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ZUSAMMENFASSUNG 

Theorien der prädiktiven Kodierung (predictive coding, PC; Rao & Ballard, 1999) spielen in 

der neurokognitiven Forschung zu Erklärung von Denk- und Wahrnehmungsprozessen in 

verschiedenen Domänen eine entscheidende Rolle. Das Grundprinzip dieser Theorien ist, 

dass die Wahrnehmung nicht nur auf der Bottom-up (aufwärts)-Verarbeitung des 

sensorischen Inputs, sondern auch auf Top-down (abwärts)-Vorhersagen beruht. Mit 

anderen Worten: Vorerfahrungen und Kontextinformationen erleichtern 

Wahrnehmungsprozesse und erhöhen dadurch deren Effizienz (Auksztulewicz & Friston, 

2016; Friston, 2010). Ziel ist es, die eingehenden Informationen auf der Basis 

probabilistisch generierter Modelle bestmöglich vorherzusagen. Je besser die Vorhersagen 

zum sensorischen Input passen, desto kleiner ist der sogenannte Vorhersagefehler 

(prediction error; PE), der verarbeitet wird, um unser Modell für präzisere zukünftige 

Vorhersagen zu aktualisieren. Dieser Ansatz liefert Erklärungsmöglichkeiten für sehr 

unterschiedliche Phänomene, wie visuelle Mehrdeutigkeit, optische Täuschungen und 

neuronale Wahrnehmungsphänomene. In der vorliegenden Arbeit werden mehrere 

neuronale Antwortveränderungen in kortikalen visuellen Arealen behandelt, die mit Hilfe 

bildgebender Verfahren gemessen werden. Eines dieser Phänomene ist der zuverlässig 

beobachtete Effekt einer reduzierten neuronalen Antwort auf wiederholte im Vergleich zu 

alternierenden Reizen. Die so genannte Wiederholungsunterdrückung (repetition 

suppression; RS) wurde mit der prädiktiven Kodierung in Verbindung gebracht, da 

angenommen wird, dass Wiederholungen die Stimuli erwartbarer machen, was wiederum 

zu einem geringeren Vorhersagefehler und damit zu einer verminderten neuronalen 

Aktivität führt. Es ist jedoch fraglich, ob RS tatsächlich den Vorhersagefehler widerspiegelt 

oder das Resultat lokaler Prozesse neuronaler Populationen ist, der auch ohne Top-down-

Einflüsse auftritt (Grill-Spector et al., 2006). Ein weiterer häufig untersuchter Effekt ist die 

reduzierte neuronale Reaktion auf erwarteten oder vorhergesagten visuellen Input - 

genannt Erwartungsunterdrückung (expectation suppression, ES). Ein beträchtlicher Teil 

der Forschung zu kontextabhängigen neuronalen Antworten, wie RS und ES, bezieht sich 

auf das visuelle System und insbesondere auf das Netzwerk, dass Gesichter verarbeitet. 

Gesichter in Gehirn werden schnell und effizient in einem komplexen hierarchischen 

Netzwerk verarbeitet. Darüber hinaus sind sie, obwohl sie die gleiche Grundstruktur haben, 

individuell und bieten verschiedene Aspekte, wie z.B. Bekanntheit, Identität oder Ausdruck, 

die in der Forschung über visuelle Verarbeitungsmechanismen, genutzt werden können.  
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In Studie I gingen wir der Frage nach, ob RS auf PC-Modelle zurückzuführen ist. Es hat sich 

gezeigt, dass Erwartungen höherer Ordnung RS unter bestimmten Bedingungen 

modulieren können (Summerfield et al., 2008). Nach PC-Theorien spiegelt RS den 

Vorhersagefehler wider, der nicht nur von der Diskrepanz zwischen Vorhersage (basierend 

auf Erwartungen) und sensorischem Input, sondern auch von der geschätzten Präzision der 

beiden (Auksztulewicz & Friston, 2016) abhängt. Daher sollte die Manipulation der 

Präzision des sensorischen Inputs das Ausmaß von ebenfalls RS beeinflussen. Wir haben RS 

für gut sichtbare (hohe Präzision) und verrauschte (niedrige Präzision) Gesichter in einem 

fMRI-Experiment gemessen. Wir fanden RS in verschiedenen gesichtsverarbeitenden 

Regionen und eine verringerte neuronale Antwort auf verrauschte Gesichter, aber keine 

Interaktion. Unsere Ergebnisse deuten darauf hin, dass sensorisches Rauschen für die 

Bestimmung des Ausmaßes von RS nicht entscheidend ist. 

Viele frühere Studien untersuchten RS unter verschiedenen 

Wiederholungswahrscheinlichkeitsbedingungen und fanden und evaluierten daraufhin ES 

(Grotheer & Kovács, 2016). Die Effekte dieser Manipulationen könnten jedoch mit einer 

Charakteristik vermischt sein, die für RS-Experimente natürlich ist. Nachdem man den 

ersten Stimulus in einem Durchgang gesehen hat, kann der Inhalt des zweiten Bildes genau 

vorhergesagt werden wenn es wiederholt wird, aber nicht wenn es sich ändert. Dies ist bei 

allen Studien zu bedenken, die RS untersuchen. Um herauszufinden, welchen Einfluss die 

Vorhersagbarkeit von Stimuli in Messungen von RS leistet, führten wir in Studie II ein 

Trainingsexperiment durch, in dem die Teilnehmer spezifische Stimulusassoziationen 

lernten. In einem Kontext folgte auf ein gegebenes Gesicht A immer Gesicht B (AB-

Assoziation), während in einem anderen Kontext eines von fünf verschiedenen Gesichtern 

zufällig ausgewählt wurde (AX). FMRT Daten, die nach den Trainingssitzungen erhoben 

wurden, zeigten eine signifikante Reduktion von RS, wenn die alternierenden Gesichter 

vorhergesagt werden konnten (AB). Mit anderen Worten, wenn für die Unterschiede in 

Stimulusvorhersagbarkeit nicht kontrolliert wird, kann das RS Messungen signifikant 

beeinflussen. Dies kann auch auf Messungen von ES übertragen werden und ist daher 

relevant für das Testen von PC-Theorien.  

In der dritten Studie untersuchten wir Adaptions- und vorhersagebezogene Effekte in 

Bezug auf Erwartungen bestimmte Identitäten betreffend. Hier haben wir uns die Tatsache 

zunutze gemacht, dass für bekannte Personen bereits neuronale Repräsentationen 

vorhanden sind. Da angenommen wird, dass Regionen im okzipito-temporalen Kortex eine 

Rolle bei der Identitätsverarbeitung spielen (Duchaine & Yovel, 2015), untersuchten wir, ob 

identitätsspezifische Effekte in relevanten gesichtsverarbeitenden Arealen bildinvariant 
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sind. In kurzen Blöcken präsentierten wir verschiedene natürlich variierende Bilder von 

entweder verschiedenen oder der gleichen berühmten Person. Zusätzlich wurde in einer 

Bedingung die wiederholte Präsentation der gleichen Identität mit einem Bild einer 

anderen Person beendet. Dadurch verletzten wir potentielle identitätsspezifische 

Erwartungen und stellten die Hypothese auf, dass der Adaptationseffekt aufgelöst wird und 

sich ein erhöhter PE in den Ergebnissen widerspiegelt. Ein identitätsspezifischer 

Adaptationseffekt zeigte sich im Gyrus fusiformis, was die Vorstellung einer bildinvarianten 

Identitätskodierung in dieser Region unterstützt. Der unerwartete Wechsel der Identität 

löste jedoch kein erhöhtes Signal aus, wie von PC-Theorien vorhergesagt und von früheren 

elektrophysiologischen Studien gezeigt wurde (Johnston et al., 2016). 

Insgesamt zeigen wir, wie wichtig die Vorhersagbarkeit des Stimulus für Studien ist, die RS 

verwenden, um erwartungsbezogene Effekte aufzudecken. Darüber hinaus sollte der 

Einfluss der Präzision des sensorischen Inputs auf Messungen von RS und ES in der 

zukünftigen Forschung mehr Aufmerksamkeit finden. Im Hinblick auf das Stimulusmaterial 

in den vorgestellten Studien - unbekannte, visuell bekannte und berühmte Gesichter - 

betonen wir auch die Wichtigkeit einer gründlichen Betrachtung der Charakteristika von 

Gesichtern in Bezug auf vorherige Erfahrungen und sensorischem Input, sowie 

Vorhersagbarkeit. 
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SUMMARY 

Theories of predictive coding (PC; Rao & Ballard, 1999) have dominated neurocognitive 

research in explaining thought and perception processes in various domains. The basic 

principle is that perception relies not only on bottom-up processing of sensory input but 

also on top-down predictions. In other words, previous experiences and context 

information facilitate perceptual processes and thereby increase efficiency (Auksztulewicz 

& Friston, 2016; Friston, 2010). Together these information processing streams form what 

we experience as outside world events. The purpose is to provide the best explanation for 

incoming information based on probabilistically efficient models. The better predictions fit 

the sensory input, the smaller the so-called prediction error (PE) processed to update our 

model for more precise future predictions. This explanatory approach is promising, as very 

different phenomena, such as ambiguity, optical illusions, and neuronal phenomena of 

perception, can be explained. The current thesis describes several neuronal response 

alterations in cortical visual areas measured with neuroimaging methods. One of these 

phenomena is the reliably observed effect of a reduced neuronal response to repeated 

compared to alternating stimuli. The so-called repetition suppression (RS) effect was 

connected to predictive coding as repetitions make stimuli more expected, which results in 

a smaller prediction error and therefore attenuated neuronal activity. Still, it is questioned 

whether RS reflects the PE or is a local process by neuronal populations that occurs without 

top-down influences (Grill-Spector et al., 2006). Another often investigated effect is the 

reduced neuronal response to expected or predicted visual input – called expectation 

suppression (ES). A considerable body of research on contextual response changes, such as 

RS and ES, relates to the visual system and the face-processing network in particular. Faces 

are processed fast and efficiently. Furthermore, although they share the same basic 

structure, they are individual and offer different aspects that can be addressed in research 

on visual processing mechanisms, such as familiarity, identity, or expression.  

In Study I, we asked the question of whether RS can be explained by PC models. It has been 

shown that higher-order expectations can modulate RS under specific conditions 

(Summerfield et al., 2008). According to PC theories, RS reflects the prediction error, which 

is contingent not only on the mismatch between prediction and sensory input but on the 

estimated precision of the two (Auksztulewicz & Friston, 2016). Hence, manipulating the 

precision of sensory input should affect RS magnitude. We measured RS to clear (high 

precision) and noisy (low precision) face stimuli in an fMRI experiment. We observed RS in 
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different face-processing regions and a reduced response to noisy faces but no interaction. 

Our results suggest that sensory noise is not crucial in determining RS magnitude. 

Many previous studies investigated RS magnitude under different repetition probability 

conditions and thereby found and evaluated ES (Grotheer & Kovács, 2016). These 

manipulations, however, might be confounded with a characteristic that is natural to RS 

experiments. After seeing the first image of a trial, the content of the second image can be 

precisely predicted when it is repeated but not when it changes. This is especially important 

when probabilities of repetition and alternation trials differ. To discover the contribution of 

stimulus predictability to measures of RS in Study II, we conducted a training experiment in 

which participants learned specific stimulus associations. In one context, a given face A was 

always followed by face B, whereas in another context, one of five different faces was chosen 

randomly as a successor. Importantly, the proportion of repetition and alternation trials 

was equal for both contexts, and trials were presented interleaved. Neuroimaging data 

acquired after training sessions revealed a significant reduction in RS magnitude when 

alternating faces were predictable compared to unpredictable. In other words, controlling 

for stimulus predictability differences between repetition and alternation can significantly 

affect measures of RS. This relates to stimulus-specific expectation effects and is therefore 

relevant for testing consequences of PC.  

In the third study, we investigated adaptation and prediction-related effects of expectation 

about famous faces. Here we have taken advantage of the fact that neuronal representations 

are already present for well-known identities. As regions in the occipito-temporal cortex 

were found to play a role in identity processing (Duchaine & Yovel, 2015), we asked whether 

identity-specific effects are image-invariant in relevant face processing areas. In short 

blocks, we presented different (ambient) images of either different or the same famous 

person. Additionally, in one condition, the repeated presentation of the same identity was 

finished with a picture of another person. Thereby, we violated potential identity-specific 

expectations and hypothesized a release from adaptation reflecting an enhanced PE. An 

identity-specific adaptation effect was evident in the fusiform gyrus, supporting the notion 

of image-invariant identity encoding in this region. However, the change of identity did not 

provoke a signal increase, as indicated by PC and previous electrophysiological studies 

(Johnston et al., 2016). 

Overall, we demonstrate the importance of stimulus predictability for studies using RS to 

uncover expectancy-related effects. Furthermore, we suggest that the influence of sensory 

precision on measures of RS and ES needs more attention in future research. Concerning 

the stimulus material in the presented studies - unfamiliar, visually familiar, and famous 
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familiar faces - we also emphasize the importance of thoroughly considering the 

characteristics of faces in terms of prior belief and sensory input precision and 

predictability when using them for testing prediction-related effects.  
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1  INTRODUCTION 

 

In Western thoughts, vision is generally understood as the most important sensory 

modality. Thinkers as early as Aristotle promoted vision as ‘the noblest of senses’ and 

therefore privileged over other senses such as hearing, smell, taste, and touch. By now we 

know, that there are differences in cultures, showing that a strict hierarchy of the senses 

cannot be a global assumption (Majid et al., 2018). Although vision might not be the most 

important sense in a global competition, it is almost irreplaceable when guiding us through 

the world. People rely on visual input when navigating through the streets, when learning 

or executing simple actions or engaging in conversation. If one thinks about the amount of 

visual information that a human being encounters every day, what our brain accomplishes 

at every waking second of our lives seems almost impossible. Especially in social 

interactions, efficiently recognizing and identifying humans is essential.  

It is crucial to differentiate between visual sensation and perception, which will be the all-

connecting process with which this thesis deals. Johannes Müller defined sensation as ‘the 

awareness of the states of sensory nerves, not of the outer world itself’ (Müller, 1838 quoted 

from Gross, 1999; page 62). Visual perception, in contrast, can be seen as an information-

handling process (Attneave, 1954). It can be argued that the human brain could not possibly 

utilize all the information provided by stimulation states of visual input meeting the retina. 

Visual processing must be efficient to allow seamless percipience of our surroundings, 

which is necessary to navigate through the world. Luckily, our world is subject to certain 

‘laws’ or ‘regularities.’ There are types of lawfulness that are significant for processes 

involved in visual perception. Sensory events are highly interdependent in space and time 

(Dong & Atick, 1995) facilitating our visual perception enormously and can be 

demonstrated with a simple example.  

Imagine watching a person walking down the street while sitting in a café on the other side. 

Suppose this person disappears for a couple of seconds behind parking cars or some bushes 

and trees. In that case, one will expect the person to appear again at some point in space and 

time and automatically generate precise predictions about how this scene continues. We 

would predict that the person would enter our visual field again at a particular position, 

namely where, for example the vehicle, no longer obstructs our view, and calculate the time 

point of this, taking into account the walking speed and the size of whatever blocks our 

unobstructed view. We would probably also consider that the person could enter a house, 

but we know that this person will not magically disappear. 
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Naturally, a lot of information we receive is also redundant, as we can infer stimulation 

states from previous situations or surrounding sensations. How these fortunate 

circumstances facilitate our perception is explained in detail in chapter 1.2.1. 

This thesis aims to contribute to the already large amount of research literature on how our 

brain sees and perceives. Specifically, the neural mechanisms underlying the efficient 

processing of complex visual scenes are still under debate. Depending on the experiments 

presented, it is indispensable to know the basics about the neuronal structures involved in 

visual processing and how they work together. Therefore, in chapters 1.1.1 and 1.1.2, I will 

provide an overview of the neuroanatomical structures of importance and their 

interconnections. Due to the nature of stimulus material used in all incorporated studies, 

the focus will be on the ventral visual stream, whose areas are responsible for processing 

shapes, objects, and faces or bodies and what is therefore also known as the ‘what’ pathway. 

Next, as faces are important, in chapter 1.1.3, I will discuss cognitive models of face 

perception and briefly introduce the differences in processing familiar and unfamiliar faces. 

Chapter 1.2 will describe the predictive coding framework and repetition suppression 

(1.2.2) and expectation suppression (1.2.3) as essential mechanisms investigated in the 

presented studies. Furthermore, I will shed light on the relationship between face 

processing and prediction processes in chapter 1.3. Finally, at the end of the introduction, I 

will describe our studies’ general and specific aims (chapter 1.4). 

 

1.1  The ventral visual stream 

This chapter will introduce the cortical processing network for visual stimuli, focusing on 

ventral visual areas involved in shape and object processing. It will also provide some 

background information on the cortical architecture of the visual system and present 

cortical areas that are specifically dedicated to processing faces and facial information. 

Furthermore, I will introduce current cognitive models for face processing in chapter 1.1.3.  
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All visual input is received at 

the retina and processed 

through the lateral geniculate 

nucleus (LGN) before it enters 

the first cortical regions in the 

occipital lobe, such as the 

primary (V1) and secondary 

(V2) visual cortex, as parts of 

the early visual cortex, and 

propagated forwards to 

occipito-temporal (ventral) 

and temporoparietal (dorsal) 

regions (Figure 1). The ventral 

visual stream extends over the occipitotemporal cortex and includes areas holding neural 

object representations (Kravitz et al., 2013). Because it is responsible for processing and 

identifying all kinds of objects, it is also known as the ‘what’ pathway. The dorsal visual 

stream is known as the ‘where’ pathway and it processes information about the location of 

objects and related actions. This influential model of the visual cortex was recently adapted 

because there is evidence for a third visual pathway, which is assumed to be specialized for 

social perception (Pitcher & Ungerleider, 2021). 

Before explaining some influential and currently prominent models of face processing and 

the underlying anatomical network, the next chapter will describe the cortical architecture 

(1.1.1) because it is crucial for backing up the theories about face processing as well as being 

an essential basis for the predictive coding framework (1.2.1). 

 

1.1.1  Cortical organization in the visual system 

Our visual system's cortical architecture and organization occupied researchers for decades 

now. The two most extreme points of view were that the visual signal goes through the 

visual cortex in a strict serial way and is processed in the same manner. Another perspective 

is that our visual system is a highly connected network of areas, without any hierarchy in 

processing steps. Both hypotheses seem to be absolute and very unlikely. As with many 

things, the truth lies somewhere in between. Traditionally, the visual system is seen as 

hierarchical, multiple, parallel, and unidirectional. Here, I will review some evidence for 

these characterizations and will show at least one of these features to be false.  

Figure 1. Schematic illustration of visual pathways. 
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Physiological evidence for a hierarchical form of visual processing comes from features of 

receptive fields in different areas. Receptive fields in early visual areas are smaller 

compared to those in areas representing a higher-level processing stage (Freeman & 

Simoncelli, 2011). The two main pathways constituting the parallelism in the visual system 

have been already mentioned, namely: the dorsal and the ventral system (Ungerleider & 

Mishkin, 1982). If there is a hierarchy in both systems, the assumption of serial processing 

is logical. However, the dorsal and ventral stream by no means work separately from each 

other but are also interconnected. More detailed studies of the connections between cortical 

structures provided insights into the organization and flow of information. Cortical 

connections between visual areas reveal different cortical layer profiles (Figure 2B, see 

Figure 2A for an overview of cortical layers), as found in an early monkey study by Maunsell 

and Van Essen (1983). They found that connections from visual areas V1, V2, and V3 to the 

middle temporal visual area (MT) predominantly originate in supragranular layers (layer I 

– III) of cells. Connections from MT to V1-3 end in infragranular (layers V and VI) layers as 

well. The authors found the projections from area V1, V2, and V3 to be feedforward going 

to MT, whereas the reciprocal connections are indicative of feedback projections. This 

finding reveals that the visual system cannot rely on a unidirectional processing stream but 

is instead composed of areas that are connected in a bidirectional manner. The different 

profiles of cortical layers were then used to better characterize the relationships between 

cortical areas.   

Figure 2. A Schematic illustration of cortical layers of the neocortex. B schematic illustration of cortical 

layer profiles of feedforward and feedback connections between human lateral geniculate nucleus 

(LGN) and early visual cortical areas V1 and V2. Adapted from Lawrence et al. (2019). 

 



Prediction-related phenomena in the ventral visual stream 

5 
 

As early as 1991, Felleman & Van Essen (Felleman & Van Essen, 1991) reported a summary 

of 32 cortical areas related to vision in the macaque brain. This large number of areas 

dealing with visual input indicates that a serial processing stream is unlikely. Additionally, 

the authors report 305 connections between those areas, suggesting a highly connected 

network. Those pathways were characterized in terms of laminar origin and terminations, 

including the major types of patterns indicative of ascending, descending, or lateral 

connections. These laminar patterns were used to define hierarchical relationships between 

areas. On this basis, Felleman and Van Essen (1991) propose a visual hierarchy model 

consisting of ten processing levels. At this point in time, it was still an open question 

whether each level in the hierarchy represents a specific information processing stage that 

can be characterized and separated from other levels. The authors found processing 

streams to be distinct but intertwined, supporting the idea of parallel processing. We now 

know that the top-down connections rather than the bottom-up pathways play a dominant 

role in visual processing. For instance, the LGN was found to receive a vast amount of 

information from cortical areas and not from the retina (Casagrande et al., 2006). This 

asymmetry in extrinsic connections, and the asymmetry in laminar specificity, define the 

sensory brain as being hierarchically organized. Aside from the presented studies discussed 

above, the asymmetry between feedforward and feedback connections is also present in 

occipital and fusiform face-sensitive areas that will be introduced later (Chen et al., 2008). 

The overwhelming number of cortico-cortical connections found by Felleman and Van 

Essen (1991) suggests a highly distributed hierarchical network underlying visual 

processing. However, the exact role of the different pathways found was still not clear. 

Ascending pathways were easy to explain, as it is the sensory signal that has to be 

transported from the senses to areas, representing higher stages in the processing 

hierarchy. This is also known as bottom-up processing. Top-down processing refers to the 

addition of information from higher areas in order to better classify sensory information. If 

we now assume that higher cognitive processing also means more abstract processing 

(Mumford, 1992), then descending connections make little sense at first glance since lower 

levels of processing cannot interpret this information at all. However, what they can do is 

process input from higher levels that have been broken down into a structure similar to that 

which bottom-up inputs have at that level. Mumford therefore hypothesized that higher-

level cortical cells transfer template information in the weights of lower-level area synapses 

they are connected with via feedback connections. Furthermore, he suggests that these 

templates must be flexible to guarantee the recognition of an object under various 

conditions. In other words, presentations are invariant to specific features. Last but not 

least, Mumford (1992) pointed out that ascending pathways may carry what he termed 
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residuals, the mismatch between the actual sensory input and the template from the higher-

order neuronal populations. These considerations led shortly thereafter to the emergence 

of a theory that claims to explain the neural mechanisms underlying the functioning of the 

brain. Chapter 1.2.1 is dedicated to the predictive coding framework. 

 

1.1.2  Specialized areas in the ventral visual stream 

 I will now introduce four main areas in the ventral visual stream, starting with the lateral 

occipital cortex, and then ascending in the hierarchy to the occipital and fusiform face areas 

and the anterior temporal lobe. All these areas are depicted in Figure 3 as spherical regions 

around exemplar coordinates. Especially the occipital and fusiform face areas are essential 

to the current thesis and were defined in all our studies. However, we did not localize all 

areas depicted in Figure 3. Therefore, and for illustration purposes, exemplar coordinates 

were chosen here. However, locations for the lateral occipital cortex and occipital and 

fusiform gyrus closely resemble our own data (see chapter 2.3). For the anterior temporal 

lobe coordinates comparable to those in Pobric et al. (2007) were chosen.  

Figure 3. The ventral visual areas, related to face processing. Area locations were created using Marsbar 

(Brett, 2011) and plotted onto a template brain using MRIcroGL 

(https://www.nitrc.org/projects/mricrogl/). Each region of interest was defined a sphere around 

exemplar Montreal Neurological Institute coordinates: Lateral occipital cortex: 42, -80, -2. Occipital 

face area: 38, -76, -12. Fusiform face area: 42, -52, -22. Anterior temporal lobe: 47, 5, -27.  



Prediction-related phenomena in the ventral visual stream 

7 
 

The lateral occipital cortex (LO; Grill-Spector, Kourtzi, & Kanwisher, 2001; Malach et al., 

1995) is part of the lateral occipital complex (LOC) and is located in the lateral ventral 

regions of the occipital lobe. It belongs to the object-processing network and is selective to 

all visual objects (Grill-Spector et al., 2001) and specifically holds shape representations of 

objects (Kourtzi & Kanwisher, 2001). Thus, it does not respond to faces specifically, but in 

terms of faces as being objects as well. It was found to be connected bidirectionally to the 

occipital and fusiform face areas by a study using dynamic causal modeling (DCM) on 

functional magnetic resonance imaging (fMRI) data (Nagy et al., 2012). Therefore, it is 

assumed to play a role in face processing as well. Because faces and objects are not handled 

differently at this point, the LO might be responsible for the first step of discrimination 

between objects and faces.  

 

The occipital face area (OFA; Gauthier et al., 2000) responds to faces and face parts (Pitcher 

et al., 2007). It gets input from LO (Nagy et al., 2012) and is assumed to play a role in earlier 

structural processing of face-related information (Rotshtein et al., 2005). For a long time, 

the OFA was considered the entry point into a network that deals specifically with facial 

information. In other words, the OFA detects faces and transfers this information to higher-

order cortical areas. Pitcher and colleagues (2007) provided insights into the functional role 

of the OFA using transcranial magnet stimulation (TMS). TMS of the right OFA disrupted the 

discrimination of face parts, but only when the authors delivered pulses 60-100ms after 

stimulus onset. This result supports the assumed early-stage role the OFA plays in face 

processing. However, whether this area could play a role in processing higher-order facial 

information is under debate. For example, a lesion in the right inferior occipital cortex 

caused symptoms of prosopagnosia (Rossion et al., 2003). Thus, this area seems to be 

crucial for face identification, if only for its role in integrating information from lower and 

higher-level visual areas, as they showed typical activations in this study. In several other 

studies using transcranial magnetic stimulation, its specific function was clarified further. 

Pitcher and colleagues (2008) showed that TMS pulses over OFA disrupt the discrimination 

of facial expressions and face discrimination itself (Pitcher et al., 2009). TMS pulses over 

OFA also eliminated training effects in a face-matching task (Ambrus et al., 2017a, 2017b) 

and reduced priming effects for faces. Later, the OFA was also found to be involved in the 

association of semantic information to faces using TMS (Eick et al., 2020). Its close 

connection to areas believed to be higher in the hierarchy, such as regions in the fusiform 

gyrus (Gschwind et al., 2012), suggests responses that reflect feedback information 

integrated into the OFA. 
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We have long known that the fusiform face area (FFA; Kanwisher et al., 1997) located on the 

ventral surface of the temporal lobe is crucial in the processing of faces. Although this area 

is probably one of the most investigated areas in the ventral visual stream, its specific role 

in face processing is still fully clarified. As the name suggests, its irreplaceable role in 

identifying faces (Haxby et al., 2000) seemed inviolable for some time (Grill-Spector et al., 

2004). Contradictory to the previously described OFA, it accounts for so-called holistic face 

processing (Zhang et al., 2012) and shows a high correlation with face-specific activity 

measured with EEG around 160 ms (N170). This is significantly later than OFA activity, 

which is related to earlier event-related potential (ERP) latencies (~ 110 ms) (Sadeh et al., 

2010).  

Furthermore, the FFA was found to show neuronal adaptation effects to a repeated average 

face image, but not to different face images (Gauthier et al., 2000). Adaptation to different 

images of the same identity (ID), despite image changes, would suggest an image-invariant 

identity representation. It is clear that the FFA does not only detect faces but processes them 

at an individual level. However, whether the FFA holds an image-invariant representation 

of individual faces is not fully clarified (Davies-Thompson et al., 2009; Kriegeskorte et al., 

2007; Xu et al., 2009). For example, Davies-Thompson and colleagues (2013) could not 

distinguish FFA responses to blocks with different images of one versus images of various 

identities using adaptation techniques. Furthermore, Kriegeskorte and colleagues (2007) 

used multivariate pattern analyses (MVPA) on responses to different face identities and 

could not find distinguishable activations in the FFA. Further studies tried to examine ID 

representations in the fusiform gyrus using multivariate methods. For famous faces, 

activation patterns in the FFA were decodable (Axelrod & Yovel, 2015), suggesting an ID 

representation in this area. Later, blood oxygen level-dependent (BOLD) responses to 

unfamiliar faces could be distinguished using similar methods (Anzellotti et al., 2014; 

Nestor et al., 2011), although others failed to find ID representations in areas other than the 

anterior temporal lobe (Kriegeskorte et al., 2007). A recent study, however, could show that 

both FFA and OFA hold ID representations (Tsantani et al., 2021). Both areas can 

discriminate between identities, as revealed with multivariate pattern analyses. Whereas 

representational distances (computed with representational similarity analyses (RSA)) of 

faces can be explained mainly by low-level features such as pixel-wise dissimilarity in the 

OFA, among others, gender and perceived similarity explain distance measurements in the 

FFA. Overall, the last years' results regarding the nature of ID representations in the FFA 

were very diverse. By now, the large body of research, including univariate and multivariate 

analyses on familiarity and ID encoding in relevant regions, suggests that fusiform regions 

contribute to both (Kovács, 2020). Inconsistencies could be explained, for example, by the 



Prediction-related phenomena in the ventral visual stream 

9 
 

fact that feedback from higher areas plays a role, and those influences may not be evident 

in all studies.  

Furthermore, Weiner and Grill-Spector, (2012) proposed the division of the FFA into a 

posterior (pFFA, but also posterior fusiform gyrus) and middle part (mFFA, but also middle 

fusiform gyrus). Whether these two separate regions are engaged in different aspects of face 

processing is still unclear. There is evidence that contrasting faces versus landscapes can 

best identify the posterior part of the FFA. In contrast, the more anterior part of the FFA 

responds more robustly to faces than objects, houses, or landscapes (Schwarz et al., 2019). 

The finding of differences in cellular architectures in posterior and more anterior regions of 

the fusiform gyrus strengthens the idea of different functional tasks (Grill-Spector et al., 

2017). Besides, evidence from MEG recordings suggests different functional roles of 

posterior versus anterior parts of the fusiform gyrus, as the anterior FFA is activated later 

than the posterior part (Fan et al., 2020).  

Additionally, this area was linked to processing stimuli of visual expertise (Gauthier et al., 

2000). Faces are probably the most important class of visual stimuli for humans. The ability 

to not only identify and recognize individuals but also to extract a large amount of 

information from their faces offers great advantages in social situations. Still, whether areas 

that process faces, such as the FFA, are dedicated to faces or stimulus categories we need to 

process at a high level of expertise are still under debate. Higher neuronal activity to familiar 

compared to unfamiliar faces and symbols is consistent with the latter notion (Henson et 

al., 2000). Besides, it seems inefficient that our brain developed a network of areas 

dedicated to processing just one kind of stimulus. Thus, there is still a debate on whether 

our expertise for faces is based on neuronal networks and mechanisms dedicated to 

memorizing and recognizing faces (Kanwisher et al., 1997; Kanwisher & Yovel, 2006) or 

whether the same network can serve as a basis for gaining expertise in any other category, 

such as cars or the artificially created Greebles (Gauthier et al., 1999). The general 

consensus is that we are indeed face experts (McGugin et al., 2019) and that there are 

specialized areas for the processing and eventually recognition of faces.  

 

The anterior temporal pole (ATL) is located anterior of the FFA in the temporal lobe. It is 

also known as the anterior face patch and is involved in face perception as well (Harry et al., 

2016). The ATL is assumed to be a high-level area in face processing, responsible for person 

identification (Von Der Heide et al., 2013) and providing semantic information about a 

person (Chiou & Lambon Ralph, 2018). A region in the anterior inferotemporal gyrus was 
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also found to show differentiable response patterns to two individual faces (Kriegeskorte 

et al., 2007). Additionally, the ATL showed higher activity for famous than for non-famous 

faces in a PET study (Gorno-Tempini & Price, 2001). Unlike the other areas in the ventral 

visual stream, there is evidence for functional lateralization of the anterior temporal face 

patches (Rice et al., 2018; Von Der Heide et al., 2013). The ATL and earlier face responsive 

regions as FFA and even OFA were found to show distinct neuronal patterns to familiarized 

versus unfamiliar faces revealed by an MVPA study (Goesaert & Op de Beeck, 2013). 

This thesis will focus on the FFA and OFA, which have been presented above. There is no 

question that they are areas processing faces and are involved in identification processes, 

although it is not fully clarified to what extent, especially for the OFA. Also, both areas can 

be defined reliably using fMRI. For all experimental work presented in this research project, 

additional sequences for localizing both areas were carried out (chapter 2.3).  

Of course, many more regions are involved in processing faces or related information such 

as sex, age, the familiarity of the face, or identifying a person and connecting a present face 

with semantic details or memories. Additional regions process changeable aspects in faces, 

such as viewing direction or facial expressions. Some of them will be mentioned when 

cognitive and structural models of face perception are introduced in the next chapter 

(1.1.3).  

 

1.1.3  Cognitive and structural models of face perception  

This chapter will focus on models of the face perception network, which is assumed to 

contain areas functionally specialized in processing faces and facial information, including 

recognizing and identifying persons or pinpoint emotions. The concept of functional 

localizationism goes back to the 19th century when experiments showed specific behavioral 

changes in animals after stimulating certain cortical areas. But scientists concluded that 

localizationism is challenging to demonstrate because excited cortical regions and observed 

behavior do not need to be exclusively causally related (see, Gross, 1999). The 

interconnections to other cortical and subcortical regions (extrinsic connections) were 

suggested to play a mediative role (for a review, see Phillips et al., 1984). Therefore, it is not 

surprising that models of neural networks - such as the one responsible for processing faces 

– became more extensive and complex over time. In recent years, many theories on face 

processing in the brain have developed (Bruce & Young, 1986; Duchaine & Yovel, 2015; 

Gobbini & Haxby, 2006; Haxby et al., 2000). Based on the cortical architecture explained in 
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chapter 1.1.1, one can conclude that a hierarchical and highly interconnected network of 

brain regions enables effortless detection, recognition, and identification of human faces.  

As early as 1986, Bruce and Young (Bruce & Young, 1986) proposed a cognitive model for 

processing faces that included identifying faces and facial expressions. Their model 

contained units specialized for specific tasks working separately or interactively and 

serially or in parallel. Nevertheless, this model with its specialized nodes was not linked to 

neuroanatomical structures. 

Haxby and colleagues (2000) proposed a model in which the network underlying face 

perception is divided into a core and an extended network related to specific cortical and 

subcortical structures. The core network is assumed to process invariant features of faces, 

such as identity and changeable aspects of faces, such as eye gaze, lip movements, or 

emotional expressions for fast visual analysis in three different cortical areas. The inferior 

occipital gyrus is assumed to be the gateway for the early processing of facial features. It 

includes the previously described OFA (chapter 1.1). The lateral fusiform gyrus with the 

face-selective FFA is responsible for invariant aspects of faces, thus identification. The 

superior temporal sulcus (STS) processes changeable aspects of faces such as eye gaze 

(Hoffman & Haxby, 2000) or head motion (Duchaine & Yovel, 2015). The extended system 

contains, among others, anterior temporal regions, the intraparietal sulcus, the amygdala, 

and insula. In a revision of this original model, Gobbini and Haxby (2007) emphasize the 

processing of familiar faces. 1 

 

  

 
1 Mooney faces were used to study perceptual closure. One effortlessly perceives a face in the left 
image but not in the right one. The latter is only an inversion of the former, thereby shares 
visuospatial characteristics. The perception of a face based on very little information is an excellent 
example of inference processes in the visual system. 

Figure 4. Examples for upright (left panel) 

and inverted (right panel) Mooney faces. 1  

This illustration is subject to license CC BY-SA 3.0. 

[https://commons.wikimedia.org/wiki/File:MooneyFac

es.jpg] 
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However, the finding of normal FFA activation, despite a lesion in the inferior occipital gyrus 

(Rossion et al., 2003), led to the conclusion that face responses may emerge independently 

in those two areas. This idea informed a non-hierarchical model of face perception in which 

face detection takes place in the FFA, followed by the fine analysis in the OFA (Gentile et al., 

2017). In a recent study, the two aforementioned competing models were reviewed by 

examining the timing of the FFA and OFA in response to different face-like stimuli (Fan et 

al., 2020). MEG recordings during the presentation of famous familiar and unfamiliar faces 

revealed the temporal order of peak responses to face stimuli. In the right hemisphere, OFA 

(around 116 ms after stimulus onset) was activated before posterior FFA (pFFA; 125ms) 

and anterior FFA (aFFA; 150 ms), although the peak of pFFA was not significantly delayed 

to OFA peaking time. Regardless of familiarity of the faces, the dynamic sequence observed 

indicates a bottom-up hierarchical fashion of face processing. When, however, stimuli that 

can be perceived as faces but lack typical facial features were presented, the temporal 

relationship of the same areas changed. The authors used so-called Mooney faces (named 

after C. M. Mooney; Mooney, 1957) as shown in Figure 4 and found a significantly delayed 

activation of OFA (around 144 ms after stimulus onset) for Mooney faces compared to 

normal faces. In contrast, FFA activations were similar for normal, and Mooney faces. Thus, 

the dominant information flow in the absence of typical facial features can be characterized 

as top-down.  

 

Figure 5. Revised framework for the roles and connections between face-selective areas. The ventral 

face-processing pathway consists of the occipital face area (OFA), the fusiform face area (FFA), and the 

anterior temporal lobe face area (ATL-FA), whereas the dorsal face-processing pathway comprises the 

posterior superior temporal sulcus face area (pSTS-FA), the anterior superior temporal sulcus face area 

(aSTS-FA), and the inferior frontal gyrus face area (IFG-FA). Adapted from Duchaine & Yovel (2015), 

permission is pending.  
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More recently, Duchaine and Yovel (2015) revised the model by Haxby and colleagues 

(2000), integrating new findings of the last years. Additional areas, such as the inferior 

frontal gyrus (IFG), were incorporated, and the parallel nature of the visual system with the 

ventral and dorsal pathways was integrated (Figure 5). The result is a version of the original 

two-stage model of face perception focusing on face-selective areas. 

 

1.1.4  Familiar and unfamiliar face processing 

In the studies included in this thesis, we used facial stimuli with different levels of 

familiarity. Therefore, in this section, I want to briefly introduce the differences in the 

processing of unknown/unfamiliar faces versus visually familiar and famous familiar faces. 

The processing of personally familiar faces will not be discussed here because they are not 

included in any stimulus material of the present experiments (for a review on their 

processing, see Ramon and Gobbini, 2018). The fact that we can effortlessly identify people 

we know under different and even aggravating conditions such as poor lighting conditions 

or in poor quality images, but experience significant difficulties in distinguishing between 

two images of different unknown identities (Bruce et al., 2001) shows that the process of 

perception differs - however, it is still not known at which point. Behavioral studies 

demonstrated that familiar faces are recognized faster than unfamiliar faces (Burton et al., 

1999), and their processing involves different cortical and subcortical areas (for a review, 

see Kovács, 2020). Further, it has been shown that performance in recognition or matching 

tasks is negatively affected for unfamiliar faces, for example, due to changes in viewpoint 

(Bruce et al., 1999). There is additional evidence for quantitatively different neuronal 

responses to famous in comparison to visually familiar faces (Gobbini and Haxby, 2006) or 

unfamiliar faces (Eger et al., 2005) in the fusiform gyrus. Other studies showed differences 

in responses to familiar and unfamiliar faces rather in the extended system than the core 

face network (Gorno-Tempini & Price, 2001). A summary of neuroimaging studies 

investigating differences in processing familiar and unfamiliar faces has been provided by 

Natu and O’Toole (2011). A detailed characterization of how the neuronal representations 

differ could not yet be provided, as the results were very controversial. FMRI adaptation 

(fMR-a; Grill-Spector & Malach, 2001), a technique to infer properties of neuronal 

populations, has been used to investigate the neuronal representations in the FFA. In this 

case, neuronal adaptation results did not support image-invariant ID representations in this 

area (Davies-Thompson et al., 2013). This pattern was evident for both – familiar and 
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unfamiliar faces. However, studies applying MVPA showed that fusiform activation patterns 

to different famous identities are indeed discriminable (Axelrod & Yovel, 2015; Tsantani et 

al., 2019). Recent EEG and MEG studies support the idea of less robust representations of 

unfamiliar compared to familiar persons (Barragan-Jason et al., 2015; Dobs et al., 2019). 

Results from behavioral studies on aftereffects are also in accordance with this notion (Kok 

et al., 2017; Ryu & Chaudhuri, 2006). In summary, there are significant differences in the 

neural representation of familiar and unfamiliar faces and how we process them. 

At present, there is much speculation and discussion about how faces become familiar, the 

respective processes in different brain regions, and under which circumstances a stable 

identity representation develops. Learning faces can be described as the combination of 

increasing the tolerance of within-person variability and improving the ability to 

discriminate between different IDs, focusing on the former (Baker & Mondloch, 2019). In a 

recent review on this issue, Kovács (2020) suggests that although the process of getting to 

know someone is gradual, the underlying person identity network plays a role at every level 

of familiarity. This work has demonstrated that the FFA, although being an early region in 

the face-processing network, is a key area for face processing in all stages of familiarity. 

In general, faces are an ideal stimulus type because they fulfill the requirement of being 

visually experienced stimuli, and they share a similar shape and configuration (Maurer et 

al., 2002). If normalized faces are superimposed on each other, the result would be blurred 

but still perceived as a face (Burton et al., 2005; Diamond & Carey, 1986). Still, even 

photographs of the same identity provide a large variability (Jenkins et al., 2011). Within 

one class of stimuli, different aspects can be in focus, identity being only one of them. 

Additionally, different degrees of face familiarity, e.g., unfamiliar versus personally familiar, 

allow testing of general neural phenomena at different stages of the hierarchical visual 

system.  

Furthermore, neural correlates of processing facial stimuli can be found with 

electrophysiological measures and neuroimaging methods, and areas belonging to the core 

system of face processing can be localized reliably (see chapter 1.1.2). Extensive research 

literature from the last years shows that occipital and fusiform face areas encode familiarity 

and identity, revealed by univariate and multivariate analyses (Kovács, 2020).  

Recapitulating this part of the introduction, one can say that the ventral visual stream, with 

its cortical architecture and functionally specialized but still highly interconnected areas, 

provides an excellent basis for studying neuronal mechanisms of perception. In the 

following, I will introduce fundamental processing mechanisms in the visual system.  
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1.2  Fundamental neuronal mechanisms of visual processing and their 

models  

 

This chapter will describe phenomena observed in (visual) sensory processing, such as a 

reduced response to repeated or expected stimuli (chapters 1.2.2 and 1.2.3). The predictive 

coding (PC) theory is of central importance to the present work, as it provides explanations 

for the various neural mechanisms under investigation. Therefore, what follows first 

introduces a theory that for provides a shared basis for many observations of the previously 

mentioned phenomena and perhaps even a basis for the general brain functioning:  

 

1.2.1  The predictive coding framework 

Already Hermann von Helmholtz assumed perception to be a knowledge-driven inference 

process based on probabilities (Helmholtz, 1867). This view inspired a lot of research in 

computational (Musmann, 1979) and neuroscientific research (O’Reilly et al., 2012). 

Originating from image compressing algorithms in the first place, predictive coding was 

later transferred to the neural domain, especially the visual system (Lee & Mumford, 2003). 

Thus, it became an influential theory for perceptual processes of sensory information. By 

now, modern variations of Helmholtz’s idea are among the most popular candidates for 

explaining how neural information is passed on. In this section, I will introduce the 

principles of Bayesian inference and how the neocortex can implement it through 

hierarchical predictive coding. Please note that predictive coding is also referred to as 

predictive processing and will be used interchangeably in this thesis.  

1.2.1.1  The Bayes’ theorem 

The Bayes’ theorem is a probability theory and the basis for Bayesian perceptual 

psychology, which combines Helmholtz’s theoretical idea that the brain must infer causes 

of sensory inputs from those inputs themselves with statistical inferences (Helmholtz, 

1867). The theorem is named after Thomas Bayes and describes the mathematical formula 

for calculating conditional probabilities (Bayes & Price, 1763).  

The Bayes’ Theorem is defined as follows:  

Equation 1 

𝑃(𝐻|𝐸) =  
𝑃(𝐸|𝐻) × 𝑃(𝐻)

𝑃(𝐸)
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In Equation 1, the probability of a hypothesis H based on the given data E is calculated using 

the ratio of the unconditional probability of the hypothesis given the data and the 

unconditional probability of the data alone. In other words, the posterior probability P(H|E) 

is estimated by the prior probability P(H) and the likelihood ratio 
𝑃(𝐸|𝐻)

𝑃(𝐸)
. Bayesian inference 

calculates the posterior probability of latent causes based on given data and is a 

fundamental principle for efficiently processing sensory input.  

Predictive coding implements this computational basis in neural processing mechanisms 

(for a review on Bayesian inference and predictive coding, see Aitchison & Lengyel, 2017). 

Although there is more than one algorithm assumed to integrate with the predictive coding 

framework (for a review, see Spratling, 2017), I will only discuss Rao and Ballard’s 

algorithm (Rao & Ballard, 1999) and the free energy principle (Friston, 2009; Friston & 

Kiebel, 2009). The two are similar and easy to combine. Furthermore, this work deals with 

empirical Bayes, where in contrast to standard Bayesian methods, distributions are 

estimated from data and then used to infer prior expectations. It can be described as a 

bootstrapping method with which statistical independencies in the data inform hierarchical 

models (Clark, 2013).  

1.2.1.2  Predictive processing in cognitive neuroscience 

Trying to explain extra-classical receptive field effects (Henry et al., 2013), Rao & Ballard 

(1999) postulated the predictive coding of natural images as the underlying mechanism of 

sensory processing. They trained a bidirectional hierarchical network on images of natural 

scenes and implemented learning algorithms that would allow it to generate an internal 

model of its image inputs. Further, they described predictive coding as a model for signal 

transmission through a hierarchical network, the “hierarchical network for predictive 

coding.”  

Figure 6. Schematic illustration of hierarchical systems with feedback and feedforward 

information flow. From Rao & Ballard (1999) with permission. 
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According to their model (Figure 6), this hierarchical network is composed of several levels 

capable of detecting residual errors. In other words, the cortical neurons estimate the 

difference between the visual input and a prediction of this input. For doing so, an internal 

model of the natural image input is essential. According to Rao and Ballard (1999, p. 80), 

this hierarchical internal model is learned through ‘maximizing the posterior probability of 

generating the observed data.’ A set of neuronal responses, optimized for predicting the 

input, from each level in the hierarchy are sent as ‘predictions’ to the next lower level via 

feedback pathways. Feedforward pathways carry information about the actual input and, 

more importantly, the error signal from each level (except the lowest, which is the visual 

stimulus itself) to the next one in the hierarchy. These residual errors carry information 

about the discrepancy between the prediction and input and are then used by the predictive 

estimators to adapt the already learned basic vectors to provide a better prediction of the 

sensory input for the future. In other words, higher-level knowledge is used via top-down 

connections to generate a construction of the sensory input. Optimally, the sensory signal 

will be fully ‘explained away’ (Clark, 2013; Friston, 2005). Since this is very unlikely, there 

will be some information left over, used to continuously update the internal model. From a 

computational point of view, one could say that the neuronal activity encodes the beliefs 

over states in the world. For example, signals from the primary visual cortex reflect the 

deviation from the expected orientation rather than the actual stimulus orientation itself. 

Rao & Ballard (1999) further assumed that layer II and III cortical neurons (Figure 2) are 

key candidates for error detection and signaling those differences. These were found to 

connect via feedforward to higher visual areas (Maunsell & Van Essen, 1983).  

Additionally, to encode predictions and residual or prediction errors (PE), it is assumed that 

each level in the hierarchy hosts two functionally distinct neural subpopulations (Figure 7). 

Representation units reflect the expected activity based on the hypothesis about the 

perceptual input and sent this information to error units in the same and the next lower 

level. Error units signal the PE, which is the calculated difference between the predicted 

pattern and the pattern induced by sensory input. This information is sent to representation 

units in the same and the next higher level via feedforward connections. Prediction errors 

also depend on the precision of the prediction and the precision of the sensory data (see 

chapter 1.2.4), which is reflected in error units (Feldman & Friston, 2010).  
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Figure 7. Illustration of the predictive coding model in a schematic presentation of the visual cortex as 

hierarchical (here consisting of three levels) containing feedback and feedforward loops. In order to 

optimize perception, deep pyramidal cells (representation units (R); blue circles and triangles) send out 

predictions about forthcoming perception, and superficial pyramidal cells (error units (E); gold circles 

and triangles) return the prediction error, the mismatch between the received predictions and the 

sensory input. Adapted from Grotheer & Kovács (2016), with permission. 

 

Why PC is biologically plausible is described in terms of free energy. The free-energy 

principle states that any biological self-organizing system’s purpose lies in minimizing free 

energy (Auksztulewicz & Friston, 2016; Friston et al., 2006). Besides PC, other theories of 

brain function are related to this principle as they all aim for optimization, and according to 

Karl Friston (Friston, 2010, p. 135), they can be united under one ‘Helmholtzian perceptive 

of the brain as a generative model of the world it inhabits.’ The general assumption is that 

only salient, novel, surprising stimuli are encoded, which is metabolically efficient. From 

another perspective, high PEs result in increased ‘costs’ in metabolic systems.  

Friston’s theory of neural responses (Friston, 2005) was the beginning of a new era in 

cognitive neuroscience. It combines the functional organization of cortical structures and 

their connections with the neural mechanisms that allow us to coordinate efficiently 

through our lives. We know by now that consequences of (potential) predictive processing 

exist in several modalities and at very different levels of processing. Furthermore, those 

phenomena can be measured with several techniques and for various features of stimuli, 

for example in visual perception (Hohwy et al., 2008), music (Koelsch et al., 2018), language 

(Henderson et al., 2016), and action perception (Ahlheim et al., 2016). Depending on the 

modality, domain and stimuli investigated, specialized areas will be involved.  

A recent meta-analysis supported the idea of a specific but widely distributed network of 

cortical and subcortical structures engaged in domain-general prediction generation and 
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violation (Siman-Tov et al., 2019). This network includes the inferior frontal gyrus (IFG), 

the anterior insula (AI), the middle frontal gyrus (MFG), premotor cortical (PMC) regions as 

well as the pre-supplementary motor area (Pre-SMA) and cortical areas in the 

temporoparietal junction (TPJ) and also subcortical areas like the striatum, thalamus and 

subthalamus, and the cerebellum. Especially frontal areas such as the IFG have been linked 

to prediction-related processing earlier.  

1.2.1.3  How the cortical architecture enables predictive processing 

I have already introduced the cortical architecture of the visual system briefly in chapter 

1.1.1. Here, I want to summarize how this structure may serve as a basis for the predictive 

processing assumed to be the basis of our perception and general cognition.  

Several scientists have addressed the information processing in the visual cortex and its 

relationship to Bayesian inference (Friston, 2002; Friston & Kiebel, 2009; Kersten et al., 

2004; Lee & Mumford, 2003; Rao & Ballard, 1999). The way our cortex is structured is a 

core foundation, which is necessary to enable inferential processes. As already explained in 

chapter 1.1.1, the visual cortex organization can be considered both hierarchical (Felleman 

& Van Essen, 1991) and highly interconnected (Zeki & Shipp, 1988). These characteristics 

are essential because of another attribute of the human cortical architecture – the functional 

specialization of cortical areas. Specialization means that an area is specialized for 

processing particular aspects of sensory input, which becomes meaningful for functional 

integration (Friston, 2002). Functional specialization is based on the principle of functional 

segregation within the cortex. Functional segregation, in turn, signifies the grouping of 

neurons that share the same functional characteristics (Friston, 2005). This is a significant 

limitation that can be compensated by convergence and divergence of neurons. In other 

words, functional segregation is a constraint in the cortical structure that requires 

convergent and divergent cortical connections (Man et al., 2013).  

Feedforward connections are assumed to carry stimulus-related information. Feedback and 

horizontal connections, both within and between cortical areas, form the foundation for 

providing contextual information (Lamme et al., 1998). Further support for predictive 

processing in the cortex comes from the fact that backward connections compared to 

forward connections are more divergent, more numerous, and transcend more levels (Zeki 

& Shipp, 1988). How these differences between feedforward and backward connections 

(extrinsic cortical connections) and other architectural principles (Bastos et al., 2012), such 

as functional asymmetries (Arnal & Giraud, 2012), subserve predictive processing and 

learning, is explained in detail in Friston (2003). 
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Recent evidence for predictive coding 

in the visual cortex comes from a study 

by Kok and colleagues (2016), who 

found distinct laminar activation 

patterns for top-down (feedback) and 

bottom-up (feedforward) signals. They 

presented participants with Kanizsa 

illusion figures (Figure 8) and recorded 

7T laminar fMRI. Kanizsa figures allow 

the examination of neural responses to 

a shape that is not present but is 

induced by the surrounding shapes 

(e.g., the triangle in Figure 8A). Their 

data revealed enhanced activity in deep 

layers of V1 regions retinotopically 

matched to the induced triangle shape. This suggests that expectation units signal the 

presence of a triangle shape, and those expectations originate from higher-level areas and 

terminate in deep layers of V1 transferred via feedback connections (compare Figure 2B). 

In middle and superficial layers, reduced activity was found, which could represent the 

absence of the bottom-up input (for review of the evidence for similar mechanisms in the 

auditory cortex, see Heilbron & Chait, 2018). 2 

Similarly, Muckli et al. (2015) found an enhanced signal in superficial layers of V1 that 

corresponded to an occluded part of a visual scene. They conclude that this enhanced signal 

corresponds to feedback signals from higher visual areas representing expected visual input 

in this subsection. Together these studies provide evidence for the dissociation of 

connection types, based on laminar profiles, between different areas in the hierarchy of the 

visual processing stream. Moreover, they support the idea of two functionally distinct 

neural populations that represent either predictions or prediction errors (Figure 7).  

So far, predictive coding and underlying key aspects and mechanisms have been described 

broadly. In the following chapters, specific phenomena that have been extensively studied 

 
2 Kanizsa figures refer to visual stimuli that induce an optical illusion first described by the Italian 
psychologist Gaetano Kanizsa in 1955. The Kanizsa triangle (A) is known as a subjective contour illusion. 
Stimuli like those became prominent for investigating how the brain perceives visual information (see 
Lehar, 2003). 

Figure 8. Examples of Kanizsa figures.2 A: Standard 

Kanizsa triangle. B: Peter Tse's Volumetric Worm. C: 

Idesawa's Spiky Sphere. D: Peter Tse's Sea Monster.  

Public Domain Infographic. 

[https://en.wikipedia.org/w/index.php?title=File:Reification.jpg 
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in the past and are related to current research are presented and related to predictive 

processing theories. 

 

1.2.2  Repetition suppression 

As repetition suppression is central to the presented studies, this chapter focuses on this 

phenomenon and its characteristics. I will introduce several theories describing possible 

neuronal causes for response reduction due to repetitions, comprehending the previously 

described predictive processing framework as well as models based on intrinsic neuronal 

mechanisms, and briefly review pieces of evidence for the different explanations.  

Neuronal adaptation in the sensory system means the modulation of responsiveness to 

reoccurring or constantly presented stimuli. It is assumed to result from synaptic plasticity 

and is a much-investigated phenomenon. Changing the temporal context of a stimulus most 

likely leads to a change in the neuronal response to that stimulus. When a specific stimulus 

has occurred before (i.e., it is repeated), a suppressed neuronal response can generally be 

observed, which is why this phenomenon has been termed repetition suppression (RS; 

Desimone, 1996). Please note that this reduced neural activity has also been described as 

stimulus-specific adaptation (SSA; Sobotka & Ringo, 1994), mnemonic filtering (Miller et al., 

1991), neural priming (Maccotta & Buckner, 2004), or simply as adaptation (Grill-Spector 

& Malach, 2001). The RS effect is one of the most extensively studied neural phenomena of 

the last decades, mainly in visual and auditory perception research. Especially after it was 

assumed to represent the neural basis of priming (Schacter & Buckner, 1998; Wiggs & 

Martin, 1998), and special properties of neuronal populations were determined by using 

fMR-a which is considered a neuroimaging manifestation of RS (Grill-Spector & Malach, 

2001; but see Kar & Krekelberg, 2016; Larsson et al., 2016), several possible underlying 

mechanisms (chapters 1.2.2.1 and 1.2.2.2) were discussed (for a review, see Grill-Spector, 

Henson, & Martin, 2006).  

In general, RS was found to be long-lasting already in 1993 (Li et al., 1993), as effects of 

repetition were evident after several hours on the neural responses. Further, RS was 

characterized as being stimulus-specific and surviving a large number of intervening stimuli 

(Li et al., 1993; Rangarajan et al., 2020). However, results from an fMRI study suggest 

different mechanisms underlying short- and long-interval repetition effects (Epstein et al., 

2008). RS is assumed to be a largely automatic phenomenon (Kouider et al., 2009; Sayres & 

Grill-Spector, 2006) that is still present when observers attention was diverted (Larsson & 

Smith, 2012). 
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RS has been described as a simple mechanism representing a measure of processing 

efficiency that is fundamental to the processing of our daily visual input and was early 

associated with sensory learning in its simplest form (Groves & Thompson, 1970). It can 

also be described as an experience-related rapid form of plasticity. It is hypothesized that 

RS serves to reallocate attentional resources efficiently, as previously seen stimuli lose 

saliency and new or changed stimuli are emphasized (Kaliukhovich et al., 2013). However, 

the underlying neuronal mechanisms are still not sufficiently explained, and different 

mechanisms likely contribute to phenomena of response suppression. 

1.2.2.1  Feedforward models of RS 

The possible neural mechanisms underlying RS are manifold. Hence, theories aiming at 

explaining measurable neuronal effects related to repetition are versatile. In this 

subchapter, those relying on a primary role of bottom-up input processing and inherited 

neuronal mechanisms will be introduced (Figure 9).  

One early explanation for RS was offered by the Fatigue model (Miller & Desimone, 1994), 

which states that all initially responding neurons respond proportionally less to a repetition 

of the same stimulus. In other words, all neurons responding to the first stimulus (S1) will 

be responsive again, but the average firing rate will be declined, as shown in Figure 9 – 

Fatigue model. Accordingly, firing rate adaptation (Carandini & Ferster, 1997) is assumed 

to cause RS effects. However, synaptic depression (reduction in synaptic efficiency) or 

inherited adaptation effects are alternative explanations for the proposed neuronal 

behavior in this model (Vogels, 2016). Recent studies on inferotemporal (IT) and MT 

neurons behavior show that simple neuron fatigue does not adequately explain RS effects 

(Fabbrini et al., 2019; Kar & Krekelberg, 2016).  

The Sharpening model (Desimone, 1996) suggests narrower neural tuning curves and 

therefore sharpened representations of repeated stimulation (Figure 9 – Sharpening 

model). In terms of metabolic processes, the resulting sparser representations use less 

energy and are therefore more efficient. In contrast to fatigue models, neurons that show 

optimal response to the stimulus are less affected by a repeated activation and show a 

similar activation level. This model is related to the sharpening of tuning curves and 

predicts selectivity increases with repetition. Those hypotheses could not be proven in 

investigations of macaque IT neurons spiking activity and local field potentials after 

stimulus repetition (De Baene & Vogels, 2010). Also, a recent study on human fMRI 

responses to face stimuli repetitions also provided limited evidence for this model (Alink et 

al., 2018). 
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Figure 9. Firing rate of a neuronal population (upper panel) and neuronal activity (lower panel) to 

repeated stimulus presentations as proposed by different models. Upper panel: Mean firing rate and 

spiking (blue curves) of neurons are depicted for (a) first stimulus presentation and (b) repeated 

stimulus presentation for the different models. Lower panel: tuning curves to the first (black curves) and 

repeated (grey curves) stimulus presentation as predicted by the different models: (a) Fatigue model 

(b) Sharpening model (c) Facilitation model. Adapted from Grill-Spector et al., 2006 with permission. 

 

The Facilitation model predicts faster processing for repeated stimuli (Figure 9 – Facilitation 

model). This could take the form of shorter latencies, more precisely faster response onset 

latency or earlier peak time (James & Gauthier, 2006), or shorter durations (Henson, 2016; 

Henson & Rugg, 2003). Evidence for this model comes from an fMRI study (Henson et al., 
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2002). The authors found not only a reduced magnitude in the fusiform BOLD response to 

a repetition of a face but a reduced latency of this response as well. Support for an extended 

version of this model, the so-called accumulation model (James & Gauthier, 2006), comes 

from an electrocorticography (ECoG) study in which RS effects for up to six stimulus 

presentations were investigated (Rangarajan et al., 2020). The authors found faster peak 

times for the second and subsequent presentations of a face image in face-selective units. 

However, this paradigm examined long-lagged RS effects. Intracranial recordings of 

macaques MT (Kar & Krekelberg, 2016) and IT neurons (De Baene & Vogels, 2010) found 

no support for the facilitation model for immediate repetitions. 

The synchronization model (Gotts et al., 

2012) states that neuronal processing 

achieves higher efficiency due to 

enhanced synchronization (Figure 10). 

Although firing rates generally decrease 

with repetition, their synchrony leads to 

sharper neuronal responses. This model 

provided a reasonable explanation for 

RS as it mediates between a neuronal 

response reduction and enhanced 

behavioral performance, hence 

repetition priming (Henson, 2003). 

However, findings of long-lagged 

repetition suppression (Rangarajan et al., 

2020) are difficult to explain within this 

model. 

Recently, the importance of more refined models, including neuronal circuit processes, has 

been emphasized (Bastos et al., 2012; Whitmire & Stanley, 2016). Intracranial recordings 

from macaque monkeys MT during a repetition paradigm revealed that the underlying 

mechanisms are complex and cannot be accounted for by simple models such as fatigue or 

facilitation (Kar & Krekelberg, 2016). Therefore, adaptation processes on a single-neuron 

level seem unlikely, and neuronal circuit computations provide a better explanation. Models 

based on neuronal circuit computations are implemented in the PC framework (Bastos et 

al., 2012). However, measurements of RS in inferotemporal neurons (IT) suggest the 

differentiation of adaptation mechanisms from top-down influences suggested by 

predictive coding models (Vogels, 2016). Results from univariate and multivariate human 

Figure 10. Local field activity to first and second 

stimulus presentation as predicted by 

synchronization models. Adapted from Gotts et al. 

(2012), with permission.  
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fMRI analyses for RS to face stimuli also correlated best with a local neuronal scaling model 

of RS (Alink et al., 2018). However, none of these models for mechanisms behind response 

suppression to repeated stimuli can explain all observed RS effects. Therefore, it is more 

likely that a combination of mechanisms applies. As response suppression over repetitions 

was related to perceptual learning and inference processes, and therefore explained within 

the predictive coding framework (Auksztulewicz & Friston, 2016), the next chapter will 

further describe how RS can be explained within dynamic hierarchical systems. 

In addition, different models make predictions about different RS characteristics. Most of 

them predict changes in the amplitude of the response to repetitions (e.g., sharpening and 

fatigue models). Still, some make predictions about the timing of responses to repetitions 

(facilitation model). Therefore, it is essential to think about what methods are useful to 

differentiate between these models. A reduced BOLD signal is proposed for all of them 

(Figure 9). Therefore, fMRI experiments can only distinguish between different models to a 

limited extent (Weiner et al., 2010). However, the influence of higher-order feedback 

information as proposed by PC explanations can be measured in the activity of neuronal 

populations. Some studies showing such effects will be introduced in the next chapter.  

1.2.2.2  Repetition suppression explained as the result of top-down processes 

As mentioned before the previously introduced models cannot explain all measures of RS 

under specific conditions. Thus, it has been suggested that RS could also be an expression 

of a reduced prediction error. The first and very influential study hinting towards a top-

down component in RS effects as measured in fMRI experiments came from Summerfield 

and colleagues (2008). The authors of this study presented pairs of faces that could either 

be identical (repetition trials; Rep) or different (alternation trials; Alt) and measured the 

BOLD signal in the bilateral FFA while participants executed a behavioral task on target 

trials. The new and – as the next years were about to show – insightful trick in their design 

was to group trails in repetition and alternation blocks and vary the proportion of trial 

types, respectively. In repetition blocks, 75% of non-target trials were Rep and 25% Alt 

trials – and vice versa for Alt blocks (compare Figure 12A). This way, participant’s 

expectations about encountering a specific trial type were manipulated. The results - 

significant RS for both block types but also a modulation of RS by repetition probability 

(PREP) - were difficult to explain with most theories available at that timepoint. The PREP 

effect was replicated in several following neuroimaging studies and further characterized, 

for example, as being dependent on experience with the stimulus material (Grotheer & 

Kovacs, 2014) and position invariant (Kovács et al., 2012). On the basis of evidence for this 

effect, the authors argued that RS might be the product of perceptual inference and top-
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down modulations by expectations (Summerfield et al., 2008). In other words, the higher 

expectation of encountering a stimulus repetition in Rep blocks leads to a bigger RS 

magnitude in those blocks in comparison to Alt blocks, in which repetitions are surprising. 

In an EEG study, those results were replicated for later event-related potentials, around 300 

ms after stimulus onset, which showed an expectation modulation effect in central 

electrodes (Summerfield et al., 2011). In this study, also environmental volatility was 

investigated and found to modulate the expectation modulation of RS. Whereas in stable 

periods the PREP effect was found reliably, in the volatile context, in which probabilities of 

repetition and alternation trials changed frequently, this effect was absent. This hints 

towards updating feedback mechanisms from higher-order cortical areas because the 

surprising events (e.g., repetitions trials in an alternation block) are weighted according to 

their informative value. A Bayesian model for response suppression phenomena is depicted 

in Figure 11.  

Kaliukhovich and Vogels (2011) tried to replicate the PREP effect in a single-cell study. They 

used objects and fractals in a repetition design where repetitions could be expected or not 

(similar to Summerfield et al., 2008) and recorded macaques IT neuron activity. Robust RS 

effects were found, but no modulatory effect of expectation was present for either spiking 

or local field potentials. Other fMRI studies failed to replicate the PREP effect for faces even 

though a behavioral priming effect of repetition probability was present (Olkkonen et al., 

2017), for everyday objects in LO (Kovacs et al., 2013), and for other non-face or unfamiliar 

stimuli (Grotheer & Kovacs, 2014). Furthermore, there is evidence that PREP effects, but not 

RS, vanish if the participant’s attention is diverted from the stimuli (Larsson & Smith, 2012). 

However, in an EEG study, RS was investigated in a priming paradigm and found to be 

modulated by the effect of expectation, even when participants were not consciously aware 

of the prime (Barbosa & Kouider, 2018). 
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The Bayesian explanation, hence predictive processing, for information processing in the 

cortical hierarchy has already been explained (see chapter 1.2.1.2). It is clear that higher-

order expectations can modulate RS at least in some studies (e.g., Grotheer & Kovacs, 2014; 

Summerfield et al., 2011), but how can RS itself be explained by predictive theories? 

Grotheer and Kovács (2016) already asked this question and gave an overview on response 

suppression phenomena. They developed a two-stage model of response suppression to 

explain those effects including lower and higher-level expectations. However, the question 

remained unanswered, as mainly effects of expectation suppression, which will be 

explained in the next chapter, are accounted for by this model. RS itself fits within the 

framework of predictive coding when considered as an example of expectation-based 

response suppression (see chapter 1.2.3). Repetition of the same stimulus makes the 

prediction and the incoming sensory data more and more similar, and consequently 

improves predictions (Grill-Spector et al., 2006). Recently encountered stimuli serve as the 

basis for expectations, which in turn are weighted towards the already observed input. RS 

is therefore assumed to reflect the reduced prediction error when those expectations are 

fulfilled (Auksztulewicz & Friston, 2016). Within the theories of predictive processing, 

repetition is the default prior. This also refers to our outside world, which is stable on a 

short-term scale and highly interdependent in space and time (Dong & Atick, 1995). 

Measures of RS are accordingly prediction error signals shaped by expectations (Friston, 

2005). 

To sum it up, measures of RS are likely the outcome of several different mechanisms that 

are also likely to interact (Alink et al., 2018; Grotheer & Kovács, 2016). Forward models, 

Figure 11. Bayesian Explaining Away. 

Hypothetical novel and repeated 

conditions are shown with black and 

grey curves, respectively. Suppressive 

feedback from higher levels to lower 

levels in the network structure is 

highlighted using thick black lines. The 

earlier separation of novel and repeated 

conditions in higher levels relative to 

lower levels is indicated with vertical 

dashed lines in the activity plots to the 

right. Adapted from Gotts et al. (2012), 

with permission. 
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such as facilitation or sharpening, can account for different measures of repetition effects. 

Critically, none of the proposed models can account for all measures of RS. However, their 

proposed neuronal mechanisms, such as sharpening of representations (Kok et al., 2012a), 

or synchronization of neuronal firing rates, can be integrated into the predictive coding 

framework (Auksztulewicz & Friston, 2016; Kok et al., 2012a). In light of an explanation for 

repetition effects within the PC framework, it is still crucial to consider inherited adaptation 

effects. Such effects from lower-level areas, for example, caused by synaptic depression, still 

need to be considered as contributing to measures of RS (Kohn, 2007; Vogels, 2016). 

However, they can be integrated into local circuit-based computations, in which RS can 

occur without modulatory influence from higher-level areas and therefore fit in with PC 

explanations of RS (Auksztulewicz & Friston, 2016; Bastos et al., 2012). 

 

1.2.3  Expectation suppression, as a separate phenomenon 

In their fMRI study, Summerfield and colleagues (2008) observed that the magnitude of RS 

changes by means of manipulating the probability of repetition events in different blocks. 

This modulation of RS due to high versus low expectation of encountering a repetition led 

to the idea that RS or its modulation could be an outcome of predictive processes. However, 

findings regarding the PREP effect were inconsistent (e.g., Kovacs et al., 2013; Vinken et al., 

2018). Shortly afterward, the term expectation suppression (ES) was coined. ES, related to 

RS, describes the suppressed response to a stimulus that is more likely to occur than 

another (neutral or surprising) stimulus. In other words, it is the difference between an 

expected event versus an unexpected one, regardless of whether the two events are 

identical or different. Predictive coding is a prominent theory to explain these kinds of 

effects (Grotheer & Kovács, 2016). Many studies investigating ES have shown that the 

degree to which a stimulus is expected is expressed in the magnitude of stimulus-evoked 

responses (Bendixen et al., 2009; Robinson et al., 2018; Wacongne et al., 2011). This 

inversely scaled relationship between expectations and response magnitude is assumed to 

constitute a key hypothesis of predictive processing (Walsh et al., 2020). 

In an influential MEG study, Todorovic and de Lange (2012) investigated expectation 

suppression and repetition suppression and the relationship between these two 

phenomena. As both reveal similar results, that is to say, a reduced response, the authors 

tried to distinguish them in an auditory cue-target experiment. Each trial consisted of two 

tones, that could constitute either a repetition or a stimulus change. Additionally, the 

leading tone signaled whether the following tone will be more likely identical to or different 
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from the first one. Their results showed that RS and ES could be differentiated on the basis 

of their temporal dynamics. RS effects were found in earlier time windows, whereas ES was 

present only later. As no interaction between RS and ES was found, Todorovic and de Lange 

(2012) suggested the independence of the two. Similar results were found in ERP data to 

repeated versus expected face stimuli (Feuerriegel et al., 2018a). These findings are further 

supported by an fMRI study in the visual domain. Grotheer and Kovács (2015) used pairs of 

face images, that similar to the previously described auditory experiment could be identical 

or different within one trial. The gender of the face served as a cue for the probability of 

encountering a repetition of the leading image or a transition to another face (comparable 

to high and low repetition probability in Figure 12B). Again, no interaction of RS and ES was 

found, and the two were therefore considered to be independent mechanisms. The driving 

mechanisms for this effect are still not fully explained (for a review, see Feuerriegel et al., 

2021a). One possible explanation for expectation suppression is the suppressed response 

for correct predictions or fulfilled expectations. Another possible explanation is that 

violated expectations function as a surprising event in the system. Therefore, and to further 

extend the results of Grotheer and Kovács (2015), Amado et al. (2016) implemented a 

neutral condition in the previously described design, in which an infant’s face signaled equal 

probability of repetition (comparable to middle repetition probability in Figure 12B). This 

way, they revealed that the surprise of unexpected events determines the neural response 

more than it can be suppressed by precise predictions. This issue is revisited in chapters 

1.2.5 and 1.2.6. 

Contradictory to RS, ES does need, as the name already suggests, prior expectations about 

upcoming events to generate predictions. How exactly expectations are computed and 

implemented on a neuronal level is still unclear (de Lange et al., 2018). In experiments, 

however, expectations are assumed to evolve based on a cue (cue-based; Figure12B) or 

overall probability (probability-based; Figure12A) that is assigned to certain events in a 

context (block). In each case, expectations need to be learned through extensive exposure 

to specific statistical relationships (Meyer & Olson, 2011; Schwiedrzik & Freiwald, 2017) or 

rely on explicit knowledge (Amado et al., 2016; Egner et al., 2010; Grotheer & Kovács, 2015). 

For example, Egner et al. (2010) informed participants in an fMRI experiment about the 

probabilities (high, middle, and low) with which a color frame is associated with either faces 

or houses. The more a face was expected, the lower the elicited BOLD response in the FFA 

was. Similar effects of cue-based predictions about stimulus content were found in an audio-

visual learning paradigm (Den Ouden et al., 2010). The authors used auditory cues 

associated with either faces or houses and found expectation-related response modulation 

in the FFA for faces and the parahippocampal place area (PPA) for houses.  
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The cues used in the previously described studies signaled stimulus repetition or stimulus 

class (e.g., face or house). In a monkey study, Meyer and Olson (2011) implemented a 

different kind of cueing paradigm. The macaque monkeys were trained with image pairs, so 

specific images were associated. Thus, the monkeys could predict the second image of one 

trial based on the leading image. If these predictions were violated in a test run with 

simultaneous IT neurons recording, those neurons showed stronger responses compared 

to fulfilled image transition expectations. This kind of design is also known as statistical 

learning of transition probabilities and will be addressed again in chapter 1.2.5 and in Study 

II (chapter 3.2). 

Attention is often a candidate for explaining contradictory results in PC studies, as the role 

it plays in predictive processes is not fully understood and might often be confounded with 

expectation-related effects (Feuerriegel et al., 2021a). For example, accurately predicting 

sensory input is assumed to lower the neuronal response to that stimulus because the 

prediction error is smaller (de Lange et al., 2018). But there is evidence for the opposite 

effect as well (Henson et al., 2000; Kok et al., 2012b). Lately, it has been suggested that 

attention may account for a considerable amount of results that were labelled as 

expectation suppression effects (Alink & Blank, 2021; Feuerriegel et al., 2021a)  

1.2.3.1  Different manipulations of predictions about stimuli 

Different paradigms to test for PC assumptions of response alterations are schematically 

illustrated in Figure 12. In the literature, probability-based expectations refer primarily to 

an experimental situation, in which probabilities of encountering a specific stimulus or trial-

type in a given context can be implicitly learned. Such contexts can be repetition or 

alternation blocks similar to the design in Summerfield et al. (2008) and as depicted in 

Figure 12A. We did not implement such a design in the current studies.  

Cue-based expectations, on the other hand, refer to stimulus combinations in which S1 

signals the likelihood of a specific characteristic of the second stimulus. Studies 

investigating RS and ES with a cueing design often use a mixture of cue-based and 

probability-based manipulations, as depicted in Figure 12B. This kind of design was used in 

the study by Todorovic and de Lange (2012), who showed that RS and ES are separable in 

early and later time windows, respectively. Also, Amado and colleagues (2016) combined a 

cue (sex of presented face) with a probability manipulation regarding the likelihood of 

encountering a repetition of the stimulus. An example for a cue-based expectation 

manipulation without changing the probability of repetitions of stimuli is the study by Egner 

and colleagues (2010), in which a color frame cue signaled the stimulus category ‘face’ with 
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low, middle, and high probability. The cueing of an exact image is more difficult because it 

needs extensive training (Meyer & Olson, 2011).  

Figure 12C depicts two examples of an oddball design, which will be further explained in 

chapter 1.2.6. All designs in Figure 12 are examples of designs previously used to test for 

prediction-related response alterations. For a more detailed overview of designs used to 

investigate prediction-related effects, see Feuerriegel (2016)and Feuerriegel et al. (2021a). 

We used variations of a cue-based probability manipulation (Figure 12B) and an oddball 

design (Figure 12C) in Study II and III. The exact paradigms will be explained in the related 

manuscripts (chapter 3), and an overview is depicted in the discussion (chapter 4.1.4). 

 

 

Figure 12. Examples for experimental designs investigating probability manipulations. Blue = 

repetitions, Gold = alternations. A Block-based probability manipulation: blocks of trials are 

characterized by the probability of stimulus repetition. B Cue-based probability manipulation: the first 

stimulus (S1) signals high (letter), middle (symbol), or low (number) probability of repetition. C 

Probability manipulations in an oddball design: sequences of stimuli are composed of standards (A) and 

deviants (B).  
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1.2.4  The role of precision in predictive coding 

The weighting of prediction errors according to their precision is an important estimation 

of their reliability (Auksztulewicz & Friston, 2016). For every PE that is generated, the 

information on how much a prior should be updated according to this error is necessary 

and at least equally important. A mismatch between expectations and the sensory input 

could result from a wrong prediction but just as well from noisy sensory data. In other 

words, PEs can have different functional roles in decision-making, learning, perceptual 

inference, or cognition in general (Den Ouden et al., 2012). Therefore, an inferential system 

can achieve effectiveness only if this is taken into account. Logically, prior knowledge and 

new observations are combined in relation to their respective precision. One could also 

refer to this concept as having first-order predictions about incoming signals and second-

order estimations about their precision. In short, sensory input is the sum of predictions 

and noise. 

Predictions, based on prior information, as well as sensory input can be visualized as 

Gaussian probability distributions. Graphs charting probability distributions of estimations 

are termed probability density functions (PDFs). Figure 13 shows examples for PDFs 

representing prior beliefs and sensory inputs, where the curve demonstrates all possible 

states. Uncertainty can therefore be modeled as the variance of a distribution and is 

represented by the width in PDFs. The wider the distribution, the less precise the prior or 

the sensory signal is. For better understanding, I will give an example of the precision of 

priors and sensory data.  

Imagine you are visiting New York and being surrounded by skyscrapers. You are trying to 

figure out the height of a specific building, but you have very little prior knowledge about 

them. This would refer to uncertainty or low precision in priors (Figure 13C). Hence, the 

posterior belief or prediction, is based more on the observation. Now imagine your friend 

grew up in New York and has more knowledge about the average height of buildings 

through long-term experience processes. In this case, the prior belief is more precise, 

although, of course, there is still some uncertainty in it. The resulting estimation about a 

specific building now depends on the sensory input, in other words, how the two sources of 

information are weighted. If our visual system were free of noise, the corresponding PDFs 

(sensory input in Figure 13) would be narrow and appear like vertical lines. However, in 

our daily life, we always have to deal with noise. The noise or uncertainty about the sensory 

input could come from the visual signal process itself or deception or obfuscation in the 

visual signal. Imagine your friend tries to estimate the building's height in front of you, but 
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it is raining and foggy and, therefore, difficult to see its top and maybe compare it to 

surrounding buildings. This would refer to low precision in sensory input, and the 

prediction is rather based on previous experiences as they are more precise as depicted in 

Figure 13B. The posterior beliefs are calculated as the combination of previous knowledge 

and the observed input. Hence, Posterior beliefs are an estimation between the two PDFs. 

They are illustrated as dashed lines in Figure 13but can be depicted as a third PDF, whose 

precision is a sum of priors and sensory input precision. The exact location of these PDFs is 

also determined by the precision of both sources of information. Figure 13A illustrates the 

posterior belief right between the prior prediction and the sensory input, as their precision 

is equal. Depending on which source is more reliable, the posterior belief is shifted in that 

direction. Notably, the precision of prior beliefs plays a role in how much they themselves 

are updated. If a prior is imprecise, it will be changed to a greater extent than when it is 

already very precise itself (Auksztulewicz & Friston, 2016). The combination of priors and 

sensory input to calculate the posterior distribution will be updated by the following 

observation logically. Then, the previously posterior PDF will serve as the new prior. These 

processes are the basic principle for learning.  

 

Precision in PC is strongly connected to attention, as attention can be seen as an outcome of 

precision weighting (Feldman & Friston, 2010). Imagine a simple visual attention task, like 

a Posner task (Posner et al., 1980) in which specific locations are cued. Targets are then 

expected to occur at the cued position, which can be interpreted as a prior belief about its 

spatial position. The general assumption is that attention will be allocated accordingly to 

Figure 13. Schematic illustration of 

PDFs characterized by precision. Y-

axis is probability density. Blue 

graphs represent prior beliefs, gold 

graphs represent sensory input, and 

dashed lines represent the posterior 

belief. Precision is defined as the 

width of the graphs. A. Precision in 

prior beliefs and sensory input is 

equal. B and C with equal precision 

in sensory input, posterior beliefs 

will be shifted towards the more 

precise prior belief in B and towards 

the sensory input as prior is less 

precise in C. 
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reduce uncertainty in the system (Rao, 2005) which was supported by a neuroimaging 

study by Jiang et al. (2013). 

The importance of well-functioning precision-weighting mechanisms becomes clear when 

we look at what happens when they are disrupted or out of balance. Adams et al. (2013; see 

also Adams et al., 2014) explained psychotic symptoms such as hallucinosis or delusions as 

expressions of false inference processes. According to their proposed explanation, the 

optimal integration of prior beliefs and sensory data is impaired because the relative 

precision of both sources of information is abnormally encoded. For example, 

overweighting sensory input due to depletion of precision of prior beliefs could lead to 

attention being drawn to irrelevant sensory events. The resulting feeling of something is 

odd can be compared to a delusionary state. The exact neurocomputational mechanisms 

underlying psychosis remain to be discovered. Still, they are now thought to be related to 

maladaptive inferences, and thus predictive coding provides insights into this multifaceted 

disorder (for a review, see Sterzer et al., 2018). 

The previously described effect of PREP can be explained by changes in precision as well 

(Summerfield et al., 2011). Effects of repetition can be modulated by the precision of 

sensory predictions (Auksztulewicz & Friston, 2016). Imagine a situation where recurrence 

or stability of sensory input is unusual. For example, going up in the lift in a high-rise 

building, one expects the floor display to change every few seconds. Sensory input that is at 

odds, in this case, would therefore be estimated as unreliably. In this manner, precision of 

prior beliefs can be modulated by perceptual expectations, such as developed in block 

designs (Figure 12A). Moreover, a volatile environment such as a trial sequence in which 

the probability of repetition changes every now and then would reduce the precision of 

prior beliefs (Auksztulewicz & Friston, 2016). This relationship allows further testing of the 

underlying mechanisms of RS as prediction errors are assumed be exogenously changed 

based on the reliability of sensory input. We address this hypothesis in Study I (chapter 3.1). 

 

1.2.5  The role of stimulus novelty and surprise in predictive coding 

Novel stimuli evoke greater neuronal responses compared to recently encountered or well-

known stimuli (Li et al., 1993). The same also applies to surprising stimuli (Amado et al., 

2016; Bunzeck & Thiel, 2016). Therefore, both must be considered as properties of stimuli 

in experimental designs investigating effects as measures of response amplitudes. In this 
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chapter, I will briefly introduce pieces of evidence for the impact of stimulus predictability 

in the light of novelty and surprise3.  

Already Summerfield, in his influential study on the influence of PREP on RS (Summerfield et 

al., 2008), stated that RS in Alt blocks (in which repetitions were unexpected) was not 

entirely abolished. Although a block with a high probability of alternations was presented, 

the authors suggested that encountering a repetition of the same face was still more 

expected than a specific alternated face. Imaging a stimulus pair that shows identical images 

being compared to a stimulus pair in which the second image is drawn from a large set of 

images, as in most previous studies (Amado et al., 2016; Grotheer & Kovács, 2015; 

Summerfield et al., 2008). Effects of novelty and familiarity can blend with stimulus 

repetition effects. Depending on the method with which data is acquired, the novelty of one 

stimulus could result in a larger RS effect and act as a confounding factor in repetition 

designs (for a review on repetition paradigms, see Feuerriegel, 2016). This aspect has not 

been addressed in many experimental designs aiming at investigating RS and ES. Whereas 

repetition always offers the prediction of the second image on the basis of the first in a 

detailed manner, alternating images are not predictable. It is important to differentiate 

studies in which the outcome of a trial (being a repetition or a change of a stimulus) can be 

predicted quite reliably (Amado et al. 2016) from studies in which the second image of a 

trial can be not only expected, but predicted with high precision as in an EEG experiment by 

Feuerriegel et al. (2018) or fMRI experiments, such as Pajani et al., (2017). This is the 

primary topic of Study II (3.2). The term predictability is therefore defined as the capacity 

to predict the image itself in an experimental design investigating RS or ES. In general, 

predictable sensory input results in less neuronal activation than unpredictable. This is in 

line with theories of predictive processing and was first shown for early visual areas (V1) 

(Alink et al., 2010). When onset or orientation of upcoming stimuli could be predicted from 

spatiotemporal context information, the stimulus-related BOLD response was smaller than 

for unpredictable stimuli. This result shows the importance of predictability at early stages 

of cortical processing. However, the prediction of a position or orientation of a stimulus is 

far away from predicting a complex stimulus such as a face. Additionally, in this study, the 

 
3 The term surprise in studies investigating phenomena such as RS and interpreting related results 
in the predictive coding framework is used to describe unpredictable sensory input. This can only be 
compared to a limited extent with the term as it is used in everyday life. Minimizing surprise in 
predictive processes to reduce free energy cannot be equated with everyday surprises. Avoiding 
surprises seems to be something unusual for a species that seeks novelty, likes to explore, and avoids 
boredom. However, according to PC theories, it is necessary to minimize the average of surprise on 
a long-term scale to achieve an overall model that allows explorative engagement with the world 
(Clark, 2018; Schwartenbeck et al., 2013). 
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predictability of the investigated stimulus features (orientation and position/timing) 

depended on the trajectory information within each trial.  

To predict an image in an alternating trial within a repetition paradigm, only the first image 

of the trial can be informative. Naturally, training is needed to familiarize participants with 

specific stimulus combinations. Meyer and Olson (2011) showed an effect of implicitly 

learned image transition rules in IT neuron activity recorded in two monkeys as a lower 

response when associated images were shown as trailing image compared to other 

unpaired images. This unsupervised form of learning transition rules by mere exposure to 

statistical contingencies is mainly known from learning your first language as a child 

(Trainor, 2012). In an fMRI experiment on this issue, Pajani et al. (2017) introduced 

prediction blocks additionally to repetition and alternation blocks. Rep and Alt blocks were 

similar to those in previous designs (Grotheer & Kovacs, 2014; Summerfield et al., 2008). 

Prediction blocks were identical to Alt blocks in terms of probability manipulations. Still, 

they differed as participants could precisely predict alternating images. The authors trained 

participants on specific face stimulus combinations in an initial behavioral session. This 

resulted in a much smaller RS magnitude in prediction blocks due to a reduced signal to 

alternating stimuli compared to alternating stimuli in Rep and Alt blocks. The authors 

termed this effect exemplar-specific expectation suppression. A similar effect was found in 

an EEG study, in which RS and ES were investigated (Feuerriegel et al., 2018a). In Study II 

we investigated the effect of stimulus predictability on measures of RS with an adapted 

version of the design used by Feuerriegel et al. (2018a) to control for stimulus novelty 

effects. 

 

1.2.6  Mismatch responses under the predictive coding framework 

The mismatch negativity (MMN; Näätänen, 1992) was initially found in the auditory 

domain. The MMN describes a negative EEG component observed for a deviant stimulus 

occurring in a series of standards or, in other words, a mismatch to preceding stimuli. This 

response alteration has been explained as the outcome of a memory-based mechanism 

(Winkler & Czigler, 1998) or adaptation of neurons responding to standard stimuli (May & 

Tiitinen, 2010). The visual mismatch negativity (vMMN) is the same phenomenon observed 

in the visual domain accordingly (for reviews, see Czigler, 2007; Pazo-Alvarez et al., 2003). 

In the following, I will refer to this and similar effects as (visual) mismatch responses 

((v)MMR), as the description of a negative ERP does not apply to responses measured with 

fMRI. Designs that are used to investigate this phenomenon are called oddball designs. 
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Typically, two stimuli are used that serve as standard and deviant within one experiment. 

In other words, stimulus A can be presented in one context with a high probability and, 

therefore, is the standard and a rarely occurring stimulus B is the deviation accordingly 

(Figure 12). Usually, these probability assignments are then reversed for another context 

or block. The difference in responses to the same stimulus (e.g., stimulus A) when presented 

as a standard versus deviant is called the oddball effect. The effect describes a context-

dependent modulation since the visual features of the stimuli are the same. It can also be 

described as stimulus-specific adaptation effect and interpreted in the PC framework. 

Connected to hierarchical inference processes and learning, MMRs are assumed to reflect 

error detection to surprising or unexpected events (Baldeweg, 2007; Garrido et al., 2009a) 

after adaptation over multiple repetitions, which improves prediction (Grill-Spector et al., 

2006). This idea is further supported by findings showing that the omission of an expected 

stimulus results in a mismatch response (Bendixen et al., 2009; Wacongne et al., 2011). For 

a comprehensive review of possible underlying mechanisms inclusive processes related to 

PC, see Garrido et al. (2009).  

Effects of repetition can account for part of mismatch responses, as well enhancement 

effects due to unexpectedness of deviant stimuli. As mismatch responses were mainly 

investigated with electrophysiological techniques, their relationship to fMR-a was only 

studied recently. Amado and colleagues (2018) applied oddball sequences of characters in 

EEG and fMRI experiments and acquired data from the same participants. They found the 

observed vMMN and fMRI adaptation to correlate in cortical regions processing characters.  

A related paradigm has also been used to investigate expectations about higher-level 

stimulus features. In an EEG experiment, instead of using the same image of a famous 

identity, different so-called ambient images were shown in a stream of images (rapid 

periodic stimulation paradigm) with a rarely occurring (deviant) different same-sex 

identity face (Johnston et al., 2016). The face-sensitive N170 amplitude was modulated by 

the probability of occurrence of one identity. The authors concluded that expectations about 

person identity led to changes in the N170 amplitude when violated, signaling prediction 

error responses. In other words, a response to a mismatch in identity is measurable in early 

event-related potentials.  

Furthermore, similar designs were used to investigate prediction error responses by 

stimulus presentations in which a given trajectory was maintained or violated (Robinson et 

al., 2020, 2018). This allows for testing prediction-related responses without repeating a 

specific stimulus. However, the contribution of adaptation and surprise effects to MMR is 

still not fully clarified (Feuerriegel et al., 2018b). A neutral condition was added to an 
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oddball design in a recent EEG study, allowing to better classify observed effects as 

expectation suppression to repeated stimuli or surprise response to deviant stimuli 

(Feuerriegel et al., 2021b). The authors state that mismatch responses to visual stimuli are 

best explained by a surprise response, which contrasts findings from single-unit recordings 

of macaque IT neurons (Kaliukhovich & Vogels, 2014) but stands in agreement with studies 

on PREP (Amado et al., 2016).  

In Study III, we applied a simple version of the design depicted in Figure 12C and 

investigated adaptation and expectation effects to ambient images of famous identities 

(chapter 3.3). 

 

 

So, in summary, predictive coding models constitute a powerful framework that can explain 

phenomena in visual perception like bistable perception, perceptual illusions, neural 

response patterns to violated expectations, or surprising input as in an MMN design (for a 

review, see Walsh et al., 2020). Also, predictive processing as a strategy seems to fit 

perfectly to the way our cortex is structured. Still, the predictive coding framework is 

lacking direct empirical evidence (Walsh et al., 2020) because neurophysiological results 

are often contradictory or can be explained by other models of perception. Because the 

current studies were all conducted in the visual domain, most of the literature that has been 

summarized refers largely to studies that examined the visual system.  

Different hypotheses about phenomena explained (among others) within the predictive 

processing framework are tested in the present work. As we used face stimulus sets in all 

current experiments, the next chapter will introduce some important aspects about the 

relationship between face perception and predictive processing. 
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1.3  Face perception and predictive processing 

Theories of predictive coding have explained processes on low-level visual phenomena, 

even going back to cellular-level processing in the retina (Hosoya et al., 2005), until higher-

level phenomena like binocular rivalry (Hohwy et al., 2008). Also, face-stimuli have been 

applied extensively to investigate neural phenomena, such as RS (for reviews on 

neuroimaging and EEG studies, see Henson, 2016; Schweinberger & Neumann, 2016) and 

ES, suspected to display processes of PC (Feuerriegel et al., 2018b; Grotheer & Kovács, 2015; 

Summerfield et al., 2008). RS effects for faces measured with fMRI highly correlate with face 

perception ability, implying a role of response reduction mechanisms in face perception 

processes (Hermann et al., 2017). Still, the connection between models of the face 

perception network and predictive coding theories has been enlightened only lately (Trapp 

et al., 2018). In the last chapters, I have only touched on why faces are very well suited for 

the investigation of prediction-related processes. Here I will explain some aspects in a 

detailed manner. 

First of all, humans are face experts because processing facial information is essential from 

the very beginning of our lives. PC models suggest an internal model of the world that is 

continuously updated to predict sensory input (Rao & Ballard, 1999). Logically, the more 

experience we can draw on, the better our predictions should be. MEG recordings by 

Brodski and colleagues (2015) provide an insightful example of how lifelong experiences 

with stimuli, such as faces, can be used to study predictive mechanisms. They asked 

participants to perform a Mooney (Figure 4) face-detection task and manipulated 

orientation and illumination of the stimuli. The priors based on lifelong experiences in this 

study were the upright orientation for faces and a top-down direction for illumination, 

accordingly. Increased gamma-band activity is assumed to reflect increased prediction 

errors. Indeed, the authors found signals of violating priors of face orientation in occipital 

and fusiform regions, whereas violating illumination priors led to increased signals in the 

medial frontal cortex, superior frontal gyrus, and anterior cingulate gyrus.  

Second, the visual system is hierarchically organized, and so is the face-processing network 

(see chapters 1.1.1 and 1.1.2). This characteristic is an essential condition for predictive 

processing. Besides, areas belonging to the face-processing network are highly 

interconnected (Nagy et al., 2012; Pyles et al., 2013). Therefore, top-down influences are 

assumed to play an important role in face recognition. For example, the OFA was considered 

to constitute one of the first areas dealing with facial information in a specific way but was 

then found to be related to identity learning in TMS experiments (e.g., Ambrus et al., 2017b; 
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Eick et al., 2020). Top-down influence from higher-level areas, such as the FFA, cannot be 

ruled out as partial explanations for these findings. The same applies to other areas 

processing faces. Although the face-processing network is widespread, hierarchical, and 

highly interconnected, its single pieces are functionally specialized to a certain extent 

(Duchaine & Yovel, 2015; Haxby et al., 2000). This fact allows hypothesizing about the 

internal representations in each area and the related predictions that can be made by it. In 

summary, these features make the face-processing network perfect for investigating 

processes and consequences of predictive coding. Electrophysiological recordings from 

macaques’ face-processing areas provide evidence for the effects of higher-order perceptual 

expectations and related prediction errors measured in a lower-level face responsive area 

(Schwiedrzik & Freiwald, 2017). Furthermore, the authors found prediction errors to reflect 

viewpoint invariant identity-specific violation. Their results show clear evidence for 

predictive processing in face processing areas. 

Third, face perception processes are strongly influenced by context and prior perceptual 

experiences. Kok and colleagues (2017) had participants rate attractiveness in familiar and 

unfamiliar faces and found an effect known as serial dependence. More precisely, they 

showed that attractiveness ratings were dependent on the previously seen face images. 

However, this effect was more pronounced for unfamiliar than familiar faces, suggesting an 

identity representation that is less susceptible to short-term context effects for familiar 

faces. This finding also fits in perfectly with the precision weighting mechanisms in PC as 

identity can be defined as a precise prior. Whereas visual appearance (e.g., hairstyle, make-

up, outfit) varies continuously, identity is a stable concept. In this context, a single 

observation of visual appearance (an unexpected piece of clothing) that deviates from our 

internal model would elicit a prediction error, but the posterior belief would be mainly 

driven by the prior belief (Figure 13C). However, a change of a stable characteristic, such as 

sex, in theory would be highly informative and signal the urgent necessity to update prior 

beliefs.  

More evidence for context-dependent modulation of face perception comes from studies 

investigating face aftereffects, for example, for identity (Carbon et al., 2007; Hole, 2011; 

Walther et al., 2013). In a study by Walther and colleagues (2013), participants had to match 

a face image resulting from morphing two celebrities (with equal contribution) to either of 

them. In other words, they had to decide which of the two famous identities was more 

represented in the image after seeing either a veridical or a morphed image. The authors 

found a strong contrastive bias when the S1 was veridical (original) face but no such effect 
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when S1 was an ambiguous face image in behavioral data. Such identity-related aftereffects 

were also shown to be long-lasting (Carbon et al., 2007). 

Last, familiar faces are familiar because we already hold a neural representation for them 

that can be activated as soon as we see them. A stable face representation facilitates face 

perception processes (Jenkins & Burton, 2011). However, this also means that everything 

we experience in face-to-face interaction is interpreted in the context of the relationship 

with that person, or, in the case of famous identities, in the context of what we know about 

them. Face identification processes always involve bottom-up and top-down mechanisms, 

even in the case of unfamiliar faces, where identification occurs with little information about 

visual appearance, and identification may involve only deciding whether or not this person 

is familiar (Trapp et al., 2018). How exactly familiarity with individual faces develops is not 

fully clarified. That predictive coding models provide the basis for such a process seems 

logical since many other forms of learning can be explained similarly (Köster et al., 2020). 

Indeed, Apps and Tsakiris (2013) showed that face learning is accompanied by activity 

changes in the FFA that are best modeled by predictive coding. Naturally, for familiar faces, 

the process of recognizing and identifying a person is always connected to contextual, 

semantic information and requires retrieval of memories. The question arises of how much 

top-down information can be available when processing unknown faces. Brodski-Guerniero 

and colleagues (2017) provided evidence for a pre-activation of face knowledge measured 

with MEG. This activation of prior knowledge was manifest in measures of active 

information storage and led to increased predictable information in face processing regions, 

such as FFA and OFA, when participants performed a face but not a house detection task on 

Mooney stimuli (compare to Figure 4). Additionally, the authors proved increased 

information transfer to the FFA from higher-level visual areas, such as the anterior inferior 

temporal cortex. Their results suggest top-down influences for face detection. Although this 

might be essential due to the two-tone nature of the stimulus material, it seems logical that 

inferential processes play a role in unfamiliar face perception as well. Contextual 

information facilitates the recognition and perception of visual objects in general (Bar, 

2004). Therefore, the processing of unfamiliar faces and facial information cannot happen 

independently from context information in real life. Just imagine meeting somebody that 

reminds you of a good friend. Although this person is unknown to you, an internal 

representation is activated immediately. Or, to give another example, you meet a friend on 

the street, and he or she is with another person you do not know. This person could be his 

or her partner, a sibling, or a colleague, to name a few examples. Depending on your 

knowledge and previous experience, you will automatically favor one of the possibilities - 

depending on what is most likely. 
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To sum it up, the identification process engages a distributed and recurrent network of 

brain areas which involves interactions with more regions the more familiar we are with a 

person (Kovács, 2020). This architecture is crucial to predictive processes and mechanisms 

that engage different functionally specialized areas that can contribute to the perceptual 

process as experiences are added, and representations evolve. 

Additionally, the processing of faces has been extensively studied. A relatively large amount 

of knowledge is now available about the areas involved (Kovács, 2020), as well as on face-

specific components responses of electrophysiological measures (Schweinberger & Burton, 

2003). The large number of studies that already exist provides a valuable basis for 

generating clear hypotheses for neuronal behavior in different cortical areas. 
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1.4  Aims and questions of the thesis. 

The studies of the current thesis focus on several possible consequences of predictive 

processing, investigated with experimental designs involving faces and measuring neural 

activity in face-sensitive regions with fMRI. From the large body of research in which faces 

were used as stimuli, it is evident that previously described phenomena as RS, the 

modulation of RS by repetition probability, and ES can be observed with facial stimulus 

material and recording of functional MRI in face responsive regions (Grotheer & Kovács, 

2015; Henson, 2016; Summerfield & Koechlin, 2008). Therefore, they are ideal for studying 

prediction-related response alterations in further detail.  

In these experiments, we investigate different neuronal phenomena, tested using faces in 

various stages of familiarization processes. Faces lend themselves as stimulus material 

because they are very complex on the one hand, but their processing is relatively effortless 

for humans. All three experimental studies focus on the fusiform face area, a key area of face 

processing but certainly not the only one in the ventral visual stream (see chapter 1.1.2). 

Still, its manifold connections to lower and higher-level areas processing visual input and 

its crucial role in processing faces make it perfect for investigating phenomena explained 

under the PC framework, such as response suppression to repetition or expectation. 

The first empirical contribution (Study I, chapter 3.1) addresses RS and the question under 

which circumstances it can be modulated. RS has been explained within the predictive 

coding network in many studies because its magnitude can be modulated by changing 

aspects of the temporal context. While RS itself is a robust effect, its modulation by 

expectation was not found when using objects (Kaliukhovich & Vogels, 2011; Kovacs et al., 

2013) or unfamiliar stimuli (Grotheer & Kovacs, 2014). However, in some studies, the so-

called PREP effect was not replicable when face stimuli were used (human BOLD responses: 

Olkkonen et al., 2017; monkey spiking activity and local field potentials: Vinken et al., 2018). 

Furthermore, many other theories provide adequate answers for the underlying 

mechanisms of RS (see chapter 1.2.2.1), and this effect was further shown to be independent 

of ES (Feuerriegel et al., 2018a; Grotheer & Kovács, 2015; Todorovic & de Lange, 2012). In 

order to prove whether RS itself relies on top-down prediction processes, other key features 

of PC models need to be tested in simple repetition designs without adding expectation-

related manipulations. Therefore, the first study in this thesis investigates repetition 

suppression to unfamiliar faces under two conditions with varying sensory precision. 

Precision weighting is an essential component of predictive processing (see chapter 1.2.4), 

and we modeled it by manipulating the visibility of sensory data. According to predictive 
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theories, RS is the manifestation of a reduced prediction error. Therefore we hypothesize 

that the manipulation of prediction errors by varying sensory precision should be reflected 

in measures of RS (Auksztulewicz & Friston, 2016). This could provide new evidence for 

underlying mechanisms of RS. 

Study II (chapter 3.2) focuses on a specific feature of stimuli that is often present in RS 

studies and related to predictive precision: image predictability. Stimulus predictability 

refers to the ability to predict the incoming sensory data in a detailed and accurate manner. 

As described in chapter 1.2.5, it is related to the novelty or surprise of alternating stimuli 

within experimental designs. Stimulus novelty is often unequal between conditions 

depending on the available stimulus data set and the critical manipulations of studies 

investigating prediction-related phenomena. Therefore, a stronger surprise component in 

one condition compared to others can confound measures of RS. In most experimental 

settings, a repetition trial is defined as the presentation of the same image. Therefore, the 

second stimulus is always predictable in a detailed manner in repetition trials compared to 

alternation trials. Our empirical Study II (chapter 3.2) investigates this effect in a repetition 

paradigm. We implemented a statistical learning paradigm to train participants on specific 

stimulus associations. By employing rules of transitional statistical learning, alternating 

stimuli are equally predictable as repetitions in one context and can be compared to more 

standard measures of RS (i.e., non- or less predictable alternations). This way, we show 

whether and how much differences in stimulus predictability between repetition and 

alternation trials contribute to measures of RS. 

Whereas the first two studies use unfamiliar faces as stimulus material in repetition designs, 

the third study investigates adaptation and expectation-related phenomena on higher-

order face processing levels such as personal identity. We use a design comparable to 

procedures testing MMRs and ambient images of famous identities. As explained in chapter 

1.2.6, MMR designs rely on multiple repetitions of a specific stimulus, making this stimulus 

more and more expected and turns a deviation from this stimulus into an unexpected event 

that elicits a mismatch response. Contrary to the previous studies, we did not repeat a 

specific face stimulus but a given famous identity. By this means, adaptation effects and 

expectation (violation) effects are investigated for higher than image-based face processing. 

We present participants with short blocks of different face images of one ID or different IDs 

to investigate image-independent adaptation effects in occipito-temporal regions. 

Furthermore, prediction error signals to unexpected changes in identity rather than specific 

images have not yet been investigated using fMRI. Therefore, we included a condition in 

which a trial composed of ambient images of identity (A) was ended by an image of 
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identity(B). We hypothesize adaptation effects to trials depicting one identity compared to 

trials with alternating IDs and identity-specific expectation violations when identity 

changed unexpectedly. 

 

So briefly, the central aims of the current thesis are the following. 

 

1.  Does sensory input precision affect repetition suppression magnitude? 

 

2.  How can stimulus predictability confound repetition suppression magnitude when not 

equalized between repetition and alternation trials? 

 

3.  Can image-independent identity changes alter responses in ventral occipito-temporal 

regions? 
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2  GENERAL METHODS 

Since all the experiments presented use the same methods, I will briefly introduce the fMRI 

technique in this chapter. More importantly, this chapter includes the general analyses we 

used to process the neuroimaging data. While the individual designs are explained in detail 

in the corresponding manuscripts, procedures and analyses performed on the acquired 

fMRI data are often presented in an abbreviated form. Therefore, here I will detail not the 

method itself but the way we processed acquired data of all three studies. 

 

2.1  The technique of functional magnetic resonance imaging 

Functional magnetic resonance imaging exploits the relationship between neuronal activity 

and cerebral blood flow (CBF). This relationship is called neurovascular or neurometabolic 

coupling (Buchbinder, 2016). It is assumed that if any cerebral area is active, it will consume 

more energy in terms of oxygenated blood. As blood flow is relatively slow in comparison 

with neuronal activity changes, an area that is actively involved in processing a visual scene, 

for example, will first show a decrease in oxygen level before it will receive more oxygenated 

blood. The level of oxygen can be measured with functional MRI. The resulting signal used 

to inform about the activity level of specific regions is the blood oxygen level dependent 

(BOLD) signal. In other words, the hemodynamic response function (HRF) is imaged. As 

only the activity-related blood flow is measured with this technique, fMRI does not provide 

a direct measurement of neuronal activity.  

Also, the BOLD signal is a measure of neuron population responses. In contrast to single-

unit recordings, the BOLD signal will always reflect the neuronal activity of a large neuronal 

population. How many neurons we are talking about here depends on the voxel size, hence 

the spatial resolution. A detailed description of different preprocessing steps and the 

features of the resulting images are the content of chapter 2.2. 

 

2.2  Functional preprocessing 

Many data preparation steps are needed before meaningful statistical analyses to explore 

differences between conditions or groups can be conducted. We performed all 

preprocessing steps in SPM12 (Wellcome Department of Imaging Neuroscience, London, 

United Kingdom; Ashburner et al., n.d.), a software for Statistical Parametric Mapping 
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designed to work with MATLAB (Mathworks). Descriptions of how all steps are performed 

in SPM are described in (Ashburner et al., n.d.). All measured data are saved in Digital 

Imaging and Communications in Medicine format (DICOM) and imported to SPM. The 

resulting 3D volumes of our functional data then need to be corrected for differences in 

acquisition time. In the sequences used to obtain functional data, a 3D volume is not 

acquired all at once but in a sequence of 2D slices acquired within the so-called repetition 

time (TR). The TR in all fMRI experiments reported here is two seconds. This results in a 

delay of approximately two seconds for the last slice being acquired in comparison to the 

first. To correct for these delays in slice acquisition, all slices of one volume can be 

interpolated to one time point for which a reference slice is selected. Therefore, it is crucial 

to know the exact order of slices being acquired. This first step is called slice-time correction 

and is the only preprocessing step on temporal data characteristics.  

All following steps concern spatial corrections, the first being correction for head 

movements during the measurement. When participants move within or between runs 

during an experiment, naturally, voxels will be acquired in a different location. To account 

for head motion results, volumes need to be realigned to one reference volume. 

Successively, volumes are co-registered to a reference volume using a rigid-body 

transformation. To achieve the best match between two volumes, six parameters are 

computed that describe the differences in orientation between those two volumes. Three 

parameters describe translational moving (each along one axis in space), and three 

represent the rotational moving of the image (rotation around each of the three axes in 

space). These parameters are saved and used additional regressors when the general linear 

model (GLM) is specified. It is also possible to realign the data right away, meaning the 

realignment parameters will not only be estimated, but images will be resliced (Churchill et 

al., 2012). In the current studies, motion-related components are included in the GLM as six 

nuisance regressors. The subsequent two steps are types of coregistration as well and are 

necessary to match activity differences to anatomical locations and compare these results 

within a group of subjects. Although more than one pre-processing step relies on the 

concept of coregistration, only the structural-functional coregistration is termed 

‘coregistration’ in SPM. Here the preprocessed anatomical image is aligned to the mean 

functional volume. Conceptually this is similar to the realignment step but differs, as 

anatomical and functional images are very distinct, especially in terms of spatial resolution 

and liability to noise in the form of distortions. Normalized mutual information is used as a 

function to align the two types of images that differ mostly in contrast. As another spatial 

transformation step needs to be executed, the transformation parameters are saved and 

applied to the images later. The next transformation step is important to ensure not only of 
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activity but any measured functional or anatomical images are comparable between 

subjects or even with results from other studies. Therefore, a reference brain or template 

offering a common coordinate space for all the individual brain to be spatially transformed 

to is necessary. Classically, one of two templates is used, Talairach or MNI. Talairach 

coordinates refer to one reference brain in which anatomical landmarks were defined and 

used to construct a three-dimensional space. Templates from the Montreal Neurological 

Institute (MNI) – the so-called MNI templates – offer a better representation of the 

population. In the current studies, all images were normalized to the MNI template 

ICBM152, which is the result of averaging 152 normal MRI scans. In the presented data sets, 

we first normalized the anatomical images to the MNI template and used the resulting so-

called deformation field to normalize all the functional volumes of the same participant. In 

other words, the deformation field stores the information about how the anatomical volume 

was warped into the standard space to apply them to the functional data as well. As the 

transformation parameters of the last step (structural-functional-coregistration) are 

stored, this will write out all functional images co-registered and normalized. The final step, 

before statistical models are defined and estimated, is called spatial smoothing. Although a 

lot of previous preprocessing steps try to compensate for differences, especially between 

brains (normalization), there is always some variability left in the data. To cope with this 

and to increase the signal-to-noise ratio, spatial smoothing is applied. In the presented 

studies, we used a Gaussian filter with a kernel width of 8mm full-width at half-max 

(FWHM). Spatial smoothing, of course, results in a loss of spatial resolution but increases 

statistical power.  

At this point, all the preprocessing of the obtained images is completed. Next, the data needs 

to be mapped to the experimental conditions presented when the data was obtained. 

Therefore, the exact timing and duration of conditions are entered together with the 

preprocessed data and the stored movement parameters as additional regressors. We 

specified general linear models (GLM) based on a chosen function which is the canonical 

hemodynamic response function for all experiments presented in this thesis.  

The estimated models of the condition-related BOLD signals serve as the basis for 

subsequent analyses, such as region-of-interest (ROI) based or whole-brain analyses. In all 

presented studies, the stimulus material depicted faces, which is why ROI-based analyses 

are always the main analyses. How the respective ROIs are defined is described in chapter 

2.3. A whole-brain analysis was added to not overlook effects somewhere else in the brain, 

in case literature suggested the involvement of other areas in the investigated effect. 
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2.3  Functional localization of face areas within the occipito-temporal 

cortex  

In each of the presented studies, we added an fMRI sequence for localizing the ROIs to the 

experimental procedures. Those sequences only differ slightly in terms of stimulus material 

and paradigm from each other. All localizing paradigms utilized images of faces, objects, and 

Fourier transformed noise patterns. Whereas 40 greyscale images with a presentation time 

of 300ms each were used in the first two studies, the third study used colorful images 

presented with a frequency of 4Hz to reduce measuring time. As the manuscripts 

themselves only offer a short description of the stimulus material and design of the 

localizing sequences, an example is depicted in Figure 14. 

 

Figure 14. Example for a paradigm to functionally localize face-and object-processing regions. This type 

of paradigm was used in Studies I and II. Blocks of faces, objects and Fourier-randomized noise were 

repeated at least four time, interleaved by breaks of 20 second.  

Figure 15 shows the results of the whole-brain analyses of the localizer data of Study III. 

Here, faces were contrasted with objects and Fourier randomized noise images and 

displayed with a threshold of p<0.0001uncorrected and a minimum cluster size of 50 voxels. 

Data from Study III were chosen for this illustration because we collected the largest sample 

in this study. Thirty participants took part in the study and for this analysis no one was 

excluded. Although the implemented localizer paradigm differed from the one depicted in 

Figure 14, Table 1 shows that the mean coordinates defined in all studies correspond to 

each other. Our localizer revealed another significant cluster for the contrast faces versus 

objects and noise in the frontal lobe (MNI[x,y,z]: 40, 8, 32), near the inferior frontal gyrus, 
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which also assumed to be involved in processing faces (for comparison of coordinates, see 

Axelrod & Yovel, 2013; Ishai et al., 2005). 

   

 

Figure 15. Results of the functional localizer on a group level. Faces were contrasted with objects and 

Fourier randomized noise images and displayed with a threshold of p<0.0001unc. and a minimum cluster 

size of 50 voxels on a template brain using MRIcroGL (https://www.nitrc.org/projects/mricrogl/). 

Depicted coordinates refer to the MNI template.  

 

Table 1. Mean (±SE) MNI coordinates [x, y, z] for bilateral FFA and OFA for each study, defined on the 

basis of the respective functional localizer.  

 Left FFA Right FFA Left OFA Right OFA 

 x y z x y z x y z x y z 

Study 

 I 

-39 

(1) 

-54 

(2) 

-18 

(1) 

41 

(1) 

-53 

(1) 

-19 

(1) 

-40 

(1) 

-74 

(2) 

-13 

(1) 

41 

(1) 

-76 

(2) 

-12 

(1) 

Study 

II 

-40 

(1) 

-51 

(2) 

-21 

(1) 

41 

(1) 

-48 

(1) 

-21 

(1) 

-40 

(1) 

-75 

(2) 

-13 

(1) 

42 

(1) 

-74 

(2) 

-13 

(1) 

Study 

III 

-40 

(1) 

-52 

(2) 

-20 

(1) 

41 

(0) 

-53 

(2) 

-19 

(1) 

-40 

(1) 

-77 

(2) 

-12 

(1) 

42 

(1) 

-75 

(2) 

-12 

(1) 
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3  EMPIRICAL CONTRIBUTION 

The following sections present the current studies. 

 

Study I, page 53 ff. 

Repetition suppression for noisy and intact faces in the occipito-temporal cortex. 

Rostalski, S.-M. M., Amado, C., & Kovács, G. (2019). Repetition suppression for noisy and 

intact faces in the Occipito-temporal cortex. Frontiers in Psychology, 10(JUN), 1348. 

https://doi.org/10.3389/fpsyg.2019.01348 

 

 

Study II, page 63 ff. 

Measures of repetition suppression in the fusiform face area are inflated by co-

occurring effects of statistically learned visual associations. 

Rostalski, S. M., Amado, C., Kovács, G., & Feuerriegel, D. (2020). Measures of repetition 

suppression in the fusiform face area are inflated by co-occurring effects of statistically 

learned visual associations. Cortex, 131, 123–136. 

https://doi.org/10.1016/j.cortex.2020.07.010 

 

 

Study III, page 85 ff.  

Person identity-specific adaptation effects in the ventral occipito-temporal cortex 

Rostalski, S.-M., Robinson, J., Ambrus, G. G., Johnston, P. & Kovács, G. (2021). Person identity-

specific adaptation effects in the ventral occipito-temporal cortex. European Journal of 

Neuroscience [under review] 
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3.1  Study I. Repetition suppression for noisy and intact faces in the 

occipito-temporal cortex 

 

 

Sophie-Marie Rostalski1, Catarina Amado2 and Gyula Kovács1 

 

1Department of Biological Psychology and Cognitive Neurosciences, Institute of Psychology, 

Friedrich Schiller University Jena, Jena, Germany, 

2Department of Computer Science, Experimental Cognitive Science Research Group, Eberhard Karls 

Universität Tübingen, Tübingen, Germany 

 

 

 

Main research question:  

Does sensory input precision affect repetition suppression magnitude? 
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Repetition Suppression for  
Noisy and Intact Faces in the 
Occipito-Temporal Cortex
Sophie-Marie Rostalski1, Catarina Amado2 and Gyula Kovács1*
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Repetition suppression (RS), the relative lower neural response magnitude to repeated 
as compared to non-repeated stimuli, is often explained within the predictive coding 
framework. According to this theory, precise predictions (priors) together with less precise 
sensory evidences lead to decisions that are determined largely by the predictions and 
the other way around. In other words, the prediction error, namely the magnitude of RS, 
should depend on the precision of predictions and sensory inputs. In the current study, 
we aimed at testing this idea by manipulating the clarity and thereby the precision of the 
incoming sensory data by adding noise to the images. This resulted in an fMRI adaptation 
design with repeated or alternating trials showing clear or noisy face stimuli. Our results 
show a noise effect on the activity in the fusiform face area (FFA), namely less activation 
for noisy than for clear trials, which supports previous findings. No such effects could 
be found in OFA or LO. Data also showed reliable RS in the FFA (bilateral) and unilaterally 
in OFA (right) and LO (left). Interestingly, the noise added to the stimuli did not affect the 
magnitude of RS in any of the tested cortical areas. This suggests that the clarity of the 
sensory input is not crucial in determining the magnitude of RS.

Keywords: repetition suppression, predictive coding, precision, noise, fusiform face area

INTRODUCTION

Repetition suppression (RS), the relative lower neural response magnitude to repeated as 
compared to non-repeated stimuli, is one of the most studied phenomena of cognitive 
neurosciences. Over the last years, not only RS but other stimulus repetition-related phenomena, 
such as expectation suppression or surprise-related response elevation, were explained under 
the framework of predictive coding (Summerfield et  al., 2008; Todorovic and de Lange, 
2012; Grotheer and Kovacs, 2014; Mayrhauser et  al., 2014; Grotheer and Kovács, 2015). This 
theory states that perception is not determined solely by the incoming stimuli themselves, 
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but it is also modulated by inferential processes (Rao and 
Ballard, 1999). In other words, the sensory inputs together 
with our prior experiences are used to form predictions of 
upcoming events to ensure efficient processing (Friston, 2005). 
For a better understanding of these processes, several prior 
studies manipulated the temporal context of a stimulus to 
alter predictions (Auksztulewicz and Friston, 2016; Grotheer 
and Kovács, 2016). These studies suggested that stimulus 
repetitions lead to lower prediction errors and this is manifest 
in RS while rarely presented, thereby surprising, stimuli lead 
to higher prediction errors and enhanced neural responses 
(for a review, see Grotheer and Kovács, 2016). Although 
recently, numerous studies explained repetition and expectation-
related phenomena under the framework of predictive coding, 
this explanation is not unchallenged in the literature. While 
expectations seem capable of modulating RS in many cases, 
RS and expectation suppression (ES) were dissociated from 
each other in several studies (Todorovic and de Lange, 2012; 
Grotheer and Kovács, 2015; Feuerriegel et  al., 2018) and 
therefore seem to reflect different neuronal mechanisms. 
Further, human fMRI studies with objects (Kovacs et  al., 
2013; Grotheer and Kovacs, 2014) and nonhuman primate 
single-cell studies with objects as well as recent single-cell 
(Vinken et  al., 2018) or fMRI (Olkkonen et  al., 2017) studies 
with faces failed to find any trace of modulatory effects of 
expectation on RS (see, however, Mayrhauser et  al., 2014 
and Kronbichler et  al., 2018 for a different conclusion). 
Therefore, the role of top-down modulatory effects, such as 

predictions and expectation, in determining the magnitude 
of RS is under heavy discussion as of today.

Although RS seems to be  a robust phenomenon, that has 
been investigated in several paradigms (for reviews, see Grill-
Spector et al., 2006; Krekelberg et al., 2006), there are evidences 
for repetition enhancement (i.e., an enhanced neural response 
for repeated stimuli) as well (Henson, 2003; Turk-Browne et al., 
2007; De Gardelle et  al., 2013; Segaert et  al., 2013; Recasens 
et  al., 2015). For example, Turk-Browne et  al. (2007) could 
show that the attenuating effect on the BOLD responses of 
showing two identical scenes compared to two different scenes 
in one trial could be  reversed by reducing the contrast of the 
stimuli. This modulatory effect on neural responses to repetitions 
is introducing an important factor into the RS research field, 
namely precision or clarity of visual input.

Prior studies (Auksztulewicz and Friston, 2016) 
conceptualized prediction error as the magnitude of neural 
responses in certain “error units.” The repeated presentations 
of a given stimulus would, in turn, reduce the activity of 
these neurons, leading to RS. According to theories of predictive 
coding, precise predictions (priors) together with less precise 
sensory evidences lead to decisions that are determined largely 
by the predictions; in other words, the prediction error is 
increased if predictions fail to come true. This would in turn 
reduce the magnitude of RS for noisy when compared to 
clear sensory inputs. However, if the predicted priors are less 
precise (for example due to the frequent occurrence of 
unexpected events) but the incoming sensory stimuli are clear 

A B

FIGURE 1  |  (A) The graphs show the Gaussian probability distributions that represent the distribution of the priors (i.e., the a priori beliefs, black) and of the sensory 
evidences (gray) as well as the resulting posterior beliefs (dotted line) for a situation where the statistics-based priors are kept constant and the precision of the 
sensory stimuli is modulated (for example by adding noise to the images). Precision can be understood as the inverse of the distribution width. Reducing the relative 
precision of the sensory input biases the posterior beliefs toward the priors and thereby reduces predictive error (figure adapted from Adams et al., 2013).  
(B) Theoretical BOLD signal magnitudes for alternating and repeating stimulus pairs and for stimuli with and without noise, separately. Note that these results 
assume that predictive error is reflected in the magnitude of RS (Grotheer and Kovács, 2016).
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and precise, then the a posteriori decisions are rather determined 
by the sensory stimulation and the prediction errors are lower 
(O’Reilly et  al., 2012; Adams et  al., 2013; Auksztulewicz and 
Friston, 2016; Sterzer et  al., 2018).

In the current study, we  aimed at testing this idea by 
manipulating sthe precision of the incoming sensory data by 
adding noise to the images. We  reasoned that the modulatory 
effect of stimulus precision on prediction errors might 
be reflected in the magnitude of RS. Because sensory uncertainty 
is assumed to reduce the difference of priors and posterior 
beliefs (Figure  1A; Adams et  al., 2013; Sterzer et  al., 2018), 
a smaller prediction error (RS magnitude) is expected for 
noisy, as compared to clear visual stimuli. In other words, 
alternations lead to much higher prediction errors and repetitions 
to lower prediction errors when the sensory input is clear as 
compared to noisy, which results in higher RS magnitude 
(Figure 1B) for clear visual inputs.

Indeed, previous studies suggest the differential processing 
of noisy stimuli (Wild and Busey, 2004; Banko et  al., 2011). 
For example, Banko et  al. (2011) manipulated task difficulty 
by decreasing the phase coherence of face stimuli and found 
that this affects early electrophysiological responses. The 
visually evoked P1 showed a higher amplitude to noisy stimuli, 
whereas the face-sensitive N170 showed a lower amplitude. 
In line with the P1 modulation, fMRI data showed increased 
activation in the lateral occipital cortex (LO) due to noise 
(Banko et  al., 2011). Also, Hermann et  al. (2015) found that 
noisy stimuli with lower phase coherence lead to increased 
activity in the LO. This suggests increased processing demands 
in the visual cortex due to added visual noise. However, 
authors also found reduced activity in the face-selective 
fusiform face area (FFA) when noise was added (Hermann 
et  al., 2015). In addition, a linear increase in the amplitude 
of a face-sensitive ERP component (N170) (Jemel et al., 2003) 
could be  observed by decreasing the level of a Gaussian 
distributed noise, added to face stimuli gradually. This result 
could later be  confirmed with fMRI data by Horner and 
Andrews (2009) who manipulated phase coherence and found 
evidence for the principle of scaling for preferred stimuli in 
the FFA. This suggests the linearity of the BOLD response 
and the noise level in face stimuli. Altogether, these studies 
show that visual noise indeed affects neural processing, but 
it is not clear what impact that effect has on inferential 
processes and subsequent predictions.

To the best of our knowledge so far, no study compared 
the effect of stimulus repetitions for noisy and clear stimuli 
in the ventral temporal cortex. Therefore, in the present study, 
noise was added to face stimuli to manipulate the precision 
of sensory stimulation in a design containing repeated and 
alternating trials. Trials could therefore either consist of pairs 
of clear or noisy faces, which could either be  the same or 
different. Activity in face-specific areas (FFA and OFA, occipital 
face area) as well as in LO was acquired using fMRI. Based 
on prior evidences (Horner and Andrews, 2009; Hermann 
et  al., 2015), noisy stimuli were expected to elicit lower BOLD 
responses than clear ones in the regions of fusiform gyrus, 
but an enhanced response was expected in the lateral occipital 

regions (Banko et  al., 2011; Hermann et  al., 2015). Also, in 
line with the predictive coding theory, repeated trials were 
hypothesized to show a smaller neuronal response than 
alternating trials. We  reasoned that this RS effect should 
be  modulated by the clarity of the stimuli if predictions are 
indeed less precise for noisy as compared to clear stimuli 
(Auksztulewicz and Friston, 2016).

MATERIALS AND METHODS

Participants
Twenty-three subjects participated in this study. One subject 
was excluded from the analysis due to excessive movements 
during image acquisition. The remaining 22 participants (11 
females, one left-handed and one both left- and right-handed) 
were between 18 and 31  years of age (M  =  22; SD  =  3.81) 
and all had normal or corrected to normal vision. Previous 
fMRI studies, using stimulus pairs and reporting significant 
RS, as well as significant predictive modulations of RS 
(Summerfield et  al., 2008; Kovacs et  al., 2013; Grotheer et  al., 
2014; Grotheer and Kovacs, 2014) were typically able to find 
modulatory effects of RS by other factors, such as probabilistic 
predictions with sample sizes between 11 and 26. Therefore, 
here, we  reasoned, that with the tested number of participants, 
we  could reliably detect any interaction of noise and RS and 
this is supported by the results of the Bayes factor analyses.

Participants were fully informed about the study and gave 
written consents to participate. They received course credits 
for participation. The experiment was conducted in accordance 
with the guidelines of the Declaration of Helsinki, and with 
the approval of the ethics committee of the University of Jena.

Stimuli and Procedure
A total set of 490 unfamiliar faces (246 clear (127 female) 
and 244 noisy (127 female)) were used as stimuli. Those were 
shown in the center of the screen with a superimposed grey 
scale mask, which additionally covered the hair and the shape 
of the face resulting in round-shaped faces including eyes, 
nose, and mouth. Noisy stimuli were generated by superimposing 
Fourier-transformed versions of the original images on the 
faces where phase coherence was reduced (45%) by the weighted 
mean phase technique (Dakin et  al., 2002).

Participants completed three experimental runs, each including 
120 trials of the four different trial types (Figure 2) in a 
randomized fashion. One trial included two stimulus 
presentations, which could either be  the same face (repeated 
trial) or two different faces (alternating trial). Participants’ task 
was to detect target trials, in which the second face stimulus 
was tilted by 10° either clockwise or counterclockwise and to 
indicate this direction by pressing a button (Figure 3). Such 
target trials were equally distributed across the four conditions 
and represented 20% of the overall trial amount and were 
excluded from any further analysis.

For defining regions of interests (ROI), a localizer sequence 
was performed. Grayscale images of faces, objects, and 
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Fourier-transformed noise patterns were presented (exposition 
time: 300  ms, interstimulus interval: 200  ms) in blocks  
of 20  s intermitted by a break of 20  s and were repeated 
four times.

Imaging Parameters
Neuroimaging was performed using a Prisma fit 3  T MRI 
Scanner from Siemens. During the functional runs, T2*-weighted 
images (35 slices, TR  =  2,000  ms, TE  =  30  ms, isotropic voxel 
size of 3  mm) were acquired continuously. High-resolution 
T1*-weighted simages (TR = 2,300 ms, TE = 3.03 ms, isotropic 
voxel size of 1  mm) were acquired to obtain a 3D structural 
scan. Data were preprocessed using SPM12 (Wellcome Trust 
Centre for Neuroimaging, University College London, UK). 
The functional images were slice-timed, realigned, co-registered 
to the structural scan, and afterward normalized to the MNI 
space and smoothed using an 8-mm Gaussian kernel.

ROIs were defined using the data from the localizer sequence 
and canonical hemodynamic response functions (HRFs) were 
extracted using MarsBaR (Brett et al., 2002). HRFs were estimated 
for all subjects and ROIs. Then, peak values were submitted 
to repeated measurement ANOVAs with the factors noise level 
(clear vs. noisy) and repetition (repeated vs. alternating).

RESULTS

Behavioral Results
A repeated measurements ANOVA with the factors noise  
(clear vs. noisy) and trial type (repeated vs. alternating) was 
conducted for the reaction times and accuracy. Regarding the 
reaction times, no significant effect was revealed from the 
analysis. However, a significant main effect for noise level was 
found for the accuracy rates, F(1,21) = 12.00, p < 0.01, η = 0.36, 
which shows better performance for clear (M  =  94.4%, 
SD = 10.3%) as compared to noisy trials (M = 88.9%, s = 12.3%).

Neuroimaging Results
Neuroimaging results are depicted in Figure 4. We  found a 
similar pattern in the FFA of the two hemispheres. A significant 
main effect of noise level was found, F(1,19) = 14.18, p < 0.01, 
η  =  0.43 for right hemisphere and F(1,20)  =  19.45, p  <  0.001, 
η  =  0.49 for left hemisphere, with clear trials eliciting larger 
BOLD signal than the noisy ones. Additionally, a significant 
main effect of trial type was observed in both hemispheres: 
F(1,19)  =  16.22, p  <  0.001, η  =  0.46 for right hemisphere and 
F(1,20)  =  15.99, p  <  0.001, η  =  0.44 for left hemisphere. This 
effect suggests a generally higher signal for alternating as 

FIGURE 2  |  Examples for the four possible trial types (excluding target trials). Written informed consent for publishing these images was given by the 
respective persons.

FIGURE 3  |  Sequence of three trials including clear alternating, noisy repeated, and one target trial (clear repeated). Written informed consent for publishing these 
images was given by the respective persons.
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compared to repeated trials. However, no interaction between 
noise level and trial type was found, neither for the right, 
F(1,19)  <  1, p  =  0.44, η  =  0.03, nor for the left hemisphere, 
F(1,20)  <  1, p  =  0.87, η  =  0.00, suggesting that the observed 
RS is similar for noisy and clear stimuli in the FFA.

The same analysis performed on the right OFA revealed a 
significant main effect of trial type for the right hemisphere, 
F(1,21)  =  8.14, p  <  0.01, η  =  0.28, showing that alternating 
trials elicit greater signal changes than repeated ones. However, 
the main effect of noise remained nonsignificant, F(1,21)  <  1, 
p  =  0.54, η  =  0.02, as well as the interaction effect did, 
F(1,21)  <  1, p  =  0.94, η  =  0.00. The same analysis for the 
left OFA revealed no significant main effect or interaction.

In the LO, similar to the OFA, the main effect of trial type 
was found to be  significant in one hemisphere, the left one 
only, F(1,20)  =  4.60, p  <  0.05, η  =  0.19. Again, repetitions 
led to lower signal than alternations in the LO as well whereas 
the right hemisphere showed a strong tendency in this direction 
only, F(1,20)  =  3.59, p  =  0.07, η  =  0.16. No other main effect 
or interaction reached significance.

We additionally evaluated the likelihood that there is no 
interaction between the two factors using a Bayesian repeated 
measures ANOVA to substantiate our conclusion. This analysis, 
performed in JASP (JASP Team, 2018), provides the Bayes factor, 
reflecting how much more likely a dataset reflects  
the null hypothesis compared to the alternative hypotheses. To 

FIGURE 4  |  Effects of noise and repetitions. Percent signal changes of FFA, OFA, and LO (left and right hemispheres for each) are presented for condition and trial 
type. Error bars indicate standard errors. Displayed significant differences refer to Fisher’s LSD post hoc test. *p < 0.05, **p < 0.01.
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get the Bayes factor for the interaction, we performed the division 
of BF01 of the model containing the two main effects and the 
interaction between these by the model containing the two 
main effects only. Values reported here show the Bayes factor 
for the null hypothesis against the hypothesis of an interaction.

The estimated Bayes factor (null/alternative) for an interaction 
of condition and trial type in the right FFA was 2.6, suggesting 
that the null hypothesis of no interaction is 2.6 times more 
likely than the alternative hypothesis. Bayes factor (null/
alternative) for an interaction effect in the left FFA was 3.1, 
providing substantial evidence for the null hypothesis.

Regarding the right OFA, a Bayes factor of 3.3, meaning 
that data are 3.3 times more likely to occur under the null 
hypothesis, provides substantial evidence against the presence 
of an interaction effect between the two factors. In the left 
OFA, the calculated Bayes factor for the interaction between 
condition and trial type was 2.9, implying that the null hypothesis 
of no interaction is 2.9 times more likely than the 
alternative hypothesis.

The Bayesian repeated measures ANOVA in the right LO 
revealed a Bayes factor of 3.1, providing substantial evidence 
for the null hypothesis, that there is no interaction between 
the two factors noise level and trial type. For the left LO, the 
Bayes factor for the interaction effect model was 2.6, suggesting 
that the observed data are 2.6 more likely to occur under the 
null hypothesis.

Altogether, the Bayes factor analyses supported the conclusion 
that clarity does not affect the magnitude of RS in any of the 
tested ROIs.

DISCUSSION

The present study aimed at investigating the impact of added 
sensory noise on repetition suppression. First, the results 
show an effect of noise level on the activity in the FFA 
but not in OFA or LO. This is in line with other results 
showing lower FFA activity (Horner and Andrews, 2009) 
or a weaker electrophysiological signal in electrodes over 
the temporal cortex (Banko et  al., 2011) in response to 
noisy faces. Regarding the lateral occipital regions, the same 
studies showed even an enhanced processing in these, earlier 
stages of visual processing (Banko et  al., 2011; Hermann 
et  al., 2015) when exposed to noisy stimuli. However, there 
is also evidence for the opposite result, namely a reduced 
activation with increasing noise level (Malach et  al., 1995) 
or no noise effects at all (Jemel et  al., 2003; Wild and 
Busey, 2004). In the current study, noise had no effect on 
the LO, which is at odds with prior studies (Malach et  al., 
1995; Banko et  al., 2011; Hermann et  al., 2015). The chosen 
noise level could be  one factor leading to this result. 
We applied 45%, whereas prior studies applied slightly higher 
(55%) noise levels (Hermann et  al., 2015). It is possible 
that more noise is necessary to affect the activity of the 
lower level visual areas, whereas higher level visual areas 
are more sensitive to added visual noise. Also, in studies 

finding an elevated BOLD signal for noise in the LO, 
participants had to perform more demanding tasks like 
gender categorization (Wild and Busey, 2004; Banko et  al., 
2011), and the higher task-difficulty might led to enhanced 
neural activity. In contrast, the target detection task in the 
current study was comparatively easy and this could lead 
to the similar activity for noisy and clear stimuli. The fact, 
however, that the behavioral results show an effect of noise 
on participants’ performance argues against this interpretation.

Repetition suppression was found in all the tested regions, 
even if not always in both hemispheres (OFA and LO), 
regardless of the noise level. Therefore, this study joins  
the large body of evidence for this robust effect (for a  
review, see Grill-Spector et  al., 2006). Interestingly, the  
noise added to the stimuli did not affect the magnitude  
of RS in any of the tested cortical areas. This suggests  
that the neural mechanisms driving RS are similar for clear 
and noisy stimuli. The exact nature of these mechanisms  
is highly debated currently in the literature. Specifically,  
while electrophysiological single-cell recording studies suggest 
that RS is explained by local or bottom-up mechanisms, 
such as fatigue (Carandini and Ferster, 1997), several current 
neuroimaging studies support the role of top-down 
mechanisms, such as predictions, in explaining RS (for a 
review, see Grotheer and Kovács, 2016).

Theories of predictive coding (Rao and Ballard, 1999; Friston, 
2005) assume that the human central nervous system 
continuously makes inferences or predictions about the 
surrounding sensory environment and estimates the difference 
of the actual incoming and predicted inputs (prediction error). 
Many studies have suggested so far that this prediction error 
is reflected in the repetition-related response reduction of 
neurons (RS; Summerfield et  al., 2008, 2011; Todorovic and 
de Lange, 2012; Grotheer and Kovacs, 2014; Mayrhauser et al., 
2014; Grotheer and Kovács, 2015). In addition, recent theoretical 
(O’Reilly et  al., 2012) and clinically motivated studies of 
predictive coding (Adams et  al., 2013; Sterzer et  al., 2018) 
suggested that the magnitude of the prediction error, therefore 
of RS, should depend on the precision of the predictions, as 
well as of the incoming sensory data. It has been suggested 
that precise predictions together with more noisy sensory 
evidence lead to enhanced prediction errors while less precise 
priors with more precise incoming sensory stimuli lead to 
reduced prediction errors (O’Reilly et  al., 2012; Adams et  al., 
2013; Auksztulewicz and Friston, 2016; Sterzer et  al., 2018). 
Here we  modeled the precision of the sensory data by adding 
noise to our stimuli and we kept the precision of the predictions 
(i.e., the volatility of the system, Summerfield et  al., 2011) 
constant. We asked if the modulatory effect of stimulus precision 
on prediction errors is reflected in the magnitude of RS. To 
our surprise, the results suggest that RS is insensitive to the 
manipulations of the precision of incoming sensory inputs, at 
least if the precision is modulated by adding noise to the stimuli.

The reason for the lack of modulatory effect of noise 
might be due to the fact that RS is the result of the interaction 
of multiple neural processes. While many prior human 
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electrophysiological and neuroimaging studies explained RS 
in the framework of predictive coding (for a review, see 
Grotheer and Kovács, 2016), other studies explained RS by 
simpler, bottom-up, or local mechanisms (Kaliukhovich and 
Vogels, 2014; Vogels, 2016; Olkkonen et  al., 2017; Vinken 
et al., 2018). Indeed, the separation of RS from its modulation 
by stimulus probabilities and thereby by expectation was 
confirmed by many studies (Larsson and Smith, 2012; Todorovic 
and de Lange, 2012; Grotheer and Kovács, 2015; Feuerriegel 
et  al., 2018). We  presented our Rep and Alt trials with equal 
probabilities; therefore, we  did not modulate probabilistic 
expectations. Thus, it is possible that the manipulation of 
sensory precision affects only the modulation of RS by 
top-down factors, such as probabilistic expectations, but not 
the magnitude of RS per se. This would explain why 
we  observed similar RS for noisy and clear stimuli and at 
the same time requires further specifically targeted studies 
to test. This fact, together with the currently heavily debated 
neural mechanisms of RS (Vinken et  al., 2018), does not 
allow us to conclude that the precision of incoming sensory 
stimulation has no effect on predictive processes at all. 
Nonetheless, our results clearly show that the precision of 
the sensory input is not crucial in determining the RS 
magnitude per se.

Also, we  did not observe repetition enhancement effects 
for the less visible, noisy stimuli which have been reported 
by Turk-Browne and colleagues in their study (Turk-Browne 
et  al., 2007). However, there are several conceptual differences 
between their experiment and the current one. First, they used 
a different stimulus set (indoor and outdoor scenes) and 
therefore measured the BOLD response in different areas 
(parahippocampal place area) as we  did. Second, the task was 
an orthogonal orientation discrimination task in our case, while 
an indoor-outdoor scene discrimination in the Turk-Brown 
study, meaning that it directed attention to the stimulus content. 
Third, and above all, while we used short-lagged stimulus pairs 
(with 500  ms average ISI) the Turk-Brown study used much 
longer, 3-s-long ISI with masked presentations, and it is not 
clear so far if these two types of presentations provoke the 
same neuronal mechanism or not. Altogether, these differences 
make the comparisons of the two studies difficult.

Manipulating the precision of sensory data was not sufficient 
to affect RS magnitudes at all in our study. Provided prediction 
errors are reflected in RS at all, posterior beliefs may be  more 
determined by the precision of the predicted priors than by 
the precision of the sensory inputs. The precision of the priors 
can be  modeled by applying stable, highly predictable or more 
variable, volatile stimulus sequences. Indeed, Summerfield et al. 
(2011) found that the repetition probability-induced modulation 
of RS (measured on visual evoked potentials) was present 
during stable stimulation segments but disappeared almost 
entirely when the stimulation became volatile. The aim of the 
current study was to test the precision of the sensory stimuli 
only; therefore, we did not make an effort to modulate stability/
volatility here. Also, we  assumed the priors to be  the same 
for both noisy and clear conditions and for alternating and 

repeated stimulus pairs. In other words, we kept the probabilities 
of the four trial types equal and constant across the experiment. 
Still, we cannot exclude entirely the possibility, that the a priori 
hypotheses of the “noisy world” are different from those of a 
“clear world.” In other words, introducing noise to the sensory 
input might have had an effect on the predictive priors as 
well. Therefore, the lack of a modulatory effect of sensory 
data precision on RS suggests that future studies should 
manipulate sensory data precision together with the precision 
of prior predictions. Including precision manipulations into 
probabilistic prediction paradigms (e.g., as in Summerfield 
et al., 2008) will provide more insight into predictive processes.

CONCLUSION

The findings of this study are in agreement with previous 
studies showing a reducing effect of noise in the region of 
the fusiform gyrus (Horner and Andrews, 2009; Banko et  al., 
2011). The enhanced activation in more lateral occipital regions 
found in earlier investigations (Banko et  al., 2011; Hermann 
et  al., 2015) could not be  confirmed. This suggests a different 
sensitivity to noise of the different regions. Significant RS was 
present in the FFA (bilateral), right OFA, and left LO. Evidence 
for a modulatory effect of precision on RS could not be proved. 
Therefore, future studies should focus on independently 
manipulating the precision of prior beliefs and sensory inputs 
for a better understanding of its impact on predictive processes.
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c Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia

a r t i c l e i n f o

Article history:

Received 23 October 2019

Reviewed 20 January 2020

Revised 20 March 2020

Accepted 3 July 2020

Action editor Pia Rotshtein

Published online 29 July 2020

Keywords:

Repetition suppression

Expectation

Prediction

fMRI

a b s t r a c t

Repeated presentation of a stimulus leads to reductions in measures of neural responses.

This phenomenon, termed repetition suppression (RS), has recently been conceptualized

using models based on predictive coding, which describe RS as due to expectations that are

weighted toward recently-seen stimuli. To evaluate these models, researchers have

manipulated the likelihood of stimulus repetition within experiments. They have reported

findings that are inconsistent across hemodynamic and electrophysiological measures,

and difficult to interpret as clear support or refutation of predictive coding models. We

instead investigated a different type of expectation effect that is apparent in stimulus

repetition experiments: the difference in one's ability to predict the identity of repeated,

compared to unrepeated, stimuli. In previous experiments that presented pairs of repeated

or alternating images, once participants had seen the first stimulus image in a pair, they

could form specific expectations about the repeated stimulus image but not the alternating

image, which was often randomly chosen from a large stimulus set. To assess the

contribution of stimulus predictability effects to previously observed RS, we measured

BOLD signals while presenting pairs of repeated and alternating faces. This was done in

contexts whereby stimuli in alternating trials were either i.) predictable through statisti-

cally learned associations between pairs of stimuli or ii.) chosen randomly and therefore

unpredictable. We found that RS in the right fusiform face area (FFA) was much larger in

trials with unpredictable compared to predictable alternating faces. This was primarily due

to unpredictable alternating stimuli evoking larger BOLD signals than predictable alter-

nating stimuli. We show that imbalances in stimulus predictability across repeated and

alternating trials can greatly inflate measures of RS, and potentially even mimic RS effects.

Our findings indicate that stimulus-specific expectations as described by predictive coding

models may account for a sizeable portion of observed RS effects.
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1. Introduction

Repeated presentation of a stimulus leads to reduced mea-

sures of neural responses, as observed using a variety of

electrophysiological and neuroimaging techniques (for a re-

view see Grill-Spector et al., 2006). Such effects are commonly

known as repetition suppression (RS) or adaptation. Similarly,

the correct and fulfilled expectation of a forthcoming stimulus

also leads to reduced responses when compared to unex-

pected or surprising stimuli, for several stimulus categories

and measures (known as expectation suppression, ES; for a

review see Summerfield & Egner, 2009).

Explanations of repetition-as well as expectation-related

phenomena under the framework of predictive coding (Rao

& Ballard, 1999) have gained traction in recent years. This is

because, in contrast to several other neurobiologically-

plausible models of RS (for review see Grill-Spector et al.,

2006), predictive coding models describe mechanisms that

can potentially account for observed RS effects, and also how

RS might be modulated by processes related to perceptual

expectations and attention (e.g., Eger, 2004; Murray &

Wojciulik, 2004). Predictive coding models conceptualize RS

as a reduction of prediction error signals, due to perceptual

expectations that are weighted toward recently-encountered

stimuli (e.g., Auksztulewicz & Friston, 2016; Friston, 2005;

Grotheer & Kov�acs, 2015). Factors such as attention are hy-

pothesized to modulate the precision of sensory predictions

(Feldman & Friston, 2010), which in turn influence the extent

of observed RS. Predictive coding models describe different

mechanisms than those in recently-formulated local circuit

models of RS (Dhruv et al., 2011; Kaliukhovich & Vogels, 2016;

Solomon & Kohn, 2014). However, the notion of precision in

predictive coding models allows us to test hypotheses about

how attention and perceptual expectations affect RS, while

specific hypotheses have not yet been derived for the above-

mentioned local circuit models.

Summerfield et al. (2008) was the first to provide empirical

support for the predictive coding model by showing that

neuroimagingmeasures of RS can bemodulated by contextual

factors, such as the probability of stimulus repetition. They

presented pairs of faces in each trial and reported that BOLD

signal differences between repeated and unrepeated stimuli

(i.e., repetition effects) were larger in blocks with high (75%),

compared to blocks with low (25%) repetition probability. This

interaction involving repetition probability was replicated

several times using faces (for a review see Grotheer et al.,

2014), and also for other stimulus categories such as letters

(Grotheer & Kov�acs, 2014) and other non-face objects

(Kronbichler et al., 2018; Mayrhauser et al., 2014). Notably, this

interaction has mostly been reported in studies using func-

tional magnetic resonance imaging (fMRI); when using elec-

trophysiological measures researchers have found separable,

non-interacting repetition and expectation effects

(Feuerriegel, Churches, et al., 2018; Kaliukhovich & Vogels,

2014; Todorovic & de Lange, 2012; Vinken et al., 2018, with

the exception of Summerfield et al., 2011; but see Feuerriegel,

Churches, et al., 2018 for an alternative explanation of this

result).

When interpreting these findings, it is important to

differentiate the neural mechanisms of RS from how RS is

measured within an experiment (typically as a difference be-

tween a comparable repeated and unrepeated stimulus con-

dition). In such experiments, any effect that will influence

repeated and unrepeated stimulus-evoked responses in

differentwayswill also contribute to themeasuredmagnitude

of RS, even if that effect is unrelated to the underlying pro-

cesses responsible for RS (reviewed in Feuerriegel, 2016). In

Summerfield et al. (2008) and similar experiments, partici-

pants could learn to expect stimulus repetitions in the 75%

repetition blocks, whereby in the same block unrepeated

stimulus trials were relatively rare and surprising. Conversely,

in the 25% repetition blocks the unrepeated stimuli were

instead expected, and the repeated stimuli relatively surpris-

ing. Accordingly, the observed RS by expectation interaction

could actually be produced by additive effects of genuine RS

and another, expectation related suppression effect (ES;

Kaliukhovich & Vogels, 2011; Larsson & Smith, 2012), with

expectations suppressing responses to either repeated or

unrepeated stimuli in different block types.

More recent studies have used “cue” stimuli, whereby the

first stimulus in each trial signals the probability of stimulus

repetition, in order to distinguish between additive and

interactive effects of ES and RS. Todorovic and de Lange (2012)

presented pairs of auditory tones, which could either repeat or

change within a trial. The pitch of the first tone predicted

stimulus alternation or repetition with 75% probability. They

reported that RS and ES, as indexed by magnetoencephalog-

raphy (MEG), were separable and occurred at distinct time

windows. In a similar design using face stimuli Grotheer and

Kov�acs (2015) reported that effects of RS and ES on BOLD sig-

nals did not interact and were partly dissociable in the time

course of their effects on the hemodynamic response. In a

follow-up study Amado et al. (2016) added a ‘neutral’ condi-

tion, in which expectations were not weighted toward either

repeated or alternating stimuli, to separately quantify effects

of fulfilled expectations and surprise. They found that sur-

prise had a much larger effect on BOLD signals than fulfilled

expectations, and that this effect of surprise was apparent for

alternating (but not repeated) stimulus conditions (see also

e.g., Figure 2 in De Gardelle et al., 2013; Figure 2 in Larsson &

Smith, 2012). This suggests that, instead of ES modulating

repetition effects, RS might in fact inhibit surprise-related

response enhancement, as found in a recent electroenceph-

alography (EEG) study (Feuerriegel, Keage, et al., 2018). These

results, combined with the inconsistency of findings across

fMRI and electrophysiological recording methods, does not

provide clear evidence that expectations modulate RS in the

way previously specified by predictive coding models.

Besides expectations relating to stimulus repetition prob-

ability, there is another type of expectation that is prevalent in

studies of RS, and relevant for evaluating predictive coding

models of repetition effects. There is evidence from single-cell

recordings of non-human primates (Meyer & Olson, 2011) as

well as human electrophysiological and neuroimaging ex-

periments (Feuerriegel, Churches, et al., 2018; Hall et al., 2018;

Pajani et al., 2017; Turk-Browne et al., 2009) indicating that
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associations are formed between images that are shown

temporally close together, and this association modulates

neural responses. The proposed underlying mechanism is

that the observers learn about the transitional statistics or

rules of the stimulation sequences, as humans do from early

childhood on to learn about their environment (Fiser & Aslin,

2002; Romberg & Saffran, 2011). As a seminal example, Meyer

and Olson (2011) trained macaques to associate originally

unrelated images by presenting the same stimulus pairs over

a prolonged time period. The animals learned that one leading

image was always followed by a specific trailing image. In a

subsequent session, single-neuron activity was recorded from

inferotemporal cortex (IT) while the animals viewed stimulus

pairs which were either previously associated or randomly

paired. IT neurons exhibited higher firing rates following

stimuli which violated previously learned transitional rules,

compared to those that were associated with the previous

image.

This type of statistically learned expectation is relevant to a

large number of stimulus repetition designs that have been

used in the past. In these designs, participants are presented

with two stimuli in each trial, which may be of the same or

different identities. In repetition trials the identity of the

second stimulus can be predicted after seeing the first stim-

ulus in the trial, however the alternating (unrepeated) stim-

ulus is often randomly-chosen from a set of multiple stimuli,

and is very difficult to predict with any certainty (Feuerriegel,

2016). In these cases, there is a difference in the predictability

of repeated and alternating stimulus images. Importantly, this

difference in predictability is distinct from the effects of ful-

filled expectations and surprise mentioned above. Predict-

ability is defined as whether a specific stimulus image can be

anticipated prior to its appearance, whereas expectation and

surprise effects relate to whether an observer's expectation is

fulfilled or violated upon presentation of a stimulus.

This imbalance in predictability across repetition and

alternation trials could theoretically inflate the magnitude of,

or even produce, many previously observed RS effects. Pajani

et al. (2017) investigated this using a design that manipulated

the predictability of the alternating stimuli. They presented

stimuli in repetition blocks, composed of 75% repetition and

25% alternation trials, and alternation blocks, with only a 25%

portion of repetition trials. Crucially, in a third block type 25%

of trials were repetitions and 75% were predictable alterna-

tions, where the second stimulus in the trial was repeatedly

paired with the first stimulus during a prior training session.

They observed large differences in themagnitude of repetition

effects that were apparently due to reductions in BOLD signals

for predictable compared to unpredictable alternating faces.

Further evidence for predictability effects came from a recent

EEG study (Feuerriegel, Churches, et al., 2018), who used a

similar blocked design with predictable and unpredictable

alternating faces. In the so-called “AB” blocks in that experi-

ment the second stimulus in each trial could either be the

same image as the first (repetition trials), or a specific same-

sex face (predictable alternation trials). In the “AX” blocks,

however, the second stimulus could either be a repetition of

the first one, or a same- sex face, selected randomly from a set

of 23 stimuli (unpredictable alternation trials). Differences in

event-related potential (ERP) repetition effect magnitudes

across AB and AX blocks were found during multiple time

windows post stimulus onset. Importantly, these differences

in observed repetition effects were due to differences in ERP

responses to alternating stimuli across block types, while no

differences across AB and AX blocks were found for repeating

stimuli.

Critically, this study did not equate the relative novelty of

AB and AX alternating stimuli, as each individual face identity

was presented many more times in the AB compared to AX

conditions. Similarly, in Pajani et al. (2017) the predictable

alternating stimuli were presented many more times during

the experiment than the unpredictable alternating stimuli,

which were trial-unique. Because of this, it is unclear whether

the observed effects were primarily due to effects of stimulus

predictability or stimulus novelty, both of would have similar

hypothesised effects on neural responses (e.g., Feuerriegel,

2016; Mur et al., 2010; Xiang & Brown, 1998).

We used a similar design to investigate the interplay of

stimulus repetition and predictability effects using fMRI,

while controlling for the relative novelty of predictable and

unpredictable alternating stimuli. The previously introduced

conditions in Feuerriegel, Churches, et al. (2018) were adopted,

including predictable (AB) and unpredictable (AX) alternating

trials. RS was measured by comparing BOLD signals in trials

with repeated and alternating stimulus pairs. Importantly,

prior to the fMRI scanning session participants underwent 4

training sessions on consecutive days, during which they

were presented with 6 predictable alternating face pairs (i.e.,

the first face of a pair was always followed by a given same-

sex face) to create specific face associations for the alter-

nating trials. Because previous fMRI studies that presented

face stimuli (Amado et al., 2016; Egner et al., 2010;

Summerfield et al., 2008) found the most pronounced effects

of stimulus repetition and perceptual expectations in the

fusiform face area (FFA; Kanwisher et al., 1997) we focused our

analyses on this region.

Our design allowed us to control for effects of stimulus

novelty, enabling a more accurate estimate of stimulus pre-

dictability effects in repetition designs. This also allowed us to

assess whether this type of expectation may account for a

portion of previously observed RS effects. To foreshadow our

results, we found that predictability does modulate BOLD re-

sponses in the FFA and acts primarily upon responses to alter-

natingstimuli.Whileour results support thenotionof separable

RS and predictability effects, they also indicate that, when pre-

dictability is confounded with stimulus repetition, as in a large

number of existing studies, RS effects are likely to be inflated (or

perhaps even caused) by this predictability confound.

2. Methods

2.1. Participants

We report how we determined our sample size, all data ex-

clusions (if any), all inclusion/exclusion criteria, whether in-

clusion/exclusion criteria were established prior to data

analysis, all manipulations, and all measures in the study.

Twenty-two volunteers participated in the study. Sample

sizewas determined according to other studies investigating a
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modulation of RS from our lab (Grotheer & Kov�acs, 2014;

Amado et al., 2016; Rostalski et al., 2019). All were informed

about the procedure of the study and gave written consent for

participation beforehand. One participant was excluded due

to incomplete experiment while another participant's data

was partially lost due to technical issues related to the MRI

scanner. The remaining 20 participants (3 males; 4 left-

handed) were between 19 and 28 years of age (M ¼ 21.9,

SD ¼ 2.53). All had normal or corrected-to-normal vision. The

experiment was conducted in accordance with the guidelines

of the Declaration of Helsinki, and with the approval of the

ethics committee of the University of Jena.

2.2. Stimuli

We presented 12 images of upright female faces as stimuli.

Pictures were cropped to show faces without hair or clothes,

resized to 440� 400 pixels, converted to greyscale and equated

in average luminance (Fig. 1A). Stimuli were presented against

a black background using Psychtoolbox v.3.0.14 (Brainard,

1997; Kleiner et al., 2007) in MATLAB 2014a (The Mathworks).

For each participant six stimuli were allocated randomly to be

presented in the AB and the remaining six in the AX condi-

tions. Please note that we did not have permission to publish

the face images used in this experiment. As these images are

protected by a license they cannot be shared.

2.3. Experiment design

Participants first completed a series of behavioural training

sessions, followed by an fMRI session (see Fig. 1C). The

experimental design, including the stimuli and task, was

identical across training and fMRI data acquisition sessions,

except where specified otherwise.

In each trial (Fig. 1A) an adapter (S1) and test stimulus (S2)

were presented for 250 msec, separated by an inter-stimulus

interval (ISI) of 400e600 msec (randomised across trials). The

image size of S2 was 20% smaller than that of S1 to avoid low-

level adaptation processes. Trials were separated by an inter-

trial interval (ITI): for the training sessions, the ITI was 1800,

2000 or 2200 msec, randomly distributed across trials, and for

the fMRI sessions it was 6, 8 or 10 sec.

In each trial, S1 and S2 could either be identical (repetition

trials; Rep) or depicting different identities (alternation trials;

Alt). These trial typeswere presented in two different contexts

(Fig. 1B), labelled as “AB” and “AX”. In the AB context, the S2

face could either be a repetition of the S1 face (Rep trials), or a

specific face identity that had previously been repeatedly

paired and associated with the S1 identity during the training

sessions (Alt trials). In these Alt trials of the AB context, each

S1 face identity was consistently paired with one of the five

other face identities that were allocated to the AB context.

Each S1 identity in the AB stimulus set was paired with a

different S2 face identity, ensuring that each face imagewould

be presented an equal number of times throughout the

experiment. In other words, once the participant has seen a

given S1 face “A”, they could form expectations regarding the

S2 to be a repetition of face “A” or a different, specific identity

“B”. In the AX context S2 could either be the repetition of the

S1 image, or a different identity, pseudo-randomly selected

from the set of 5 other face identities. Therefore, in the AX

context, there were no consistent pairings between S1 and S2

face identities for the Alt trials: S2 could be any of the five

other faces, allocated to AX, ensuring that each face appeared

the same number of times throughout this condition. This

procedure ensured further that each AB and AX face identity

was presented the same number of times across the experi-

ment. Thus altogether, we had two independent factors: trial

type (Rep or Alt) and context, reflecting prior associations

formed for Alt trials (AB) or not having such transitional rules

(AX). The proportion of Rep and Alt trials (i.e., the probability

of stimulus repetition) was 50% in both AB and AX contexts.

2.4. Procedure

MATLAB code used to run the experiment will be available at

https://osf.io/akygb/ at the time of publication. Studymethods

and analyses were not pre-registered prior to the research

being conducted. Participants completed four training ses-

sions across four consecutive days prior to the fMRI mea-

surements. The fMRI session followed the last training session

immediately on the fourth day. Each training session was

composed of twelve blocks (60 trials per block, 720 trials per

session) and lasted approximately 40 min. All sessions took

place at approximately the same time of the day, in the af-

ternoon hours to control for potential changes of attention

that occur across the circadian cycle (Valdez et al., 2010).

During the training sessions participants learned the

S1eS2 transition probabilities associated with face identities

in the AB and AX contexts. Trials of AB and AX context were

presented randomly interleaved within the same blocks of

trials and with equal probability. For the AB context, each face

image pairing (in Alt trials) was presented 120 times

throughout the training sessions while for the AX context

each of the possible Alt S1eS2 combinations was shown 24

times.

During the training and fMRI sessions the participants' task
was to decide whether the S1 and S2 were the same or

different face images by pressing one of two keys on a

keyboard (training session) or MRI-compatible button box

(fMRI session). The spatial layout of response keys/buttons

and associated response fingers were kept constant across

behavioural and fMRI sessions. Instructionswere presented in

the centre of the screen prior to each run. Participants took a

self-paced break between each run. The entire fMRI session

lasted approximately 60 min.

2.5. Image acquisition

Four experimental runs were completed, with each lasting

for about 10 min and including 60 trials. A total of 240 trials

were presented during the fMRI session. An additional

localizer sequence was included to define the location of the

FFA bilaterally (blocks of 40 images, size: 600� 600 pixels on a

grey background; exposition time: 300 msec, ISI: 200 msec;

presenting faces, objects and Fourier-randomized noise

patterns lasting for 20 sec each). To identify FFA and occipital

face area (OFA) we contrasted face blocks with object and

noise blocks (for n ¼ 14) or face blocks with noise blocks (for

n ¼ 6) using a threshold of either p < .05 family-wise error
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(FWE) corrected (n ¼ 15) or p < .0001 uncorrected (n ¼ 5).

Lateral occipital cortex (LO) was defined by contrasting object

and noise blocks. The threshold parameters used to identify

FFA, OFA and LO were always the same within one partici-

pant. We could identify the right FFA in 19 out of 20 partici-

pants (average MNI coordinates (±SE): 41 (1), �48(1), �21 (1)).

We could also define the left FFA in a subset of 15 participants

(average MNI coordinates: �40 (1), �51 (2), �21 (1)) and

included this region of interest (ROI) in a separate analysis.

We could also identify the left and right OFA and left and

right LO using our localiser sequences and have included

further exploratory analyses of these data. All ROI co-

ordinates are listed in our open dataset. From these

coordinates the BOLD signals evoked during the experi-

mental conditionswas extracted using a 2mm radius sphere,

and the peak values were entered into the statistical models.

Magnetic Resonance Images were acquired using a 3-

T magnetic resonance (MR) scanner from Siemens. For func-

tional images, a standard T2-weighted echo-planar imaging

(EPI) sequence (35 slices, 10� tilted relative to axial,

TR ¼ 2000 msec, echo time (TE) ¼ 30 msec, flip angle 90�,
64 � 64 matrices, in plane resolution 3 mm isotopic voxel size)

was used. A high resolution T1-weighted structural 3D scan

was generated using a magnetization-prepared rapid

gradient-echo (MP-RAGE; TR ¼ 2300 msec; TE ¼ 3.03 msec;

1 mm isotropic voxel size). For details of pre-processing and

Fig. 1 e Trial structure and predictability cueing manipulation. A) In each trial S1 and S2 face stimuli were presented,

separated by a 400e600 msec inter-stimulus interval (ISI). The S2 stimulus could either be the same face image as S1

(repetition trials) or a different female face (alternation trials). B) For alternation trials, the S2 face could either be a particular

face “B” that was repeatedly paired with a specific S1 face “A” during the training sessions (AB context) or pseudorandomly-

chosen from a set of 5 different faces (AX context). The probability of stimulus repetition was fixed at 50% across both

contexts. C) Participants completed 4 training sessions over consecutive days. Trial structure, task (same-different forced

choice), stimuli and AB/AX contexts were the same as in the fMRI scanning session but with a shorter ITI duration.

Following the fourth training session participants then completed the fMRI session on the same day. All face images shown

here are subject to a Pixabay license (https://pixabay.com/hu/service/license/). These images were not part of the actual

stimulus set, as we do not have permission to publish the original images. All images in this figure have been processed in

the same way as the original stimuli.
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statistical analysis see Cziraki et al. (2010). Briefly, the func-

tional images were realigned, normalized to the MNI-152

space, resampled to 2 � 2 � 2 mm resolution and spatially

smoothed with a Gaussian kernel of 8 mm FWHM (SPM12,

Welcome Department of Imaging Neuroscience, London, UK).

A general linear model was specified, using the different

conditions, as well as six movement parameters.

2.6. Statistical analyses

Data and code required to reproduce all analyses will be

available at https://osf.io/akygb/ at the time of publication.

The conditions of our ethics approval do not permit sharing of

the raw MRI data supporting this study with any individual

outside the author team under any circumstances. Statistical

analyses were performed using Statistica (StatSoft) and JASP

v0.9.1 (JASP Team). Accuracy rates and mean response times

for trials with correct responses during the training sessions

were analysed using 4 � 2 � 2 repeated measures ANOVAs

with the factors of session (1, 2, 3, 4), context (AB, AX) and trial

type (Rep, Alt). Additionally, we analysed the mean response

times and accuracy rates for the fMRI session using a 2 � 2

repeated measures ANOVA with the factors of context (AB,

AX) and trial type (Rep, Alt). Peak BOLD signal values were

analysed using a 2 � 2 repeated measures ANOVA with the

factors context (AB, AX) and trial type (Rep, Alt). For all ANOVA

models, GreenhouseeGeisser corrections were applied in

cases where Mauchly tests indicated violations of sphericity.

Prior to analyses, one outlier dataset in the right FFA data that

had a very noisy hemodynamic response function and an

unusually large repetition enhancement effect (VP17 in the

openly available dataset) was removed. The HolmeBonferroni

method was used to correct for multiple comparisons for

follow-up tests after findings of statistically significant main

effects and interactions.

We additionally performed exploratory whole-brain ana-

lyses corresponding to each main effect as well as the inter-

action specified in the ANOVA models. The analysis methods

and results are detailed in the Supplementary Material.

3. Results

3.1. Behavioral results

A significant main effect of session was found for response

times (F(1.37, 21.96) ¼ 28.21, p < .001, hp
2 ¼ .64). Because the

Mauchly test of sphericity revealed unequal variances of dif-

ferences in the four-level factor session (c2(5)¼ 29.85, p < .001),

GreenhouseeGeisser corrected values are reported. Partici-

pants gradually became faster at responding across sessions,

with significant differences between session 1 (M ¼ 647 msec,

SE ¼ 57 msec) and session 2 (M ¼ 583 msec, SE ¼ 48 msec;

p < .001), session 2 and session 3 (M ¼ 552 msec, SE ¼ 48 msec;

p ¼ .006) as well as session 3 and session 4 (M ¼ 533 msec,

SE ¼ 44 msec; p ¼ .017). Please note that three participants

were only able to complete three of the four scheduled

training sessions prior to the fMRI session. There was also a

main effect of trial type (F(1,16) ¼ 27.46, p < .001, hp
2 ¼ .63).

Participants responded faster in Rep trials (M ¼ 560 msec,

SE ¼ 68 msec) as compared to Alt trials (M ¼ 598 msec,

SE ¼ 66 msec), showing a behavioural priming effect

(Olkkonen et al., 2017). For response times no other main ef-

fects or interactions were statistically significant (main effect

of context: F(1,16) ¼ 2.53, p ¼ .131, hp
2 ¼ .14, context by trial type

interaction: F(1,16) < .001, p ¼ .986, hp
2 < .001, context by trial

type by session interaction: F(3, 48) ¼ .40, p ¼ .755, hp
2 ¼ .02).

The analysis of response times during the fMRI scanning

session revealed no significant effects. Only a tendency for a

faster responses to repetition trials (M ¼ 545 msec,

SE ¼ 24 msec) compared to alternation trials (M ¼ 562 msec,

SE ¼ 19 msec; F(1,19) ¼ 3.47, p ¼ .078, np
2 ¼ .15) could be found.

There was no significant effect of context (F(1,19) ¼ .15, p¼ .706,

np
2 ¼ .01) nor a context by trial type interaction (F(1,19) ¼ .58,

p ¼ .457, np
2 ¼ .03). Descriptive data showed that response

times during the scanning session (M ¼ 553 msec,

SE ¼ 23 msec) were comparable to those from later training

sessions.

Analyses of accuracy rates during the training sessions

revealed a main effect of trial type (F(1,16) ¼ 4.52, p ¼ .049,

hp
2 ¼ .22) with a small performance advantage for repetition

(M ¼ 95.9%, SE ¼ 2.3%) than for alternation trials (M ¼ 93.8%,

SE ¼ 2.9%). No other main effects or interactions were statis-

tically significant (main effect of session: F(1.50, 24.06) ¼ 1.28,

p ¼ .287, hp
2 ¼ .07, main effect of context: F(1, 16) ¼ .15, p ¼ .708,

hp
2 ¼ .01, trial type by context interaction: F(1, 16)¼ 2.09, p¼ .167,

hp
2 ¼ .12, session by trial type by context interaction: F(3,

48) ¼ .58, p ¼ .634, hp
2 ¼ .04). The results of the scanning session

did not show any significant effects (all p's > .5). Still, the

overall performance (M ¼ 95.2%, SE ¼ 1.3%) showed that par-

ticipants performed the task correctly.

3.2. Neuroimaging results

We performed a two-by-two repeated measures ANOVA with

factors context (AB, AX) and trial type (Rep, Alt) on peak BOLD

signals in the bilateral FFA (data shown in Fig. 2), bilateral OFA

(Fig. 3) and bilateral LO (Fig. 4). In the right FFA (Fig. 2A and B),

there was a significant RS effect; stimuli in Rep trials evoked

smaller BOLD signals (M ¼ .65 percent signal change, SE ¼ .08)

compared to those in Alt trials (M¼ .71, SE¼ .08; main effect of

trial type, F(1,17) ¼ 17.65, p < .001, hp
2 ¼ .51).

We also found an interaction between context and trial

type in the rFFA (F(1,17) ¼ 5.49, p ¼ .032, hp
2 ¼ .24). Plotting this

interaction effect revealed larger RS magnitude in the AX

context (mean repetition � alternation difference ¼ �.095,

SE¼ .022) as compared to the AB context (M ¼�.022, SE¼ .020,

shown in Fig. 2B). Additionally, there appeared to be a larger

magnitude effect of context on Alt trials, with AX Alt trials

evoking larger BOLD signals than AB trials (mean AB � AX

context effect¼ �.046, SE ¼ .018). In contrast, BOLD signals for

AB and AX Rep trial differences did not differ as much

(M ¼ .027, SE ¼ .020). Altogether, these results suggest that the

extent of the observed RS largely depends on the signal

magnitude of the Alt trials and this, in turn, is reduced by prior

associations of S1 and S2.

As we could identify the left FFA using our localiser se-

quences in a subset of participants, we included this ROI in an

exploratory analysis (data shown in Fig. 2C and D). We found

an RS effect (main effect of trial type, F(1,14) ¼ 12.16, p ¼ .004,
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hp
2 ¼ .47), but no main effect of context (F(1,14) ¼ 1.87, p ¼ .194,

hp
2 ¼ .12). There was also a statistically significant interaction,

with larger repetition effects observed in AX contexts

(F(1,14) ¼ 5.86, p ¼ .030, hp
2 ¼ .30).

Notably, we did not observe statistically significant RS ef-

fects in our sample in the AB context, for the right FFA

(t(17) ¼ �1.10, uncorrected p ¼ .287) or left FFA (t(14) ¼ �.23,

uncorrected p ¼ .819, mean Rep � Alt difference ¼ �.004,

SE ¼ .019), whereas we did find significant RS effects in the AX

context (right FFA: �4.31, uncorrected p < .001; left FFA:

t(14) ¼ �3.49, uncorrected p ¼ .004, M ¼ �.094, SE ¼ .027).

We conducted additional exploratory analyses using data

from bilateral OFA and bilateral LO ROIs.We could identify the

right OFA in n ¼ 19 participants and the left OFA in n ¼ 18

participants. We first performed a two-by-two repeated

measures ANOVA with factors context (AB, AX) and trial type

(Rep, Alt) on peak BOLD signals in the right OFA (data shown in

Fig. 3A and B). There was a significant RS effect whereby

stimuli in Rep trials evoked smaller BOLD signals compared to

those in Alt trials (F(1, 18)¼ 6.14, p¼ .023, hp
2 ¼ .25). Therewas no

significant effect of context (F(1, 18) ¼ .42, p¼ .528, hp
2 ¼ .02), nor

a significant context by trial type interaction (F(1, 18) ¼ .18,

p ¼ .676, hp
2 ¼ .01).

For analyses of the left OFA (data shown in Fig. 3C and D)

there were no statistically significant effects (main effect of

trial type: F(1, 17) ¼ 3.91, p ¼ .064, hp
2 ¼ .19; main effect of

context, F(1, 17) ¼ 1.27, p ¼ .275, hp
2 ¼ .07; trial type by context

interaction, F(1, 17) ¼ .67, p ¼ .424, hp
2 ¼ .04).

We could identify the right LO in n ¼ 20 participants and

the left LO in n ¼ 20 participants. We first performed a two-by-

two repeated measures ANOVA with factors context (AB, AX)

and trial type (Rep, Alt) on peak BOLD signals in the right LO

(data shown in Fig. 4A and B). There was no significant RS

effect (F(1, 19) ¼ .18, p ¼ .678, hp
2 ¼ .01). There was no significant

effect of context (F(1, 19) ¼ .63, p ¼ .429, hp
2 ¼ .03), nor a signif-

icant context by trial type interaction (F(1, 19) ¼ .65, p ¼ .431,

hp
2 ¼ .03).

As we found for the right FFA results, there was an un-

usually large repetition enhancement effect and a noisy he-

modynamic response function for a certain participant (see

the very large positive AX context rep-alt difference in Fig. 4B).

We treated this participant as an outlier and repeated our

analyses excluding this participant and found similar results.

The main effect of repetition still did not quite reach our p-

value threshold for significance (F(1, 18) ¼ 4.34, p ¼ .052,

hp
2 ¼ .19). There were also no significant effects of context (F(1,

Fig. 2 e BOLD signal results for the right FFA (top row) and left FFA (bottom row). A, C) Peak BOLD signals for each Rep/Alt and

AB/AX condition. Dots represent individual data points. Black lines represent group means. Error bars depict standard

errors of the mean. Shaded areas depict the distributions of data for each condition. B, D) Repetition and context effects.

Repetition effect (Rep ¡ Alt) magnitudes for each context are shown in the left panels. Differences in BOLD signals by AB/AX

context are displayed for repetition and alternation trials in the right panels.
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18) ¼ 1.42, p ¼ .249, hp
2 ¼ .07) nor a trial type by context inter-

action (F(1, 18) ¼ .23, p ¼ .640, hp
2 ¼ .01).

For analyses of the left LO (data shown in Fig. 4C and D)

there were no statistically significant effects (main effect of

trial type: F(1, 19) ¼ 1.80, p ¼ .195, hp
2 ¼ .09; main effect of

context, F(1, 19) ¼ 1.30, p ¼ .269, hp
2 ¼ .06; trial type by context

interaction, F(1, 19) ¼ .83, p ¼ .375, hp
2 ¼ .04).

Additionally, we performed an exploratory second-level

analysis with all 20 subjects. A summary of the whole-brain

analysis results can be found in the supplementary material.

4. Discussion

To investigate the interplay between repetition and expecta-

tion effects, we presented pairs of faces which could either

repeat or alternate within a trial, in two different contexts. In

one context, the alternating faces were chosen randomly and

were therefore unpredictable, while in the other context the

second face in alternating trials could be predicted after

seeing the first, due to previously learned transitional rules

and contingencies. In both contexts, the repeated stimuli were

predictable. We found face repetition-related reductions of

BOLD signals in the left and right FFA and in the right OFA,

consistent with a large body of work (for a review see Grill-

Spector et al., 2006). We also report that responses to alter-

nating stimuli differed markedly, depending on the context;

unpredictable stimulus pairs (in the AX context) evoked larger

BOLD signals than those which were predictable (in the AB

context) in the FFA. This in turn modulated the measured

repetition-alternation signal differences that typically defines

the measurement of RS, and even determined whether or not

we found statistically-significant RS effects in our sample.

Here, the point estimate of RS magnitude in the right FFA was

over four times as large in the AX (M ¼ .095) compared to AB

(M ¼ .022) contexts. Our results demonstrate that stimulus

predictability effects can substantially inflate conventional

measures of RS, or even mimic the effect of stimulus repeti-

tion, when predictability is not equated between repeated and

alternating stimuli. While it seems unlikely that all prior re-

ports of RS could be fully explained by differences of stimulus

predictability, this effect has likely inflated repetition effect

sizes in a large number of existing studies.

Our results are in line with those of Pajani et al. (2017) and

Feuerriegel, Churches, et al. (2018), who found similar effects

of stimulus predictability using BOLD and ERP measures,

respectively. Importantly, our design also controlled for ef-

fects of stimulus novelty across predictable and unpredictable

contexts, which could have produced the patterns of effects

seen in their experiments (Mur et al., 2010; Xiang & Brown,

1998). In their studies, the alternating stimuli in AB-type

conditions were presented many times to the participants,

yet the alternating stimuli in AX-type conditions were pre-

sented much more rarely (Feuerriegel, Churches, et al., 2018)

Fig. 3 e BOLD signal results for the right OFA (top row) and left OFA (bottom row). A, C) Peak BOLD signals for each Rep/Alt

and AB/AX condition. Dots represent individual data points. Black lines represent group means. Error bars depict standard

errors of the mean. Shaded areas depict the distributions of data for each condition. B, D) Repetition and context effects.

Repetition effect (Rep ¡ Alt) magnitudes for each context are shown in the left panel. Differences in BOLD signals by AB/AX

context are displayed for repetition and alternation trials in the right panel.
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or only once in the experiment (Pajani et al., 2017). By contrast,

we presented each face image in the AB and AX contexts an

equal number of times, thereby replicating their findings

while also controlling for effects of novelty.

Notably, effects of stimulus predictability seem to be

consistent across hemodynamic and electrophysiological

measures, in contrast to effects of repetition probability ma-

nipulations as used in Summerfield et al. (2008) and subse-

quent replications. The effects of stimulus predictability seen

here resemble expectations derived through statistical

learning of image transition probabilities (as seen in single-

cell recording measurements by Meyer & Olson, 2011), pro-

duced by the pairing of specific images, rather than more ab-

stract expectations about whether a stimulus will repeat or

not. These types of expectations appear to be qualitatively

different to expectations pertaining to more abstract se-

quences of stimuli, and there is some evidence that these two

have interacting effects on neural responses (Costa-Faidella

et al., 2011; Feuerriegel, Keage, et al., 2018; Mittag et al., 2016).

Similar to the EEG study of Feuerriegel, Churches, et al.

(2018), we observed that these context effects predominantly

acted upon responses to alternating rather than repeated

stimuli. This indicates that stimulus predictability selectively

influenced responses to alternating stimuli, which does not

modulate the underlying mechanisms of RS per se, but does

influence how it is measured in commonly-used immediate

repetition designs (Grill-Spector et al., 2006). This pattern of

results also suggests that the violation of image-specific

expectations (i.e., surprise) may underlie the observed pre-

dictability effects, and be responsible for BOLD signal in-

creases in AX alternating trials. In our design, the likelihood of

each trial type (AB-Rep, AB-Alt, AX-Rep and AX-Alt) was

equated throughout the experiment. However, the relative

likelihoods of the appearance of specific face images in each

context were not. For example, in AB trials the S2 face could

either be a repetition of S1, or a specific different face identity,

with a probability ratio of 1:1. In contrast, after seeing S1 in the

AX trials, an image repetitionwould occur 50% of the time, yet

each of the 5 possible alternating face images could each

appear with a probability of 10%, leading to a probability ratio

of 5:1. If participants' expectations depended on the relative

appearance probabilities of specific images, then this would

lead to expectations more strongly weighted toward repeti-

tions in AX contexts, and larger surprise-related BOLD in-

creases following AX alternating stimuli. According to this

interpretation, onemight also expect to see similarmagnitude

suppression of BOLD signals for AX repetition trials, reflecting

ES, whereas we observed larger context effects for alternating

trials. This may be because surprise seems to have a larger

effect on neural responses than fulfilled expectations (Amado

et al., 2016; Kov�acs & Vogels, 2014). In addition, there is evi-

dence that effects of fulfilled expectations and surprise are

diminished for repeated stimuli (reviewed in Feuerriegel,

Keage, et al., 2018). So, it appears that surprise-related

response enhancement in AX alternating trials may have

played an important role in inflating measures of RS.

Fig. 4 e BOLD signal results for the right LO (top row) and left LO (bottom row). A, C) Peak BOLD signals for each Rep/Alt and

AB/AX condition. Dots represent individual data points. Black lines represent group means. Error bars depict standard

errors of the mean. Shaded areas depict the distributions of data for each condition. B, D) Repetition and context effects.

Repetition effect (Rep ¡ Alt) magnitudes for each context are shown in the left panel. Differences in BOLD signals by AB/AX

context are displayed for repetition and alternation trials in the right panel.
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We caution that our findings should not be interpreted as

that repetition effects in general are simply due to a stimulus

predictability effect. Previous experiments using AB-type de-

signs and stimulus associations have reported repetition ef-

fects (Feuerriegel, Churches, et al., 2018, 2019; Pajani et al.,

2017; Todorovic & de Lange, 2012). In fact, one of the earliest

mentions of RS in macaques was from the seminal study of

Gross et al. (1979), using an AB-type design, with associated

stimuli and an S1eS2 matching task. In addition, we note that

the RS effects in our study may not be strictly localized to the

FFA, and may partly index inherited effects due to RS in re-

gions early in the visual stream, such as V1, providing altered

input to higher-level regions. Such ‘inherited adaptation’ ef-

fects (Kohn, 2007) have been widely documented (reviewed in

Feuerriegel, 2016; Larsson et al., 2016) and small size changes

between S1 and S2 would not fully control for such effects,

given the large receptive field sizes that are present in areas

earlier than the FFA in the visual hierarchy. A recent opto-

genetic study has cast doubt on the notion that RS is locally

generated in IT (Fabbrini et al., 2019), and so it remains to be

seen what the magnitude of RS effects would be when con-

trolling for both inherited adaptation and stimulus predict-

ability. An investigation of RS in this context should aim for

higher precision (i.e., more trials per participant, or a larger

sample size) than in the current study and most previous

studies of RS. This is because RS, which is usually a very

robust effect, was not even statistically significant in the AB

context in our sample, suggesting that the true magnitudes of

‘true’ RS effects may be smaller than previously assumed.

While our findings do not provide strong evidence for or

against predictive coding models that incorporate the notion

of sensory precision (e.g., Auksztulewicz & Friston, 2016), it

does appear that expectations can account for a proportion of

repetition effects observed in many experiments. Results of

recent experiments have not provided clear support for

precision-based predictive coding models of RS (e.g., Amado

et al., 2016; Rostalski et al., 2019; Vinken et al., 2018) and

further tests of key model predictions are needed. While RS

can be conceptualized as reflecting a strong prior belief to-

wards stimuli encountered in the immediate past, it is still

unclear exactly how RS fits within the broader taxonomy of

expectation-related phenomena.

RS, ES and predictability effects are often difficult to

disentangle in experimental designs. Convergent evidence

across recording modalities and experimental manipulations

will be critical for separating and characterizing each contri-

bution to repetition effects. For example, electrophysiological

recordings with high temporal resolution have been useful for

identifying distinct effects of repetition and expectation that

occur over multiple time windows following stimulus onset

(e.g., Feuerriegel, Churches, et al., 2018), which are likely to be

conflated when measuring BOLD signals. Methods targeting

specific aspects of local neural circuit activity may also be

useful, such as those employing optogenetic techniques (e.g.,

Fabbrini et al., 2019). Given that ES appears to be highly

dependent on participants attending to the stimuli of interest

(e.g., Larsson & Smith, 2012; Smout et al., 2019) assessing the

time windows and measures of neural activity that are (and

are not) sensitive to attention may also help partition the

different phenomena that contribute to repetition effects as

measured in neuroimaging experiments.

Our results should be interpreted with the following ca-

veats in mind. First of all, our study used an immediate

repetition design, and our results may not be generalizable to

RS as measured using delayed repetition paradigms, in which

a number of different intervening stimuli are presented be-

tween the first and repeated presentations of a given image

(reviewed in Henson, 2016). Although predictive coding

models encompass both types of repetition effects (e.g.,

Auksztulewicz & Friston, 2016) it is likely that these rely on

different sets of neural mechanisms (Epstein et al., 2008;

Weiner et al., 2010). It remains unclear whether these should

be capturedwithin a unifying framework, or if different sets of

underlying mechanisms produce similar effects in each type

of repetition design.

Second, we emphasize that the repetition effects observed

in the current study likely index effects of adaptation of low-

and mid-level features that may be inherited by higher level

regions in the visual system (Kohn, 2007). Consequently, our

results do not provide insights into the tuning or organization

of neurons within ventral temporal cortex that may encode

face identities. Several studies have yielded insights into the

organization of such tuning schemes using stimulus repeti-

tion and adaptation designs (e.g., Drucker & Aguirre, 2009;

Leopold et al., 2006; Loffler et al., 2005). However, our results

do warrant caution in interpreting results of experiments in

which the predictability of stimulus images systematically

differed across conditions (e.g., Loffler et al., 2005).

Also, in this experiment we required participants to indi-

cate whether each trial contained a repetition or alternation.

This may have led to differences in response strategies for

repeated and alternating stimuli. For example, some partici-

pants may have made their judgements by first determining

whether the first and second stimuli match, leading to faster

RTs in repetition trials. It is unclear whether this potential

difference in strategies also led to a portion of the observed RS

effects in our study. However, we believe that task-related

effects are not responsible for the observed predictability ef-

fects on RS, given that we did not find a difference in RTs

across predictability conditions, and that previous studies

have found similar interactions using different tasks

(Feuerriegel, Churches, et al., 2018; Pajani et al., 2017).

In addition, we did not find differences in mean RTs and

accuracy scores across AB and AX conditions, despite exten-

sive training and exposure to the stimulus pairings. This is

despite our findings of stimulus repetition effects on the speed

of responding. Because of this, it is unclear whether the pre-

dictability effects found in our neuroimaging results were

actually used for decision making during the task. Validly-

cued expectancies for certain stimuli have led to faster re-

sponses in previous studies (Hall et al., 2018; Mulder et al.,

2012). However, these experiments have typically conflated

expectations to see a certain stimulus with expectations to

make the motor action required to report the perceptual de-

cision corresponding to that stimulus (Gold & Stocker, 2017).

For example, in a left/right motion discrimination task, a cued

expectation to see a leftward-moving stimulus co-occurs with

an expectation to press the response button associated with
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leftwardmotion. This bias in motor action preparation, which

can even precede the onset of a decision-relevant stimulus, is

likely to account for a substantial portion of expectation-

related effects on RTs (e.g., Bogacz et al., 2010; de Lange

et al., 2013). In our task there were no cued biases toward a

particular button response, and participants' expectations for

how to respond were balanced across AB and AX contexts. In

other words, participants' expectations to observe a repetition

or alternation was not biased as the probability of each trial

type was kept constant at 50%. This may be why we did not

observe predictability effects on behaviour.

More generally, the relationships between decision-

making performance and expectation and repetition effects

have not been clearly defined. Recent studies have cast doubt

on the idea that contextual expectations affect sensory rep-

resentations that are used for perceptual decision making,

particularly when controlling for effects of feature-selective

attention (Bang & Rahnev, 2017; Rungratsameetaweemana

et al., 2018). Repetition priming effects on RTs also tend to

be more consistently associated with RS that occurs in frontal

regions rather than in the visual system (reviewed in Horner,

2012; Wig, 2012; Schacter et al., 2012). It is possible that the RS

and predictability effects observed in our study are related to

particular types of learning and behaviour, but are not re-

flected in accuracy or mean RT measures in discrete choice

perceptual decision tasks (Wig, 2012).

An additional point is that our study included multiple

training sessions before fMRI scanning. These sessions were

included so that participants had ample opportunity to learn

the stimulus image transition probabilities for alternating

stimuli in the AB and AX blocks. Without a training period,

the participants could not learn to form image-specific ex-

pectations for alternating face images in our experiment.

The face images would have become highly familiar to par-

ticipants during the training sessions, in contrast to rela-

tively novel or trial-unique face stimuli used in many

previous studies (e.g., Amado et al., 2016; Summerfield et al.,

2008). Face familiarity does influence how faces are encoded

(Johnston& Edmonds, 2009; Ramon& Gobbini, 2018; Young&

Burton, 2017) which may consequently alter the magnitude

of RS (e.g., see Henson, 2016 for strong evidence of familiarity

effects in delayed repetition designs). For example, it is

possible that neural population level representations of each

face identity became more distinct with familiarization

(Freedman et al., 2006; Meyer et al., 2014) leading to larger

observed RS (Verhoef et al., 2008; De Baene & Vogels, 2010). It

is unclear whether this number of training sessions is

required for developing image-specific expectations, and the

study of Pajani et al. (2017) used a much shorter training

protocol. Future work could investigate whether transition

probabilities could be learned more rapidly than the famil-

iarization process, and whether similar predictability effects

are observed for relatively novel stimuli.

5. Conclusion

We have shown that, in immediate repetition designs, an

observer's capacity to predict the image of repeated compared

to unrepeated stimuli has a substantial effect on the observed

magnitude of RS.While this does not necessarilymean that RS

is best accounted for by predictive coding models, it does

indicate that measures of repetition effects have likely been

inflated due to this confound in a very large number of pre-

vious studies, including those run within our own labs. We

also highlight stimulus predictability as an important, yet

commonly overlooked, factor to consider when investigating

the hierarchy of expectation effects implemented within the

visual system.
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1. Methods and Results For the Whole-Brain Analyses 

To test whether effects of repetition or predictability were observed in other areas 

than the predefined ROIs, we performed a group-level whole-brain analysis testing for 

the main effect of context, the main effect of trial type and a context x trial type 

interaction. Therefore, we created contrasts for every experimental condition for all 20 

participants and submitted those to a flexible design group level analysis with 

conditions subject, context and trial type. We used a threshold of p < 0.05 (FWE) with 

a minimum cluster size of > 50 voxels. All statistically significant clusters of effects are 

listed in Supplementary Table 1. Locations of statistically significant clusters with the 

strongest activation for each contrast, as well as an additional activation in the FFA are 

visually depicted in Supplementary Figure 1. 

 AX trials evoked larger BOLD signals than AB trials at four clusters located 

within Brodmann Area (BA) 11, BA 23, BA 39 and BA 32. When testing for voxels with 

larger BOLD signals in the AB compared to AX trials, no statistically significant 

clusters were found.  

 Repetition trials evoked larger BOLD signals compared to alternation trials 

(Rep > Alt) across three clusters located within BA 38, BA 6 and the Pulvinar. Three 

clusters of voxels exhibiting the opposite pattern (Alt > Rep) were identified within the 

Pulvinar and BA 21 and a cluster in the fusiform gyrus (BA 37).  

 No statistically significant clusters were found when testing for the interaction 

of context and trial type.  
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Supplementary Table 1. Summary of significant activations identified from the group 

level whole-brain analysis 

CONTRAST BRAIN REGION COORDINATES  CLUSTER 

SIZE 

(VOXELS) 

THRESHOLD 

 

AX > AB 

 

Medial frontal gyrus; 

Brodmann area 11 

-4, 36, -14 89 P < 0.05, FWE 

 Posterior cingulate; 

Brodmann area 23 

4, -58, 14 217 P < 0.05, FWE 

 Angular gyrus; 

Brodmann area 39 

 48, -72, 30 63 P < 0.05, FWE 

 Anterior cingulate; 

Brodmann area 32 

14, 48, -4 107 P < 0.05, FWE 

REP > ALT 

 

Superior temporal 

gyrus; Brodmann area 

38 

42, 12, -20 60 P < 0.05, FWE 

 

 Superior frontal gyrus; 

Brodmann area 6 

24, 10, 54 403 P < 0.05, FWE 

 Pulvinar -12, -28, 16 

 

86 P < 0.05, FWE 

ALT > REP 

 

Pulvinar -20, -24, 6 1611 P < 0.05, FWE 

 Fusiform Gyrus, 

Brodmann area 37 

38, -48, -20 271 P < 0.05, FWE 

 Middle temporal gyrus, 

Brodmann area 21 

-54, 8, -20 

 

446 

 

P < 0.05, FWE 

 

 



 4 

 

Supplementary Figure 1. Selected clusters of statistically significant voxels overlaid by 

the average anatomical image of our subject group. Strongest activation for the AB > 

AX contrast (leftmost panel) in the medial frontal gyrus and Rep > Alt contrast 

(middle left panel) in the superior temporal gyrus and two clusters for the Alt > Rep 

contrast (right panels) in the Pulvinar and the fusiform gyrus are displayed. 
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ABSTRACT 12 

Identifying the faces of familiar persons requires the ability to assign several different images of a face 13 

to a common identity. Previous research showed that the occipito-temporal cortex, including the 14 

fusiform and the occipital face areas, is sensitive to personal identity. Still, the viewpoint, facial 15 

expression, and image-independence of this information are currently under heavy debate. Here we 16 

adapted a ambient-face rapid serial visual stimulation paradigm (Johnston et al., 2016) and presented 17 

highly variable images of famous persons to measure fMRI adaptation. FMRI adaptation is considered 18 

as the neuroimaging manifestation of repetition suppression, a neural phenomenon currently 19 

explained as a correlate of reduced predictive error responses for expected stimuli. We revisited the 20 

question of image-invariant identity-specific encoding mechanisms of the occipito-temporal cortex, 21 

using fMRI adaptation with a particular interest in predictive mechanisms. Participants were presented 22 

with trials containing eight different images of a famous person, images of eight different famous 23 

persons, or seven different images of a particular famous person followed by an identity change to 24 

violate potential expectation effects about person identity. We found an image-independent 25 

adaptation effect of identity for famous faces in the fusiform face area. However, in contrast to 26 

previous electrophysiological studies using similar paradigms, no release of the adaptation effect was 27 

observed when identity-specific expectations were violated. Our results support recent multivariate 28 

pattern analysis studies, showing image-independent identity encoding in the core face-processing 29 

areas of the occipito-temporal cortex. These results are discussed in the frame of recent identity-30 

processing models and predictive mechanisms. 31 

 32 
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 39 

INTRODUCTION 40 

The efficient processing of human faces is an important aspect of social perception. In addition to 41 

detecting or recognizing faces in general, the identification of specific familiar faces across a variety of 42 

changes in low-level features, such as viewing angle, expression, illumination, or image contrast, is an 43 

important ability (Jenkins and Burton, 2011), giving us a great advantage in social situations. Although 44 

we are able to perceive a great deal of information even from unfamiliar faces (e.g., sex, age, emotional 45 

state, etc.), the identification of a familiar person requires a pre-existing internal representation of that 46 

particular person. Tasks involving face recognition or identification (e.g., face matching) that are easy 47 

for familiar faces can be very challenging for faces of persons we do not know (Bruce et al., 2001). 48 

Thus, it seems more and more likely that familiar and unfamiliar faces are represented differently 49 

(Kovács, 2020). Although forming a differential representation of an unfamiliar identity (ID) by 50 

performing perceptual tasks, such as sorting faces has been found to be stable enough to elicit a 51 

differential electrophysiological response in later event-related potential (ERP) components (Andrews 52 

et al., 2017), most studies found that this type of familiarization is not sufficient for creating a stable 53 

and robust ID representation in the brain (Dubois et al., 1999; for a review see Natu and O’Toole, 2011). 54 

Hence, the exact process of forming a stable identity representation is still unknown (for a recently 55 

proposed model, see Kovács, 2020). However, an image-invariant representation is essential for the 56 

identification of a person across a wide variety of possible situations and stimulus material. 57 

In an influential model of face processing (Haxby et al., 2000 and Gobbini and Haxby, 2007), areas in 58 

the fusiform gyrus represent the ID of a perceived face. Although we now know that a broader network 59 

of regions is involved in ID-specific information processing (Duchaine and Yovel, 2015), the fusiform 60 

gyrus is still considered to be part of the so-called core face network, supporting higher, more holistic, 61 

level of face representation compared to the feature-based representations supported by the inferior 62 

occipital gyrus (for a recent multivariate pattern analysis paper, supporting this conclusion see 63 

(Tsantani et al., 2021). Therefore, the fusiform gyrus is a strong candidate structure for focusing 64 

experiments testing image-invariant face identification processes – that is to say, theoretically, the FFA 65 



is proposed to be responsible for identifying facial identity at a conceptual level, rather than simply 66 

categorizing familiar images as belonging to different ID categories. A well-established method for 67 

testing the extent of stimulus and stimulus-attribute sensitivity of an area is fMRI- adaptation (fMR-a; 68 

Grill-Spector & Malach, 2001; Krekelberg et al., 2006). This technique has already been used 69 

extensively for twenty years to test for functional characteristics of cortical neurons in several studies 70 

(Grill-Spector et al., 1999). For example signal adaptation in the lateral occipital cortex could be 71 

observed despite changes in position or size of objects (Malach et al., 1995). If a neuronal population 72 

keeps showing reduced responses to a specific object repeatedly presented but in different 73 

orientations, these neurons are considered viewpoint-invariant (Andresen et al., 2009). A release from 74 

this stimulus-repetition-related adaptation, on the other hand, would be regarded as evidence that 75 

this neuronal population encodes the viewpoint. By similar logic, across a set of highly variable 76 

(“ambient”) face images, if what remains stable with respect to repetition across those set of images 77 

is person identity at a conceptual level, such modulation of the neuronal response would be considered 78 

as evidence that the neuronal population encodes person identity. 79 

A reduced response to repeated face images in the fusiform face area (FFA; Kanwisher, McDermott, & 80 

Chun, 1997) has been shown by many previous studies, using similar techniques (Andrews and 81 

Ewbank, 2004; Loffler et al., 2005), improving our understanding of face representations. Still, it is not 82 

fully clarified under which circumstances an adaptation effect can be found in ventro-temporal face 83 

processing regions. For example, changes in viewpoint were found to result in a release from 84 

adaptation in the FFA for unfamiliar, but not for familiar faces (Ewbank and Andrews, 2008), suggesting 85 

their differential encoding within the area. This led to the conclusion that the representation of familiar 86 

faces is rather viewpoint-independent while that of unfamiliar faces is viewpoint-specific. In other 87 

words, different viewpoints of unfamiliar IDs may be perceived as different IDs, whereas familiar ID 88 

representations in the FFA are more stable. 89 

The fact that this difference could be found in the FFA provided further evidence for a representation 90 

of facial ID in this region. Eger et al. (2005) used familiar and unfamiliar faces differing in rotation angle 91 

and expression and found a stronger image-independent reduction in activity due to ID repetition in 92 

anterior than in the middle fusiform gyrus, especially for familiar faces. Later, Xu, Yue, Lescroart, 93 

Biederman, & Kim (2009) measured the BOLD signal in the FFA elicited by two artificially generated 94 

and, therefore, unfamiliar faces from either the same person or different identities and either with the 95 

same or with varying viewing angles. They demonstrated that both the change in ID and viewpoint 96 

elicited a larger BOLD signal in the FFA compared to presenting identical images. Notably, the ID and 97 

viewpoint changing conditions led to similar BOLD signals, indicating that both led to a release of 98 

adaptation equally. This finding puts doubt on the role of FFA in the encoding of invariant aspects of 99 

face processing as shown in other fMR-a studies (Eger, Schyns, & Kleinschmidt, 2004; Winston, Henson, 100 



Fine-Goulden, & Dolan, 2004). For example, Davies-Thompson, Gouws, & Andrews (2009) tested 101 

whether occipito-temporal face-selective regions use an image-invariant neural code for familiar face 102 

representation in a block design. They contrasted blocks of repetitions of identical images of the same 103 

ID with blocks of different images of the same ID and blocks containing different images of different 104 

identities – for familiar and unfamiliar identities, separately. A reduced response to the same image - 105 

same ID condition, compared to different images of different identities, was found both for familiar 106 

and unfamiliar faces in the FFA. Surprisingly, showing different images from the same or different 107 

identities resulted in different responses neither for unfamiliar nor familiar faces. In a subsequent 108 

study, Davies-Thompson, Newling, & Andrews (2013) replicated these results with a slightly different 109 

design: presenting blocks of eight different images of the same ID in contrast to blocks with eight 110 

images of different identities did not result in a significantly reduced response in the FFA nor occipital 111 

face area (OFA). Altogether, these neuroimaging results suggest the existence of a relatively low-level, 112 

image-dependent representation of ID within the core network areas. This conclusion, however, is at 113 

odds with more recent studies, which used machine learning techniques to perform multivariate 114 

pattern analyses (MVPA) on the FFA. Axelrod and Yovel (2015) were able to discriminate between the 115 

response patterns obtained for the different images of two highly familiar identities reliably. Recently, 116 

Tsantani et al. (2021) used short video clips and tested the available information in FFA and OFA. They 117 

found that both the OFA and the FFA contain ID-specific information and that the FFA reflects higher-118 

level and more image-independent information than the OFA. Thus, so far, no consensus exists in the 119 

literature regarding the nature of ID representation of the core face-processing network areas.  120 

Notwithstanding, there is clear evidence for the existence of an early-mid latency ID-specific 121 

adaptation effect from recent EEG and MEG studies (e.g., Simpson et al., 2015). Simpson and 122 

colleagues ( 2015) used an MEG adaptation design to show that faces but not objects showed clear 123 

adaptation effects localized to the FFA at around 170ms post-stimulus onset. This region also showed 124 

a release from adaptation to different identity faces at a latency of around 250-300ms post-stimulus 125 

onset. This implies that the FFA is engaged, at different latencies, both in the holistic processing and 126 

individuation of face stimuli and, at a slightly later latency, of attaching these holistic face images to 127 

particular person identities.  128 

Additional evidence comes from Johnston and colleagues (2016). They found a modulation of the face-129 

sensitive N170 amplitude by introducing expectations about the appearance of a given ID, using 130 

several highly variable, ambient (Jenkins and Burton, 2011) face images of the same person in the EEG. 131 

A rarely occurring similar image of a different ID in a stream of various face images of the same person 132 

was perceived as a deviant. Accordingly, the release from adapting to one ID by encountering a 133 

different one manifested in a higher N170 amplitude. The authors related the underlying processes of 134 

their observation to predictive coding theories (Friston, 2005; Rao and Ballard, 1999). Those could 135 



explain this increase in activity since it is assumed that perception is based on expectations that rely 136 

on the prior statistical probability of events. These rely on experiences and are called “prior beliefs,” 137 

which are continuously updated in the course of our everyday life. For example, a stream of images 138 

showing the same ID would therefore strengthen our expectations about the future appearance of 139 

another image of the same person. Thus, the sudden occurrence of a different ID is unexpected and 140 

manifests in a greater prediction error, which is measurable as an enhanced neural response in the 141 

prediction estimator areas. The key idea here is that when a particular identity is expected to occur, 142 

perceptual “templates” corresponding to that identity are preactivated to prioritize the rapid 143 

confirmation of that identity (Parr et al., 2020). 144 

More recently, in a paper describing several EEG and one MEG experiment, Johnston and colleagues 145 

(Johnston et al., 2017) deployed a “contextual trajectory paradigm,” wherein a series of trials 146 

consisting of 5 images depicted a specific contextual trajectory with the final stimulus transition either 147 

confirming that trajectory or violating the expectation. They tested trajectories for facial expressions 148 

(e.g., from neutral to happy), body rotation (e.g., turning from left to right), and locations of stimuli on 149 

the screen (e.g., clockwise or anticlockwise motion). For each experiment, a robust pattern was found, 150 

showing a modulatory effect of predictability of the last image in the N170. Irrespective of stimulus 151 

type, an enhanced N170 amplitude was found for unpredictable versus predictable stimulus 152 

transitions. These results show that a contextual modulation of early ERP components can be found 153 

after only four informative images (priors), offering a basis for expectations. In line with this idea, the 154 

effects of expectation violations were found to be more pronounced both after five compared to three 155 

priors (Robinson et al., 2018) corresponding to the higher precision of the prior belief (Friston and 156 

Kiebel, 2009), and where the size of the perceptual distance between the violation event and the 157 

expected event  was greater (Robinson et al., 2018).  158 

FMR-a is considered as the neuroimaging manifestation of repetition suppression (RS), a phenomenon 159 

which is explained currently by many as the correlate of predictive error reduction of repeated or 160 

frequent, thereby expected stimuli (for a review, see Kovács and Schweinberger, 2016).  161 

There is also evidence from a recent MEG study showing that prediction error-signals to violations of 162 

expected head orientation and facial ID could be spatially dissociated. Whereas prediction-error 163 

responses to stimulus orientation were localized to the dorsal visual processing stream, error signals 164 

to facial ID were localized to the right fusiform gyrus, among other locations (Robinson et al., 2020). 165 

Therefore, adopting the logic of the Johnston et al. (2016) ERP experiment to fMRI, we implemented 166 

an fMR-a design to measure the magnitude of release from adaptation in violated ID-specific 167 

expectation in key face processing regions. Additionally, this design allows us to revisit the issue of 168 

image-invariant ID-specific encoding mechanisms of the FFA by using fMR-a. 169 



 170 

Specifically, this work aims at investigating ID-specific processing in the fusiform and occipital face 171 

areas, using ambient images of celebrities, very well known to our participants. Furthermore, by 172 

generating and violating expectations about person ID, we aimed at testing if prediction error 173 

responses are manifest in the neuroimaging signal.  174 

 175 

MATERIALS AND METHODS 176 

Participants 177 

Thirty healthy participants took part in this experiment. They gave their informed consent for 178 

participation in accordance with the guidelines of the Declaration of Helsinki and with the approval of 179 

the ethics committee of the University of Jena. No participant had any history of neurological or 180 

psychiatric illness, and all had normal or corrected to normal vision. Three participants had to be 181 

excluded from the analysis due to excessive head movements during the scanning session. Altogether, 182 

27 right-handed subjects (16 female/11 male; mean age 27(± 5,7) years) were included in the current 183 

analysis. Please note, that some regions of interest (ROI) could not be localized in every participant. 184 

Therefore, the number of participants can slightly differ for the different areas. 185 

Stimuli  186 

Colorful images of 16 celebrities (8 males: Chris Hemsworth, Chris Pratt, David Beckham, Ewan 187 

McGregor, Gerard Butler, Jude Law, Matt Damon and Tom Hardy, 8 females: Cameron Diaz, Charlize 188 

Theron, Gwyneth Paltrow, Jennifer Lawrence, Kate Hudson, Kirsten Dunst, Reese Witherspoon and 189 

Scarlett Johansson) that were freely available on the internet were used for this experiment (for 190 

examples see Figure 1). The photographs vary in their physical properties (e.g., expression, head-191 

position, eye-gaze, hairstyle, camera-angle, camera exposure, luminance). These types of images are 192 

also known from the literature as “ambient images” as they contain natural day-to-day variations 193 

under different conditions and can be compared to situations during daily life face recognition 194 

(Bortolon et al., 2018; Jenkins et al., 2011). Apart from the fact that we did not use duplicates or flipped 195 

image versions, the only other image selection criterion was that the viewing direction of the faces 196 

was at least roughly directed towards the camera. Eighteen such ambient images per ID were selected, 197 

aligned, and scaled to a resolution of 250*250 pixels (3.3° in radius). Thus, the stimulus set contained 198 

288 different images of 16 different identities. By implementing ambient exemplar images, we ensured 199 

that any observed effect reflects higher-level ID processing, independently of the physical features of 200 

the images.  201 



In order to functionally localize specific areas of interest (FFA and OFA), a sequence of blocks with 202 

images depicting faces, objects, and Fourier noise images were used. Each stimulus category consisted 203 

of 40 different stimuli. Faces were randomly occurring colored images of different famous and 204 

unknown persons. Identities in the localizer were different from those from the experimental task. 205 

Image blocks of objects encompassed a mixture of various items (e.g., food, clothing, etc.). All stimuli 206 

were scaled to a resolution of 600x600 pixels (8.5° in radius). The Fourier noise images were created 207 

by an algorithm described in Dakin et al. (2002).  208 

Experimental design 209 

The experiment was presented using MATLAB 2013a (The Mathworks) and Psychtoolbox v.3.0.14 210 

(Brainard, 1997). A trial was composed of eight subsequently presented face images of same-sex 211 

identities (female and male face trials were presented 50%). Each image was presented for 500ms 212 

without any inter-stimulus-interval (ISI) and was slightly jittered spatially around the screen center to 213 

avoid low-level adaptation processes. Thus, a trial lasted 4 seconds, and it ended with a fixation cross. 214 

The intertrial interval (ITI) was randomized to 2,4 or 6 seconds. Four different conditions of such trials 215 

were created: 216 

First, alternation trials (ALT) consisted of the ambient images of eight different identities. 217 

Second, in adaptation trials (ADA), eight different images of the same ID were presented to test image-218 

independent ID-specific adaptation effects.  219 

Third, in the expectation violation condition (EV), a series of seven different images of the same ID was 220 

followed by the face of another ID. We reasoned that if ID-specific expectation modulates the observed 221 

adaptation effects, then the unexpected change of facial ID should lead to a release of adaptation.  222 

Theoretically, after seeing the second image in the row, participants could expect the appearance of 223 

images of the same ID both in ADA and EV and the appearance of different identities in ALT. Therefore, 224 

we created a fourth condition which was similar to alternation trials but ended with the repetition of 225 

one ID. In this condition, the first six images depicted six different identities, followed by two images 226 

of the same ID. These Alternation with final repetition (ALT-II) trials were not subject to any specific 227 

hypotheses but ensured us that the participants had equal number of trials where the first seven 228 

images were depicting the same ID (ADA, EV) or different identities (ALT, ALT-II). Examples for all four 229 

trial types are shown in Figure 1. 230 

The trials of these four conditions appeared with the same probability randomly, with the only 231 

constraint being that a maximum of three subsequent trials could depict same sex identities and a 232 

maximum of two trials could come from the same condition.  233 



Since attention is known to modulate response suppression and expectation violation (Larsson and 234 

Smith, 2012), participants had to perform a task, unrelated to the above-described manipulations. 235 

They had to respond to images with reduced size (1.98°), which could occur at any position within a 236 

trial sequence (detection rate of these target trials: 68,2% plus minus 21,2%). This task was set to 237 

ensure that participants focused their attention on the stimuli without diverting their attention to the 238 

different conditions. To avoid potential effects of attention these target trials were removed from all 239 

further analyses. The main experimental procedure comprised 4 runs with one run including 80 trials 240 

(20 trials per condition and 10% target-detection-trials).  241 

We hypothesized that in areas encoding facial ID in an image-independent manner, ADA should lead 242 

to a reduced average BOLD signal, when compared to ALT trials. Specifically, if an area is involved in 243 

image-independent facial ID processing, a lower BOLD response should be observable when different 244 

images of the same famous ID are repeated compared to when images of different famous identities 245 

are presented. In addition, previous studies suggested that the electrophysiological measures of face 246 

processing reflect the expectation of the occurrence of the same or different identities and the 247 

violation of these expectations (Johnston et al., 2016). We reasoned that if predictive mechanisms 248 

explain ID-specific signal reductions, then the violation of such expectations in the EV condition should 249 

manifest in a release of adaptation as well.  250 

 251 

Figure 1. Conditions and trial structure in the four applied conditions. Each condition was composed of 8 faces. 252 
ALT: different same-sex identities. ADA: 8 different images of the same ID. EV: 7 different images of the same 253 



ID, followed by another same-sex ID. ALT-II: 6 images of different same-sex identities, followed by two different 254 
images of another, same-sex ID. Please note that these images are just examples and might not have been part 255 
of the actual stimulus set, as we do not have permission for publishing all exemplars we used. All images shown 256 
here are subject to either Creative Commons Attribution-Share Alike license or have no copyrights (public 257 
domain). 258 

 259 

Procedure and imaging parameters 260 

Participants were introduced to the MRI center, and a medical briefing was conducted. Next, they were 261 

asked to make familiarity judgments about the female and male identities used in the main 262 

experiment. For this, sample images of each ID (which were not used in the main experiment) were 263 

presented first alone and then together with their names and professions. Participants had to indicate 264 

whether they are familiar with them. Only if they reported to know the face and the name, the ID was 265 

evaluated as being familiar to the participant.  266 

The scanning was conducted with a 3 Tesla MR Scanner (Siemens Prisma fit). All functional data was 267 

obtained using an Echo Planar Imaging (EPI) Sequence (35 slices; TR = 2000ms; TE = 30ms; flip angle = 268 

90°; 64*64 matrices; in-plane resolution: 3x3 mm²; slice thickness: 3mm). A magnetization-prepared 269 

rapid gradient-echo sequence (MP-RAGE; TR=2300ms; TE=3,03, 1mm isotropic voxel size) was used to 270 

acquire high-resolution T1-weighted sagittal images to generate 3D structural scans. All images were 271 

acquired using a 20-channel head coil. 272 

Behavioral data were recorded by a button box. There was only one button to signal the detection of 273 

target stimuli. First, within each scanning session, two experimental runs were administered, followed 274 

by the anatomical scan and another two experimental runs. Finally, the localizer scan completed the 275 

session of approximately one hour.  276 

We implemented a localizer sequence to determine the relevant regions of interest. Here, blocks of 277 

images (presented for 250 ms) showing faces, objects, and Fourier noise were used. Each block was 278 

repeated five times, interleaved with blank periods of 12 seconds. Stimuli occurred randomly within 279 

one block.  280 

Data processing and statistical analyses 281 

Data and code required to reproduce all analyses will be available at OSF (https://osf.io/m3pwt/) at 282 

the time of publication. The conditions of our ethics approval do not permit the publishing of the raw 283 

MRI data. We will therefore provide extracted fMRI data from individual coordinates, which will be 284 

made available as well.  285 

Neuroimaging data were preprocessed using SPM12 (Wellcome Department of Imaging Neuroscience, 286 

London, UK). In brief, the functional data were corrected for shifts in acquisition time of slices, 287 



realigned to correct for movement, co-registered to the anatomical images, normalized to the MNI-288 

152 space, resampled to 2 mm isotropic voxel size, and finally spatially smoothed with an 8mm FWHM 289 

Gaussian kernel. A general linear model was specified, using the onsets of the trials of the four different 290 

conditions and the six movement parameters as regressors. For the experimental functional data, 291 

hemodynamic derivatives were added to the model.  292 

To identify the location of FFA and OFA, we contrasted face blocks with blocks of objects and Fourier-293 

randomized noise from the localizer sequence with a threshold of either p < .05 family-wise error (FWE) 294 

corrected (n = 19) or p < .0001 uncorrected (n = 8). The right FFA could be localized in all 27 participants 295 

(average MNI coordinates (±SE): 41 (0), -53 (2), -19 (1)) and in 26 participants in the left hemisphere 296 

(average MNI coordinates (±SE): -40 (1), -52 (2), -20 (1)). For every subject, we used the same contrast 297 

and threshold to identify OFA. The Right OFA could be localized in 25 participants (average MNI 298 

coordinates (±SE): 42 (1), -75 (2), -12 (1)). In the left hemisphere, OFA was also localized in 25 subjects 299 

(average MNI coordinates (±SE): -40 (1), -77 (2), -12 (1)). Individual coordinates can be found in the 300 

supplementary material Table 1. 301 

The BOLD signals evoked during experimental conditions were extracted from each individual ROI, 302 

defined as the peak face responding voxel, using a 2 mm radius sphere (Brett, 2011). Hemodynamic 303 

response functions (HRF) were inspected to assure that the ROIs were identified reliably, and the 304 

extracted signal was evaluated. The peak HRF values were entered into the statistical models. We 305 

performed a two-way repeated-measures ANOVA with the within-subject factors of hemisphere (right, 306 

left) and condition (adaptation, expectation violation. alternation. alternation-II). Finally, we 307 

conducted an exploratory, second-level whole-brain analysis. 308 

 309 

RESULTS 310 

To assess whether participants were familiar with the presented identities, they filled out a 311 

questionnaire prior to the experiment. Mean familiarity ratings are 73,2% for male and 80,6% for 312 

female IDs and show that our participants were familiar with the stimuli.  313 

FMRI Results 314 

The mean BOLD signal in the FFA for all conditions is presented in Figure 2A. The repeated measures 315 

ANOVA revealed a main effect of condition (F(3,60) = 2.962, p = 0.039, ηp
2 = 0.129). Post-hoc tests showed 316 

a significant difference between ALT and ADA trials, t(20) = -2.971, pholm = 0.045. This shows that the 317 

presentation of different, highly variable natural images of the same ID leads to response reduction in 318 

the FFA, suggesting that it plays a role in the encoding of ID in an image-independent manner. All other 319 



comparisons remained nonsignificant. No interaction of hemisphere and condition was found (F(3,60) = 320 

1.324, p = 0.275, ηp
2 = 0.062), suggesting similar effects over the left and right FFA.  321 

The repeated measures ANOVA showed a significant main effect of condition in the bilateral OFA as 322 

well (F(1.978,37.581) = 4.693, p = 0.015, ηp
2 = 0.198; Greenhouse-Geisser corrected). Post-hoc tests revealed 323 

that the only significant difference is between ALT and EV t(19) = 3.034, pholm = 0.022. Unlike in the 324 

FFA, the ALT-ADA comparison remained nonsignificant for the OFA t(19) = -2.610, pholm = 0.055. We did 325 

not find an interaction of hemisphere and condition for the OFA either (F(3,57) = 1.289, p = 0.287, ηp
2 = 326 

0.064). 327 

 328 

Figure 2. Peak BOLD signal to the different conditions for the bilateral FFA (left panel) and OFA (right panel). * 329 
represents p<0.05; + represents p=0.055. 330 

 331 

To better evaluate the evidence for differences of BOLD responses to our conditions, we conducted a 332 

Bayesian repeated-measures ANOVA, including post hoc tests. We report Bayes factor BF10 for both 333 

analyses, reflecting how much more likely our data occur under alternative hypotheses than the null 334 

hypothesis.  335 

In the FFA, the Bayes factor for a main effect of condition was 1.353, signaling that the effect of 336 

condition is more likely than the null hypothesis. More interestingly, post hoc tests revealed a Bayes 337 

factor for the ADA versus ALT comparison of 6.391, confirming our previous analysis and a Bayes factor 338 

of 1.463 for the difference between ADA and EV trials. All other comparisons revealed Bayes factors < 339 

1, suggesting that the evidence favors the null hypothesis.  340 



The Bayesian repeated-measures ANOVA of OFA data revealed a Bayes factor of 7.390, favoring the 341 

alternative hypothesis over the null hypothesis by a factor of 7. Post hoc tests showed Bayes factors 342 

for the EV trial comparison with ALT-II of 25.563 and with ALT trials of 1.930. The Bayes factor for the 343 

comparison of ADA and ALT trials was 1.904, which is similar to the EV and ALT comparison. 344 

Additionally, the comparison of ADA and ALT-II revealed a Bayes factor of 2.319. All other Bayes factors 345 

remained < 1. 346 

Whole-brain Analyses 347 

In order not to overlook any area that might show activation differences to the different conditions 348 

outside the pre-defined ROIs, we computed a whole-brain random design analysis contrasting 349 

adaptation > alternation on the group level. Applying a threshold of p < 0.0001uncorrected revealed only 350 

one cluster of activation (k = 5) in the right inferior frontal gyrus (MNI[x,y,z]: 62, 8, 24) (Figure 3), an 351 

area close to the inferior frontal face area (iFFA), which is part of the extended face-processing network 352 

and is known to play a role in the processing of eye-gaze and the semantic aspects of faces (Chan and 353 

Downing, 2011; Duchaine and Yovel, 2015; Ishai, 2008). No other contrast revealed significant clusters.  354 

 355 

Figure 3. Results of the whole-brain analyses. Significant cluster for the contrast ALT > ADA. 356 

 357 

 358 

DISCUSSION 359 

In the present study, we investigated ID-specific adaptation effects within the occipito-temporal face 360 

processing areas. We found an image-independent adaptation effect of identity for famous faces in 361 

the fusiform face area. This difference of presenting highly variable, ambient images of the same versus 362 

different identities was only significant for the FFA. In contrast, the OFA showed significantly lower 363 

activation for a condition where expectations are violated compared to alternating identities and a 364 

strong tendency for ID specific adaptation. 365 



Previously, Ewbank and Andrews (2008) found fMR-a across different viewpoints in the FFA to familiar, 366 

but not to unfamiliar faces. However, their adaptation condition contained images, although varying 367 

in viewpoint, that still came from the same original images. Also, the implemented range of viewpoint 368 

change of this study was relatively small (12°). Therefore, these images were very similar in low-level 369 

features. Their interpretation of an ID-specific adaptation effect for familiar faces in the FFA is 370 

consequently only partly justified. Still, this conclusion is confirmed by our current study by the 371 

application of highly variable, ambient images (Jenkins and Burton, 2011).  372 

Other studies in which blocks with different images from the same ID and blocks with different images 373 

of different IDs were contrasted failed to find a difference in FFA responses to those conditions (Davies-374 

Thompson et al., 2009). Thus, the current study shows that it is possible to discriminate familiar 375 

identities in FFA activity, providing evidence for a stable and image-independent ID representation in 376 

the area. One explanation for the discrepant results of the current and previous studies could come 377 

from small but significant differences in the applied designs. While we used colorful ambient images, 378 

Davies-Thompson et al.(2009) used gray-scale frontal faces. Also, they presented ten images per block 379 

and chose stimuli from a larger stimulus set. However, the latter differences should have made it easier 380 

to find an ID-specific adaptation effect in their study. In a follow-up experiment, they specifically 381 

investigated the responses to blocks of 8 different images showing either the same or different IDs 382 

(Davies-Thompson et al., 2013). Again, there was no significant fMR-a effect for ID present. In this 383 

study, responses to familiar and unfamiliar faces were compared and the same results were found for 384 

both stimulus types.  385 

More recent studies, which applied multivariate pattern analyses (MVPA) to fMRI data have been able 386 

to discriminate between identities even when they were unknown (Anzellotti et al., 2014; Nestor et 387 

al., 2011). Our current results confirm these findings and support the idea that the FFA discriminates 388 

between identities independently of images and is therefore subject to ID-specific adaptation effects. 389 

Our results also fit those of recent MVPA studies of highly familiar faces which are more comparable 390 

to the stimulus material of the current study (Axelrod and Yovel, 2015; Tsantani et al, 2020). Both 391 

studies found identity-specific information in the bilateral FFA.  392 

Although the adaptation versus alternation comparison did not reach significance in the OFA, we could 393 

show that the expectation violation was significantly different to the alternation condition. More 394 

interestingly the neural response to trials in which expectations were violated was almost the same as 395 

for the adaptation condition. This marginally significant effect of ID-specific adaptation hints towards 396 

an effect similar to that of the FFA but requires some more detailed analyses, such as previously 397 

mentioned multivariate ones. 398 



Unlike the previous ERP studies which used similar paradigms (Johnston et al., 2016) we were unable 399 

to find effects of ID-specific expectation-suppression and expectation-violation related response 400 

enhancements in the occipito-temporal cortex. This may be due to the low temporal resolution of 401 

fMRI. Because of the limitation of the duration of the entire experiment, we opted for a paradigm in 402 

which the BOLD response to the entire trial is modeled. Since the images within a trial are not 403 

separated by sufficiently long ISIs, it was not possible to separate the response to the individual images 404 

(specially to the last one or two images) from the rest.  405 

The whole-brain analysis revealed a single cluster, being more active for ALT when compared to ADA 406 

in the inferior frontal gyrus, corresponding closely to the recently described area of iFFA. This area is 407 

supposed to be part of the face-processing network and is known to play a role in the processing of 408 

dynamic face properties as well as eye-gaze information. (Chan and Downing, 2011; Duchaine and 409 

Yovel, 2015; Ishai, 2008). As identity was kept constant in ADA, but changed continuously in ALT, our 410 

results raise the possibility that this area is also specifically involved in high-level predictions about 411 

identity continuity within an image sequence. The confirmation of this hypothesis, however, will 412 

require specific future studies. 413 

 414 

CONCLUSION 415 

Confirming results from multivariate pattern analyses, the present study shows image-independent 416 

ID-specific adaptation effects in the fusiform face area for famous familiar faces. Especially in 417 

combination with the results of the occipital face area, our results suggest that the ID representations 418 

in occipito-temporal regions are not yet sufficiently clarified and that further research is needed.  We 419 

could not replicate results from MEG studies, showing expectation violation effects related to facial 420 

identity in the fusiform gyrus.  421 
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4  DISCUSSION 

 

4.1  Summary and discussion of the specific studies  

In this chapter, I will summarize the results of the current studies and show their 

contribution to our understanding of the neuronal mechanisms underlying the effects of 

stimulus repetitions and predictive processes. As all studies in themselves have been 

discussed in the related manuscripts separately, here we will focus on the overarching 

results and their relations to each other.  

4.1.1  Sensory noise does not affect RS magnitude in Study I  

The first empirical study (chapter 3.1) aimed to test the influence of sensory noise on RS. 

No such effect was evident in the examined brain regions. Importantly, we did not apply 

either probability-based or cue-based manipulations to RS (see, Figure 12). Repetition and 

alternation trials appeared equally throughout the experiment (Figure 28A), which refers 

to constant priors. Further, the first stimulus in each trial was only informative about the 

noise level to be expected in the upcoming stimulus. This design allowed us to test 

hypotheses of PC models without manipulating higher-order expectations. The precision of 

sensory input was manipulated by adding noise to unfamiliar face stimuli. Given that the 

repetition of a stimulus is the default prior in PC models, RS should be evident for clear and 

noisy stimuli – at least in a design where no higher-order expectations need to be 

considered for efficiently processing the incoming sensory data. We found a main effect 

signaling RS, as well as reduced responses to noisy trials in general. However, no 

modulation of RS due to sensory precision was observed. 

With regard to unequal predictability of an upcoming stimulus in classical RS experiments 

as addressed in Study II (chapter 3.2), one could argue that although the first stimulus in 

repetition trials serves as a strong predictor for the upcoming stimulus, this prediction is 

more demanding and thereby imprecise for noisy trials. We could not provide evidence for 

this assumption in our design. The absence of RS modulation does not necessarily mean the 

absence of inferential processes. Still, our results can also be explained by feedforward 

models, such as the sharpening or facilitation models (Grill-Spector et al., 2006), or local 

neuronal computations that fit within PC models but can occur without dop-down influence 
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(Bastos et al., 2012), which all offer explanations for RS (see chapter1.2.2). However, with 

the present design and method, the underlying mechanisms of RS are difficult to ascertain. 

 

4.1.2  Predictability of stimuli can mimic RS effects in Study II. 

In Study II (chapter 3.2) of this thesis, participants were visually familiarized with a set of 

twelve stimuli depicting female faces in four behavioral training sessions. The initially novel 

faces underlay a specific pattern of statistical associations (see Figure 28B for a simple 

illustration). Although all conditions were presented in an interleaved manner, participants 

incidentally encoded transitional rules while performing an unrelated task. After training, 

participants could predict features of upcoming stimuli regardless of it being a repetition of 

the recently encountered one or an alternation in the AB-context as revealed by fMRI data. 

Stimulus-specific expectations in alternation trials were found to elicit responses similar to 

those measured for a stimulus repetition of a face in the fusiform gyrus. This finding is in 

line with previous neuroimaging results for face responses in the FFA (Pajani et al., 2017) 

and results from electrophysiological studies (Feuerriegel et al., 2018a). It clearly 

demonstrates the importance of stimulus predictability in determining the magnitude of RS. 

Depending on implemented designs and stimulus material, it can affect related phenomena 

as well (Grotheer & Kovács, 2015; Summerfield et al., 2008). In addition, in the occipital face 

area, RS was evident in the right hemisphere only, and no modulatory effect of stimulus 

predictability was observed. This finding suggests that the FFA but not OFA is sensitive to 

statistically learned transition rules. Our findings do not provide direct evidence for 

feedforward or PC models of RS. However, we show how stimulus-specific expectations can 

alter specific measures of RS, which is in line with PC models for perceptual expectations 

and relevant for all investigations that implement repetition and alternation trials to test 

for prediction effects.  

 

4.1.3  Identity-specific adaptation effects but no effect of violated expectations are 

present in occipito-temporal face regions in Study III 

In Study III, we investigated adaptation effects for higher-order information in face stimuli. 

Identity-related and image-independent adaptation effects were tested in a design with 

short blocks of eight ambient images that could show the same or different famous identities 

(Figure 28C). The FFA revealed an identity-specific adaptation effect, and a marginal effect 

was observed in the OFA. Evidence for identity processing in the OFA comes from several 
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TMS studies (e.g., Ambrus et al., 2017b; Eick et al., 2020). Furthermore, the OFA is connected 

to higher-level face processing areas (Pyles et al., 2013). Together with the assumption that 

famous identities come with a stable neural representation that can be activated, top-down 

predictions can influence the OFA's neural activity. Hence, the observed tendency for 

identity-related adaptation effects could result from feedback projections of higher-level 

areas. Identity-specific adaptation effects in the FFA support its crucial role in face 

processing as proposed by several models (e.g., Duchaine & Yovel, 2015; Haxby et al., 2000). 

However, its capability of encoding image-independent identity information has only been 

shown by MVPA studies so far (Axelrod & Yovel, 2015; Tsantani et al., 2021). The proposed 

prediction-related response enhancement due to expectation violation suggested by 

electrophysiological studies (Johnston et al., 2016) was not observed in our data. The usage 

of famous familiar faces led us to believe that a stable identity representation already exists 

and is activated rapidly. Testing identity-specific expectations refers to a solid prior belief 

in terms of predictions. That no such effect was evident, although the FFA encodes the 

critical information suggests that we might have to implement a paradigm that allows for 

higher spatial and temporal resolution analyses.  

 

4.1.4  General discussion 

In brief, in the first two studies, we examined the robustness of RS by attempting to 

modulate its magnitude through manipulations of precision and predictability as suggested 

by PC models. No effects of our precision manipulation were present in face-sensitive 

regions FFA and OFA for unfamiliar faces in Study I. In Study II, the diminishing influence of 

stimulus predictability on RS was evident in responses to visually familiar faces but only in 

the FFA. In Study III, we used an adaptation design to investigate identity representations 

of famous persons in the FFA and OFA. An image-independent adaptation effect to well-

known identities was evident in the FFA, and a tendency for the same effect was observed 

in the OFA. We could not prove the release from adaptation to unexpected changes of 

identity. 

I will now relate the above-mentioned main findings of our studies to previous work 

focusing on implemented design and stimulus material used. For a better comparison, all 

experimental designs of our studies are depicted in a simplified version in Figure 28. It 

should be emphasized that none of the studies used block-based probability manipulations 

(compare Figure 12A). All presented conditions of the respective studies were shown in a 
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randomized or pseudo-randomized manner in fMRI runs but never grouped in blocks with 

differences in proportions.  

Figure 28. Schematic illustrations of the 

designs used in the current experiments. 

Blue = repetition; Gold = alternation. A 

Study I: Manipulation of sensory precision 

in an RS design. B Study II: Manipulation 

of stimulus predictability for repetition 

and alternation trials in two contexts. C 

Study III: Manipulation of identity-specific 

expectation effects in short stimulus 

sequences. The same letters represent 

different images from one ID. 

 

Table 4 summarizes the results of our empirical neuroimaging studies (yellow cells) and 

shows whether the current state of research offers comparable results from other 

laboratories (blue cells). Only neuroimaging studies investigating the different phenomena 

in occipito-temporal regions are presented here. Further, only results from univariate 

analyses are chosen in favor of better comparison to the present studies in Table 4. 

However, evidence for related effects investigated with other methods or different purposes 

is still discussed in this section.  

Repetition suppression is an often-investigated phenomenon, and its examination for faces 

is not exempt from this. An entire review article was devoted to ERP results on repetition-

related effects for faces alone (Schweinberger & Neumann, 2016) as well as for repetition 

suppression in the FFA (Henson, 2016). Therefore, evidence for RS to unfamiliar and 

familiar faces already exists (Table 4 - Repetition suppression). The present results support 

the finding of RS for unfamiliar faces. However, there is also evidence for the opposite effect 

for unfamiliar stimuli: repetition enhancement (Henson et al., 2000). Further, we provide 

evidence for RS for familiarized faces in our second study outside of repetition likelihood 

and carefully controlling for confounding effects of stimulus novelty. However, as we show 

that RS magnitude differs according to the predictability of stimulus alternations, we 

emphasize that the true RS effect might be lower than assumed. RS for famous faces was not 

tested within our studies but is evident from neuroimaging (Henson et al., 2000) and 

electrophysiological studies (Neumann & Schweinberger, 2008; Schweinberger et al., 2002) 

of others.  
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 Unfamiliar 

faces 

Visually 

familiar / 

familiarized 

faces 

Famous 

familiar faces 

Repetition Suppression 

FFA, OFA (Alink 

et al., 2018) 
∘ 

FFA (Henson et 

al., 2000) 

FFA, OFA 
FFA, (right) 

OFA 
/ 

RS modulation 

by 

Sensory 

noise/ 

precision 

∘ ∘ ∘ 

No evidence / / 

Stimulus 

predictability 

Theoretically 

impossible 

FFA (Pajani et 

al., 2017) 
∘ 

Theoretically 

impossible 
FFA / 

Identity-specific 

effects (image-

independent) 

Adaptation 

No evidence 

(Weibert et al., 

2016; Davies-

Thompson et al., 

2013) 

∘ 

MTL (Weibert 

et al., 2016); 

No evidence 

(Davies-

Thompson et al., 

2013) 

/ / 

FFA 

(+marginal 

effect in OFA) 

Expectation 

Violation 

• ∘ 

FFA, OFA 

(Amado et al., 

2018a) 

/ / No evidence 

Table 4. Results of the current thesis (yellow) and evidence from previous (univariate) neuroimaging 

studies (blue). FFA: fusiform face area. OFA: occipital face area. MTL: medial temporal lobe.  

○ indicates that no other study tested this effect. ● indicates that this effect has been studied with 

another technique.  
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Although precision is a significant factor in predictive coding processing (Auksztulewicz & 

Friston, 2016), and is therefore for prediction-related neuronal effects equally important, 

the impact of sensory noise on RS has not been tested a lot. To the best of my knowledge, no 

neuroimaging study investigated measures of RS under different sensory precision 

conditions to faces (Table 4; RS modulation – sensory noise/precision). Evidence for an 

effect of sensory uncertainty on RS comes from Turk-Browne et al. (2007). By reducing the 

contrast in images depicting visual scenes, the authors observed repetition enhancement, 

whereas RS was observed for high contrast images. As we could not find an effect of visual 

noise on RS (Study I; 3.1), its contribution to prediction error magnitude might be less 

critical than prior precision (volatility of environment; Den Ouden et al., 2010; Summerfield 

et al., 2011).  

We found stimulus predictability (Table 4; RS modulation – stimulus predictability) to be a 

significant factor in repetition designs as it can confound repetition effects (Study II, chapter 

3.2). We provide evidence for this by training participants and thereby visually familiarize 

them with the stimulus material. Although Pajani et al. (2017) also tested the effect of 

stimulus predictability, their results were confounded with effects of repetition probability 

and stimulus novelty (see Feuerriegel et al., 2018a for a related EEG study). In order to 

anticipate upcoming stimuli, a prior neural representation is needed. Therefore, in theory, 

no such effect can be examined with unfamiliar faces presented for the first time. To the best 

of my knowledge, no study investigated this effect for famous faces. However, there is 

evidence for priming effects in studies where the first stimulus was not a face but the name 

or a different but related face (Amado et al., 2018a; Schweinberger, 1996). Although those 

paradigms can only be compared to our approach to a limited extent, I include these studies 

here as they offer different approaches to investigate stimulus predictability. 

Although identity-specific adaptation (Table 4; Identity-specific effects – adaptation) has 

been tested with unfamiliar and familiar face stimuli in the past (Davies-Thompson et al., 

2009), the authors found this effect to be image-dependent. In other words, an adaptation 

effect to identity was only evident when one image was repeated and not when different 

images of one person were presented. When neuronal responses to different images of the 

same identity were compared with responses to images from different identities, no effect 

was present in univariate analyses. A similar study by Weibert et al. (2016) implementing 

the same stimuli with a much larger sample size found image-independent adaptation 

effects in the medial temporal lobe (MTL). We provide evidence for an identity-specific and 

image-independent adaptation effect for famous faces in the FFA and a tendency in the OFA 

in our third study. This is in accordance with results from MVPA studies providing support 
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for identity discrimination for familiar faces in the FFA (Axelrod & Yovel, 2015) and OFA 

(Tsantani et al., 2021), as well as unfamiliar faces in ATL, FFA, and OFA (Anzellotti et al., 

2014; Nestor et al., 2011). Recent studies show that identity can be decoded from EEG data 

as well for familiar (Ambrus et al., 2018; Dobs et al., 2019) and unfamiliar faces (Nemrodov 

et al., 2018). Testing effects for familiarized faces is always more challenging as training, or 

prolonged experimental settings are needed. However, fast periodic visual stimulation 

paradigms are promising candidates for addressing this effect for familiarized faces 

(Verosky et al., 2020). 

Expectation violation effects to an unpredictable identity change (Table 4; Identity-specific 

effects – expectation violation) did not reveal a larger neuronal response attributed to 

predictive processes in Study III. However, evidence for such a response modulation comes 

from electrophysiological studies on familiar faces (Johnston et al., 2016) and unfamiliar 

faces (Robinson et al., 2020). Robinson and colleagues (2020) manipulated identity 

prediction signals in an MEG study. Theoretically, expectation violation signals to an 

unknown ID are difficult to investigate as unfamiliar identities are no neural representation 

has developed. Yet, expectation effects based on the repeated presentation of one ID can be 

examined. In addition to blocks of five images from different IDs and the same ID, Robinson 

et al. (2020) included a condition in which ID changed after four images of the same ID. They 

found prediction error signals in the occipito-temporal gyrus to trials with violation of 

identity expectation compared to when no expectation was induced. However, although 

stimuli varied in viewpoint, their stimulus material does not meet the requirements for 

testing image-independent effects. Therefore, this study does only partially relate to the 

present one. Amado et al. (2018a) investigated the expectation of a specific famous identity 

presented within a priming design and found reduced BOLD signal in the FFA and OFA for 

congruent name-face trials. As they used the name as a cue for the visual input, their finding 

can be interpreted as an image-independent identity expectation effect. Furthermore, 

Kouider et al. (2009) found view-independent response reductions in the FFA in a 

subliminal priming paradigm for famous but not unfamiliar faces. To the best of my 

knowledge, no study investigated identity expectation effects for familiarized faces.  

 

All in all, the influence of sensory precision, in particular, has not yet been sufficiently 

investigated. One explanation for why we could not find the effect could be that prior beliefs 

for repetition are much more precise, hence robust than assumed. Faces as stimuli could 

enhance this as stimuli since identity is a very strong prior itself. Also, since we have shown 

the importance of stimulus predictability, I will relate the two in the next chapter. 
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4.2  Predictive precision in response suppression studies 

The importance of weighting prediction errors according to their precision in predictive 

processing is has been explained in chapter 1.2.4. Here, I will evaluate the current results 

from the perspective of predictive precision and predictability.  

In the first study, we manipulated the sensory precision in a repetition design study, which 

did not show any impact on RS magnitude. In Study II, we realized a context in which 

alternations were equally predictable as repetition trials, which nearly abolished RS effects. 

Although the current results do not directly relate to each other, it stands to reason that 

precision and predictability are linked (Friston, 2005), which is why these two factors will 

be put in relation to each other.  

 

4.2.1  The relationship of predictive precision and predictability  

According to Bayesian inference, the probability distribution representing a status or event 

is referred to as a belief (Adams et al., 2014). Before this event is apparent or sensory data 

are available, beliefs before observation are termed prior beliefs. Those prior beliefs can be 

precise, represented by a narrow PDF, or imprecise, represented by a broad PDF (compare 

Figure 13). Possible values in this distribution are concentrated around the mean, 

representing the expectation since this is the event or state of something most likely to 

occur. Therefore, precision is always an estimate of the variance of the distribution. In 

contrast, predictability is a part of the stimulus nature or a stimulus attribute and 

contributes to estimates of prior precision. In experimental settings, both depend on the 

implemented design (compare Figure 12 and 28), hence the influence of perceptual 

expectations and stimulus material. For example, using more than just one exemplar image 

of identities in Study II would significantly act on precision and stimulus-specific 

expectations. 

Detailed predictability of an upcoming stimulus is the outcome of either an inital 

presentation of the same stimulus (repetition) or the training on statistical regularities 

because priors (S1 in a trial) are learned to be reliable. The interleaved nature of our design 

in Study II ensured implicit learning processes, which is slightly different from previous 

studies investigating the predictability of face exemplars (Feuerriegel et al., 2018a; Pajani 

et al., 2017). After seeing face A (sensory input), the prior is updated in terms of precision 

weighting. The posterior belief is high in precision for AB trials, as repetition and 

alternations can both be predicted. In AX trials, the former posterior belief, which is now 
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the prior, would be precise for a stimulus repetition but much lower for a stimulus 

alternation, as one of five faces can be presented. The respective PDFs are illustrated in 

Figure 29. As probabilities for repetition and alternation are equal, the prior belief for the 

upcoming stimulus (S2) results from a precise prior for repetition in both contexts but a 

lower precision for alternation trials in the AX context. Therefore, the posterior belief is 

determined by the sensory input, and an unpredictable alternation elicits a larger neuronal 

response. 

 

 

 

 

 

 

In fact, the probability functions weighted by precision for the AX-context in Figure 29 

illustrate prediction error weighting in a standard repetition-alternation design. Assuming 

the information that a stimulus repetition is more likely than a change is added, as in a 

repetition block (Summerfield et al., 2008), the priors change according to that. The prior 

belief would be much more precise because (1) encountering a repetition is the default prior 

in predictive coding theories, and (2) occurs with a higher probability. Hence, posterior 

beliefs are mainly determined by prior beliefs. If the prediction of repetition fails to come 

true, the resulting prediction error is increased. In other words, alternating stimuli elicit a 

bigger response, and RS is increased (PREP effect).  

Figure 29. Schematic illustration of 

predictive precision in Study II after 

seeing the first stimulus in a trial for 

AB context (upper panel) and AX 

context (bottom panel). Probability 

density (y-axis) as functions for prior 

beliefs (dark blue), sensory input 

(gold) and posterior beliefs (grey). 

Light blue PDFs illustrate theoretical 

precision for Rep and Alt trials, which 

was equalized in the AB-Context. 
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This can be transferred to Study III, in which we show a reduced response to trials, showing 

the same ID. The repeated presentation of the same identity, together with identity being a 

strong prior itself, increases the precision of the prior belief. However, since we could not 

find an effect for violating this expectation, we cannot prove this assumption. 

Logically, stimulus predictability is also strongly connected to surprising stimuli. The term 

surprise in studies investigating response suppression phenomena as well as in the 

predictive coding framework is used to describe unpredictable or unexpected sensory 

input. The role of surprise in experiments examining effects of expectation suppression has 

been explained in detail in the past (Amado et al., 2016). The authors provide evidence that 

surprise contributes more to ES measures than the response reduction due to correctly 

predicted input which is supported by a recent study on MMRs (Feuerriegel et al., 2021b). 

Surprise effects might have contributed to the results of Study II. However, we tried to 

control for surprise effects by stimulus novelty, as the full dataset consisted of only twelve 

stimuli and became highly familiar during the training sessions. 

I have already touched on the different forms of predictability throughout this work. Stimuli 

can also be predictable outside of repeated presentation (Study I) or learned stimulus 

associations (Study II). For example, studies that examined priming effects used a name or 

a different but related face as an adapter stimulus for an upcoming face (Schweinberger, 

1996). This relates to Study III, as we used famous faces and assumed a stable identity 

representation to be activated when encountering them. The image-specific adaptation 

effect could be partly due to the fact that we can predict familiar faces because we have a 

robust prior activated when we see the first image. Although stimuli can not be predicted 

accurately, as in Study II, one could imagine some sort of template being activated and used 

for prediction. 

Therefore, I will briefly discuss the various facets of stimulus predictability in experimental 

design in the next chapter. 

 

4.2.2  Different levels of stimulus predictability 

In Study II, we showed the importance of stimulus predictability in response suppression 

experiments. I have also demonstrated how predictability is related to precision 

estimations, which play a crucial role in prediction error weighting processes in predictive 

processing. I will now briefly discuss different forms of predictability and how they are 

implemented in prediction-related investigations focusing on face stimuli.  
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The first type of stimulus predictability I will address, refers mainly to using repetition 

probability to study the effects of expectation (for an overview, see Grotheer & Kovács, 

2016). Only the outcome of a trial (Rep versus Alt) can be predicted or expected in those 

cases – and of course, repeatedly presented stimuli. Given the nature of Rep-Alt paradigms 

where repetitions are predictable, but alternations are not, in a design that uses blocks with 

different probabilities of repetition and alternation, this effect is likely to be reinforced and 

could account partly for the PREP effect (Summerfield et al., 2008). As repetitions occur with 

a high probability in specific contexts (Rep blocks), observers can predict a repeated image 

and prior beliefs for encountering a recurrence are more precise as well (compare Figure 

29). This naturally carries over to many studies that manipulate the probability of 

repetition, including those that are cue-based (e.g., Amado et al., 2016).  

Moreover, a specific class or category of stimuli can be expected. This is related to the 

manipulation of repetition probability but refers to the stimulus content. Previous studies 

showed a modulatory effect of the likelihood of encountering a face versus a house on 

neuronal responses in face-responsive regions (Egner et al., 2010; Trapp et al., 2016). 

Although those stimuli were not predictable in a detailed manner, the general structure of 

faces itself serves as a primitive but still present basis for expectation formations. However, 

in Table 4, I state that investigating the effect of stimulus predictability on RS for unfamiliar 

faces is theoretically impossible. I argue that there must be a neuronal representation, no 

matter how vague, to study these effects. Otherwise, the only input that is predictable is, in 

fact, the one that has already been shown: a face repetition. 

In Study II, we report evidence for the impact of predictability on an image level. It can be 

argued that our approach of familiarization is not very profound, as we use only one 

exemplar image per identity, and no further information, such as contextual or semantical, 

is added. Still, this method of familiarization was sufficient to diminish measures of RS. 

Therefore, even though the identity of the adapter face stimulus served as a predictor for 

the following stimulus (in alternating trials), this effect is image-based or exemplar-specific. 

In other words, a specific face image cued the successor face image in alternation trials. 

Expectation of a specific image and the capacity to predict that image in detail requires 

extensive training and a representation of the respective image. 

Identity-based cueing would request a more abstract neuronal representation. Evidence for 

such effects comes mainly from priming studies. Although the relationship between 

repetition priming effects and RS as measured with fMR-a is complex and not fully 

understood (Kaiser et al., 2013; Wig et al., 2005), they share certain characteristics (for a 

review, see Henson & Rugg, 2003). Moreover, priming effects are not restricted to the 
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repetition of a stimulus. Electrophysiological (Jemel et al., 2005; Schweinberger, 1996) and 

neuroimaging studies (Amado et al., 2018a) could show that presenting the name of a 

famous identity resulted in neuronal response suppression when the following image 

matched the primed name. This is known as cross-modal priming and can be related to 

predictive coding principles. For example, Amado et al. (2018a) observed behavioral 

priming effects and a reduced BOLD signal in the FFA and OFA for congruent name-face 

trials. They conclude that these effects result from generated predictions transferred to 

those areas via feedback or lateral connections. To put it simply, the prime enhanced 

stimulus predictability via pre-activation of a neuronal representation and thereby 

facilitates identity recognition via top-down information flow (Ganis & Schendan, 2008). 

However, the degree of stimulus predictability in such cases is still to be discussed. As 

already mentioned, the structure of a face serves as a simple basis for predictions alone. 

Naturally, one would assume that the more a neural representation of a given identity 

establishes, the more predictability increases. In experiments, this would apply to 

personally and famous familiar faces. However, Carbon (2008) showed that face 

identification is strongly impaired for modified and rather unusual images of famous 

persons. This differentiates from recognition performance for personally familiar faces, 

which was not affected by different image manipulations. It also suggests that the prediction 

of a famous face in experimental settings is likely to be more accurate provided typical 

known example images are used. Such images reflect the ‘iconic’ representation of a famous 

ID and would therefore match our prediction. However, the presentation of an unusual 

photograph could abolish or even reverse an effect of facilitated processing by pre-

activating the associated neural representation. This should be taken into account when 

famous familiar faces are used, as in Study III. In contrast, if the representation of a 

personally known identity is more abstract, the prediction may not be as precise and 

detailed while being more flexible. Therefore, the potentially observed effects are not as 

susceptible to substantial changes in sensory input.  

I have briefly addressed different levels of stimulus predictability that need to be considered 

when interpreting prediction-related response alterations. As some of the proposed levels 

of predictability refer specifically to faces, the next chapter will discuss the use of faces in 

prediction studies.  
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4.3  Faces in studies on prediction-related response alterations 

The current studies focus on neuronal response alterations due to contextual manipulation. 

Therefore, a lot of questions regarding the relationship between face processing and 

predictive coding remain unanswered. Still, I will briefly discuss the current studies in this 

context. 

The more familiar we are with a person, the more information is available and can be 

transferred to lower-level areas when encountering a familiar face or expecting it (Kovács, 

2020). At the same time, the higher we are in the ‘hierarchy’ of face familiarity, the more 

complex yet abstract the representations are (Hole, 2011). This needs to be taken into 

account when exploiting faces as stimulus material for investigating effects that are more 

or less dependent on the interaction of bottom-up and top-down information flow. In the 

current thesis, the stimulus material was chosen from unfamiliar faces in Study I and II, 

whereby faces in the latter became visually familiar to our participants. In Study III, 

however, we used a set of different photographs of famous identities.  

In Study I, we examined RS to unfamiliar clear and noisy faces. Face identification has been 

shown to be more difficult for degraded images (Hermann et al., 2015), but the implemented 

task did not demand detailed processing of facial information. Another behavioral task that 

directs attention to the face stimuli and requires a more differential analysis of them could 

provide us with a clearer picture of face identification under conditions that, according to 

PC theories, should modulate prediction errors (Auksztulewicz & Friston, 2016).  

In Study II, we investigated the effects of statistical learning of face associations, which led 

to diminished RS effects in fusiform areas. However, no such effect was observed in the OFA. 

Even though the participants have undergone intensive training to learn stimulus pairs 

implicitly and were therefore visually familiarized with the stimulus material, we cannot 

assume that a stable, robust representation about the depicted identities was formed. Much 

more information, be it visual or semantical, is needed to constitute neuronal 

representation for a specific identity (Jenkins & Burton, 2011). Therefore, the different 

levels of familiarity are related to neural representations that vary in robustness and 

complexity. However, independent from the degree of familiarity, identity in itself is stable. 

I have referred to the assumption of the world as being stable on a short-time scale before 

(Dong & Atick, 1995). This is one of the reasons why RS is related to predictive coding 

processes. Identity, in fact, is a much more stable construct because the identity of a person 

does not change, even when contextual aspects change. Therefore, we can define identity 
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(as an aspect of faces used in experiments) as precise prior. Nevertheless, this prior can be 

shaped by expectations, as we showed by associating two faces in Study II.  

In Study III, we showed a strong tendency for image-invariant identity encoding in the OFA, 

which could result from feedback information from the FFA or even higher-level areas, such 

as the ATL (Pyles et al., 2013). A stable identity representation is crucial for such an effect, 

which seems to be evident in the FFA. However, also for the FFA, we cannot exclude 

feedback information transfer, which should be tested to reveal the underlying mechanisms 

of image-independent adaptation effects to faces.  

The specific representation of famous faces as icons (Carbon, 2008) further supports the 

idea of predictive coding as the underlying process of face familiarization and face 

identification. Indeed, some famous persons’ faces are commonly shown in a specific way. 

Therefore, their representation is built on these experiences, and anomalous photographs 

impede the identification of this person (Carbon, 2008). Similarly, as with unusual 

contextual information (e.g., when you meet your dentist in a bar), an image from a different 

period in their life might not be part of our representation. This can potentially affect 

identity-specific adaptation measures, as in Study III. It might be less relevant for actors and 

actresses, such as who we know from very different roles in movies. Also, although we used 

ambient images, no deviating images were part of our dataset. It is still possible that such 

exemplar images could reduce or even eliminate the effects of adaptation. However, this 

also offers new possibilities to examine further the predictive processing mechanisms 

underlying person identification. For example, common and uncommon photographs of 

famous identities could be implemented as deviants or as violating stimuli in prediction 

designs. 

 

Although much research on predictive processes and how expectations shape perception 

has been done, it is still unclear in what format predictions are passed on to lower levels to 

facilitate perception. By now, we know a lot about how areas are connected and how 

information is carried (see chapters 1.1.1 and 1.2.1.3). Results from a recent fMRI study 

show that when the prior expectation of encountering a face is high, activity in face-

responsive areas is increased even before the sensory input arrived (Trapp et al., 2016). 

Could this be transferred to more detailed predictions of expected input? Since we already 

know a lot about facial representations in different areas, this could be used to study the 

transfer of predictions (Loffler et al., 2005; Tsantani et al., 2021). For example, if we know 

that we are about to encounter an old friend, some representation is already active. Stable 
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face representations are robust because they are flexible for variances in visual appearance. 

Is the prediction precise because we know this person very well, or is it abstract? 

Addressing this question in an experimental setting could give insight into both face 

processing and prediction transfer.  

 

 

4.4  The underlying mechanisms of reduced neuronal responses 

Whether RS relies on predictive coding mechanisms or local adaptation mechanisms is still 

under debate. As pointed out in chapters 1.2.2.1 and 1.2.2.2, several models can explain 

neuronal response suppression after repeated presentation of stimuli. Whereas studies 

reporting the PREP effect suggested a top-down component in the form of fulfilled 

expectations (Kovács et al., 2012; Summerfield et al., 2008), others could not replicate this 

kind of RS modulation and suggested different underlying mechanisms for RS (Vinken et al., 

2018; for a review, see Kovács & Vogels, 2014). The context of higher-order expectations 

did not modulate RS magnitude for objects (Kovacs et al., 2013) or unfamiliar stimuli 

(Grotheer & Kovacs, 2014) or when the participants’ attention was diverted from the stimuli 

(Larsson & Smith, 2012). Even when behavioral priming was observed, suggesting an 

advantage for recognition processes, an effect in related neuroimaging data was absent 

(Olkkonen et al., 2017). Furthermore, RS and ES were found to be independent in 

neuroimaging (Grotheer & Kovács, 2015) and electrophysiological measurements 

(Feuerriegel et al., 2018a). Thus, the question of under which circumstances RS varies in its 

magnitude is still open.  

A two-stage model of response suppression (Figure 30) was proposed for explaining 

inconsistent findings (see, for example, Kaliukhovich & Vogels, 2011; Summerfield et al., 

2011, 2008; Vinken et al., 2018) for such effects by Grotheer and Kovács (2016). In their 

model, response suppressions resulting from stimulus repetitions are explained by low-

level inferential processes within the ventral visual stream. Expectation-related effects 

showing response reductions result from higher-level predictions that originate in frontal 

areas. Empirical studies can support this differentiation (e.g., Jiang et al., 2013; Summerfield 

et al., 2011; Todorovic & de Lange, 2012). A DCM study on neuronal connectivity changes in 

EEG signals revealed repetitions to systematically change connectivity within and between 

neuronal regions (Garrido et al., 2009a). Garrido et al. (2009a) proposed that those 

connectivity changes are related to the predictability of repetitions (changes in extrinsic 

connectivity) and prior precision (changes in intrinsic connectivity). This again supports 
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the idea that both local within-region and hierarchical between-region modulatory 

processes characterize RS. As of now, it is very likely that a combination of multiple 

mechanisms underlies RS effects. Therefore, it is important to investigate under which 

circumstances feedback from higher-order processing levels shapes responses of local 

adaptation mechanisms and when not.  

 

 

 

 

 

Changing the precision of prior beliefs has been shown to modulate RS magnitude, as 

proposed by PC models (Summerfield et al., 2011). However, differences in the precision of 

sensory input in a simple RS design in Study I (chapter 3.1) did not resolve in a change of 

RS magnitude. This suggests that RS can derive from local neuronal mechanisms and 

computations that can be modulated by top-down mechanisms when put into a context in 

which higher-order information is present (e.g., probability of repetition). In such a design, 

sensory input precision might play a significant role in determining RS magnitude, too. 

Although we cannot exclude inferential processes underlying RS with the present design, 

manipulating the sensory precision rather than priors might be a better way to test for this 

assumption.  

In Study II, we showed that controlling for stimulus predictability can lead to similar 

response reduction in alternation trials as in repetition trials. RS could therefore be partly 

explained by stimulus predictability as well. Although unpredictable stimulus alternations 

Figure 30. Schematic illustration of the 

two-stage model of response suppression 

in the ventral visual stream. Higher-level 

expectations (blue) originate in frontal 

regions and are transmitted to the FFA, 

the OFA and the LOC. Lower-level 

predictions (gold) originate in the FFA 

and are transmitted, via the OFA, the LOC 

and the EVC, to the LGN. FC: frontal 

cortex, FFA: fusiform face area, OFA: 

occipital face area, LOC: lateral occipital 

complex, EVC: early visual cortex, LGN: 

lateral geniculate nucleus. Adapted from 

Grotheer & Kovács (2016) with 

permission. 
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were also part of the training session, they still elicited a higher neuronal response than any 

other condition in Study II. A generally enhanced response to unpredictable stimuli is in 

accordance with the assumption that feedback connections are mostly inhibitory (although 

inhibitory effects can be modulated, Bastos et al., 2012) because in those cases, higher 

cortical areas are unable to suppress activity (Meyer & Olson, 2011; Todorovic et al., 2011; 

Wacongne et al., 2011). Furthermore, the counterpart – smaller responses to predictable 

stimuli - cannot be easily explained by mechanisms such as local adaptation processes 

because those stimulus features are not represented in earlier cortical regions (Bastos et al., 

2012). The two-stage model (Grotheer & Kovács, 2016) proposes repetition-related effects 

depend on low-level inference processes within the ventral visual stream. This is in 

accordance with our results, including activations in fusiform and middle temporal regions 

that were found in an exploratory whole-brain analysis when contrasting alternation trials 

and repetition trials in Study II (see chapter 3.2, supplementary material). Contrasting the 

two contexts (AX versus AB), however, revealed activation clusters in frontal regions. At 

first glance, this seems to fit with the proposed model as expectation-related predictions are 

assumed to originate in frontal areas. Critically, as the AB context revealed the stimulus-

specific expectation effects (i.e., a reduced response to predictable alternation stimuli after 

extensive training), these additional activations of higher-level areas are not easy to explain. 

Frontal activations for the AX context might reflect more difficult computations for these 

trials. It is important to further elucidate the processes within and between cortical regions 

to understand underlying mechanisms of RS (Ewbank et al., 2013; Garrido et al., 2009a; 

Kohn & Movshon, 2003). We have focused on the FFA, which is, according to Grotheer and 

Kovács (2016), a good candidate for examining prediction-related effects for faces. Indeed, 

effects of stimulus-specific expectations were absent in OFA data.  

As I pointed out in chapter 1.3, face identification requires inferential processing in the 

hierarchy of face-processing regions. Therefore, disentangling bottom-up and top-down 

processes in face perception is challenging. Top-down processes can be demonstrated as 

early as in the course of detecting faces (Brodski-Guerniero et al., 2017; Ganis & Schendan, 

2008). Surely, processing familiar faces go along with a large proportion of higher-level 

influences. As we presented face images of one identity that differed in visuospatial 

properties in Study III, a complex network of areas likely contributes to perceiving them as 

belonging to the same person. Study III was not designed to elucidate neuronal mechanisms 

underlying RS but rather addressed expectation-related response alterations to identity. In 

fact, fMR-a studies the consequences of adaptation on a neuronal population level, and 

therefore, the exact underlying neuronal mechanisms are inaccessible (Larsson et al., 2016). 

An image-independent identity-specific adaptation effect was evident in the FFA, suggesting 
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that this area does encode identity. However, the hypothesized PE response to an 

unexpected change of identity was absent. We assume that this effect can be found by 

employing methods and analyses with higher spatial and temporal resolution. 

In summary, different methods capture different stimulus processing mechanisms, and 

those mechanisms, even if their measured output is the same (a reduced neural response), 

are likely to vary a lot in their contribution to what is finally measured when different 

designs, stimulus material, or tasks are applied. All here presented experiments rely on 

neuroimaging data, and therefore their results reflect the activity of a large neuronal 

population. The current studies do not provide direct evidence for a top-down mechanism 

producing (Study I) RS. However, as stimulus predictability is capable of mimicking RS 

effects (Study II), it can argue that measures labeled as RS can indeed be the outcome of 

several different neuronal computations - among them are local neuronal scaling 

mechanisms (Alink et al., 2018), inherited adaptation effects from upstream regions (Kohn 

& Movshon, 2003), microcircuit computations (Bastos et al., 2012; Westerberg et al., 2019), 

and additional hierarchical inference processes (Ewbank et al., 2011; Garrido et al., 2009a).  

 

 

4.5  Limitations of the presented studies 

In this section I will discuss some limitations of our investigations. 

4.5.1  Implemented tasks and attention 

A critical aspect of experiments testing prediction-related effects, not only in behavioral but 

neuroimaging and electrophysiological investigations, is the task chosen for the 

participants to perform. One of the reasons is the direct effect the selected task has on the 

focus of attention. Whenever two or more conditions are compared, differences in attention 

to these can potentially confound results because significant effects of conditions can result 

from different attentional loads instead of experimental manipulations. In general, stimuli 

evoke higher neuronal responses when attended compared to unattended (Maunsell & 

Cook, 2002; Moran & Desimone, 1985). Therefore, it is crucial to choose a task that either 

diverts attention away from the stimuli features that make the experimental manipulation 

or draws attention equally to everything, depending on the research question. In the first of 

the present studies, participants had to perform a target-detection task, and logically those 

target trials were excluded from further analyses of the neuroimaging data. However, it is 
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theoretically possible that clear trials draw more attention than noisy trials, although we 

would assume to observe an effect of noise level on RS in this case. As already mentioned in 

chapter 1.2.4, attention is related to predictive precision and can be a confound in prediction 

error experiments. Kok and colleagues (2012) investigated prediction error signals to 

gratings in human V1, V2, and V3 using fMRI. They manipulated prediction and attention 

and found their interaction. Their results revealed that attention could reverse common 

prediction-related response suppression. Therefore, if attention is allocated to clear and 

noisy trials differently, this could influence response suppression.  

Another example of how important the choice of the behavioral task is, comes from an fMRI 

study by Summerfield and Koechlin (2008). They used simple perceptual decision-making 

tasks, one of which biased decisions towards one choice and the other did not. Specifically, 

participants were asked to decide whether a target matches or not matches cue in 

orientation in one task. In other parts of the experiment, participants were asked to make 

an A versus B decision. During blocks in which participants had to decide whether a target 

matched the cue occipital and fusiform regions showed higher activity than during an A-

versus-B task (Summerfield & Koechlin, 2008). The authors reported that behavioral results 

also revealed different strategies for the two tasks. An advantage in reaction times for a 

‘same’ in comparison with a ‘different’ answer was termed as the ‘fast-same effect’ (for a 

review on this phenomenon, see Farell, 1985). Recently this effect has been explained in the 

predictive coding framework (Friston, 2005). In Summerfield and Koechlin (2008), the bias 

towards the ‘same’ answer results from top-down mechanisms. The advantage in 

behavioral responses relies on the faster accumulation of information that passes the 

threshold for a decision. We have implemented this kind of task in the second of the 

reported studies. Therefore, we cannot exclude attention as contributing to our results. 

However, implementing another task would likely have impeded learning of the statistical 

regularities, which is crucial in this design. 

4.5.2  Stimulus sets 

In Study I, we created noisy stimuli by reducing phase coherence. The absence of an effect 

of sensory precision on RS cannot be clearly explained. However, one possibility is that our 

stimulus processing procedures were not adequate for this purpose. However, since we 

found an effect of noise in the behavioral results and neuroimaging results, this is unlikely. 

In Study III, ambient images of different celebrities were chosen. Since the familiarity of 

individuals is constantly changing depending on which sample one chooses, consideration 

should be given to periodically testing the stimuli for familiarity in behavioral experiments. 
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In this step, one could also test the stimulus set directly for highly deviant stimuli. Although 

a stable representation should include such exemplar images as well, it has been shown that 

this is not true for particular cases (Carbon, 2008). 

4.5.3  Methodological limitations 

As we measure the BOLD signal with fMRI, one disadvantage is the low temporal resolution 

– especially when compared to electrophysiological methods. This is important to keep in 

mind when thinking about the characteristics of specific phenomena that are going to be 

manipulated. Therefore, neuronal timing differences for the first and second presentation 

of stimuli proposed, for example, by the fatigue model for RS, are difficult to test. This 

applies as well to differences in temporal dynamics of RS and ES. Although it is not 

impossible to investigate those with fMRI (Grotheer & Kovács, 2015), electrophysiological 

methods are much more appropriate.  

However, there is good development regarding the timing parameters when using fMRI, 

meaning the TR can be reduced. To be more precise, the time between two MR pulses can 

be shortened to approximately 500 ms. This is mostly achieved by multi-slice acquisition at 

one timepoint (Xu et al., 2013) and provides a significant advantage for specific paradigms, 

especially for a study with a paradigm used in Study III (chapter 3.3). The possibility to 

separate responses to the single stimuli within a trial, be it a trial with two or more stimuli, 

offers the opportunity to classify the observed phenomena more thoroughly (Pajani et al., 

2017). In the case of Study III (3.3), we probably would have been able to improve the 

signal-to-noise ratio. Although there is evidence that differences between trials containing 

only standards and trials with a deviant stimulus even in a block design (Amado et al., 

2018b) can be detected, we could not find this effect when testing for identity-related 

violation in a similar design. The separation of the signal to the single images within blocks 

would have allowed to examine only the outcome of the trials and investigate the difference 

between fulfilled and violated identity expectations independently from responses to the 

preceding stimuli. 

The high spatial resolution has been considered to be the advantage of fMRI over EEG. In 

light of the presented phenomena of response suppression findings and keeping in mind the 

many possible underlying processes, the spatial resolution is not high enough to make 

specific statements about how the individual mechanisms work together or distinguish 

them from each other. Although most models of RS predict changes in amplitude, which can 

be measured with fMRI, it has been shown that univariate analyses fail to differentiate 

between models (Weiner et al., 2010). In the last years, multivariate pattern analyses have 
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been offered more complex investigative approaches in neuroscience. An example that 

shows that these analyses can be superior to conventional ones comes from research on 

differences in face identity representations in different levels of familiarity (for a review, 

see Kovács, 2020). Nevertheless, we were able to prove identity-specific encoding that is 

image-invariant in the FFA with univariate analyses.  

As already mentioned, one disadvantage of fMRI methods applied in the current experiment 

is that only averaged activity can be measured. In other words, the acquired neuroimaging 

data collapse the activity of multiple neuronal populations. Therefore, it is unable to 

differentiate between activity driven by bottom-up and top-down processing streams. 

Laminar fMRI (Lawrence et al., 2019) is a promising technique to tackle specific 

characteristics of processing stimuli in an experimental setting.  

A more general limitation is the chosen sample size. Obviously, the best approach to 

estimate the needed sample size reliably in a power analysis is conducting a pilot 

experiment. However, due to limited resources, this is often not applicable for fMRI 

experiments. We therefore followed other studies that have investigated related 

phenomena to determine the sample size. We acknowledge that samples in Study I and II 

were rather small. However, in Study I, we conducted a Bayes factor ANOVA additionally to 

traditional ANOVA, to demonstrate that the absence of an RS modulation by sensory 

precision is not due to the small sample size. In Study II, our data collection was severely 

limited by external conditions due to the strictly defined procedure of the training with 

subsequent fMRI measurement.  

 

4.6  Open questions and future directions 

In the course of the discussion, I have already mentioned some considerations that could 

improve our studies or initiate new research. I would like to briefly review some of the 

already mentioned methodological approaches and techniques with their specific 

advantages for investigating predictive processes in the ventral visual stream. Furthermore, 

I will propose some ideas for follow-up studies based on the presented investigations. 

 

I have already mentioned the possibility that attention is allocated differently to noisy and 

clear stimuli. Different accuracies for noisy and clear stimuli suggest that clear trials draw 

more attention. Nevertheless, our sensory precision manipulation did not affect RS 

magnitude, although attention and precision are closely related as proposed by PC models. 
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One possible explanation is that the task was indeed more difficult for noisy trials (Banko 

et al., 2011). Implementing a different task could provide better insights into the influence 

of sensory precision and attention. Furthermore, based on the present results, we cannot 

conclude that RS should be explained in terms of feedforward models. Another 

manipulation of sensory precision or a task demanding processing the stimulus content 

could shed light on whether RS reflects the prediction error shaped by precision weighting. 

However, to not introduce more predictive processes just by demanding face identification, 

sensory noise could be manipulated differently. For example, reducing the stimulus 

presentation time can also change uncertainty in the sensory signal. 

In Study II (chapter 3.2), we showed that measures of repetition suppression might be 

confounded with effects of different degrees of stimulus predictability in repetition and 

alternation trials. Through training, the participants were able to predict stimulus changes 

as well as stimulus repetitions. This led to reduced response differences between repetition 

and alternation trials in this context (i.e., no repetition suppression effect). Different 

processes likely led to response suppression for repetition and alternation trials in the 

trained AB context. To further investigate top-down and bottom-up influences, it would be 

insightful to examine the timing parameters of these effects with electrophysiological 

methods (Feuerriegel et al., 2018a).  

We have also raised the question of whether the differences in the relative likelihood of 

specific face images in the two contexts led to weighting expectations towards repetitions 

in the AX context. To further test the impact of predictability, a graded manipulation of 

predictability could be implemented. In Study II, alternating faces in context AB were always 

predictable. In contrast, in context AX, predictability was downgraded as face X was always 

one of five faces that occurred with equal probability. If, however, probabilities in the AX 

context were changed and biased towards one face, one could investigate the impact of the 

relative likelihood of encountering a specific face and shed light on the role of surprise.  

In chapter 4.2.2, I emphasize that different levels of stimulus predictability exist, especially 

when utilizing faces for studies on response suppression. One can predict the outcome of a 

trial (repeating – alternating), the class of stimuli (faces – houses), the identity depicted in 

an image (as in priming studies), or a specific image is in Study II (chapter 3.2). We visually 

familiarized our participants with the face stimuli. However, we used only one exemplar 

image per identity to ensure that the exact image can be predicted similar to repeatedly 

presented stimuli. The use of ambient images (as in Study III) could strengthen a neural 

representation. This could be one way of investigating stimulus predictability effects on a 

more abstract level. Of course, it is possible to use famous familiar faces right away, as is 
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associative priming studies (Schweinberger et al., 1995). However, one advantage of 

previously unknown faces is that familiarity levels are equal at the start, and no associations 

between faces are present. Whereas familiarity with stimulus material can be assessed 

easily by a questionnaire in experiments, the evaluation of associations participants might 

have for specific celebrities is difficult.  

In Study III, we provided evidence for identity-specific adaptation effects in the FFA and a 

tendency for the same effect in the OFA. Although previous univariate studies failed to find 

these effects with similar designs (e.g., Davies-Thompson et al., 2009), multivariate 

approaches were successfully proved identity representations in those areas (Tsantani et 

al., 2021). This suggests that more powerful analyses could provide a more robust effect of 

image-independent adaptation to identity for the FFA and OFA and maybe even show the 

identity-specific release from adaptation when identity changes. A related effect in a slightly 

different design was shown by Johnston et al. (2016) in event-related potentials and in an 

MEG study, even coined to the occipito-temporal gyrus (Robinson et al., 2020). Therefore, a 

combination of univariate and multivariate analyses for fMRI is recommended for future 

studies. This could also elucidate how stimulus predictability affects different measures of 

response suppression as it was shown that predictability reduces activity as measured with 

fMRI but enhanced classification performance in multivariate analyses (Kok et al., 2012a). 

However, paradigms have to be planned carefully as not every dataset is suitable for 

multivariate analyses. 

The potential of faces as stimulus material is not yet fully exhausted. Faces lend themselves 

a good basis for investigating basic principles of visual perception. However, they need to 

be chosen with special care. Depending on their familiarity characterization ranging from 

unfamiliar to personally familiar, processing faces engages different cortical (and 

subcortical) areas and is likely influenced by higher-order information on different scales 

(Duchaine & Yovel, 2015; Kovács, 2020). As faces are of special interest to humans, their 

processing is, in general, very complex. That comes with the disadvantage that slightly 

different stimulus sets may cause significantly different results. Future studies should aim 

for better integration of knowledge about face processing and perception when using them 

to examine neuronal responses related to predictive processes.  

Undoubtedly, the FFA is a good candidate for investigating response alterations to face 

stimuli under different manipulations. The FFA is engaged in face processing irrespective of 

familiarity, plays a crucial role in identity processing (chapter 3.2), and is highly 

interconnected with other areas (Duchaine & Yovel, 2015). However, in addition to lower-
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level areas, such as the OFA, future studies should aim to localize higher-level areas such as 

the ATL. 
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5  CONCLUSION 

The empirical studies in this thesis investigate response alterations in occipito-temporal 

face areas measured with fMRI. We specifically focus on measures of neuronal behavior 

resulting from stimulus repetition, fulfillment of image-specific expectations, and higher-

level identity expectations. Furthermore, we highlight the importance of stimulus 

predictability in studies investigating the mentioned effects focusing on facial stimulus 

material.  

Whereas many studies show the modulation of RS by expectations, and it therefore has 

recently been explained by theories of PC, other findings support intrinsic neuronal 

adaptation mechanisms to cause this effect. Under which conditions RS reflects either of 

them is therefore not finally clarified. As predicted by hierarchical inference models, 

measures of RS vary according to the precision of prior beliefs. We were the first to show 

that RS to faces is not modulated by sensory precision as it was shown for the precision of 

priors (Summerfield et al., 2011) in Study I. FFA responses to unfamiliar faces revealed 

robust RS under low and high sensory precision conditions. This supports feedforward 

models of RS or within-region computational processes based on neuronal circuits. 

However, as the measured BOLD signal reflects activity on a population level, we cannot 

differentiate signals of neuronal units representing prediction and prediction errors. 

Therefore, we cannot exclude RS to be the consequence of inferential processes and 

perceptual expectations. Nevertheless, if RS reflects the prediction error, the precision of 

sensory input seems to be less determining its magnitude than the precision of prior beliefs. 

One possible explanation is that repetition as prior is much more robust than assumed. 

We also show the importance of stimulus predictability in measures of RS in Study II. As 

many studies use RS under different conditions to measure feedback influences of higher 

levels in the processing hierarchy, the imbalance of stimulus predictability as characteristic 

of immediate RS designs needs to be considered for correct conclusions. A relatively short 

amount of training on statistical regularities (compared to generating internal models of the 

outside world on a long-term scale), significantly altered neuronal responses to faces. 

Stimulus-specific expectations, evolved after training on specific stimulus associations, 

eliminated RS. Although this issue was addressed earlier (Pajani et al., 2017), we were the 

first to investigate this effect independent from higher-level expectations and, in addition, 

carefully accounted for effects of stimulus novelty. Our results emphasize that stimulus 

predictability needs to be considered when investigating RS. Especially in paradigms where 
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higher-order expectations are examined using measures of RS, resulting RS magnitudes can 

be confounded with effects of stimulus-specific expectations. 

In Study III, we provide further evidence for image-independent identity encoding of 

famous faces in the FFA. This supports the idea of stable identity representations in this 

area. In contrast, earlier studies could find response differences only in higher-order face-

processing areas (Weibert et al., 2016) or with multivariate analyses (Axelrod & Yovel, 

2015). We even found a tendency for the same effect in the OFA, which needs further 

investigation due to the explained limitations. Setting about those could also shed light on 

image-invariant expectation violation effects, signaling prediction errors, which could not 

be observed within this paradigm.   

Additionally, on the basis of our work, we suggest that faces can provide a great basis for 

investigating neuronal mechanisms as we can draw on a lot of knowledge about the 

individual areas and their connections. However, they need to be chosen with care, 

especially with regard to familiarity and the accompanying neuronal representations and 

resulting differences in predictive precision.  

Although our studies addressed hypotheses based on predictive coding principles, such as 

precision weighting of prediction errors, stimulus-specific expectations, hence stimulus 

predictability and identity-specific expectations, we cannot provide direct evidence for or 

against RS being a consequence of predictive processing in ventral visual areas. However, 

as it has been shown that several proposed models can explain neuronal behavior to 

stimulus repetitions, our studies are a part of the bigger puzzle. In the end, our brain is a 

dynamic system, and there is still a long way to go before we understand how it functions.  
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