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Considerations for Radio Frequency Fingerprinting across
Multiple Frequency Channels
Jose A. Gutierrez del Arroyo * , Brett J. Borghetti and Michael A. Temple

Department of Electrical and Computer Engineering, Air Force Institute of Technology,
Wright-Patterson AFB, OH 45433, USA; brett.borghetti@afit.edu (B.J.B.); michael.temple@afit.edu (M.A.T.)
* Correspondence: jose.gutierrezdelarroyo@afit.edu

Abstract: Radio Frequency Fingerprinting (RFF) is often proposed as an authentication mechanism
for wireless device security, but application of existing techniques in multi-channel scenarios is
limited because prior models were created and evaluated using bursts from a single frequency
channel without considering the effects of multi-channel operation. Our research evaluated the
multi-channel performance of four single-channel models with increasing complexity, to include a
simple discriminant analysis model and three neural networks. Performance characterization using
the multi-class Matthews Correlation Coefficient (MCC) revealed that using frequency channels
other than those used to train the models can lead to a deterioration in performance from MCC > 0.9
(excellent) down to MCC < 0.05 (random guess), indicating that single-channel models may not
maintain performance across all channels used by the transmitter in realistic operation. We proposed
a training data selection technique to create multi-channel models which outperform single-channel
models, improving the cross-channel average MCC from 0.657 to 0.957 and achieving frequency
channel-agnostic performance. When evaluated in the presence of noise, multi-channel discriminant
analysis models showed reduced performance, but multi-channel neural networks maintained or
surpassed single-channel neural network model performance, indicating additional robustness of
multi-channel neural networks in the presence of noise.

Keywords: RF machine learning; deep learning; RF fingerprinting; RFF; specific emitter identification;
wireless security

1. Introduction

Physical-layer emitter identification, known as RFF or Specific Emitter Identifica-
tion (SEI), is often proposed as a means to bolster communications security [1]. The
underlying theory is that the manufacturing processes used for chip components create
hardware imperfections that make each emitter unique, irrespective of brand, model, or se-
rial number. These hardware imperfections are akin to human biometrics (e.g., fingerprints)
in that they are distinctive and measureable. Imperfections cause small distortions to the
emissions of idealized signals, and those signal distortions can be learned by Machine
Learning (ML) models to identify emitters solely from their emissions. This is particu-
larly useful for communications security applications where the reported bit-level identity
(e.g., MAC Address, Serial Number) of a device cannot or should not be implicitly trusted.
Here, RFF can serve as a secondary out-of-band method for identity verification.

Prior related RFF research has trained ML models to identify devices by using bursts
received on a single frequency channel. However, modern communications protocols
often employ multiple frequency channels to enable simultaneous users and interference
avoidance. For example, WiFi (IEEE 802.11 b/g/n) [2] subdivides the 2.4 GHz ISM band into
11 × 20 MHz overlapping channels, ZigBee [3] and Wireless Highway Addressable Remote
Transducer (WirelessHART) [4] (i.e., IEEE 802.15.4-based protocols) use the same frequency
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band but divide it into 15 × 5 MHz non-overlapping channels [5], and Bluetooth [6] uses
an even more granular division of 80 × 1 MHz non-overlapping channels.

When the channel changes, the carrier frequency used by both the transmitter and
receiver shifts to the center of the new channel. This change in carrier frequency affects the
signal distortions because radio hardware components such as Phase-Locked Loops (PLLs),
amplifiers, and antennas operate irregularly at different frequencies. Furthermore, the
Radio Frequency (RF) environment also varies with frequency channel because differ-
ent sources of interference are present at different frequencies. Since most RFF research
predominantly considers bursts received on a single channel, it is not clear whether the
performance achieved by those research efforts generally extends to multiple frequency
channel operation.

For instance, when researchers in [7–9] collected ZigBee signals, they configured their
receivers to capture a narrow bandwidth centered on a single carrier frequency. They used
those collections to train RFF models and tested their models on sequestered data from
the same collections. No evidence was provided showing that the authors verified model
performance across all channels.

In works providing single channel demonstrations, channel carrier frequency details
are often omitted, given that the RF signals are commonly down-converted to accommodate
baseband fingerprint generation. For example, ZigBee research in [10–13], and similarly,
WirelessHART research in [14], cited the collection bandwidth but omitted carrier frequency
information. Furthermore, from an experimental perspective, it is more time-consuming to
collect signals across multiple carrier frequencies, given the narrow RF bandwidth limita-
tions of commonly accessible Software-Defined Radios (SDRs). Therefore, the omission
of carrier frequency information suggests that researchers in [10–14] did not consider the
effects of multi-channel operation.

Finally, there are researchers who implicitly use collections from multiple carrier
frequencies but make no explicit declaration in their work. For instance, any researchers
using the Defense Advanced Research Projects Agency (DARPA) Radio Frequency Machine
Learning (RFML) WiFi dataset, such as [15–17], have the ability to account for multiple
frequency channels because collections for that dataset were performed with a wide band-
width. It is not clear whether [15–17] deliberately considered frequency channel when
selecting training and evaluation datasets.

To our knowledge, no prior work has considered the sensitivity of RFF performance to
different frequency channels; our results suggest that frequency channel must be considered.
Signal bursts were collected using a wideband SDR receiver, which captured signals from
eight IEEE 802.15.4-based devices communicating across 15 frequency channels. Each
individual burst was filtered and categorized based on the frequency channel within
which it was received. RFF models were trained and tested using data from different
channel combinations to evaluate the effects of frequency channel to performance, which
was reported using the multi-class MCC. Machine learning models included a Multiple
Discriminant Analysis/Maximum Likelihood (MDA/ML) model with expert-designed
features, a shallow fully-connected Artificial Neural Network (ANN), a Low-Capacity
Convolutional Neural Network (LCCNN), and a High-Capacity Convolutional Neural
Network (HCCNN).

The key contributions of our work include:

• A first-of-its-kind evaluation of the sensitivity of single-channel models to multi-
channel datasets. The evaluation suggests that failing to account for frequency channel
during training can lead to a deterioration in performance from MCC > 0.9 (excel-
lent) down to MCC < 0.05 (random guess), indicating that single-channel model
performance from previous RFF research should not be expected to extend to the
multi-channel case (Experiment A).

• A training data selection technique to construct multi-channel models that can outper-
form single-channel models, with average cross-channel MCC improving from 0.657
to 0.957. The findings indicate that frequency-agnostic variability can be learned from
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a small subset of channels and can be leveraged to improve the generalizability of RFF
models across all channels (Experiment B).

• An assessment of multi-channel models against Additive White Gaussian Noise
(AWGN) that demonstrated the advantage of multi-channel models in noise perfor-
mance depended on model type and noise level. Multi-channel neural networks ap-
proximately maintained or surpassed single-channel performance, but multi-channel
MDA/ML models were consistently outperformed by their single-channel counter-
parts (Experiment C).

The rest of this paper is structured as follows: an overview of the state-of-the-art in
RFF is provided in Section 1.1, and assumptions and limitations of this research are covered
in Section 1.2. Our wideband data collection technique is described in Section 2, including
how the data were processed for RFF model training. Methodology and results for the
three experiments are detailed in Section 3, and study conclusions and potential future
work are presented in Section 4.

1.1. Related Work

RFF is fundamentally an ML classification problem, where discriminative features are
leveraged to distinguish individual devices. Generation and down-selection of the best fea-
tures remains an open area of research [18]. For instance, researchers have proposed an en-
ergy criterion-based technique [19] and a transient duration-based technique [20] to detect
and extract features from the transient region of the signal during power-on. Researchers
in [14] extract features from the signal preamble region, focusing on down-selecting statisti-
cal features to reduce computational overhead while maintaining classification accuracy.
Yet another technique presented in [21] extracts features from a 2-dimensional representa-
tion of the time series data. Commonly, researchers avoid feature selection altogether by
ingesting time series data directly into Convolutional Neural Networks (CNNs), which
can be trained to learn the best feature set to be used for the ML task. CNNs have been
recently used to classify a large number of devices across a wide swath of operational
conditions [17], to verify claimed identity against a small pool of known devices [9], and to
measure identifiable levels of I-Q imbalance deliberately injected by the transmitter [15].

Another area of research focuses on bolstering the practicality of deploying RFF
mechanisms in operational environments. Notably, ref. [22] explores how neural net-
works might be pruned to reduce their size and complexity, enabling their deployment
to resource-constrained edge devices. Researchers in [23] tackle the need to retrain RFF
models whenever a new device is added to the network by employing Siamese Networks,
effectively aiding model scalability through one-shot learning. Our work contributes to this
effort by comparing performance across four model types with increased levels of complex-
ity, including an expert-feature-based MDA/ML model, a shallow ANN, a low-capacity
CNN, and a high-capacity CNN.

Finally, the sensitivity to deployment variability is considered extensively in recent
works. For instance, variability stemming from time, location, and receiver configura-
tion are studied extensively in [24], and variability stemming from the RF environment
is evaluated in depth by [25,26]. Often, the goal is to remove or reduce environmental
effects to bolster classification accuracy, which can be done through data augmentation [27],
transmitter-side pre-filtering [28], deliberate injection of I-Q imbalance at the transmit-
ter [15], and through receiver-side channel equalization [17].

Our work extends the research in deployment variability by exploring the impact
to model performance from the use of different frequency channels. Consistent with the
works by [24,25], we concluded that evaluating models under conditions that are different
from training conditions leads to negative impacts to RFF performance. Like [27], we found
that adding more variability in our training made the models more generalizable, even to
conditions not seen during training.
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1.2. Assumptions and Limitations

RFF and SEI are broad areas of research that include everything from the fingerprinting
of personal and industrial communications devices, to radar and satellite identification. Our
work leverages communications devices, but it is likely that any transmitter which operates
across multiple carrier frequencies would exhibit the effects highlighted in this research.

The protocol used in this study was WirelessHART, which implements the PHY-
layer in the IEEE 802.15.4 specification. That specification divides the 2.4-GHz Industrial,
Scientific and Medical (ISM) band into 15 × 5 MHz channels, each with a different carrier
frequency. It is not clear whether the performance improvements of the multi-channel
models shown in this research depend on the bandwidth of the frequency channel. For
instance, models for Bluetooth, which employs narrower 80 × 1 MHz channels, may need
more frequency channels or further-spaced channels in the training set to achieve the same
levels of performance improvements. The impact of channel bandwidth to multi-channel
models is left as future work.

Another key WirelessHART feature is that it allows the use of mesh networking,
whereby each device can act as a relay of data for neighboring devices. Mesh networking is
also becoming increasingly popular in home automation, particularly with the adoption of
new Internet of Things (IoT)-centric protocols such as Thread [29]. The distributed nature
of those networks poses a challenge in RFF because there is no centralized endpoint with
which all other devices communicate, so there is no ideal centralized location to place the
RFF receiver. Our work is limited to the centralized configuration, which assumes that all
WirelessHART devices communicate directly with the gateway. Configurations to handle
mesh-networking, which could include multi-receiver systems or edge-based RFF, should
be explored in future work.

Although our work is limited to preamble-based fingerprinting, in part due to its recent
success in classifying WirelessHART devices [13], another highly researched technique is
transient-based fingerprinting. Transient-based fingerprinting employs features related to
how a device becomes active in preparation for transmission, which has proven fruitful for
the purpose of device identification [19,20]. It is likely that transient-based detection will
also be affected by carrier frequency, given that the same radio components persist in the
transmit chain. Regardless, the study of the effects of frequency channel to transient-based
fingerprinting is an interesting area of future work.

In the wideband collection for this work, only one WirelessHART device was config-
ured to communicate at a time. Under real operational conditions, multiple devices would
be able to communicate simultaneously on separate frequency channels, introducing the
potential for Adjacent Channel Interference (ACI). ACI occurs when energy emitted on
one frequency channel leaks into adjacent frequency channels. At a minimum, this energy
leakage could raise the noise floor, reducing the Signal-to-Noise Ratio (SNR) and potentially
degrading model performance. A study of the specific effects of ACI to model performance
is left as future work.

In the end, our goal was to demonstrate that frequency channel can have a sig-
nificant effect on RFF models in the hopes of encouraging future researchers to take it
into consideration.

2. Data Collection

A multi-channel WirelessHART dataset was collected and validated for the purpose
of this study. Precautions were taken to minimize the effects stemming from the RF
environment and receiver, as our focus was the study of transmitter effects. This Section
covers the methodology used for collection and pre-processing and includes a description
of the training, validation, and evaluation dataset(s).

2.1. WirelessHART Communications Protocol

The WirelessHART communications protocol, used by industrial sensors to transmit
stateful information (e.g., temperature, humidity, voltage, etc.) between industrial sensors
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and to human-machine interfaces, implements the Offset-Quadrature Phase Shift Key-
ing (O-QPSK) physical layer from IEEE 802.15.4, the standard for low-rate personal area
networks [5]. This is the same standard employed by ZigBee, another common IoT protocol;
many RF chips designed for WirelessHART are also compatible with ZigBee applications.
WirelessHART uses the first 15 channels defined by the standard on the 2.4 GHz ISM band
and employs a pseudo-random frequency hopping scheme, where subsequent transmis-
sions are sent on different frequency channels. Although the channel numbering given by
IEEE 802.15.4 ranges from 11 through 25, we arbitrarily number our channels 0 through 14.
Then, for a given channel i ∈ [0, 14], its center frequency is fc(i) = 2405 + i× 5 MHz, and
its bandwidth is ( fc − 2.5, fc + 2.5) MHz.

WirelessHART was selected as the candidate protocol for collection for several reasons.
First, the IEEE 802.15.4-based protocol is representative of many of the basic low-power
IoT devices being deployed across the globe at an exponentially increasing rate. Second,
it operates in a common frequency band using a manageable number of channels. And
finally, recent research in [14] employed MDA/ML using the same WirelessHART devices
used in our research, providing a baseline for performance comparison.

2.2. Collection Technique

Figure 1 envisions how an RFF-based authentication mechanism might be deployed for
WirelessHART. In this configuration, a centrally-located wideband SDR passively captures
bursts sent between the WirelessHART sensors and the gateway. Those bursts are offloaded
to a monitoring application, which performs RFF and validates the claimed identity of the
communicating device. Once the burst is validated, the information contained within it is
considered trusted. Our collection setup is based on this conceptual configuration.

WirelessHART
Gateway

Monitoring Application
(RFF/Device Verification)

Critical Production 
Application or HMI

Wideband SDR

TX/RX

WirelessHART
Sensors

RX RX

Workstation

Verified Data

Data to Verify

Raw Bursts

Process Data

Figure 1. Envisioned use case for RFF-based authentication of WirelessHART devices. Our experi-
mental setup mimicked this configuration.

WirelessHART devices were allowed to communicate directly with the WirelessHART
gateway one at a time, while an SDR captured device emissions. During collection, the
device was placed 8 ft. from the gateway, and the SDR antenna was positioned 18 in. from
the device. The eight devices observed are listed in Table 1 and included four Siemens
AW210 [30] and four Pepperl+Fuchs Bullet [31] devices.

Bursts were captured using a USRP X310 with a 100 MHz bandwidth centered at
2.440 GHz, enabling simultaneous collection of all 15 WirelessHART channels. Burst
detection for the wideband data was performed “on-the-fly” by thresholding the power
of the received signal. This enabled the collector to be efficient with its limited hard disk
space. In particular, given a received signal, c[n] = cI [n] + jcQ[n], the instantaneous power
was calculated as |c[n]|2 = (cI [n])2 + (cQ[n])2. A 100-sample moving average was then
used to detect the start and end of each burst using empirically-set thresholds. Buffers of
10 K complex I-Q samples were added before the start and after the end of the burst to aid
in SNR approximation, and each detected burst was saved to a new file.
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Table 1. Serial numbers and source addresses for the eight WirelessHART devices.

Device Number Manufacturer Serial Number Hex Source Address
(Assigned by Gateway)

0 Siemens 003095 0002
1 Siemens 003159 0005
2 Siemens 003097 0006
3 Siemens 003150 0003
4 Pepperl+Fuchs 1A32DA 0004
5 Pepperl+Fuchs 1A32B3 0007
6 Pepperl+Fuchs 1A3226 0008
7 Pepperl+Fuchs 1A32A4 0009

Three precautions were taken in an attempt to minimize effects from the RF environ-
ment. First, collections were done within a ranch-style suburban household, far away from
other wireless emitters relative to the distance between emitter and receiver. Second, all
collections were performed in the same physical location, meaning that any RF effects
due to interference with nearby non-emitters would likely manifest in the same way for
all devices. Finally, collections were performed in sets of 10 K bursts, started at random
times during the day throughout the course of two weeks. This ensured any potential
time-dependent sources of interference were well distributed across devices.

Collecting data in sets of 10 K bursts also forced the WirelessHART gateway to assign
a new frequency hopping scheme to each device when it re-established communication
with the gateway (per the WirelessHART specification [4]). This resulted in a relatively
even distribution of bursts across the 15 frequency channels.

2.3. Burst Validation

Our approach for burst detection did not guarantee that the received signal came
from the expected WirelessHART device; it could be the case that strong interference
triggered the burst detector. Further protocol-specific analysis was performed to ensure
the validity of each collected burst. The most straightforward way to do this was to
detect and verify the structure of the preamble, and subsequently read message-level
bits to verify that the transmitted source address corresponded to that listed in Table 1.
The process of burst validation consisted of Frequency Correction, Low-Pass Filtering,
WirelessHART Preamble Detection and Verification, Phase Correction, and Message Parsing
and Address Verification.

2.3.1. Frequency Correction and Low Pass Filtering

Unlike [17], which leveraged the Center Frequency Offset (CFO) as a discriminable
classification feature, we chose to remove the CFO because it depends on the characteristics
of the receiver, and we are most interested in understanding the impact of carrier frequency
to the transmitter. First, bursts were downconverted to baseband using a energy-based
coarse estimation of frequency channel. Then, the algorithm presented in [32] was used
to quickly approximate the remaining frequency offset between transmitter and receiver
by squaring the detected signal and taking a Fast Fourier Transform (FFT). The squaring
created peaks at two different frequencies, and taking the average between the peaks gave
an estimate of the CFO. Figure 2 shows how two peaks are present after squaring the burst.
To correct the frequency offset, the bursts were shifted in frequency such that the two peaks
were centered about 0 MHz.

All frequency correction was achieved through multiplication by complex sinusoid. In
particular, for a given burst c[n] with estimated center frequency fe, the frequency-corrected
burst was

ccor[n] = c[n]e−j2π(2440×106− fe)n (1)
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After frequency correction, a 2-MHz 4th order Butterworth low pass filter was applied
to each burst for noise suppression outside of baseband.

5 4 3 2 1 0 1 2 3 4 5
Frequency (MHz)

20

10

0

10

20

Am
pl

itu
de

 (d
B

)

Peak No. 1 Peak No. 2

Figure 2. FFT of the square of a WirelessHART burst with yielded peaks. Centering the peaks about
0 MHz center-aligns the carrier and corrects the frequency offset.

2.3.2. WirelessHART Preamble Detection and Verification

Preamble detection was done in the time domain by correlating the peak-normalized
filtered burst with a generated preamble. The index with maximum-amplitude correlation
was assumed to be the starting index of the burst preamble. As a measure of similar-
ity, the corresponding correlation coefficient was also used for WirelessHART preamble
verification; if the coefficient was too low, the burst was discarded.

2.3.3. Phase Correction

The angle of the correlation coefficient was also an estimate of the phase offset between
the burst preamble and the generated preamble. It was used to correct phase through
multiplication by complex exponential. Given a burst c[n] with phase offset θ, the phase-
corrected burst was

ccor[n] = c[n]e−jθ (2)

A note on frequency and phase correction: in operational receivers, both phase and
frequency correction are done via PLLs [33]. PLLs continuously tune the receiver center
frequency to drive the phase offset between transmitter and receiver to zero. This is
undesirable for the RFF application because the distortions in phase and frequency, which
are suppressed by the PLL, could be leveraged for device discrimination.

2.3.4. Message Parsing and Address Verification

The downconverted, phase-corrected burst was demodulated, and the symbols were
mapped to message bits. The source address was extracted from the parsed message and
compared to the known device addresses listed in Table 1. If the address matched the
expected device address, the burst was considered valid.

2.4. SNR Estimation

SNR estimation of the validated bursts was necessary to enable model evaluation against
noise. All SNR estimates were performed after the 2-MHz low pass filter was applied.

Noise power and signal-plus-noise power were estimated on a per-burst basis directly
from the captured burst. The signal-plus-noise region from which signal-plus-noise power
(PS+N) was estimated was defined as the 1605 samples that made up the preamble. The
preceding 160 samples were deemed a buffer region, where none of the samples were
used for any power estimation. The noise region for estimating noise power (PN) was
defined as the 1605 samples immediately preceding the buffer region. Figure 3 shows these
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three regions for an example burst. For a given complex burst, c[n] = cI [n] + jcQ[n], the
estimated powers and SNR (in dB) are

PN =

∑
n∈noise rgn

(cI [n]2 + cQ[n]2)

1605
(3)

PS+N =

∑
n∈sig+noise rgn

(cI [n]2 + cQ[n]2)

1605
(4)

SNR = 10 log10

(
PS
PN

)
= 10 log10

(
PS+N − PN

PN

)
. (5)

Figure 4 shows the per-class range and average SNRs estimated on the full set of
collected bursts. The average burst SNR across all devices and all channels was 41.4 dB.

0 500 1000 1500 2000 2500 3000
Sample No.

1.0

0.5

0.0

0.5

1.0

B
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Noise Region Signal+Noise Region
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Figure 3. Sample burst depicting the noise region (1605 samples), buffer zone (160 samples) and
signal-plus-noise region (1605 samples) used for SNR estimation. For clarity, only the I-component is
shown, but the power was calculated using the complex samples.
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Avg SNR: 41.4dB

Figure 4. Summary of estimated collection SNRs for all devices across all channels. As denoted by
the dotted line, the average SNR was 41.4 dB.

2.5. Datasets

Once all bursts were validated, datasets were created for the purpose of model training,
validation, and evaluation. The large pool of valid bursts were randomly sampled to create
datasets that were balanced with respect to the classes and to the frequency channels.
Table 2 outlines the fundamental datasets for our work. The experiments leveraged subsets
of these datasets (e.g., by training with data from only one channel), but the delineation
between the sequestered training, validation, and evaluation datasets remained.
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Table 2. Fundamental datasets used in this work, broken down by class and channel.

No. of Observations Training Set Validation Set Evaluation Set

per Device per Channel 5000 500 1000
per Channel 40,000 4000 8000
per Class 75,000 7500 15,000
in Total 600,000 60,000 120,000

3. Experiments

Three experiments were designed to (i) assess the sensitivity of single-channel models
to a multi-channel dataset, (ii) determine whether carefully-constructed multi-channel
models generalized better than single-channel models, and (iii) determine whether multi-
channels models gained more resiliency to noise. This section provides a description of
the four models used across all tests, followed by individual methodologies, results, and
analyses for the three experiments.

3.1. RFF Models

Four typical RFF models with varying levels of complexity were selected as candidates
for experimentation in this work. All four model types were used in all three experiments.
This section describes the structure of each model in detail.

1. Multiple Discriminant Analysis/Maximum Likelihood. This model type leverages the
commonly-used Time-Domain Distinct Native Attribute (TD-DNA) feature set [10,34,35],
as depicted in Figure 5, which was recently used by Rondeau et al. on single-channel
WirelessHART bursts [14]. TD-DNA features are statistics calculated for a set of signal
subregions (defined by NR) after a number of signal transforms. The features are
dimensionally reduced through Fisher Transform and fed in to a standard Quadratic
Discriminant Analysis (QDA) model for classification. Including dimensionality
reduction and discriminant analysis, the total number of trainable parameters is 1757.

2. Fully-Connected Artificial Neural Network. Figure 6 shows the ANN, which operated
directly on raw complex I-Q burst data input to the network on two independent data
paths (one for I and one for Q). The two-dimensional input was flattened into a single
3210-wide vector which was fed to the first fully-connected layer. Even with 207,848
trainable parameters (10 times that of MDA/ML), this particular ANN was a shallow,
low-complexity alternative to the other two neural networks.

3. Low-Capacity Convolutional Neural Network. Like the ANN, the LCCNN presented
in Figure 7 operated directly on raw complex I-Q burst data. The network comprised
eight Conv1D layers that applied a total of 112 digital filters and two fully-connected
layers that mapped the filter output to a four-dimensional latent space. The Softmax
output layer was used for classification, where class prediction was determined by
the node with largest output value. Because of its convolutional layers, the LCCNN is
able to add depth to the ANN with 232,156 trainable parameters.

4. High-Capacity Convolutional Neural Network. This high-capacity model was in-
spired by ORACLE, a CNN that extracts and classifies injected I-Q imbalance [15].
This model carried significantly more capacity, with 14 hidden layers comprising
four pairs of 128-filter Conv1D layers that applied a total of 1024 digital filters, and
two fully-connected layers that mapped the filter outputs to a 64-dimensional latent
space. Like in the LCCNN, the input layer contained two independent input paths,
and the output Softmax layer contained one node for each of the eight classes in
this study. This is the most complex model, requiring 3,985,544 trainable parame-
ters, approximately 20 times as many as the ANN and LCCNN. Figure 8 depicts
the HCCNN.

MDA/ML models were trained by fitting a QDA model onto the dimensionally-
reduced TD-DNA features. All neural networks were trained using Stochastic Gradient
Descent with the Adam optimizer and learning rate of 1× 10−4, with batch size of 512 ob-
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servations. An early stopping callback was used to monitor the performance on the
validation set, where training was stopped after 10 epochs of no improvements. The model
weights with best validation set performance were restored and this was used as the final
trained model.

Input
(1605x2) Fingerprint

(243x1)

Fisher Projection
(7x1)

QDA
Output

(1)

TD-DNA
(𝑁!=26)

Fisher 
Transform

Figure 5. MDA/ML QDA model with TD-DNA feature set with 26 subregions.
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Figure 6. Fully-Connected Artificial Neural Network.
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Figure 7. Low-Capacity Convolutional Neural Network.
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Figure 8. High-Capacity Convolutional Neural Network.
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3.2. Performance Metric: Matthews Correlation Coefficient (MCC)

Performance for RFF models is typically reported as per-class classification accuracy,
which is the accuracy averaged across all classes. For K classes, per-class classification
accuracy degrades to 1/K when models perform no better than random guess. It is therefore
difficult to grasp model performance without first knowing how many classes were used
to train the model. One way to address this problem is to standardize performance by the
number of classes through the use of MCC.

MCC is a performance metric first designed for binary class classification models,
derived by Matthews as a discrete version of the correlation coefficient [36]. An MCC value
of 1.0 indicates perfect correct model performance, 0.0 indicates performance no better
than random guess, and −1.0 indicates perfect incorrect model performance. The multi-
class case, derived by Gorodkin [37], preserves the −1.0 to 1.0 quantitative performance
characteristics. For K classes, MCC is calculated as

MCC =

cs−∑
k

pktk√
s2 −∑

k
(pk)

2
√

s2 −∑
k
(tk)

2
(6)

where tk is the number of occurrences for class k ∈ [0, 1, 2, . . . , K− 1], pk is the number of
times class k was predicted, c is the total number of correct predictions, and s is the total
number of predictions [38]. For our experiments, we use K = 8 classes and report all model
performance via MCC.

3.3. Experiment A: Single-Channel Models

The goal in this experiment was to determine whether the performance of models
trained on a single channel (i.e., “single-channel models”) extends to other frequency
channels. To that end, single-channel models were evaluated against a dataset containing
bursts from multiple channels, and the per-channel evaluation performance was reported.

3.3.1. Methodology

The training and validation datasets described in Section 2.5 were subdivided into
15 subsets, one for each channel, yielding a total of 5 K training observations and 500 vali-
dation observations per device in each subset. Then, the four models were trained with
each subset to create a total of 60 single-channel RFF models. All models were evaluated
on the full evaluation dataset described in Section 2.5, which contained bursts from all
15 channels. MCC was calculated using Equation (6).

3.3.2. Results and Analysis

Figures 9–11 show the performance for single-channel models trained on data from
Channel 0, Channel 7 and Channel 14, respectively. Plots for the remaining single-channel
models have been omitted for brevity, given these three figures are representative of the
overarching observations for this experiment. Performance was reported individually for
each channel in the evaluation set to show how well the models operated outside their
training scope. Note that performance always peaked at the channel on which the models
were trained and deteriorated when the evaluation channel was farther away (in frequency)
from the training channel.

As expected, none of the models generalized across all channels when trained on data
from a single channel, but some models did generalize better than others. In particular,
when the models were trained on data from Channel 7, they generalized well across a wide
swath of channels (e.g., Channels 5–10), whereas when the models were trained on Channel
14, performance only roughly generalized to Channel 13 and only for MCA/ML and
HCCNN. In the worst case, signals from distant channels were classified by the Channel 14
model with success no better than random guess.



Sensors 2022, 22, 2111 12 of 21

Between the model types, the MDA/ML model and the HCCNN model were the most
competitive, with the MDA/ML model performing best most of the time. The LCCNN
and ANN performed similarly most of the time, but the LCCNN was especially bad at
generalizing when it was trained on Channel 14. These observations suggest that the
MDA/ML and HCCNN model were better at inherently targeting variability that existed
irrespective of frequency channel.

In general, frequency-dependent signal distortions appeared to be on a spectrum,
where signals from nearby channels exhibited similar distortions. However, it is not clear
how the channel width might affect those distortions. It could be the case that with narrower
channels, like the 1 MHz channels in Bluetooth, performance extends across more channels.
Such exploration of the effects of channel width are interesting future work.
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Figure 9. Performance of single-channel models trained with data from Channel 0.
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Figure 10. Performance of single-channel models trained with data from Channel 7.
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Figure 11. Performance of single-channel models trained with data from Channel 14.
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Additionally, recall that the transmitter, RF environment, and receiver distortions were
not decoupled. Thus, it is possible that a non-trivial part of the variability between fre-
quency channels was imposed by non-transmitter sources. Finding a way to decouple (or at
least reduce the coupling) across the three sources would enable more flexible applications
(e.g., multi-receiver narrowband systems) and could help researchers more precisely target
the signal alterations imposed by hardware components in the transmitter. Regardless of
its source, the variability must be considered to achieve good RFF performance.

A natural follow-up experiment was to include data from multiple channels in the
training set to determine if this improved model generalizability. This experiment is
covered in the following Section.

3.4. Experiment B: Multi-Channel Models

The focus of Experiment A was to demonstrate that single-channel models did not
always perform well across all frequency channels. In Experiment B, the goal was to
determine whether including bursts from multiple channels during training improves
performance. During training, we deliberately use data from an increasing number of
channels, relatively spread throughout the 80 MHz band to create “multi-channel models.”
These models were tested against the same evaluation set from Experiment A, which
included bursts from all 15 channels.

3.4.1. Methodology

The same four models presented in Section 3.1 were used in Experiment B. Training
was done using 11 datasets assembled from portions of the full training set described in
Section 2.5, but special consideration was taken with respect to the number of observations
in training sets.

Generally, the performance of ML models is influenced by the number of observations
provided during training. To enable comparison between multi-channel models from
Experiment B and single-channel models from Experiment A, the size of the training
datasets was limited to no more than 5000 observations per device (i.e., the size of training
sets in Experiment A). Concretely, two-channel data subsets contained 2500 observations
per device per channel (5000 observations/device in total), three-channel data subsets
contained 1666 observations/device per channel (4998 observations/device), four-channel
subsets had 1250 observations per device per channel (5000 observations/device), and the
all-channel (i.e., 15-channel) subset contained only 333 observations per device per channel
(4995 observations/device). Channel combinations were selected to explore how channel
coverage impacted performance. The 11 data subsets used for Experiment B are listed in
Table 3. Evaluation was done using the same dataset from Experiment A, which contained
bursts from all 15 channels.

Table 3. Summary of datasets used for Experiment B.

No. of Chans. Chans. in Datasets Observations per
Chan. per Device

Observations
per Device Total

2 [0,14], [1,13], [2,12], [3,11] 2500 5000 40,000
3 [0,7,14], [1,7,13], [2,7,12], [3,7,11] 1666 4998 39,984
4 [0, 4, 10, 14], [1, 5, 9, 13] 1250 5000 40,000
All [0,1,2,. . . ,14] 333 4995 39,960

3.4.2. Results and Analysis

A representative sample of the performance results for the multi-frequency models
are depicted in Figures 12–15.

Comparing the Channel 14 single-channel models from Experiment A in Figure 11
with the 2-channel models in Figure 12, it is immediately evident that adding even one
more channel to the training set improved generalizability, regardless of model type. With
the addition of Channel 0 to the training set, the worst-case performance across all models
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improved from MCC = −0.23 to MCC = 0.716. Note that model performance improved
across all channels, even if the channels were not explicitly included in the training set.

Table 4 and Figure 16 summarize the combined performance of models from Experi-
ment A and Experiment B. A single MCC metric was calculated for each trained model by
aggregating the per-channel results, and MCCavg was calculated by averaging across all
models of the same type that employed the same number of channels. For the 15-channel
case, the reported MCCavg is the performance of the sole 15-channel model.
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Figure 12. Performance of multi-channel models trained with data from Channels 0 and 14.
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Figure 13. Performance of multi-channel models trained with data from Channels 0, 7 and 14.
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Figure 14. Performance of multi-channel models trained with data from Channels 0, 4, 10 and 14.
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Figure 15. Performance of multi-channel models trained with data from all channels.
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Figure 16. Performance summary for all models as the number of channels in the training was
increased. Trend lines represent MCCavg, and color bands represent the range of MCC values at that
number of training channels. Notably, all-channel performance was achieved with only four channels
included in the training set.

Two trends are evident from these metrics: (i) model performance generally improved
when channels were added to the training set, and (ii) the performance of 4-channel models
approached the performance of 15-channel models. Note that even the worst performing
single-channel model type, i.e., the LCCNN, improved its MCCavg from 0.657 to 0.957
with only three additional channels in the training set. The one exception was with the
ANN, for which the 15-channel MCCavg was 0.006 units lower than the 4-channel MCCavg.
This small gap in performance might be attributed to the variability stemming from the
randomized initial model weights before training, or from the fact that the 15-channel
“average” included only one model—retraining the 15-channel ANN may yield slightly
better results.

Table 4. Summary of MCCavg for all models from Experiments A and B. In general, MCC improved
as the number of channels in the training set were increased.

No. of Channels
MCCavg

MDA/ML ANN LCCNN HCCNN

1 0.833 0.723 0.657 0.742
2 0.943 0.857 0.823 0.859
3 0.961 0.957 0.930 0.950
4 0.967 0.970 0.957 0.958

15 (All) 0.974 0.964 0.967 0.958

Regardless, these trends again support the existence of frequency-irrespective vari-
ability. Multi-channel models were better suited to learn that variability, even with limited
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(i.e., 4-channel) exposure to the spectrum. Furthermore, the MDA/ML model consistently
generalized better than its neural network counterparts, suggesting that the frequency-
irrespective variability in our particular experimental setup can be effectively extracted
through the TD-DNA fingerprint generation process.

In practice, it is desirable for RFF models to perform well across all frequency channels,
but that is not the only requirement. Models should also perform well under the presence of
environmental noise. Thus, researchers often report model performance across multiple lev-
els of noise, modeled as AWGN. Experiment C explores whether multi-channel models gain
any performance advantages over single-channel models under varying noise conditions.

3.5. Experiment C: Gains in Noise Performance

The goal of the final experiment was to determine whether multi-channel models
gained any performance advantages over single-channel models in noisy RF environments.
Tested models included the Channel 7 single-channel models from Experiment A, and
new “all-channel/all-data” multi-channel models built exclusively for this experiment.
All models were evaluated with bursts from Channel 7 with varying SNR levels adjusted
synthetically through the addition of power-scaled AWGN.

3.5.1. Methodology

Two datasets were used for training: a single-channel set, where the models were
only exposed to Channel 7 data (5 K observations/device), and a multi-channel set, which
included the full training dataset (75 K observations/device). Performance was captured
on a subset of the full evaluation set with only Channel 7 bursts (1 K observations/device).
The full training dataset was used to maximize the exposure of multi-channel models
to Channel 7 data, enabling them to better compete against the single-channel models.
Multi-channel models were at an inherent disadvantage because they had to overcome
both channel and noise, whereas single-channel models only had to overcome noise.

Each model was trained and evaluated at the same SNR level, which was adjusted to
simulate increasingly harsh operational environments. Individual bursts were adjusted to
the desired SNR through the addition of AWGN. For each burst, a noise realization was
generated from a normal distribution and filtered using the same 2-MHz low pass filter
from burst processing. Then, the power of the noise realization was scaled such that when it
was added to the burst, the desired SNR was achieved. Models were re-trained at each SNR
level, and MCC was calculated after aggregating the results across 100 noise realizations.
Performance was reported for SNR ∈ [5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 25, 25, 30, 35, Max], where
“Max” means no SNR adjustment was made (i.e., capture SNR).

Note that since noise could only be added (not removed), the per-burst SNR could
only ever be decreased. As an example, Figure 17 shows the same bursts from Figure 4
after they were adjusted to a maximum SNR of 35 dB, resulting in a mean SNR of 34.8 dB
across all data. In that case, bursts that had SNR lower than 35 dB remained unchanged.
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Figure 17. Summary of estimated collection SNRs for all classes across all channels after adjusting
SNR to 35 dB. The mean SNR dropped to 34.8 dB, as denoted by the dotted line.
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3.5.2. Results and Analysis

Figure 18, which depicts noise performance of the LCCNN models, is representative
of the results across all model types. As expected, MCCs for both the single- and multi-
channel models worsened as SNR was decreased. To help determine whether multi-channel
models gained an advantage against noise, we define a new metric, MCC∆, as the difference
between multi-channel performance and single-channel performance for a given model
type, i.e.,

MCC∆ = MCC(multi-channel)−MCC(single-channel), (7)

for which a positive MCC∆ implies better multi-channel performance. Figure 19 illustrates
MCC∆ for the four models across varying SNR levels.

The advantage of multi-channel models depended on model type and SNR level. At
high SNR levels (SNR > 20 dB), MCC∆ was generally stable for all model types. In that
region, the multi-channel CNNs matched or beat single-channel CNNs, but the single-channel
ANNs and MDA/ML models bested their multi-channel counterparts. With mid-level SNRs
(10 dB < SNR < 20 dB), MCC∆ for the three neural networks fluctuated between positive and
negative, suggesting no clear advantage for multi-channel models. Notably, single-channel
MDA/ML models thrived in this region, surpassing multi-channel models by up to 0.13 units.
Finally, at low SNR levels (SNR < 10 dB), multi-channel models for all four model types
showed some advantage over single-channel models, though arguably, the performance in
this region was already too weak (MCC . 0.5) to be practical for RFF applications.
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Figure 18. Performance of single-channel and multi-channel LCCNN models at varying SNRs.
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Figure 19. Performance difference between multi-channel models and single-channel models across
varying SNR levels, where MCC∆ > 0 implies better multi-channel performance. Multi-channel
neural networks (i.e., CNNs and ANN) approximately maintained or outperformed their single-
channel counterparts, but multi-channel MDA/ML models did not.



Sensors 2022, 22, 2111 18 of 21

For the neural networks (i.e., CNNs and ANN), the frequency-irrespective variability
learned by the multi-channel models enabled them to approximately maintain or surpass
single-channel model performance. Conversely, the single-channel MDA/ML models
consistently outperformed their multi-channel counterparts in the presence of noise. It
could be that frequency-specific variability, which was deliberately ignored by multi-
channel models, allowed some of the single-channel MDA/ML models to overfit the
training channel, giving them an advantage against random noise.

4. Conclusions and Future Work

Modern communications protocols often employ multiple frequency channels to enable
simultaneous user operation and mitigate adverse interference effects. Although recent RFF
research targets devices that implement these protocols, the direct applicability of these
proof-of-concept works is generally limited given that they train RFF models using bursts
received on a single channel. Because the signal distortions leveraged by RFF models are
linked to the radio hardware components, and those components operate irregularly across
different frequencies, practical RFF models must account for multiple frequency channels.
Using WirelessHART signal bursts collected with a wideband SDR, our work demonstrated
that RFF model performance depends on the frequency channels used for model training.

Candidate models, including MDA/ML using expert-aided features, a fully-connected
ANN and two CNNs, were evaluated across several training-evaluation channel combi-
nations. Performance of single-channel models did not always generalize to all frequency
channels. In the most disparate case, one of the single-channel models performed almost
perfectly (MCC > 0.9) on its training channel and no better than random guess (MCC < 0.05)
on a non-training channel. Often, models performed well on the training channel and rela-
tively well on the adjacent channels, but deteriorated outside of that scope. This suggests
that signal distortions were continuous with respect to frequency, i.e., nearby channels
exhibit similar distortions.

When data from multiple channels were included in the training set, the multi-channel
models generalized better across all channels, achieving adequate performance even when
just a small subset of channels were included (i.e., four of the 15). In the worst case, the
average MCC for LCCNN models improved from 0.657 in the single-channel configuration
to 0.957 in the 4-channel configuration, again implying bolstered performance across all
channels. This finding suggests that there existed frequency-irrespective variability that
could be learned by the models and used for RFF.

The performance advantage of multi-channel models under noisy conditions de-
pended on model type and SNR level. Multi-channel neural networks (i.e., CNNs and
ANN) were able to approximately maintain or surpass single-channel model performance
across most SNR levels, but multi-channel MDA/ML models were consistently outper-
formed by their single-channel counterparts. It could be that the frequency-specific vari-
ability available to the single-channel MDA/ML models caused them to overfit the training
channel, giving them an advantage against random noise.

One interesting area of future work would be to explore how the bandwidth and
spectrum location of the frequency channels used in training affects multi-channel perfor-
mance. Each additional channel included in the training set exposed the RFF models to an
additional 5-MHz “chunk” of that spectrum. This additional exposure enabled models to
learn frequency-agnostic variability, making them generalize better across all frequencies.
We found that 20 MHz (i.e., four WirelessHART channels) of exposure spread throughout
the 80 MHz band was enough to achieve frequency channel-agnostic performance. Other
common communications protocols employ channels of different sizes; e.g., Bluetooth
channels are 1 MHz wide, and typical WiFi channels are up to 20 MHz wide. It could
be the case that more Bluetooth channels and fewer WiFi channels would be needed to
achieve generalizable multi-channel model performance because of the difference in chan-
nel bandwidth. Further study of the effects of channel bandwidth and spectrum location to
frequency-irrespective variability remains an area of future work.
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Another area of future work would be to address the radio limitations for practical
RFF applications. As discussed, modern IoT protocols enable mesh networking, whereby
each endpoint in the network can relay data to and from its neighbors. A practical RFF
solution must be able to target all of these data transfers to be useful for security. One
solution would be to include RFF capabilities within the individual endpoints, as proposed
by researchers in [22]. To that end, our work explored the use of low-complexity models in
a multi-channel configuration (e.g., MDA/ML or LCCNN and found them to be generally
adequate under most conditions, as long as they were trained using multiple channels.
Indeed, this type of deployment is the long-term vision for wireless security, but it does not
address the devices that are already deployed and operational.

A stopgap solution would be to deploy more RFF-capable SDRs, forming multi-
receiver RFF systems. Multi-receiver systems could also be useful in non-mesh configura-
tions if individual SDRs cannot cover all frequency channels. The key challenge would be
to find a way to share RFF models across radios to avoid the tedious collection and training
effort that would come with scale. One approach may be to combine bursts collected from
multiple receivers, similar to our multi-channel approach, whereby the RFF models could
learn receiver-irrespective variability. Notably, this effort would also aid in decoupling
signal distortions imposed by the receiver from those imposed by the transmitter and RF
environment, further adding to its value as future work.

Finally, with the extension of RFF to multi-channel configurations, the effects of ACI
to RFF model performance should be explored. When multiple devices communicate
simultaneously on different frequency channels, the potential exists for some of the energy
in one channel to leak to adjacent channels. At a minimum, this energy leakage could raise
the noise floor, reducing SNR and potentially degrading model performance. Understand-
ing the extent to which ACI can affect model performance will therefore be critical in the
deployment of RFF models to real operational environments.

RFF models continue to offer an attractive out-of-band method for wireless device
authentication, especially as a component in the defense-in-depth security paradigm. As
modern protocols grow in operational complexity, the variability of signal distortions across
these expanded modes of operation must be considered to achieve the most effective and
generalizable RFF systems.
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Abbreviations

The following abbreviations are used in this manuscript:

ACI Adjacent-Channel Interference
ANN Artificial Neural Network
AWGN Additive White Gaussian Noise
CFO Carrier Frequency Offset
CNN Convolutional Neural Network
DARPA Defense Advanced Research Projects Agency
FFT Fast Fourier Transform
HCCNN High-Capacity CNN
IoT Internet of Things
ISM Industrial, Scientific and Medical
LCCNN Low-Capacity CNN
MCC Matthews Correlation Coefficient
MDA/ML Multiple Discriminant Analysis/Maximum Likelihood
ML Machine Learning
O-QPSK Offset-Quadrature Phase Shift Keying
PLL Phase-Locked Loop
QDA Quadratic Discriminant Analysis
RF Radio Frequency
RFF RF Fingerprinting
RFML Radio Frequency Machine Learning
SDR Software-Defined Radio
SEI Specific Emitter Identification
SNR Signal-to-Noise Ratio
TD-DNA Time-Domain Distinct Native Attribute
WirelessHART Wireless Highway Addressable Remote Transducer
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