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Abstract
The recent past has seen a tremendous surge in soil macroecological studies and new 
insights into the global drivers of one-quarter of the biodiversity of the Earth. Building 
on these important developments, a recent paper in Global Ecology and Biogeography 
outlined promising methods and approaches to advance soil macroecology. Among 
other recommendations, White and colleagues introduced the concept of a spatial 
three-dimensionality in soil macroecology by considering the different spheres of 
influence and scales, as soil organism size ranges vary from bacteria to macro- and 
megafauna. Here, we extend this concept by discussing three additional dimensions 
(biological, physical, and societal) that are crucial to steer soil macroecology from 
pattern description towards better mechanistic understanding. In our view, these 
are the requirements to establish it as a predictive science that can inform policy 
about relevant nature and management conservation actions. We highlight the need 
to explore temporal dynamics of soil biodiversity and functions across multiple tem-
poral scales, integrating different facets of biodiversity (i.e., variability in body size, 
life-history traits, species identities, and groups of taxa) and their relationships to 
multiple ecosystem functions, in addition to the feedback effects between humans 
and soil biodiversity. We also argue that future research needs to consider effec-
tive soil conservation policy and management in combination with higher awareness 
of the contributions of soil-based nature's contributions to people. To verify causal 
relationships, soil macroecology should be paired with local and globally distributed 
experiments. The present paper expands the multidimensional perspective on soil 
macroecology to guide future research contents and funding. We recommend con-
sidering these multiple dimensions in projected global soil biodiversity monitoring 
initiatives.
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F I G U R E  1   Multidimensionality in soil macroecology. (a) Soil macroecology has been lagging behind the macroecology of aboveground 
taxa. However, there have been recent advances in soil macroecology based on global surveys and data syntheses. (b) White et al. (2020) 
proposed that soil macroecology should be advanced by a consideration of the different soil depths that soil organisms inhabit, because 
drivers and distribution patterns might depend on soil depth. Moreover, they proposed that the different spheres and spatial scales that 
play a role in soil macroecology should be taken into account, because soil organisms range from bacteria to macro- and megafauna that 
might have substantially different zones of activity and influence. (c) We propose that soil macroecology should be expanded to a fourth 
dimension by considering the variability of soil biodiversity and functions over time. (c-i) It is well known that soil organisms show strong 
seasonal dynamics in their population sizes and activity. (c-ii) Snapshot assessments of soil biodiversity and functions are a crucial first step 
to gain basic information on relevant drivers and global gradients. However, such assessments lack information on crucial temporal trends of 
biodiversity change. Only samplings across multiple years will allow us to understand and predict changes in soil biodiversity and distribution 
of functions. (d-i) Beyond studying the spatial and temporal distribution of certain representatives of soil biodiversity, different taxa need to 
be studied, representing different size and trophic groups. (d-ii) Building on that, a soil food web perspective will allow inference concerning 
important linkages among taxa and, thus, an understanding of the joint or dissimilar environmental drivers for different taxa. (d-iii) Different 
facets of biodiversity can be representative of changes in soil biodiversity in addition to relationships with multiple ecosystem functions 
(depicted examples are litter decomposition, crop production, and nutrient cycling). (e) Moreover, we suggest that the human dimension of 
the distribution of soil biodiversity should be considered. One the one hand, multiple soil ecosystem functions deliver important nature’s 
contributions to people. On the other hand, human activities influence soil biodiversity, and adequate environmental policies will determine 
the conservation and fate of soil biodiversity [Colour figure can be viewed at wileyonlinelibrary.com]
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Biodiversity is changing around the globe in response to natu-
rally and anthropogenically driven environmental changes (Díaz 
et al., 2019; IPBES, 2019). Human activities have caused excep-
tionally high rates of decline in biodiversity across the world, 
threatening the integrity and functioning of these ecosystems and 
the services they provide to society (Cardinale et al., 2012; Díaz 
et al., 2018). To fight the biodiversity crisis, knowledge about the 
main drivers of biodiversity, their context dependence, and their 
future impacts has to be generated and implemented in conser-
vation actions. However, for many taxa, we currently lack such 
knowledge. One crucial example is soil biodiversity which encom-
passes roughly one-quarter of all species on Earth, with high rele-
vance for ecosystem functioning (Bardgett & van der Putten, 2014) 
and ecosystem service provisioning (Wall et al., 2015). This mas-
sive knowledge gap has generated a recent surge in global soil 
biodiversity syntheses, with several soil macroecological analyses 
based on observation networks (e.g., Crowther et al., 2019) and 
meta-analyses of experimental results (e.g., Zhou et al., 2020). 
These efforts have recently produced new insights into the 
global distribution of several soil taxa (e.g., Delgado-Baquerizo 
et al., 2018; Oliverio et al., 2020; Phillips et al., 2019; van den 
Hoogen et al., 2019; Figure 1a) and highlighted substantial differ-
ences in distribution from aboveground biodiversity that currently 
informs most conservation actions (e.g., Cameron et al., 2019; 
Tedersoo et al., 2014), but also the significance of spatial scale 
for aboveground–belowground biodiversity comparisons (Phillips 
et al., 2019).

In addition to repeated calls to address major global sampling and 
data blind spots in soil macroecology (Cameron et al., 2018; Guerra 
et al., 2020), White and colleagues (2020) recently outlined promising 
methods and approaches to advance soil macroecology. Beside the 
need to expand the classical macroecological toolbox, to consider new 
sampling techniques, molecular identification, functional approaches, 
environmental variables, different temporal scales and modelling tech-
niques, they introduce the need to account for the three-dimension-
ality of soil macroecology by also considering the different soil depths 
that soil organisms inhabit (Figure 1b). This is supported by the assump-
tion that the drivers and distribution patterns of both soil biodiversity 
and ecosystem functions might depend on soil depth (Eisenhauer 
et al., 2018). Moreover, they propose that the different spheres of in-
fluence and spatial scales that play a role in soil macroecology should 
be taken into account, because soil organisms, which range from bac-
teria to macro- and megafauna, can have substantially different zones 
and times of activity and influence. For example, anoxic conditions in 
deeper soils can cause exclusion of meso- to macroscopic eukaryotes 
and associated physical and/or ecological traits, leading to the preser-
vation and accumulation of organic material, which affects soil carbon 
storage capacity (Beulig et al., 2016). A promising step forward would 
be the development of multiscale sampling protocols (Rasmussen 
et al., 2018) that consider “scales of effect” and local spatial compart-
mentalization (Thakur et al., 2020). Support for these claims comes 
from empirical work showing that the depth distribution and major 

ecosystem effects of soil organisms differ among soil layers, as exem-
plified by dissimilar effects of arbuscular mycorrhizal fungi and ecto-
mycorrhizal fungi on carbon sequestration along the soil profile (Craig 
et al., 2018). Scientists have started to go even deeper and extend 
soil biodiversity research to the subsoil, where strong signals of abo-
veground biodiversity and management can still be detected (Küsel 
et al., 2016).

We build on the recent paper by White et al. (2020) and propose 
that soil macroecology should be expanded to essential biological, 
physical, and societal dimensions that can open the fields of soil mac-
roecology, global change ecology, and interaction ecology to a new, 
more insightful understanding of soil systems. First, soil macroecol-
ogy has to consider the variability of soil biodiversity and functions 
over time (Figure 1c). Although some soil taxa are now considered on 
International Union for Conservation of Nature (IUCN) red lists, there 
is almost no information on temporal trends for these and other soil 
taxa (Eisenhauer et al., 2019; Phillips et al., 2017). Data syntheses 
based on snapshot assessments of soil biodiversity and functions are 
a crucial first step to gain basic information on relevant drivers and 
global gradients. Yet, such assessments have limited capacity to inform 
policymakers about temporal trends and consequences of biodiver-
sity change, hampering our ability to identify vulnerable taxa and eco-
systems. Although synthesis approaches can allow for the successful 
integration of research with disparate sampling schemes (i.e., Phillips 
et al., 2019; van Klink et al., 2020), standardized samplings across ap-
propriate time-scales (e.g., every 2–3 years, ideally for ≥10 years) will 
allow us to understand and predict changes in soil biodiversity and 
function distribution better (Guerra et al., 2020).

Moreover, it is well known that soil organisms show strong re-
sponses to recurring environmental changes, such as seasonal 
dynamics (Žifčáková et al., 2017), recurring fire regimens (Oliver 
et al., 2015), and freeze–thaw cycles, in their population sizes and ac-
tivity (Eisenhauer et al., 2018). These temporal dynamics are important 
for soil habitats and are a special feature of them, and they might be 
key to understanding the observed biodiversity (White et al., 2020). 
For example, from the perspective of soil organisms, the supply of re-
sources is not a constantly dripping source but is highly episodic, forc-
ing them into inactive and dormant stages for most of their lifetime 
(Blagodatskaya & Kuzyakov, 2013; White et al., 2020). Besides this, 
changes in soil moisture impact fluxes of water and matter, in addi-
tion to gas diffusivities, leading to highly dynamic redox conditions and 
fundamental changes in the microbial metabolism (Smith et al., 2003). 
Furthermore, small-scale heterogeneity in the soil matrix, which con-
ditions access to resources (Bickel & Or, 2020), might provide a chance 
for the persistence of organisms with low competitiveness (Portell 
et al., 2018) and maintain crucial functions, such as carbon cycling, run-
ning in modified conditions (Banerjee et al., 2016). The amplitude of 
these dynamics, together with temperature as another crucial control 
of biological activity, is very high close to the soil surface and is damp-
ened significantly with increasing soil depth. This is another reason 
why considering the spatial and temporal dimensions is crucial for a 
proper assessment of soil conditions.
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Gradual but persistent environmental changes, such as climate 
change, might also cause shifts in the activity patterns and phenology 
of soil organisms (Siebert et al. 2019; Thakur et al., 2018). Recurring 
and persistent environmental change can have complex effects on 
soil biota, resulting in modified resilience to further perturbations 
(Knox et al., 2017), but with unknown consequences for the pheno-
logy of aboveground–belowground species interactions and ecosys-
tem functioning (Eisenhauer et al., 2018). Therefore, not accounting 
for these temporal dynamics not only limits our ability to understand 
soil systems, but also to harness their benefits to society (i.e., soil eco-
system services; Bach et al., 2020). Two recently announced, comple-
mentary monitoring activities might allow us to gain urgently needed 
information about long-term trends and short-term dynamics, respec-
tively. The soil biodiversity observation network, Soil BON (https://
geobon.org/bons/thema tic-bon/soil-bon/), is planning to perform 
repeated global assessments every 3 years (Figure 1c-i), and the 
Lifeplan project (https://www.helsi nki.fi/en/proje cts/lifep lan/about) 
will explore within-year variability in aboveground and belowground 
biodiversity activity for multiple years (Figure 1c-ii). Ultimately, it will 
be important to compare such macroecological time-series data for 
aboveground and belowground organisms.

Another important temporal aspect of the distribution of soil bio-
diversity is soil history. Many recent biodiversity trend analyses lack 
crucial baseline information on previous land cover and local biodi-
versity drivers (Eisenhauer et al., 2016). For instance, pedogenesis is 
a crucial factor for soil biodiversity (Delgado-Baquerizo et al., 2019), 
and past land uses can have long-lasting effects on soil abiotic and 
biotic properties (e.g., Bachelot et al., 2016; Demetrio et al., 2019). 
More fundamentally, pedogenesis, as a mechanism of soil formation 
that is largely driven biologically, is paralleled by gradual disbalances 
in the forms and availabilities of key resources, such as nitrogen and 
phosphorus. This strongly impacts on the dynamics of soil organ-
ism communities (Turner & Condron, 2013), and soil management 
has an impact on these dynamics (Chen et al., 2015). Soil organic 
carbon dynamics and their responses to climatic control or land use 
are strongly dependent on soil depth (Balesdent et al., 2018). Given 
that about half of this carbon is located below 30 cm depth, deci-
sion-makers and ecosystem managers need a better data basis for 
the management of the deep carbon stocks. Human activities, such 
as the addition of fertilizer, leguminous crop production, and combus-
tion processes, have also altered the nitrogen budget in deep soils, 
with unknown consequences for soil ecosystem functioning. There 
is evidence that even in sub-soils the carbon dynamics are largely 
controlled by biological processes (Hobley et al., 2017). Finally, soil 
biodiversity affects soil erosion rates (Orgiazzi & Panagos, 2018) 
and vice versa (Guerra, Rosa, et al., 2020). Thus, geological history 
and past and present human activities alter biodiversity and its dis-
tribution, which is why we encourage researchers to consider such 
important effects of soil history that act on different spatial and 
temporal scales. This can be done by explicitly considering different 
soil histories in designing soil biodiversity monitoring schemes and 
by integrating the respective information in data analysis (Delgado-
Baquerizo et al., 2020).

Beyond studying the spatial and temporal distribution of cer-
tain representatives of soil biodiversity, the varying vulnerability 
of soil organisms to different environmental challenges needs to 
be addressed (Bastida et al., 2020; Coyle et al., 2017; Figure 1d-
i). Given the variability of known responses, these taxa should 
also represent different body sizes, life-history strategies, and 
functional and trophic groups (Blankinship et al., 2011). Building 
on that knowledge, a soil food web perspective will allow infer-
ences to be made about important linkages among taxa and, thus, 
an understanding of the joint or dissimilar environmental driv-
ers for different taxa (Figure 1d-ii). Moreover, different facets of 
biodiversity can be representative of changes in soil biodiversity 
and of relationships with multiple ecosystem functions (Delgado-
Baquerizo et al., 2020; Figure 1d-iii). For instance, a recent me-
ta-analysis showed that the effects of different environmental 
stressors on soil biodiversity vary between biodiversity facets 
(species richness and population density of decomposers) and 
that these changes can have significant ecosystem consequences 
(Beaumelle et al., 2020). A multitaxa and multitrophic perspec-
tive (Soliveres et al., 2016) might require collaboration between 
a broad range of soil ecologists and taxonomists and the integra-
tion of molecular with classical count data (Guerra et al., 2020; 
White et al., 2020). This research is particularly relevant, because 
common macroecological rules might not apply to soil organisms 
(e.g., Cameron et al., 2019; Frelich et al., 2012; Phillips et al., 2019), 
highlighting the need for soil macroecological theory to be de-
veloped (Eisenhauer et al., 2017) by considering the distribution 
of soil biodiversity across different spatial and temporal scales 
(Phillips et al., 2019; Thakur et al., 2020).

Finally, we suggest that the human dimension of soil biodi-
versity distribution should be considered by accounting for the 
feedback effects between society and soil biodiversity (Figure 1e). 
On the one hand, multiple soil ecosystem functions deliver im-
portant nature’s contributions to people (Díaz et al., 2018; Geisen 
et al., 2019). On the other hand, human activities influence soil 
biodiversity (Tsiafouli et al., 2015; Wall et al., 2015), and adequate 
environmental policies will determine the conservation and fate 
of soil biodiversity (Bach et al., 2020). Human impacts on soils can 
last for a long time (e.g., Demetrio et al., 2019) and reach deep, in-
fluencing biogeochemical cycles in the subsurface and the quality  
of subterranean water (e.g., Küsel et al., 2016). Soil ecologists 
need to step up to gather and provide the relevant data to inform 
biodiversity reports (e.g., IPBES, 2019) and strategies on how to 
manage soil biodiversity in a sustainable way (Geisen et al., 2019; 
Wall et al., 2015). To be effective mechanisms of soil conserva-
tion, these strategies need to overcome the use of locally specific 
indicators to rely on measurements that can be communicated 
across ecosystem and political boundaries. The development of 
widely accepted indicators for soil biodiversity and soil health with 
global relevance would thus be an essential step forward (Schloter 
et al., 2018). Moreover, we need to start to appreciate the extrin-
sic and intrinsic value of soil organisms and to bring soil biodiver-
sity into the public discourse (Phillips et al., 2020).

https://geobon.org/bons/thematic-bon/soil-bon/
https://geobon.org/bons/thematic-bon/soil-bon/
https://www.helsinki.fi/en/projects/lifeplan/about
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Overall, by adding the dimensions of time, different facets 
of biodiversity, linkages to ecosystem functioning, and recipro-
cal relationships between soil biodiversity and society, we aim 
to extend the work by White et al. (2020). We outline how soil 
macroecology could work beyond the description of patterns and 
have a direct impact on our understanding of global ecological 
and biogeochemical processes (Crowther et al., 2019). Such a pro-
cess-based understanding would benefit from the pairing of soil 
macroecological studies with local and globally distributed experi-
ments that have great potential to inform each other. For instance, 
a recent macroecological study on soil pathogens of plants used 
complementary data from a field experiment to test the relevance 
of temperature (Delgado-Baquerizo et al., 2020). Moreover, glob-
ally distributed experimental networks, such as Nutrient Network 
(Borer et al., 2014) and Drought-Net (https://droug ht-net.colos 
tate.edu/), can link macroecological patterns with potential con-
text-dependent effects of global change drivers. More than a the-
oretical exercise, these steps could have real-world implications 
by producing more adequate assessments of the impacts of global 
change, improving the predictive modelling at multiple scales, par-
ticularly of soil communities and functions, and informing both 
management (at local scales) and policymaking (at broader scales). 
Therefore, accounting for the multidimensionality of soil macro-
ecology does not necessarily translate into increasing the com-
plexity of our responses, but into a better understanding of soil 
ecology and more informed decision-making.
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