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Abstract
Point set registration algorithms such as Iterative Closest Point (ICP) are commonly utilized in time-constrained environments
like robotics. Finding the nearest neighbor of a point in a reference 3D point set is a common operation in ICP and frequently
consumes at least 90% of the computation time. We introduce a novel approach to performing the distance-based nearest
neighbor step based on Delaunay triangulation. This greedy algorithm finds the nearest neighbor of a query point by traversing
the edges of the Delaunay triangulation created from a reference 3D point set. Our work integrates the Delaunay traversal into
the correspondences search of ICP and exploits the iterative aspect of ICP by caching previous correspondences to expedite
each iteration. An algorithmic analysis and comparison is conducted showing an order of magnitude speedup for both serial
and vector processor implementation.

Keywords Nearest neighbor search · Delaunay triangulation · 3d point cloud processing · Point registration · Iterative Closest
Point

1 Introduction

Point set registration presents a challenging problem for
numerous applications including computer vision, pattern
recognition, robotics, and image processing [42]. Registra-
tion finds a rigid transformation between two or more data
sets—providing a rotation and translation that minimizes the
pairwise Euclidean difference between corresponding pairs
of matched points. These point clouds can be known a priori,
generated from images, light detection and ranging (Lidar),
or other sensors.

A common point registration method, Iterative Closest
Point (ICP), typically must execute in near real-time. In self-
driving cars, on-board computers utilize the transformation
found by ICP to detect objects within the car’s local envi-
ronment. The system may determine an adjacent vehicle is
veering into its lane, creating a potential hazard and requiring
immediate action. Thus, these applications require point-set
registration processes be completed in a timely fashion. After
investigating the steps of ICP, when utilizing a k-d tree, the
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nearest neighbor step consumes the majority of the time, as
shown in Fig. 2. Our work has shown a nearly 90% speedup
when compared to the traditional k-d tree as seen inFig. 1. For
this reason, our research focuses on the Euclidean distance-
based pairwise nearest neighbormatching employed by point
set registration methods such as Besl’s ICP algorithm [10].
We invite the reader to watch a video overview of the work
detailed in this paper at [5].

Nearest neighbor matching finds a candidate point in a
reference point cloud that is nearest to a corresponding point
in the sensed point cloud [29]. Doing this for each point
in the sensed point cloud creates a mapping that associates
each point in the sensed cloud to a point in the reference
cloud. Naïvely, if both point sets are size n, nearest neigh-
bor matching is an O(n2) algorithm; therefore, accelerating
an algorithm such as ICP requires minimizing the nearest
neighbor matching time.

This research focuses on accelerating Euclidean distance-
based pairwise point matching and is applicable to all
registration algorithms utilizing nearest neighbor pairs. This
paper makes the following contributions:

1. A novel, Delaunay-based, embarrassingly parallel, near-
est neighbor 3Dmatching algorithm applicable to numer-
ous applications requiring distance-based correspon-
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Fig. 1 Breakdown of ICP step times utilizing Previous Nearest Neigh-
bor Delaunay Traversal

Fig. 2 Breakdown of ICP step times utilizing k-d treeNearest Neighbor

dences including rigid and non-rigid point registration,
pattern recognition and computer vision.

2. An algorithmic analysis of this Delaunay-based corre-
spondence search.

3. ICP-based timing results showing reduced convergence
time across common data sets compared to current meth-
ods.

4. A stereo vision-based application employing our algo-
rithm in ICP.

Thepaper is arranged as follows. Section2presents related
work. Section 3 introduces the Delaunay Traversal nearest
neighbor algorithm. Section 4 describes variants of our pro-
posed Delaunay Walk. Section 5 presents the experimental
methodology and results. Sections 6 and 7 conclude the paper
and discuss future work.

2 Related work

2.1 Point set registration

Paul Besl’s ICP algorithm [10] is a ubiquitous point set
registration process which depends on pairwise Euclidean

distance correspondence. From the pair-wise correspon-
dences, ICP registers two point clouds by computing a
rotation R and translation t. This is a rigid transforma-
tion, which minimizes the mean square point matching error
(MSPME) between the two point clouds. This error is the
average Euclidean distance between the point correspon-
dences after the transformation is applied.

Consider 3D point sets X = {xi|xi ∈ R3}mi=1 and P =
{pi|pi ∈ R3}ni=1, where n = |X | and m = |P|. Additionally,
each point pi corresponds to point xi with the same index.
ICP executes to fit the source P onto the target X . From [42],
ICP can be expressed as:

argmin
R,t

{
1

m

m∑
i=1

|xi − (Rpi + t)|
}

(1)

ICP is broken into 3 major steps:

1. nearest neighbor search
2. transformation estimation
3. transformation validation

These three steps are repeated until either the error falls below
a set threshold or the error between iterations is negligible.

Several variants exist for each of these steps to improve
accuracy and speed, particularly transformation estimation.
Where Besl utilized point-to-point correspondences, Chen
modified the algorithm by generating point normals for the
target 3D point set and matching the query point to the
plane defined by these normals, typically cited as point-
to-plane [13]. Since this method registers source points to
the area around the target point instead of the target point
itself, the algorithm’s sensitivity to noise can be reduced [8].
Point-to-plane’s transformation calculation takes longer per
iteration, but the entire algorithm typically converges in fewer
iterations and results in a similar timing to point-to-point
[25]. Extending point-to-plane, generalized ICP describes a
plane-to-plane method [38]. In plane-to-plane, normal vec-
tors are calculated on both target and source point clouds.
This method can be shown to be more robust; however, since
surface normals need to be calculated, plane-to-plane is typ-
ically not utilized for real-time ICP applications.

ICP handles rigid point registration with little to no scal-
ing or shearing. Other non-rigid point registrations exist to
determine an affine transformation when scaling or shearing
are present. Several of these approaches utilize distance-
based correspondences. For example, coherent point drift
(CPD) [31] utilizes the centroids from Gaussian mixture
model (GMM) of the source dataset and find an affine trans-
formation alining those centroids to the expected data. The
Delaunay-based nearest neighbor algorithm presented in this
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paper can be utilized in non-rigid registrations so long as the
correspondences are found with a distance-based metric.

2.2 Nearest neighbor

Nearest neighbor applications span numerous fields, includ-
ing pattern recognition [14], machine learning [40], and
robotics [35]. Some of these require an ordered list of sim-
ilar data, while others only require a single closest point.
Depending on the metric used for similarity, the closest point
may or may not be unique. In pairwise nearest neighbor,
some distance metric such as Euclidean distance, Manhattan
distance, squared distance, or other calculation is typically
utilized depending on the application. This research employs
pairwise Euclidean distance nearest neighbor matching.

Brute force is the generic method for determining near-
est neighbors. Again, consider 3D point sets X and P . The
nearest neighbor of p0 ∈ P is

argmin
x∈X

|p0 − xi | (2)

To match all points P to X , Eq. 2 must be evaluated for
every point inside P . Again taking n = ||X || and m = ||P||,
a brute force approach results in a time complexity of O(n)
to match a single point and O(nm) to match all points.

In order to reduce the time complexity for a nearest neigh-
bor search, applications typically utilize a space-partitioning
structure such as a k-d tree. Introduced by Bentley [9], a k-
d tree is a space partitioning k-dimensional binary tree that
organizes a data set by dividing each level by a hyperplane
created from the median of the given dimension. A k-d tree
is built by splitting space into a set of alternating hyperplanes
placed at the median of a first dimension. The points are split
along this partition and then recursively divided based on the
next dimension’s hyperplane. To query the k-d tree for the
nearest neighbor to a given point, the algorithm begins at
the root node and traverses down the tree, choosing which
child node to visit based on which side of the hyperplane
the query point exists [17]. After reaching a leaf, the algo-
rithm back-traces up the tree checking the distance to each
hyperplane to determine if the adjacent volume needs to be
checked for a closer point. Since a binary tree has log2(n)
levels, the average query time is proportional to O(log(n))
with a worst-case of having to search the entire tree being
O(n). However, when numerous queries to the dataset are
required, construction of a k-d tree proves a benefit to the
alternative of the brute force approach since not every point
needs to be compared to the query points.

Other tree-based data structures, including R-trees [19]
and octrees [27], have been developed to accelerate nearest
neighbor searches. Both structures partition the space of the
data comparable to a k-d tree. For R-trees, rectangles cre-

ate bounds between clusters of data points with each higher
level combining clusters into their minimal spanning rectan-
gle. This approach increases spatial locality of nearby points
as rectangles lower in the hierarchy can be stored in nearby
memory locations. While the innate structure of the data dic-
tates the regions of an R-tree, an octree partitions the space
uniformly. These methods present challenges for beginning
at an arbitrary data point since the closet point may not be
within the region but in an adjacent one. Searches of tree
structures typically begin at the root of the tree. The work
presented in this paper allows searches to begin from any
arbitrary point within the data set, allowing for extremely
fast results when subsequent searches are similar to the pre-
vious ones.

Onemethodutilizing octrees described in [16] utilizes pre-
vious results to facilitate searches. The tree is constructed on
the Voronoi cells computed from the original points rather
than the points themselves. Regions of the octree, voxels,
contain at most Mmax intersecting Voronoi cells. These vox-
els are then accessed through a hash table where each entry
is indexed through its level in the tree. The search may need
to backtrack up the tree to search adjacent regions. Since the
structure of the work presented in this paper does not split the
data into regions, utilizing a result for subsequent searches
only requires searching the previous result’s Delaunay neigh-
bors.

With respect to point registration, methods in [13,38]
focus on the accuracy of the second step of Besl’s ICP. How-
ever, this step of the algorithm executes relatively quickly
when compared to the nearest neighbor step. Caching the pre-
vious ICP iteration’s nearest neighbor correspondences is an
approach to accelerate the nearest neighbor phase. A cached
k-d tree is presented in [32], where a pointer to the node
within the tree is utilized as the starting node for subsequent
iterations. Similarly, in [18], if the previous correspondence
meets certain geometric constraints, it is used to expedite the
nearest neighbor search. This research uses the previous ICP
iteration’s nearest neighbor correspondence to accelerate a
nearest neighbor search using the Delaunay triangulation.

While some applications require an exact nearest neigh-
bor, others only necessitate an approximatematch. Typically,
an approximate neighbor search returns a result faster than an
exact search. A straightforward approach utilizing a k-d tree
is to simply traverse from the root to the leaf node containing
the query point [18]. Additionally, this method lessens the
space complexity required for storing the data structure, as
only the leaf nodes and median values for each hyperplane
axis need to be stored. In [28], a method is presented that can
configure itself to the desired degree of accuracy required for
the application, allowing the user to balance between preci-
sion and speed. In [34], the k-nearest approximate neighbors
are calculated in constant time by utilizing locally sensitive
hashing to partition datasets into clusters. While some meth-
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ods employ an approximate neighbor to accelerate ICP, as
shown in Marden [26], the work in this paper only utilizes
approximate neighbors as a means to accelerate the exact
neighbor search. Thus, the traditional ICP algorithm from
Besl can be utilized to verify correctness.

2.3 Delaunay triangulation

In 2D, a Delaunay triangulation of a point set is a set of tri-
angles where the vertices are members of the point set and
no points are located within the circumcircles created by the
vertices of each triangle. When extended to 3D, the triangle
simplex generalizes to a tetrahedron simplex, and the circum-
circles become circum-spheres. Importantly, the condition
of no points being located in each circum-sphere still holds.
The concept can be extended to d-dimensions [15]; however,
the work presented here focuses on three-dimensions for 3D
sensing-based applications. Figure 3 depicts the full Delau-
nay triangulationof a 3Dpoint set. Figure 4visualizes a closer
view of all the edges connected to a single point (shown in
pink) connecting to the neighbor points (shown in blue).

Delaunay triangulations have many applications includ-
ing path planning [6,23,39], surface reconstruction [4,12,21],
and many others. Mulchrone [30] uses Delaunay triangula-
tion to generate nearest neighbors within a data set with the
goal of calculating strain. Mulchrone subsequently removes
the edges that form the convex hull; the remaining edges con-

Fig. 3 An illustration of a Delaunay triangulation of a teapot 3D point
set

Fig. 4 A close-up view of Delaunay edges of point (pink) to neighbor
points (blue)

nect nearest neighbors. In contrast to Mulchrone, the work
presented in this paper utilizes all edges of a Delaunay tri-
angulation. Keeping all edges allows the neighbor search to
quickly traverse the data set, whereas removing edges from
the convex hull limits the distance between vertices within
the graph. Similarly, in [36] Delaunay triangulations are uti-
lized to cluster points by removing undesired and redundant
edges. While clustering may be utilized in nearest neighbor
searches to determine the starting vertex of a traversal, the
work in this paper utilizes other methods for determining
starting nodes as presented in Sect. 4. These examples show
Delaunay triangulation can be used to efficiently assign a
variety of point correspondences.

The creation of the Delaunay triangulation structure can
be completed offline. Lee [22] describes an iterative, divide-
and-conquer algorithm to create the Delaunay triangulation
structure. In this paper, we will be using the Open3D library
[41] to create the Delaunay triangulation offline. Open3D
uses the Qhull library [7] to compute the convex hull and
stores the 3D triangulation as a series of 3D simplexes, or
tetrahedrons.

While these methods identify neighbors within a data set,
the Full Delaunay Hierarchies (FDH) [11] algorithm utilizes
a Delaunay traversal to determine the nearest neighbor of a
source point to a target dataset. The traversal in FDH only
moves from vertices of lower index to higher index, dis-
allowing traversal in both directions. This detail increases
the complexity of implementing the algorithm. Addition-
ally, the authors state their method cannot directly extend
to greater than two dimensions. In contrast, this research
focuses on traversal in both directionswith three-dimensional
point clouds.

3 Delaunay traversal

This section presents the novel pairwise Euclidean distance
nearest neighbor matching algorithm, which utilizes the
Delaunay triangulation of the target 3D point set. Once the
Delaunay triangulation for a reference point set has been
generated, the nearest neighbor of a query point is found by
traversing the edges of the Delaunay graph. The algorithm
utilizes a greedy approach where at each node of the Delau-
nay graph, if a connected node is closer than the current
visiting node to the query point, the algorithm proceeds to
check the nodes connected to the new current visiting mode.
This process continues until there are no closer nodes to the
query point connected to the current visiting node.

3.1 Notation

Given a point set X = {x1, . . . , xn} of n points of d dimen-
sions, the nearest neighbor of a point p ∈ P is
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NN (p, X) = argmin
x∈X

|p − xi |2 (3)

Squared distance is utilized to avoid a square root operation.
Becausemultiple pointswithin X maybe equidistant top, the
result of the nearest neighbor function might not be unique.

A Delaunay triangulation of a point set is a graph G =
(1..k, E) consisting of edges from each point xi to the Delau-
nay neighbors x j �=i . To find the nearest neighbor of a source
point within the target point set utilizing the Delaunay trian-
gulation, the algorithm can start at an arbitrary start point,
x0.

To store the full Delaunay triangulation, for each point xi
in the data set there is a corresponding list of values:

êi, j = x j − xi
|x j − xi | (4)

mi, j = 1

2
|x j − xi | (5)

j (6)

In Eq. 4, êi, j is the normalized Delaunay edge from point
xi to one of its Delaunay neighbors x j . In Eq. 5, mi, j is one
half the distance, or the midpoint, between xi and x j . Lastly,
in Eq. 6, j is the reference index where point x j is stored in
the data set.

3.2 Delaunay creation

The Delaunay triangulation is pre-calculated offline when
performing a pairwise Euclidean distance nearest neighbor
matching with a known 3D point set. This step is done utiliz-
ing theOpen3D library [41] discussed in Sect. 2.3. In order to
prepare the Delaunay graph for the nearest neighbor traver-
sal, the edges of each tetrahedron are extracted and grouped
according to connections when visiting a point. Thus, each
edge is represented twice. Although this factor increases
requiredmemory space, the graph becomes bidirectional and
allows for an arbitrary start-point.

3.3 Traversal

Given an arbitrary query point p, we may find p’s nearest
neighbor using a series of traversals, or walks, along the
Delaunay graph. This sequence of walks is taken from a
point x0 to point x, where x satisfies Eq. 1. Figure 5 depicts
an example of what the algorithm calculates at each node of
the walk. In Fig. 5, x j = x is the nearest neighbor of query
point p. The first step in the algorithm is calculating

u = p − xi (7)

Fig. 5 A Delaunay Walk example. After creating u from the Current
VisitingNode xi andQuery Point p, the scalar component c is computed
by projecting u onto the edges from xi to x j , xk , and xl . The algorithm
chooses the next node based on which c is greatest. Once no c is greater
than the midpoints, the algorithm stops and returns the current node as
the nearest neighbor

where u is the vector from xi to p. Next, the dot product

c = u · êi, j (8)

between u and êi, j is determined. In Fig. 5, unit vectors from
xi to x j , xk , and xl , each constitute a specific êi, j . Since êi, j is
a unit vector, the dot product c is the scalar component of u in
the direction of êi, j . The dashed lines in Fig. 5 depict where
the projections intersect each Delaunay edge. The scalar c
can then be compared to the midpoint mi, j (green points in
Fig. 5) from Eq. 5. If the scalar c is greater than mi, j , p is
closer to x j than xi . Since the algorithm is seeking the point
closest to p, the point x j corresponding to the largest c is the
next node in the graph to visit. Thus, xi is replaced by point
x j , and the algorithm continues. However, if no c is greater
than mi, j , the algorithm stops and returns the current point
xi as the nearest neighbor. The pseudocode for the Delaunay
traversal is shown in Algorithm 1. Section 4 covers selecting
an efficient starting point, x0, to reduce the number of walks.

3.4 Space and time complexity

Seidel provides a proof illustrating O(nd/2) as the upper-
bound for the number of faces within a Delaunay triangula-
tion. With d = 3, a 3-dimensional object will have on the
order n3/2 faces. As such, each point will be a member of
n3/2
n = n1/2 = √

n faces. Thus, each point has on average√
n edges. Accordingly, the space complexity for the Delau-

nay triangulation of a dataset is on the order of O(n
√
n).

In terms of time complexity to find the nearest neighbor of
point p utilizing the Delaunay traversal algorithm, since each
vertex connects to on the order

√
n other vertices, and all but

one of those are rejected at each step of the traversal, by the
time

√
n vertices have been visited,

√
n(

√
n − 1) = n − √

n
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Algorithm 1 Delaunay Traversal Pseudocode
Require: X := Source 3D Point Set
Require: p := Target Point
Require: si := Index to begin search
Require: dedges := List of Delaunay edges
Require: dmid := List of edge midpoints
1: function DelaunayTraversal(X , p, si , dedges , dmid )
2: prevmax ← si
3: currmax ← si
4: repeat
5: u ← p − xi
6: f oundNN ← T RUE
7: cmax ← 0.0
8: for each ê,m ∈ dedges [prevmax ], dmid [prevmax ] do
9: c ← Dot Product(u, ê)
10: if c > m then
11: f oundNN ← FALSE
12: if c > cmax then
13: cmax ← c
14: currmax ← ê.index()
15: end if
16: end if
17: end for
18: prevmax ← currmax
19: until f oundNN == T RUE ||prevmax == currmax
20: return X [prevmax ]
21: end function

vertices have been rejected, meaning the entire dataset has
been visited. Thus, in the worst case, the algorithm will need
to visit

√
n vertices. However, because with each step of the

traversal, the algorithm advances toward the neighbor and
away from farther vertices, the worst case will rarely occur.
In fact, we present heuristics in Sect. 4 to show how to greatly
reduce the number of traversals required.

In contrast, a k-d Tree has log2(n) levels and an average
query time proportional to O(log(n)). However, since the
search may involve the entire tree, the worst-case becomes
O(n). Similarly, the average and worst-case for an octree
are O(log(n)) and O(log(n)), respectively. Additionally,
implementing a search of a tree structure typically utilizes
recursion. While recursion may execute efficiently on a
central processing unit (CPU), a graphics processing unit
(GPU) will typically have a smaller stack size. For instance,
the depth limit for Compute Unified Device Architecture
(CUDA) kernels is 24 [33]. Thus, the search algorithm needs
to be implemented iteratively rather than recursively. With
respect tomemory layout, since the Delaunay traversal struc-
ture is vectorized, it lends toward keeping cache coherency.
Keeping the data structure in cache facilitates faster searches
with less time copying data from main memory.

3.5 Degenerate cases

A few cases exist where the Delaunay triangulation produces
suboptimal traversal results. 2D point sets result in edges iso-
lated only to close neighbors. Similar to issues encountered

Fig. 6 Delaunay of a 2D circle

Fig. 7 Delaunay of a 2D plane

in [16], which utilizes Voronoi cells to determine neighbors,
a 2D circle results in each point being connected to only the
two closest points. In Fig. 6, each vertex connects only to the
two closest vertices. The edges highlighted in green are the
edges connected to the pink vertex, which in turn connects
to the blue vertices. Additionally, the Delaunay triangulation
of a line or plane only connects neighbor points. Looking at
Fig. 7, the highlighted edges in green connect the pink point
only to the four closest points in blue. The main issue arising
from this locality is the number of walks required to find the
neighbor increases if the algorithm only can walk to points
physically close.

To effectively utilize the traversal algorithm on 1D or 2D
point sets, virtual points can be introduced during the Delau-
nay creation. These virtual points exist in a higher dimension,
and ideally at distances relatively far from the original points.
This virtual bounding box introduces new points and facili-
tates in the Delaunay generation. After creation, the virtual
points can be removed.
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4 Delaunay walk variations

In Sect. 3, we covered how the Delaunay traversal algorithm
identifies the nearest neighbor to a query point. Because
the Delaunay triangulation forms a connected graph, the
traversal algorithm can begin at an arbitrary point and be
guaranteed to find the nearest point. Consequently, a heuris-
tic or hysteresis can accelerate the correspondence search
with the knowledge that there will be a path from the starting
node to the nearest neighbor.

Leveraging the iterative aspect of ICP, the nearest neighbor
search utilizing the Delaunay Walk can be further accel-
erated. With each iteration of ICP, the source cloud is
incrementally transformed to align with the target. After
the first few iterations, individual points move relatively
small distances from their previous correspondence. Thus,
if the correspondences of the previous iteration are cached,
the nearest neighbor search can begin at a likely already
close point and require fewer traversals to determine the
new correspondence. To demonstrate, our researchmotivated
variations focusing on the starting node of the traversal.

The Zero Delaunay walk serves as a benchmark, start-
ing from an arbitrary mode for all traversals. The k-d
Approximate Neighbor (KD-ANN)Delaunay walk originates
from a k-d tree approximate neighbor search. The Previ-
ous Nearest Neighbor (PNN) Delaunay walk leverages prior
nearest neighbor correspondences. Lastly, the PNN Opti-
mized Delaunay walk combines both KD-ANN and PNN for
an algorithmically efficient Delaunay Walk.

4.1 Zero Delaunay walk

In the Zero Delaunay walk variation, the traversal begins
from a predetermined node each iteration. The walk orig-
inates with no search for a starting node. Each search can
begin at the node closest to the center of mass, the most trav-
eled node, or an arbitrary node. This variation requires the
leastmemory and offline preparation; however, it requires the
most number of traversals compared to the other variations
as seen in Figs. 8 and 9. This variant has the largest mean
and variance in the number of walks.

4.2 k-d approximate Delaunay walk

In the KD-ANN Delaunay walk variation, the search begins
with an approximate nearest neighbor (ANN). The ANN
is found by conducting a depth-first search of a k-d tree
and returning the leaf node without back-tracing. The ANN
returned is usually a close neighbor, but it can return the exact
nearest neighbor. Figures 8 and 9 show this effect. By start-
ing the walk from a close neighbor, the number of nodes in
the walk decrease substantially. Since this algorithm mono-
tonically converges, a close starting point can significantly

(a) (b)

Fig. 8 Frequency of walks taken for 4k (a) and 8k (b) Teapot 3D point
set

shorten the Delaunay Walk. On the Dragon(62K) 3D point
set, the mean number of walks reduce from around 26 to 5.
Because this variation utilizes both a k-d tree and a Delaunay
triangulation, it requires more memory than the Zero Delau-
nay.

4.3 Previous nearest neighbor Delaunay walk

In the PNN Delaunay walk variation, the walk starts from
the node found in the previous iteration of ICP. Since align-
ing the point clouds occurs iteratively, the previous nearest
neighbor generally resides close to the current nearest neigh-
bor. No additional computation is required; therefore, the
search leverages the previous ICP iteration’s work to make
the current iteration more efficient. Additionally, increasing
the size of the dataset has little effect on the number of walks
required. When doubling the points in the Teapot model in
Fig. 8a and b, the mean number of walks only increases from
1.39 to 1.56. However, the variances nearly double, indicat-
ing there are proportionally more walks of longer length in
the larger dataset. Figure 9a and b depicts a result similar
to the Teapot data set. The mean number of walks for the
Dragon only increases from 1.87 to 2.12, and these values
are not dissimilar to the Teapot. While the variances again
nearly double, these values are still significantly less than the
first two variants.

4.4 PNN optimized Delaunay walk

In the PNN Optimized Delaunay walk variation, the KD-
ANN Delaunay walk is used for the first iteration and the
PNN Delaunay walk is used in all subsequent iterations. By
combining aspects of these variations, this walk variation is
the most efficient. Looking at Figs. 8 and 9, this algorithm
presents the smallest average number of walks as well as the
smallest variance of all four walk variants.

In addition to requiring fewer walks, the two variants
utilizing previous neighbor results gain an advantage from
increased cache hits. Since the preceding iteration utilized
the previous neighbor, it will likely remain in cache memory,
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(a) (b)

Fig. 9 Frequency of walks taken for 31k (a) 62k (b) Dragon 3D point
set

facilitating quick access. Consequently, the Delaunay edges
of the previous neighbor likely persist in the cache, allowing
the walk to initiate with no access to main memory.

5 Evaluation

5.1 Experiments

To demonstrate the speed and accuracy of the Delaunay
Traversal, we conducted various experiments on several 3D
point data sets: Teapot, Aircraft A, Aircraft B, Sports Car,
and Dragon, all shown in Fig. 10. With these data sets, the
runtimes of nearest neighbor methods presented in this paper
were tested against the two traditionalmethods ofBruteForce
and k-d Tree. These tests involved matching the point sets to
themselves with rotational offsets as well as adding artificial
noise. In the second set of experiments, we integrated our
ICP with the accelerated Delaunay Traversal into a stereo
vision pipeline. The vision pipeline processed images from
virtual and real cameras with truth data collected a motion
capture system.

All algorithms were implemented in both C++ and CUDA
to demonstrate execution on a serial and vector processor.
The CPU utilized for these experiments is the AMD Ryzen
Threadripper 3970X 32-Core processor [1] at 3.9 GHz with
64 GB of RAM. The GPU is the NVidia GeForce RTX 3080
[2]. Please see [37] for the full CUDA [33] GPU ICP imple-
mentation used in this paper.

5.2 Clean and noisy 3D point sets

In these experiments, the 3D point sets were registered to
themselves with ICP utilizing each nearest neighbor match-
ing algorithm. The 3D point sets were evaluated at a base
fidelity and downsampled by a factor of 2. The nearest neigh-
bor algorithms compared are: Brute Force, k-d Tree, Zero
Delaunay, KD-ANN Delaunay, PNN Delaunay, and PNN
Optimized Delaunay.

Fig. 10 3D point sets utilized to test the Delaunay Walk nearest neigh-
bor algorithm

(a) (b)

Fig. 11 Runtime versus 3D point set on CPU (a) and GPU (b). Brute
force method executed only on models of size <= 11k on CPU due to
excessive runtimes

ICP was executed with a maximum iteration count of 100
and an error of 1E−11. The target point set was kept at iden-
tity, and the source points iterated through a series of rotations
ranging from −20 to 20 degrees in 10 degree increments in
roll, pitch, and yaw. This deterministically guarantees each
algorithm receives the same registration inputs. Lastly, noise
is added to the target points, as seen in Fig. 15a.

Because identical point clouds are registered to them-
selves, ICP returns the exact rotation and translation with
little to no error. Additionally, as long as each nearest neigh-
bor method provides accurate results, ICP will perform with
the same accuracy. Each run of ICP in these experiments
did return little to no error, demonstrating the accuracy and
validity of each nearest neighbor method.

Figure 11a shows the runtime required for converging the
source 3D point set onto the target 3D point set on the CPU.
The PNN Delaunay nearest neighbor algorithm executed the
fastest the CPU. Figure 11b shows the runtime required for
converging on the GPU. The PNN Optimized Delaunay con-
verged most quickly on the GPU. The experiments show the
most efficient algorithms are the PNN Delaunay on the CPU
and PNN Optimized Delaunay on the GPU. For this reason,
these algorithms are compared against each other to compare
performance between a CPU and GPU.

Figure 12a shows a runtime comparison of the CPU PNN
Delaunay algorithm and the GPU PNN Optimized Delaunay
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(a) (b)

Fig. 12 CPU versus GPU runtime on nearest neighbor step (a) and total
ICP (b)

(a) (b)

Fig. 13 Speedup of GPU PNN Optimized Delaunay over CPU PNN
Delaunay for nearest neighbor step (b) and entire ICP run (a)

nearest neighbor algorithms. The GPU runtime is about an
order ofmagnitude faster than theCPU. Figure 13a shows the
GPU speedup over the CPU for these algorithms. The GPU
achieves just under a 140× speedup on the Dragon(62k) 3D
point set. Figure 12b shows the overall total ICP runtime
and Fig. 13b shows the speedup. The GPU achieves about a
whole order of magnitude in runtime and 25× speedup when
comparing the most efficient algorithms.

Figure 14a shows the teapot(8k) 3D point set runtime
per ICP iteration by the CPU PNN Delaunay algorithm.
Figure 14b shows the same for the GPU PNN Optimized
Delaunay algorithm. These are evidence the PNN Delau-
nay variants leverage the prior iteration’s nearest neighbor.
These algorithms increase in efficiency as iterations deepen.
The negative slope in the fitted lines shows the increased
efficiency.

When executing nearest neighbor in ICP, Figs. 8a, b and
9a, b show the walk frequencies of the Delaunay Walk vari-
ations on the teapot and dragon 3D point set fidelities. The
PNN Delaunay and PNN Optimized Delaunay have the low-
est average walks. PNN Optimized Delaunay has a lower
average walk distance and variance than PNN Delaunay
because the first iteration executes KD-ANN Delaunay to
find a preferable starting location. Walk variance is impor-
tant when executing on the GPU. If a single thread has a
long walk distance, the whole thread block and possibly ker-
nel will wait for the slowest thread to finish executing. This

(a) (b)

Fig. 14 Per iteration runtime iteration on the CPU (a) and GPU (b)
running ICP on the Teapot(8k) 3D point set

(b)

Fig. 15 Aircraft B(21) 3D point set with noise added to yellow points
(a). ICP run-times with artificial noise, virtual images and real images
(b)

could also explain why the PNN Optimized Delaunay per-
forms best on the GPU.

Figure 15b shows the ICP total runtimewith adding noise,
using virtual, and using real images.Adirty target point cloud
does not negatively affect the runtime. This proves the robust-
ness of the ICP and nearest neighbor algorithms.

5.3 Virtual and real stereo blockmatching

In order to demonstrate the accuracy and correctness of
the Delaunay traversal, we integrated the Delaunay nearest
neighbor method as step 1 of ICP. From the known geome-
try of our reference model, a 1/7th scale model aircraft, the
Delaunay triangulation was generated. Then, a set of sensed
points from stereo vision image processing were registered
onto the reference 3D point set. With the truth position of
the model aircraft from a motion capture system, we verified
our Delaunay traversal by assessing the accuracy of the pose
estimation.

In this experiment, stereo imagery was collected from
simulating a leading aircraft with rear-facing stereo cameras
mounted on its belly. The objective is to compute the rel-
ative pose between the leading and a trailing aircraft using
only the stereo cameras. In doing so, the vision processing
enables autonomous station keeping between two aircraft.
This functionality has many applications, including forma-
tion flight and automated aerial refueling, among others. The
stereo camera produces a 3D point set generated via stereo
block matching [20].
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Fig. 16 ICP registering point clouds generated from both real and vir-
tual stereo block matching. The red reference points are registered to
the yellow sensed points. The real images are in the upper right and left
virtual images are in the lower right and left

In terms of the experimental setup, the stereo cameras’ res-
olution was 4096×3000 and field of view was 28.7 degrees.
The baseline of the stereo system was 0.5 meters. A scale
model of Aircraft B was used in an approach starting at a
distance of approximately 20 meters to 14 meters from the
cameras. The approachwas capturedwith truth data recorded
from aMotion Capture system [3]. Thus, the accuracy of ICP
is able to be tested against the truth from the motion capture
system (< 1 cm,< 0.1 deg). Lastly, to mimic a real-time
application, ICP is executed with a maximum iteration count
of 30 and RMS delta-error between iterations of 1E − 6.
The video located at [5] shows a visualization of the motion
capture environment.

In order to validate the correctness of the motion cap-
ture and stereo vision systems, truth data from the approach
were replayed in a virtual simulation as a digital twin to the
real images. Utilizing virtual images provides a baseline of
accuracy for the motion capture and stereo vision systems.
Assuming virtual images will produce less noise than real
images, we utilize the virtual simulation to test and proto-
type various algorithms. Confidence in the system increases
if processing real and virtual images produce similar results.

Virtual cameras with parameters and pose set to corre-
spond with their real counterparts captured the 3D environ-
ment. Figure 16 shows the virtual images in the lower left
and right and the real images in the upper left and right, the
sensed points in yellow, and the reference points in red. In
the middle left of Fig. 16 the red tubes depict the location and
view direction of the stereo cameras in the real environment
and virtual environment—the real and virtual stereo cameras
are co-incident and share the same coordinate frame with
respect to the truth motion capture system.

As seen in Fig. 17a and b, when registering points gener-
ated fromvirtual images, the CPU andGPU implementations
perform with the same accuracy. Furthermore, when the vir-
tual images are replaced with real images, and the points
generated from stereo block matching contain more noise,

(b)(a)

Fig. 17 Errors in translation and rotation from ICP on virtual imagery

(a) (b)

Fig. 18 Errors in translation and rotation from ICP on real imagery

Table 1 This shows the positional meanmagnitude error in centimeters
as well as the 99.5% confidence interval

Method Positional mean
magnitude error
(cm)

99.5% confidence
interval (cm) (±)

CPU 1.6373 0.0208

GPU 1.6081 0.0861

Table 2 This shows the rotational mean magnitude error in degrees as
well as the 99.5% confidence interval

Method Rotational Mean
Magnitude Error
(Degrees)

99.5% confidence
interval (Degrees)
(±)

CPU 1.2877 0.0183

GPU 1.2654 0.0695

both CPU and GPU implementations still perform with a
similar level of accuracy, as is demonstrated in Fig. 18a and b.

Tables 1 and 2 show the positional and rotational mean
magnitude error of ICP when using real images. The CPU
andGPU have a very close error, the minor difference mostly
due to hardware differences causing rounding differences.
The CPU reports a slightly more accurate position, whereas
the GPU reports a slightly more accurate rotation. Overall,
there is less than a magnitude of 1.7 centimeters in positional
error and a magnitude of 1.3 degrees of rotational error.
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6 Conclusion

In this study, highly efficient and novel nearest neigh-
bor matching algorithms were introduced and implemented
based on a Delaunay triangulation. In comparison with the
traditional k-d tree, the Delaunay traversal is shown to pro-
vide around 90% speedup. When integrated into ICP, the
previous correspondences can cached to facilitate fewer
traversals, and our research shows increasing the size of the
3D point-set has little effect on the time to find a correspon-
dence. Finally, the accuracy of the Delaunay traversal was
validated by experiments involving point registration with
point-sets from real and virtual point sets.

7 Future work

Future work is planned to execute more real-time experi-
ments with different 3D point sets. Additionally, research
involving updating the reference point set to reflect changes
in the viewpoint of the sensors is ongoing. If theDelaunay tri-
angulation needs to be recomputed, parallel processes such as
those presented in [24] may be utilized. Finally, it is planned
to integrate the nearest neighbor algorithms into other appli-
cations, like point-to-plane ICP.
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