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ABSTRACT 

To successfully combine information from distributed radar sensors, it is essential that each 

sensor be correctly referenced in a global coordinate system. If there are biases in the reported position of 

these sensors, the reported target position will also be biased and the ensuing global estimate of the target 

position will be degraded. Furthermore, any biases in range or azimuth measurements of these sensors 

will likewise be reflected in the degradation of global estimate of target position. Registration is the 

process of ensuring that these errors do not result in the creation of an additional redundant target when 

only a single target exists. 

The objective of this thesis is to create a model for analyzing the impact of these biases 

quantitatively. The model consists of modules which perform the required coordinate conversion, 

tracking, and data correlation. The target tracks are provided by a standard Kaiman filter assuming a 

constant velocity model. The measurements, state estimates, and covariance matrices obtained from the 

Kaiman filter are combined to form a Chi-squared correlation gate. With this model, the bounds on 

position, range, and azimuth biases are determined individually and cumulatively. The simulated results 

compare favorably with the theoretically determined bounds. An additional benefit of this model is that 

the spatial dependence of the biases may be obtained. 



THE EFFECT OF REGISTRATION ERRORS 
ON TRACKING IN A 

NETWORKED RADAR SYSTEM 

1.     Introduction 

Air defense and air traffic control systems depend on a surveillance subsystem to provide an 

overall picture of the air situation in order to make decisions. To maintain an accurate, complete, and 

current air picture, the surveillance subsystem, in turn, depends on combinations of networked sensors to 

provide the raw data from which the picture is constructed. 

The general registration problem arises whenever it is desired to combine information from two 

or more sensors into a single "system level" surveillance picture. The most important attribute of a 

"good" surveillance picture is that it contains exactly one track for each object detected by at least one 

sensor in the system. The fundamental problem in sensor networking, therefore, is to determine whether 

the data reported by two or more sensors represent a common object or two (or more) distinct objects. 

There are often systematic errors which effectively introduce biases into the track estimation 

process. Therefore, failure to register adequately in a multiple radar system can result in varying degrees 

of performance degradation, depending on the magnitude of the biases with respect to the random 

measurement errors and the track correlation gates. The level of degradation ranges, at worst, from the 

formation of multiple redundant tracks for a single aircraft to reduced track accuracy and stability when 

the bias is relatively small. In between, the benefits of a multiple radar system can be negated and the 

system, in effect, can be reduced to a single radar tracking system[Bar90]. 



It should be noted that this topic is really a special case of a more general sensor fusion problem 

which may employ many diverse sensors. Data from different sensors and types of sensors are combined 

using techniques drawn from several disciplines, such as signal processing, statistics, artificial 

intelligence, pattern recognition, cognitive psychology, and information theory. 

Sensor fusion is analogous to the cognitive process used by humans and other life forms to 

combine data from their senses and a priori knowledge to make inferences about the external world. One 

description of the hierarchy of sensor fusion inference ranges from lowest to the highest: existence of an 

entity, position/velocity determination, identity of signal sources, behavior of entities, situation 

assessment, and finally threat analysis as the highest level of inference[Hal92]. Thus, this paper addresses 

a relatively low-level sensor fusion inference process. 

1.1 Background 

A typical networked radar system consists of a collection of remotely located radars. Each radar 

provides a sequence of time-ordered measurements of position (r,9) in polar coordinate system or (r,0,(|>) 

in spherical coordinates; in either case, the origin of the measurement coordinate system is located at the 

radar antenna. The basic detection processing, signal processing, and post-detection processing all occur 

at the radar site. The digitized position reports, often called plots, are forwarded to a central track 

processor over a digital data link. Accurate data registration is a prerequisite for satisfactory track 

initiation and plot-to-track correlation; improved registration reduces requirements for human-machine 

interfacing required to resolve initiation and correlation errors. 

At the central tracking processor, plots from the multiple radars update existing system tracks or 

initiate new system tracks as appropriate. Specifically, the central tracking processor must perform the 

following functions: 



1. Transformation of the radar plots from local radar coordinates to system, or global, 

coordinates. 

2. Correlation or association of the radar plots with the appropriate system tracks. Because 

there are multiple radars in the system, more than one plot may correlate with the same track 

over some arbitrary time interval. 

3. Initiation of new tracks with the uncorrelated plots and rejection of clutter plots. 

4. Track filtering (or updating with correlated plots) and track prediction. 

5. Track monitoring and system track management (including association with tracks from 

external sources). 

Functions 2 and 4 represent the heart of the traditional data association and tracking problem. However, 

before either of these processes can occur successfully, function 1 must be performed; that is, the 

individual radar data must have a common coordinate system in which the errors due to site uncertainties, 

antenna orientation, and improper calibration of range and time are minimized so they do not cause a 

significant degradation of the system operation. The process of ensuring the required "error free" (or, 

more precisely, controlled error) coordinate conversion of radar data is called registration. Thus, 

registration is an absolute prerequisite for multiple radar tracking or sensor networking in general[Bar90]. 

1.2 Research Motivation 

Electronic position location systems such as the global positioning system (GPS) or commercial 

satellite survey systems can locate a position on the earth's surface to within a maximum error of about 30 

meters [Bar90]. This accuracy seems adequate for radar systems where the standard deviation of the range 

measurement error is greater than 100 m. However, in the event of a degraded or absent GPS signal, a 



mobile ground radar may have a positional error on the order of the range measurement error. This fact 

motivates our analysis of the specific effect of radar positional uncertainties (biases) on tracking errors. 

The other systematic error sources addressed, the range and azimuth offsets (or biases), are 

determined in part by radar detection technique (Doppler, mono-pulse, etc.), oscillator (clock) stability 

and jitter, wind torque and mechanical imperfections (for a physically rotated antenna), and calibration or 

alignment imperfections, etc.. By examining the effect of the net position and range and azimuth offsets, 

a budget may be obtained that determines the allowable tolerance of each of the above error sources. 

1.3 Scope of Research 

Of the sources of registration error, three sources which have proven to be major problems in air 

defense and air traffic control systems are analyzed: (1) position of the radar with respect to the system 

coordinate origin; (2) alignment of the antennas with respect to a common North reference (that is, the 

azimuth offset); and (3) range offset errors. Other errors may exist in current radar systems; however, 

they have not been significant problems in the past[Bar90]. 

The fourth source of error, the inherent inability of 2D radars to produce the correct ground range 

for conversion to Cartesian coordinates, is not considered. This error is not random, it always results in 

an overestimate of the ground range; the magnitude of the error depends on the aircraft range and 

elevation angle. The only real solution to this problem is the use of 3D radars. Otherwise, the best that 

can be done is to include this error as a component of the range measurement error. To remove this 

source of error from our model, the target path is generated in three dimensions and the required 

translation and rotations are performed by approximating the Earth's geoid shape with an ellipsoid. See 

Appendix 2 for the development of these spatial transformations. The range and azimuth measurements 

are then extracted, effectively removing the ground range error. 



1.4 Document Overview 

Chapter two addresses pertinent requirements for determining adequate registration. First an 

analytic framework is developed to analyze this issue, with the Kaiman filter model as the underlying 

structure. Background theory for the Kaiman filter is included in Appendices one and two. With this 

analysis model, specific quantitative requirements for registration are then developed. Based on a Chi- 

square error distribution, bounds for the position, range, and azimuth errors are established. 

Chapter three describes the development of the simulation model and provides block diagrams for 

each module. In addition, the operation of each module is described in detail and the associated 

assumptions are listed. 

Chapter four provides the results of the simulations and the accompanying analysis. The target 

paths and representative error ellipse geometries are included to help visualize the results. 

Chapter five provides a summary of this research effort and offers suggestions for further 

development. 



2.    Summary of Current Knowledge 

To combine information from multiple sensors, radars in our case, a tracking algorithm is often 

implemented to provide measurement accuracies (or statistics). The word tracking implies that there 

exists a state estimate S* together with a covariance matrix P* for each detected aircraft. The pair (S*, 

P*) could be obtained, for example, from the standard Kaiman filter for a constant velocity plant model 

(that is, no acceleration). The Kaiman filter used in this application is a four-state discrete-time filter. If 

not familiar with Kaiman filters, refer to Appendices 1 and 2 for background information on Kaiman 

filtering described in the context of tracking. While this paper is not intended to be a treatise on Kaiman 

filtering, and definitely doesn't qualify as one, as will be seen, the Kaiman filter provides the tracking 

error statistics necessary for the analysis of registration errors. 

To associate observations with existing tracks, a track updating process typically begins with a 

gating procedure that is used to eliminate unlikely observation-to-track pairings. Processing is done at 

each scan using only data received on that scan to update the results of previous processing. This process 

assigns observations to existing tracks in a manner that minimizes some overall distance criterion. At 

scan k-1, the filter forms the prediction Sk]k_{ of the state vector for use at time kT. The measurement at 

scan k is Zk = HSk + Vk, where H is the observation matrix and V is zero-mean, white Gaussian 

measurement noise with covariance matrix R. The vector difference between the measured and predicted 

quantities, v k = Zk - H • S^.,, is defined as the residual, or innovation, with residual covariance matrix, 

© = H ■ P ■ HT + R, where P is the one-step prediction covariance matrix. The time subscripts will now 

be dropped for notational convenience. Assume that the measurement is of dimension M. Then defining 

d to be the norm of the residual (or innovation) vector, d2 =v T •©"' -v , the M-dimensional Gaussian 

probability density function for the residual is 



JL (2-1) 
f(v) =       e * 

{In) A.Jft 

where |0| = the determinant of 0[Bla86]. 

In either of the special cases where the probability of detection is unity or there are no expected 

extraneous returns, the gate size should be infinite for optimal correlation performance. However, since 

one of the primary purposes of gating logic is to reduce the number of observation-to-track pairings that 

must be considered, a finite gate size would be appropriate even in these cases. Also, for non-unity 

probability of detection or during the presence of extraneous returns, an optimal, non-infinite gate size 

can be defined. 

Since d is the sum of squares of M independent Gaussian random variables, it has by definition a 

Chi-square (x2) distribution, thus a correlation gate (G) can be defined such that the plot-to-track 

association or correlation decision is based on a Chi-squared test of the following form: 

[sp-zr[p,+PzHS,-Z]<G <2'2> 

where Sp denotes the position components of S* extrapolated to the time at which the next measurement 

Z is obtained; that is, 

S=O(A0S*       P=d(A0P*<I<A0r (2-3) 

where QAt) is the state transition matrix for a time At. Also Z is the measured position (in 2D Cartesian 

coordinates), Pp the covariance submatrix of P for the position components, and Pz the covariance 

matrix for the measurement. 



If a radar measurement Z from radar A satisfies the gate test defined by (2.2), then Z is used to 

update the track through the estimation procedure. If more than one measurement from radar A satisfies 

the gate test, then an ambiguity resolution logic is necessary to select one measurement for the track 

update process. This can be accomplished with an optimal assignment algorithm such as the Munkres 

algorithm. However, if no measurement from radar A satisfies the gate test, then the gate G may be 

enlarged by adding a "maneuver term": 

G' = G + (l/C)(AM)2,AM = At2/2 (2.4) 

for a maneuver or acceleration factor A. The normalizing factor C can be defined as either the minimum 

eigenvalue of the joint covariance matrix [Pp + Pz] or the nth root of the determinant of the (n x n) 

covariance matrix. If the correlated plot is in the maneuver gate (but not in the nonmaneuver gate) for 

two or more successive scans, then a "maneuver" might be declared and a special set of maneuver gains 

or filter constants used to update the track. A maneuver gate is not implemented in the model since only 

linear target paths are generated. This is done to simplify the Kaiman filter algorithm. The Kaiman filter 

is the optimal estimator for a linear path, however a maneuvering target requires an extended Kaiman 

filter in which its state vector is augmented with additional components. 

Referring to Figure 2-1, suppose that an aircraft is tracked by two radars denoted as radars A and 

B whose detectable coverage areas overlap. Where, or even if, a plot from radar B falls in the correlation 

gates depends both on the random measurement errors of the radar and the magnitude of the position, 

range, and azimuth biases between the two radars. 



Radar B 

Radar A 

Figure 2-1 Constant Measurement Error Ellipses 

If there are no registration errors or biases, then the plot from radar B should fall within the 

nonmaneuver gate G most of the time. Presumably, gate G was chosen to ensure that plots from a 

nonmaneuvering aircraft will satisfy (2.2) with a probability in the range 0.90 to 0.99, based on the 

characteristics of the random errors and the actual system design goals. Similarly, if the biases are small 

with respect to the random errors, then the plot from radar B should be in the nonmaneuver gate most of 

the time, although the exact probability will be less than the design goal. Similarly, if the biases are small 

with respect to the random errors, then the plot from radar B should be in the nonmaneuver gate most of 

the time, although the exact probability will be less than the design goal. 

On the other hand, if the biases are relatively large with respect to the random errors, perhaps 

approximately of the size of the gate G or even G', then the plot may fall between the nonmaneuver and 

the maneuver gates: 

G*$P-tf]Pp+Vz\%-z]<G' 
(2.5) 



Although it is unlikely that a tracking system would be designed to declare a maneuver on one maneuver 

gate correlation, the possibility now exists that a maneuver could be falsely declared if radar A 

subsequently fails to detect the aircraft on the next scan. If the plot from radar B is used to update the 

track, then the bias is superimposed on the state estimate, with a loss of system track accuracy. If the plot 

is simply discarded, then the system may have a delayed response to an actual aircraft maneuver; 

certainly, there is a loss of information. Finally, if the biases are very large with respect to the random 

errors, then the plot from radar B will not correlate with the track at all, in which case the system 

eventually will initiate a second track for the same aircraft. 

2.1 Random versus Systematic Errors 

It was asserted in the preceding paragraph that the biases or registration errors in plot data would degrade 

system track accuracy if used to update a system track. However, this is only one example of a more 

general problem in the general theory of estimation. To consider the more general problem, let X be a 

random variable with an expected value \i and standard deviation a; that is, 

^ = E[X],a2 = E[(X-n)2] (2.6) 

A random sample x from X can be represented as 

x = |i + 8 (2.7) 

where s is the zero-mean random component of X; therefore, 

E[s] = 0, a2 = E[s2] (2.8) 

In many radar tracker designs, it is assumed that the radar measurements have the properties just 

outlined. In particular, it is assumed that p, represents the true value of the aircraft position. Tracking or 

filtering is a process for estimating the true aircraft position |i from a sequence of measurements; that is, 

10 



random samples, taken over time. Thus, if the set of measurements {x1; x2, x3,.„, xN} is available; then 

the estimate x* of [i is given by 

X* = aixi + a2x2 + a3x3 +... + aNxN (2.9) 

where the set of nonnegative scalars {a,, a2, a3, . . ., aN}, determined by the gains of the filter algorithm, 

satisfies the usual convexity criterion: 

ai + a2 + a3 + ... + aN=l (2.10) 

If it is true that E[s] = 0, then x* is an unbiased estimate of the true position \i of the aircraft. 

However, if E[e] = ß, where ß is not zero (ß * 0), then by (2.10) it follows that 

E[x*] = ^i + ß (2.11) 

and the estimate x* is a biased estimate of \i. Moreover, the mean square error (mse), V, of a biased 

estimate of x* is larger than an unbiased estimate; that is, 

V [x*] = E [(x* - ^i)2] = (a,2 + a2
2 + a3

2 + . .. + aN
2)a2 (2.12) 

if E[s] = 0; whereas 

V[x*] = E[(x* - [if] = (a,2 + a2
2 + a3

2 + ... + aN
2)a2 + ß2 (2.13) 

ifE[e] = ß. 

From this it follows that the process of filtering or state estimation "averages" the random 

measurement errors to reduce the variance or mse of the estimate of the true state [i. However, the 

filtering process cannot remove or even reduce the magnitude of the bias or systematic errors. 

11 



In the context of a multiple radar tracking system, the presence of registration errors will result in 

a track mse larger than that which should be achievable theoretically. If the registration errors are 

sufficiently large, then multiple radar tracking will be less accurate than single radar tracking. In the 

worst case, registration errors can result in a failure to correlate multiple radar measurements from a 

common aircraft with a common track, either reducing the system effectively to a single radar system or 

even leading to multiple tracks for the same aircraft. Because the fundamental objective of multiple radar 

tracking is to ensure track continuity for an aircraft as it moves through multiple radar coverage 

envelopes, registration errors can defeat the very purpose of a multiple radar system. Therefore, the basic 

requirement for registration is to ensure that plots, that is, radar measurements, from a common aircraft 

will be in the nonmaneuver correlation gate (in the absence of maneuvers) [Bar90]. 

2.2 Quantitative Requirements for Registration 

At this point, the need for radar registration should be obvious. The next question therefore is, 

how well must radars be registered? Before it will be possible to address this question directly, some 

results from the distribution theory for normally distributed random variables must be stated. Based on 

this theory, an analysis model for the effects of registration errors on plot correlation will be developed. 

Finally, this model will be applied to derive some quantitative requirements for the three major sources of 

registration error: sensor position, range offset, and azimuth offset. These results are discussed at length 

in many textbooks on multivariate statistical analysis. 

For this discussion, assume that {Xk | k = 1, 2,. . ., N} is a set of normally distributed, scalar 

random variables with 

E[Xk] = ^ik, E[(Xk-^)2] = ak
2 (2.14) 

that is, each Xk is distributed as aN(fj.k, ak) random variable. 

Now consider a random variable Z defined as the normalized sum of squares of the Xk: 

12 



N 

k=\ 

Xk~Mk 
<y, 

(2.15) 

V     wk     J 

The random variable Z is distributed as a Chi-squared random variable with N degrees of freedom, 

denoted by %2(N). The distribution x2(N) is often called the central Chi-squared distribution because each 

of the normalized terms, 

X i       
Xi-K; (2.16) 

from the sum of (2.15) is distributed as aN(0, 1) random variable, which is often noted X'k~N(0,l). 

Equivalently, each normalized term squared 

z*=(x02 = 
Xk-\>-k 

\      °k       J 

(2.17) 

is a % (1) random variable. If the means p.k are omitted from the sum in (2.15), that is, 

k=\ 

rx^ 
\ak J 

(2.18) 

then Z is distributed as a noncentral Chi-squared random variable with parameter X, denoted by Z ~ %2(N, 

X). The noncentrality parameter X is defined 

k=\ 

r»k" 
(2.19) 

\akj 

The general theory just outlined can be extended to random vectors in a straightforward manner. 

For this case, let X denote a normally distributed random vector in RN with mean u. and covariance matrix 

P. Then the quadratic form £, defined by 

13 



$ = (X-ii?r\X-n) (2.20) 

is distributed as a x2(N) random variable, % ~ x2(N). Similarly, if the quadratic form \ is defined 

^ = XTP-'X (2.21) 

then, £ ~ x2(N, X), where the noncentrality parameter A, is given by 

A. = HTP"V (2.22) 

2.3 Analysis Model 

With the help of the general theory just outlined, it is now possible to develop a mathematical 

model with which the quantitative effects of registration errors can be examined, specifically, the effects 

on multiple radar tracking and correlation. To proceed, let Z denote a measurement of an aircraft position 

from a radar in the system. We assume that tracking is performed in a Cartesian coordinate system, either 

R or R6, (the positions x,y or x,y,z and their corresponding velocities). Consequently, it may be assumed 

that Z is in system coordinates; that is, the measurement vector Z is of the form [x, y] or [x, y, z], rather 

than the natural radar polar coordinates [r, 0] or [r, 9, cp]. 

Although it cannot be proven rigorously, we may assume that the measurement Z is a normally 

distributed random vector with the mean equal to the true aircraft position. This assumption is partially 

justified for two reasons. First, the radar range measurement r generally follows a Rayleigh distribution. 

The azimuth measurement 9 certainly is not uniformly distributed over the interval [0, 2n)\ however the 

value of the azimuth, in effect, is quantized in the radar signal processor and in the analog-to-digital 

conversion process. Consequently, it is reasonable to assume that 9 is approximately uniformly 

distributed over some subinterval of [0, 27i)[Bar90]. It can be shown that the polar-to-Cartesian 

coordinate conversion 
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x = r cos(0), y = r sin(8) (2.23) 

yields two independent N(0, 1) random variables if r follows a Rayleigh distribution and 9 is uniformly 

distributed over [0, 27t)[Pap91]. 

If the random variables x and y are ~N(0,G) and independent, 

2nu 

(2.24) 

then to find the probability distribution function in polar coordinates, 

fR<ä(r,9) = fxr(x>y) 

\A*,y)\ 

(2.25) 

where |J(x,y)| is the absolute value of the Jacobian of the polar to Cartesian transformation which is, 

A*,y) = 

dr dr dx dx 
-i 

dx dy dr d6 
39 de dy dy 

dx dy dr de 

(2.26) 
cos#   -rsin# 

sin#     rcos6 

where |..| is the determinant of the matrix. From (2.24), it can be concluded that, 

fR&(r,e) = r-fXY(x,y) = —r    e^12*1 ,r>0M<7r 
2no 

(2.27) 

and 0 otherwise. This is a product of a function of r times a function of 9. Hence the random variables r 

and 8 are independent with 

r      -r2/2a2 

fR(r) = —e-r,1° ,/e(0) = —,r>O,0<;r 
a in 

(2.28) 
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Where the proportionality constant is chosen to make the area (total probability) of each term equal to 1. 

Thus it follows that if x and y are ~N(0,a) and independent, the random variables r and 6 are independent 

with r being Rayleigh distributed and 6 being uniformly distributed. 

Secondly, empirical measurements gathered by Hughes Aircraft Company over past years 

suggests that the random errors in Z are at least approximately normally distributed[Bar90]. It is true, 

however, that there is a distinct correlation in the errors between x and y. This is the reason for 

employing a Kaiman filter capable of tracking in two dimensions. This allows us to take advantage of the 

coupling, or correlation, of the x and y measurements. Recall that the actual radar measurements are in 

polar coordinates, and any change in range or azimuth generally results in a corresponding change in x 

and y. Of course, in the special case of a target path co-linear with either the x or y axis, a change of 

range will not result in changes in both x and y. 

Assume that a time-ordered sequence of correlated measurements {Zh Z2, Z3,. .., Zk} are 

processed by a Kaiman filter to obtain a track, which consists of a state estimate S* and a covariance 

matrix P* for the state estimate. Therefore, the state estimate S* is a linear combination of the 

measurements {Zh Z2, Z3, . . ., Zk}. With the assumption of normality for the errors in Z, and the natural 

assumption of independence of the time sequence of measurements, it follows that the state estimate S* is 

a normally distributed random vector. 

Now consider the correlation criterion given in (2.2) 

>,+Pz]-V*J«* (2'29) I = Sp -Zk+\ 

The quadratic form % in (2.24) is distributed as a x2(M, A,) random variable with the number of degrees of 

freedom M equal to the dimension of the measurement vector Z. 
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In theory, the non-central ity parameter X should be zero if the measurement Zk+] was obtained 

from the same aircraft represented by the track vector S*. The parameter A, can be other than zero if 

either (1) the measurement Zk+l was obtained from a different aircraft than that represented by the track or 

(2) there are biases that would create an apparent difference without the random measurement errors. For 

this application, X will represent the total normalized biases in the measurement vector Z; that is, 

x=br[p/,+pz]-,b (2-30> 

Note that (2.25) assumes that the measurement vector Z is of the form 

Z = n + b + s (2.31) 

where u. is the true aircraft position and s is the vector of random errors. Assuming that the mean of the 

prediction Sp is JLI, then 

E[sp-z]=b (2.32) 

Equations (2.29) and (2.30) are the model with which the impact of registration errors can be 

analyzed quantitatively. The non-maneuver gate G and the maneuver gate G' are chosen to obtain a 

specified probability of correlation of plots that represent the same aircraft as the track. For example, G is 

chosen from a x2(M) probability distribution to satisfy 

Probß < G] > po (2.33) 

The objective now is to define an error "budget" for the sources of registration error such that 

Probß < G] > po - Ap (2.34) 
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where the correlation statistic £, is distributed as a %2(M, X) random variable with parameter X given by 

(2.30), and Ap > 0 is the reduction in the correlation probability that can be tolerated if the system still is 

to meet the system-level requirements for tracking or track accuracy. 

2.4 Quantitative Requirements 

To develop some specific requirements for registration, consider first the correlation gate size G. 

One common rule of thumb in tracking systems is to choose G such that 

Probß <G] = 0.99 (2.35) 

If the measurement vector Z is in R2, then the inverse Chi-square with N = 2 degrees of freedom and a 

probability of .99 yields G = 9.2; similarly for Z in R3, G = 11.3. A correlation probability of 0.99 may 

be an excessive requirement considering the probability of detection of many surveillance radars, which 

often are specified to be only 0.8 to 0.9[Bar90]. Consequently, a correlation probability of 0.95 would 

seem adequate for most applications. Given that 0.95 is adequate, then from Figure 2-2, a gate size of 9.2 

allows a total bias parameter X = 1.2 for the two-dimensional case or A, = 1.5 for the three-dimensional 

case. 

0.95 

0,9 - 

X 
In   0.85 

0.8 

0.75 

0.7 

^^N=3 

N=2 \. 

2 3 4 
X (Non-Centrality Parameter) 

Figure 2-2 Non-central Chi-square (x2) cdf vs. non-centrality parameter 
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The three major sources of registration error are sensor position, range offset, and azimuth offset. 

The next step in the analysis, therefore, is to find the maximum error in each variable consistent with the 

bound of the parameter X. In the following discussion, only the case of a two-dimensional measurement 

vector will be considered since the model's measurements are in those dimensions. 

Consider an aircraft tracked by radars A and B. For convenience, let PA and PB denote the 

covariance matrices for the measurement errors at radars A and B, respectively. The registration problem 

is to ensure that the bias vector b is sufficiently small that the measurement from radar B will correlate in 

the non-maneuver gate with the system track. 

That is, the problem now is to bound the errors that contribute to the bias vector b from the 

inequality 

bT 
?p+Vzl 

,b<1.2 (2-36) 

Obviously, it would be convenient to eliminate one of the variance parameters. Many tracking systems, 

in an attempt to maintain sensitivity to possible aircraft maneuvers, bound the gains in the Kaiman filter 

from below[Bar90]. One rule of thumb is to allow the gains to decrease to the level that produces steady 

state position variances to be approximately 50 percent of the corresponding measurement variances. 

Thus, (2.36) becomes 

br[0.5-P,+PB]-1b<1.2 (2-37) 

Before continuing further, consider briefly the nature of the radar measurement error. In the radar 

measurement plane, that is, the [r, 6] plane, the covariance matrix P is defined 

P' 
'<*       0   ^ 

v0     r2al 

(2.38) 
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where ar and a9 are the standard deviations of the range and azimuth measurements, respectively; and 

where r is the range from the radar to the aircraft. In modern surveillance radars, the range measurement 

often is much more accurate than the cross-range measurement, which can result in highly elliptical 

equal-probability contours (or error ellipses) in the plane. The error ellipses in R2 have major and minor 

semi-axes equal to the square roots of the two diagonal components of the matrix in equation (2.38). 

The basic concept of an error ellipse describes the eccentricity of a single radar error contour 

determined by the ratio of the range error ar to the cross-range error r-ae. In this example, the range error 

ar is smaller than the cross-range error r-ae, which creates highly elliptical errors in the plane for both 

radars. In Figure 2-1, the sum is nearly circular because of the orthogonal geometry of the aircraft and the 

two radars. 

The conversion from radar coordinates to the Cartesian plane rotates an error ellipse in the plane 

by a unitary matrix of the form 

fcostf   -sin^ (2.39) 
U = 

, sind?     cos# 

where 8 is the angle to the target, measured counterclockwise from the abscissa, (the x axis), of the radar 

coordinate system. Thus, 

FR=V-rR-V
T (2.40) 

for radar R. Note that the unitary transformation U merely rotates an error ellipse with respect to the axes 

of the Cartesian plane; it does not change the basic shape or area of an error ellipse. Because the angle 0 

will be different for different radars viewing the same aircraft, the orientation of the error ellipses PA and 

PB can be quite different, even if the error matrices P'A and P'B in the respective radar planes are similar. 
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Now, consider the problem of a bias b due to an error in the knowledge of the position of radar B 

with respect to radar A. Equation (2.37) bounds the magnitude of b relative to the sum of the tracking 

and measurement error variances [0.5-PA+PB]- The worst case geometry occurs when (1) the aircraft 

under consideration is at the midpoint of the line segment that joins the two radar locations and (2) the 

bias vector b is parallel to that line. 

b2 = brb <1.8-min[o-r
2(4^2(5)]=1.8-cTf

2(min) (2-41) 

Now the limit of the allowable absolute position bias is defined as, 

|b,| = 1.34-o-,.(min) (2.42) 

This assumes, of course, that the range error is no greater than the cross-range error. However if this is 

not the case, then the cross-range error for some minimum detection range could be used instead. In this 

case, (2.37) becomes, 

b2=|b7'b|<1.8-min[r2.a|(4r2.^(fi)]=1.8TVe
2(min) (2-43) 

where a6(A) denotes the standard deviation of the azimuth measurements from radar A, and r is the 

down-range distance from the radar to the target. Therefore, taking the square root of equation (2.43) 

gives the maximum tolerance bP on the magnitude of the position error, 

|bp| = 1.34-r-o-ff(min) (2.44) 

where ae(min) is the standard deviation of the radar with the smallest azimuth measurement error. 

Next, consider the problem of range offset errors. The worst case geometry is the same as that for 

radar position errors. The range bias problem, however, is not a relative problem; that is, each radar can 

contribute an error. Whether these errors are additive or partially cancel each other depends on the exact 
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geometry as well as the sign of the bias. For the geometry under consideration, the worst case is for 

errors of the same sign. Therefore, the equivalent form of (2.44) is the following: 

|2bÄ| = 1.34-<r,(min) (2.45) 

where bR is the maximum tolerance for the range bias at each radar; or equivalently, 

|bÄ | = 0.67 -ar (min) (2.46) 

Lastly, consider the problem of antenna alignment or azimuth offset errors. The error or offset b 

of the measurement from radar B will be parallel to the cross-range error (due to azimuth measurement 

errors). The magnitude of the error, be, is given by 

b,=rfl(A&) (2.47) 

where Aße is the azimuth offset. 

The geometry in this case is more complex; however, some empirical observations will suffice to 

show that the worst case occurs for an orthogonal aircraft-radar geometry. Assuming that the axes of the 

Cartesian coordinate system are aligned so that the origin, aircraft, and the two radars compose the four 

corners of a rectangle. The azimuth offset error will be along the cross-range error with respect to radar 

B, which is parallel to the range error for radar A. Therefore, it follows that 

b] =|brb|<1.2.[0.5-^2(^) + r2-C7ö
2(5)] (2-48) 

If it is assumed that crr{A) « r&d(B), then it follows that a reasonable bound for the azimuth offset 

Aße is given by 
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|A/?,|< 1.1.(7, (2.49) 

Here, the azimuth offset has been treated as a relative error at radar B, which is adequate for a system of 

only two radars. 

However, if the down-range measurement variance ar is greater than the cross-range 

measurement variance r-ae, then 

b2
e =\brb\<1.2-[5-r2 -cr2

e{A) + r2 -cr2
e(B)] (2-50) 

and using equation (2.47) and the fact that the worst-case geometry will now occur when the target is 

centered between the two radars, and assuming the two azimuth variances are equal, 

|A&|<Vn2.^.<7e=l.34-<7fl 
(2-51) 

which is about 22 % greater than the maximum allowable bias using the previous assumption. 

In a system with three or more radars, it would be necessary to align each radar with respect to 

true north. Therefore, the actual requirement in a multiple radar system using the assumption that the 

cross-range measurement variance is much greater than the down-range variance is 

|Ay0fl|<O.55-<rfl (2.52) 

Assuming the down-range variance is greater than the cross-range variance, 

\Aße\< 0.67-cr6 (2.53) 

The results of these single-source error analyses are summarized in Table 1 in the form of a 

registration error budget. However, in actuality, these errors occur simultaneously, resulting in a 

cumulative error. If all three error sources are considered together as additive vectors, then by the nature 
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of vector addition, the error budget must be reduced by a factor of V3 ; the result is shown in the right- 

hand column of Table 2.1. 

Table 2-1 Registration Error Budgets 

Error Source Single-Source Tolerance Multi-Source Tolerance 

Radar Position 1.34-ar(min) 

1.34-r-Ge(min) 

ar(A)<< r-ae(B) 

ar(A)*r-ae(B) 

0.77-ar(min) 

0.77-r-a6(min) 

ar(A)« r-ae(B) 

CTr(A)*r-ae(B) 

Range offset 0.67-ar(min) 0.39ar(min) 

Azimuth offset 0.55-ae 

0.67'Oe 

ar(A)<< r-ae(B) 

ar(A)« r-CTe(B) 

0.32-CTe 

0.39-ae 

CTr(A)<< r-a6(B) 

ar(A)» r-ae(B) 

Note: ar(min) is the minimum standard deviation over all radars in the system. The bound for the 

azimuth bias can be taken relative to each site. 

2.5 Summary 

Developed in this chapter, is the model by which the effects of registration error in a networked 

radar system may be quantitatively analyzed. Also introduced is the concept of a correlation gate as the 

sum of squared Gaussian distributed random variables, constituting a non-central Chi-squared random 

variable with degrees of freedom, N equal to the number of dimensions in the measurement vector. It is 

observed that the correlation gates most often take the form of "error ellipses" in two-dimensional 

measurement space. Finally, the worst-case geometries for the target, radars and global coordinate origin 

are presented. The three sources of error considered, the position, range, and the azimuth biases are to be 

quantitatively analyzed individually and cumulatively. 
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3.    Simulation Model Description 

3.1 Development of the Simulation Model 

One of the goals of this effort is the creation of a user-friendly software model which may be used 

in further analysis of networked radar systems. Since there exists a number of industry accepted and 

validated software models to simulate various radar types, resources are not expended in duplicating this 

capability. In addition, future efforts will be made to import radar plots generated from other tools as the 

input to this model. A model is desired that will be easily altered to allow for the analysis of differing 

sensor measurement characteristics, including azimuth and range measurement variances. It is also 

desirable to permit arbitrary placement of sensor positions, and to change the position, range, and 

azimuth biases easily. 

Because of these desired characteristics, it is decided to implement the model in the graphical 

simulation environment Simulink®, an extension to the widely accepted commercial software package 

MatLab®. One implication of using Simulink® is that not all MatLab® functions are directly callable from 

its block diagram simulation environment. To access certain MatLab® functions, or custom written 

functions, S-functions must be written. S-functions use a special calling syntax that enable you to interact 

with the MatLab® ordinary differential equation solver. 

Another difficulty using Simulink® is that (m x n) matrices are decomposed and reconstructed 

into (mn x 1) vectors and passed from block-to-block during a simulation. To perform matrix 

calculations, it is advantageous to use the MatLab® Digital Signal Processing Blockset® to ease the 

burden of resizing these vectors into their original dimensions. 
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Despite these restrictions, Simulink® provides an intuitive environment for model creation, allows 

easy model parameter changes, and allows Monte-Carlo simulations to be performed from the MatLab® 

command line. 

3.2 Simulation Model Block Diagram Description 

The block diagrams that constitute the simulation model are now considered. Note that in the 

following illustrations, thicker lines denote vectors and the thinner lines scalars. 

Mux xy 

To Workspaceö 

Dual Radar 
Single Target 

dl 

T o Workspace 

d2 
dlA2 

Z 1     Chi2Test 
d2A2 

Chi2Testl 
dl2A2 

Chi2 Test2 
Z_2         dcltaZ 

estjjath 

T o Workspace^ _ 

dl2 

1 o Workspace 

Kaiman & 

Chi2 Test 

Delete 

Detection ? (Binary) Tentative 

Confirmed 

3/4 Logic TrackDecision 

Detection ? (Binary) 

SI \ 

S2 

S3 

S4 

S5 

2/3-Logic Track_Decision 

Mux   ^^^ 

logic34 

To Workspace3 

Iogic23 

Detection ? (Binary) 

To Workspace4 

Mux 

2/3-Logic Track_Decisionl 
mylogic23 

To Workspaces 

Figure 3-1 Top-Level Block Diagram 

Figure 3-1 illustrates the top-level diagram of the simulation model. At the extreme left of the 

diagram is the target path generation and coordinate conversion block. This block passes the target paths 

from the two radars to the Kaiman filter and Chi-square test block. The binary output of the Chi-square 

test is then passed to the track maintenance blocks which perform sequential testing to determine the track 
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State. The "to workspace" blocks collect test data which is then accessed from the MatLab® command 

line to implement Monte Carlo analysis. 
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Figure 3-2 Path Generation Block Diagram 

Figure 3-2 illustrates the block diagram responsible for generating the target path, measurement 

variances, position bias, range bias, and azimuth bias. The coordinate transformation block performs a 

global to local transformation, injects the biases, and then performs the local to global transformation for 

each radar. The relevant equations for the coordinate transformation are included in Appendix three. 
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Figure 3-3 Coordinate Conversion and Bias Insertion Block Diagram 
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Figure 3-3 illustrates the internal block diagram responsible for local-to-global coordinate 

transformation, and the insertion of position, range and azimuth biases. Notice that the position biases are 

inserted in cartesian coordinate space, while the range and azimuth biases are inserted in spherical 

coordinate space. It may be intuitively obvious that the nature of these bias will influence the gate 

correlation process differently. More will be discussed about this topic in the analysis of results section of 

this paper. 
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Figure 3-4 Kaiman Filter and Chi-square Gate Test Block Diagram 

Figure 3-4 illustrates the block diagram responsible for generating the target tracks and 

accompanying statistics which are passed to the Chi-square gate test blocks. Notice that the bias is simply 

the difference of the state position components from radar one and the measurements from radar two. 

The Kaiman filters also pass the required measurement error covariance and state prediction error 

covariance required by the Chi-square gate test blocks. 
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Figure 3-5 Kaiman Filter State Estimation Loop 

The Kaiman filter consists of two distinct recursive "loops". Figure 3-5 represents the Kaiman 

filter state estimation loop which recursively estimates the current state and also calculates the one-step 

prediction of the next measurement. It can be seen that the prediction is delayed by the period between 

individual measurements which corresponds to the scan time for the mechanically rotated radar. The 

measurement components of the predicted state vector are extracted and then subtracted from the current 

measurement, resulting in the state estimation error commonly called the innovation or innovation 

process. The innovation is then "weighted" by the Kaiman gain matrix (K), which is calculated in the 

Kaiman filter covariance loop shown in Figure 3-6. 
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As stated above, the Kaiman gain is calculated in the covariance loop of the Kaiman filter shown 

in Figure 3-6. It should be emphasized that the Kaiman gain is independent of the state. This can be seen 

by noticing that the only inputs to the covariance loop are the process (or plant) error covariance (Q), the 

measurement (or observation) error covariance (R), and its previously calculated Kaiman gain. 

u; f^     I u u*v 
V bias 

Transpose r 
rr^ MATLAB 

Function 
1 

P+R u u u*v 
V 

pseudoinv 

dA2 

1.2 

Chi-square 
gate 

Chi2 test 

Figure 3-7 Chi-Square Gate Test Block Diagram 

Figure 3-7 illustrates the internal block diagram of the chi-squared gate test block from Figure 3- 

4. This block performs the correlation criterion calculations described in equation (2.24) and compares 

this result to the gate size. Looking forward to the analysis of results section of this paper, the plots 

concerning the gating criterion correspond to d2 in Figure 3-7. The MatLab® function that performs the 

inverse operation here is the pseudo-inverse function with an imposed tolerance of 10"6. The pseudo- 

inverse function is used instead of the inverse or division functions due to the possibility of singularity of 

the innovation covariance matrix which may result from round-off errors. 

The matrix multiplication blocks in Figure 3-7 require knowledge of the size of the matrices to be 

multiplied. These values cannot be changed during a simulation; this is the source of difficulty in passing 

varying sized matrices that would be required for representing missed measurements or extraneous clutter 

(false alarm) measurements. One may be able to define an initial arbitrarily large matrix capable of 

containing the maximum probable number of targets measured at any instant. In the event of a missed 
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target, the measurement value could be represented by not a number (NaN). The algorithms that operate 

on the measurements would then need to be capable of detecting the NaN and either suspend calculation, 

or hold the previous calculated value. 

3.3 Assumptions 

A number of assumptions are asserted in order to simplify the creation of the simulation model. 

These assumptions may be grouped into the following topics: 

3.3.1 Fixed Sample (or Measurement) Intervals 

Although a fixed measurement interval is assumed, an actual rotating radar antenna generally will 

not measure a moving target at a fixed interval unless the target path is strictly radial. This assumption is 

made primarily due to the difficulty of implementing varying sample times in Simulink®. It should be 

noted however, the Kaiman filter algorithm doesn't required fixed sample intervals, thus future 

amendments to this model may remove this assumption. 

3.3.2 Single Target 

A single target is assumed in this analysis. This is done since, as eluded to earlier, each target 

requires a dedicated Kaiman filter. Additionally, the influences of biases in the single target case will 

also apply for multiple targets assuming that dedicated Kaiman filters are required for each target. This 

assumption does however, exclude the analysis of situations such as crossing targets, and closely 

separated targets (formations). 

3.3.3 No Clutter / False Alarms 

The assumption that no false alarms occur is made for reasons similar to the single target 

argument. In the event that clutter generates false alarms, a bank of Kaiman filters is needed to process 

all potential tracks since it cannot be determined if the detection is due to clutter or a real target. Future 
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amendments to this model would gain from the vectorization of the Kaiman filter algorithm. This may be 

accomplished by implementing an S-function capable of processing varying width vectors. 

3.3.4 100 % Probability of Detection 

It is assumed that each target is detected once on each scan. While this assumption rarely reflects 

reality, the difficulty of processing missed detections necessitated its acceptance. A missed detection 

must be represented mathematically in the simulation model. At each observation, the Kaiman filter 

accepts the target's spatial coordinates and performs the ensuing calculations. Representing the missed 

detection as a vector of Os impacts the calculation of the predicted state to varying degrees, depending on 

the previous measurement and state. To remove this assumption, some method must be used to alleviate 

this problem. 
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4.    Analysis of Results 

4.1 Overview 

Figure 4-1 Representative Constant-Error Ellipses 

Refer to Figures 4-1 and 4-2 to help visualize the following discussion. A substantial portion of 

current literature assumes that the cross-range semi-axis (r-a9) is much greater than the down-range semi- 

axis (ar) when analyzing worst case radar-target geometries[Bar90]. In an effort to model a realistic 

networked surveillance radar system, the following measurement statistics are chosen: ae = 0.18 degrees 

(deg) = 7T-10"3 radians (rads) and Gr = 0.125 nautical miles (nmi) = 231.5 meters (m)[Bar90].   Recalling 

that the semi-axes of the constant-error ellipses are equal to ar and r-a9, and considering the self-imposed 

maximum detectable range of approximately 100 Km, this corresponds to r-ae = 100,000 m • 7t-10"3 rads = 
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314 m. Due to the target path geometries chosen, the minimum down-range distance is nearly 35,000 m, 

resulting in r<je = 35,000 m • TC-10"
3
 rads = 109 m. 

Radar A 

Radar B 

Figure 4-2 Constant-Error Ellipses vs. Target Position 

The down-range measurement variance is not a function of range but of the specific parameters of 

the radar such as pulse width, number of pulses integrated, Doppler frequency, clock stability, etc. 

Because of this fact, the range independent <sr =231.5 m. The range at which the measurement error 

ellipse becomes circular is r = ar/cr9 = 231.5/(7i-10"3) = 73,688 m. 

Having determined the constant-error ellipse dimensions, it is observed that the ellipses will not 

be highly eccentric, but rather oval or circular contours. Furthermore, the area (A) of the constant-error 

ellipses can be calculated by A = 7r-r-ae-ar. It is obvious that the maximum area (Amax) will occur at the 

maximum detectable range, Amax = n • 100,000 m • TT-10"
3
 rads • 231.5 m = 228,481 m2. Likewise, the 

minimum area (Arain) will occur at a down-range distance of 35,000 m, then Amin = n ■ 35,000 m • TC-10"
3 

rads- 231.5 m = 80,000 m2. 

All of the following simulations are performed thirty times for each increment of the 

independent variable, the minimum required to assert the Gaussian assumption in the confidence level 
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calculations. The initial seed for each random number generator is uniquely determined for each run as a 

function of the system clock. 

4.2 Positional Bias 

Radars A and B are positioned at (50 Km, 100 Km) and (50 Km, 0 Km) in global Cartesian 

coordinates, respectively, and the global origin is at (0, 0), as shown in Figure 4-3. The target travels in a 

diagonal path at 200 m/sec in the -x and -y directions. The initial detection of the target is at (100 Km, 

100 Km) in global Cartesian coordinates. Thus the target is centered between radars A and B after 250 

(30 Km, 100 Km) 

Radar A 

(100 Km, 100 Km) 
t = 0 sec. 
Vel. = (-200m/s, -200m/s) 

] ■ / 

■im HBBBP 
Sit 

UimiMMm 

(50 Km, 50 Km) 
t = 250 sec 
worst-case position 

-> X Radar B     -^^- 

(50 Km, 0 Km) 

(-20 Km, -20 Km) 
t = 600 sec 

Figure 4-3 Position Bias Target Path 

seconds have elapsed after initial detection. The injected biases at either of the radars A or B are such 

that they are directed along the x-axis. The measurement error ellipses at this point are greater in the 

down-range direction than they are in the cross-range direction. In the absence of the cross-range biases, 
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these ellipses "line-up", however due to the biases, they are misaligned by relative value of the bias 

between radars A and B. 

When calculating the upper bound on the position bias, the minimum detected range is about 35 

Km, however the range occurring during the worst-case geometry is 50 Km. If the smaller down-range 

distance is used, |bp|=l.34-35 Km-Ti-10"3 = 147 m. Alternatively using the worst-case range of 50 Km, 

|bp|=l.34-50 Km-7i-10"3 = 210 m. As illustrated in Figure 4-4, the simulated |bp| = 180 m falls 

approximately at the midpoint of these two values. 

Since these positional biases cause the same misalignment everywhere in the detectable area, the 

worst-case geometry is determined merely by the eccentricity of the ellipses and the orientation of the 

ellipses with respect to the biases. 

It can be seen in Figure 4-4 that, as predicted by our previous development of Chapter two, the 

worst-case radar-target geometry occurs when the target is centered between the two radars and the 

positional bias is perpendicular to the line joining the two radars. It should be noted that position biases 

do not generate as pronounced effects in the worst-case geometry as do the range and azimuth biases, as 

will be shown. Lambda, the variable along the vertical axis in Figure 4-4, represents the total normalized 

bias, or equivalently, the noncentrality parameter in the Chi-square distribution. 

The transient properties of the Kaiman filter cause the small initial Chi-square test results. This 

occurs because the initial confidence in the measurements is small, so the measurements (and added 

position bias) are weighed less heavily. In this case, the filter relies more upon its predicted measurement 

which is derived from the filter's linear target path model. It should be noted here that the simulation 

results depend to some extent on the initial values of the prediction error covariance matrix, P0, and the 

initial state values, So. The a priori knowledge of the initial target location and velocity allows determines 

the S0, and the process and measurement statistics determine P0. 
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Figure 4-5 is the one-sided confidence level from the position bias simulation, and is included for 

completeness. 

-2 
600 

Time (sec) Position Bias (m) 

Figure 4-4 Position Bias vs. Target Position 
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Time (sec) Position Bias (m) 

Figure 4-5 Position Bias 95% Confidence Level (one-sided) vs. Target Position 

4.3 Range Bias 

Figure 4-6 illustrates the radar-target geometry chosen for the range bias simulation. This 

geometry is chosen to minimize the initial convergence effects of the filter, and to allow the target path to 

pass through the (50 Km, 50 Km) position to observe the effects of an orthogonal radar-target geometry. 

As with the positional biases, the worst-case geometry for range biases occurs for a target 

centered between the two radars. The biases in this case however, are down range biases of equal value 

resulting in a misalignment of the measurement error ellipses in varying directions depending on target 

position. The theoretical range bias required at each radar to yield the non-centrality parameter A, = 1.2 is, 

|br|=0.67 ■ ar = 155 m. Figure 4-7 illustrates the simulated bias value necessary to reach the non-centrality 

value is somewhat higher, nearly 180 m. This may be explained by the fact that the range bias shifts the 

error ellipses along their major semi-axes since the down-range variance is greater than the cross-range 
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error in this position. Meanwhile, the theoretical bound on the range bias assumes the cross-range error is 

much greater than the down-range variance. At the worst-case position, ar = 231.5 m, while r-ae = 35 Km 

•Ti-10"3=110m. 

Radar A 

(0 Km, 50 Km) 

(100 Km, 100 Km) 
t = 0 sec. 
Vel. = (-200m/s, -200m/s) 

\c- 

(-20 Km, -20 Km) 
t = 600 sec 

(25 Km, 25 Km) 
t = 375 sec 
worst-case position 

Radar B > X 

(50 Km, 0 Km) 

Figure 4-6 Range Bias Target Path 
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Figure 4-7 Range Bias vs. Target Position 
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180 

Time (sec) Range Bias (m) 

Figure 4-8 95% Confidence Level Range bias vs. Target Position 
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4.4 Azimuth Bias 

For the analysis of the azimuth bias effects, the radar-target geometry illustrated in Figure 4-3 is 

again chosen to place the worst-case target position near the center of the path. As discussed in Chapter 

two, since the down-range variance is greater than the cross-range variance, the worst-case case radar- 

target geometry occurs at the midpoint of the line joining the two radars. The effect of the azimuth biases 

at this worst-case position is similar to the effect of position bias, since the measurement will be shifted, if 

not along the x-axis, at least tangential to the x-axis. The bound for the allowable azimuth bias is then 

calculated as |be|=0.67-ae = 0.67-0.18 deg = 0.12 deg. 

Figure 4-9 reveals the azimuth bound to be approximately 0.11 deg, which seems reasonable in 

light of Figure 4-10 which shows that the one-sided 95% confidence interval is nearly O.R. 

Time (sec) Azimuth Bias (deg) 

Figure 4-9 Azimuth Bias vs. Target Position 
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Figure 4-10 95% Confidence Level of Azimuth Bias vs. Target Position 

4.5 Simultaneous Position-Range-Azimuth Biases 

Finally, the radar-target geometry shown in Figure 4-6 is chosen for the simultaneous position, 

range, and azimuth bias simulation such that the influence of an orthogonal radar-target geometry may be 

examined, if they exist. The worst-case radar-target geometry for all three types of biases happens to 

occur at the same position, namely at the midpoint of the line joining the two radars. Recall that the 

position bias is a relative bias, effectively shifting the measurements an equal amount regardless the 

position of the target. Contrary to the position bias, the range and azimuth biases affect the measurements 

differently depending on the target's position relative to the radar. 

Since the azimuth bias seems to have the most position-dependent properties, the simultaneous 

effect of the three biases is analyzed by setting the position and range biases at their upper bound, then 

assign the azimuth bias as the independent variable. 
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That is |bp| = 0.77-r-ae = 0.77 • 35 Km-7t-10"3 = 85 m, since the worst-case position coincides with 

the minimum detectable range for this flightpath. The range bias is calculated as |br| = 0.39-ar = 

0.39-231.5 m = 90 m. The upper limit on the azimuth bias is calculated as |be| = 0.39-cre = 0.39-0.18 deg = 

0.07 deg. 

The results of the simultaneous position, range, and azimuth simulation illustrated in Figure 4-11, 

compares favorably with the theoretical simultaneous upper bounds on each of the biases in consideration 

of the one-sided confidence interval of Figure 4-12. The simulated azimuth bias required to exceed the 

upper bound on the correlation criterion is |be| = 0.06 deg. It may be observed that the result of 

combining these biases tends to "blend" the spatial properties of each, that is the relatively position- 

independent properly of the position bias and the more position-dependent properties of the range and 

azimuth combine to form a moderately position-dependent response. Of course the convergence of the 

Kaiman filter's covariance matrix causes the "slow" transient response immediately after initial detection. 
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Figure 4-11 Simultaneous Position-Range-Azimuth Bias vs. Target Position 
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Figure 4-12 Position-Range-Azimuth 95% Confidence Level 

44 



5.    Summary / Recommendations 

This thesis examines the effect of registration errors, namely, position, range, and azimuth biases 

both individually and collectively. The worst-case radar-target geometries may be predicted given 

knowledge of the down-range and cross-range measurement error statistics. The quantitative effects of 

the biases may be analyzed by employing statistical correlation gates. These elliptical correlation gates 

are defined by the Chi-square statistics of the measurement errors. The degree of ellipticity of these 

equal-probability contours are governed by the measurement error statistics and the down-range distance. 

5.1 Coordinate Transformations 

To gain an advantage from measurements at multiple distributed radars, the measurements must 

be transformed into a common reference frame. To remove the inherent weakness of two-dimensional 

radar to determine correct slant range, target returns are generated in three dimensions. The individual 

radar measurements are then transformed into "global" coordinates. First the radar geographical 

coordinates are transformed to geocentric coordinates using an ellipsoid to approximate true earth geoid 

shape. The local coordinate system of one radar is then transformed to that of another, or alternatively to 

an arbitrary "global" coordinate system through a translation and a series of rotations, (see Appendix 3). 

5.2 Kaiman Algorithm 

Presented in Appendices 1 and 2 is the development of the discrete Kaiman filter difference 

equations which provide the minimum variance, or most accurate estimate of the actual target position. 

The Kaiman filter employs an embedded model of the system, which in this case is a target traversing a 

linear path in cartesian coordinates. The Kaiman filter is a recursive estimator, with the advantage that 

the required memory, or sample length, does not increase with time. All the needed information is stored 

in the state and error covariance matrices. 
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Two approaches to the development of the Kaiman filter equations are provided. The first 

assumes that the noise processes and the initial state are normally distributed, and the mean-square 

estimate criterion is then used to obtain an optimum filter which estimates the state conditioned on the 

measurement. From the assumptions of a linear model and Gaussian statistics, a linear filter results. 

The second approach is the linear mean-square estimator, which makes no assumptions about the 

process distribution functions. This approach makes use of the orthogonality between the estimation error 

and the observations, the concept of the innovation sequence, and a recursive updating formula for the 

estimate when a new measurement is available. 

5.3 Analytical Model Development 

Given that the radar measurements are independent Gaussian distributed random variables, the 

mean-square error criterion is a Chi-square distributed random variable, i.e., the sum of squared 

independent Gaussian random variables is a Chi-square distributed random variable. The maximum 

allowable bias is determined by choosing a minimum probability of correlation between two radar 

measurements based on the desired system track accuracy. Each imposed bias is then viewed as the non- 

centrality parameter of a non-central Chi-square distributed random variable, which allows for the 

determination of whether or not the two measurements "probably" come from the same target. Given this 

metric, the allowed biases in position, range, and azimuth may be quantitatively determined. 

5.4 System Model 

Given that tracking is performed for a target with a linear path (underlying assumption), the 

appropriate state transition matrix is a linear function of the previous position and the product of target 

velocity and observation interval. The radars measure only position, however, to make a more accurate 

prediction the state vector is augmented to include velocities in the x and y directions. The observation 

matrix, therefore, merely extracts the position components of the state vector. 
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Due to the linearity of the system, the next state is determined by the superposition of the effect 

of the actual state value and the effect of the input noise. The state-transition matrix accounts for the 

contribution to the predicted state of the past history of the system "stored" in the present state. The 

observations are linear combinations of the state components, which are corrupted by additive noise. 

5.5 Bias Effects 

As predicted by the analytical model, position bias is relative. That is, if both radars have the 

same vector bias, their measurements fall within the correlation gate most of the time, no matter how 

large the bias. Thus for the worst-case bias, antipodal biases are imposed, i.e., opposing vector biases, for 

each of the two radars. Notice that the position biases impose a relatively constant correlation criterion 

regardless of the relative radar-target geometries. The nature of the constant-error contours determines 

the worst-case radar-target geometries and the vector direction of the worst-case biases. The range 

variance is larger than the cross-range variance for the chosen measurement statistics and radar coverage 

area. Thus, worst-case positional bias occurs when the target is centered between radars and the bias is 

perpendicular to the imaginary line joining the two radars. 

The worst-case geometry for range biases is the same as for position biases, however, range 

biases are not relative, and each radar can contribute an error. Whether these errors are additive or 

partially cancel each other depends on the exact geometry and on the sign of the bias, which explains why 

range bias shows more position dependence than does position bias. 

The worst-case geometry for the azimuth biases coincides with the position and range worst-case 

geometries. The azimuth biases are also more position dependent than the position biases. In the 

imposed radar-target geometry, the cross-range variance is minimum when the target is at the mid-point 

of the line connecting the two radars. Thus, the worst-case bias scenario is for both radars to have 

azimuth biases in the same rotational direction. 
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Combining all three biases simultaneously results in a more position dependent response. Of 

course in the general case the effect of simultaneous position, range, and azimuth biases varies depending 

upon radar measurement statistics, down-range distance, radar-target geometries, and the relative vector 

directions of the biases. 

5.6 Recommendations 

The implemented model allows for the simulation of one target tracked by two spatially 

distributed radars, yet much may be done to improve the usefulness of this model. The following 

paragraphs present a number of recommendations and discusses their possible implementation. 

5.6.1 Vectorize the Kaiman filter algorithm 

To process all incoming signals from the radar detection hardware, not one Kaiman filter but an 

entire bank of filters must be used to formulate the statistics for all potential targets, whether they are 

from actual targets or from false clutter detections. Some functions in MatLab® accept variable vector 

"widths" as input. It would be advantageous to "vectorize" a Kaiman algorithm function so that at each 

discrete moment any detection within the radar range-azimuth detection gate could be processed as a 

confirmed track, a tentative track, or a new detection. 

The vectorization may be realized by representing the Kaiman filter difference equations in their 

z-transform transfer function form. The inclusion of the initial state values would be necessary for this 

method to correctly represent the Kaiman filter algorithm. Additionally, the measurement statistics must 

be observable at each instant to allow execution of the Chi-square gate test. 

5.6.2 Accept ASCII/MAT plot files 

As stated earlier, output plot (or detection) files from accepted radar simulation software 

packages should be acceptable input to the simulation model. In MatLab®, .mat files are ASCII text files 
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formatted such that the monotonic increasing or decreasing independent variable is in the first row of the 

file and the accompanying dependent variables are in the remaining rows. In the event that the input is 

already in this format, integration is easily executed with the load command. However, if the data 

provided is in another format, the primary difficulty is converting the file to .mat format. 

5.6.3 Multiple Radars 

In the event that more than two radars detect a target within the same correlation gate in a 

networked radar system, the measurement statistics from all radars may be processed together to take full 

advantage of sensor fusion. This joint processing could be performed by a series of cascaded Kaiman 

filters, in which the first stage is a bank of Kaiman filters and each filter processes, (fuses), all possible 

combinations of detected targets in a correlation gate. The number of filters required in the ensuing levels 

of the cascade would of course decrease by a factor of two. Alternatively, after the first level of the 

cascade the statistical distances may be compared to select the smallest distance so that the track may be 

updated with a filtered estimate. 

5.6.4 Degradation of Tracking Accuracy 

This thesis addresses the worst case situation in a networked radar system, i.e., the case where 

biases force the initiation of additional tracks for a single target. As discussed in the introduction, biases 

may introduce a continuum of tracking degradation effects, from reduced accuracy relative to maximum 

theoretical accuracy to the creation of a separate track. To actually estimate the biases of each radar and 

correct for them is a much more difficult problem. It may be shown that the ability to accurately estimate 

these biases is proportional to the number of available targets in overlapping coverage areas and the radar- 

target geometries[Bar90]. 

The Munkres algorithm mentioned earlier, provides the optimum assignment in the event of N 

tracks and M detections, (where there may be more or less tracks than detections). The Munkres 
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algorithm is essentially a recursive matrix reduction algorithm which performs subtraction in row or 

column space while continually testing for the "closest" detection for each track[Bla86]. Although the 

results reported here do not use the Munkres algorithm, MatLab® code implementing this algorithm is 

included in Appendix 4. 

5.6.5 The Effect of Sample Time 

It may be informative to investigate the behavior of error covariances when the observation 

interval becomes longer. More precisely, it may be worth determining whether finite limit values exist 

for the error covariances as the observation interval becomes large and under what conditions they are 

independent of the initial value of the error covariance. 

5.6.6 Multiple-Hypothesis Tracking 

Although a constant velocity target is assumed here, many situations may occur where the target 

maneuvers significantly for a period of time. In this case the assumed linear system model is no longer 

valid, instead a constant acceleration model may be implemented when the target no longer falls within 

the correlation gate. When, (or if), the target resumes a constant velocity profile, the assumed model may 

revert back to the linear model. In essence then, it can be assumed or hypothesized that the target path 

has multiple "modes" or profiles, hence the name multiple-hypothesis tracking. Of course multiple 

modes are more difficult to implement than the single system model, and problems linked to this 

switching process must be solved to maintain tracking continuity between multiple system models. 
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1A. Appendix 1 Kaiman Filtering Introduction 

1A. 1     Linear System Model 

In many estimation problems, an unknown vector represents the time evolution of a system, and 

the measurements Z are the observed output from the system. The state-variable approach is a valuable 

method to describe such dynamic systems where the input-output relationship is described in the time 

domain by a state-transition model together with an output observation model. The state represents the 

internal condition of the system and accounts for its memory of past inputs. The inputs may consist of 

deterministic functions of time together with stochastic processes representing unpredictable variables or 

noise. The output is a function of the state, usually corrupted by random measurement errors. 

A discrete-time system is described by the following pair of equations: 

Sk+1 = F(Sk, Uk, Vk, k) (1A.1) 

Zk+1 = G(Sk+1,Wk+1,k+l) (1A.2) 

Where the integer subscripts (k,k+l) denote discrete-time instants, 

Sk is an n-dimensional vector representing the state at time k, 

Uk is a p-dimensional vector representing the deterministic control inputs, 

Vk is the q-dimensional random vector representing the model process (or plant) noise, 

Wk is an r-dimensional random vector representing the observation (or measurement) noise, and 

Zk is the m-dimensional vector of the observations (or measurements). 
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F(.) accounts for the state transition from Sk to Sk+i due to the input (Uk, Vk) occurring at time k. G(.) 

performs the projection of the internal state on the output measurable variables Zk+i, as well as the effect 

of the random errors Wk+i. The explicit dependence on k accounts for a possibly non-stationary system. 

A fundamental case to be considered is that of linear systems, primarily because of their practical 

interest and also because complete results in estimation theory are available for this class of systems. 

Equations (1A.1) and (1A.2) particularize to the following: 

Sk+1=OkSk + BkUk + GkVk (1A.3) 

Zk+] = Hk+iSk+1 + Lk+iWk+1 (1A.4) 

where Ok, Bk, Gk, Hk+i, Lk+1 are real-valued matrices having dimensions (nxn), (nxp), (nxq), (mxn), 

(mxr), respectively. Equation (1A.3) shows that, because of the linearity of the system, the next state Sk+1 

is determined by the superposition of two terms: the effect of the actual state value Sk and that of the input 

samples Uk and Vk. The state-transition matrix Ok, accounts for the contribution to Sk+, of the past history 

of the system, stored in Sk. In particular, when input-free conditions occur (i.e. Uk = 0 and Vk = 0), the 

state depends on the initial condition So only, according to the equation 

Sk+1 = <Dk • <Pk., O, • 0>o • S0 (1A.5) 

In this case, the stability of the system, i.e. the condition for Sk to remain bounded, depends on the 

matrices Oj (j = 0,1, k). The matrices Bk and Gk account for the possibility of the system being forced 

into a new state by input variables. Equation (1A.4) shows that the observations Zk+I are linear 

combinations of the state components, corrupted by additive noise. The matrix Bk+] indicates how the 

components of Sk+1 are combined to form the observed vector Sk+1 and therefore accounts for the ability 

of the system state to be determined from the measurements. 
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In order to complete the description of discrete-time linear systems, it is worth deriving the time 

evolution of the statistics of Sk and Zk when a random input Vk is present. Let Vk and Wk be zero-mean, 

white processes having the following covariance matrices: 

E{VjVk
T} = Qk5kj (1A.6) 

E{WjWk
T}=Rk5kj (1A.7) 

E{VjWk
T}=0 (1A.8) 

where 5kj is the Kroenecker operator (8kj = 0 if k * j and 5^=1) while Qk and Rk are positive semi- 

definite real matrices. These matrices describe the correlation between the different components of Vk 

and Wk, at the same time sample k, whereas no correlation exists between samples taken at different 

times (white processes). The expected value of Sk is simply obtained from equation (1A.3) as 

E{Sk+1}=Ok-E{Sk}+Bk-Uk (1A.9) 

And similarly for Zk, 

E{Zk}=Hk-E{Sk} (1A.10) 

The covariance matrix of Sk (representing the correlation between the components of Sk at the same 

instant k) is obtained from equation (1A.3) and satisfies the following recursive relation: 

Cov{Sk+1}=Ok-cov{Sk}-0)k
T + Gk-Qk-Gk

T (1A.11) 

Similarly, the covariance of Zk is given by 

Cov{Zk} = Hk-cov{Sk}-Hk
T + Lk-Rk-Lk

T (1A.12) 

1A.2    Discrete-Time Kaiman Filtering 
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Before describing the Kaiman filtering algorithm, it may help to consider an intuitive example of 

recursive estimation[Bro92]. Consider the problem of estimating the mean of some random constant 

based on a sequence of noisy measurements. Let us assume that our estimate is to be the sample mean 

and that we wish to refine our estimate with each new measurement as it becomes available. That is, 

think of processing the data on-line. Let the measurement sequence be denoted as zb z2, . . ., z,,, where 

the subscript denotes the time at which the measurement is taken. One method of processing the data 

would be to store each measurement as it becomes available and then compute the sample mean in 

accordance with the following algorithm: 

First measurement zx: Store zx and estimate the mean as 

mx=zl (1A.13) 

Second measurement z2: Store z2 along with z, and estimate the mean as 

rh2=h^x (1A.14) 

Third measurement z3: Store z3 along with zx and z2 and estimate the mean as 

^3=ii±|±^ (1A.15) 

And so forth. 

Clearly, this would yield the correct sequence of sample means as the experiment progresses. It should 

also be clear that the amount of memory needed to store the measurements keeps increasing with time, 

and also the number of arithmetic operations needed to form the estimate increases correspondingly. This 

would lead to obvious problems when the total amount of data is large. Thus, consider a simple variation 

in the computational procedure in which each new estimate is formed as a blend of the old estimate and 

the current measurement. To be specific, consider the following algorithm; 
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First measurement z\. Compute the estimate as 

mx = z, (1A.16) 

Store mi and discard Zj. 

Second measurement z2: Compute the estimate as a weighted sum of the previous estimate rhx and the 

current measurement z2: 

m2=\mx+\z2 (1A.17) 

Store m2 and discard z2 and m}. 

Third measurement z3: Compute estimate as a weighted sum of rh2 and z3: 

/w3=fw2+lz3 (1A.18) 

Store m3 and discard z3 and m2. 

And so forth. It should be obvious that at the k,h state the weighted sum is 

** = (¥)■**-> 4k (1A-19) 

Clearly, the above procedure yields the same identical sequence of estimates as before, but without the 

need to store all the previous measurements. We simply use the result of the previous step to help obtain 

the estimate at the current step of the process. In this way, the previous computational effort is used to 

good advantage and not wasted. The second algorithm can proceed on ad infinitum without a growing 

memory problem. Eventually, of course, as k becomes extremely large, a round-off problem might be 

encountered. However, this is to be expected with either of the two algorithms. 
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The second algorithm is a simple example of a recursive mode of operation. The key element in 

any recursive procedure is the use of the results of the previous step to aid in obtaining the desired result 

for the current step, and is one of the main features of the Kaiman filter. 

Now consider the problem of estimating the state S of a linear, dynamic, discrete-time system from the 

measurements collected in a finite observation interval, namely Zk = {Z0,Zi,...,Zk}. The model assumed 

for the system is described in equations (2A.4) and (2A.5). The a-priori knowledge about this system 

consists of the following information: 

the initial state S0 is a random vector, having known mean value JLIO and covariance matrix P0 > 0, 

the deterministic input Uk, if present, is known, 

the random forcing input Gk'Vk is a white noise process, having zero mean and known covariance matrix 

Qk>0, 

the measurement error process Lk-Wk is zero-mean white noise having covariance matrix Rk > 0, 

the initial state S0 is assumed to be uncorrelated with the disturbances Vk, Wk, 

the noise processes Vk, Wk are mutually uncorrelated, i.e. E{Vk-Wk
T} = 0. 

Two approaches can be followed to derive the Kaiman filter equations. The first assumes that the 

processes Vk, Wk and the initial state S0 are normally distributed, and the mean square error criterion is 

then used to obtain an optimum filter which estimates Sk as Sk= E{Sk|Z
k}. From the assumptions of a 

linear model and Gaussian statistics, a linear filter results. The second approach is that of linear minimum 

mean square error (LMSE), with no assumption on the process distribution functions. It makes use of the 

following fundamental features of LMSE estimation: 

the orthogonality principle between the estimation error and the observations, 
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the concept of the innovation sequence, 

the chance of deriving a recursive updating formula for the estimate when a new measurement becomes 

available. 

From the a-priori knowledge about the process S, not only the initial value S0 can be estimated S° = u^ 

with covariance P0, but also any successive value can be predicted as Sk = u.k from the equation: 

Mk+i = «VHk + Bk-Uk (1A.20) 

with 

Pk+1 = <Dk-Pk-<Dk
T + Qk (1A.21) 

These describe the time evolution of the unconditioned, a-priori mean and covariance of S. From them it 

can be observed that, even though the initial guess is very accurate, a prediction error results (Pk > 0) due 

to the noisy input Vk. On the other hand, if the initial guess is poor, the prediction error remains severely 

affected by it for a time depending on the transition matrix Ok even if Qk = 0, i.e. no random input is 

present. 

One potential problem of sequential estimation is termed divergence. The problem occurs when 

the magnitude of the state vector covariance matrix becomes relatively small. This decrease in AP occurs 

naturally as more observations are processed, since the knowledge of the state vector increases with the 

number of observations processed. When AP becomes relatively small, the Kaiman gain becomes 

correspondingly small, since AP is a multiplicative factor in its calculation. The result is that the 

estimator ignores new data and does not make significant improvements to the state vector. While this 

would seem to be a desirable result of the estimation process, sometimes AP becomes artificially small, 

resulting in the filter disregarding valid observations. To correct this divergence problem, process noise 

is introduced to limit AP from below. 
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We now describe the particular implementation of our model. The measurement vector in 

Cartesian coordinates is, 

^ 

y) 

(1A.22) 

and our state vector is, 

S = 

^ 

x 

y 

y) 

(1A.23) 

where x, y represent the velocity of x and y, respectively. The state transition matrix is, 

<D= 

^1    T   0    0^ 

0    10   0 

0   0    1   T 

0   0   0    1 

(1A.24) 

J 

where T is the scan time of the rotating radar antenna. For simplicity, we assume that the scan time is 

identical to the time between observations. For a target moving in other than path radial to the radar, the 

observations will be made at times greater than or less than the scan time, depending on the target 

velocity and path, and on the antenna rotation direction. We choose a scan time often seconds as a 

reasonable value. 

The observation matrix, 

H 
1    0   0   0' 

0   0   10 

(1A.25) 

simply extracts x and y from the state vector S so that the state may be compared to the measurements. 
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The measurement noise, W, and the process or plant noise, V, are 2x1 normally distributed 

vectors with known variance. V represents the random acceleration of the target, and W represents 

random measurement error due primarily to thermal noise in the radar receiver. 

L is a 2x2 identity matrix, which ensures that the measurement noise covariance matrix, R, is of 

appropriate dimensions. To model random accelerations in the x and y directions due to model 

uncertainties, a 4 x 2 matrix, G, is multiplied by the 2 x 1 vector representing random accelerations, V, 

and introduced into the Kaiman filter's state estimation calculations. To do this, G is expressed as 

G = 

(\y2 
2 1 0 
T 0 

0 IT 
2 X 

o T 

(1A.26) 

In this way, when G is multiplied by V, the random accelerations, the result is in the same dimensions as 

the state vector. Of course these equations are simply the result of Taylor series expansion of the 

position, x, with respect to t, expressed in scalar form as, 

*(0 = *o +v-t + \-a-t2 (1A.27) 

where x0 is the initial position, v is the velocity, and a is acceleration. 
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2A. Appendix 2 Derivation of Kaiman Filter Equations 

2A.1     First Derivation: 

For simplicity, designate the two independent estimates s*k|k_i and zk by s*i and s*2 respectively. 

Designate s*k|k, the optimum combined estimate, by s*c. We desire to find an optimum linear estimate for 

s c. We can designate this linear estimate as 

sc = &, • s\ + k2 ■ s*2 (2A.1) 

We want this estimate s*c to be unbiased, it being assumed that s\ and s*2 are unbiased. Designate s as 

the true value of s. Obtaining the mean of (2A.1), it follows that for the estimate to be unbiased 

s = k] ■ s + k2 ■ s (2A.2) 

which becomes, 

\ = kx+k2 (2A.3) 

Thus for the estimate to be unbiased we require, 

k2=\-kx (2A.4) 

Substituting (2A.4) into (2A.1) yields, 

Let the variances of s*c, s*i, and s*2 be designated as a2
c, a

2
u and a2

2. Then (2A.5) yields 

<Tl=kl-<rl+<y-ktf-<T\ (2A-6) 
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To find the k] that gives the minimum a2
c, we differentiate (2A.6) with respect to k[ and set the result to 

zero, obtaining, 

2-kx -CTi -2-(l-*,)-cr2
2=0 (2A.7) 

Hence, 

*i = 2 2 a{ + a2 

(2A.8) 

Substituting (2A.8) into (2A.5) yields, 

a 
s, =• 

cr, +<J2 

2 * u\ 
rs\+—- 

<J]   +<J2 

(2A.9) 

Rewriting (2A.9) yields 

f   * * \ 

Ver!        a2 J 1 1 

(2A.10) 

Note that substituting (2A.8) into (2A.6) yields 

f 
al = 1       1 

\ 

VCT1        a2 J 

(2A.11) 

2A.2     Second Derivation: 

The second derivation employs a weighted least-squares error estimate approach. In Figure 2A.1 

we have two estimates zk and s Y\\.-\ and desire to replace these with a combined estimate s*k|k that has a 

minimum weighted least-squares error. For an arbitrarily chosen s*k|k, there are two errors. One is the 

distance of s k)k from zk; the other is its distance of s*k!k from s*k|k-i. For the minimum least-squares 
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estimate we might minimize the sum of the squares of the distances (errors) between the measurements 

and the best fitting line (trajectory) to the measurements[Bro98]. We would like to does this in a way that 

takes into consideration the accuracies of the measurements. For convenience let s*k|k.] be more accurate 

than zk. In this case it is more important that (s*k|k.i - s*k|k)
2 be small, specifically smaller than (zk - s*k|k)

2. 

This would be achieved if in finding the least sum of the squares of each of the two errors we weighted 

the former error by a larger constant than the latter error. We are thus obtaining a minimization of an 

appropriately weighted sum of the two errors wherein the former receives a larger weighting. A logical 

weighting is to weight each term by 1 over the accuracy of their respective estimates as the following 

equation does: 

E_(zk-slwf |(4_,-4) (2A.12) 

VAR(zk)   + VAR{s[^) 

Here the error (s k]k_i - s*k|k)
2 is weighted by 1 over the variance of s*k|k_i and (zk - s*kjk)

2 by 1 over the 

variance of zk. Thus if VAR(s*k|k_i)« VAR(zk), then l/VAR(s*k!k.i) » l/VAR(zk) and forces the error 

(s k|k-i - s k|k)2 to be much smaller than the error (zk - s*k|k)
2 when minimizing the weighted sum of the 

errors in (2A. 12). This then forces s*k!k to be close to s\|k.i, as it should be. The more accurate s*k|k.i, the 

closer s k|k is to s kik_i. In (2A.12) the two errors are automatically weighted according to their importance, 

the errors being divided by their respective variances. On finding the s*k|k that minimizes E of (2A.12), a 

weighted least-squares estimate in stead of just a least-squares estimate is obtained. The s*kjk that 

minimizes (2A.12) is found by differentiating (2A.12) with respect to s*k!k and setting the result equal to 

zero, yielding 

dE  _2-(zk-S;[k)    2-(4_,-4) (2A.13) 

K*        VAR^) VAR{s*) 

Solving (2A. 13) yields 
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Sk,k - 

Sk\k-\       _ + _       Zk 

VAR(sk]k_x)    VAR(zk) 

(2A.14) 

1 

VAR(sm_x)    VAR{zk) 

Now let us extend this derivation to the case of vector measurements and states. As done for the 

one-dimensional case, we weight the square of the errors by 1 over the variance of the error. Thus our 

error (or cost) function as in (2A.12) now denoted as J is as follows, 

J 
(Zk-s;[k)

2 ^S^.-S;,)2 (2A.15) 

VAR(Zk)   +   VAR(Sl]k_}) 

Of course this equation is only conceptually correct; the mathematically correct equivalent will be given 

shortly. 

Now we will us (2A. 15) to solve for the new combined estimate S*k)k that minimizes the weighted 

sum of the squares of the errors. Conceptually, this is done just as it was done for the equivalent one- 

dimensional (2A.12). Specifically, (2A.15) is differentiated with respect to the combined estimate S*k|k 

with the resulting equation set equal to zero in order to solve for the combined estimate S*k|k that 

minimizes the weighted sum of the errors squared. Note that (2A.15) is not mathematically correct when 

operating on matrices, as will be shown. 

When using matrix notation, the first term on the right of the equal sign in (2A.15) must be 

written as 

(Zk-SklkY _ ,    T     _, , (2A.16) 
-^——- = (ZA-SA]i)    Rk -(Zk-Sklk) 

Where the matrix Rk is the covariance matrix of Zk, that is, 
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Rk=COV(Zk) (2A.17) 

The inverse of the covariance matrix Rk, which is designated as Rk"', takes the place of dividing by the 

variance of Zk when dealing with matrices. The corresponding correct form for the second term on the 

right of (2A. 15) is 

(stM~S*l*)2 _,**     _«•  ^T  p.-i    ,„.        „.  , (2A.18) 
VARCL )     ~      M        ]k     '    '*"' '    *1*-1 ~   klk' 

Where P*k|k.i is the covariance matrix of S*k)k-i • Substituting (2A. 17) and (2A. 18) into (2A. 15) yields 

j=(zt -H.s^)rR4->(z4 -H.s;,)+(s;M -s;,)rp;^(s;M -S;|A)      (2A.I9> 

Now we may solve for the optimal S*k,k as we did in the scalar case, by differentiating the error 

function J with respect to S*k|k, setting the equation equal to zero and solving for S*k,k. Differentiation of a 

matrix equation is achieved by obtaining the gradient of the matrix equation as given by 

Gradient of J = ■ 
dSk]k 

_aj _sj_    dj_ 
Ss, ' ds2 '   ' dsn 

(2A.20) 

Applying (2A.20) to (2A.19) yields 

-§r-k = 2 • (s;, - s;,_, f • p;-, + 2(Zi - H • s;, f. Ri-> . (-H)=o        (2A-21) 

Where H is the observation matrix which (in our case) merely extracts the measurement estimates from 

S. Equation (2A.21) can be rewritten as 

Sj • (P,V + Hr • R-1 • H) = S5_, • P^, + Z[ ■ R j' ■ H (2A.22) 

Which on taking the transpose of both sides and using the identity (AB)T=BTAT yields 

64 



(Pj1 +HT -R? .H)-S;„ = ?£_, .S;M +HT -R-k
l -Zk (2A.23) 

or, 

Si, = (P;^ + & ■ R? • H)-1 • (P,V_, • S;M + UT ■ R,1 ■ Zk) (2A.24) 

Applying the well-known matrix inversion lemma, 

(p,y + nT ■ R,-
1
 • H)-

]
 = P;M - P;_, H

r (R,+H P;M H V H p;M     (2A.25) 

This can be rewritten as 

(P,V + HT ■ R? • H) ' = p;M - Kt  H p;M (2A.26) 

where Kk is often called the Kaiman gain and is given by, 

Kk =p;M  nT -(Rk +H-P;M -Hr)-' (2A.27) 

Substituting (2A.26) into (2A.24) yields 

S*|* = (P*|*-i - Kt • H ■ Pt|t_,)    • (Pt|t_, ■ Si|jt_, + H   • Rt • Z*) 

=S^_;-K, ■ H• Si,., + (Pi_, -K,  H P.V,) HT  R-1  Z, (2A.28) 

But as will be shown shortly, 

K, = (P;_, - K,  H P.V,) • HT • R-1 (2A.29) 

Then (2A.28) can be rewritten as 
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S^S^+K^-K.-H-S^., (2A.27) 

or 

S^S^+K^Z.-H-S^,) (2A.28) 

Now we can prove (2A.29). From (2A.27) it follows that 

J>;ik_,-Kr=Kk.(Rk+K.F;ik_rn
T) (2A.29) 

Finishing the proof, this equation can be written as 

P;M • Hr ■ R? - K,  H P.V, • ET • RA-> = K, (2A.30) 
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3A. Appendix 3 Local to Global Coordinate Transformation 

A(P,)=[x, 

Figure 3A-1 Target in two Radar System 

Let the radars R, and R2 be situated at points Pt and P2 on the earth's surface as shown in Figure 

3A-1. An airplane A is detected by the radar Rx in its local Cartesian coordinate system P, with the 

coordinates [xj.yi.z^sACP,), and it is necessary to find the coordinates [x2,y2,z2]sA(P2) of the airplane A 

in the Cartesian coordinate system P2 of the radar R2. The points P,, P2 are given by the geographical 

coordinates [fl9l,] and [f2,l2], where f,,f2 are the geographical latitudes and 1,,12 are the geographical 

longitudes. The xryi plane is tangent to the ellipsoid at the point P,. The xi axis lies in the plane of the 

latitude fls the y, axis lies in the plane of the meridian 1,. The z, axis is positively oriented towards the 

earth's center. The xj axis and the y, axis are oriented in the direction of increasing longitude and 

latitude, respectively. The axes of the coordinate system P2 are similarly oriented. 

Next it is desired to transform the geographical coordinates [f,l] of a point P into geocentric 

Cartesian coordinates (C;Xe,yc,Zc) = C, with origin C at the earth's center as seen in Figure 3A-2. The zc 

axis goes through the earth's poles, with the positive orientation to the North Pole. The xc axis passes 

through the null and 180th meridian, the positive orientation to the null meridian. The yc axis is 

perpendicular to the xc axis and to the zc axis, with positive orientation to the 90th meridian. 
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Figure 3A-2 Transformation from Geographical to Geocentric Coordinates 

The shape of the Earth is a geoid, however for simplicity, an ellipsoid will be used as an 

approximation, see Figure 3A-3. Denote the major semi-axis as A = 6378.245 [km] and the minor semi- 

axis B = 6356.863 [km]. To derive the transformation equations it is convenient to use the parametric 

description of the ellipse. The usual parametric representation of the ellipse is 

x(cp) = Acos((p), z(cp) = Bsin((p) (3A.1) 

In order to relate the angle f to x and z we must first compute the normal vector n at [x,z] 

t = 
^    f 

\ZJ 

■As'm(<p) 

5cos(^») 

r .±\   f 
•n = 

v x J 

-Bcos^y 
As'm(tp) 

(3A.2) 

Therefore, 

tan(/) = 
x _ A 

z~ B 
tan(#>). 

(3A.3) 

D 

From tan(ip) = — tan(/) we can obtain, 
A 
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cos(<p) = 
Vl + tan2(p) 

,sin(^) = tan(^)cos(^>) 
(3A.4) 

Figure 3A-3 An Ellipse Description by the Slope of the Normal Vector 

Now the transformation from the coordinate system Pj in to the coordinate system P2 can be 

performed, see Figure 3A-4. This transformation consists of four partial transformations, more precisely, 

one translation and three rotations. Since the coordinate system P! changes after each transformation, we 

must distinguish the coordinate systems using a superscript: 

p;,i = 0,...,4,;P1°^P1,P1
4^P2 (3A.5) 

3A.1     The Translation: 
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Figure 3A-4 Coordinate Transformation Diagram 

The values of the displacement [Ax,Ay,Az] = P2(P1)-Pl(P1) = Äp are the coordinates of the point P2 in 

the first coordinate system, denoted by P2(Pi). The Äp is known in the C system: 

Ap(C) = P2 (C) - Px (C). Now we need to transform Ap(C) into Ap(Pj). This transformation can be 

computed as follows. 

First, we must place the origin Pi" of the coordinate system Px" at the intersection of the equator and the 

Greenwich meridian. This transformation is: 

M ( Ay\ (P   -P  > r2x      r\x 
f 

Ay = Az = Mx "ly ~ °\y ,M = 
{Azj 

P'i 
^-AxJ c KIZ   "4; c         V 

0     1    0^ 

0    0    1 

•10   0 

(3A.6) 
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To move P," into P,', we perform a rotation around the y" axis with the angle 1,. This transformation can 

be described by the rotation matrix Ri. 

M (Ax^ f 

Ay = Ä,x Ay A = 
[AZ) 

P,' vAzJ 
P,"            v 

cos^)    0    sin(/,) 

0 1        0 

- sin^)   0   cos(/,) 

(3A.7) 

To move P,' into Ph we use a rotation around the x' axis with the angle f,. This transformation is 

described by the matrix R2: 

(Ax^ (Ax^ (\ 0 0    ^ 
Ay = R2x Ay A* 0 cos(/,) sin(/,) 

KAz) 
P, 

^Azj 
pj vO -sin(/,) cos(/,)J 

(3A.8) 

Now the coordinate system P, is in a general position. Summarizing the previous steps, the translation 

vector Ap{Pj) can be expressed by 

Ay = R2xR]xMx 

(p   _P 
s\ 

P     -P r2y      r\y 

P2z~Pl 

(3A.9) 

*Jc 

The new coordinates A(?i) can be obtained from the previous coordinates A(Pi) by using the relation 

A(P/)S 

^ 

y ■A*)- 
\zjp> 

'A^ 

Ay 
(3A.10) 

3A.2    First Rotation: 

71 



We rotate the Pi1 coordinate system around the x axes by the angle fi in order to make the y axis 

parallel to the earth axis zc. Then, the new coordinates of the airplane A(P]2) are obtained from the 

previous coordinates A(Pi1) using 

A(P?) = 

^ 

y = R3x 

^ 

y 

\zjp> 

,R3 =R2 = 

\z JPI 

1 0 0 

0   cos(/,)   -sin(/,) 

0    sin(/,)     cos(/,)y 

(3A.11) 

3A.3     Second Rotation: 

We rotate the P^ coordinate system by the angle Al=l2-li around the y axis in order to let the two 

x axes of Pi2 and P2 coincide. The new coordinates A^3) of the airplane are then computed from the 

previous coordinates A(Pi2) by 

A(Ph= 
(x] (*] (cos(A/)    0    sin(A/)^ 

y = i?4X y ,-^4 = 0         1        0 

w pf w '/ 
^- sin(A/)   0   cos(A/)y 

(3 A. 12) 

3A.4    Third Rotation: 

We rotate the system P^ by the angle f2 around the x axis to let it coincide with the system P2. 

Thus, the final coordinates A(P2) = A(Pi4) of the airplane A are obtained from the previous coordinates 

A(P,3)by 

A(P,) = 
(x] fx] (\ 0 0 

y = R5x y ,R,= 0 cos(/2) sin(/2) 

UJ pf Kz) pf 1° -sin(/2) cos(/2) 

(3A.13) 

The above steps can be combined by concatenation. By using matrices Ri - R5 we get the overall 

transformation 
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A(P,) = 

^ 

y 

yz;r, 

= R5xR4x RT
2 x A{Pj)-R2xRxxMx 

P   - P 

P     - P 

P      - P \r2z       r\zJc) 

(3A.14) 

3A. 5     MatLab Routines 

The following two MatLab functions are (1) the S-function used for calling the algorithm that 

performs the above calculations, and (2) the actual function that performs the algorithm. 

function [sys,xO,str,ts] = s_change_view(t,x,u,flag) 
switch flag, 
%%%%%%%%%%%%%%%%%% 
% Initialization % 
%%%%%%%%%%%%%%%%%% 
case 0, 
[sys,xO,str,ts] = mdllnitializeSizes; 
%%%%%%%%%% 
% Update % 
%%%%%%%%%% 
%case 2, 
% sys = mdlUpdate; 
%%%%%%%%%% 
% Output % 
%%%%%%%%%% 
case 3, 
sys = mdlOutputs(t,x,u); 
%%%%%%%%%%%%% 
% Terminate % 
%%%%%%%%%%%%% 
case {1,2,4,9}, 
sys = []; % do nothing 
%%%%%%%%%%%%%%%%%%%% 
% Unexpected flags % 
%%%%%%%%%%%%%%%%%%%% 
otherwise 
error(['unhandled flag = ',num2str(flag)]); 

end 
%end dsfunc 
% 
%================================================ 
% mdllnitializeSizes 
% Return the sizes, initial conditions, and sample times for the S-function. 
o/o================================================== 

% 

function [sys,xO,str,ts] = mdllnitializeSizes 
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sizes = simsizes; 
sizes.NumContStates = 0; 
sizes.NumDiscStates = 0; 
sizes.NumOutputs    = 3; 
sizes.Numlnputs     = -1; 
sizes.DirFeedthrough = 1; 
sizes.NumSampleTimes = 1; 
sys = simsizes(sizes); 
x0 =[]; 
str=[]; 
ts =[-10]; 
%================================================= 

% mdlUpdate 
% Handle discrete state updates, sample time hits, and major time step 
% requirements. 

% 

% mdlOutputs 
% Return the output vector for the S-function 

function sys = mdlOutputs(t,x,u) 
%function[A2]=transf(latl ,lon 1 ,A 1 ,lat2,lon2) 
%latl-2,lonl-2 = geographical radar positions in (radians) 
%Al=[x;y;z],(PImposition of airplane seen by radar at PI 
%A2=position of airplane seen by radar at P2 
sys=transf(u( 1 ),u(2),u(3:5),u(6),u(7)); 

%sys=transf(latl,lonl,(x,y,z)oftarget,lat2,lon2) 
%sys is [x;y;z] position of target seen by radar2 at lat2,lon2 
function[A2]=transf(lat_l,lon_l,A_l,lat_2,lon_2) 
%latl-2,lonl-2 = geographical radar positions in (degrees) 
%Al=[x;y;z],(Pl)=position of airplane seen by radar at PI 
latl=deg2rad(lat_l); 
Ion 1 =deg2rad(lon_ 1); 
Iat2=deg2rad(lat_2); 
lon2=deg2rad(lon_2); 
A1=A_1; 
M=[0 1 0; 

001; 
-10 0]; 

Rl=[cos(lonl)0sin(lonl); 
0 10; 
-sin(lonl) 0 cos(lonl)]; 

R2=[l 0 0;0 cos(latl) sin(latl);0 -sin(latl) cos(latl)]; 
Plc=gg2gc(latl,lonl); 
P2c=gg2gc(lat2,lon2); 
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DPc=P2c-Plc; 
T=R2*Rl*M*DPc; 
a=Al-T; 
Dl=lon2-lonl; 
R4=[cos(Dl) 0 sin(Dl); 

0 1 0; 
-sin(Dl) 0 cos(Dl)]; 

R5=[l 0 0; 
0 cos(lat2) sin(lat2); 
0 -sin(lat2) cos(lat2)]; 

A2=R5*R4*R2'*a; %position of airplane seen by radar at P2 
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4A. Appendix 4 Modified Munkres Algorithm 

% Modified Munkres Optimal assignment algorithm, rows=tracks, cols=observations 
function [x_ret,cov_file_ret,z_file_ret]=munkres(x) 
[nrows,ncols]=size(x); 
k=min(nrows,ncols); 
z_file=randint(nrows,ncols,80:90); 
z_fi le=char(z_fi le); 
cov_file=z_file; 
% Preliminaries: if m>n, for each column subtract min(column) from that column 
% if n>m, for each row subtract min(row) from that row 
if nrows>ncols, 

for I=l:ncols, 
x(:,I)=x(:,I)-min(x(:,I)); 
m(I)=find(x(:,I)==0); 

end; 
[x_ret,cov_file_ret,z_file_ret]=munk_l(x,cov_file,z_file); 

else; 
for I=l:nrows, 

x(I,:)=x(I,:)-min(x(I,:)); 
n(I)=find(x(I,:)==0); 

end 
[x_ret,cov_file_ret,z_file_ret]=munk_l(x,cov_file,z_file); 

end 

% Step 1  
function [x_ret,cov_file_ret,z_file_ret]=munk_l(x,cov_file,z_file) 
D,k]=find(x(:,:)==0); 
for p=l :length(j),% for all O's, if no 0* in row or column of 0, star the 0 

if length(find(z_file(j(p),:)=='*'))==0 & Iength(find(z_file(:,k(p))=='*'))==0, 
z_file(j(p),k(p))='*'; 

end 
end 
if ~exist('x_ret') 
[x_ret,cov_file_ret,z_file_ret]=munk_2(x,cov_file,z_file); 
end 
%  Step 2  
function [x_ret,cov_file_ret,z_file_ret]=munk_2(x,cov_file,z_file) 

if exist('x_ret') 
else 

while length(find(any(z_file=='*')==l))< min(size(x))& ~exist('x_ret'), %go until final solution 
D,k]=find(z_fde(:;:)=='*'); 

forl=l:length(k), 
cov_file(:,k(I))='c'; 

end 

[x_ret,cov_file_ret,z_fde_ret]=munk_3(x,cov_file,z_file); 

76 



end 

if length(find(any(z_file=='*')==l))== min(size(x))& ~exist('x_ret'), 
%x_ret=x; 
x_ret=[]; 
%cov_file_ret=cov_file; 
cov_file_ret=[]; 
z_file_ret=z_file; 
end; 

end 

% Step 3  
function [x_ret,cov_file_ret,z_fiIe_ret]=munk_3(x,cov_file,z_file) 
if length(find(any(z_file=-*')== 1 ))== min(size(x))& ~exist('x_ret') 

x_ret=x; 
cov_file_ret=cov_file; 
z_file_ret=z_file; 

else 

Lj,k]=find(x(:,:)==0 & cov_file(:,:)~='c' & z_file(:,:)~='*' & z_file(:,:)~=,M); 
% find uncovered zeros 
for zz=l:length(j), 

if length(j)>0 & length(find(any(z_file=='*')==l))<min(size(x)); 
z_file(j(zz),k(zz))=,M;% Pick uncovered Z and prime it to Z' 
if length(find(z_file(j(zz),:)=='*'))>=l ; %if there is a 0* in this row 
%z_file(j(zz),k(zz)K'; 
b=find(z_fileG(zz),:)=='*'); 
cov_file(:,b)='u';% uncover col of Z' 
cov_file(j(zz),:)='c';% cover row of Z' 
elseif length(fmd(z_file(j(zz),:)=='*'))==0;% if no Z* in in row of Z' do step 4 
[x_ret,cov_file_ret,z_file_ret]=munk_4(x,cov_file,z_file) 
end 
if exist('x_ret') 

break 
end 

end 
[j,k]=find(x(:,:)==0 & cov_file(:,:)~='c' & z_file(:,:)-='*' & z_file(:,:)—•"); 

end 
if length(find(any(z_file=-*')==1 ))< min(size(x))& ~exist('x_ret') 
[x_ret,cov_file_ret,z_file_ret]=munk_5(x,cov_file,z_file); 
end 

end 
% % Step 4  
function [x_ret,cov_file_ret,z_file_ret]=munk_4(x,cov_file,z_file)%Step 4 
%z_file_seq=z_file;% temp file to record sequence of z', z*, etc 

if length(find(any(z_file=-*')==1 ))== min(size(x))& ~exist('x_ret') 
x_ret=[];%x; 
cov_file_ret=[] ;%cov_file; 
z_file_ret=z_file; 

else 
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[u,v]=find(z_file(:,:)==™ & cov_file(:,:)~='c');% find the uncovered Z' 
uu=fmd(z_file(:,v)=='*'); 
if isempty(uu), 

z_file(u,v)='*'; 
else 

z_file(u,v)='*';% Star the Z' with a Z* in its column 
z_file(uu,v)=''; % Un-star the Z* in that column 
while -isempty(uu), % while any Z* in col of Z', Z' in row of Z*, etc 

w=find(z_file(uu,:)==m);% Find Z' in row of un-starred Z* 
if ~isempty(vv)% If there is a Z' in row of un-starred Z* 

z_file(uu,vv)='-'; % Star the Z' 
uu=find(z_file(:,vv)=='*');% Find Z* in col of Z' 
if ~isempty(uu)% if there is a Z* 

z_file(uu,vv)='';% Blank it out 
end 

else 
uu=[]; 

end 
end 

end 
z_file(find(zJile(:,:)=='-'))='*';% Star all Z' from sequence 
z_file(find(z_file(:,:)==m))- ';% Erase all Primes from Z' 
cov_fIle(find(cov_file(:,:)))='u'; % Uncover all covered rows/cols 
if length(find(any(z_file=-*')==1))== min(size(x))& ~exist('x_ret') 

x_ret=[];%x; 
cov_file_ret=[] ;%cov_file; 
z_file_ret=z_file; 

else 
[x_ret,cov_file_ret,z_file_ret]=munk_2(x,cov_file,z_file); 

end 
end 
% Modified Munkres Optimal assignment algorithm, rows=tracks, cols=observations 

0 % Munkres Algorithm Step 5  
function [x_ret,cov_file_ret,z_file_ret]=munk_5(x,cov_file,z_file) 
iflength(find(any(z_file=='*')==l))==min(size(x)) 

x_ret=x; 
cov_file_ret=cov_file; 
z_file_ret=z_file; 

else 
h=min(x(find(cov_file(:,:)~='c'))); 
i=all(cov_file=-c',2);%find covered row 
i=fmd(i==l);% # of covered rows 
if length(i)>0 & length(find(any(z_file=='*')==l))<min(size(x)); 

forl=l:length(i), 
x(i(I),:)=x(i(I),:)+h;% add h to covered rows 

end 
end 
z=any(cov_file~-c');%find uncovered columns 
z=fmd(z==l); 
if length(z)>0 & length(find(any(z_file=='*')==l))<min(size(x)); 
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forI=l:length(z), 
x(:,z(I))=x(:,z(I))-h; 

end 
% go back to step 3 
[j,k]=find(x(:,:)==0 & cov_file(:,:)~='c'); % find uncovered zeros 
end 
[x_ret,cov_file_ret,z_file_ret]=munk_3(x,cov_file,z_file); 
end 
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6.    List of Notation / Symbols 

B,G,L matrices in dynamic system model that account for measurement and model uncertainties 

H observation matrix, (extracts measurement variables from state vector S) 

<D state transition matrix 

E{.} expectation operator 

E{x|z} conditional expectation of x given z 

Kk Kaiman gain matrix at time k 

P covariance matrix 

P estimation covariance matrix 

Yk\k > Pi|i-i covariance matrix of filtered and predicted estimates, respectively 

Q>R process covariance, and measurement covariance matrices, respectively 

Sk system state at the k"1 time instant 

SkVc filtered estimate of Sk 

St|jt_, predicted estimate of Sk 

Z vector of measurements 

v k innovation process at time k 

®t covariance matrix of the innovation 
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