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Space object detection is of great importance in the highly dependent yet competitive and congested space domain.
Detection algorithms employed play a crucial role in fulfilling the detection component in the space situational
awareness mission to detect, track, characterize and catalog unknown space objects. Many current space detection
algorithms use a matched filter or a spatial correlator on long exposure data to make a detection decision at a single
pixel point of a spatial image based on the assumption that the data follows a Gaussian distribution. Long exposure
imaging is critical to detection performance in these algorithms, however if imaging under daylight conditions it
becomes necessary to create a long exposure image as the sum of many short exposure images. This paper explores the
potential to increase detection capabilities of small and dim space objects in a stack of short exposure images dominated
with a bright background. The algorithm proposed in this paper improves the traditional stack and average method of
forming a long exposure image by selectively removing short exposure frames of data that do not positively contribute
to the overall signal to noise ratio of the averaged image. The performance of the algorithm is compared to a traditional
matched filter detector using data generated in MATLAB as well as laboratory collected data. The results are illustrated
on a receiver operating characteristic curve to highlight the increased probability of detection associated with the

proposed algorithm.
© 2018 Optical Society of America
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1. INTRODUCTION

Safe and dependable operations in the space domain are vital to the
national security interests of the United States (U.S.). According to the
2011 US. National Security Space Strategy, "space is vital to US.
national security and our ability to understand emerging threats,
project power globally, conduct operations, support diplomatic efforts,
and enable global economic viability" [1]. In order to preserve
continued space operations, the 2010 U.S. National Space Policy called
out the need to fund and develop technologies to "detect, identify, and
attribute actions in space that are contrary to responsible use and the
long-term sustainability of the space environment" [2]. Additionally,
the National Space Policy states the need to "pursue capabilities to
detect, track, catalog, and characterize near-Earth objects to reduce the
risk of harm to humans from an unexpected impact on our planet and
to identify potentially resource-rich planetary objects".

The ability to detect and track space debris is of great concern to the
National Aeronautics and Space Administration (NASA), the
Department of Defense (DoD) and other space organizations around
the world. Through the NASA Multiyear Authorization Act of 1990 and
the NASA Authorization Act of 2005, the United States Congress
mandated NASA to coordinate with the DoD and other organizations
to catalogue by the year 2020, 90 percent of all asteroids and comets

larger than 140 meters that are within close trajectory of Earth [3].
Additionally, within the DoD, the ability to detect and track dim and
small space objects such as nanosatellites and space debris is over
particular importance to the United States Space Command
(USSPACECOM) and national security. These objects pose great risk to
critical space assets especially in the geostationary orbit.

The detection of asteroids, orbiting man-made objects or space
debris represent similar challenges to those looking to detect, track and
catalog unknown space objects. Due to their small size when viewed
from a ground-based telescope, these objects are likely to be similar to
an unresolvable point source on the image captured by the charge-
coupled device (CCD). While these are different types of objects,
ground based system within the space surveillance network (SSN) are
tasked with detecting and tracking all objects which could posed a
potential threat to Earth and space-based assets.

One of the factors seriously limiting space object detection assets is
the inadequate telescope time available for the detection mission.
Factors such as hardware upgrades, weather and maintenance all
affect the amount of time available for astronomers and operators to
collect data. Possibly, the greatest hindrance is the amount of prime
night sky available. Imaging during twilight and daylight conditions is
possible with smaller aperture telescopes but the detection algorithms
are not designed for operating under these conditions. Due to the



brighter background and the limited capabilities of the CCD to not
reach saturation, short exposure images become necessary. With a
shorter integration time, tens to thousands of short exposure images
can be captured in the time that a typical space situational awareness
(SSA) asset collects a single long exposure image. Currently, processing
these short exposure images relies of traditional long exposure
methods such as a point detector or matched filter [4-6]. Neither of
these methods are optimized to improve detection performance for
short exposure imaging as they are developed using long exposure
imaging in mind. Lucky imaging is a short exposure image processing
technique used within the astronomical community. Significant
research has delivered near diffraction limited viewing on up to 2.5m
ground based telescope. However, this technique requires that a guide
star be present in the image to evaluate the quality of each short
exposure image [7-9]. Additionally, this method relies on registering
and combining the retained images to obtain the processed image. This
process is ideal for improving the resolution when imaging an object
that is bright enough to easily detect.

This research is focused on improving the capability to detect dim and
small space objects such as satellites and space debris to improve SSA
from short exposure data obtained with current ground based electro-
optic systems. The ability to detect dim objects is greatly impacted by
the performance of the detection algorithm used to filter the data and
decide if an unknown space object is present in the noisy scene. This
paper proposes an improvement upon current detection algorithms by
developing a process to selectively average multiple short exposure
images to improve the signal to noise ratio (SNR) and thus improve the
detection performance. Frame selection is accomplished using a two-
pass approach to process the data in an effective manner while
utilizing a correlation between the resulting data and the expected
point spread function (PSF). Increasing the ability to detect space
objects from short exposure images will increase the amount of time a
telescope can be operated, provide opportunities to imaging different
parts of the sky and therefore increase the number of space objects
detected, tracked and then cataloged.

The proposed algorithm in this research combines a set of short
exposure images that have been filtered to remove images that do not
improve the correlation of the summed frames with an expected PSF.
This process differs from the point detector, matched filter and lucky
imaging techniques in several ways. First, minimal information is
needed to apply this technique. A local guide star or reference point is
not required to correlate the image with a PSF or provide a means to
examine the quality of the image. Second, local registration of frames is
not required. When looking for an unknown object in an image that
spans an angle much larger than the tilt-isoplanatic angle, registering
frames locally when no object exists in the frame results in noise spikes
being registered and false alarms are identified. Gross image
registration is still possible using natural guide stars, but this will not
remove local motion caused by atmospheric tilt. Third, a decision on
the quality of the image is made using all the frames of data in the set.
This is significantly different than a lucky imaging technique which
evaluates and ranks the quality of each frame individually.

The results of the frame selection short exposure correlation
algorithm are compared to the performance of a spatial domain
matched filter algorithm like the one used within the space community
whose mission is asteroid and/or debris detection. The underlying
difference lies in the way the short exposure images are averaged.
Unlike a traditional approach which would involve averaging all the
frames of data, the proposed algorithm discards noisy and turbulent
frames of data that do not improve the overall image. The results are
illustrated on a receiver operating characteristic (ROC) curve which
highlights the difference in the probability of detection against the false
alarm rate.

2. BACKGROUND

Established in 1984 by the University of Arizona, Spacewatch was the
first program dedicated to improving the detection, tracking and then
cataloging of space objects. Spacewatch has been a scientific success to
the astronomical community as it was the first to use a CCD to actively
scan and survey the sky in search of unknown space objects. Prior to
this program, astronomers and those working in the space community
were using photographic plates to image and detect objects. The use of
CCDs led the program to develop the first software algorithms
designed to improve space object detection in 1990 [10]. Since then,
CCDs and image processing techniques have greatly improved the
number of smaller and fainter space objects detected, tracked and
cataloged due to significant advances in computing power, memory
and storage. These advances have resulted in further research
programs to develop advanced algorithms to detect faint space objects.

Traditional Space Object Detection Techniques

One of the earlier programs dedicated to improving detection
algorithm was the mid-1990’s Lincoln Near Earth Asteroid Research
(LINEAR) program. The LINEAR algorithm developed in this program
utilizes imagery obtained from a ground based electro-optic telescope
to detect space objects using a binary hypothesis test (BHT) point
detector [5]. Currently the SST and other assets within the SSN use a
modified version of the BHT point detector developed for LINEAR to
make a detection decision on a single pixel in a given frame of data.
The SNR level from the point detector, shown in Eq. 1, is calculated by
examining the received intensity at point, d(x — x,,y — ¥,), from a
single frame of windowed data. The windowed data is a N x N pixel
subset of a larger image captured by the optical system. Windowing of
the data allows for detection within a much smaller subset of a wide
field image limiting interference from other optical sources. The
windowing of the larger image decreases the number of pixels in the
image being processed which significantly reduces computation time
while also decreasing the likelihood that another object is in the image
that must be removed prior to processing.

The point detector is a computationally simple algorithm designed
to create a binary mask to identify pixels that represent an object with
an intensity over a set threshold. This method of detection relies on the
assumption that the data is Gaussian distributed. Thus, when the
background, B, is subtracted and the result divided by the standard
deviation, o, the result is the number of standard deviations the
intensity of the pixel point is from the mean.

SNRp = 220208 )

The SNR from the point detector is the sufficient statistic used in the
BHT. The two hypotheses of the BHT are the null hypothesis (Ho), that
an object is not located at the tested pixel and the alternative
hypothesis (H1), that an object is located at the tested pixel point. The
SNR s compared to a set threshold to determine if an object potentially
exists at the tested point.

While computationally simple, the point detector’s performance
suffers when the intensity from the object is not in a single pixel of the
detector. The intensity of the object can be spread across multiple
pixels due to several factors including atmospheric turbulence,
diffraction and geometrical aberrations in the optical system. This
reduces the intensity in the tested pixel and a lower SNR that adversely
degrades the performance of an algorithm dependent on testing each
individual pixel point. To improve the probability of false alarms, the
SST utilizes a modified version of the LINEAR algorithm across
multiple frames of data to detect unknown space objects [11]. The
LINEAR algorithm implemented by SST requires 3 successful



detections from independent frames before the data is handed off for
further processing and confirming an objects existence.

More computationally complex algorithms known as matched filter or
correlation algorithms have been developed to improve space object
detection performance. This algorithm is used by the highly successful
Pan-STARRS telescope for making space object detection decisions
[12]. A matched filter approach is based on matching the observed
data with the expected PSF. The expected PSF can be determined from
measurable statistical parameters of the atmosphere or can be
measured by viewing a nearby star [13]. This approach assumes that
the object is either small or far away enough that it is essentially a point
source when viewed through the optical system. The expected PSF is
correlated with the data to determine if an object is present at a given
pixel point. However, unlike the point source detector, multiple pixels
are used to make a detection decision. A standard matched filter
algorithm, shown in Eq. 2, is implemented in the SExtractor software
suite which is largely used within the SSA community for object
detection, measuring and classifying objects from astronomical images
[14]. The detection piece of this program is a matched filter designed
to detect faint space objects assuming Gaussian distributed noise by
correlating the data with the expected PSF and dividing by the
standard deviation, oy, of the noise in the N x N pixel region. The
value calculated by the matched filter in Egs. 2 and 3, SNRy, is the
sufficient statistic compared to a threshold in a BHT to make a
detection decision.
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Short Exposure Imaging Techniques

Each of the previously discussed detection algorithms are designed for
utilizing long exposure data with traditionally low background light. A
long exposure image is generally used because it allows a lower SNR
object to be detected while averaging out lower order atmospheric
turbulence and random spikes in intensity due to the Poisson nature of
the photons received. However, under a daylight imaging scenario, the
background will be dominate in the image and the intensity of the
object appears to be lost in the background light. Short exposure
imaging becomes necessary to avoid saturation in the image due to the
limited depth of the camera pixel wells and the sheer number of
photons arriving during longer integration times in daylight
conditions. While there is limited research in detection of space objects
using daylight imaging, short exposure imaging is not a new area of
research. Lucky imaging is a post-processing technique used broadly
within the astronomical community to obtain near diffraction limited
images from ground based telescopes through the use of short
exposure imaging [8, 9, 14-16].

Short exposure imaging is typically utilized for image reconstruction
and for obtaining higher resolution imaging from ground-based
telescopes. When many frames of data are taken over the course of a
single long exposure image time frame the atmosphere over each
image is essentially frozen. The brief integration time allows for some
images in a set to obtain near diffraction limited viewing conditions
since the lower order aberrations such as tip and tilt are not averaged
in that time instance. The freezing of the atmosphere over this short
time period allows photons to remain concentrated on the CCD. When
a select number of these images are registered and combined the
result is an increase in the resolution of the combined image. Using the

lucky imaging technique with a point source object or a guide star in
the image frame, a metric such as the Strehl ratio is used to evaluate the
quality or sharpness of each individual frame of data. A defined
percentage of “bad” frames are removed from the ensemble of short
exposure images. The remaining frames are then registered and
combined to achieve an improved image [7]. The lucky imaging
technique can provide significant improvements to spatial resolution
under the right conditions and with the appropriate hardware.
However, under daylight imaging of dim objects the technique loses its
advantage since the objects SNR is too low for the daylight background
and there is no obvious object in the image. As a result, the technique
fails to have an object to register and tends to register random noise
spikes in the frame if a low SNR object exist in the image or not.
Additionally, this technique is difficult to implement in a sky scan and
detect mission. Under typical conditions, lucky imaging has an
isoplanatic patch of nearly 1 arcminute or 0.01667 degrees [18]. In
order to scan and detect a 90-degree portion of the sky would require
54002 images using the lucky technique with a guide star. This
number of images would far exceed the time available for the telescope
to capture in a given night.

A significant drawback to short exposure imaging is that the shorter
integration time means fewer photons will be measured by the CCD.
This fault is typically overcome by averaging together many frames of
data to essentially obtain a long exposure image. The Poisson photon
noise statistics of the averaged image will be comparable to the sum of
the short exposure images since the sum of multiple Poisson random
variables is itself a Poisson random variable with a rate parameter
equal to the sum of the individual rates [16]. An issue with averaging
many short exposure images in traditional night time imaging
scenarios is detector noise which accumulates as frames are averaged
together. Unlike photon noise, Gaussian distributed detector noise is
not signal dependent and is a result of the detector and readout
electronics [16,19].

As the number of expected photons decreases for shorter
integration times, the detector noise variance, 62, becomes significant
compared to the Poisson rate parameter, K. When P frames of data are
averaged together, the detector noise variance follows Gaussian
statistics and is a function of the number of frames averaged and the
readout noise variance.

var{d(x,y)} = PK + Pc}? 5)

Under a daylight imaging scenario, the expected number of photons is
significantly large enough even under short exposure integration times
that the readout noise becomes insignificant in the received image.

Atmospheric Model

In many SSA ground based telescope systems, the integration time is
significantly long enough that it operates in the long exposure regime.
The long exposure PSF and optical transfer function (OTF) are used to
model the average size and spatial frequency content of a point source
object viewed through a telescope [13]. The long exposure OTF for a
circular aperture telescope is defined as

2z | P+
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Where 7 is the mean wavelength, z is the telescope focal length and £,
and f, are spatial frequencies in the OTF. The Fried atmospheric seeing
parameter, 1, is a measure of the quality of optical propagations



through the atmosphere [20]. Values of 5-15 c¢m are realistic for most
operational sites. As defined in Eq. 5, the long exposure OTF can be
converted into the spatial domain to obtain the long exposure PSF,
h(x,y), using the inverse Fourier transform of the OTF. This
represents the spatial image expected when viewing a distant point
source.

h(x,y) = SHH,(fo. £;)} ®)

The long exposure PSF averages the random phase fluctuations due
to the atmosphere to produce a spatially large PSF. On average, a long
exposure PSF will contain zero tilt and will be an even and symmetric
function.

Background Light

Background noise is the result of any light or signal aside from the light
propagating from the object that is measured by the detector. There
are various sources of background noise and many are dependent on
the situation, they include but are not limited to the sun, starlight and
building or city lights reflecting off other surfaces and captured by the
primary mirror of the telescope. The background light, B, can be
estimated during data capture via post-processing by taking the
median value of all N pixels in each dimension of the windowed data,
d(x,y).

B = median(d(x,y)V(x,y) € [1,N]) ()

3. ALGORITHM DEVELOPMENT

Space object detection algorithms utilize both single and multiple
spatial images obtained from ground-based telescopes. Many SSA
platforms use multiple frames in their processing chain, however they
begin with being able to detect on a single frame and use the multiple
frames of follow-up data to confirm or reject the detection decision.
Additionally, multiple frames can be tested to reduce the false alarm
rate to an acceptable level. This research is focused on improving the
ability to detect a dim space object from a single frame of data so that
detection can be passed on to further multi-frame analysis techniques
and follow-up analysis. The detection process chain sometimes
includes some amount of pre-processing of the data to do tasks such as
measure background, discard faulty pixels or remove known objects
from the image using telescope pointing information and a celestial
map [11].

Due to the bright sky background associated with daylight imaging,
the data will be limited to short exposure images that must be
processed for object detection. This algorithm takes advantage of the
short exposure atmospheric turbulence to improve the SNR of the
data. The data is divided into subsets of 10 frames that will be
processed together to emulate a camera imaging at a rate of 10 frames
a second. This short time is chosen to reflect the fact that sky surveys
looking for new objects must scan the sky in a reasonable amount of
time. Instead of simply stacking the images to obtain a higher SNR
image, the images are processed and stacked in a manner that further
increases the SNR and improves detection performance. This process
removes frames of data in the subset that do not contribute to
improving the stacked image. Due to the need for multiple frames,
each iteration of this algorithm would not achieve real time rates
however it could operate in near real time.

The first step in the daylight space object detection algorithm is to
start with a modified version of the matched filter detection method
used with long exposure data. An estimate of the background, B, is
obtained by calculating the median value for all pixels in the windowed
data, this estimated background is removed from the data. The
algorithm processes the 10 frames of data in each iteration. This first
process removes each individual frame one at a time, averages the

remaining frames and convolutes the summed images with the PSF.
The convolution of each kth removed summed image and the PSF,
h(x,y) is calculated from Eg. 7, resulting in SNR values for each kth
frame of data, Qz(n). This is implemented in the Fourier domain as
the multiplication of the Fourier transformed data and the OTF, H..
The flow of this initial processing is illustrated in Fig. 1. After each
frame has been removed and a new value is calculated the values are
ranked in descending order. This translates to ranking which frames
when removed from the average and convoluted with the PSF
decrease the SNR the most significantly.

Qrs(n) = i1 gen(dr(x,¥) — B) * h(x,y) )

Partition10
frames of data, =1 Setk=1 —
dy, fork=1..10

Rank SNR
Remove k" @faiikn values
frame. Average - corresponding
- —> convolutionof |—>{ Setk=k+1 |- th -
xemammg. fra.mes 4 and the PSE. to'k frame
to obtain d. removed,

Qes(n).
1

Fig. 1. Flow chart of initial processing completed in the short exposure
frame selection algorithm.

With the ranked frames, the algorithm then processes the 10 data
frames by removing the one that most significantly decreased the SNR
and calculating the new average correlated SNR of the remaining
frames using the match filter from Eq. 2. As each poor frame is
removed, the correlation between the PSF and the averaged data
increases. The algorithm continues to remove frames in descending
order until the computed average SNR fails to increase from the last
iteration. Once the SNR has reached its peak the algorithm stops
removing frames of data. This process differs from the initial
processing step in that it is removing frames the least viable frames
first and then computing the SNR. It is important to note that the initial
process doesn't factor in where the peak of the convolution occurs.
This becomes apparent in the Ho case were the algorithm would pick
up on noise fluctuations. This secondary correlation test if the object is
at the pixel location being tested. At no time are the individual frames
registered prior to averaging them together.

The process would seem to be counterintuitive, that throwing away
data would increase the likelihood of detection using short exposure
data. However, under atmospheric conditions, averaging noisy or
highly distorted image data could potentially result in a lower SNR
image due to the unpredictability of lower order atmospheric
aberrations in short exposure image. This process removes frames
that do not collectively contribute to improving the SNR of the data.
Collecting data using this method requires significantly higher data
transfer rates as ten to thousands of short exposure images can be
captured in the typical long exposure time frame.

To properly evaluate the performance of this algorithm, the exact
same script must be used for H1 and Ho data sets. The MATLAB script
for processing this data only requires the captured data set and doesn’t
require any preset information outside of the expected PSF. The
expected PSF can be obtained by imaging a nearby star or estimated
from system parameters and a measurement of the seeing parameter,
7y, using the long exposure PSF formula given in Eq. 5 [13] . While the
data collected is defined as short exposure, the long exposure PSF



model is used since the individual frames of data are averaged together
prior to correlation to create an effective long exposure image.

4. SIMULATION AND EXPERIMENTAL DATA

Simulated and experimental data were used to analyze the
performance of the proposed space object detection algorithm. This
section describes the setup used to collect the two data sets in detail.

In practice, it is likely that a wide field of view (FOV) camera
capturing data on a telescope will contain many thousands of objects.
These objects will include stars, satellites and potentially space debris
and will all have varying levels of intensity. These objects are treated
identically by the algorithm since they would appear as point sources
to the optical system. Additionally, the frame of data collected by the
optical system is reduced to only test a small subset of the entire frame.
This increases the likelihood that multiple objects do not exist within
the subset windowed data while decreasing the computational
complexity involved in processing large frames of data. This approach
is used with other space object detection algorithms. The data
collected from the SST contains 6144 x 4096 pixels, however subsets
aslowas 15x 15 are used in object detection algorithms. A window of
this size allows for a PSF to be contained within the window while
providing enough pixels for the background statistics to be calculated.
Operationally, the 15 x 15 window would slide across the entire image
as each individual pixel was tested. The data used for testing this
algorithm was set at 20 x 20 pixels. Outside of computation time and
possible interference from other objects, there is no reason that a
larger window could not be chosen [22].

Simulated Data

The simulated data was developed in MATLAB to mimic a single point
source object within the data frame. The parameters used in the
simulation are summarized in Table 1. The use of MATLAB to create
data allows the ability to simulate accurate statistical distributions and
create realistic looking data while removing unknown variables in the
scenario. Removing these unknown variables limits the data to
investigate only the scope of the proposed algorithm. Images were
simulated under both the hypothesis that an object is present at the
pixel location being tested and that no object is present in the scene,
see Fig. 2. Under the H1 hypothesis, an object exists at the tested pixel
location, (xg, ). The intensity of the object can be varied to test the
algorithm at various SNR levels. Under the Ho hypothesis, no object
exists in the scene. This is simulated using the same statistical
assumptions for background light and the atmosphere except the
intensity of the object is set to zero. Accurate short and long exposure
PSF statistics were incorporated based on correlated turbulence
models [23] and built-in Poisson random variable functions were used
to simulate accurate statistical distributions for the background noise.
The model for the PSF was generated using Equation (4).

Fig. 2. Single frame of data simulated in MATLAB using accurate
turbulence and noise models. (a) Object present (Hi1). (b) No Object
present (Ho).

Table 1. System and Data Parameters Used in MATLAB Simulation

Parameter Value
Primary Aperture Diameter, D 0.10m
Seeing Parameter, 1 0.05m
Number of Frames Simulated 10000
Window Size, N 20x 20 pixels
Background Photon Count, B 10,000 photons
Target Intensity, 6 1,500 photons

5 10 15 20

Fig. 3. Simulated point spread function (PSF) used in the algorithm.

Experimental Data

Experimental data was collected using a hybrid approach in an optics
laboratory. A camera, aperture stop and focusing lens were set up on
an optical bench to capture frames of data. A hot air fan was used in
the optical path to induce random atmospheric turbulence in the
scene. A light emitting diode (LED) behind a 75-micron pinhole was
placed in focus with the detector after reflecting off a mirror half way
down the path usinga 500mm lens. A computer screen was placed out
of focus behind the mirror to provide an adjustable background light
source. This hybrid approach allowed for producing a point source
object with a bright background at varying SNR levels. Using this
approach removes the entirely simulated environment and provides
randomness to collected data while allowing for ease in adjusting the
intensity of the background compared to the point source object.

To collect H1 data, the MATLAB displayed image was adjusted to a
256-grayscale image with the background level set to 34 the brightness
of the object and the LED turned on to represent the object. This



provided nearly 10000 counts of background light on the laboratory
detector. 1000 short exposure images were collected with the camera
integration time set to 100ms. Similarly, 1000 frames of Ho data was
collected with the same intensity level for the background except the
LED is turned off. An example of the collected data under each
hypothesis is shown in Fig. 4. The parameters for the experimental
data collected in the lab is summarized in Table 1.

(b)

10

Fig. 4. Single frame of experimental data collected in the optics
laboratory. (a) Object present (H1). (b) No Object present (Ho).
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Fig. 5. Experimental laboratory data collect of the point spread
function (PSF) used in the algorithm.

The long exposure PSF of the optical system is needed by the
algorithm for object detection. This was experimentally collected by
setting the monitor to a black background with a single illuminated
pixel. The camera was integrated for 1 second to obtain the long
exposure PSF, shown in Error! Reference source not found.. This
PSF was used for correlating with the frame selected data in the
algorithm. One observation noted is the smaller PSF in the
experimental data compared to the simulation. This is due to the
larger sampling of the data in the CCD. This binning of data effectively
reduces the size of the PSF and object footprint on the CCD. However,
this has no effect on the algorithm since the PSF is an accurate model of
the expected data under the Hi hypothesis.

Table 2. Experimental Data Collection Setup & Parameters

Parameter Value
Camera ThorLabs 8050M-GE-TE
Integration Time 100 ms
Display Dell UltraSharp U2410
Display Pixel Pitch 0.27 mm
Focusing Lens 500 mm
LED Pinhole Size 75-micron

Number of Frames Collected 1000
Window Size, N 20 x 20 pixels
Average Background Count, B | 10,097 counts

5. RESULTS AND ANALYSIS

The performance of the detection algorithm is defined by its ability to
maintain an acceptable amount of false alarms while logging
detections. Two terms are typically used to describe this process. The
probability of detection, Py, is the probability of correctly determining
that an object is present at a given location whereas the probability of
false alarm, Py, is the probability that the algorithm determines an
object is present at the tested pixel location when there is no object
truly present. The Py is usually set to an extremely low level that is
acceptable to meet mission and resource constraints since there are
potentially millions of pixels to test in a single frame and each detection
requires resource demanding follow-up analysis. When considering
that a single frame of data from the SST contains over 25 million pixels,
a false alarm rate of 10~° is standard.

Receiver Operating Characteristic Curve

A ROC curve is a method used to illustrate the P, and Pr. The ROC
curve doesn'’t require a specific detection threshold to be set. Instead,
the Pp and Pr are both calculated for the full range of threshold values
that result in detection and false alarm probabilities between zero and
one. The ROC curve is built by modeling the SNR values from the
algorithms test data as Gaussian random variables. The mean and
variance of the test statistic can then be used to generate the detection
and false alarm probabilities using a Gaussian PDF. The upper right
corner of the ROC curve represents the performance of the algorithms
as the threshold is lowered. There is a point in this region where the
traditional matched filter outperforms the proposed algorithm. In this
region, the false alarm rate is significantly higher and above levels used
in operation.

Using the simulated data, the performance of the new algorithm
proposed in this paper was compared to both a traditional matched
filter approach and a lucky imaging technique. Under the traditional
matched filter, the 10 frames of data are averaged together, no frames
are removed, and the data is correlated with the expected PSF and
calculates the SNR using the matched filter from Eq. 2. The lucky
imaging technique was set with a selection rate of 40%. The best 4
frames of data are selected using the Strehl ratio as a quality metric,
these frames were registered and averaged. The ROC curves for the
simulated and experimental data are shown in Fig. 6 and Fig. 7. The



ROC curve using the simulated data illustrates the difficulty the lucky
technique encounters with low SNR objects. Selection rates of 10 and
20% were also attempted with the lucky imaging technique but
produced even worse results. Based on the simulated results, only the
traditional matched filer and new frame selection algorithm were
examined with experimental data. The results from both of the ROC
curves show a significant Pp increase for a given Pr when operating in
the low SNR regime for the new frame selection algorithm. The low
SNR can be predicted by examining the data in Fig. 2 and Fig. 4 and
seen by the extremely low detection probability for a P =~ 107°. At
this operational level of false alarm, the frame selection algorithm
shows a nearly 20% improvement in the Pp.
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Fig. 6. Simulated Data - ROC curves for the traditional matched filter,
frame selection algorithm and lucky imaging technique using 10
frames of data.
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Fig. 7. Experimental Data - ROC curves for the traditional matched
filter and the frame selection algorithm each using 10 frames of data.

6. CONCLUSIONS

This paper presents a method to improve the probability of detecting
dim or low SNR space objects in images obtained during bright sky
daylight conditions. Under daylight imaging conditions, it is required
to reduce the integration time of the sensor down to short exposure

time intervals to accommodate the increased number of photons
arriving at the CCD and the limited well depth. Two techniques for
post-processed object detection were examined and compared to the
proposed algorithm. First, a matched filter algorithm approach using a
single frame of data obtained by averaging the individual frames.
Second, a lucky imaging approach was examined that selects a portion
of the short exposure frames based on their quality which are then
registered and combined. The proposed algorithm takes into account
that under short exposure conditions there will be time instances that
result in excellent viewing and times when the atmosphere is
particularly poor, and the image is greatly distorted. The algorithm
iteratively removed frames to generate a higher SNR image which
results in increased detection probabilities. Unique to this approach is
that the PSF of the object is not required for correlating or for using as a
reference in evaluating the quality of each individual short exposure
image. The entire set of short exposure images is used to reject frames
that don'’t improve the quality of the combined image. Additionally,
image registration is not utilized due to the assumed low SNR of the
object. This results in a lower false alarm rate as noise spikes are not
registered and combined to create a false object.

Using both simulated and experimental data, the algorithm
demonstrated the ability to significantly improve the probability of
detection by 15-30% for low SNR objects while maintaining low false
alarm rates. This could potentially result in a significant number of
new detections found if implemented using current SSA systems.

This approach does require short exposure imaging with hardware
that would require higher frame rates. The sensor must output
significantly more frames of data in the same time as a single image
frame. The higher frame rate can result in significantly greater readout
noise when averaging the frame together. Under daylight imaging, this
is mitigated due to high photon counting noise becoming the
dominating noise source. It is possible that this algorithms approach
would be feasible under traditional night sky imaging if additive noise
from the detector, camera’s readout electronics and dark current was
significantly less than the noise induced by the background or if the
object was significantly bright. However, current algorithms already
work well with high SNR object.

With an increase in the number of assets launched into space, the
need to improve our detection and tracking of harmful objects will only
increase as well. Itis likely this will further constrain tight budgets and
operators time with telescope assets. The potential to improve the
detection capability of imaging in the daylight could mitigate some of
these issues while providing newer areas of the sky to scan and an
increased number of object detections.

Future research focused on refining the frame selection process to
better select frames would increase the correlated SNR. This would
increase the performance of the algorithm. Additionally, this algorithm
can be tested using data obtained from a SSN sensor for further testing
and evaluation.
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