each customer must be visited only once, and by only one 

salesman. Even with these changes the formulation is only an extension of the basic TSP 

presented earlier and is displayed below. 

n      n 

Minimize^ 2^ cij xij 

Mif/=1 

]T Xy =bj =\ lif/ = 2, 3,...,n 

' Mifi=l 
n 

]T Xy = at =\   1 if i = 2, 3,...,« 
7 = 1 

X=(Xij)sS 

Xij = 0ovl       (i,j=l,...,ri) 

The first constraint in the formulation requires that all salesmen be used by 

forcing them to leave the depot. Likewise the second constraint requires all salesman to 

return to the depot. Any one of the subtour breaking constraints used earlier in the TSP 

can be used for the MTSP. 

The apparent complexity of this new problem can be solved by simply reducing 

the MTSP to M copies of the TSP. This is accomplished by creating dummy depots 

(A.---,DM) all connected to the original network. These Mcopies are either not 

connected, or are connected by cost prohibitive arcs. By transforming these single TSP 
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copies back to one common depot, the problem is now a series of M subtours, which is 

the MTSP. This relatively straightforward transformation of the MTSP helps us 

understand why an algorithm used to solve a TSP, can be used to solve a MTSP (Bodin et 

al. 1983). 

A.3 Vehicle Routing Problem 

The VRP can be viewed as an extension of the TSP, obtained by adding a 

capacity constraint to the salesman or vehicles. The VRP involves a number of vehicles 

(w) leaving a depot and servicing a number of customers (n), each with a unique demand 

(di). Each vehicle (v) has a limited capacity (Kv) and maximum time length for a route 

(Tv) that constrains their closed delivery routes. This particular instance of the VRP is 

commonly known as the general vehicle routing problem (GVRP). If the route length or 

range constraints are removed, then we refer to this problem as the standard vehicle 

routing problem (SVRP) (Bodin et. al, 1983). In addition to the cost (c#) or travel time of 

using and arc, consider the time required to for a vehicle v to deliver or service at node i 

is siv, travel time for vehicle v from node / to node; as tt/, and finally */ = 1 if arc i-j is 

used by vehicle v. From this, the formulation of the GVRP follows: 

n      n      w 

Minimize^^^CyXl (3.1) 
i=l   7=1 v= 

n       w 

Subject to ££** = l   0' = 2,...,n) (3.2) 
1=1   v=l 

££x!;=l(i = 2,...,«) (3.3) 
7=1 v=l 
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J4x;-±x;j=0(v=l,...,w;p=l,...,n) (3.4) 

n n 

^dtCZxl)<Kv (v=l,..,w) (3.5) 
<=l        ;=l 

re n 

IS^IZ^^   (v=l....,W) (3-6) 
i=i      y=i i=i 7=1 

£^.<1  (v=l,.,w) (3.7) 
7=2 

J^<1 (v=l,..,w)' (3.8) 
i=i 

X e S XiJ = 0 or 1      for all i, j, v 

The objective function (3.1), minimizing the overall distance, remains the same 

but is formulated by summing over all the vehicles. Equations (3.2) and (3.3) make sure 

every customer is visited by one and only one vehicle. It is important to note that we are 

assuming that a customer's demand does not exceed vehicle capacity and each customer 

is fully serviced by the one vehicle that visits it. Equation (3.4) checks the continuity of 

our routes while (3.5) maintains the capacity constraint on all of the vehicles. Since we 

are representing route length restrictions by time, we use Equation (3.6) to insure 

maximum route time is not exceeded. Finally, Equations (3.7) and (3.8) insure that we 

do not use more vehicles than we have. 

In addition to these equations we must once again include our subtour breaking 

constraints that will entail a slight modification to those used earlier in the TSP. Since 

the third subtour representation is the most efficient, we will use that formulation and 

expand it. 
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S = {(xi/y. y,-v - yv + nx.J <n-\ for 2 < i *j < n for some real numbers y,y] 

This simply applies the original subtour breaking constraint to each vehicle in turn. We 

can also eliminate some redundant constraints from the formulation above. Using (3.2) 

and (3.4) enforces (3.3) automatically and makes it unnecessary (Bodin et al. 1983). 

Likewise (3.4) and (3.7) imply (3.8) so this too can be eliminated from the formulation 

(Bodin et al. 1983). 

Finally, one common restriction added to the VRP is time windows. Let a; be the 

arrival time to node j, e, be the earliest delivery time allowable and lj be the no later than 

time for delivery. Using a nonlinear representation we get: 

V=l   1=1 

ej<cij<lj     (j = 2,...,n) 

For each j, one of the xj variables equals 1, so a7 is the sum of the previous 

arrival time (a,), the service time at node i (s,v), and the travel time from i to j (%v). 

Alternatively we can use the linear representation of time windows constraint in the 

formulation (Bodin et al. 1983). _ 

aj> (flI- + Jl-v + f(/
v)-(l-x(/

v)7,
m«

v 

aj < (at + st
v + hf) + (1 - Xi/) Tma^jT  for all i, j, v 

When xt/= 1, the second half of the equation is eliminated and a, is simply 

determined from the previous arrival time, previous service time and the travel time 

between the nodes. On the other hand, when *,/ = 0, the constraints are redundant. 
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A.4 Multiple Depot VRP 

Expanding the previous GVRP to account for multiple bases of operation or 

depots gives us the multiple depot VRP. This problem can be formulated with only minor 

changes. Let M be the number of depots in our problem. First the original VRP 

formulation indexes are changed for equation (3.2), (j = M+ 1,...,»), and equation (3.3), 

(i = M+ 1,...,«). Next the constraints (3.7) and (3.8) must be changed to sum over all the 

depots individually in order to check that the number of vehicles being used does not 

exceed the number of vehicles on hand. 

M       n 

X£^<1 (v=l,..,w) 
;=1 j=M+l 

M       n 

X2>;<i (v=i,...,w) 
„=1 i=M+\ 

Of course, this change also includes an adjustment of the subtour breaking constraint. 

Although only one is used, we will show the changes for all three (Bodin et al. 1983). 

S = {(xij): V V Xy > 1   for every non empty proper subset Q of {1,2,... ,n} 
feß jzQ 

containing nodes 1,2,..., M}; 

S = {(xtj): X X xu ~ N - *   ^or everv nonempty subset R of {M +1 ,M+2,... ,n}}; 
ieR jeR 

S = {(xtj): y. - y; + nxy <n-\   for M + 1 < i *j < n for some real numbers y,}. 

At this point the article, Bodin et al.continues into the discussion of combining 

crew scheduling problems and vehicle routing problems. Unfortunately, the problem I 

want to formulate involves an expansion of the multiple depot VRP to a multiple non- 
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homogeneous vehicle pick up and delivery problem. With minor changes in notation, I 

am able to pick up the formulation of this problem with the aid of Carlton (1995). 

A.5 Pickup and Delivery Problem 

The pickup and delivery problem (PDP) is a VRP that adds the precedence 

constraint. Precedence means that a package must be picked up at node i before it can be 

delivered to node;'. With this added constraint, and some minor changes in notation, we 

finally arrive at the one of the most general routing problems studied. Simpler problems 

that must be formulated are simply a relaxation of this problem. 

In this formulation, a superscript of (v, r) will be used corresponding to the 

specific vehicle v assigned to depot r. The customers are still indexed by i or;', each 

requiring a load dt, to be picked up and delivered from node i to location n + i. The set of 

all depots is defined as D and the set of all vehicles as V. 

The set of pickup locations are P+, where \P+\ = n, and the pickup locations will 

be numbered from 1 to n. The set of delivery locations are F, where \P'\ = n, and these 

delivery locations will be numbered from n + 1 to 2n. The set of all pickup and delivery 

locations, (P+ u P"), will be P and the set of all modeled pickup and delivery locations, 

customers and depots, will be referred to as N. Customer subscripts referring to a depot 

at the beginning of a tour are annotated as 0 and those at the end of a tour are labeled 

2n+l. 

We also introduce a load variable Yt indicating the total vehicle load at customer i. 

With these changes, the formulation of the multiple depot, multiple non-homogeneous 

vehicle, route length constrained, PDP with time windows is: 
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Objective Function 

Minimize^ XXX cuxv 
reD veV ieN jeN 

Subject to: 

Tour constraints: 

XXX*r=1  v<'^+ w 
reDveV jeN 

X4r~X4r=0    VzeP,veV,reD (4.2) 
ye AT ye/V 

JEP+ 

>oO=1     VveV,reZ) (4.3) 

,<2n+i=l     VveV,reZ) (4.4) 
fep+ 

X4r - X*r- = ° v J
'
GP+

' 
vev'reZ) (4-5) 

jeN jeN 

Precedence constraints: 

ai+si+tZ+i<an+i     VieP+ (4.6) 

If xj/ = 1 then: a,. + j. +1™ < a,.     V ie P, ve V, re D (4.7) 

If ^ = 1 then: a0
vr + ^ < a}     V ie P+, ve V, reD (4.8) 

If <2„+i =1 then: a,. + Jf + ^„+1 < <+1     V ieF, veV, reZ) (4.9) 

Capacity constraints: 

If jc*r = 1 then:  Yt
vr + d} = Yjr     V ie P, je P+, ve V, re D (4.10) 

If xvJ = 1 then:  F.vr +dj    = YY     V ieP, jeF, ve V, reD (4.11) 
y i j ri J 

If *£, = 1 then:  F0
vr + d} = Yjr     V;eF+, ve V, reD (4.12) 
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Y0
W =0     \/veV,reD (4.13) 

0 < Yt
w <Kvr     V ieP+, ve V, reD (4.14) 

Time Window Constraints: 

el<ai<ll     \fieP (4.15) 

elr < av
0
r < llr     V ve V, re D (4.16) 

ev
2
r

n+^aZ+l<lZ+1     VveV,reD (4.17) 

Binary Constraints: 

jc,;re{0,l}     Vi,jeN,veV,reD 

With the exception of the expanded notation, many of the constraints remain the 

same as those presented in earlier problems. The first group of constraints (4.1) - (4.5) 

are responsible for building the tours. Constraints (4.3) and (4.4) are responsible for 

making sure all vehicles are used by making them leave and return to the depot. If it is 

not necessary to use all vehicles in the problem then we can change the equality to a less 

than or equal to sign (Carlton, 1995). Finally constraint (4.5) requires the same vehicle 

that picks up a package to deliver it. 

The precedence constraints (4.6) - (4.9) are the next group of constraints. When 

presented this way, the subtour breaking constraint used before, is essentially included in 

this formulation (Carlton, 1995). The use of service time and travel time insures a time 

order sequence of routes. The capacity constraints (4.10) - (4.14) are now tracked at 

every node as well as by vehicle. Finally, the representation of time windows (4.15) - 
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(4.17) is expanded to include hard time windows leaving and returning to the depots 

which enforces a limit on the possible route length. 
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Appendix B: Java Documentation 

Class Hierarchy 

class java.lang.Object 
class Convert 
class CoordTvpe 
class CycleOut 
class HashMod 
class InFromKeybd 
class KeyObj 
class KeyToString 
class MTSPTW 
class BestSolnMod 
class TsptwPen 
class NoCycleOut 
class NodeType 
class PrintCalls 
class PrintFlag 
class ReacTabuObi 
class ReadFile 
class SearchOut 
class StartPenBestOut 
class StartTourObi 
class TabuMod 
class TimeMatrixObi 
class Timer 
class TsptwPenOut 
class TwBestTTOut 
class ValueObi 
class VrpPenType 

Index of all Fields and Methods 

assignlnputFile(String). Static method in class ReadFile 
assignlnputFile sets up the FilelnputStream. 

B 
bearingXY(CoordType, CoordType, double). Static method in class Convert 

bearingXY calculates the true bearing (in degrees) from one coordinate point to the second 
coordinate point and returns the value as a double precision number. 

bestCost. Variable in class SearchOut 
bestCost. Variable in class StartPenBestOut 
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Penalty related value. 
bestCost. Variable in class TwBestTTOut 

best tour related value. 
bestiter. Variable in class SearchOut 
bestiter. Variable in class StartPenBestOut 

Penalty related value. 
bestiter. Variable in class TwBestTTOut 

best tour related value. 
bestnv. Variable in class SearchOut 
bestnv. Variable in class StartPenBestOut 

Penalty related value. 
bestnv. Variable in class TwBestTTOut 

best tour related value. 
BestSolnModQ. Constructor for class BestSolnMod 
bestTime. Variable in class SearchOut 
bestTime. Variable in class StartPenBestOut 

Penalty related value. 
bestTime. Variable in class TwBestTTOut 

best tour related value. 
bestTour. Variable in class SearchOut 
bestTour. Variable in class StartPenBestOut 

Saved tour. 
bestTour. Variable in class TwBestTTOut 

best tour related value. 
bestTT. Variable in class SearchOut 
bestTT. Variable in class StartPenBestOut 

Penalty related value. 
bestTT. Variable in class TwBestTTOut 

best tour related value. 
bfCost. Variable in class SearchOut 
bfCost. Variable in class StartPenBestOut 

Penalty related value. 
bfCost. Variable in class TwBestTTOut 

best tour related value. 
bfiter. Variable in class SearchOut 
bfiter. Variable in class StartPenBestOut 

Penalty related value. 
bfiter. Variable in class TwBestTTOut 

best tour related value. 
bfnv. Variable in class SearchOut 
bfnv. Variable in class StartPenBestOut 

Penalty related value. 
bfnv. Variable in class TwBestTTOut 

best tour related value. 
bfTime. Variable in class SearchOut 
bfTime. Variable in class StartPenBestOut 

Penalty related value. 
bfTime. Variable in class TwBestTTOut 

best tour related value. 
bfTour. Variable in class SearchOut 
bfTour. Variable in class StartPenBestOut 

Saved tour. 
bfTour. Variable in class TwBestTTOut 

best tour related value. 
bjTT. Variable in class SearchOut 
bJTT. Variable in class StartPenBestOut 
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Penalty related value. 
bfTT. Variable in class TwBestTTOut 

best tour related value. 

compPensCNodeTypefl, int). Static method in class NodeType 
compPens computes the vehicle capacity overload and time window penalties. 

compPens(NodeTvpe[l, int). Method in class VrpPenTvpe 
compPens computes the vehicle capacity overload and time window penalties. 

ConvertQ. Constructor for class Convert 
CoordTypeQ. Constructor for class CoordTvpe 

Default constructor. 
CoordType(String, double, double). Constructor for class CoordTvpe 

Lat/long constructor. 
COPVO. Method in class NodeType 
countVeh(NodeType[]). Static method in class NodeType 

Method countVeh finds the number of vehicles being used in the current tour by counting the 
vehicle to demand transitions. 

countVehicles(NodeTypen)• Static method in class TabuMod 
countVeh method calculates the number of vehicles used in the current tour by counting the 
number of vehicle (type 2) to demand (type 1) transitions. 

cycle( ValueObj, double, int, int, int, double, int, int, PrintFlag). Static method in class TabuMod 
cycle method updates the search parameters if the incumbent tour is found in the hashing structure. 

CvcleOutO. Constructor for class CvcleOut 
Default constructor. 

CycleOut(int, int, double, ValueObj). Constructor for class CvcleOut 
Specified constructor. 

cvclePrint. Variable in class PrintFlag 
print flag. 

D 
distanceXY(CoordTvpe, CoordType). Static method in class Convert 

distanceXY calculates the great circle distance (in nautical miles) between two coordinate points 
and returns the value as a double precision number. 

DMMmtoDddnt, double). Static method in class Convert 
DMMmtoDd converts a number in "Degrees Minutes Decimal Minutes" (D.MMm) format to 
"Degrees Decimal Degrees" (D.d) format. 

DMMmtoDddnt, double, String). Static method in class Convert 
DMMmtoDd converts a number in "Degrees Minutes Decimal Minutes" (D.MMm) format to 
"Degrees Decimal Degrees" (D.d) format. 

DMMSSstoDd(int, int, double). Static method in class Convert 
DMMSSstoDd converts a number in "Degrees Minutes Seconds Decimal Seconds" (D.MMSSs) 
format to "Degrees Decimal Degrees" (D.d) format. 

DMMSSstoDd(int, int, double, String). Static method in class Convert 
DMMSSstoDd converts a number in "Degrees Minutes Seconds Decimal Seconds" (D.MMSSs) 
format to "Degrees Decimal Degrees" (D.d) format. 

E 
endTime. Variable in class Timer 

end time. 
endTimeO. Method in class Timer 

endTime assigns end time. 
equals(KevObi). Method in class KeyObi 

Overloaded equals(), check only attribute fields. 
equais(ValueObj). Method in class ValueObj 

Overloaded equals(), check only attribute fields. 
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firstHashVal(int). Static method in class HashMod 
firstHashVal method assigns the primary hashing value. 

G 
getEaQ. Method in class NodeType 
getldO. Method in class NodeType 
getLaO. Method in class NodeType 
getLoadQ. Method in class NodeType 
getMQ. Method in class NodeType 
getOtyQ. Method in class NodeType 
getTypeQ. Method in class NodeType 
getWaitO. Method in class NodeType 
groundSpeed(double, double, double, double). Static method in class WindAdiust 

groundSpeed method returns the ground speed given the heading between points, the wind 
heading, the wind speed, and the aircraft's airspeed. 

H 
hashCodeO. Method in class KevObi 

Overloaded hashCode method. 
hashCodeO. Method in class ValueObi 

Overloaded hashCode method. 
HashModO. Constructor for class HashMod 
HHMMtoMM(int). Static method in class Convert 

HHMMtoMM converts a military time to the equivalent number of minutes (i.e., 0630 hours to 
390 minutes) for use in time window and service time calculations. 

HMMtoHh(int). Static method in class Convert 
HMMtoHh converts a military specified time to the equivalent decimal hour equivalent (i.e., 0630 
hours to 6.5 hours) for use in time window and service time calculations. 

InFromKevbdO. Constructor for class InFromKevbd 
insert(NodeType[], int, int). Static method in class NodeType 

Method insert allows the element designated by "chl" to be shifted by "chD" elements. 
iterPrint. Variable in class PrintFlag 

print flag. 

K 
kevDouble(String). Static method in class InFromKevbd 

keyDouble allows user to enter a double from the keyboard. 
kevFloat(String). Static method in class InFromKevbd 

keyFloat allows user to enter a float from the keyboard. 
keylnt(String). Static method in class InFromKevbd 

keylnt allows user to enter an integer from the keyboard. 
KevObi (int, int, int, int, int, int). Constructor for class KeyObj 

Specified constructor. 
kevString(String). Static method in class InFromKevbd 

keySting allows user to enter a string from the keyboard. 
KevToStringQ. Constructor for class KeyToString 
kevToString(int, int, int, int, int, int). Static method in class KeyToString 

KeyToString Class converts the attributes of tour to a concatenated string used as a key to the 
hashtable of tours. 

loadPrint. Variable in class PrintFlag 
print flag. 
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lookForCHashtable, int, int, int, int, int, int, int). Static method in class HashMod 
lookFor method searches for the current tour in the hashing structure, if the tour is found a true 
value for the boolean "found" is returned, if not found, the tour is added to the hashtable. 

M 
main(String[]). Static method in class MTSPTW 

main executes MTSPTW problem. 
mavg. Variable in class CvcleOut 

moving average. 
MMtoHHMM(int). Static method in class Convert 

MMtoHHMM converts a given number of minutes to a military time hour format (i.e., 390 
minutes to 0630 hours) for human friendly output. 

movePrint. Variable in class PrintPlag 
print flag. 

moveVa]TT(int, int, NodeType[], NodeType[], int[][]). Static method in class NodeTvpe 
Method moveValTT computes the incremental change in the value of the travel time from the 
incumbent tour to the proposed neighbor tour, and computes the neighbor schedule parameters 
preparing for computation of penalty terms. 

moveValTT(int, int, NodeType[], NodeType[], int[][]). Static method in class TabuMod 
Method moveValTT computes the incremental change in the value of the travel time from the 
incumbent tour to the proposed neighbor tour, and computes the neighbor schedule parameters 
preparing for computation of penalty terms. 

MTSPTWO. Constructor for class MTSPTW 

N 
noCvcleCdouble, int, double, int, int, PrintFlag). Static method in class TabuMod 

noCycle method updates the search parameters if the incumbent tour is not found in the hashing 
structure. 

NoCvcleOutO. Constructor for class NoCvcleOut 
Default constructor. 

NoCycleOut(int, int). Constructor for class NoCvcleOut 
Specified constructor. 

NodeTypeQ. Constructor for class NodeTvpe 
Default constructor. 

NodeTypednt, int, int, int, int, int, int). Constructor for class NodeTvpe 
Specified constructor. 

numfeas. Variable in class SearchOut 

penTrav. Variable in class SearchOut 
penTrav. Variable in class StartPenBestOut 

Penalty related value. 
penTrav. Variable in class TsptwPenOut 

Penalty related value. 
printO. Method in class NodeTvpe 
PrintCallsQ. Constructor for class PrintCalls 
PrintFlagQ. Constructor for class PrintFlag 

Default PrintFlag constructor sets all to "true". 
PrintFlag(boolean). Constructor for class PrintFlag 

Additional PrintFlag constructor allows specification of either "true" or "false". 
printlnitValsdnt, int, int, double, String). Static method in class PrintCalls 
printTourfNodeTypeH)■ Static method in class NodeTvpe 

R 
randWtWZ(int, int, int). Static method in class HashMod 

randWtWZ method computes Woodruff & Zemel random weights between 1 & range for all 
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nodes. 
ReacTabuObi Q. Constructor for class ReacTabuObi 
ReadFile(). Constructor for class ReadPile 
readNC(String). Static method in class TimeMatrixObi 

readNC is used to read from the first token from the input file (the number of customers (nc)). 
readNextDouble(StreamTokenizer). Static method in class ReadFile 

readNextString method gets the next token and returns it as a double. 
readNextlnt(StreamTokenizer). Static method in class ReadFile 

readNextString method gets the next token and returns it as a integer. 
readNextString(StreamTokenizer). Static method in class ReadFile 

readNextString method gets the next token and returns it as a string. 
readNV(String). Static method in class TimeMatrixObi 

readNV is used to read from the second token from the input file (the number of vehicles (nv)). 
readTSPTW(double, int, int, String, CoordType[], int[]). Static method in class TimeMatrixObi 

readTSPTW reads in the geographical coordinates and time window file and calculates the time 
between each node 

readTSPTWdepot(double, int, int, String, CoordTypef], int[]). Static method in class TimeMatrixObi 
readTSPTWdepot reads in the geographical coordinates, load quantity, service time, and time 
window information associated with depot and customer locations from the input file. 

rtsStepPrint(int, int, int, int, int, int, int, int). Static method in class PrintCalls 

search(double, double, double, double, int, int, int, int, int, int, int, int, int, int, int, VrpPenType, int[][], 
PrintFlag, int, int, int, int, int, int, int, int, int, int, int, int, int, int, int, NodeType[], NodeType[], 
NodeType[]). Static method in class ReacTabuObi 

ReacTabuObj steps through iterations of the reactive tabu search. 
SearchOutO. Constructor for class SearchOut 

Default constructor. 
SearchOut(int, int, int, int, int, int, int, int, int, int, int, int, int, int, int, VrpPenType, NodeTypef], 
NodeType[], NodeType[]). Constructor for class SearchOut 

Specified constructor. 
secondHashVaKint, int, int, NodeType[], int[]). Static method in class HashMod 

secondHashVal updates the Woodruff & Zemel second hashing value based on the tour insertion 
move. 

setld(int). Method in class NodeTvpe 
setLoad(int). Method in class NodeTvpe 
setQtv(int). Method in class NodeTvpe 
setType(int'). Method in class NodeTvpe 
setWait(int). Method in class NodeTvpe 
ssltlc. Variable in class CvcleOut 
ssltlc. Variable in class NoCvcleOut 

cycle related variable. 
startPenBestdnt, int, int, NodeType[], double, double, int, int, int, int, VrpPenType, int, int, int, int, int, int, 
int, int, int, int, NodeType[], NodeType[]). Static method in class StartTourObj 

startPenBest initializes "best" values and their times. 
StartPenBestOutQ. Constructor for class StartPenBestOut 

Default constructor. 
StartPenBestOut(int, int, int, int, int, int, int, int, int, int, int, int, int, VrpPenType, NodeType[], 
NodeType[]). Constructor for class StartPenBestOut 

Specified constructor. 
startPrint. Variable in class PrintFlag 

print flag. 
startTime. Variable in class Timer 

begin time. 
startTimeO. Method in class Timer 

startTime assigns start time. 
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startTour(NodeTvpe[l, int[][], int, int). Static method in class NodeType 
Method startTour will bubble sort the initial tour based on the average time window time. 

StartTourObiO. Constructor for class StartTourObi 
stepLoopPrint. Variable in class PrintFlag 

print flag. 
stepPrint. Variable in class PrintFlag 

print flag. 
sumWait(NodeType[1). Static method in class NodeType 

Method sumWait calculates the total "waiting" time in a particular tour by summing the wait 
values for each individual node. 

swapdnt, int). Static method in class MTSPTW 
Swap allows generic swap of integers. 

swaplntdnt, int). Static method in class NodeType 
Method swaplnt switches two integers 

swapNode(NodeType[], int, int). Static method in class NodeType 
Method swapNode allows the node array elements "a" and "b" to be swapped in the Node Array 
"z". 

tabuLen. Variable in class CvcleOut 
tabuLen. Variable in class NoCvcleOut 

cycle related variable. 
TabuModO. Constructor for class TabuMod 
timeMatrix(int, int, double, int, CoordType[], int[]). Static method in class TimeMatrixObi 

timeMatrix computes simple two-dimensional time/distance matrix. 
timeMatrixDepot(int, int, double, int, CoordTypef], int[]). Static method in class TimeMatrixObi 

timeMatrixDepot computes the two-dimensional array used as the "time" matrix. 
TimeMatrixObi(). Constructor for class TimeMatrixObi 
timePrint. Variable in class PrintFlag 

print flag. 
TimerO. Constructor for class Timer 

Default constructor. 
toStringQ. Method in class KevObi 

toString changes a KeyObj to a string for use in the hashTable. 
toStringQ. Method in class ValueObi 

toString changes a ValueObj to a string for use in the hashTable. 
totalSeconds. Variable in class Timer 

duration of run. 
totalSecondsQ. Method in class Timer 

totalSeconds returns duration. 
totPenalty. Variable in class SearchOut 
totPenalty. Variable in class StartPenBestOut 

Penalty related value. 
totPenalty. Variable in class TsptwPenOut 

Penalty related value. 
tour. Variable in class SearchOut 
tourCost. Variable in class SearchOut 
tourCost. Variable in class StartPenBestOut 

Penalty related value. 
tourCost. Variable in class TsptwPenOut 

Penalty related value. 
tourHVwzCNodeTypen, int[]). Static method in class HashMod 

tourHVwz method computes the Woodruff & Zemel hashing value from the sum of adjacent node 
id multiplication. 

tourPen. Variable in class SearchOut 
tourPen. Variable in class StartPenBestOut 
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Tour penalty values. 
tourScheddnt, NodeType[], int[][]). Static method in class NodeTvpe 

Method tourSched should be called with the syntax tourLen = tourSched(nodeArray, time) from 
the orderS tartingTour method. 

TsptwPenO. Constructor for class TsptwPen 
tsptwPen(int, NodeType[], VrpPenType, double, double, int, int, int, int). Static method in class TsptwPen 

tsptwPen method uses the TW and load penalties to computes tourCost of tour as tour length + 
scaled penalty for infeasibilities. 

tsptwPenNormalizedfint, NodeTypef], VrpPenType, double, double, int, int, int, int). Static method in 
class TsptwPen 

tsptwPenNormalized method uses the TW and load penalties to computes tourCost of tour as tour 
length + scaled penalty for infeasibilities. 

TsptwPenOutO. Constructor for class TsptwPenOut 
Default constructor. 

TsptwPenOutdnt, int, int, int). Constructor for class TsptwPenOut 
Specified constructor. 

tvl. Variable in class SearchOut 
tvl. Variable in class TsptwPenOut 

Penalty related value. 
twBestTT(int, int, int, int, int, int, NodeType[], int, int, int, int, int, int, int, int, NodeType[], NodeTypef], 
int, int). Static method in class BestSolnMod 

twBestTT compares current tour with previous best and best feasible tours and updates records 
accordingly. 

TwBestTTOutO. Constructor for class TwBestTTOut 
Default constructor. 

TwBestTTOut(int, int, int, int, int, int, int, int, int, int, NodeType[], NodeType[]). Constructor for class 
TwBestTTOut 

Specified constructor. 
twrdPrint. Variable in class PrintFlag 

print flag. 

V 
ValueObidnt, int, int, int, int, int, int). Constructor for class ValueObi 

Specified constructor. 
VrpPenTypeO. Constructor for class VrpPenType 

Default constructor. 
VrpPenType(int, int). Constructor for class VrpPenType 

Specified constructor. 
VrpPenTypednt, int, int). Constructor for class VrpPenType 

Specified constructor. 

w 
WindAdiustO. Constructor for class WindAdiust 
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Class BestSolnMod 

j ava.lang.Obj ect 

+ MTSPTW 

+ BestSolnMod 

public class BestSolnMod 
extends MTSPTW BestSolnMod class retains the tours with the best travel times and tour costs. 
Version: 

vl.lMar99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Constructor Index 

BestSolnModO 

Method Index 

twBestTT(int, int, int, int, int, int, NodeType[], int, int, int, int, int, int, int, int, NodeTypef], NodeType[], 
int, int) 

twBestTT compares current tour with previous best and best feasible tours and updates records 
accordingly. 

Constructors 

BestSolnMod 

public  BestSolnModO 

Methods 

twBestTT 

public static TwBestTTOut twBestTT(int numnodes, 
int totPenalty, 
int penTrav, 
int tvl, 
int nvu, 
int iter, 
NodeType tour[], 
int bfCost, 
int bfTT, 
int bfnv, 
int bfiter, 
int bestCost, 
int bestTT, 
int bestnv, 
int bestiter, 
NodeType bfTour[], 
NodeType bestTourf], 
int bfTime, 
int bestTime) 
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twBestTT compares current tour with previous best and best feasible tours and updates records 
accordingly. 

Returns: 
returns packages output object. 

Class Convert 

j ava.lang.Ob j ect 

I 
+ Convert 

public class Convert 
extends Object Convert contains general conversion formulas applicable to location and distance 
calculations. Included are conversions between decimal format and hours-minutes-seconds format, great 
circle distance between two specified coordinates, and bearing from one point to another. 

Version: 
vl.lFeb99 

Author: 
Kevin P. O'Rourke, David M. Ryer 

Constructor Index 

Convert() 

Method Index 

bearingXYfCoordType, CoordType, double) 
bearingXY calculates the true bearing (in degrees) from one coordinate point to the second 
coordinate point and returns the value as a double precision number. 

distanceXYCCoordType, CoordType) 
distanceXY calculates the great circle distance (in nautical miles) between two coordinate points 
and returns the value as a double precision number. 

DMMmtpDd(int, double) 
DMMmtoDd converts a number in "Degrees Minutes Decimal Minutes" (D.MMm) format to 
"Degrees Decimal Degrees" (D.d) format. 

DMMmtoDd(int, double, String) 
DMMmtoDd converts a number in "Degrees Minutes Decimal Minutes" (D.MMm) format to 
"Degrees Decimal Degrees" (D.d) format. 

DMMSSstoDd(int, int, double) 
DMMSSstoDd converts a number in "Degrees Minutes Seconds Decimal Seconds" (D.MMSSs) 
format to "Degrees Decimal Degrees" (D.d) format. 

DMMSSstoDddnt. int, double, String) 
DMMSSstoDd converts a number in "Degrees Minutes Seconds Decimal Seconds" (D.MMSSs) 
format to "Degrees Decimal Degrees" (D.d) format. 

HHMMtoMM(int) 
HHMMtoMM converts a military time to the equivalent number of minutes (i.e., 0630 hours to 
390 minutes) for use in time window and service time calculations. 

HMMtpHh(int) 
HMMtoHh converts a military specified time to the equivalent decimal hour equivalent (i.e., 0630 
hours to 6.5 hours) for use in time window and service time calculations. 

MMtpHHMM(int) 
MMtoHHMM converts a given number of minutes to a military time hour format (i.e., 390 
minutes to 0630 hours) for human friendly output. 

58 



Constructors 

Convert 

public  Convert() 

Methods 

DMMmtoDd 

public static double DMMmtoDd(int degrees, 
double minutes) 

DMMmtoDd converts a number in "Degrees Minutes Decimal Minutes" (D.MMm) format to 
"Degrees Decimal Degrees" (D.d) format. The D.MMm is the "human friendly" form of the data. 
The D.d format is required to readily perform distance calculations. 

Parameters: 
degrees - integer degree value of coordinate. 
minutes - double minute value of coordinate. 

Returns: 
returns double Dd coordinate in the "degrees decimal degrees" format. 

DMMmtoDd 

public static double DMMmtoDd(int degrees, 
double minutes, 
String name) 

DMMmtoDd converts a number in "Degrees Minutes Decimal Minutes" (D.MMm) format to 
"Degrees Decimal Degrees" (D.d) format. The D.MMm is the "human friendly" form of the data. 
The D.d format is required to readily perform distance calculations. This version of the method 
considers hemisphere and assigns a negative value if appropriate to south and east coordinates. 

Parameters: 
degrees - integer degree value of coordinate, 
minutes - double minute value of coordinate. 
name - string hemisphere value of coordinate (either "E", "W", "N", or "S"). 

Returns: 
returns Dd coordinate in the "degrees decimal degrees" format. 

DMMSSstoDd 

public static double DMMSSstoDd(int degrees, 
int  minutes, 
double  seconds) 

DMMSSstoDd converts a number in "Degrees Minutes Seconds Decimal Seconds" (D.MMSSs) 
format to "Degrees Decimal Degrees" (D.d) format. The D.MMSSs is the "human friendly" form 
of the data. The D.d format is required to readily perform distance calculations. 

Parameters: 
degrees - integer degree value of coordinate, 
minutes - integer minute value of coordinate, 
seconds - double second value of coordinate. 

Returns: 
returns Dd coordinate in the "degrees decimal degrees" format. 

DMMSSstoDd 

public static double DMMSSstoDd(int degrees, 
int minutes, 
double seconds, 
String name) 

DMMSSstoDd converts a number in "Degrees Minutes Seconds Decimal Seconds" (D.MMSSs) 
format to "Degrees Decimal Degrees" (D.d) format. The D.MMSSs is the "human friendly" form 
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of the data. The D.d format is required to readily perform distance calculations. This version of the 
method considers hemisphere and assigns a negative value if appropriate to south and east 
coordinates. 

Parameters: 
degrees - integer degree value of coordinate. 
minutes - integer minute value of coordinate. 
seconds - double second value of coordinate. 
name - string hemisphere value of coordinate (either "E", "W", "N", or "S"). 

Returns: 
returns Dd coordinate in the "degrees decimal degrees" format. 

HMMtoHh 

public static double HMMtoHh(int time) 
HMMtoHh converts a military specified time to the equivalent decimal hour equivalent (i.e., 0630 
hours to 6.5 hours) for use in time window and service time calculations. 

Parameters: 
time - integer whole minute "military format" (0630 hours) time value. 

Returns: 
returns Hh double fractional hour (6.5 hours) time value. 

HHMMtoMM 

public static int HHMMtoMM(int time) 
HHMMtoMM converts a military time to the equivalent number of minutes (i.e., 0630 hours to 
390 minutes) for use in time window and service time calculations. 

Parameters: 
time - integer whole minute "military format" (0630 hours) time value. 

Returns: 
returns MM integer number of minutes (390 minutes) time value. 

MMtoHHMM 

public static int MMtoHHMM(int time) 
MMtoHHMM converts a given number of minutes to a military time hour format (i.e., 390 
minutes to 0630 hours) for human friendly output. 

Parameters: 
time - integer number of minutes (390 minutes) time value. 

Returns: 
returns HHMM integer whole minute "military format" (0630 hours) time value. 

distanceXY 

public static double distanceXY(CoordType x, 
CoordType y) 

distanceXY calculates the great circle distance (in nautical miles) between two coordinate points 
and returns the value as a double precision number. 

Parameters: 
x - CoordType coordinate of first position. 
y - CoordType coordinate of second position. 

Returns: 
returns distanceXY double distance between the two points in nautical miles. 

bearingXY 

public static double bearingXY(CoordType x, 
CoordType y, 
double  dXY) 

bearingXY calculates the true bearing (in degrees) from one coordinate point to the second 
coordinate point and returns the value as a double precision number. 
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Parameters: 
x - CoordType coordinate of first position. 
y - CoordType coordinate of second position. 
dXY - double distance between the first and second position, in nautical miles. 

Returns: 
returns thetaXY double initial true heading from the first point to the second point measured from 
true north in degrees. 

Class CoordType 

j ava.lang.Object 

+ CoordType 

public class CoordType 
extends Object CoordType is used to hold coordinate location for customer/vehicle nodes. It contains fields 
for both x, y integer data and lat/long data, although only one set will be used. 
Version: 

vl.lFeb99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Constructor Index 

CoordTypeO 
Default constructor. 

CoordType(String, double, double) 
Lat/long constructor. 

Constructors 

CoordType 

public  CoordTypeO 
Default constructor. Assigns name to null and all values to zero. 

CoordType 

public  CoordType(String nameLabel, 
double  lat, 
double  Ion) 

Lat/long constructor. Assigns name, latitude, and longitude as specified. 

Class CycleOut 

j ava.lang.Obj ect 

+ CycleOut 

public class CycleOut 
extends Object CycleOut is used as a package to output multiple fields from the class Cycle. 
Version: 

vl.lMar99 
Author: 
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Kevin P. O'Rourke, David M. Ryer 

Variable Index 

mavg 
moving average. 

ssltlc 
tabuLen 

Constructor Index 

CvcleOutO 
Default constructor. 

CycleOutfint, int, double, ValueObj) 
Specified constructor. 

ssltlc 

public int ssltlc 

tabuLen 

public int tabuLen 

mavg 

public  double mavg 
moving average. 

Constructors 

CycleOut 

public CycleOut() 
Default constructor. Assigns all values to zero. 

CycleOut 

public  CycleOut(int   ssltlc, 
int   tabuLen, 
double mavg, 
ValueObj   matchPtr) 

Specified constructor. Values set as passed. 

Class HashMod 

java.lang.Obj ect 

+ HashMod 

public class HashMod 
extends Object HashMod Class contains methods to assign first and second hashing values (used in the 
hashtable) and the search method to search the hashtable. 
Version: 

vl.lMar99 
Author: 

Kevin P. O'Rourke, David M. Ryer 
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Constructor Index 

HashModO 

Method Index 

firstHashVal(int) 
firstHashVal method assigns the primary hashing value. 

lookFor(Hashtable, int, int, int, int, int, int, int) 
lookFor method searches for the current tour in the hashing structure, if the tour is found a true 
value for the boolean "found" is returned, if not found, the tour is added to the hashtable. 

randWtWZ(int, int, int) 
randWtWZ method computes Woodruff & Zemel random weights between 1 & range for all 
nodes. 

secondHashValfint, int, int, NodeType[], int[]) 
secondHashVal updates the Woodruff & Zemel second hashing value based on the tour insertion 
move. 

tourHVwz(NodeType[], int[]) 
tourHVwz method computes the Woodruff & Zemel hashing value from the sum of adjacent node 
id multiplication. 

Constructors 

HashMod 

public  HashModO 

Methods 

lookFor 

public static boolean lookFor(Hashtable daHashTab, 
int fhv, 
int shv, 
int cost, 
int tvl, 
int twPen, 
int loadPen, 
int   lastlter) 

lookFor method searches for the current tour in the hashing structure, if the tour is found a true 
value for the boolean "found" is returned, if not found, the tour is added to the hashtable. 

Parameters: 
daHashTab - hashtable object, 
fhv - First hashing value (objective function), 
shv - Second hashing value (Woodruff & Zemel). 
tourCost - Tour cost, 
tvl - Travel time. 
twPen - Time window penalty. 
loadPen - Load overage penalty. 
lastlter - Iteration on which the tour was previously found. 

Returns: 
returns true boolean value if the tour was previously found. 

randWtWZ 

public static final int[] randWtWZ(int ZRANGE, 
int nc, 
int numnodes) 

randWtWZ method computes Woodruff & Zemel random weights between 1 & range for all 
nodes. 
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Parameters: 
ZRANGE - maximum weight value. 
nc - number of customers (targets). 
numnodes - total number of nodes. 

Returns: 
returns integer array of "z" weights. 

tourHVwz 

public static final int tourHVwz(NodeType tour[], 
int   zArr[]) 

tourHVwz method computes the Woodruff & Zemel hashing value from the sum of adjacent node 
id multiplication. 

Parameters: 
tour - tour node array to be processed. 
zArr - "z" array of random weights. 

Returns: 
returns secondary hashing value function (thv). 

firstHashVal 

public static final int firstHashVal(int zT) 
firstHashVal method assigns the primary hashing value. Currently, it assigns the objective 
function as the first hashing value (fhv). Method can be updated as desired. 

Parameters: 
zT - objective function value. 

Returns: 
returns first hashing value (fhv). 

secondHashVal 

public static final int secondHashVal(int shv, 
int chl, 
int chD, 
NodeType  tour[], 
int   zArr[]) 

secondHashVal updates the Woodruff & Zemel second hashing value based on the tour insertion 
move. 

Parameters: 
shv - current tour hashing value, 
chl - node insertion position. 
chD - node insertion depth, 
tour - tour node array for processing. 
zArr - "z" array of random weights. 

Returns: 
returns updated hashing value to reflect insertion. 

Class InFromKeybd 

j ava.lang.Obj ect 

+ InFromKeybd 
public class InFromKeybd 
extends Object InFromKeybd class allows us to enter strings, integers, doubles and floats from the 
keyboard with a specified prompt. 
Version: 

vl.lFeb99 
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Author: 
Kevin P. O'Rourke, David M. Ryer 

Constructor Index 

InFromKeybdO 

Method Index 

keyDouble(String) 
keyDouble allows user to enter a double from the keyboard. 

keyFloat(String) 
keyFloat allows user to enter a float from the keyboard. 

keylnt(String) 
keylnt allows user to enter an integer from the keyboard. 

keyString(String) 
keySting allows user to enter a string from the keyboard. 

Constructors 

InFromKeybd 

public   InFromKeybdO 

Methods 

keyString 

public   static   final   String keyString(String prompt) 
keyString allows user to enter a string from the keyboard. 

Parameters: 
prompt - Text prompt printed on screen. 

Returns: 
returns user entered string. 

keylnt 

public   static   final   int  keylnt(String prompt) 
keylnt allows user to enter an integer from the keyboard. 

Parameters: 
prompt - Text prompt printed on screen. 

Returns: 
returns user entered integer. 

keyDouble 

public   static   final  double  keyDouble(String prompt) 
keyDouble allows user to enter a double from the keyboard. 

Parameters: 
prompt - Text prompt printed on screen. 

Returns: 
returns user entered double. 

keyFloat 

public   static   final   float  keyFloat(String prompt) 
keyFloat allows user to enter a float from the keyboard. 

Parameters: 
prompt - Text prompt printed on screen. 

Returns: 
returns user entered float. 
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Class KeyObj 

j ava.lang.Obj ect 

+ KeyObj 

public final class KeyObj 
extends Object KeyObj Class is used to access tour attributes in the hashtable for comparison. 
Version: 

vl.lMar99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Constructor Index 

KevObiCint, int, int, int, int, int) 
Specified constructor. 

Method Index 

eguals(KeyObj) 
Overloaded equals(), check only attribute fields. 

hashCodeO 
Overloaded hashCode method. 

toStringQ 
toString changes a KeyObj to a string for use in the hashTable. 

Constructors 

KeyObj 

public  KeyObj(int fhv, 
int shv, 
int cost, 
int tvl, 
int twPen, 
int loadPen) 

Specified constructor. Values set as passed. 

Methods 

equals 

public   final  boolean equals(KeyObj   a) 
Overloaded equals(), check only attribute fields. Do not check first two data elements to keep 
inline with hashCode overload. 

Parameters: 
a - element compared calling object. 

Returns: 
returns true if objects are equal, false otherwise. 

toString 

public final String toString() 
toString changes a KeyObj to a string for use in the hashTable. 

Returns: 
returns concatenated String. 

Overrides: 
toString in class Object 

hashCode 
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public final int hashCode() 
Overloaded hashCode method. Note: if two objects are equal according to the equals method, then 
calling the hashCode method on each of the two objects must produce the same integer result. 
Only check first two data elements because of size limitations of Integer. 

Returns: 
returns integer hashcode value. 

Overrides: 
hashCode in class Object 

Class KeyToString 

j ava.lang.Object 

+ KeyToString 

public class KeyToString 
extends Object KeyToString Class converts the attributes of tour to a concatenated string used as a key to 
the hashtable of tours. 
Version: 

vl.lMar99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Constructor Index 

KevToStringQ 

Method Index 

kevToStringfint, int, int, int, int, int) 
KeyToString Class converts the attributes of tour to a concatenated string used as a key to the 
hashtable of tours. 

Constructors 

KeyToString 

public KeyToString() 

Methods 

keyToString 

public static String keyToString(int fhv, 
int shv, 
int tourCost, 
int tvl, 
int twPen, 
int   loadPen) 

KeyToString Class converts the attributes of tour to a concatenated string used as a key to the 
hashtable of tours. 

Parameters: 
fhv - First hashing value (objective function), 
shv - Second hashing value (Woodruff & Zemel). 
tourCost - Tour cost. 
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tvl - Travel time. 
twPen - Time window penalty. 
loadPen - Load overage penalty. 

Class MTSPTW 

Java.lang.Object 

+ MTSPTW 

public class MTSPTW 
extends Object MTSPTW is the main part that implements the multiple traveling salesperson problem with 
time windows solve algorithm. This version calls the specific methods to read file input and generate the 
appropriate time matrix. 
Version: 

vl.lMar99 

Author: 
Kevin P. O'Rourke, David M. Ryer 

Constructor Index 

MTSPTWO 

Method Index 

main(String[]) 
main executes MTSPTW problem. 

swapfint, int) 
Swap allows generic swap of integers. 

Constructors 

MTSPTW 

public  MTSPTWO 

Methods 

swap 

public static void swap(int a, 
int  b) 

Swap allows generic swap of integers. 
Parameters: 

a- integer 
b-integer 

Returns: 
returns void 

main 

public static void main(String argv[]) 
main executes MTSPTW problem. Initializes global variables, calls methods to read data and wind 
files, calls method to compute time matrix, calls tabu search method, writes output to file. 

Parameters: 
nv - number of vehicles, overridden by file information 
iters - number of iterations 
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integer - precision scaling factor 
file - data file name, without extension (actual filename must end with .dat). 
wind - file name, without extension (actual filename must end with .dat). 
reroute - identifier. Use 111 (one one one) to specify reroute. 

Class NoCycleOut 

j ava.lang.Obj ect 

I 
+ NoCyc 1 eOut 

public class NoCycleOut 
extends Object NoCycleOut is used as a package to output multiple fields from the method NoCycle. 
Version: 

vl.lMar99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Variable Index 

ssltlc 
cycle related variable. 

tabuLen 
cycle related variable. 

Constructor Index 

NoCvcleOutO 
Default constructor. 

NoCycleOut(int, int) 
Specified constructor. 

Variables 

ssltlc 

public int ssltlc 
cycle related variable. 

tabuLen 

public   int   tabuLen 
cycle related variable. 

Constructors 

NoCycleOut 

public NoCycleOut() 
Default constructor. Assigns all values to zero. 

NoCycleOut 

public NoCycleOut(int   ssltlc, 
int   tabuLen) 

Specified constructor. Values set as passed. 

Class NodeType 
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j ava.lang.Obj ect 

+ NodeType 

public class NodeType 
extends Object NodeType defines the relevant information of each particular node. 
Version: 

vl.lFeb99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Constructor Index 

NodeTypeO 
Default constructor. 

NodeTypefint, int, int, int, int, int, int) 
Specified constructor. 

Method Index 

compPens(NodeType[], int) 
compPens computes the vehicle capacity overload and time window penalties. 

COPVO 
countVeh(NodeType[]) 

Method countVeh finds the number of vehicles being used in the current tour by counting the 
vehicle to demand transitions. 

getEaO 
getldO 
getLaQ 
getLoadO 
geMO 
getQtyQ 
getTypeO 
getWaitO 
insert(NodeType[], int, int) 

Method insert allows the element designated by "chl" to be shifted by "chD" elements. 
moveValTT(int, int, NodeType[], NodeType[], int[][]) 

Method moveValTT computes the incremental change in the value of the travel time from the 
incumbent tour to the proposed neighbor tour, and computes the neighbor schedule parameters 
preparing for computation of penalty terms. 

printO 
pjrintTpur(NodeType[]) 
setld(int) 
setLoad(int) 
setOtvfint) 
setType(int) 
setWait(int) 
startTour(NodeType[], int[][], int, int) 

Method startTour will bubble sort the initial tour based on the average time window time. 
sumWait(NodeType[]) 

Method sumWait calculates the total "waiting" time in a particular tour by summing the wait 
values for each individual node. 

swaplnt(int, int) 
Method swaplnt switches two integers 

swapNode(NodeType[], int, int) 
Method swapNode allows the node array elements "a" and "b" to be swapped in the Node Array 
"z". 

tourSchedfint, NodeType[], int[][]) 
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Method tourSched should be called with the syntax tourLen = tourSched(nodeArray, time) from 
the orderStartingTour method. 

Constructors 

NodeType 

public  NodeType() 
Default constructor. Assigns all values to zero. 

NodeType 

public  NodeType(int id, 
int ea, 
int la, 
int qty, 
int type, 
int wait, 
int load) 

Specified constructor. Values set as passed. 

Methods 

copy 

public final NodeType copy() 

swaplnt 

public static final void swaplnt(int a, 
int  b) 

Method swaplnt switches two integers 

swapNode 

public static final NodeType[] swapNode(NodeType z[], 
int  a, 
int  b) 

Method swapNode allows the node array elements "a" and "b" to be swapped in the Node Array 
"z". 

Parameters: 
z - node array to be updated, 
a - element to be swapped, 
b - element to be swapped. 

Returns: 
returns updated node array. 

insert 

public static final NodeType[] insert(NodeType z[], 
int  chl, 
int  chD) 

Method insert allows the element designated by "chl" to be shifted by "chD" elements. chD may 
be positive or negative. 

Parameters: 
z - node array to be updated, 
chl - location of node to be moved. 
chD - depth of move. 

Returns: 
returns updated node array. 
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countVeh 

public static final int countVeh(NodeType tour[]) 
Method countVeh finds the number of vehicles being used in the current tour by counting the 
vehicle to demand transitions. 

Parameters: 
tour - node array to be processed. 

Returns: 
returns integer number of vehicles used in the tour. 

sumWait 

public static final int sumWait(NodeType tour[]) 
Method sumWait calculates the total "waiting" time in a particular tour by summing the wait 
values for each individual node. 

Parameters: 
tour - node array to be processed. 

Returns: 
returns integer value of total wait time in the tour. 

compPens 

public static final VrpPenType compPens(NodeType tour[], 
int  capacity) 

compPens computes the vehicle capacity overload and time window penalties. 
Parameters: 

tour[] - current tour used to calculate penalties, 
capacity - maximum vehicle load. 

Returns: 
returns the VrpPenType object which the method was called on with updated values. 

tourSched 

public static final int tourSched(int is, 
NodeType  tour[], 
int   time[][]) 

Method tourSched should be called with the syntax tourLen = tourSched(nodeArray, time) from 
the orderStartingTour method. This will use the listing of nodes to return the new tourLen value 
(tour duration). Additionally, the node Array will be updated to reflect the new arrival and 
departure times. 

Parameters: 
is - insertion/starting location for computation of schedule, 
tour - node array to be processed, 
time - time matrix used to determine schedule. 

Returns: 
returns integer total tour duration. Updates tour node array as appropriate. 

startTour 

public static final int startTour(NodeType tour[], 
int time[][], 
int nc, 
int  nv) 

Method startTour will bubble sort the initial tour based on the average time window time. No 
swap is made if the move would violate strong time window infeasibility. 

Parameters: 
tour - node array to be processed. 
time - time matrix used to determine schedule. 
nc - number of customers. 
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nv - number of vehicles. 
Returns: 

returns integer total tour duration. Updates tour node array as appropriate. 

getld 

public final int getld() 

getEa 

public final int getEa() 

getLa 

public final int getLa() 

getQty 

public final int getQty() 

getType 

public final int getType() 

getWait 

public final int getWait() 

getLoad 

public final int getLoad() 

getM 

public final double getM() 

setld 

public final void setld(int id) 

setWait 

public  final void setWait(int wait) 
setType 

public   final  void  setType(int  type) 
setQty 

public final void setQty(int qty) 

setLoad 

public final void setLoad(int load) 

print 

public final void print() 

printTour 

public static final void printTour(NodeType tour[]) 

moveValTT 

public static int moveValTT(int i, 
int d, 
NodeType tour[], 
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NodeType nbrtour[], 
int time[][]) 

Method moveValTT computes the incremental change in the value of the travel time from the 
incumbent tour to the proposed neighbor tour, and computes the neighbor schedule parameters 
preparing for computation of penalty terms. 

Parameters: 
i - node position. 
d - move depth. 
tour - incumbent tour node array to be processed. 
nbrtour - neighbor tour node array to be processed. 
time - time matrix used to determine schedule. 

Returns: 
returns integer move value which is the resultant change in the objective function resulting from 
the proposed move. 

See Also: 
compPens 

Class PrintCalls 

j ava.lang.Object 

I 
+ PrintCalls 

public class PrintCalls 
extends Object PrintCalls is to display on the screen initial values and rts steps as required. 
Version: 

vl.lMar99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Constructor Index 

PrintCallsO 

Method Index 

printlnitValsdnt, int, int, double, String) 
rtsStepPrintdnt, int, int, int, int, int, int, int) 

Constructors 

PrintCalls 

public  PrintCallsO 

Methods 

printlnitVals 

public static void printlnitVals(int nv, 
int iters, 
int numcycles, 
double factor, 
String file) 

rtsStepPrint 

public static void rtsStepPrint(int id, 
int i, 
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int d, 
int k, 
int moveVal, 
int totNbrPen, 
int tabu, 
int numnodes) 

Class PrintFlag 

j ava.lang.Obj ect 

+ PrintFlag 

public class PrintFlag 
extends Object PrintFlag contains all print out flags as boolean attributes. 
Version: 

vl.lMar99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Variable Index 

cvclePrint 
print flag. 

iterPrint 
print flag. 

loadPrint 
print flag. 

movePrint 
print flag. 

startPrint 
print flag. 

stepLoopPrint 
print flag. 

stepPrint 
print flag. 

timePrint 
print flag. 

twrdPrint 
print flag. 

Constructor Index 

PrintFiagQ 
Default PrintFlag constructor sets all to "true". 

PrintFIag(boolean) 
Additional PrintFlag constructor allows specification of either "true" or "false". 

Variables 

movePrint 

public  boolean movePrint 
print flag. 

startPrint 

public boolean startPrint 
print flag. 
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timePrint 

public  boolean  timePrint 
print flag. 

stepPrint 

public boolean stepPrint 
print flag. 

stepLoopPrint 

public  boolean  stepLoopPrint 
print flag. 

twrdPrint 

public  boolean  twrdPrint 
print flag. 

cyclePrint 

public  boolean  cyclePrint 
print flag. 

iterPrint 

public  boolean  iterPrint 
print flag. 

loadPrint 

public  boolean  loadPrint 
print flag. 

Constructors 

PrintFlag 

public PrintFlag() 
Default PrintFlag constructor sets all to "true". 

PrintFlag 

public PrintFlag(boolean set) 
Additional PrintFlag constructor allows specification of either "true" or "false". 

Class ReacTabuObj 

j ava.lang.Obj ect 

+ ReacTabuObj 

public class ReacTabuObj 
extends Object ReacTabuObj class contains the method to perform the reactive tabu search. 
Version: 

vl.lMar99 
Author: 

Kevin P. O'Rourke, David M. Ryer 
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Constructor Index 

ReacTabuObiO 

Method Index 

search(double, double, double, double, int, int, int, int, int, int, int, int, int, int, int, VrpPenType, int[][], 
PrintFlag, int, int, int, int, int, int, int, int, int, int, int, int, int, int, int, NodeType[], NodeType[], 
NodeType[]) 

ReacTabuObj steps through iterations of the reactive tabu search. 

Constructors 

ReacTabuObj 

public  ReacTabuObj() 

search 

public   static  SearchOut search(double  TWPEN, 
double  LDPEN, 
double   INCREASE, 
double  DECREASE, 
int  HTSIZE, 
int  CYMAX, 
int   ZRANGE, 
int  DEPTH, 
int  capacity, 
int  minTL, 
int  maxTL, 
int  tabuLen, 
int   iters, 
int  nc, 
int  numnodes, 
VrpPenType  tourPen, 
int   time[][], 
PrintFlag printFlag, 
int  tourCost, 
int penTrav, 
int  totPenalty, 
int  tvl, 
int  bfTourCost, 
int  bfTT, 
int  bfnv, 
int  bfiter. 
int  bestCost, 
int  bestTT, 
int  bestnv, 
int  bestTime, 
int  bestTimeF, 
int  bestiter, 
int numfeas, 
NodeType  tour[], 
NodeType bestTour[], 
NodeType bestTourF[]) 

ReacTabuObj steps through iterations of the reactive tabu search. This method will perform tabu 
search for VRP with capacity as well as TSP without capacity. 

Returns: 
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returns packaged output object. 

Class ReadFile 

j ava.lang.Obj ect 

+ ReadFile 

public class ReadFile 
extends Object ReadFile Class reads appropriate data from a text file. Methods exist to read specific data 
types (file format must be known in advance). 
Version: 

vl.lMar99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Constructor Index 

ReadFileO 

Method Index 

assignlnputFile(String) 
assignlnputFile sets up the FilelnputStream. 

readNextDouble(StreamTokenizer) 
readNextString method gets the next token and returns it as a double. 

readNextlnt(StreamTokenizer) 
readNextString method gets the next token and returns it as a integer. 

readNextString(StreamTokenizer) 
readNextString method gets the next token and returns it as a string. 

Constructors 

ReadFile 

public ReadFileO 

Methods 

assignlnputFile 

public   static   final  FilelnputStream assignlnputFile(String  filename) 
assignlnputFile sets up the FilelnputStream. 

readNextString 

public  static   final   String  readNextString(StreamTokenizer  st) 
readNextString method gets the next token and returns it as a string. 

Parameters: 
st - string tokenizer. 

Returns: 
returns next string from file. 

readNextDouble 

public   static   final  double  readNextDouble(StreamTokenizer  st) 
readNextString method gets the next token and returns it as a double. 

Parameters: 
st - string tokenizer. 

Returns: 
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returns next double from file. 
readNextlnt 

public static final int readNextlnt(StreamTokenizer st) 
readNextString method gets the next token and returns it as a integer. 

Parameters: 
st - string tokenizer. 

Returns: 
returns next integer from file. 

Class SearchOut 

j ava.lang.Obj ect 

+ SearchOut 

public class SearchOut 
extends Object SearchOut is used as a package to output multiple information from the Search method in 
ReacTabuObj. 
Version: 

vl.lMar99 
Author: 

Kevin P. O'Rourke, David M. Ryer 
See Also: 

Search 

Variable Index 

bestCost 
bestiter 
bestnv 
bestTime 
bestTour 
bestTT 
bfCost 
bfiter 
bfnv 
bfTime 
bfTour 
bfTT 
numfeas 
penTrav 
totPenaltv 
tour 
tourCost 
tourPen 
tvl 

Constructor Index 

SearchOutO 
Default constructor. 

SearchOutfint, int, int, int, int, int, int, int, int, int, int, int, int, int, int, VrpPenType, NodeTypef], 
NodeType[], NodeType[]) 

Specified constructor. 
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Variables 

totPenalty 

public  int  totPenalty 
penTrav 

public   int penTrav 
tourCost 

public int tourCost 

bfiter 

public int bfiter 

bfCost 

public int bfCost 

bfTT 

public int bfTT 

bestnv 

public int bestnv 

bestiter 

public int bestiter 

bestCost 

public int bestCost 

bestTT 

public int bestTT 

bfnv 

public int bfnv 

bfTime 

public int bfTime 

bestTime 

public int bestTime 

tvl 

public int tvl 

numfeas 

public int numfeas 

tourPen 

public VrpPenType tourPen 

tour 

public NodeType tour[] 
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bfTour 

public NodeType bfTour[] 

bestTour 

public NodeType  bestTour[] 

Constructors 

SearchOut 

public SearchOut() 
Default constructor. Assigns all values to zero. 

SearchOut 

public SearchOut(int totPenalty, 
int penTrav, 
int tourCost, 
int bfiter, 
int bfCost, 
int bfTT, 
int bestnv, 
int bestiter, 
int bestCost, 
int bestTT, 
int bfnv, 
int bfTime, 
int bestTime, 
int tvl, 
int numfeas, 
VrpPenType tourPen, 
NodeType tour[], 
NodeType bfTour[], 
NodeType bestTour[]) 

Specified constructor. Values set as passed. 

Class StartPenBestOut 

j ava.lang.Object 

+ StartPenBestOut 

public class StartPenBestOut 
extends Object StartPenBestOut is used as a package to output multiple penalty information from method 
startPenBest. 
Version: 

vl.lMar99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Variable Index 

bestCost 
Penalty related value. 

bestiter 
Penalty related value. 
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bestnv 
Penalty related value. 

bestTime 
Penalty related value. 

bestTour 
Saved tour. 

bestTT 
Penalty related value. 

bfCost 
Penalty related value. 

bfiter 
Penalty related value. 

bfnv 
Penalty related value. 

bfTime 
Penalty related value. 

bfTour 
Saved tour. 

bfTT 
Penalty related value. 

penTrav 
Penalty related value. 

totPenaltv 
Penalty related value. 

tourCost 
Penalty related value. 

tourPen 
Tour penalty values. 

Constructor Index 

StartPenBestOutO 
Default constructor. 

StartPenBestOut(int, int, int, int, int, int, int, int, int, int, int, int, int, VrpPenType, NodeType[], 
NodeTypef]) 

Specified constructor. 

Variables 

totPenalty 

public   int   totPenalty 
Penalty related value. 

penTrav 

public  int penTrav 
Penalty related value. 

tourCost 

public   int  tourCost 
Penalty related value. 

bfiter 

public int bfiter 
Penalty related value. 

bfCost 

82 



public int bfCost 
Penalty related value. 

bfTT 

public int bfTT 
Penalty related value. 

bestnv 

public int bestnv 
Penalty related value. 

bestiter 

public   int  bestiter 
Penalty related value. 

bestCost 

public   int  bestCost 
Penalty related value. 

bestTT 

public int bestTT 
Penalty related value. 

bfnv 

public int bfnv 
Penalty related value. 

bfTime 

public int bfTime 
Penalty related value. 

bestTime 

public   int  bestTime 
Penalty related value. 

tourPen 

public  VrpPenType  tourPen 
Tour penalty values. 

bfTour 

public  NodeType  bfTour[] 
Saved tour. 

bestTour 

public  NodeType bestTour[] 
Saved tour. 

Constructors 

StartPenBestOut 

public StartPenBestOut() 
Default constructor. Assigns all values to zero. 

StartPenBestOut 
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public c StartPenBestOut(int 
int 
int 

totPenalty, 
penTrav, 
tourCost, 

int bf iter, 
int bfCost, 
int bfTT, 
int bestnv, 
int bestiter, 
int bestCost, 
int bestTT, 
int bfnv, 
int bfTime, 
int bestTime, 
VrpPenType tourPen, 
NodeType bfTour[], 
NodeType bestTour[]) 

Specified constructor. Values set as passed. 

Class StartTourObj 

j ava.lang.Obj ect 

+ StartTourObj 

public class StartTourObj 
extends Object StartTourObj class begins timing, computes an initial schedule and initial tour cost (Tour 
Cost = Travel time + Waiting Time + Penalty Term), computes the initial hashing values: Z(i) and thv(t), 
and produces a tour based on a sort of increasing avg time windows at each node. The customers are 
ordered by increasing avg time window value, and the nv vehicle nodes are appended to the end of the tour. 

Constructor Index 

StartTourObiO 

Method Index 

startPenBestdnt, int, int, NodeType[], double, double, int, int, int, int, VrpPenType, int, int, int, int, int, int, 
int, int, int, int, NodeType[], NodeType[]) 

startPenBest initializes "best" values and their times. 

Constructors 

StartTourObj 

public   StartTourObj() 

Methods 

startPenBest 

public static StartPenBestOut startPenBest(int numnodes, 
int tvl, 
int tourLen, 
NodeType tour[], 
double TWPEN, 
double LDPEN, 
int capacity, 
int totPenalty, 
int penTrav, 
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int tourCost, 
VrpPenType  tourPen, 
int bfiter, 
int bfTourCost, 
int bfTT, 
int bfnv, 
int bestiter, 
int bestCost, 
int bestTT, 
int bestnv, 
int bestTimeF, 
int bestTime, 
NodeType bestTour[], 
NodeType bestTourF[]) 

startPenBest initializes ' best' values and their times. Computes cost of initial tour as tour length 
with added penalty for infeasibilities. 

Returns: 
returns StartPenBestOul wrapper object for multiple values. 

Class TabuMod 

java.lang.Obj ect 

+ TabuMod 

public class TabuMod 
extends Object TabuMod Class contains methods used in the TabuSearch. countVeh calculates the number 
of vehicles used in the current tour. noCycle updates the search parameters if tour is not found in the 
hashtable. cycle updates the search parameters if tour is found in the hashtable. moveValTT computes the 
incremental change in the value of the travel time. 
Version: 

vl.lMar99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Constructor Index 

TabuModO 

Method Index 

countVehiclesCNodeTypen) 
countVeh method calculates the number of vehicles used in the current tour by counting the 
number of vehicle (type 2) to demand (type 1) transitions. 

cvcle(ValueObj, double, int, int, int, double, int, int, PrinfFlag) 
cycle method updates the search parameters if the incumbent tour is found in the hashing structure. 

moyeValTT(int, int, NodeType[], NodeType[], int[][]) 
Method moveValTT computes the incremental change in the value of the travel time from the 
incumbent tour to the proposed neighbor tour, and computes the neighbor schedule parameters 
preparing for computation of penalty terms. 

noCyc|e(double, int, double, int, int, PrintFlag) 
noCycle method updates the search parameters if the incumbent tour is not found in the hashing 
structure. 

Constructors 

TabuMod 
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public  TabuMod() 

Methods 

countVehicles 

public static final int countVehicles(NodeType tour[]) 
countVeh method calculates the number of vehicles used in the current tour by counting the 
number of vehicle (type 2) to demand (type 1) transitions. 

Parameters: 
tour - node array to be processed. 

Returns: 
returns integer number of vehicles used in the tour. 

noCycle 

public static NoCycleOut noCycle(double DECREASE, 
int minTL, 
double mavg, 
int ssltlc, 
int tabuLen, 
PrintFlag printFlag) 

noCycle method updates the search parameters if the incumbent tour is not found in the hashing 
structure. 

Parameters: 
DECREASE - adjustive scaling factor to reduce tabu length. 
minTL - minimum tabu length, 
mavg - moving average between cycles, 
ssltlc - steps since last tabu length change. 
tabuLen - current tabu length. 
printFlag - option to print cycle information. 

Returns: 
returns noCycleOut wrapped object. 

cycle 

public static CycleOut cycle(ValueObj matchPtr, 
double INCREASE, 
int maxTL, 
int CYMAX, 
int k, 
double mavg, 
int ssltlc, 
int tabuLen, 
PrintFlag printFlag) 

cycle method updates the search parameters if the incumbent tour is found in the hashing structure. 
Parameters: 

matchPtr - matched information for previously found identical tour 
INCREASE - adjustive scaling factor to increase tabu length 
maxTL - maximum tabu length 
CYMAX - maximum allowable cycle frequency 
k - current iteration 
mavg - moving average between cycles, 
ssltlc - steps since last tabu length change. 
tabuLen - current tabu length. 
printFlag - option to print cycle information. 

Returns: 
returns cycleOut wrapped object. 
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moveValTT 

public static int moveValTT(int i, 
int d, 
NodeType  tour[], 
NodeType  nbrtour[], 
int   time[][]) 

Method moveValTT computes the incremental change in the value of the travel time from the 
incumbent tour to the proposed neighbor tour, and computes the neighbor schedule parameters 
preparing for computation of penalty terms. 

Parameters: 
i - node position, 
d - move depth. 
tour - incumbent tour node array to be processed, 
nbrtour - neighbor tour node array to be processed, 
time - time matrix used to determine schedule. 

Returns: 
returns integer move value which is the resultant change in the objective function resulting from 
the proposed move. 

See Also: 
compPens 

Class TimeMatrixObj 

j ava.lang.Obj ect 

+ TimeMatrixObj 

public class TimeMatrixObj 
extends Object TimeMatrixObj contains methods to calculate the distance/time matrix based on the 
problem parameters. 
Version: 

vl.lMar99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Constructor Index 

TimeMatrixObj 0 

Method Index 

readNC(String) 
readNC is used to read from the first token from the input file (the number of customers (nc)). 

readNV(String) 
readNV is used to read from the second token from the input file (the number of vehicles (nv)). 

readTSPTW(double, int, int, String, CoordType[], int[]) 
readTSPTW reads in the geographical coordinates and time window file and calculates the time 
between each node 

readTSPTWdepot(double, int, int, String, CoordTypef], int[]) 
readTSPTWdepot reads in the geographical coordinates, load quantity, service time, and time 
window information associated with depot and customer locations from the input file. 

timeMatrix(int, int, double, int, CoordType[], int[]) 
timeMatrix computes simple two-dimensional time/distance matrix. 

timeMatrixDepot(int, int, double, int, CoordType[], int[]) 
timeMatrixDepot computes the two-dimensional array used as the "time" matrix. 
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Constructors 

TimeMatrixObj 

public TimeMatrixObj() 

Methods 

readNC 

public static int readNC(String filein) 
readNC is used to read from the first token from the input file (the number of customers (nc)). 

Parameters: 
filein - - name of input file 

Returns: 
returns nc number of customers 

readNV 

public static int readNV(String filein) 
readNV is used to read from the second token from the input file (the number of vehicles (nv)). 

Parameters: 
filein - - name of input file 

Returns: 
returns nv number of vehicles 

readTSPTW 

public static NodeType[] readTSPTW(double factor, 
int nv, 
int nc, 
String  filein, 
CoordType  coord[], 
int   s[]) 

readTSPTW reads in the geographical coordinates and time window file and calculates the time 
between each node 

Parameters: 
factor - - integer scaling factor used to increase precision, 
nv - - number of aircraft available (vehicles), 
nc - - number of targets/route points (customers), 
filein - - name of input file. 
coord - - blank array where coordinates will be stored upon method completion. 
s - - blank array where service times will be stored upon method completion. 

Returns: 
returns the tour array reflecting file data. 

readTSPTWdepot 

public static NodeType[] readTSPTWdepot(double factor, 
int nv, 
int nc, 
String filein, 
CoordType coord[], 
int s[]) 

readTSPTWdepot reads in the geographical coordinates, load quantity, service time, and time 
window information associated with depot and customer locations from the input file. This 
information is returned as a tour array. 

Parameters: 
factor - - integer scaling factor used to increase precision. 
nv - - number of aircraft available (vehicles). 
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nc - - number of targets/route points (customers), 
filein - - name of input file. 
coord - - blank array where coordinates will be stored upon method completion. 
s - - blank array where service times will be stored upon method completion. 

Returns: 
returns the tour array reflecting file data. 

timeMatrix 

public static int[][] timeMatrix(int nc, 
int gamma, 
double factor, 
int numnodes, 
CoordType coord[], 
int   s[] ) 

timeMatrix computes simple two-dimensional time/distance matrix. 
Parameters: 

nc - - number of targets/route points (customers), 
gamma - - additional vehicle usage penalty (set to ZERO only), 
factor - - integer scaling factor used to increase precision, 
coord - - blank array where coordinates will be stored upon method completion, 
s - - blank array where service times will be stored upon method completion. 

Returns: 
returns the time matrix specific to the problem. 

timeMatrixDepot 

public static int[][] timeMatrixDepot(int nc, 
int gamma, 
double factor, 
int numnodes, 
CoordType coordf], 
int   s[]) 

timeMatrixDepot computes the two-dimensional array used as the "time" matrix. This time matrix 
contains the travel times between respective nodes, general setup for multiple depot problem. 

Parameters: 
nc - - number of targets/route points (customers), 
gamma - - additional vehicle usage penalty (set to ZERO only), 
factor - - integer scaling factor used to increase precision, 
coord - - blank array where coordinates will be stored upon method completion. 
s - - blank array where service times will be stored upon method completion. 

Returns: 
returns the time matrix specific to the problem. 

Class Timer 

java.lang.Obj ect 

+ Timer 

public class Timer 
extends Object Timer Class is used to time overall computation time. 
Version: 

vl.lMar99 
Author: 

Kevin P. O'Rourke, David M. Ryer 
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Variable Index 

endTime 
end time. 

startTime 
begin time. 

totalSeconds 
duration of run. 

Constructor Index 

TimerQ 
Default constructor. 

Method Index 

endTimeQ 
endTime assigns end time. 

startTimeQ 
startTime assigns start time. 

totalSecondsQ 
totalSeconds returns duration. 

Variables 

startTime 

public   long  startTime 
begin time. 

endTime 

public   long  endTime 
end time. 

totalSeconds 

public   long  totalSeconds 
duration of run. 

Constructors 

Timer 

public Timer() 
Default constructor. Assigns all values to zero. 

Methods 

startTime 

public long startTime() 
startTime assigns start time. 

Returns: 
returns start time. 

endTime 

public long endTime() 
endTime assigns end time. 

Returns: 
returns end time. 

totalSeconds 
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public   long  totalSeconds() 
totalSeconds returns duration. 

Returns: 
returns duration. 

Class TsptwPen 

j ava.lang.Obj ect 

+ MTSPTW 

+ TsptwPen 

public class TsptwPen 
extends MTSPTW tsptwPen class: Given the TW and load penalties, this procedure personalizes the 
penalties to the mTSPTW; Computes tourCost of tour as tour length + scaled penalty for infeasibilities. 

Constructor Index 

TsptwPenO 

Method Index 

tsptwPenfint, NodeType[], VrpPenType, double, double, int, int, int, int) 
tsptwPen method uses the TW and load penalties to computes tourCost of tour as tour length + 
scaled penalty for infeasibilities. 

tsptwPenNormalizeddnt, NodeType[], VrpPenType, double, double, int, int, int, int) 
tsptwPenNormalized method uses the TW and load penalties to computes tourCost of tour as tour 
length + scaled penalty for infeasibilities. 

Constructors 

TsptwPen 

public  TsptwPenO 

Methods 

tsptwPen 

public static final TsptwPenOut tsptwPen(int tourLen, 
NodeType tour[], 
VrpPenType tourPen, 
double TWPEN, 
double LDPEN, 
int totPenalty, 
int tourCost, 
int penTrav, 
int tvl) 

tsptwPen method uses the TW and load penalties to computes tourCost of tour as tour length + 
scaled penalty for infeasibilities. This method is used with the absolute penalty factors. 

Parameters: 
tourLen - tour duration. 
tour - node array to be processed. 
tourPen - current tour penalty value. 
TWPEN - time window penalty factor. 
LDPEN - load overage penalty factor. 
totPenalty - sum total penalties. 
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tourCost - total tour cost. 
penTrav - travel time penalty, 
tvl - travel duration. 

Returns: 
returns wrapped multiple objects. 

tsptwPenNormalized 

public static final TsptwPenOut tsptwPenNormalized(int tourLen, 
NodeType tour[], 
VrpPenType tourPen, 
double TWPEN, 
double LDPEN, 
int totPenalty, 
int tourCost, 
int penTrav, 
int tvl) 

tsptwPenNormalized method uses the TW and load penalties to computes tourCost of tour as tour 
length + scaled penalty for infeasibilities. This method is uses penalty factors of one and is called 
when the insertion move is made. Penalty values are then comparable from iteration to iteration. 

Parameters: 
tourLen - tour duration. 
tour - node array to be processed. 
tourPen - current tour penalty value. 
TWPEN - time window penalty factor (IGNORED, set to 1). 
LDPEN - load overage penalty factor (IGNORED, set to 1). 
totPenalty - sum total penalties. 
tourCost - total tour cost. 
penTrav - travel time penalty. 
tvl - travel duration. 

Returns: 
returns wrapped multiple objects. 

Class TsptwPenOut 

j ava.lang.Obj ect 

+ TsptwPenOut 

public class TsptwPenOut 
extends Object TsptwPenOut is used as a package to output multiple penalty information from class 
TsptwPen. 
Version: 

vl.lMar99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Variable Index 

penTrav 
Penalty related value. 

totPenalty 
Penalty related value. 

tourCost 
Penalty related value. 

tvl 
Penalty related value. 
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Constructor Index 

TsptwPenOutO 
Default constructor. 

TsptwPenOutfint, int, int, int) 
Specified constructor. 

Variables 

totPenalty 

public   int  totPenalty 
Penalty related value. 

tourCost 

public   int  tourCost 
Penalty related value. 

penTrav 

public  int penTrav 
Penalty related value. 

tvl 

public int tvl 
Penalty related value. 

Constructors 

TsptwPenOut 

public  TsptwPenOutO 
Default constructor. Assigns all values to zero. 

TsptwPenOut 

public TsptwPenOut(int totPenalty, 
int   tourCost, 
int  penTrav, 
int   tvl) 

Specified constructor. Values set as passed. 

Class TwBestTTOut 

j ava.lang.Obj ect 

+ TwBestTTOut 

public class TwBestTTOut 
extends Object TwBestTTOut is used as a package to output multiple information from the TWBestTTOut 
method. 
Version: 

vl.lMar99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Variable Index 

bestCost 
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best tour related value. 
bestiter 

best tour related value. 
bestnv 

best tour related value. 
bestTime 

best tour related value. 
bestTour 

best tour related value. 
bestTT 

best tour related value. 
bfCost 

best tour related value. 
bfiter 

best tour related value. 
bfnv 

best tour related value. 
bfTime 

best tour related value. 
bfTour 

best tour related value. 
bfTT 

best tour related value. 

Constructor Index 

TwBestTTOutO 
Default constructor. 

TwBestTTOut(int, int, int, int, int, int, int, int, int, int, NodeType[], NodeTypef]) 
Specified constructor. 

Variables 

bfCost 

public int bfCost 
best tour related value. 

bfTT 

public int bfTT 
best tour related value. 

bfnv 

public int bfnv 
best tour related value. 

bfiter 

public int bfiter 
best tour related value. 

bestCost 

public   int  bestCost 
best tour related value. 

bestTT 

public int bestTT 
best tour related value. 
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bestnv 

public int bestnv 
best tour related value. 

bestiter 

public   int  bestiter 
best tour related value. 

bfTime 

public int bfTime 
best tour related value. 

bestTime 

public  int bestTime 
best tour related value. 

bfTour 

public  NodeType  bfTour[ ] 
best tour related value. 

bestTour 

public NodeType  bestTour[] 
best tour related value. 

Constructors 

TwBestTTOut 

public TwBestTTOut() 
Default constructor. Assigns all values to zero. 

TwBestTTOut 

public TwBestTTOut(int bfCost, 
int  bfTT, 
int  bfnv, 
int  bfiter, 
int  bestCost, 
int  bestTT, 
int  bestnv, 
int  bestiter, 
int  bfTime, 
int  bestTime, 
NodeType  bfTour[], 
NodeType  bestTour[]) 

Specified constructor. Values set as passed. 

Class ValueObj 

j ava.lang.Obj ect 

+ ValueObj 

public final class ValueObj 
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extends Object ValueObj Class is used to store tour attributes in the hashtable for comparison. 
Version: 

vl.lMar99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Constructor Index 

ValueObj(int, int, int, int, int, int, int) 
Specified constructor. 

Method Index 

equals(ValueObj) 
Overloaded equals(), check only attribute fields. 

hashCodeO 
Overloaded hashCode method. 

toStringQ 
toSrting changes a ValueObj to a string for use in the hashTable. 

Constructors 

ValueObj 

public ValueObj(int   fhv, 
int  shv, 
int  tourCost, 
int  tvl, 
int  twPen, 
int   loadPen, 
int   lastlter) 

Specified constructor. Values set as passed. 

Methods 

equals 

public   final  boolean  equals(ValueObj   a) 
Overloaded equals(), check only attribute fields. Do not check first two data elements to keep 
inline with hashCode overload. 

Parameters: 
a - element compared calling object. 

Returns: 
returns true if objects are equal, false otherwise. 

toString 

public final String toString() 
toString changes a ValueObj to a string for use in the hashTable. 

Returns: 
returns concatenated String. 

Overrides: 
toString in class Object 

hashCode 

public final int hashCode() 
Overloaded hashCode method. Note: if two objects are equal according to the equals method, then 
calling the hashCode method on each of the two objects must produce the same integer result. Do 
not checking first two data elements because of size limitations of Integer. 

Returns: 
returns integer hashcode value. 
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Overrides: 
hashCode in class Object 

Class VrpPenType 

j ava.lang.Object 

+ VrpPenType 

public class VrpPenType 
extends Object VrpPentype class provides the object structure for load and time window penalties. 
Version: 

vl.lFeb99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Constructor Index 

VrpPenTypeO 
Default constructor. 

VrpPenTypefint, int) 
Specified constructor. 

VrpPenTypefint, int, int) 
Specified constructor. 

Method Index 

compPens(NodeType[], int) 
compPens computes the vehicle capacity overload and time window penalties. 

Constructors 

VrpPenType 

public VrpPenTypeO 
Default constructor. Assigns all values to zero. 

VrpPenType 

public VrpPenType(int  tw, 
int   Id) 

Specified constructor. Values set as passed. 
VrpPenType 

public VrpPenType(int   tw; 

int   Id, 
int  nvu) 

Specified constructor. Values set as passed. 

Methods 

compPens 

public   final  VrpPenType  compPens(NodeType  tour[], 
int  capacity) 

compPens computes the vehicle capacity overload and time window penalties. 
Parameters: 

tour[] - current tour used to calculate penalties, 
capacity - maximum vehicle load. 
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Returns: 
returns the VrpPenType object which the method was called on with updated values. 

Class WindAdjust 

j ava.lang.Obj ect 

+ WindAdjust 

public class WindAdjust 
extends Object WindAdjust will provides the adjusted ground speed given the desired heading from 
location A to location B, and the wind heading. 
Version: 

vl.lFeb99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Constructor Index 

WindAdiustO 

Method Index 

groundSpeedfdouble, double, double, double) 
groundSpeed method returns the ground speed given the heading between points, the wind 
heading, the wind speed, and the aircraft's airspeed. 

groundSpeedAFCdouble, double, double, double) 
groundSpeedAF is an experimental method that uses a different formula. 

Constructors 

WindAdjust 

public WindAdjust() 

Methods 

groundSpeed 

public static final double groundSpeed(double headingAtoB, 
double windDir, 
double  airspeed, 
double windSpeed) 

groundSpeed method returns the ground speed given the heading between points, the wind 
heading, the wind speed, and the aircraft's airspeed. 

Parameters: 
headingAtoB - heading between points in degrees. 
windDir - wind heading in degrees. 
airSpeed - aircraft air speed in knots. 
windSpeed - wind speed in knots. 

Returns: 
returns ground speed in knots. 
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