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Space object detection is of great importance in the highly dependent yet competitive and congested space domain.  
Detection algorithms employed play a crucial role in fulfilling the detection component in the space situational 
awareness mission to detect, track, characterize and catalog unknown space objects.  Many current space detection 
algorithms use a matched filter or a spatial correlator on long exposure data to make a detection decision at a single 
pixel point of a spatial image based on the assumption that the data follows a Gaussian distribution.  Long exposure 
imaging is critical to detection performance in these algorithms, however if imaging under daylight conditions it 
becomes necessary to create a long exposure image as the sum of many short exposure images.  This paper explores the 
potential to increase detection capabilities of small and dim space objects in a stack of short exposure images dominated 
with a bright background.  The algorithm proposed in this paper improves the traditional stack and average method of 
forming a long exposure image by selectively removing short exposure frames of data that do not positively contribute 
to the overall signal to noise ratio of the averaged image.  The performance of the algorithm is compared to a traditional 
matched filter detector using data generated in MATLAB as well as laboratory collected data.  The results are illustrated 
on a receiver operating characteristic curve to highlight the increased probability of detection associated with the 
proposed algorithm.  
© 2018 Optical Society of America 
 

OCIS codes: (040.1880) Detection; (040.0040) Detectors;  (100.0100) Image processing. 
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1. INTRODUCTION Safe and dependable operations in the space domain are vital to the national security interests of the United States (U.S.).  According to the 2011 U.S. National Security Space Strategy, "space is vital to U.S. national security and our ability to understand emerging threats, project power globally, conduct operations, support diplomatic efforts, and enable global economic viability" [1].  In order to preserve continued space operations, the 2010 U.S. National Space Policy called out the need to fund and develop technologies to "detect, identify, and attribute actions in space that are contrary to responsible use and the long-term sustainability of the space environment" [2].  Additionally, the National Space Policy states the need to "pursue capabilities to detect, track, catalog, and characterize near-Earth objects to reduce the risk of harm to humans from an unexpected impact on our planet and to identify potentially resource-rich planetary objects".  The ability to detect and track space debris is of great concern to the National Aeronautics and Space Administration (NASA), the Department of Defense (DoD) and other space organizations around the world. Through the NASA Multiyear Authorization Act of 1990 and the NASA Authorization Act of 2005, the United States Congress mandated NASA to coordinate with the DoD and other organizations to catalogue by the year 2020, 90 percent of all asteroids and comets 

larger than 140 meters that are within close trajectory of Earth [3]. Additionally, within the DoD, the ability to detect and track dim and small space objects such as nanosatellites and space debris is over particular importance to the United States Space Command (USSPACECOM) and national security. These objects pose great risk to critical space assets especially in the geostationary orbit.  The detection of asteroids, orbiting man-made objects or space debris represent similar challenges to those looking to detect, track and catalog unknown space objects.  Due to their small size when viewed from a ground-based telescope, these objects are likely to be similar to an unresolvable point source on the image captured by the charge-coupled device (CCD).  While these are different types of objects, ground based system within the space surveillance network (SSN) are tasked with detecting and tracking all objects which could posed a potential threat to Earth and space-based assets.   One of the factors seriously limiting space object detection assets is the inadequate telescope time available for the detection mission.  Factors such as hardware upgrades, weather and maintenance all affect the amount of time available for astronomers and operators to collect data.  Possibly, the greatest hindrance is the amount of prime night sky available.  Imaging during twilight and daylight conditions is possible with smaller aperture telescopes but the detection algorithms are not designed for operating under these conditions.  Due to the 
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brighter background and the limited capabilities of the CCD to not reach saturation, short exposure images become necessary.  With a shorter integration time, tens to thousands of short exposure images can be captured in the time that a typical space situational awareness (SSA) asset collects a single long exposure image.  Currently, processing these short exposure images relies of traditional long exposure methods such as a point detector or matched filter [4–6].  Neither of these methods are optimized to improve detection performance for short exposure imaging as they are developed using long exposure imaging in mind.  Lucky imaging is a short exposure image processing technique used within the astronomical community. Significant research has delivered near diffraction limited viewing on up to 2.5m ground based telescope.   However, this technique requires that a guide star be present in the image to evaluate the quality of each short exposure image [7–9].  Additionally, this method relies on registering and combining the retained images to obtain the processed image. This process is ideal for improving the resolution when imaging an object that is bright enough to easily detect.    This research is focused on improving the capability to detect dim and small space objects such as satellites and space debris to improve SSA from short exposure data obtained with current ground based electro-optic systems.  The ability to detect dim objects is greatly impacted by the performance of the detection algorithm used to filter the data and decide if an unknown space object is present in the noisy scene.  This paper proposes an improvement upon current detection algorithms by developing a process to selectively average multiple short exposure images to improve the signal to noise ratio (SNR) and thus improve the detection performance.  Frame selection is accomplished using a two-pass approach to process the data in an effective manner while utilizing a correlation between the resulting data and the expected point spread function (PSF). Increasing the ability to detect space objects from short exposure images will increase the amount of time a telescope can be operated, provide opportunities to imaging different parts of the sky and therefore increase the number of space objects detected, tracked and then cataloged.   The proposed algorithm in this research combines a set of short exposure images that have been filtered to remove images that do not improve the correlation of the summed frames with an expected PSF.  This process differs from the point detector, matched filter and lucky imaging techniques in several ways.  First, minimal information is needed to apply this technique.   A local guide star or reference point is not required to correlate the image with a PSF or provide a means to examine the quality of the image.  Second, local registration of frames is not required.   When looking for an unknown object in an image that spans an angle much larger than the tilt-isoplanatic angle, registering frames locally when no object exists in the frame results in noise spikes being registered and false alarms are identified.  Gross image registration is still possible using natural guide stars, but this will not remove local motion caused by atmospheric tilt. Third, a decision on the quality of the image is made using all the frames of data in the set.  This is significantly different than a lucky imaging technique which evaluates and ranks the quality of each frame individually.    The results of the frame selection short exposure correlation algorithm are compared to the performance of a spatial domain matched filter algorithm like the one used within the space community whose mission is asteroid and/or debris detection.  The underlying difference lies in the way the short exposure images are averaged.  Unlike a traditional approach which would involve averaging all the frames of data, the proposed algorithm discards noisy and turbulent frames of data that do not improve the overall image.  The results are illustrated on a receiver operating characteristic (ROC) curve which highlights the difference in the probability of detection against the false alarm rate. 

2. BACKGROUND Established in 1984 by the University of Arizona, Spacewatch was the first program dedicated to improving the detection, tracking and then cataloging of space objects. Spacewatch has been a scientific success to the astronomical community as it was the first to use a CCD to actively scan and survey the sky in search of unknown space objects. Prior to this program, astronomers and those working in the space community were using photographic plates to image and detect objects. The use of CCDs led the program to develop the first software algorithms designed to improve space object detection in 1990 [10]. Since then, CCDs and image processing techniques have greatly improved the number of smaller and fainter space objects detected, tracked and cataloged due to significant advances in computing power, memory and storage.  These advances have resulted in further research programs to develop advanced algorithms to detect faint space objects.    
Traditional Space Object Detection Techniques One of the earlier programs dedicated to improving detection algorithm was the mid-1990’s Lincoln Near Earth Asteroid Research (LINEAR) program.  The LINEAR algorithm developed in this program utilizes imagery obtained from a ground based electro-optic telescope to detect space objects using a binary hypothesis test (BHT) point detector [5].  Currently the SST and other assets within the SSN use a modified version of the BHT point detector developed for LINEAR to make a detection decision on a single pixel in a given frame of data.  The SNR level from the point detector, shown in Eq.  1, is calculated by examining the received intensity at point, ݀(ݔ − ,௢ݔ ݕ − the result is the number of standard deviations the intensity of the pixel point is from the mean.  ܴܵܰ௉஽ ,ߪ ,଴), from a single frame of windowed data.  The windowed data is a N x N pixel subset of a larger image captured by the optical system.  Windowing of the data allows for detection within a much smaller subset of a wide field image limiting interference from other optical sources. The windowing of the larger image decreases the number of pixels in the image being processed which significantly reduces computation time while also decreasing the likelihood that another object is in the image that must be removed prior to processing.    The point detector is a computationally simple algorithm designed to create a binary mask to identify pixels that represent an object with an intensity over a set threshold.  This method of detection relies on the assumption that the data is Gaussian distributed.  Thus, when the background, B, is subtracted and the result divided by the standard deviationݕ = ௗ(௫బି௬బ)ି஻ఙ   (1)  The SNR from the point detector is the sufficient statistic used in the BHT.  The two hypotheses of the BHT are the null hypothesis (H0), that an object is not located at the tested pixel and the alternative hypothesis (H1), that an object is located at the tested pixel point.  The SNR is compared to a set threshold to determine if an object potentially exists at the tested point.    While computationally simple, the point detector’s performance suffers when the intensity from the object is not in a single pixel of the detector.  The intensity of the object can be spread across multiple pixels due to several factors including atmospheric turbulence, diffraction and geometrical aberrations in the optical system.  This reduces the intensity in the tested pixel and a lower SNR that adversely degrades the performance of an algorithm dependent on testing each individual pixel point.  To improve the probability of false alarms, the SST utilizes a modified version of the LINEAR algorithm across multiple frames of data to detect unknown space objects [11].  The LINEAR algorithm implemented by SST requires 3 successful 
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detections from independent frames before the data is handed off for further processing and confirming an objects existence.     More computationally complex algorithms known as matched filter or correlation algorithms have been developed to improve space object detection performance. This algorithm is used by the highly successful Pan-STARRS telescope for making space object detection decisions [12].  A matched filter approach is based on matching the observed data with the expected PSF.  The expected PSF can be determined from measurable statistical parameters of the atmosphere or can be measured by viewing a nearby star [13].  This approach assumes that the object is either small or far away enough that it is essentially a point source when viewed through the optical system.  The expected PSF is correlated with the data to determine if an object is present at a given pixel point.  However, unlike the point source detector, multiple pixels are used to make a detection decision.  A standard matched filter algorithm, shown in Eq. 2, is implemented in the SExtractor software suite which is largely used within the SSA community for object detection, measuring and classifying objects from astronomical images [14].  The detection piece of this program is a matched filter designed to detect faint space objects assuming Gaussian distributed noise by correlating the data with the expected PSF and dividing by the standard deviation, ߪெி, of the noise in the N x N pixel region.  The value calculated by the matched filter in Eqs. 2 and 3,  SNRMF, is the sufficient statistic compared to a threshold in a BHT to make a detection decision.   SNRMF = ∑ ∑ (ௗ(௫ି௫బ,௬ି௬బ)ି஻)௛(௫,௬)೤ೣ ఙಾಷ ெிߪ  (2)   = ଵேమ ඥ∑ ∑ ݔ)݀) − ,଴ݔ ݕ − (଴ݕ − ଶ௬௫(ܤ           (3)  
Short Exposure Imaging Techniques     Each of the previously discussed detection algorithms are designed for utilizing long exposure data with traditionally low background light.  A long exposure image is generally used because it allows a lower SNR object to be detected while averaging out lower order atmospheric turbulence and random spikes in intensity due to the Poisson nature of the photons received.  However, under a daylight imaging scenario, the background will be dominate in the image and the intensity of the object appears to be lost in the background light.  Short exposure imaging becomes necessary to avoid saturation in the image due to the limited depth of the camera pixel wells and the sheer number of photons arriving during longer integration times in daylight conditions.  While there is limited research in detection of space objects using daylight imaging, short exposure imaging is not a new area of research.  Lucky imaging is a post-processing technique used broadly within the astronomical community to obtain near diffraction limited images from ground based telescopes through the use of short exposure imaging [8,  9, 14-16].     Short exposure imaging is typically utilized for image reconstruction and for obtaining higher resolution imaging from ground-based telescopes.  When many frames of data are taken over the course of a single long exposure image time frame the atmosphere over each image is essentially frozen. The brief integration time allows for some images in a set to obtain near diffraction limited viewing conditions since the lower order aberrations such as tip and tilt are not averaged in that time instance.  The freezing of the atmosphere over this short time period allows photons to remain concentrated on the CCD.  When a select number of these images are registered and combined the result is an increase in the resolution of the combined image.  Using the 

lucky imaging technique with a point source object or a guide star in the image frame, a metric such as the Strehl ratio is used to evaluate the quality or sharpness of each individual frame of data.  A defined percentage of “bad” frames are removed from the ensemble of short exposure images. The remaining frames are then registered and combined to achieve an improved image [7].  The lucky imaging technique can provide significant improvements to spatial resolution under the right conditions and with the appropriate hardware.  However, under daylight imaging of dim objects the technique loses its advantage since the objects SNR is too low for the daylight background and there is no obvious object in the image.  As a result, the technique fails to have an object to register and tends to register random noise spikes in the frame if a low SNR object exist in the image or not.    Additionally, this technique is difficult to implement in a sky scan and detect mission.  Under typical conditions, lucky imaging has an isoplanatic patch of nearly 1 arcminute or 0.01667 degrees [18].  In order to scan and detect a 90-degree portion of the sky would require 54002 images using the lucky technique with a guide star.  This number of images would far exceed the time available for the telescope to capture in a given night.  A significant drawback to short exposure imaging is that the shorter integration time means fewer photons will be measured by the CCD.  This fault is typically overcome by averaging together many frames of data to essentially obtain a long exposure image.  The Poisson photon noise statistics of the averaged image will be comparable to the sum of the short exposure images since the sum of multiple Poisson random variables is itself a Poisson random variable with a rate parameter equal to the sum of the individual rates [16].   An issue with averaging many short exposure images in traditional night time imaging scenarios is detector noise which accumulates as frames are averaged together.   Unlike photon noise, Gaussian distributed detector noise is not signal dependent and is a result  of the detector and readout electronics [16, 19].    As the number of expected photons decreases for shorter integration times, the detector noise variance, σ2݊, becomes significant compared to the Poisson rate parameter, ܭഥ.  When P frames of data are averaged together, the detector noise variance follows Gaussian statistics and is a function of the number of frames averaged and the readout noise variance. ݎܽݒሼ݀(ݔ, ሽ(ݕ = ഥܭܲ +     .௡ଶ           (5)  Under a daylight imaging scenario, the expected number of photons is significantly large enough even under short exposure integration times that the readout noise becomes insignificant in the received imageߪܲ
Atmospheric Model In many SSA ground based telescope systems, the integration time is significantly long enough that it operates in the long exposure regime.  The long exposure PSF and optical transfer function (OTF) are used to model the average size and spatial frequency content of a point source object viewed through a telescope [13].  The long exposure OTF for a circular aperture telescope is defined as 

௅൫ܪ ௫݂, ௬݂൯ = exp ൦ቌఒഥ௭ට௙ೣ మା௙೤మ௥బ ቍହ ଷൗ ൪.    (4) 
Where ߣ is the mean wavelength, ݖ is the telescope focal length and ௫݂ and ݂ ௫ are spatial frequencies in the OTF. The Fried atmospheric seeing parameter, ݎ଴, is a measure of the quality of optical propagations 
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ROC curve using the simulated data illustrates the difficulty the lucky technique encounters with low SNR objects. Selection rates of 10 and 20% were also attempted with the lucky imaging technique but produced even worse results. Based on the simulated results, only the traditional matched filer and new frame selection algorithm were examined with experimental data.  The results from both of the ROC curves show a significant PD increase for a given PF when operating in the low SNR regime for the new frame selection algorithm.  The low SNR can be predicted by examining the data in Fig. 2 and Fig. 4 and seen by the extremely low detection probability for a ிܲ ≈ 10ିଽ.  At this operational level of false alarm, the frame selection algorithm shows a nearly 20% improvement in the PD.    

  
Fig. 6. Simulated Data - ROC curves for the traditional matched filter, frame selection algorithm and lucky imaging technique using 10 frames of data.  

 
Fig. 7. Experimental Data - ROC curves for the traditional matched filter and the frame selection algorithm each using 10 frames of data.  
6. CONCLUSIONS This paper presents a method to improve the probability of detecting dim or low SNR space objects in images obtained during bright sky daylight conditions.  Under daylight imaging conditions, it is required to reduce the integration time of the sensor down to short exposure 

time intervals to accommodate the increased number of photons arriving at the CCD and the limited well depth.  Two techniques for post-processed object detection were examined and compared to the proposed algorithm.  First, a matched filter algorithm approach using a single frame of data obtained by averaging the individual frames.  Second, a lucky imaging approach was examined that selects a portion of the short exposure frames based on their quality which are then registered and combined.  The proposed algorithm takes into account that under short exposure conditions there will be time instances that result in excellent viewing and times when the atmosphere is particularly poor, and the image is greatly distorted.  The algorithm iteratively removed frames to generate a higher SNR image which results in increased detection probabilities.  Unique to this approach is that the PSF of the object is not required for correlating or for using as a reference in evaluating the quality of each individual short exposure image.  The entire set of short exposure images is used to reject frames that don’t improve the quality of the combined image.  Additionally, image registration is not utilized due to the assumed low SNR of the object.  This results in a lower false alarm rate as noise spikes are not registered and combined to create a false object.   Using both simulated and experimental data, the algorithm demonstrated the ability to significantly improve the probability of detection by 15-30% for low SNR objects while maintaining low false alarm rates.  This could potentially result in a significant number of new detections found if implemented using current SSA systems.    This approach does require short exposure imaging with hardware that would require higher frame rates.  The sensor must output significantly more frames of data in the same time as a single image frame.  The higher frame rate can result in significantly greater readout noise when averaging the frame together.  Under daylight imaging, this is mitigated due to high photon counting noise becoming the dominating noise source.  It is possible that this algorithms approach would be feasible under traditional night sky imaging if additive noise from the detector, camera’s readout electronics and dark current was significantly less than the noise induced by the background or if the object was significantly bright.  However, current algorithms already work well with high SNR object.  With an increase in the number of assets launched into space, the need to improve our detection and tracking of harmful objects will only increase as well.  It is likely this will further constrain tight budgets and operators time with telescope assets.  The potential to improve the detection capability of imaging in the daylight could mitigate some of these issues while providing newer areas of the sky to scan and an increased number of object detections.  Future research focused on refining the frame selection process to better select frames would increase the correlated SNR.  This would increase the performance of the algorithm. Additionally, this algorithm can be tested using data obtained from a SSN sensor for further testing and evaluation.    
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