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Abstract 

Numerical modeling of shock propagation and reflection is of interest 

to the Department of Defense (DoD). Propriety state-of-the-art codes based 

upon E. F. Toro's weighted average flux (WAF) method are being used to 

investigate complex shock reflection phenomena. Here we develop, test, and 

validate a one-dimensional hydrodynamic shock code. We apply WAF to 

Gudonov's first-order upwind method to achieve second-order accuracy. 

Oscillations, typical of second-order methods, are then removed using 

adaptive weight limiter functions based upon total variation diminishing 

(TVD) flux limiters. An adaptive Riemann solver routine is also implemented 

to improve computational efficiency. This one-dimensional code is then 

extended into two dimensions via Warming and Beam's variation on 

dimensional splitting. The numerical capabilities of the two-dimensional 

code are demonstrated by modeling the detonation of a cylindrically 

symmetric explosive with the axis of the cylinder oriented horizontally above 

an ideal surface. 
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Chapter I: Introduction 

A. Motivation 

Numerical modeling of shock propagation in hydrodynamic flows is a 

field of obvious interest to the Department of Defense (DoD). Some aspects 

are particularly difficult to model, for example, the transition from regular to 

Mach reflection. Recent state-of-the-art codes based upon E. F. Toro's 

weighted average flux (WAF) method are being used to investigate such 

shock reflection phenomena. Unfortunately, these codes are company- 

proprietary and unavailable for use within DoD. The objective of this effort is 

to develop our own WAF code for use at the Air Force Institute of Technology 

and throughout DoD. Ideally, we will find improvements in accuracy and/or 

computational efficiency in comparison with the algorithms used in other 

codes. 

B. Background 

In 1959, Godunov introduced an extension of the first-order upwind 

Courant-Isaacson-Rees scheme for solving the Euler Equations (LeVeque, 

1992). This scheme was the first conservative upwind technique developed 

and has given rise to many of the modern numerical techniques in use today. 

Godunov's method assumes that a piecewise constant distribution of the 

conserved variables across the computational domain may be treated as a 

series of local Riemann problems. The flux is calculated by solving the 

Riemann problem exactly, forward in time. While robust, this technique is 



computationally inefficient because each Riemann problem requires iteration 

to solve nonlinear equations. In an effort to make this scheme more efficient, 

several approximate Riemann solvers have been developed that solve the 

Riemann problem without requiring iterative processes. Modern Godunov- 

type methods are constructed in this fashion. 

First-order schemes are known to result in solutions smeared at 

discontinuities due to numerical viscosity and Godunov's method is no 

exception. In 1989, E. F. Toro presented a new high-resolution technique 

that fully utilizes the wave structure of the Riemann problem to calculate a 

more accurate intercell flux. This flux is a weighted average of the flux 

vectors across the Riemann problem. Second-order accuracy is achieved in 

this way. Spurious oscillations typical of second-order schemes are removed 

using total variation diminishing (TVD) weight limiters (Toro, 1992). 

Extension into two dimensions is easily achieved via dimensional 

splitting (Warming and Beam, 1976). In this approach, the two-dimensional 

initial value problem (IVP) solution is obtained by solving a sequence of one- 

dimensional problems in each coordinate direction. This technique is known 

as time-operator splitting. 

C. Problem 

The primary objective of this research is to develop a two-dimensional, 

computationally-efficient, hydrodynamic shock code based upon the weighted 



average flux (WAF) method (Toro,1989) for the investigation of air blast 

phenomenology. 

D. Scope 

The scope of this project is limited to the modeling of air blast under 

ideal conditions. 

E. Assumptions and Limitations 

The computational model presented here assumes that air behaves as 

an ideal gas with a constant ratio of specific heats, i.e. y = 1.4. This 

assumption limits use of the code to low pressure regimes where peak 

pressures are approximately 690 kPa or below. 

F. Approach 

Development of the two-dimensional code begins first with the 

introduction and application of all numerical techniques, except dimensional 

splitting, in one dimension. Code development is performed in a logical step- 

by-step manner beginning with development of E.F. Toro's exact Riemann 

solver and Godunov's first-order, upwind method. To improve computational 

efficiency, an adaptive Riemann solver, also introduced by Toro, replaces the 

exact Riemann solver. Greater stability and accuracy is achieved near steep 

gradients using an adaptive Courant-Friedrichs-Lewy coefficient. 

Once the underlying Godunov algorithm is complete, Toro's WAF 

method is added to obtain second-order accuracy. Monotonicity is established 



by applying one of four TVD weight limiters subsequently written into the 

WAF code. 

To illustrate each numerical tool and its impact on computational 

efficiency and accuracy, a classic one-dimensional shock tube problem is 

evaluated over a course mesh for comparison with the solution obtained via 

the exact Riemann solver. While this solution is not strictly exact, because 

no analytical solution exists, it is suitable for use as a qualitative benchmark. 

Once the one-dimensional code has been tested it will be validated against 

experimental results obtained from the Army Research Lab's 57 cm shock 

tube. 

Having shown the one-dimensional implementation to be sound, the 

code is then extended into two dimensions via the dimensional splitting 

scheme. To illustrate the capabilities of the code, a two-dimensional probk 

is solved that is representative of the types of shock problems of interest to 

DoD. 
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Chapter 2: Governing Equations and Important 

Thermodynamic Relations 

A. Simplifying Assumptions 

The basic equations of fluid motion are derived from the conservation 

of mass, momentum and energy. Full consideration of these conservation 

laws results in the Navier-Stokes equations of fluid dynamics (Anderson, 

1982). These partial differential equations (PDEs) model flow with a high 

degree of fidelity but are complicated, computationally inefficient and 

impractical for many applications. The solution procedure can be simplified 

significantly if the following assumptions are made: 

- viscosity is negligible, 

- heat conduction is negligible and 

- gravitational force upon air molecules is negligible. 

For propagation of shocks over an ideal surface, the inertia, pressures 

and physical domain involved are large in comparison to the thin boundary 

layer and its effects along the smooth flat surface. This means that the 

pressure variations normal to the surface are negligible through the 

boundary layer and can be ignored. It is assumed then, that the pressure 

distribution at the surface is due entirely to the flow occurring above the 

boundary layer, therefore, viscosity can be ignored. 



Heat conduction between the surface and air can also be ignored. As 

stated above, an ideal surface is flat. Another important property of our 

hypothetical surface is that it is perfectly reflective. Since, heat conduction 

can not occur across a perfectly reflective surface it can be ignored. 

Lastly, viscosity and heat conduction within the air itself can be 

ignored. Assuming the atmosphere is homogeneous, the velocity and 

temperature gradients within the flow field are very small. As a result 

viscosity and heat conduction within the air can be neglected. Under such 

conditions the air is said to be adiabatic and inviscid. 

An important thermodynamic property arises from these assumptions. 

If viscosity and heat conduction are ignored then the flow is considered to be 

isentropic. This means that as a particle travels through the medium, the 

specific entropy at the particle remains constant. The nature of the 

compressible flow and its interaction with the surface is now fully defined. It 

is inviscid and adiabatic and therefore isentropic. 

One important exception occurs at the shock front where compressive 

forces result in significant velocity and temperature gradients. These 

gradients provide the necessary dissipative mechanism for the transfer of 

energy and momentum across the shock (Courant and Friedrichs, 1948). 

Here, viscosity and heat conduction effects are significant, the specific 

entropy is no longer constant and our simplifying assumptions are in 

jeopardy. 
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These effects are dispersive and result in a thin shock front across 

which the solution is smooth. However, the width of this region is roughly 

the mean free path of the air molecules and is microscopic when we again 

consider the length of the physical domain. Given the steep gradients that 

occur and the relative width of the shock front, we can model the shock front 

mathematically as a discontinuity and once again ignore viscosity and heat 

conduction as a good approximation. In fact, if we obtained the smooth 

solution using the Navier-Stokes equations and compared it with the 

discontinuous solution obtained via our assumptions, it would be difficult to 

distinguish one solution from the other (LeVeque, 1992). 

It is important to note that shocks are irreversible thermodynamic 

processes that result in an increase in entropy, i.e. specific entropy is not 

constant across this region. In modeling the shock front as a discontinuity, 

viscosity and heat conduction effects are not ignored but are approximated in 

such a way that their terms can be eliminated from the governing equations. 

In this region, the flow is not isentropic and therefore, isentropic relations do 

not apply. 

B. Governing Equations 

Application of the assumptions made in Section A above reduces the 

complex Navier-Stokes equations to another coupled system of PDEs that are 

nonlinear and strictly hyperbolic (LeVeque, 1992). This set of equations is 



commonly referred to as the Euler equations or hyperbolic conservation laws 

of gas dynamics. 

In general vector notation, these equations are: 

Üt+F(Ü)x+G(Ü)y+H(Ü)z=0. (1) 

Note that each vector above is a function of both space and time where x,y, 

and z are the Cartesian coordinates and t represents time. Throughout this 

document, subscripted independent variables indicate partial derivatives. 

In Equation (1), 

U = 

P 
pu 

pv 

pw 

E 

(2) 

is a vector of the conserved quantities: mass, momentum (x component), 

momentum (y component), momentum (z component) and energy. More 

accurately, each vector element above represents a density function for the 

corresponding conserved quantity such that 

jUm(x,y,z,t)dV 

is the total quantity of the mth conserved variable over the control volume at 

time t (LeVeque,1992). In Equation ( 2 ) above,p is density, and u,v, and 

w are the components of particle velocity in the x, y and z directions 

respectively.  E is the total energy density, 
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E = -pV-V + pe, (4) 

where e is the specific internal energy to be defined later and V is the 

particle velocity vector. 

Vectors 

F(Ü) = 

pu pv pw 

pu2 + p puv puw 

pvu , G(U) = pv2+p and H(U) = pvw 

pwu pwv pw2 + p 
u(E + p)_ v(E + p) w(E + p) 

(5) 

represent the flux of these conserved variables in the x, y and z directions 

respectively. 

Variablesp,u,v,w, andpare often called primitive to distinguish 

them from the conserved quantities (Toro, 1997). Primitive variables are 

those variables that can be controlled and measured experimentally. In 

practice, it is convenient to transform Equation (1) into its primitive form: 

Wt + F(W)X + G(W)y + H(W)Z = 0. 

where Wean be expressed in terms of C7as 

(6) 

W = 

fp" (                    vx                    \ 
u u2M 
V = u3M 
w u4M 

KP, Sr-i)(u5 -(O.S/E/J^
2
 + u3

2 +u4
2)\ 

(7) 



Equation (1) can be simplified further if we take advantage of 

problem symmetry and assume uniform flows accordingly. If flow in the z 

direction is uniform, Equation (1) reduces to the two-dimensional Euler 

equations, 

Üt+F(Ü)x+G(Ü)y=0. (8) 

An infinite high-pressure cylinder is an example of this type and will be 

explored in Chapter 6. Similarly, if we assume uniform flow conditions in 

both y and z, reduction of Equation (1) results in the one-dimensional 

Euler equations, 

Üt+F(Ü)x=0. (9) 

Modeling constant cross sectional area shock tubes is a classic application of 

Equation (9 ). In Chapters 3 and 4, problems of this type are explored. In 

either case, we are faced with a dilemma. There are m +1 unknowns in m 

equations, so the problem is underspecified. 

C. Important Thermodynamic Relations 

To solve the Euler equations, an appropriate equation of state is used 

to derive a closure condition. Here we assume the atmosphere to be 

comprised of a diatomic polytropic gas where pressure is related to density 

and temperature by the ideal gas equation of state: 

p = pRT (10) 
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where R is the specific gas constant and T is the temperature. For an ideal 

gas, R is related to the specific heats at constant pressure and volume such 

that 

R = cp-cv (11) 

where cp is the specific heat at constant pressure and cv is the specific heat 

at constant volume. By polytropic we mean that the specific internal energy 

is a function of temperature alone such that 

e = c,T. VJ (12) 

Direct substitution of Equations (11) and (12 ) into Equation (10 ) yields 

the following important thermodynamic relation for specific internal energy, 

pressure and density: 

e = 
ö^ij? <13> 

where y is defined to be the ratio of cp to cv. For air at pressures below 100 

psi,/ «1.4. 

As stated earlier in Section A, the flow is isentropic everywhere except 

at the shock front. This leads to the important isentropic relation 

P*pr. (14) 

When this relation is applied in Equation (10 ), the following important 

isentropic relation is obtained: 

11 



_£_ 
Po Po, 

(15) 

where the subscript zero indicates initial conditions. 

Another important quantity in the study of compressible flows, and in 

particular flows where shocks occur, is the local speed of sound, c, where 

(dp"* c2 = 
dp (16) 

\wrj8 

Differentiation of Equation (14) yields the local speed of sound for a 

polytropic gas given constant entropy: 

r p 
(17) 

At this point we now have all the principle equations necessary to build our 

numerical methods and solve shock problems. In the next chapter, we 

introduce and solve an initial value problem (IVP) of importance called the 

Riemann problem. As we shall see, this IVP forms the backbone of all our 

numerical techniques. 
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Chapter 3: The Riemann Problem and Its Solution 

A. The Riemann Problem 

The Riemann problem for the one-dimensional Euler equations is the 

IVP with initial conditions (Chang and Hsiao, 1989): 

UifcO)    x<0, 
U(x,0) = (18) 

U4(x,0)   x>0. 

The domain is centered about the discontinuity at x = Om and includes all 

points (x,t) in the x-tplane such that -oo < x < a> and t> Os. In practice, 

the domain is restricted about a finite spatial interval, - Ax/2 < x < Ax/2. 

An important mathematical property of the solution is its self- 

similarity nature (LeVeque, 1992; AGARD, 1961). Provided the initial 

discontinuity is located at x = Om, the solution is a function of one variable, 

C, =x/t, suchthat 

Ü(x,t) = Ü(C). (19) 

Given Equation (19 ), the solution is said to be similar at different times 

along characteristic curves, where C, = constant, in the x -1 plane. It follows 

that because ^ = constant, dx/dt = constant so the solution propagates along 

these characteristic curves at a constant speed as well. 

This self-similarity property forms the basis of a powerful technique 

used to solve linear first-order hyperbolic PDEs called the method of 

characteristics (AGARD, 1961; Abbott, 1966; Anderson, 1982). In the method 
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of characteristics, the solution to a linear hyperbolic system of m PDEs is 

obtained by solving two sets of m ordinary differential equations (ODEs): set 

one defines the characteristic curves along which the solution remains 

constant and propagates and set two defines compatibility equations which 

hold true along these characteristics. Unfortunately, the Euler equations are 

nonlinear resulting in discontinuities where characteristics cross, so the 

solution procedure is not so direct. Despite this, much of the characteristic 

information obtained via the method of characteristics still remains useful. 

B. General Wave Structure of the Riemann Problem 

The method of characteristics plays an important role in defining the 

general wave structure of the Riemann problem. Using the method of 

characteristics, we obtain three characteristic fields, C~, C°, and C+with 

characteristic speeds (AGARD, 1961; Toro, 1997): 

A1=u-c, ^ go) 

h =u ( 21) 

and 

Z3=u + c (22) 

respectively. The superscripts -, 0, and + reflect the role of c, the local speed 

of sound, in the above equations. 

Each characteristic field presented above defines a wave in the RP 

domain such that wave 1, is defined by C~ characteristics, wave 2 by 
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C characteristics and wave 3 by C+characteristics. In the x-tplane, these 

waves partition the RP domain into four regions as shown in Figure 1: 

R1,R2,R3 andi?4 where 

(,?, 

W(x,t) = 

W1=(pi,u1,p1f 

W2 =(p2,u2,P2)
T 

W3 =(p3,u3,p3)
T 

W4 =(p4,u4,p4)
T 

in Ri 

in R2 

in R3 

in R4 , 

(23) 

C/(x,0has been recast into its primitive variable form using Equation ( 7 ) for 

convenience. Throughout most of our discussion and computations, the 

primitive variable form can and will be used. 

The outer-waves, 1 and 3, can be either rarefactions or shocks 

depending upon their characteristic fields. If the characteristic field is 

divergent the wave is a rarefaction; if it is convergent the wave is a shock (see 

Figures 2 and 3). Until the true nature of the wave is determined, each wave 

is represented by a pair of rays meant to represent the head and tail 

characteristics of a rarefaction. The inner-wave, wave 2, is always a contact 

surface and is represented by one ray. The large arrows in Figure 1 show the 

motion of these waves. 
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wave I ^a" 

head 

tail   wave 3 

head 

Figure 1: General Wave Structure of the Riemann Problem 

If the outer wave is a rarefaction, the solution varies continuously 

along divergent characteristics that lie between the head and tail. For 

example, we see that the C° characteristic field defines a left traveling 

rarefaction wave as depicted in Figure 2. Because the characteristic field is 

tail 
t 

t 

head y?\ \\ v II II 
^5$^ Y\V\\ \\\ V. a 

Figure 2: Charcteristics Defining a Left Traveling Rarefaction 
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divergent, pressure and density decrease as we travel across the expansion 

fan from head to tail. The particle velocity may increase or decrease 

depending upon whether the rarefaction is traveling to the left or right. If 

wave 1 is a rarefaction, particle velocity increases. If wave 3 is a rarefaction, 

particle velocity decreases. The speed of the rarefaction wave is taken to be 

that of the head characteristic. 

If the outer wave is a shock, characteristics converge and cross as 

shown in Figure 3 for a right traveling shock. The solution is discontinuous 

Junction of 
Characteristics 

► JC 

Figure 3: Characteristics Defining a Right Traveling Shock 

at the point where they meet. By convention, the head and tail are dropped 

and the shock front is represented by a bold solid line that represents points 

where these characteristics cross. Each primitive variable experiences an 

instantaneous jump across this line as we cross the pair of rays from head to 

tail. The speed of the shock wave is not that of the head characteristic since 
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this wave itself is not a characteristic. The speed of the shock wave will be 

introduced later. 

As stated above, the middle wave is always a contact surface. Here, 

characteristics run parallel to the contact surface as shown for a right 

traveling contact surface in Figure 4. Particle velocity and pressure are 

Figure 4: Characteristics Defining a Right Traveling Contact Surface 

constant across the contact surface, i.e. 

u, s u2= w3 

and 

P* - Pi = Pi • 

(24) 

(25) 

Because there is no pressure differential across wave 2 and particle velocities 

are the same on either side, the flow remains separated resulting in a 

discontinuity in density. The region that lies between waves 1 and 3 is called 

the star region, Ä*. Note that i?* consists of R2 and i?3. 
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The complicated nature of the waves described above means the 

solution of the Riemann problem can have four possible wave configurations 

as shown in Table 1. R, C and S 

wave 1 wave 2 wave 3 

R C S 
S C R 
R C R 
S C S 

Table 1: Possible Wave Configurations 

indicate whether the wave is a rarefaction, contact surface or shock. Two- 

rarefaction and two-shock configurations can occur when waves interact with 

each other or reflect at boundaries. 

C. Important Wave Relations 

Recall that Wx and W4 are given by Equation ( 7 ). To solve the 

Riemann problem we must find the unknown states, W2 and W3, that lie 

within R*. Algebraic relations are derived from physical principles in any 

fluid dynamics text and can be used to connect known states to the unknown 

states, W2 and W3, across waves 1 and 3 respectively (Anderson, 1982; 

Courant and Friedrichs, 1948). E.F. Toro has developed relations that 

connect these states via the following particle velocity equations (1989): 

u2=ux-fx(P.,Wx) (26) 

and 
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U3=«4+MP;Wt). (27) 

Recall that the outer waves can be either rarefactions or shocks. This means 

the definition of the pressure functions, /, and/4, is dependent upon the wave 

types. If the outer wave is a shock, the Rankine-Hugoniot relations are used 

to derive these functions. If the wave is a rarefaction, the compatibility 

equations, called Riemann invariants, along the C~and C+characteristics 

and isentropic relations are used. Application of these relations results in the 

following generalized pressure functions (Toro, 1997): 

ft(P;Wz) = 

(p*-Pe) 
( \lA 

P4(p*(y + 1) + Pf(y-1)) 
if p* > pg      shock 

2 c, 

7-1 

(28) 

if p* </?£ rarefaction 

where E, represents the known constant state, 1 or 4. 

Within i?„, ut is constant, that is 

u3 —u2 =0. (29) 

Substitution of Equations (26 ) and ( 27 ) into Equation ( 29 ) yields Toro's 

nonlinear algebraic pressure function (Toro, 1997): 

f(pt,WlA)^A(P.A) + MP.A) + ^-"l=0. (30) 

Given constant states 1 and 4, pt is found numerically using a root solver. 
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Once p„ is found, the other state variables follow directly. The particle 

velocity within the star region can be calculated using either Equation ( 26 ) 

or (27). However, because/?, is a numerical approximation, albeit a rather 

accurate one, obtained using a root solver, u, is calculated as (Toro, 1997): 

«.=-(«,+ u4)+-(/4-/,). (31) 

Unfortunately, density within R2 and R3 is dependent upon the wave 

types of the outer waves and therefore no simple relation exists to calculate 

these variables. We must again use a generalized density function derived 

from the same relations used above to derive Equation ( 28 ). To calculate p2 

and/*,, the following generalized function is used (Toro, 1997): 

d^±i(p*,p^,p^) = 

P$ 
^fr+D + Pgfr-l)^ 
p^y-l) + p^(r + l) 

1/ 

if p» > p£ shock 

r     \ (32) 

/>* 
\P*j 

if pt < pg     rarefaction 

where £ again denotes variables from the known constant states. 

D. Toro's Exact Riemann Solver (ERS) 

With these relations now in hand, we seek the exact solution to the 

one-dimensional Euler equations given the initial conditions in Equation 

(18 ). Unfortunately, no closed form solution exists. We can however, 

approximate the solution with as high a degree of accuracy as our 
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computational resources will allow. To find the exact solution, we have 

chosen Toro's exact Riemann solver for its simplicity and computational 

efficiency (Toro, 1989). 

The exact Riemann solver consists of three principle steps, as shown in 

Figure 5, beginning with the most computationally expensive portion of the 

(1) Star Step 

Calculate star variables from 
known constant states. 

(2) Sample Step 

Sample solution within constant 
regions. 

(3) Rarefaction Step 

Sample solution within expansion 
fan. 

Figure 5: Exact Riemann Solver Solution Procedure 

entire algorithm, the star step. In this step, the variables within i?, are 

obtained given known states Wx and W4 using the wave relations presented 

in Section C. Once W2 and W3 are known, the solution is sampled at a user- 

defined number of points. This is called the sample step. If, during the star 

step, one of the outer waves is identified as a rarefaction, the sample points 

within the expansion fan are determined using another set of equations. 

The Star Step 

Toro's exact Riemann solver begins with the star step. Notice from 

Equations ( 31) and ( 32 ) that u*, p2 andp3 are all functions of the 
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remaining star variable, p*. This means p, must be found before the 

solution can be obtained fully. The pressure within the star region, p*, is 

approximated by finding the root of Equation ( 30 ) iteratively using the 

Newton-Raphson method. This method takes the form (Burden and Faires, 

1993): 

pik)    <A-i)    fipS'-vA.Wt) 

*      *      ^/(*p-»,*i.fr4) 
(33) 

dp* 

where k denotes the kth iteration. It is important to reiterate here the fact 

that both pressure functions, /jand/4, are defined differently depending upon 

the nature of the outer-waves. Therefore, if we wish to converge rapidly to 

the solution, waves 1 and 3 must be first be characterized and then the 

appropriate pressure function applied. 

Given /' * 0 and a sufficiently close initial approximation, pl0), 

Equation ( 33 ) will converge quadratically to the root. The find an adequate 

initial guess, Toro's adaptive initial guess generator is used (see Appendix A). 

The resulting approximation is considered adequate when the relative error 

is less than the user-defined error, s, (Toro, 1989): 

pP-p?-l> 
x2 ipp+p?-1*) 

<£■ (34) 
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After p, is found, the remaining star variables are calculated per 

Section C and the solution within constant regions 1 through 4 is fully 

obtained. Now the solution is sampled across the computational domain. 

The Sample Step 

In the sample step, we sample the solution at a user-defined number of 

points. The solution at (x,t) is obtained by exploiting the self-similar nature 

and wave structure of the Riemann problem. Recall that for the solution to 

be self-similar, the Riemann problem domain must be symmetric about the 

initial discontinuity located at x = 0 as shown in Figure 6.  S1, S2 and 

S3 represent the speeds of waves 1, 2 and 3 respectively. In the laboratory 

X 

Figure 6: Riemann Problem Local Reference Frame 
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reference frame the discontinuity is located at x = Iy   where L represents 

the physical length of the problem. The physical domain is typically 

[0,L]x [O,T] where T is the desired solution time. To transform from the 

physical to computational domain, the following coordinate transformation 

must be performed to meet the conditions required for similarity: 

L 
x = x-- (35) 

where x and x represent position in the local and laboratory reference frames 

respectively. 

Now we take advantage of the similarity properties described in 

Section B to determine W(x, T). Here we define 

S=f (36) 

A 

where S is the speed required to move to x at the time T starting at 

(Om, Os) in the Riemann problem reference frame. 

Given S, the solution is easily obtained by comparing it with the wave 

speeds. If no rarefactions are present, the solution is: 

Wx if S<S1 

W2 if S.KSKS2 

W3 if S2<S<S3 

W4 if s>s4 

W{x,T) = (37) 

where the wave speeds are (Toro, 1991): 
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s1 = 
"l-Ci 

r + ip. { y-i 
2r A    2r 

"l-Ci 

#" P, > Pi       shock 

if pt < px   rarefaction 

(38) 

and 

S2=ut, 

S3 = 

u4+c4 
r + ip. , r-i 
2r P4    2r 

"4 +C4 

*/ P. > P4       s/iocfe 

i/ p, < p4  rarefaction 

(39) 

(40) 

If a rarefaction is present, the solution within the expansion fan is calculated 

using a different set of equations. This occurs in the rarefaction step. 

The Rarefaction Step 

As stated earlier, if a rarefaction is present special care must be taken 

because the solution varies continuously between the head and tail of the 

expansion fan. Figure 7 depicts a typical solution of the Riemann problem 

that consists of a left traveling rarefaction, right traveling contact surface 
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wave 2 

wave 3 

Figure 7: Typical Wave Structure 

and a right traveling shock. The solution is desired at point (x, T). We 

determine it lies within the expansion fan using the following relation: 

ihead tail 

where 

and 

gneaa < g < £u 

Shead      ,,       „ 
1 = ul ~ cl 

1     =u*-c2. 

(41) 

(42) 

(43) 

To determine the solution within a left rarefaction, the following set of 

equations is used (Toro, 1997): 
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W(an{S) = 

p = p\ 
2.+^z2_(Bl_Ä) 

-,2/ 

7 + 1   (r + l)ci 

/r_i 

2(7-1      A U = -| CX + - Ux + 6 
Y + V J 

P = Pl 
2. + -J^iUl-S) 

7 + 1   (y + l)^ 

2r/ 
7-i 

(44) 

Similarly, we use the following relations to determine if (x, T) lies within a 

right rarefaction (Toro, 1997). 

Qitail      or   - ohead (45) 

ihead UA +c4 (46) 

Stall      ,,    . „ 
3      = U* + C3 . (47) 

If a right rarefaction is present then the following set applies (Toro, 1997): 

Wlm(S) = 

P = P4 
r-i 

-,2/ 

7 + 1    (7 + l)c4 
(u4-S) 

y-i 

u 

P = P4 

2   ( 7-1 c' -c4 + - u4 +b 
7 + 1 

2 7-1 
7 + 1    (7 + l)c4 

<u4-S) 

2r/ 
'r-i 

(48) 

The entire solution of the Riemann problem is now defined. 

E. The Sod Shock Tube Problem 

To illustrate a typical solution to the Riemann problem, a mild shock 

tube problem is solved using the exact Riemann solver with 10001 points 

28 



(Figures 8-11). The solution consists of a left rarefaction, a contact and a 

shock on the right. The wave structure is similar to that depicted in Figure 

7. The shock tube is one meter long with a diaphragm positioned at 

x = 0.5m. The following initial conditions exist: 

Tf>/   m      Wi=(l.000%/m3,0.0m/s,1.000Paf   x<0.5m 
W \X,U) = < v ' 

W4 = [0.125kg/m3,0.0m/s,O.lOOPaf x > 0.5m 
(49) 

This problem was first presented and used by Sod (Sod, 1978). 

At t = 0s, the diaphragm is instantaneously removed resulting in 

particle flow from left to right down the pressure gradient. As this flow 

continues it accelerates such that particle velocities become supersonic 

relative to the ambient conditions or quiet conditions downwind (Figure 9). 

As a result, compression waves coalesce forming a shock that travels to the 

right into the low-pressure region (Figure 10). Directly behind the shock, a 

contact surface follows traveling at a lower speed (Figure 8). The contact 

surface occurs because the pressure and particle velocity behind the shock is 

constant within iü*. This results in a difference in internal energy between 

the colder air to the left of the contact discontinuity and the shock-heated air 

to the right as observed in Figure 11. In the opposite direction, a rarefaction 

wave travels to the left into the high-pressure region. Notice in Figure 9 that 

the particle velocity is positive and increases across the rarefaction wave. 

The expansion fan occurs due to the low density region created locally as the 
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heated gas moves rapidly to the right down the pressure gradient. This 

results in a region where pressure, density and temperature decrease. 
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Figure 8: Density Profile at t=0.25s 
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Figure 9: Particle Velocity Profile at t=0.25s 
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Figure 10: Pressure Profile at t=0.25s 
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Figure 11: Specific Internal Energy Profile at t=0.25s 

To test the implementation of the exact Riemann solver, we solved five 

shock tube problems in addition to Sod's: 

- Toro's shock tube problem (1991), 

- two-rarefaction shock tube problem (Einfeldt and others, 1991), 

- left half of Woodward and Colella's blast problem (1984), 

- right half or Woodward and Colella's blast problem (1984) and 

- two-shock shock tube problem (Toro,1997). 

In each case, we found the results to be in agreement with those presented in 

the literature. 
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Chapter 4: One-dimensional Shock Code Implementation 

While the exact Riemann solver provides an exact solution 

unfortunately, it solves only the simplest of problems, namely symmetric one- 

dimensional shock tube type problems. To solve more interesting problems 

we must turn to finite volume techniques. Here we describe, implement and 

test several numerical techniques to build a second-order accurate, one- 

dimensional shock code. 

A. Initial Boundary Value Problem 

In this chapter we will consider and subsequently solve the following 

general initial boundary value problem (IBVP): 

Ut+F(p)x=Ö 
-n        • (50) 

U(x,0) = U°(x) 
IBVP = 

Unlike the RP described in the last chapter, no symmetry is assumed. In the 

most general sense, Ü°(x) is a piecewise function that defines multiple 

discontinuities at t = 0s over the spatial domain, [0, L]. The boundary 

conditions along x = 0m, and x = L are explicitly defined to be either 

transmissive or reflective. These boundary conditions arise from the 

numerical requirement to model flows along physical and computational 

boundaries. 
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B. Discretization of the Domain 

To solve Equation (50 ), the domain, [0, L] x [0, T], is discretized in the 

x-t plane forming a rectilinear mesh as shown in Figure 12. Mesh indices i 

and n represent the ith cell at the nth time level. The spatial domain is 

t 

LU+\ 

tn 

\. 

i-O n 
k iu u u- ■  o  

At 

1 ro n D  o  

Ax 

i-1 i + 1 i max 

Figure 12: Discretized Domain 

subdivided into I" computational cells of uniform width Ax such that: 

Ax = —. 

The center of the ith computational cell is located at: 

(51) 

X; — L 
a -O.5N 

for i=l,2,.../. (52) 

The extent of the ith cell is defined by faces £ — 1/2 and £ + 1/2 located at 
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xi-l/2 ~ L K-T) (53) 

i 

and 

xi+i/2=Lij\ (54) 

where 

A* = xi+i/2 ~ xi-i/2 ■ (55) 

Notice in Figure 12 that each time step, At, is not constant but 

determined adaptively (Toro, 1997): 

C Ar 
*"=-S-*«» = <U...tf. (56) 

"max 

where C is called the Courant coefficient and -S£ax is the estimated 

maximum wave speed across the spatial domain at time£n. 

We now have a computational mesh that is fully defined with mesh 

points located at the center of each computational cell at every time level. As 

we numerically solve Equation ( 50 ), cell-averaged values of the solution, 

U(x, t), are assigned to mesh points and are denoted: 

Ü?=Ü(Xi,tn). (57) 

C. Conservative Discretization of the Euler Equations 

Recall from Chapter 3 that the solution to the Euler equations is not 

smooth everywhere. We have shown that discontinuities occur at the shock 

front and contact surface. In these regions, the solution is not differentiable 
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and the differential form of the Euler equations fails. The PDEs are 

integrable over these same discontinuous regions so we recast the PDEs into 

the following form: 

$[üdx-F(Ü)dt]=0. (58) 

,n+l 
facei-l/2 U-l+ facei+1/2 

tn 

i             i 

!    Fi-i/2 — 

r                 ! 

■►             !     Fi+1/2 - 

xi-l/2 xi 

Ü? 
X, i+1/2 

Figure 13: Arbitrary Mesh Rectangle 

If we apply Green's theorem in the x -1 plane and integrate Equation ( 58) 

over an arbitrary rectangle, shown in Figure 13, the conservative discretized 

form is obtained: 

ur^m+^Kyz-F^}. (59) 

Uf+ and Uf are space-integrated averages of the solution over cell i where 

Üf+l=—\Xi+V2Ü(x,tn+l)dx 
Ax J*;-i/2 

(60) 

and 

U, f=^-\Xi+lßÜ(x,tn)dx 
AX Jxi-l/2 

(61) 
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Similarly, i^_jy2and Fi+y2> represent the time-integrated averages of the 

physical flux of Ü through cell faces i —1/2 and i + 1/2 over time step A«. 

These flux functions are obtained in the following manner: 

Fi-V2= — \tn   F{Ü(xi_y2,t))dt (62) 

and 

Fi+H2= — [n   F\p{xi+V2,t))dt. (63) 

Equation ( 59 ) is a direct mathematical statement of the conservation 

laws. It describes the variation in cell-averaged variables over At which 

result from the balance of the time-averaged fluxes at the cell faces. The 

solution procedure is obvious.  Ü?+1 is calculated from Ü? and the net flux , 

W-i/2 -Fi+i/2), through cell i. Unfortunately, F;_]/2and Fi+y2 are not 

known a priori. Therefore, we need a numerical scheme that approximates 

the flux through cell i given Üf^ and Ü?. 

D. Godunov's Method 

To solve the IBVP, we use Godunov's conservative upwind scheme 

(LeVeque, 1992; Hirsch, 1990). This method assumes the solution, Ü(x,t), 

has a piecewise constant distribution of cell averages over the spatial domain 

at each time level. At t = 0s, we map Ü°(x) onto our computational domain 

using cell-averaged values as defined by Equation (61). For example, let's 
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assume a discontinuity exists at x = x3 as depicted in Figure 14. Then the 

cell-averaged value assigned in cell 3 is simply C/J = (ü7| + E/J )/2. 

a m 

kW 

KW* 

Ü(x,tn) 

U? 

Cell Center 

-►   X 

Figure 14: mth Component of U(x,tn) Mapped onto Discretized 
Spatial Domain 

At this point, we have defined a set of /constant states that may be 

interpreted as / -1 pairs, [Üf ,Üf+l\. Each of these pairs is separated by a 

discontinuity that occurs at the shared cell face. Recall Ft_y2 and Fi+y2 are 

not known but are required if the solution at tn+1 is to be found. 

Fortunately, our interpretation of the solution distribution suggests a 

simple procedure. We can calculate the unknown fluxes by defining and 

solving a series of local Riemann problems exactly at each cell face: 
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IVP = 
Üt+F(Ü)x=0 

(64) 
U(x,0) 

where 

' Ü;     X<0 
U(x,0) 

rr «■ <65> Ui+1 x>0 

Recall that, in practice, we solve the Riemann problem in primitive variable 

form as stated in Chapter 3. From the exact solution of Equation ( 64), we 

obtain the constant solution along face i + 1/2. Evaluation of Equations ( 62 ) 

and ( 63) is now trivial. In general, the Godunov flux is: 

FG
+
F

V2=Hw{xl+y2)) (66) 

where W(xi+y2) is dependent upon position only and represents the primitive 

variable state along face i + 1/2. Once Ft_y2 and Fi+y2 are known, we 

obtain Üf+l using Equation ( 59 ). 

E. Implementation of Godunov's Method 

To calculate the solution at tn+1 from tn, we implement Godunov's 

method using six steps as shown in Figure 15. In step 1, boundary conditions 

are applied to fictitious cells, 0 and 1 + 1, called phantom cells. As we shall 

see, these cells are required to obtain the solution in border cells 1 and /. 

Once boundary conditions have been applied, A£ is determined subject to the 

Courant-Friedrichs-Lewy stability condition. 
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(1) Apply Boundary 
Conditions 

Set primitive variables in phantom 
cells. 

,r 

(2) Calculate At 
Determine the maximum allowable 
time step IAW stability condition. 

,r 

(3) Calculate W(xi+1/2) 

Solve Riemann problems at every 
physical cell face exactly. 

(4) CalculateWfan(xi+1/2) 

Calculate solution within expansion 
fan of a sonic rarefaction. 

(5) Calculate Fi+1/2 

Calculate Godunov flux through each 
physical cell face. 

(6) Update Solution 

Calculate Ü-l+1 in every physical 
cell. 

Figure 15: Godunov Solution Procedure 

In step 3, we solve all 7 +1 RPs to obtain W(xi+1/2) along each 

physical cell face. By physical we mean those faces or cells that lie within the 

actual spatial domain, i.e. no phantoms. Most of our computational effort 

and time is spent in this step solving Riemann problems exactly. Step 4 

handles rarefactions where they occur. Once the solution is obtained along 

each cell face, we calculate the Godunov flux in step 5 using Equation (66 ). 
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Finally, we calculate Uf+l in each cell using Equation ( 59 ). Next, we will 

look at steps 1, 2, 4 and 6 in greater detail. Steps 3 and 5 are 

straightforward. 

Step 1: Phantom Cells and Boundary Conditions 

Until now, we have ignored the numerical difficulties we face along the 

boundaries of our spatial domain. Namely, border cells, 1 and I, cannot be 

updated using Equation ( 59 ) without F0 and FL. To define these fluxes, we 

apply boundary conditions along x = 0m and x = L. 

Traditionally, these boundary conditions manifest themselves in the 

form of boundary functions that explicitly define the unknown quantities of 

interest. Here, we take a different approach and define cell-averaged states 

K 
A 

VPl   J 

(67) 

and 

W?+1 = 

f      n  \ 
Pi 

±un
I 

KP'  J 

(68) 

within phantom cells as depicted in Figure 16 (Toro, 1997). 
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Border Cells 

x = L 
7 + 1 

-► x 

Phantom Cells 

Figure 16: Phantom Cells 

In modeling shocks, we consider only two types of boundaries: physical 

boundaries that are reflective and computational boundaries that are 

transmissive. To model the reflection of shocks and other waves at a 

perfectly reflective physical barrier, we set the primitive variable states 

within each phantom cell in the following manner: 

K = 
f P^ 

\Pi J 

for a reflective boundary along x = Om (69) 

and 

W?+1 = 

f Pi^ 

-Uj 

\Pl J 

for a reflective boundary along x = L 
(70) 
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The solution at reflective boundaries will consist of either two-shocks or two- 

rarefactions. 

Transmissive boundaries are applied to restrict our physical problem 

to a finite computational domain. Ideally, the flows should propagate 

through hypothetical boundaries without any effect. For transmissive 

boundaries we simply set the unknown phantom state equal to that in the 

corresponding border cell, i.e. 

WQ = Wi   for a transmissive boundary at x = Om ( 71) 

or 

Wj+1 = Wf for a transmissive boundary at x = L. ( 72 ) 

This technique works reasonably well in one-dimension. In multiple 

dimensions however, noticeable computational, or false, reflections occur. 

The inability to model transmissive BCs in multiple dimensions has led to a 

significant and ongoing research effort. 

With the state of the phantom cells determined, local Riemann 

problems may now be solved along the boundaries to calculate the unknown 

fluxes, F0 and FL. 

Step 2: Determination of a Stable Time Step 

Before we can move forward in time to solve Riemann problems and 

update the solution an appropriate time step must be determined that meets 
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the Courant-Friedrichs-Lewy stability requirement (Courant and Friedrichs, 

1948): 

Smax — - ! Ax 
(73) 

where <S^ax is the maximum wave speed that occurs across the 

computational spatial domain. The importance of this condition in properly 

selecting At becomes evident if we consider adjacent RPs. In Figure 17, the 

solution to the left Riemann problem has a strong shock wave traveling 

rapidly to the right. If At is too large as depicted in Figure 17, the shock 

wave travels far enough to the right that it perturbs the solution we seek 

along face i + 3/2. This violates the assertion made earlier that 

RP(i,i + l) RP(i + l,i + 2) 

Figure 17: Wave Propagation Through Adjacent RPs 

W(xi+1j2) is constant. This will result in an incorrect flux calculation 

creating numerical errors that propagate outward affecting other cells. As a 

result, the code rapidly becomes unstable and crashes. To prevent this, the 

time step is reduced to AT as shown. 
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Ideally, we would like to maximize the computational efficiency of the 

code by taking the largest time step possible: 

At = ^T~ (74) 
"max 

where S^ax satisfies Equation ( 73 ) exactly. Unfortunately, the maximum 

wave speed is not known a priori but must be estimated (Toro, 1997): 

Smax=max(|uj| + Cj). (75) 
i v      ' 

This estimate is chosen because it extends easily into multiple dimensions. 

However, it requires some caution. 

During the first few time steps, our estimate is dominated by the local 

speed of sound and results in a significant underestimate of S^ax. If we 

simply substitute S^ax into Equation ( 74) we will calculate a At that is too 

large and the code will become unstable. To prevent such an occurrence, we 

introduce a scaling factor, C, called the Courant coefficient into Equation 

( 74) that satisfies 0 < C < 1. Each time step is then calculated adaptively 

using Equation ( 56 ). During the first several time steps, Toro suggests 

C = 0.2 (1997). At later time steps, the Courant coefficient is set to 0.9 to 

increase At and computational efficiency while maintaining stability. 

Step 4: Sonic Rarefactions - A Special Case 

When solving RPs, we must consider a special case - sonic rarefactions. 

These rarefactions occur when the head and tail of the expansion fan travel 
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in opposite directions. When this occurs, the solution lies within the 

expansion fan. In order to calculate the solution, we must determine the 

directions of travel and apply the appropriate rarefaction equation, Equation 

( 44) or ( 48), presented in Chapter 3. 

Step 6: Update Cell Solution 

At this point, the solution to all the Riemann problems are known, the 

solution obtained along each cell face and the corresponding fluxes 

calculated. It is important to remember that while the primitive variable 

form is used in solving the Riemann problems and calculating the unknown 

fluxes, only the conservative formulation will result in an accurate solution. 

The solution, £/f+1, is calculated using Equation ( 59 ) given Üf and fluxes 

Fi_y2 and Fi+y2 ■ Before the next time step begins, W-1*1 is calculated from 

ur1- 
F. Illustration of Godunov's Method 

To illustrate the important numerical properties of Godunov's method, 

we revisit the classic shock tube problem presented in Chapter 3. Recall that 

the solution consists of a left traveling rarefaction, right traveling contact 

surface and a right traveling shock wave. The solution was obtained after 

125 time steps, t = 0.25s, using a course computational mesh of 200 cells. 

During the first five time steps, the Courant coefficient was set to 0.2. After 

that, it was set to 0.9. Boundary conditions were transmissive. 
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We present the density profile obtained via Godunov's method in 

Figure 18. For comparison, the exact solution obtained in Chapter 3 is shown 

as well. The solution is smeared near each discontinuity. This undesirable 

1.20 

1.00 

— ERS 
°  Godunov-ERS 

0.00 

0.00 0.20 0.40 0.60 

x(m) 

0.80 1.00 

Figure 18: Godunov vs ERS - Density Profile at t=0.25s 

behavior is common among first-order methods and is caused by excessive 

numerical viscosity. 

Clearly, this smearing is not equal in severity everywhere. Notice that 

the shock front is spread over six cells while the contact surface occurs over 

23 cells. This disparity in resolution is common among Riemann problem 

type methods and is a direct result of the characteristic nature of each wave. 

For a contact wave, the characteristics run parallel to one another and it is 
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the difference in internal energy that results in the density discontinuity. 

Therefore, the contact discontinuity is not easily resolved. Shock wave 

resolution is better because the characteristics run into each other. The 

smearing that occurs along the rarefaction fan occurs at the head and tail 

where the first derivative of the solution is discontinuous. The rarefaction 

wave becomes resolved quickly as we refine the mesh. 

Before we leave this section, several positive features of Godunov's 

method are pointed out. The position and speed of each wave are predicted 

accurately. This is very important because we want to model shocks 

correctly. The monotonic behavior of the solution near discontinuities is 

another important quality. This feature becomes important later when we 

apply higher-order techniques. Lastly, while numerical viscosity is evident, 

most first-order methods result in significantly more smearing than we 

observe here. 

G. Improvements in Computational Efficiency and Accuracy 

Adaptive Riemann Solver (ARS) 

In Section F, we found Godunov's method to be first-order accurate. 

Given the large computational effort spent solving each Riemann problem 

exactly, this method seems dubious at best. The obvious question comes to 

mind. Why put forth all that effort to achieve only first-order accuracy? 

Fortunately, over the last two decades, several algorithms have been 

developed that approximate the solution to the Riemann problem with 
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accuracy and efficiency. These approximate Riemann solvers have given rise 

to an entire class of techniques called Godunov-type methods. Approximate 

Riemann solvers are used in one of two ways: 

- they are used to approximate the numerical flux directly 

- they are used to approximate the state, W(xi+y2)- 

Here, we use an adaptive scheme that switches between three approximate 

Riemann solvers to find a state approximation. We then calculate the 

Godunov flux and proceed as described in Section E. 

The adaptive Riemann solver scheme was first introduced by Toro in 

1997. We have implemented this particular algorithm because it 

- is easily implemented within our code - two of the approximate 

Riemann solvers are derived directly from the exact Riemann 

solver, 

- is very efficient computationally - none of the approximate 

Riemann solvers require iteration, 

- captures shocks well - does not require shock fitting or entropy fix 

common among other techniques and it 

- predicts the appropriate solver for each RP adaptively using a 

technique we have already employed and found successful (see 

appendix A). 
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As stated above, ARS selects one of three approximate Riemann solvers based 

upon the local flow conditions present and the behavior of Toro's pressure 

function. In fact, ARS uses the same switching criteria introduced in 

appendix A to predict an initial guess for the Newton-Raphson root solver. 

We summarize that logic here: 

1.   Calculate pmia, pmax and ppvrs. 

2-   If Pmin ^ Ppvrs ^ Pmax and Qs ^Pmax/Pmin   tnen P* lies within I2 

and mild conditions exist. Approximate R* using the primitive 

variable solver. 

3. If however, ppvrs < pmin then p* lies within I1 and two rarefactions 

are present. Approximate i?» using the two-rarefaction solver. 

4. Else, p* lies within J3 and either two shocks or a single strong shock 

are present. Approximate R* using the two-shock solver. 

The three approximate Riemann solvers of the adaptive Riemann solver are: 

- the primitive variable Riemann solver, 

- the two-rarefaction Riemann solver and 

- the two-shock Riemann solver. 

We present the solution method below for each. 

Primitive Variable Riemann Solver (PVRS) 

In typical shock problems, most of the flow field varies smoothly. If the 

solution lies within 72 and no strong shocks are present, we may 
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approximate the solution by solving a linear hyperbolic system of PDEs 

exactly. Toro's primitive variable solver is derived in this fashion and results 

in a set of simple algebraic expressions (1991). Using PVRS, we approximate 

the solution in i?„ using the following relations (Toro, 1991): 

P. =-(Px+ P^) + -(ui -u,\px^ p,){cx + c,), 

ut =-(u1 +M4) + ——£^  
2 (p,+/o4)(c,+c4) 

P2=Pi + 
("l-»Q(Pl +P4) 

(c, +c4) 

(76) 

(77) 

(78) 

and 

P4 + 
(», -M4)(pl+j04) 

(C,4C4) 
(79) 

Two-Rarefaction Riemann Solver (TRRS) 

If two rarefactions are present within the solution, we can find p* 

exactly using the appropriate rarefaction relations in Equation ( 30 ). Using 

the two-rarefaction solution, we approximate the solution within i?„ as (Toro, 

1997): 

c1+c4--(y-l)(u4-u1) 

ci + c4 

(y-l)/2y  ■       (r-Wr 
Pi PA 

y* 

(80) 
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".=-(", +"4)+-(/4-/l) (81) 

and 

^ 

d^+i(p*,p^,P^) = < 

Pt(r + i) + p4(r-i) 

p,(r-i) + p^(r + i) 
if p» > pf 

P$ 

(   \ 

shock 

if p* < p^     rarefaction 

(82) 

Two-Shock Riemann Solver (TSRS) 

If two shocks or a single strong shock are present, we use the two- 

shock approximation. Direct substitution of the appropriate shock relations 

into Equation ( 30) results in the two-shock approximation. Unfortunately, 

this approximation is dependent upon p* itself and therefore, does not have a 

closed-form solution. An acceptable solution however, is to estimate p* first 

using the primitive variable result described above. This requires no 

additional effort since we have already performed this estimate in 

determining which solver to use. We simply substitute this estimate into our 

two-shock approximation. We now have an adequate approximation without 

iteration. 

We approximate the R* variables using the two-shock solver as (Toro, 

1997): 
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P4(pr(r+i)+P4(r-i), 
+ Ui -u4 

( 

Pi(pi0)(r+i)+Pi(r-i) 

V2     f 
+ 

\lA 

P4(pi0)(r+V+P4(r-D 

-i 

where 

p<0) =max(lxl0-6 Pa;/W) 

(83) 

(84) 

To obtain the most accurate solution, we calculate the remaining star 

variables as described above in TRRS. 

Adaptive Riemann Solver Results 

We return to Sod's problem and solve it again, using the initial 

conditions and choice of C. In Figure 19, we compare the density profile 

obtained using Godunov's method with both the exact and adaptive solvers. 

Graphically, we can not differentiate between the two. Each results in the 

same first-order behavior described in Section F. 
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Figure 19: Comparison of Godunov's Method Using ERS and ARS 

Computationally however, the difference is rather significant. 

Choosing the adaptive routine results in a 33% increase in computational 

efficiency as measured by the amount of CPU time spent in solving the 

problem, shown in Table 2. Note that many of the Riemann problems are 

solved using the primitive variable method. This is the simplest of the three 

approximate solvers used in the adaptive scheme. Additional test cases and 

problems have been solved using both solvers and the results observed are 

consistent in every case. From these results, we conclude the adaptive solver 

outperforms the exact one and will be used as the Riemann solver. 
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Method CPU Time 
(s) 

ERS 
% 

PVRS 
% 

TRRS 
% 

TSRS 
% 

ERS 1.28 100 0 0 0 

ARS 0.859 0 90 5 5 

Table 2: Comparison Between the ERS and ARS 

Adaptive Courant Coefficient 

In an effort to improve computational efficiency and accuracy, we 

briefly investigate an adaptive routine that sets the Courant coefficient, C, 

adaptively. The original goal of this effort was to maximize the time step 

from the very beginning while maintaining numerical stability over the 

entire temporal domain. Traditionally, C is set to a small positive number, 

often C= 0.2, to correct the underestimate of S£ax. After several time steps, 

usually 5, C is set to 0.9 to maximize our time steps while maintaining 

stability. Our concern in using the simplistic approach above is twofold: 

- why waste computational efficiency in the early stages of code 

execution - can we increase C sooner, say after one time step? 

- once we set C to 0.9 or some other value determined adaptively, 

can complex flows ever result in a loss of stability? 

Here, we investigate two possible adaptive techniques to maximize the 

time step while maintaining stability. At the beginning of each time step, we 

assume the value of C scales the right hand side exactly resulting in the 
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maximum allowable time step. Once all the Riemann problems are solved, 

we calculate the maximum local Courant number, 

vmax = max 

i Ax (85) 

If vmax ^ 1, the time step satisfies Equation ( 73 ), we reset C and 

continue our calculations. It is the method chosen in resetting C that defines 

the different adaptive methods. In the naive approach, we assume flows are 

sufficiently established over the current time step, tnto tn+l. This implies 

that, at tn+ , Sm+X 
is a reasonable estimate. In this case, we simply set 

Cn    = Cmax where Cmax is the user-defined maximum allowable Courant 

coefficient. 

A more sophisticated method assumes flow conditions will remain 

essentially the same over the next time step. This suggests S"     s S"ti and 

allows us to use the currently obtained solution to scale C in the following 

manner: 

( 
:n+1=min 

C -V11 vmax     Kmax + vn     C ^ 'max'*-'max 
V J 

(86) 

We choose the minimum to handle the special case where Cm^ < v11     < 1 
H13X Q13.X 

Given typical flow conditions, we expect C will rapidly approach CE 

asymptotically. 

'max 
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If vmax > 1 however, our assumptions concerning C were 

inappropriate. In this case we throw away the solution, reduce Cn and begin 

again. In each adaptive routine described above, we reset C in the following 

manner: 

Cn = 
t  Cn^ 

a 
V   max J 

max • (87) 

Adaptive Courant Results 

Here, we solve Sod's problem via Godunov's method (with ARS) using 

the typical method as suggested by Toro, the naive adaptive Courant method 

and the sophisticated adaptive Courant method. We discretized the spatial 

domain over 800 cells to increase the number of time steps. 

Method CPU Time Time Steps Restarts 

Toro 5.2075 490 0 

naive 5.218 486 1 

sophisticated 5.238 487 0 

Table 3: Adaptive Courant Results - Sod Test 

We see in Table 3 that Toro's and our naive method 3 calculate stable 

time steps throughout the temporal domain. The naive approach however, 

required a restart. This occurred at the second time step because flows were 

not yet established sufficiently to predict Smax resulting in an unstable time 

step during our first attempt. CPU times increase as we increase the 

complexity of the time step calculations. When compared to the number of 
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time steps saved, our results indicate that adaptive time step methods are 

counterproductive. 

To investigate the behavior of C in the presence of complicated flows, 

we solve the classic Woodward-Colella blast problem that consists of two 

strong shocks traveling in air towards each other (Woodward and Colella, 

1984). These shocks interact with each other and reflect from reflective 

boundaries resulting in stagnation, reflection and transmission of shock 

waves. The problem begins at t = Os with three initial states at rest. These 

states are separated by two discontinuities located at x = 0.1m and x = 0.9m. 

The physical domain is lm in length and lies between two reflective barriers. 

The domain is discretized over 1000 cells. The following initial conditions 

are: 

W(x,0) = 

W = {l.OOkg/m3,0.00m/s,WOO.OOPaf   0.0m <x<0.1m 

W = \\..00kg/m3,0.00m/s,0.01Paf 0.1m<x<0.9m.      (88) 

W = \1.00kg/m3,0.00m/s,100.OOPaf     0.9m <x< 1.0m 

After 0.05s, the shocks have reflected from the reflective boundaries and we 

terminate program execution. Table 4 shows our results for the same three 

methods we considered above. Our results are similar with those obtained in 

Table 3 despite the presence of complex flows; CPU time increases as each 

case increases in complexity. Notice that the naive method requires no 

restart. The absence of a restart is explained when we consider the large 
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pressure gradients involved at early times. This results in a satisfactory 

Smax after only one time step. Our results suggest there is no need for an 

adaptive Courant coefficient in the presence of mild or strong flows. In fact, 

using an adaptive method decreases the computational efficiency of the code 

therefore we omit it. 

Method CPU Time Time Steps Restarts 

Toro 40.59 2155 0 

naive 40.81 2151 0 

sophisticated 42.51 2152 0 

Tal )le 4: Adaptive Co urant Results - So dTest 

H. Toro's Weighted Average Flux (WAF) Method 

Now that we have implemented an efficient form of Godunov's method, 

we present Toro's second-order extension called WAF. While WAF can be 

applied equally to many first-order techniques, we apply it here with 

Godunov's method to achieve second-order accuracy. Its implementation is 

numerically simple and straightforward. 

Recall that in Godunov's method we calculate the numerical flux using 

the solution of the Riemann problem obtained along the cell face only. Much 

of the characteristic information obtained in solving the Riemann problem 

has not been utilized, yet. WAF however, approximates the total flux 

through each cell face using a spatial quadrature scheme across the entire 

wave structure of the Riemann problem. Using all the characteristic 
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information allows us to calculate a numerical flux that is more accurate. 

Empirical results show this scheme is second-order accurate. 

We calculate WAF in the following manner (Toro, 1989): 

Fi+V2 =JlwkFk 
k 

where wfe is a numerical weight that represents the geometric extent of 

(89) 

region k and 

Fk=F(Wk) (90) 

is the flux through region k. Figure 20 illustrates WAF in the x -1 plane for 

the Riemann problem at face i + 1/2. 

Figure 20: Weights of WAF 

At tn+1'2, we see the Riemann problem spatial domain is subdivided 

into four subintervals of length wfe Ax. Notice that we depict the outer waves 

with only one ray instead of two. Empirical evidence has shown that the 
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expansion fan solution contributes very little to the overall accuracy of the 

solution. Therefore, we can ignore the expansion fan collapsing it into the 

region nearest the cell face, i.e. R2 or R3. This results in the simplified wave 

structure shown in Figure 20. Wave speeds, S1 and S3, remain the same as 

before. The weights are defined as follows (Toro, 1998): 

wi=-(l + vi), (91) 

w2=-(v2-v1), (92) 

w3=-(v3-v2) (93) 

and 

where 

w4=-(l-v3) (94) 

SkAt Vk=~t (95> 
is local Courant number for the kth wave. Note that ]T wk = 1 and that the 

k 

role each partial flux plays in determining Fr^E is dependent upon vk. In 

practice, we implement WAF in the following manner: 

1.  Calculate weighted average state along face £ + 1/2 where 

k 
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2.  Calculate weighted average flux from our weighted average state, 

ie   FWAF=F(WWAS) 1,e-' ri+l/2      r \ VVi+l/2 ' ■ 

This form of WAF is much easier to implement. 

I. Illustration of WAF 

To illustrate WAF we solve Sod's problem and present the density 

profile again. In Figure 21, we see improved resolution of discontinuities over 

that achieved using Godunov's method alone. It is immediately obvious 

however, that oscillation occurs near each discontinuity. This behavior is 

quite typical of second-order techniques. To explain the origin of these 

oscillations, we return to the definition of WAF. 
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Figure 21: WAF - Density Profile at t=0.25s 
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Close inspection of Equation (89) provides some insight into WAF and 

the oscillatory nature of the solution. Let's consider the Riemann problem in 

Figure 20. Notice that the local t axis lies within the second region and 

therefore, F2 = F     . This illustrates an important fact; Godunov's flux is 

always represented by one of the fluxes in Equation ( 89 ). Note that it is the 

local Riemann problem structure that determines which flux corresponds to 

Godunov's flux. 

F      represents the upwind bias of WAF and is responsible for 

stability. The other fluxes represent downwind terms and are responsible for 

the increased accuracy we observe with WAF. It is these downwind terms 

that cause the oscillations we observe near steep gradients. In the next 

section, we present an adaptive technique that controls the contribution of 

these downwind terms near discontinuities resulting in near monotonic 

conditions. 

J. Limited-WAF (LWAF) 

Here, we present total variation diminishing (TVD) weight limiter 

functions that restrict the downwind partial flux contributions near 

discontinuities by introducing dissipative viscosity (Toro, 1997). This results 

in near monotonic conditions throughout the domain. 
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Before we continue, we briefly define what TVD means. A numerical 

scheme is considered to be TVD in nature when the total variation of the 

solution diminishes over time (LeVeque, 1992). In mathematical terms, 

TV(Ün+1)<TV(Ün) (96) 

where the total variation function, TV, of the solution at tnis given by: 

TV(Un) = Y4 u?+l-u? (97) 

TVD numerical schemes have several important features: 

- they are TV stable meaning they are guaranteed to converge to the 

appropriate solution. 

- the numerical scheme decreases toward a monotonic solution. 

Monotonic-like second-order numerical schemes are derived from these 

principles. 

To achieve monotonic-like conditions near discontinuities, Toro has 

developed TVD weight limiter functions, </>(r, v), that are based upon TVD 

flux limiter functions, y/(r). Any weight limiter may be derived given the 

corresponding flux limiter using the following relation (Toro, 1997): 

0(r, v) = 1 - (l - |v|) y/(r) a(v) ( 93 ) 

where r is a local flow parameter we will discuss later and a = SGN(v). 

Here, we construct the following four weight limiter functions: Super A (^4), 

van Leer A (<j>VLA), van Albada A (^4) and Min A (^). Each is 

64 



constructed using Equation ( 98 ) from the corresponding flux limiter 

functions (Toro, 1997): 

and 

Superbee: y/SB = 

0 

2r 

1 

r 

2 

van Leer: y/yi 
0 
2r 

ll + r 

r<0 

0<r<0.5 

0.5<r<l, 

l<r<2 

r>2 

r<0 

r>0' 

van Alabada: ^-^ = - 
0 r<0 

r(1 + r)       r>0" 

Minbee: y/MB = 

0 r<0 

r       0<r<l. 

1 r>l 

(99) 

(100) 

(101) 

(102) 

Before we describe the weight limiters, it is helpful to investigate how the 

flux limiters work. 

Each flux limiter is calculated based upon the local flow parameter, r, 

defined as (Sweby, 1984): 

_ ^Pupwind 

APlocal 
(103) 
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where Apiocai is the density change from right to left across a specific wave in 

the Riemann problem of interest and Apupwin(i is the change in density across 

the same wave in the adjacent upwind Riemann problem. In WAF, we 

calculate local flow parameters for each wave in the Riemann problem at face 

i +1/2 such that 

ri+l/2,k 

APi+l/2-a,k 

APi+l/2,k 
(104) 

where the local density change across each wave is given by: 

APi+i/2,k = Pi+i/2,k+i ~Pi+i/2,k • Figure 22 illustrates how ri+y2,k is calculated. 

In case 1, 

Case 1: vk > 0 
w<}veUl/2,k 

/         ^Pupwind /'    ^Plocal 

face i-1/2 

wavei+y2,k 

face i +1/2 

Case 2: vk < 0 
waveU3/2,k 

face i + 3/2 

face i -1/2 face i +1/2 facet + 3/'2 

Figure 22: Calculation of Local Flow Parameters 
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vk > 0 meaning kl wave's are traveling to the right. In this case, a = 1 

Pi—1/2 k 
identifying wavei_y2>k 

as the upwind wave and ri+y2 & = —L~. In case 2 
APi+l/2,k 

however, vk < 0 and G = -1 so that wavei+^2tk is the upwind wave and 

Api+3/2 k ri+i/2 k = " • In each case, r is a measure of how rapidly the density 
APi+l/2,k 

gradient changes locally. This is a measure of the smoothness of the flow, i.e. 

as r -> 1, the flow becomes smooth. In these regions we include the 

downwind flux contributions to achieve second-order accuracy. As 

|l - rk\ » 0, the flow becomes discontinuous. In these regions we severely 

limit the contribution of all second-order downwind terms to F^fE to 

achieve stability and monotonic behavior. 

Weight limiters work in a similar manner. Instead of limiting the flux 

contributions directly however, weight limiters amplify courant numbers, vk, 

depending upon local flow conditions as follows: 

fa=Vk= ak vk (105 ) 

l-(l-\vk\)y/(rk) 
where ak = p—r'  is the TVD wave amplifier for the kth wave 

h\ 

(Toro, 1992). Amplification of these Courant numbers changes the value of 

the corresponding weights. For example, as ll - rk\ becomes large, the 
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corresponding weight approaches zero effectively killing off the downwind 

contribution ofthat flux. 

Boundary conditions in the limited WAF scheme must be treated with 

care. In order to account for the upwind calculations required by the limited 

WAF scheme, phantom cells -1 and 1 + 2 must be added. For example, 

consider the calculation of the limited flux at x = Om. If vy2,k > 0> then we 

must add cell -1 to solve the Riemann problem located at x = -Ax. 

K. Illustration of Limited WAF 

Now that we have developed the limited version of WAF, we solve 

Sod's problem using each weight limiter function to briefly investigate the 

numerical properties of each. The results are shown in Figures 23 - 25. In 

Figure 23 we see that every limiter dampens out the second-order partial flux 

terms near discontinuities. It is however, difficult to pick out any details 

concerning the performance of each limiter near areas of interest: contact 

discontinuities and shocks. Figures 24 and 25 amplify these regions. It 

becomes evident from Figure 24 that Super A performs best near contact 

surfaces. In Figure 25 the behavior of each appears to be similar until we 

observe the behavior of each to the left of the shock. In this region we see 

that van Leer A performs best. The other limiter functions oscillate slightly. 

From these results we conclude that van Leer A is appropriate when we 

model shocks. 
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L. Testing and Validation of the One-Dimensional Shock Code 

Testing 

To test the implementation of the one-dimensional code we solved the 

five shock tube problems presented in Chapter 3 in addition to Sod's as 

presented here. At each step in the development of the code, we qualitatively 

compared our results with those obtained using the exact Riemann solver. 

This was done to ensure proper implementation of each numerical tool by 

testing it over a broad range of problems before adding additional complexity. 

Having tested for proper implementation, we then validated the code against 

experimental data. 
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Validation 

In 1996, the Army Research Laboratory used measurements obtained 

in their 57cm shock tube facility to validated their own in-house second-order 

accurate one-dimensional shock code. Here, we use the same data to validate 

our own code before moving into two dimensions. The shock tube was 100m 

in length, 57cm in diameter and contained a driver region 0.91m long 

(Schraml,1996). A measurement station was located 31.48m from the initial 

discontinuity where overpressure time histories were taken experimentally 

for validation of the Army Research Laboratory code. The following 

conditions were present at the beginning of the experiment: 

Wi = (4.486kg/m3,0.0m/s, 379.2xlO3Pa) x< 0.91m 
W(x,0) = (106) 

W4 =(l.208/j£/m3,0.0m/s,102.1xl03Pa)x> 0.91m 

Figure 26 shows the overpressure time history taken at the 

measurement station as compared to the Army Research Laboratory's 

computational results (Schraml,1996). Notice the large oscillations that 

occur near the shock front in Figure 26. The shock front shock arrived at the 

measurement station after 66.0ms. The measured peak overpressure at the 

shock front was 66.3kPa. 
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Figure 26: ARL Overpressure Time History at 31.44 m 

To correctly model this experiment using our inviscid code, we had to 

first calibrate it to achieve the same time of arrival. We found that 

increasing the initial conditions within the driver region by 5% was sufficient 

to achieve the correct time of arrival. Therefore, the following ICs were used 

to model the shock tube: 

Wi=(4.710%/m3,0.0m/s,398.1xl03Pa)x< 0.91m 
W(x,0) = 

W4 =(l.208&£/m3,0.0m/s, 102.1 xlO3Pa) x > 0.91m 
(107) 

To model the left shock tube wall, we placed a reflective boundary at 

x = 0m. On the left, we restricted the computational domain by placing a 

transmissive boundary atx = 50m . This reduced the execution time required 

but was far enough from the measurement station not to affect the results. 
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The restricted spatial domain, [Om, 50/n], was discretized into 5000 cells. 

Cmax was set to 0.9 and we used the van Leer A weight limiter function. 

Figure 27 shows the overpressure time history obtained via our code. 

Unlike the Army Research Laboratory code results, the overpressure history 

curve is very smooth near the shock front. This illustrates the impact our 

TVD weight limiter functions. 

70.0 

t (ms) 

Figure 27: Overpressure Time History at 31.44m 

The shock arrived at our computational measurement station, located 

at x = 31.44 m, after 66.08ms. The code predicts a peak overpressure at the 

shock front of 61.8kPa. This is within 6.8% of the experimental results. This 

is quite reasonable and suggests our code models shock propagation correctly. 
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Chapter 5: Shock Code Implementation in Two Dimensions 

A. Initial Boundary Value Problem 

In this chapter we consider and solve the two-dimensional IBVP: 

Ut+F(Ü)x+G(Ü)y=Ö 
IBVP = 

U(x,y,0) = U°(x,y) 

where Ü (x, y) is a piecewise function that defines initial conditions over the 

rectangular spatial domain, [0,L.Jx [o.L.J, at t = Os. In two dimensions we 

describe physical conditions along all four boundaries again using reflective 

and transmissive boundary conditions. 

B. Discretization of Domain with Two Spatial Dimensions 

To discretize the domain, [0,Lx]x[0,Ly]x[0,T], we simply extend our 

one-dimensional mesh in the y direction. With an additional spatial 

direction we now have three mesh indices: i, j and n where the cell- 

averaged value in cell (i, j) at tn is 

Ü?jmÜ(Xi,yj,t
n). (109) 

The spatial domain, [O^Jx [O,!^], is subdivided into I x J cells of 

uniform dimension, AxxAy, where 

Ax = -±- (110) 

and 
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Ay = ^. 
J (HI) 

The center of cell (i, j) is located at: 

W-(^^^ (112) 

The physical extent of cell (i,j) is defined by its faces. The location of each 

face is defined by its corresponding plane as follows: 

face i-1/2: xi_y2 = 
Lx(i-1) 

(113) 

face i + 1/2:   xi+1/2 = Lx(i) 

face j -1/2: yj_ 
Ly(j-l) 

V2 

and 

face j + 1/2: yj+y2 = 
Lv(j) 

(114) 

(115) 

(116) 

The temporal domain is subdivided adaptively into N time steps of 

non-uniform length, A£. Here we concern ourselves with limiting wave 

propagation in both spatial directions to maintain the Courant-Friedrichs- 

Lewy stability requirement. In two dimensions therefore, we calculate the 

/ith time step in the following manner (Toro, 1997): 

A^=Cmin 
( \ 

Ax Ay 

Wu'M (117) 
max J 

where the maximum wave speed estimates in each spatial direction are 
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(^Lx^max^jl + c^) (U8) 

and 

(^)max=nJaX(ki| + C^)- (119) 

The Courant coefficient, C, is introduced in Equation (117 ) to ensure 

stability as described in Section E of Chapter 4. 

C. Dimensional Splitting 

We solve our two-dimensional IBVP approximately using a numerical 

technique called dimensional splitting. We choose this because its 

implementation is straightforward, building directly upon our one- 

dimensional code. In dimensional splitting, we split the original IBVP into 

two one-dimensional IBVPs 

Ut+F(Ü)x=Ö 
(120) 

U{x,y,t) 
XIBVP 

and 

vim™    \Ut+G0)y=0 YIBVP=        _ (121) 
I     U(x,y,t) 

In implementing dimensional splitting, our goal is to develop a second- 

order accurate solution procedure that remains computationally efficient. To 

do so, we use the Beam and Warming variant (1976): 

jjn+2 =[xAtYAtYAtXAt]{pn). (122) 
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XAt is the x -flow time step operator that operates on the initial data, Ufj, 

to obtain an interim solution, ffij1), by solving J, one-dimensional 

problems in the x -direction . Similarly, we define YAt as the y -flow time 

step operator. 

To illustrate how dimensional splitting is implemented via Beam and 

Warming, we consider the following scenario. Given Üfj, Equation ( 50 ) is 

solved over the interval [tn,tn+2] to obtain the second order-accurate 

solution, CT/j   . Before we can begin our one-dimensional sweeps we must 

first set our boundary conditions and calculate a stable time step. Note from 

Equation (122 ) that At remains constant over the entire time interval. This 

is necessary so that first-order errors will cancel, leaving only second-order 

errors. 

Once we have determined At, we begin the first of two full time steps 

with XAt. During this step, XAt operates on Üfj by solving J one- 

dimensional problems in the x direction. Once the interim solution, (c/ftl), 

is obtained, YAt operates on it solving I one-dimensional problems in the 

y direction to obtain Üfj1. At this point we have completed one full time 

step.   As a precautionary measure, we verify that the Courant-Friedrichs- 

Lewy stability requirement has been met. If our choice of At was 
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inappropriate, we update C, throw away our intermediate calculations and 

re-execute the first time sweep. 

Once a stable solution is obtained at tn+1, we begin the second time 

step over the interval [tn+1,tn+2]. Because the method employed during the 

first time step results in an interim solution that is biased in the y direction, 

we now execute the second time step in reverse order to obtain the solution, 

i.e. YAt operates on Ü?f followed by ZAton {pff) to obtain Üff. Given 

the symmetry of Equation (122 ) and a constant At, this results in a 

cancellation of the first-order error terms giving us the second-order accuracy 

we desire. Before we move forward in time, we again verify the stability of 

the solution. Once we are satisfied that Ü^j2 is the proper solution, we 

update our simulation clock by 2At. 

The dimensional splitting technique is repeated as many times as 

required to obtain the solution at the desired time as shown in Figure 28. It 

is important to note that the dimensional splitting technique used here is 

inherently parallel. Calculations performed during each time step operator 

may be executed independently. With future parallel implementation in 

mind, we wrote the code using Fortran 90 and Fortran 95 language 

extensions. Subroutines and functions were written to be pure and 

independent. To make the code parallel, all that remains is to add the 

required High Performace Fortran language extensions. 
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While this method is simple, the two-dimensional nature of our time 

step operators complicates the solution procedure. In the next section, we 

address these special considerations. 

Set t = 0 

Set initial conditions 

Do until t > T 

SetÜold=Ü 

Set Wold = W 

Set boundary conditions in each phantom cell (in order to) 
Calculate maximum wave speeds in x and y directions 

Do time step calculations until a stable second-order solution is obtained 

Calculate At 
Do x direction one-dimensional problems independently for j = 1 to J 

For all cell interfaces, i = -l to 1 + 1, solve the Riemann problems 
For all cell interfaces, i = 0 to I, calculate the limited WAF 
For all cells, i = l to I, update Ü and W 

End Do 

Set boundary conditions in y phantom cells 

Do y direction one-dimensional problems independently for i = 1 to I 

For all cell interfaces, j = -l to J + l, solve the Riemann problems 

For all cell interfaces, j = 0 to J, calculate the limited WAF 

For all cells, j = l to J, update Ü and W 

End Do 
Figure 28: Pseudocode for 2D Code 
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V umax < 1 ^e first time step calculation is stable 

Set boundary conditions in y phantom cells 

Do y direction one-dimensional problems independently for i = 1 to I 

For all cell interfaces, j = -1 to J + 1, solve the Riemann problems 

For all cell interfaces, j-0 to J, calculate the limited WAF 

For all cells, j = 1 to J, update Ü and W 

End Do 

Set boundary conditions in x phantom cells 

Do x direction one-dimensional problems independently for j = 1 to J 

For all cell interfaces, i = -1 to 1 + 1, solve the Riemann problems 
For all cell interfaces, i = 0 to I, calculate the limited WAF 
For all cells, i = l to I, update Ü and W 

End Do 

If vmax < 1 the second time step calculation is stable 

Exit second-order time step loop 

Else 

Update Courant coefficient 
SetÜ = Üold 

Set W = Wold 

Start second-order time step over 

End If 

Else 

Update Courant coefficient 
Set Ü = Üold 

SetW = Wold 

Start second-order time step over 

End If 

End Do 

Update simulation time: t = t + 2At 

End Do 
Figure 28 continued 
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D. Special Considerations 

Recall from Equation ( 8 ), that in two dimensions Ü is a four- 

component vector: p (mass), p u (x momentum), pu (y momentum) and E 

(total energy). Therefore, special care must be taken in solving our one- 

dimensional sweeps. To remain directionally independent, we define W and 

U in terms of normal and tangential components, i.e. 

W = (p,VN,VT,p) (123) 

and 

Ü = (p,PN,PT,E) (124) 

where V^, VT, PN, and PT represent the normal and tangential 

components of velocity and momentum respectively. So, for the general one- 

dimensional problem, we solve a system of four PDEs. 

Recall that, given m PDEs, we have m waves in the Riemann problem 

structure. Therefore, in two dimensions, the general Riemann problem wave 

structure in the one-dimensional WAF consists of four waves: wave 1 (left 

outer wave), wave 2a (contact surface), wave 2b (tangential velocity shear 

wave) and wave 3 (right outer wave) as shown in Figure 29. We denote the 

inner waves as wave 2a and wave 2b to reinforce the fact that they travel at 

the same speed and are therefore indistinguishable in the x-t plane. 
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Figure 29: WAF Wave Structure in Two-Dimensions 

When we solve the Riemann problem via Godunov's method, the 

solution procedure for the tangential components is trivial. When we apply 

limited WAF however, the solution procedure becomes more complicated. 

Recall that in limited WAF, each wave, wk , is amplified by its corresponding 

wave amplifier, ak, which is dependent upon rk. Typically, r2a * r2b. This 

results in a dispersed Riemann problem wave structure that complicates the 

solution procedure. In Figure 30, we see that the application of limited WAF 

results in four waves and five regions. 
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Figure 30: Limited WAF Wave Structure in Two-Dimensions 

We calculate the limited weighted average flux, pLWAF, as a two step 

process where the normal and tangential components are calculated 

separately. To illustrate how this is done, we consider a one-dimensional 

calculation in the x direction. As described in Chapter 4, we calculate 

To calculate pf™f, pLWAF from the weighted average statG) WLWAF 

rLWAF LWAF 
^N,i+V2 anc* Pi+i/2   ' we simPly ignore the tangential velocity shear 

wave, w2b, and solve the problem as previously described. The flux of p and 

p VN is then calculated directly. 

Notice that p VT and E, and their associated fluxes, are dependent 

upon the tangential velocity component, VT. We calculate v£^ by solving 

a hypothetical Riemann problem separately that consists of a single 
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wave,wave 2b , and two constant state regions, VT>1 and VT 4. The tangential 

velocity is calculated by (Toro, 1997): 

V
T7^2 = w5yr,i + w6yr)4. (125 ) 

The limited weights, w5 and w6, are defined as (Toro, 1997): 

w5=-(l + ^2b) (126) 

and 

w6=-(l-^2b) (127) 

where </>2b = a2b v2b. Unlike our typical TVD weight limiter functions 

(<fa,<f>2a>03)> 026 is dependent upon the tangential velocity gradient and not 

the density gradient, i.e. 

AVTi+l/2-a,2b 
ri+l/2,2b ~ —T7F • ( 128 ) 

/XVTi+l/2,2b 

We now have a solution procedure for every component of WLWAF and 

F . No other special considerations are required. 

E. Sod Test in Two-Dimensions 

Before we look at more complex problems, we solved the Sod problem 

in two-dimensions to test our code. The two-dimensional Sod test was 

performed over a square computational spatial domain, [0,1] x [0,1]. To 

maintain the one-dimensional nature of the problem we applied reflective 
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boundaries at y = 0 and y = 1. Each parameter was set to the same values 

as before. We applied the van Leer A TVD weight limiter function to achieve 

monotonic-like results near discontinuities. The following initial conditions 

were used: 

ICs: 

W(x,y,0) = 
Wx = {i.0kg/m3, 0.0m/s, 0.0m/s, l.OPaf        x < 0.5m        (129) 

W4 =[0.125kg/m3,0.0m/s,0.0m/s,0.10Paf x>0.5m 

Figure 31 shows our two-dimensional results. These are in agreement with 

Figure 31: 2D Sod Density Profile at t=0.25s 

those obtained in one dimension. In Sod's two-dimensional problem, flows 

occur in only one direction. To ensure the code models two component flows 

correctly, we solved a series of cylindrical explosion problems as presented by 
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Toro (1997). In each case, we placed a high-pressure cylindrical region at the 

center of a square computational domain. The solution of each was verified 

in the following manner: 

- primitive variable profiles were qualitatively compared against 

Toro's results at planes 9 = °>^4>/^,3^ and n as measured from 

the axis to the leading edge of the shock front. 

- the cylindrical symmetry of the solution was verified. 
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Chapter 6: High Pressure Cylinder Problem 

In Chapter 5 we extended our one-dimensional shock code into two 

dimensions using dimensional splitting but only gave a cursory look at the 

numerical capabilities of the code. Here we further investigate the numerical 

properties and capabilities of the code to solve complex problems of interest to 

DoD; namely, cylindrical shock wave propagation and reflection over ideal 

surfaces. 

A. Problem 

To illustrate the numerical capabilities of our two-dimensional shock 

code, we simulate the complicated shock phenomena that occur from the 

detonation of a cylindrically symmetric explosive 4.0m above an ideal surface. 

In our model, we completely ignore the detonation process itself and concern 

ourselves with its mechanical effects only; the outward propagation of the 

resulting cylindrical shock wave. To simulate the near instantaneous 

deposition of energy that occurs and the resulting high pressures 

immediately after detonation, we introduce a hypothetical cylinder normal to 

the x-z plane centered at (x,z) = (Ora, Am) with r = 0.25m. The ambient air 

within the cylinder is heated until we reach three times the ambient 

pressure, i.e. pCyl = 3 p0. This gives us an infinitely long high-pressure 

cylinder parallel to the ideal surface that: 
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- is the physical analogue of an annular shock tube, i.e. removal of 

the cylindrical diaphragm begins the simulation. 

- produces a cylindrical shock wave shortly after removal of the 

diaphragm similar to that produced by the explosive. 

- is simple to model numerically. 

B. Shock Wave Propagation and Reflection over an Ideal Surface 

Before solving the problem numerically, we discuss the behavior of the 

shock wave as it propagates outward and reflects over an ideal surface. The 

qualitative discussion below provides the necessary background to 

understand and interpret the numerical results presented in Section C. For a 

more detailed discussion of shock reflection phenomena we suggest the 

following books: Gabi Ben-Dor's Shock Wave Reflection Phenomena. Samuel 

Glasstone and Philip Dolan's The Effects of Nuclear Weapons and Gilbert 

Kinney's Explosive Shocks in Air. 

Shock Wave Propagation 

We begin our discussion just after the detonation of the explosive at 

t = Os as modeled by our high-pressure cylinder approximation. The 

simulation begins with the instantaneous removal of the cylindrical 

diaphragm. With the removal of our fictitious barrier, the heated air is no 

longer constrained and begins to accelerate rapidly outward down the 

pressure gradient. When the particle velocity of the heated gas exceeds the 

ambient speed of sound, a cylindrical shock front is formed that propagates 
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radially outward. As the shock front continues its outward expansion, 

cylindrical divergence of the flow results in a decreasing peak overpressure at 

the front, i.e. Apmax <x 1/r. 

Directly behind the shock front, there is an outwardly expanding 

cylindrical contact discontinuity. As in the one-dimensional case, this is due 

to the difference in internal energy between the shock-heated air ahead of the 

contact discontinuity with the cooler expanded air behind it. In our 

investigation of shock propagation and reflection, the contact discontinuity is 

of little interest. We simply mention it here for completeness. 

At the same time that the shock front and contact discontinuity are 

formed, a rarefaction wave begins to travel up the pressure gradient towards 

the axis of the high-pressure cylinder. At the instant the wave reaches the 

axis, it instantaneously reflects the cylindrical wave. The resulting 

rarefaction wave accelerates as it travels outward through the previously 

shock-heated air. Eventually the rarefaction head catches up to and interacts 

with the shock front resulting in the characteristic coupled wave structure 

shown in Figure 32. 
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Figure 32: Typical Overpressure Profile 

Notice that the decrease in pressure behind the shock front is due entirely to 

the interaction of the reflected rarefaction wave. In addition, the minimum 

overpressure within the rarefaction becomes negative at some point in time. 

The cylindrical shock wave above continues to propagate as described 

until ambient conditions are reached. Near the surface however, the flow is 

far more interesting and complicated. When our initial shock wave reaches 

the surface, various reflection phenomena occur. We will observe the 

following shock reflection phenomena: normal reflection, regular reflection, 

transition from regular to Mach reflection, and Mach reflection. 

Shock Wave Reflection 

Up to now we have concerned ourselves with the formation and 

propagation of the shock wave over the temporal interval [t°,ta) as shown in 

Figure 33. At t = ta, the incident shock wave, I, is traveling perpendicular to 
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Figure 33: Typical Shock Reflection Phenomena 

the surface and normal reflection occurs instantaneously at the point x = Ora. 

When the flow is normal to the surface meaning no tangential components 

are present, the resulting peak overpressure, Ap^ax, is at its maximum 

possible value, Ap^. The reflected peak overpressure at normal reflection, 

ApR, is a least twice the incident overpressure, Apfax (Glasstone and Dolan, 

1977): 

A^=2APr
x7P0+4APrX (130) 

7p0+ApFaX 

where p0 is the ambient pressure before detonation. 

As the incident shock wave continues to propagate, e.g. ta <t<tc, its 

direction of travel becomes oblique with respect to the surface. Immediately 

after t = ta, a reflected shock wave (i?) is formed marking the end of normal 

reflection. The resulting two-shock configuration, diagramed in Figure 34, is 

called regular reflection. 
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Figure 34: Regular Reflection 

With reference to Figure 34, P is the reflection point where wave 

/and R intersect at the surface. The peak overpressure, Ap^ax, occurs at 

this point due to the stagnation of the normal components of the flow behind 

I as reflection occurs. As I continues to propagate over the surface, the 

angle of incidence, 0j, increases resulting in a corresponding decrease in the 

normal flow component. In addition, Apf&x decreases as described earlier 

due to cylindrical divergence. Therefore Apfax decreases and is always less 

than Apj?. 

Regular reflection continues until a critical angle, dflt, is achieved. In 

Figure 33, this occurs at t = tc. At this point, we begin the transition from a 

two-shock regular reflection to a three-shock configuration called Mach 

reflection. This occurs as R begins to coalesce into I forming a single shock 

front called the Mach stem (M). This occurs as the shock moves through the 

transition region, during the interval tc <t<tc . 
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Mach reflection begins when the Mach stem is formed as depicted in 

Figure 35. The peak overpressure at the Mach stem is greater than that 

observed for either lor R, i.e. Ap^ax > Ap#ax > Apf ax. As we move up M, 

the overpressure decreases. The intersection of M, R and / is called the 

triple point (T). Notice in Figure 33 that for t > tc , the height of T increases 

over time as M continues to grow. 

Figure 35: Mach Reflection 

Now that we have an understanding of shock propagation and 

reflection, we present and discuss the numerical results obtained using our 

two-dimensional shock code in the next section. If our two-dimensional code 

models the physics of inviscid flow in two-dimensions correctly and our 

implementation is sound, we should observe the shock phenomena described 

above. 

C. Numerical Solution 

To model the complicated shock phenomena that results from the 

detonation of our cylindrical explosive we solved the two-dimensional IBVP 

given the ICs in Equation (131) and BCs in Table 5. Recall the high- 
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W(r,0) = Wi =(l.2045^/m3,0.0m/s,0.0m/s,304.05xl03Paf r<0.25m 

W4 =(l.2045kg/m3,0.0m/s,0.0m/s,10l.35xl0sPaf r>0.25m 
(131) 

x BCs 

Reflective along x = Om. 

Transmissive along x = 20m 

z BCs 

Reflective along z = 0m. 

Transmissive along z = 12m. 

Table 5: High-pressure Cylinder Boundary Conditions 

pressure cylinder models the energy deposition immediately after detonation 

and is centered at (x,z) = (0m, 4m). To reduce the execution time of the code, 

we took advantage of the symmetry of the problem and inserted a reflective 

boundary along the x = 0m plane. Our remaining reflective boundary 

simulated the ideal surface, i.e. the ground. To restrict our computational 

domain to a finite size, we employed transmissive boundaries atx = 20m and 

z = 12m. Each was positioned at a sufficient distance to allow observation of 

interesting flow features while delaying the arrival of the inevitable false 

reflected waves until after the passage of the shock through the region of 

interest. These boundary conditions therefore define the following spatial 

domain: [0m, 20m] x [0m, 12m]. 

Initially, we subdivided our spatial domain into 600x360 square 

computational cells. The square cell geometry was used, instead of the more 

typical and computationally efficient rectangular cell, to limit the numerical 

artifacts that occur in approximating our cylinder on a Cartesian mesh. In 

addition, we used a weighted average of the initial conditions in diaphragm 
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cells. As we shall see in our results, this significantly decreased the stair- 

step-like numerical artifacts that occur at early times resulting in a nice 

cylindrical wave structure. 

Lastly, we set the execution parameters as shown in Table 6. 

Co r '-'max Qs Tolerances TVD Weight Limiter 

0.2 0.9 2 1.0 xlO"9 van Leer A 

Table 6: High-pressure Cylinder Execution Parameters 

Notice the Courant coefficient is set as described in Chapter 4 to maintain 

stability at early times and (fa^ was chosen to ensure sharp resolution of the 

shocks of interest. 

We ran the simulation over the time interval [0ms, 60ms]. To ensure 

we captured regular reflection, transition from regular reflection to Mach 

reflection, and Mach reflection as described in Section B, we recorded the 

location and value of the maximum overpressure every other time step as 

shown in Figure 36- 38. In addition, the overpressure solution was saved 

every 0.4ms. This data was then used to visualize the structure of the shock 

waves at times of interest using Tecplot (ver 7.5), a high-end scientific 

visualization software package. 

During our discussion of the numerical results we will follow the 

maximum overpressure curves shown in Figure 36, 37 and 38. These curves 

serve to guide our discussion and show the progress of the simulation as the 

cylindrical shock wave forms, propagates outwards and reflects over the 
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surface. Periodically, we will look at the overpressure solution obtained at 

various times as well. 

In Figure 36, it is immediately obvious from our time plot that two 

time intervals exist: a free-air time interval where the shock has not yet 

reached the surface and an interval over which reflection occurs. During the 

free-air interval, [Oms, 9.84ms), the maximum overpressure occurs along the 

shock front of the cylindrical shock wave as it propagates outwards. We 

found that Apmax occurs at the shock front and decreases like X/ due to 
/r 

cylindrical divergence. 

Numerical 
Artifact 

0.0 5.0 10.0        15.0       20.0       25.0       30.0       35.0       40.0       45.0       50.0        55.0       60.0 

t (ms) 

Figure 36: Maximum Overpressure vs Time [0ms, 60ms] 
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In Figure 39, we see that the high-pressure cylinder approximation has 

produced a nearly cylindrical shock wave as desired. The stair-case-like wave 

patterns present along the shock front are numerical artifacts of our 

weighted cylinder approximation and cannot be helped. A finer mesh will 

limit this effect considerably but at the significant cost of additional 

computational effort. 

At t = 9.84ms, we observed a sharp rise in the maximum overpressure 

from 14.29kPa to 25.35kPa as shown in Figure 36. This indicates that the 

cylindrical shock wave has reached the surface and reflected producing the 

peak overpressure observed at the reflection point on the surface. Note that 

this rise in overpressure is inconsistent with Equation (130 ) because we did 

not capture the exact moment at which normal reflection occurred. 

Figure 37 illustrates the maximum overpressure versus time over the 

time interval [9.84ms, 60ms]. During this time interval reflection occurs and 

the maximum overpressure remains located at the surface. At early times 

where 0j < Gjnt, regular reflection occurs as shown in Figure 40. Here we 

see an excellent example of regular reflection. Both the reflected and 

incident waves are well resolved. In addition, we note that the peak reflected 

overpressure occurs due to the stagnation of the incident flow at the 

reflection point. 
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Figure 37: Maximum Overpressure vs Time [9.84ms, 60ms] 

Notice that if we extend the left and right portions of the curve as 

depicted by the dashed lines in Figure 37 we can clearly see a bump that 

occurs roughly between 10.8 and 13.1ms. Over this time interval, the 

behavior of Ap^ax changes; it decreases at a rate slower than that observed 

at earlier times until t = 13.1ms. This change is due to the fact that the 

reflected wave is catching up to and stagnating off the incident wave, i.e. 

transition is occurring from regular to Mach reflection. At t = 13.1ms, 

transition ends with the formation of the Mach stem and Apj^ax decreases at 

a faster rate. Therefore, the reflection time interval may be subdivided into 
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three distinct intervals: [9.84ms 10.8ms) - regular reflection, [10.8ms, 13.1ms] 

- transition and (13.1ms, 60ms] - Mach reflection. 

In Figure 38, we plotted the maximum overpressure during reflection 

versus the ground distance at which it occurred. Both are functions of t and 

give us the time of arrival of the shock on the ground. We subdivided the 

reflection interval into regions just as we did in Figure 37. Here we see that 

the transition region begins near x = 1.68m and ends around x = 3.28m. 

30.00 

25.00 

0.00 

0.00 2.50 5.00 7.50 10.00 

x(m) 

12.50 15.00 17.50 20.00 

Figure 38: Maximum Overpressure vs Ground Distance 

To illustrate and investigate the transition from regular to Mach 

reflection, we refined the mesh by a factor of two and obtained the 

overpressure solutions every 0.4ms over the interval [10.4ms, 13.6ms] as 
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shown in Figure 42 - 49. As we proceed in time through the transition region, 

we see that as 9j increases the distance at the surface between the reflected 

and incident shock waves decreases steadily. In addition, the width of the 

peak overpressure region decreases but grows in height suggesting that flows 

behind the reflected wave are beginning to stagnate as it catches up to the 

incident wave. This indicates that the reflected and incident shock waves are 

beginning to merge near the surface. By t = 12.8ms, we see the beginnings of 

a Mach stem forming near the ground and by t = 13.6ms a Mach stem is 

present. 

In Figure 51 - 52 we see the well-resolved three-shock configuration of 

Mach reflection. As time goes on and the waves continually merge we 

observe the growth of the Mach stem, the motion of the triple point away 

from the surface and the decrease in the peak overpressure. In addition, we 

notice that as we move up the Mach stem the stagnation pressure decreases 

as we expect. 

Just before t = 58ms we see in Figure 37, 37 and 38 that the peak 

overpressure at the Mach stem decreases suddenly. This is a numerical 

artifact of the right transmissive boundary. We observe the unexpected dip 

in peak overpressure because a false reflected shock wave has traveled back 

to the left and perturbed the solution. The dip indicates the leading edge of 

that false reflected shock wave. 
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From our qualitative analysis we see that the two-dimensional shock 

code is capable of modeling the complicated shock phenomena of interest to 

DoD. 
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Figure 39: High-pressure Cylinder Overpressure at t=4.8ms 
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Figure 40: High-pressure Cylinder Overpressure at t=10.0ms 
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Figure 41: High-pressure Cylinder Overpressure at t=10.4ms 
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Figure 42: High-pressure Cylinder Overpressure at t=10.8/ns 
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Figure 43: High-pressure Cylinder Overpressure at t=11.2ms 
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Figure 44: High-pressure Cylinder Overpressure at t=11.6ms 

108 



<3>i^ioco^05KwcoT-c^r^incoT-0)r^iocoT-a5i^incoT-o>co^cviooocD^cMOoocD^c\ioc\i,<ij-cDcooc\i^-coooo 
ino)co^T-^coc\jcoocoi^^incnc>j<DO^roT-u^cncoKp^cqc\jcqcncoi^T^incq 
^coodc\Jcvi^dda>aicöi^i^coinu}^^eocucvJT^ddcriOT 
CMeMCMCVICM<MCMOjT-i-T-T-i-i-T-i--i-i--i-T-T-T-i-i- '  

(o r 
Q- 
■*        1 

"w}*     ■ ■'■'■^'«las 

CM     ||i 
in ■^■■;%si^Pfe^ 
CM 
ii   llll ft ■■■■;, ~$$0¥Wm 
2 HI 
(A 
(0 
S> a 

(uOuiBpH 

Figure 45: High-pressure Cylinder Overpressure at t=12.0ms 
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Figure 46: High-pressure Cylinder Overpressure at t=12.4ms 
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Figure 47: High-pressure Cylinder Overpressure at t=12.Sms 
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Figure 48: High-pressure Cylinder Overpressure at t=13.2ms 
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Figure 49: High-pressure Cylinder Overpressure at t=13.6ms 
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Figure 50: High-pressure Cylinder Overpressure at t=27.0ms 
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Figure 51: High-pressure Cylinder Overpressure at t=31.2ms 
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Figure 52: High-pressure Cylinder Overpressure at t=36.0ms 
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Chapter 7: Conclusion 

The primary objective of this effort has been to develop a two- 

dimensional hydrodynamic shock code based upon E. F. Toro's weighted 

average flux (WAF) method for the investigation of air blast phenomenology. 

In support ofthat effort, we initially developed, tested and validated a one- 

dimensional shock code based upon Toro's weighted average flux (WAF) 

method. During development and testing of the one-dimensional shock code, 

we observed the following: 

- Godunov's method accurately predicted the location of all discontinuities 

but the solution was smeared due to numerical viscosity 

- application of WAF resulted in 

• decreased numerical viscosity 

• oscillations near discontinuities typical of second-order accurate 

methods 

- application of TVD weight limiter functions adequately removed 

oscillations while maintaining behavior indicative of second-order 

methods 

- among the weight limiter functions tested, 

• Super A resolved contact discontinuities best 

• van Leer A weight limiter function resulted in smooth regions behind 

shocks. 
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Before moving into two dimensions, we validated the one-dimensional shock 

code against experimental results obtained at Army Research Laboratory's 

57cm shock tube facility. Here, we found the one-dimensional shock code 

underestimated the peak overpressure at the shock front by 6.8%. 

Once the one-dimensional shock code was complete, we extended it 

into two spatial dimensions via Warming and Beam's variant of dimensional 

splitting. To verify proper implementation of this technique, we solved both 

Toro's cylindrical explosion problem and Sod's shock tube problem in two 

dimensions. Having shown the two-dimensional code worked properly, we 

modeled the detonation of a cylindrically symmetric explosive over an ideal 

surface to illustrate the capabilities of the code. We found the numerical 

solution modeled the physics of shock propagation and reflection well and 

that the transition from regular to Mach reflection occurred as expected. As 

a result of this effort, Air Force Institute of Technology now has a two- 

dimensional hydrodynamic shock code to further investigate air blast 

phenomenology. 
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Appendix A: Toro's Initial Guess Generator 

Rapid convergence is achieved when pi°^ is sufficiently close to the 

root. If p<;0) is far from the actual root, the computationally efficiency of ERS 

is severely degraded since much of the CPU time solving Equation (18 ), and 

therefore computational effort, is attributed to finding the root of equation 

( 33 ). Worse, an extremely poor choice can result in a physically meaningless 

solution, p* < 0.   Clearly, success is dependent upon the numerical nature of 

Equation ( 30 ) and our choice of p*;0). 

Toro's pressure function, /, is monotonic and concave down because 

/' > 0 and /" < 0. This means/is relatively benign. Therefore, the major 

concern here is not whether convergence is achieved but rather, how quickly 

it is achieved. Graphical inspection of the mathematical properties of 

Equation ( 30 ) provides some insight into how an appropriate pi0) might be 

chosen given the initial conditions and some assumptions. 
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Figure 53: General Behavior of Toro's Pressure Function 

Figure 53 illustrates the general behavior of the pressure function 

given initial conditions, J^and W4 (Toro, 1997). Each curve in Figure 53 

represents the pressure function given the same set of initial conditions for 

density and pressure. The difference between the curves is due to the 

particle velocity difference, where Au = u4 - ux varies. 

With reference to Figure 53, the minimum and maximum pressures 

are defined to be: 

Pmin=min(Pl>P4) (132) 

and 

Anax =max(p,,p4) (133) 
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These variables divide the pressure interval into three different subintervals: 

J1:0<p<pmin, 

h : Pmin <P^ Pmax 

and 

J3 : Pmax < P £ °° • 

Note that depending upon the value of Au, the pressure function is 

translated up or down and the root changes accordingly. 

For sufficiently large Au the root lies within the first interval such 

thatp* < pmin < pmax. This indicates a two-rarefaction configuration. For 

(Au)2, p* lies within the second interval where pmin < p* < pmax. Then one 

of the outer waves is a rarefaction and the other a shock. Lastly, for small 

Au, the root lies within the third interval where pt > pmav > p . .   This ■*  * *  nidx •*  mm 

indicates the two-shock configuration. 

Given the general behavior of the pressure function and initial 

conditions, we can predict the general wave structure of the Riemann 

problem solution before it is solved. Armed with this knowledge, we can 

predict pi0) sufficiently close that the converged solution is typically obtained 

within ten iterations. 

To determine where the root lies, we begin with the following 

assumptions: 

-    the root lies within the second interval. 
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-    flow conditions are mild enough that a linearized approximation is 

sufficient. 

With these assumptions, pi°^ is obtained in the following manner (Toro, 

1991): 

pi0) =max(1.0xl0 6Pa,ppvrä) (134) 

where 

1 1 
Ppvrs=-(Pl+Pj + -(u1-U4)(p1 +pA)(Cl+C4). ( 135 ) 

2. 8 

is taken from Toro's PVRS. Equation (134) is applied to ensure pi0) > 0 

because Equation (135 ) may, incorrectly, predict a negative pressure. Note 

that if strong shocks are present, our linearity assumption is no longer valid 

and PVRS does not perform well. Flow conditions are considered mild 

provided: 

Us >  (136) 
•Pmin 

where Qsis a user-defined value typically set at 2 (Toro, 1991). Even if 

Equation (136) is false, we still calculate (134) for use in the two-shock 

approximation. 

At this point, we check where pj;0) lies in relation to pminand pmax. If 

Pmin < P*0) ^ Pmax and flow conditions are sufficiently mild, pi0) is used as 

an initial guess in Equation ( 33 ). If pf0) < pmin, we assume the two- 
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rarefaction configuration andpü0)is obtained using the two-rarefaction 

approximation derived from Equation ( 30 ) (Toro, 1997): 

pi0) = 
ci+c4--(r-i)(u4-u1) 

\lA 

Cl 
■ + • 

(y-l)/2y (r-l)/2y 
Pi P4 

(137) 

Note that if two-rarefactions are actually present in the solution no iterations 

are required since this approximation is exact. If, however, p£0) > pmaxor 

Qs <   max is false, the two-shock configuration is assumed and the following 
Pmi 

two-shock approximation is used (Toro, 1997): 

,(0) _ 
Pi f ^_^ 

{pi(pi0hr+i)+Pi(y-D. 

\lA 
+ 

PA 

\lA 
p4(pj0)(r+i)+p4(r-i) 

+ Ui -u4 

Pi(pr(r+X)+Pi(r-i) 

V2     ( 
+ 

(138) 

^ 

p4(pr(r+i)+P4(r-i) 

-i 
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