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Design of an Electrostatic Balance Mechanism to
Measure Optical Power of 100 kW

Lorenz Keck , Gordon Shaw , René Theska , and Stephan Schlamminger , Senior Member, IEEE

Abstract— A new instrument is required to accommodate the
need for increased portability and accuracy in laser power
measurement above 100 W. Reflection and absorption of laser
light provide a measurable force from photon momentum
exchange that is directly proportional to laser power, which
can be measured with an electrostatic balance traceable to the
SI. We aim for a relative uncertainty of 10−3 with coverage
factor k = 2. For this purpose, we have designed a monolithic
parallelogram 4-bar linkage incorporating elastic circular notch
flexure hinges. The design is optimized to address the main
factors driving force measurement uncertainty from the balance
mechanism: corner loading errors, balance stiffness, the stress
in the flexure hinges, sensitivity to vibration, and sensitivity
to thermal gradients. Parasitic rotations in the free end of
the 4-bar linkage during arcuate motion are constrained by
machining tolerances. An analytical model shows this affects the
force measurement less than 0.01%. Incorporating an inverted
pendulum reduces the stiffness of the system without unduly
increasing tilt sensitivity. Finite element modeling of the flexures
is used to determine the hinge orientation that minimizes stress,
which is therefore expected to minimize hysteresis. Thermal
effects are mitigated using an external enclosure to minimize
temperature gradients although a quantitative analysis of this
effect is not carried out. These analyses show that the optimized
mechanism is expected to contribute less than 1 × 10−3 relative
uncertainty in the final laser power measurement.

Index Terms— Balance, electrostatic force balance, flexure
mechanism, laser power, optical power.

I. INTRODUCTION

PRIMARY measurements of laser power rely on either the
effect of absorbed laser power or the force transmitted

in reflection (see [17] for a recent review). Instruments that
use absorption suffer three critical disadvantages. First and
foremost, the laser beam is no longer available after it has
been absorbed. This necessitates substitution or beam splitting
processes for calibration of secondary detectors and severely
limits in situ use for industrial applications, such as, e.g.,
laser welding. Second, every absorber scatters and reflects
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some light. Hence, it is difficult to capture the entirety of the
incident light at relative uncertainties smaller than 1 × 10−3.
This is expected to be especially critical for laser powers above
1 kW. Third, the absorption of multiple kilowatts of laser
power generates a large amount of heat. Although flowing
water calorimeter systems capable of handling these thermal
loads have been developed [17], they are bulky and difficult
to operate.

In contrast to that, custom dielectric coating stacks that
have total optical loss lower than 1 × 10−4 are commercially
available. Thus, it is, in principle, possible to build a system
that can measure the power of a multikilowatt laser at relative
uncertainty of 1 × 10−3 or better with k = 2, using the photon
pressure force from the reflection of laser light.

The optical characteristics of the mirror can be described by
the specular reflectance R, the absorbance A, and the trans-
mittance T . The effect of diffuse reflectance is not considered
in this work. Their sum is unity, i.e., R + A + T = 1. Using
these coefficients [11], the photon pressure force, throughout
the text also referred to as the external force, on the mirror is
given by

Fext = P cos α

c
(2R + A) (1)

where P denotes the power of the laser beam and α the
angle of incidence relative to the surface normal. A 100 kW
light beam (α = 0) normally incident on a perfect mirror
(R = 1) produces a force of 667 µN. According to the
specifications above, the total allowable force uncertainty is
667 nN at k = 2. Since we do not have an 100 kW laser
at our disposal, a beam multiplier, the High Amplification
Laser-pressure Optic (HALO) has been constructed [1]. The
HALO uses a 10 kW laser and 14 reflections to produce a
normal force on the order of 667 µN. Other work describes
multireflection measurements at lower power [10], [16]. In this
article, we describe the design of the mechanical components
of an electrostatic balance for measuring laser power of
up to 100 kW. We designed the electrostatic balance to be
compatible with the HALO, but it can also be used to measure
a single laser beam application. This manuscript reuses some
content from thesis [6] with permission.

II. THEORY OF THE ELECTROSTATIC BALANCE

Electrostatic force balances have been used successfully in
mass metrology [10], [12] and, more recently, to measure the
force exerted by light for power levels up to 3 W [11].
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Fig. 1. Drawing of the mechanism with attached inner capacitor electrode
and mirror. Left: coupler with length a. The swings, with length b, determine
the distance between the fixed back pivots and the movable front pivots. L̃
indicates an offset of the center axis of the mirror to the center axis of the
capacitor.

In the force mode, an external force is compensated
by the electrostatic force between two capacitor electrodes.
A feedback system adjusts the voltage applied to the capacitor
to hold a movable electrode at a nominal position based on
input from a displacement measuring device, usually an inter-
ferometer. The electrostatic force generated with the capacitive
actuator depends on two quantities, the square of the potential
difference, V 2, and the capacitance gradient, dC/dx , and is
described with

Fel = −1

2

dC

dx
V 2. (2)

The capacitance gradient, dC/dx , is not known a priori.
It is obtained by measuring capacitance at fixed electrode
positions, fitting a polynomial to the measured data and then
calculating the derivative of the polynomial about the nominal
operating position. Excursions of a few tenths of a millimeter
are required to measure the capacitance gradient with sufficient
accuracy [13]. Gradients on the order of 1 pF mm−1 are
achieved with concentric cylindrical capacitors as in electro-
static force balances at NIST [12], [13].

Measurements performed with the electrostatic balance are
directly traceable to the SI, as revised in 2019 [14]. The mea-
surement may, therefore, be considered a primary reference
for force, as no other reference, i.e., a force traceable to mass
in a gravitational field, is required for calibration. More details
to the traceability path of measured force to h are outlined in
[12] and [17].

III. CONCEPTUAL DESIGN OF A NEW

BALANCE MECHANISM

The design objective is to achieve the linear translation
of the payload (mirror plus electrode) over ±0.25 mm with
minimal parasitic rotation. Furthermore, the mechanism should
be as simple as possible for ease of use, manufacturing,
and uncertainty analysis. A planar parallelogram linkage (see
Fig. 1) is a suitable solution for this application.

The mechanism has four pivots. The two back pivots
connect two rotating bars (referred to as swings) to the frame
of the balance and the two front pivots connect the coupler to
the rotation bars. Two dimensions must be chosen: the vertical
separation of the pivots, i.e., the length of the coupler, a, and
the length of the swings, b.

A. Sizing the Linkage

As shown in Fig. 1, the center of the mirror is horizontally
offset from the center axis of the capacitor to prevent heating

Fig. 2. Geometric relations for an assumed imperfect parallelogram
linkage with b—length of the swings, a—length of the coupler, and �—
manufacturing tolerances. A worst case scenario is assumed: the opposite
linkages differ by 2�. The dashed line z is one diagonal. Here, ψa and ψb
are calculated as function of γ . The parasitic rotation of the coupler is φz. A0
and B0 display fixed back pivots, while A and B are moveable hinges. The
red lines show the linkage at the nominal zero position, and the black lines
exaggerate a deflected state of the linkage.

of sensitive components by transmitted light [11]. The variable
L̃ denotes the horizontal offset between the application points
of the external force due to the laser and the electrostatic
force. This lever arm increases the measurement sensitivity
to coupler rotations. In an ideal parallelogram linkage, where
the four pivots are at the corner of a perfect parallelogram,
the coupler will not rotate. In reality, a perfect parallelogram
is impossible to achieve due to machining tolerances, �.

To examine the effect of machining tolerances on the
rotation angle of the coupler, φz, a worst case is assumed.
The horizontal distance at the top is 2� longer than the one
at the bottom. Furthermore, the coupler length is 2� longer
than the vertical separation of the back pivots (see Fig. 2).

The squared length of the diagonal shown in Fig. 2 is given
by

z2 = (a + �)2 + (b + �)2 − 2(a + �)(b + �) sin (γ ) (3)

where the rotation angle of the top swing sin (γ ) = x/(b +
�) ≈ γ . With the length of the diagonal, the angles around
point B0 can be obtained with the cosine rule. They are

ψa = arccos

(
(a + �)2 + z2 − (b + �)2

2z(a + �)

)
(4)

and

ψb = arccos

(
(b − �)2 + z2 − (a − �)2

2z(b − �)

)
. (5)

The rotation angle of the coupler is

φz(x) = arcsin

(
(b + �) cos (γ ) − (b − �) sin (ψa + ψb)

(a − �)

)
.

(6)

To minimize coupler rotation the first derivative, dφz/dx
should be zero at the nominal zero position (γ = 0). This is
the case for the perfect geometry, � = 0.

Hence, dφz/dx is a good figure of merit to investigate the
coupler rotation. Fig. 3 shows the derivative as a function of
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Fig. 3. Figure of merit, φz,x = dφz/dx , for the optimization of the
parallelogram sides a and b. For this figure, � = 5 µm is used.

the average (a + b)/2 and half the difference (a − b)/2 of
two lengths. Here, � = 5 µm was used for the calculation—
uncertainties that can readily be achieved with computer
numerically controlled machining. For any average value cho-
sen, the figure of merit shows a minimum for a = b. Hence,
a = b is a good choice for the design.

Since the coupler rotation decreases monotonically as a+b
increases, the requirement for a compact instrument dictates
the choice of 100 mm for a and b.

For the chosen geometry, a coupler rotation of dφz/dx =
1 µrad/mm is obtained. The distance to the apparent center
of rotation is the reciprocal of this value, L = (dφz/dx)−1 =
1 km.

L constrains the systematic and statistical uncertainty
caused by the horizontal difference in the application points
of the external force and the compensating force, L̃ in Fig. 1.
With respect to the rotation point, the electrostatic force Fel

produces a torque of L · Fel, while the external force Fext

produces a torque (L ± L̃) · Fext. The sign is positive if the
rotation point is to the right of the coupler. In equilibrium, both
torques must be equal, and hence, the relative force difference
is Fel/Fext − 1 = ±L̃/L. This expression describes the corner
loading error.

With typical values of L̃ = 90 mm ± 2 mm and L = 1 km,
the relative corner loading error is 9 × 10−5±2 × 10−6, which
shows that this error contribution is orders of magnitude below
the required 1 × 10−3.

B. Analytical Description

In this section, the balance is analyzed using the Lagrange
equations of the second kind. This will yield the stiffness,
the eigenfrequency, and the condition for the equilibrium posi-
tion of the mechanism. The functional components (masses,
springs, and pivots) are shown in Fig. 4. All connecting
bars are assumed to be perfectly rigid, and all dampings
are neglected. A single hinge has a torsion stiffness of κs,
as indicated by the subscript s for single. The x-axis of the

Fig. 4. Rigid body model of the mechanism with its attachments.

coordinate system is aligned with gravity, the metrology frame
is inclined by φ from the x-axis, and the rotating links are
deflected by γ from the metrology frame. The two masses mh

are offset by h1 and h2 along the negative x direction from
the back pivots in a nondeflected system, i.e., for γ = φ = 0.
These two masses mh and the compensation spring labeled
kb can be used to adjust the mechanism stiffness [2], [9].
Besides the mechanical stiffness kb, the zero length λ0 and
the extended length λ1 are the important physical parameters
for the spring. The masses mp1 and mp2 are counterweights
and compensate for the masses ma (coupler), mM (mirror), and
mE (capacitor electrode). Here, aE/bE and aM/bM denote the
vertical/horizontal distances from the center of the coupler to
the electrode and the mirror, respectively. The symbols a and
b without indices abbreviate the lengths of the parallelogram,
similar to Fig. 2. The symbol e captures the length of the
extension of the upper or lower swing from the right of the
back pivots to the counterweights.

The differential equation for γ can be obtained from the
Lagrange equation assuming small angles γ and φ. It is
derived in Appendix A, and the result can be written in the
following form:

J γ̈ + κγ = −Jφφ̈ + κφφ − Neq (7)

where the coefficients are given by

J = b2mE + b2mM + b2ma + b2mb

6
+ bemb

3
+ e2mb

6
+ 2 e2mp + h2

1mh + h2
2mh (8)

Jφ = J + ah1mh

2
− ah2mh

2
+ bbemE + bbmmM (9)

κ = 4κs−gmh(h1 + h2) − l1bkb

(
1 − λ0

b + l1

)
(10)

κφ = gmh(h1 + h2) (11)

and

Neq = g(−bmE−bmM−bma + 2 emp). (12)

The imaginary eigenvalues of the homogeneous part of
the differential equation provide the eigenfrequency ω due to
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deflections γ . It is

ω2 = κ

J
. (13)

The torque Neq determines the equilibrium position according
to γ = Neq/κ . The nominal zero position (γ = 0 for
φ = 0) can be obtained according to the equilibrium condition
in (12) by adjusting the counterweights such that 2 emp =
b(mE + mM + ma). Then, the load is distributed equally to
the upper and lower pivots. The masses on both sides of the
xz plane generate equal and opposite torques, minimizing the
effects of external vertical acceleration. By choosing b =
e, the equilibrium position of the balance remains largely
unchanged with temperature change since thermal expansion
in both lengths b and e would cause the lever arms to expand
symmetrically and, thus, the equilibrium condition stays stable.
Nevertheless, a temperature gradient within the material could
lead to asymmetric thermal expansion but, since the chosen
aluminum alloy has high thermal conductivity, this effect is
considered negligible [9].

The torsional stiffness κ given in (10) can be converted to
a linear stiffness K of the coupler moving in x with [9]

K = κ

b2
. (14)

It can be seen that the stiffness decreases with 1/b2. Hence,
to obtain the necessary small linear stiffness, b should be as
large as possible, but, as mentioned above, the installation
space limits b to a maximum of 100 mm.

C. Monolithic Design

A compliant mechanism is a key part of the realization
of precision balance instrumentation. Flexure hinges need no
lubrication, are stick-slip free, show negligible hysteresis, and
provide highly reproducible motion [5], [8], [18].

A monolithic design also has several advantages. Fabri-
cating the functional parts of the mechanism in one setup
maintains small machining tolerances yielding two major
benefits: 1) the rotation axes of the four pivots are parallel
and 2) the machining tolerances � are small. Furthermore,
no assembly is required, saving time and eliminating a source
of potential variation from the model. Hence, nearly identical
copies can be made. The lack of fasteners also reduces excess
mass.

Many different possible contours for hinges exist. A detailed
overview can be found in [7]. They differ in three functional
properties: 1) the torsional stiffness; 2) the stability of the
rotation axis under deflection; and 3) the maximum admissible
deflection. A small rotational stiffness and good stability of the
axis of rotation are both important in the current design.

The linear stiffness is given by a combination of (10)
and (14). Here, a stiffness of 0.1 N m−1 is desired. For the
chosen b = 100 mm and no stiffness compensation, the rota-
tional stiffness of one pivot should be κs = 2.4 × 10−4N · m.
Generally, a circular geometry has moderate bending stiffness
and is easy to manufacture, and the precision of rotation is
high compared to other geometries [3]. The latter is because
the compliant part of the hinge performing the rotation is

concentrated in the very center of the hinge geometry. For
simplicity, the following circular hinge contour was chosen
for each flexure hinge: radius 2.5 mm, minimal notch height
0.05 mm, and width of 10 mm. These dimensions can be
obtained with high-speed milling or wire electrical discharge
machining.

The rotational stiffness of this hinge design is κs =
0.018 N · m, as calculated with nonlinear equations of large
deflections assuming a pure moment loading a hinge [4].
This is about two orders of magnitude larger than desired,
but the final stiffness of the mechanism can be adjusted
with the masses mh. The final design keeps the inverted
pendulum to reduce stiffness but omits the spring to reduce
temperature sensitivity, which would have affected the elastic
modulus and, hence, the equilibrium position of the balance.
The maximum admissible angle of deflection of the chosen
hinge under a pure moment load is ≈ ±87 mrad and provides
more than an order of magnitude more than the required
±2.5 mrad for coupler travel of ±0.25 mm with the chosen
linkage dimensions. Aluminum 7075-T6 was chosen as the
material for the monolithic mechanism due to its high yield
strength (503 MPa), low elastic modulus (72 GPa), and good
machinability.

IV. DETAILED DESIGN BY USE OF FINITE

ELEMENT ANALYSIS

With the design analysis above as a starting point, the mech-
anism can be refined to its final form. This section describes
an optimization for robustness, functionality, portability, and
machinability using finite element methods.

A. Optimization of Hinge Orientation

Three potential hinge orientations in the mechanism are
investigated (see Fig. 5). In (a), all hinges are oriented along
y, and in (b), the two back hinges point along x and the front
hinges along y. Finally, in (c), the hinges are oriented along
with the force vectors such that all hinges are in tension in
the nominal zero position. For a mathematical derivation of
the orientation of the hinge force vectors, see Section 5 in [6].
For all three cases, a simplified design is studied using finite
element simulation in ANSYS Workbench.1 Two analyses are
performed to determine the stress in the hinges and stiffness
of the mechanism.

For each geometry, a finite element model is calculated in
each analysis. Both simulations use quadratic elements and a
nonlinear solver.

For the stiffness analysis, masses and the gravitational
vector are excluded from the simulation. Hence, the only
forces in the stiffness simulation are generated by the hinges.

In order to obtain the stiffness of the mechanism K ,
the coupler in the model is displaced vertically by 0.1 mm,
and the simulated restoring force is recorded.

1Certain commercial equipment, instruments, and materials are identified in
this article in order to specify the experimental procedure adequately. Such
identification is not intended to imply recommendation or endorsement by
the National Institute of Standards and Technology nor is it intended to imply
that the materials or equipment identified are necessarily the best available
for the purpose.
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Fig. 5. Maximum stress in the hinges as calculated by the finite element
simulation for three different hinge orientations. For these calculations,
an elastic modulus of E = 72 GPa and Poisson’s ratio of ν = 0.33 were used.
The maximum stress arises in all configurations in the center of each back
hinge. (a) All hinges are oriented in y. (b) Oriented in x and y. (c) Oriented
in tension.

Fig. 6. Mass placement used for the hinge stress analysis via the finite
element method. Variation (b) in Fig. 5 serves here as representation. The
values for the masses and lengths are derived from preliminary designs and
investigations of the functional components included in the design of the
balance and are given in Table I.

The result of the three finite element calculations shows
that the stiffness is mostly independent of hinge orientation. In
each case, the result for the pure elastic part of the mechanism
stiffness is K ≈ 8.1 N m−1. This result is remarkable. The
admixture of applied transversal force and torque on a given
hinge under deflection changes with orientation and so does its
stiffness leading one to expect a larger variation in stiffness.
In this design, the effect is negligible. Similarly, adding the
gravitational load to the hinges does not change their torsional
stiffness significantly.

For the hinge stress analysis (see Fig. 6), the gravitational
vector and masses are included in the simulation. All masses
are modeled as points, and the locations of the centers of mass
of the swings coincide with the back pivots as assumed in
the rigid body model. The mechanism is considered with an
equilibrium at the nominal zero position (Neq = 0) without
applying further external displacements. The result of the
calculation is the maximum equivalent stress that occurs on
the hinges of the mechanism.

In the hinge stress analysis, the differences in the calculated
outcome are tremendous. For the two extreme cases, it differs
by more than an order of magnitude, 110.5 MPa and 9.0 MPa
for (a) and (c) in Fig. 5, respectively. Note that the maximum
stress arises in all configurations in the center of each back
pivot.

Orientation (c) in Fig. 5 clearly performs best. It has the
smallest stress while being comparable in elastic stiffness to

the other orientations. The result follows intuition because,
here, the hinges are loaded along the force vector, and the
loading is in tension rather than compression. The latter can
lead to buckling in these ultrathin notch flexures.

B. Complete 3-D Model

With the design choices described above, a 3-D CAD model
is generated (see Fig. 7). The whole mechanism is built from
an aluminum block measuring 241 mm, 146 mm, and 40 mm
in length, height, and width.

The moving part of the mechanism consists of two planar
structures each 5 mm thick and spaced 30 mm apart. They
are connected at four locations with connectors and move as
one. The defining features in both planes are machined in a
single fixtured position and are, therefore, nominally identical.
The front and back plates protect the moving parts of the
mechanism. With the chosen approach, the attachments and
counterweights can be mounted at the plane of symmetry
between the two mounting plates. This configuration elim-
inates parasitic rotations about the y-axis while preserving
monolithic machinability.

The moving parts, the two swings, and the coupler are
separated from the plates by a 4 mm wide channel that is
milled through both plates simultaneously. The channel runs
not completely thru but is interrupted by the four hinges
and 16 sacrificial bridges. After milling, an electrical wire
discharge machine is used to precisely contour the hinges.
The bridges block the motion of the mechanism and provide
sufficient stability for all machining steps and are carefully
removed at the end of the machining process. The center of the
mechanism is solid except for a few through holes, providing
thermal and mechanical stability. All four connectors have
tapped holes. To the front connectors, the mirror and capacitor
can be mounted. Trim masses can be attached to the two back
connectors (see Section V). Two additional plates not shown
in the drawing can be bolted onto the front and back planes.
Six transportation safety pins through these plates immobilize
the moving part of the mechanism during transport.

V. PHYSICAL PROPERTIES OF THE FINAL DESIGN

With the final design, the second iteration of finite element
analysis was performed with all the components necessary for
laser power measurement. Expected values for the masses of
the mirror, and the inner electrode were assigned. The two
identical counterweights were chosen such that the balance is
at the nominal zero position, i.e., Neq = 0 [see (12)]. These
four masses are concentrated at points, while the masses of the
coupler and the swings were assumed to be distributed (see
Fig. 7).

The swing assembly consists of the upper/lower swing and
the upper/lower counter mass plus half the mass to the left of
the front flexures [see (12)]. The center of mass of the lower
swing assembly coincides vertically with the lower back pivot
point and can be finally adjusted horizontally. The opposite is
true for the upper swing assembly. Here, the center of mass
coincides horizontally with the upper back pivot point and can
be finally adjusted vertically.
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Fig. 7. Top: CAD model of the designed mechanism. It consists of two
separate mechanisms with a connector in between to prevent corner loading
and provide stability to the structure. Bottom: geometry of the mechanism
illustrating the boundary conditions for finite element simulation. Material
density was considered with ρ = 2.8 g/cm3 for aluminum. Note that the
center of mass of each rotating link was designed to coincide with its pivot.
Note also that the weight of the coupler differs slightly from what was
assumed in the first simulation in Fig. 6. In the real CAD model, it is
ma = 32.4 g, which causes the counterweights to have mp = 171.2 g each.

With the lower mass, the restoring torque of the balance is
adjusted, which allows to adjust the equilibrium position of
the balance close to the nominal zero position of the linkage.
With the upper mass, the stiffness of the balance is adjusted.
If the center of mass of the upper swing assembly coincides
with the pivot (h1 = 0), the restoring torque is provided by the
pivots alone. By moving the center of mass up, the restoring
torque is reduced by the gravitational moment of the mass.
The drawback of this method is that the gravitational moment
changes with the tilt of the balance frame. Hence, the tilt
sensitivity increases as the mass of the swing assembly moves
away from the pivot point.

A finite element simulation is performed with the upper
mass in six positions to investigate the tradeoff between
stiffness reduction and tilt sensitivity. The results of these
simulations and the calculation of the analytical model
using (10), (14), and (11) are displayed in the top plot
in Fig. 8. The data in blue indicated by the left axis show the
linear stiffness of the mechanism as a function of h1. Black
data points with the scale on the right show the produced
torque on the coupler. The circles are calculated with finite
element simulation and the lines from analytical equations.
A good agreement indicates the validity of the analytical
equations.

Fig. 8. Top: analytical (solid lines) and finite element simulation (dots) results
for the mechanism stiffness (blue filled circle) and the error force sensitivity
due to ground tilt φ (black empty circle) for different compensation mass
positions h1 in the closed loop. Bottom: sensitivity of the excursion of the
coupler in x due to ground tilt φ for different compensation mass positions
h1 in the open loop. Note that the excursion is measured with respect to the
equilibrium in the nominal zero position of the coupler for φ = 0.

The goal is to obtain a linear stiffness of the coupler of
K ≤ 0.1 N m−1. Hence, h1 ≥ 44.12 mm.

As indicated in the upper plot in Fig. 8, a large h1 increased
the tilt sensitivity. Fig. 8 provides more detailed information.
The plots show both the sensitivity of the balance readout
to ground tilt in the open (upper plot) and closed (lower plot)
loop. In the open loop, the ground tilt causes a deflection of the
coupler in the vertical direction with respect to the metrology
frame. In the closed loop, a restoring force generated by the
capacitor is necessary to maintain the coupler at the desired
equilibrium position. In either case, a static tilt will dropout
since the external force is modulated. Hence, only a tilt that
occurs on the same time scale as the laser light modulation
will contribute a bias to the measurement. We estimate that
such modulation of the tilt is 1 nrad. Using h1 = 44.12 mm,
a spurious force of 0.76 nN will be indicated in this case,
which has no significant impact to the measurement result.

In addition to the above, the dynamic behavior of the
balance is also important to consider. The eigenfrequencies of
the device are obtained with a modal analysis. A finite element
simulation was carried out with the system at equilibrium,
h1 = 44.12 mm, and the mass distribution, as shown in Fig. 7.
For the first resonance in the system, the oscillation is along
the force measurement axis (x), and the eigenfrequency is
f = 0.51 Hz. The next resonance at f = 19 Hz is the out of
plane bending of the swings. A total of seven resonances occur
below 100 Hz. Since the next lowest frequency is more than
an order of magnitude away from the most compliant mode,
the influence of the higher order modes on the measurement
is believed to be negligible or can easily be mitigated with
appropriate filtering.

A low angle view of the device with protective side plates
installed is shown in Fig. 9. The side plates allow mounting
add thermal mass and provide holes for transport safety pins
(see inset in Fig. 9). Each safety pin is a spring sleeve.
It can be compressed and inserted in the assembly without
applying an insertion force. By engaging a screw in the sleeve,
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Fig. 9. Low angle view of the assembled mechanism. The inset on the
bottom shows, not to scale, one of the total six transport safety pins.

it expands, and the mechanism is locked. Both side plates
were manufactured in one setup together with the mechanism,
ensuring that the holes for the safety pins are precisely aligned.
Hence, the pins lock the mechanism without additional forces
and with zero clearance.

VI. CONCLUSION

An electrostatic force balance mechanism was developed to
measure the photon pressure force of a 100 kW laser. The task
required the measurement of a 667 µN force with a relative
uncertainty of 1 × 10−3 in air. Therefore, a portable mono-
lithic parallelogram linkage was designed. First, the impact of
machining tolerances on the corner loading error was inves-
tigated as a function of the two lengths in the parallelogram,
a and b. It was found that corner loading is generally minimal
when linkage dimensions are equal, a = b, and decreases with
increasing a + b. The largest possible size in this application
is a = b = 100 mm and was chosen for the final design.

Furthermore, the basic equation of motion was derived
according to the Lagrange equations of the second kind, and
results were confirmed with finite element simulation. With
these, the static and dynamic behavior of the system could
be optimized by parameter variations. The most critical static
properties of the mechanism are its equilibrium condition
and the linear stiffness of the moving balance coupler. Two
moveable masses can be used to adjust both the equilibrium
position and the linear stiffness of the coupler in the mech-
anism independently. In the final design, the stiffness of the
mechanism in the measuring direction can be adjusted from
K = 7.6 N m−1 to below zero according to finite element
simulation. Lowering the stiffness increases the sensitivity of
the balance to ground tilt. Analyzing this tradeoff with both
finite element simulation and analytical modeling allowed us
to estimate this impact, which was found to be negligible
for the measurement considering the desired value for the
mechanism stiffness at the coupler of K = 0.1 N m−1.

TABLE I

OVERVIEW OF MECHANICAL RELEVANT PARAMETERS FOR THE FINAL
DESIGN. THE HORIZONTAL DISTANCES TO THE COUPLER

ARE MEASURED TO ITS CENTER

After manufacturing and system integration, experiments
will be required to study especially the effects of internal
heating on the measurement readout due to absorbed laser light
from the 100 kW laser. Also, air currents on the mirror due to
the operation of the balance are expected to cause a significant
amount of noise. In order to mitigate these problems, heat and
draft shields will be installed in the final setup.

Mechanically, hysteresis due to anelastic after-effects in the
flexures might cause time-dependent restoring forces, which
would bias the measurement. Hysteresis is difficult to study
theoretically due to limited information provided by literature,
but, for now, these anelastic forces were not considered to
be problematic because the maximum stress in the hinges is
within ranges suggested by Sydenham [15] to keep anelastic
effects small. Further experimental work will be carried out to
verify this.

In conclusion, the mechanism described above fulfills the
criteria necessary for measurement of photon pressure force
from high power laser systems, with relative uncertainties
below 1 × 10−3.

APPENDIX A
SUMMARY OF THE PARAMETERS USED

FOR THE FINAL DESIGN

The numerical values for the important mechanical parame-
ters of the final design are shown in Table I. The locations of
the parameters are indicated in Fig. 4.

APPENDIX B
DERIVATION OF THE EQUATION OF MOTION

The equation of motion can be derived using the Lagrange
equations of the second kind. The Lagrangian is given by

L(qi , q̇i , t) = T −U (15)

where qi are the generalized coordinates, i = 1, . . . , n, for n
degrees of freedom.
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The parallelogram linkage has one degree of freedom, q1 =
�. This generalized coordinate can be written as the sum of the
tilt of the metrology frame, φ, and the deflection of the balance
with respect to the metrology frame, γ , i.e., � = φ + γ .

The position of nine point masses, as shown in Fig. 4, can
be written as products of lever arms and sines and cosines of
the corresponding angles. They are

�rmb1 =
⎛
⎝ −a

2
cos φ

−a

2
sin φ

⎞
⎠ (16)

�rmb2 =
⎛
⎝

a

2
cos φ

a

2
sin φ

⎞
⎠ (17)

�rma =
(

b sin (φ + γ )
−b cos (φ + γ )

)
(18)

�rmp1 =
⎛
⎝ −a

2
cos φ − e sin (φ + γ )

−a

2
sin φ + e cos (φ + γ )

⎞
⎠ (19)

�rmp2 =
⎛
⎝

a

2
cos φ − e sin (φ + γ )

a

2
sin φ + e cos (φ + γ )

⎞
⎠ (20)

�rmh1 =
⎛
⎝ −a

2
cos φ − h1 cos (φ + γ )

−a

2
sin φ − h1 sin (φ + γ )

⎞
⎠ (21)

�rmh2 =
⎛
⎝

a

2
cos φ − h2 cos (φ + γ )

a

2
sin φ − h2 sin (φ + γ )

⎞
⎠ (22)

�rmM = �rma +
⎛
⎝−aM

2
cos φ + bM sin (φ + γ )

−aM

2
sin φ − bM cos (φ + γ )

⎞
⎠ (23)

and

�rmE = �rma +
⎛
⎝

aE

2
cos φ + bE sin (φ + γ )

aE

2
sin φ − bE cos (φ + γ )

⎞
⎠. (24)

Note that the first/second line of the vectors indicates the
x-/y-coordinate, with the x being positive in the downward
vertical direction.

The total kinetic energy is the sum of the translational (t)
and rotational (r) energies, T = Tt + Tr.

The kinetic energy of the two swings can be captured by a
single rotational term. The centers of rotation are pivots A0 and
B0, respectively. The moment of inertia is calculated around
these centers of rotations considering the bars as rods with
length b + e. It is

Jb = mb

12
(b + e)2. (25)

The motion of the coupler is described as a translation of its
center of mass with velocity �̇rma and a rotation about φ around
its center of mass. The moment of inertia of the coupler Ja is

Ja = ma

12
a2. (26)

Hence, the sum of the translational and rotational kinetic
energies is

Tt = 1

2
ma �̇r2

ma + 1

2
mp �̇r2

mp1 + 1

2
mp �̇r2

mp2

+ 1

2
mh �̇r2

mh1 + 1

2
mh �̇r2

mh2

+ 1

2
mM �̇r2

mM + 1

2
mE �̇r2

mE (27)

Tr = 1

2
Jaφ̇

2 + Jb(γ̇ + φ̇)2. (28)

The potential energy of the system is a sum of the energy
stored in the torsional stiff pivots (k) and the sum of the
gravitational energies of the masses (m), U = Uk + Um. It
is

Uk = 4
1

2
κsγ

2 (29)

and

Um = −g (mbrmb1x + mbrmb2x + marmax

+mprmp1x + mprmp2x + mhrmh1x

+mhrmh2x + mMrmMx + mErmEx). (30)

Consistent with the main text, the torsional stiffness of a single
flexure hinge is given by κs. Only one external moment needs
to be considered. It arises from the stiffness adjustment spring
and is

Qe = −FF((l1 + b cos γ ) sin σ + b sin γ cos σ) (31)

where σ is the angle between the orthogonal of the metrology
frame and the spring force FF, that is,

σ = b sin γ

l1 + b cos γ
(32)

and

FF = −(λ1 − λ0)kb (33)

with

λ1 =
√

(b sin γ )2 + (l1 + b cos γ )2. (34)

With the Lagrangian in (15) and the previous considerations,
the equation of motion due to γ yields

d

dt

(
∂L
∂γ̇

)
− ∂L

∂γ
= Qe. (35)

Taking the derivatives and regrouping the expressions yield
a compact result

J γ̈ + κγ = −Jφφ̈ + κφφ − Neq (36)

where the coefficients are given by

J = b2mE + b2mM + b2ma + b2mb

6
+ bemb

3
+ e2mb

6
+ 2 e2mp + h2

1mh + h2
2mh (37)

Jφ = J + ah1mh

2
− ah2mh

2
+ bbemE + bbmmM (38)

κ = 4κs−gmh(h1 + h2) − l1bkb

(
1 − λ0

b + l1

)
(39)
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κφ = gmh(h1 + h2) (40)

and

Neq = g(−bmE−bmM−bma + 2 emp). (41)
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