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a b s t r a c t 

Compliant mechanisms are commonly used in precision engineering while analyzing their 

deflection is particularly challenging. Often, FEM simulations are chosen in an iterative pro- 

cess. Analytical approaches that consider pure bending, shear or other effects are usually 

limited to the mechanism as a system. However, certain configurations comprise compli- 

ant elements with different aspect ratios. The aim of this paper is to integrate the theories 

of shear and lateral contraction into a unified form with the existing theory of bending for 

large deflections and make them applicable individually for specific sections of continuous 

compliant mechanisms. Recommendations are made as to when which theory should be 

used. Building on that, a comprehensive tool for analyzing compliant mechanisms devel- 

oped in Python is introduced. The tool offers the possibility to create arbitrary compliant 

mechanisms including branched links and various boundary conditions. A tool for para- 

metric studies allows to optimize the given geometry for realizing a specific motion task. 

Further, FEM and measurement results correlate well with the application results. The pre- 

sented user interface can be beneficial for the accelerated analysis and synthesis of com- 

pliant mechanisms. 

© 2021 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

Due to their advantages of clearance-free and frictionless motion, scalability or high reproducibility, compliant mecha- 

nisms are applied in many engineering fields like precision engineering, micromechanics or measurement technology [1] . 

Typically, they represent a monolithic body with either concentrated or distributed compliance or a combination between 

the two [2] . The term concentrated compliance is used when the maximum dimension of a compliant segment is at least

ten times smaller than the maximum length in the direction of a compliance distribution [2] . Compliant mechanisms usually

achieve their motion by elastic deformation of its compliant segments. Considering concentrated compliance, mostly notch 

flexure hinges with different contours are applied [3] . Some of the most common ones include the circular contour [4] , the

corner-filleted contour [5] or the elliptical contour [6] . Each contour can provide certain advantages like a high precision but

can also provide drawbacks like large elastic strain concentrations. A good compromise between the two is achieved with 
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the power function-based flexure hinge contour [7] . Its compliance distribution is largely influenced by the adjustment of 

the exponent of the power function. 

Because of the monolithic design of compliant mechanisms and geometric non-linearity occurring as a result of large de- 

flections, the analysis of important elasto-kinematic properties and the motion behavior under given loads or displacements 

is non-trivial. 

It is widely accepted that the most accurate results may be achieved by simulations using finite elements method (FEM) 

[8] . However, those need to be distinguished between the number of possible deformation directions that are defined by 

different element types and by the possible degrees of freedom for the overall model (1D/2D/3D). More specifically, the 

higher the number of possible deformation directions of the finite element and the higher the possible degrees of freedom, 

the more accurate a solution can be for the whole model. Hence, 3D solid elements provide results closest to reality. Beam

elements, i.e. 1D/2D FEM can be a valuable tool for the compliant mechanism design due to fast calculation times [9] .

However, certain 3D effects like lateral contraction are neglected but may be important for specific aspect ratios. Large 

deflections, non-linear material properties, shear, lateral contraction, axial elongation or 3D effects like stress concentration 

[10,11] or anticlastic bending [12] can be considered even for seemingly planar motions. Also, 3D mechanisms and out of 

plane loads and deformations can be modeled. Nonetheless, the accuracy largely depends on the discretization, the element 

type and the degrees of freedom (1D/2D/3D). Calculation times are typically compromised by a higher discretization. 

Apart from FEM simulations, a number of different methods exist for the flexure hinge and compliant mechanism anal- 

ysis and synthesis. Overviews are given in [13] and in [14] . When large deflections are considered, an analytical description

of the deformed state usually leads to a system of differential equations in the form of a boundary value problem (BVP).

Because of this, approximate approaches like design equations (DE) derived by empirical data obtained with FEM or ana- 

lytical models can be chosen (e.g. [4,6,15,16] ). Rarely, closed form equations are proposed for large deflections [15] . There

are several benefits for using DE like the explicit form that enables the usage without special tools and application without

experience. Also, results are obtained very fast which is why those are suitable for synthesis. Despite the advantages, most 

DE are only approximations specific to certain geometries and may only be valid within ranges for specific aspect ratios. 

Apart from this, they are usually not available for complex mechanisms. 

To calculate compliant mechanisms, the rigid-body model (RB) (e.g. [1,15,17–20] ) has won recognition for its simplicity. 

The model is based on the principle to replace the compliant mechanism by rigid links and conventional hinges connected 

to each other by torsion and/or linear springs. Different RB exist in literature with varying degrees of accuracy. Advantages 

are the simple formulation and applicability to complex mechanisms as well as the consideration of large deflections and 

good agreement with non-linear beam theory [21] . However, the accuracy largely depends on the discretization and a rise 

in degrees of freedom can drive up computation time. RBs are also mostly load-dependent and may need a second ”design

step” to assess a final CM configuration. Besides, the position of the conventional hinges in the RB depends on the type of

the compliant element. This results in an error in the deflection, since the displacement of the axis of rotation is not taken

into account. Further, it has been shown that a considerable amount of deformation also occurs within the links and the

frame of a compliant mechanism [22,23] . 

Other approaches are based on kinetostatic analysis for obtaining the deformation behavior of compliant mechanisms. 

Those can for example be based on a compliance matrix approach [19,24] . With this method, the displacements at one point

of a rigid link and the load on that link are related to the deformations at the end point of a flexure hinge. Advantages are

the simple formulation, simultaneous consideration of axial elongation, shear and bending whereas the method is only valid 

for small deflections. Further approaches are applying energy based models (EM) for the kinetostatic analysis like virtual 

work principles [21,25,26] . In summary, the equilibrium position of a compliant mechanism is achieved by determining the 

minimum potential energy state of the mechanism so that the structural integrity is maintained. Virtual work refers to 

both, the work done by a force on a system during a virtual displacement and the work done by a virtual force on a real

displacement. This principle is used to calculate the equilibrium in the overall system. Applied to a continuum, it does not

provide the complete deformation state of the overall system but only forces, angles or displacements at defined points. 

Another popular model is the chained beam constraint model (CBCM) (e.g. [27,28] ) and can be applied to beam-based

compliant mechanisms. In the CBCM model, individual beams are discretized into a number of elements that are chained 

together. The shape of the beams is defined by geometric constraints. Various boundary conditions and load cases can 

be considered. With the model, a solution can be provided in an explicit form for a given mechanism which enables an

efficient calculation process. Therefore, once the CBCM has been obtained, it is suitable for synthesis by optimizing geometric 

parameters. By discretizing using circular arc elements or similar, even initially curved beams can be calculated [29] . The

model is also available for the consideration of shear [27] . The authors see the main limitation of this method in the fact

that the accuracy of the solution depends strongly on the discretization. Furthermore, in the opinion of the authors, the 

method is only suitable to a limited extent for the implementation in software applications for the analysis of arbitrary 

planar mechanisms, since the model is valid for only one particular geometry and must first be derived anew for other

mechanisms. 

A well-known analytical approach for calculating compliant mechanisms or flexure hinges is the non-linear beam theory 

(BT) also referred to by the theory for large deflections of rod-like structures [2] . It has previously been shown, that the

theory can be applied to complex compliant mechanisms due to the continuous approach [30] . Advantages of the method

include the consideration of large deflections and the possibility for modeling non-constant cross-sections, curvatures and 

material properties. There is a certain versatility to the model because arbitrary boundary conditions or even contacts, 
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Table 1 

Overview of existing applications for the flexure hinge and compliant mechanism design – The ∗ indicates that the software is available for download or 

online usage, FH: flexure hinge, CM: compliant mechanism, con.: concentrated, dist.: distributed, An.: analysis, Syn.: synthesis, DE: design equations, PR: 

pseudo rigid-body model, EM: energy method, FE: finite elements method, BT: beam theory, TO: topology optimization, S: shear, PS: plane strain, AE: axial 

elongation, LD: large deflections (geometric non-linearity), DL: deformable links, CS: contour-specific modeling, BL: branched links. 

ref. subject dim. 

comp. applic. model effects considering 

con. dist. An. Syn. DE PR EM FE BT TO S PS AE LD DL CS BL 

V a ∗ FH 2D x x x x 

J b ∗ FH/CM 2D x x x x x 

[18] CM 2D/3D x x x x x x x x x x x 

[19] CM 2D/3D x x x x x x x 

[21] ∗ CM 2D x x x x x x x 

[31] ∗ FH 2D x x x x 

[32] FH 2D x x x x x x 

[33] ∗ FH 2D x x x x x x x 

[34] CM 2D/3D x x x x x x 

[35] CM 2D x x x x x x 

F c CM 2D x x x x x 

[36] ∗ CM 2D/3D x x x x x x x 

S d ∗ CM 2D/3D x x x x x x x x 

C e ∗ FH/CM 2D x x x x x x x x x x x 

a Vink System Design & Analysis 
b Janssen Precision Engineering (JPE) 
c FlexWorks TM 

d SPACAR 
e CoMUI – subject of this paper 

 

 

 

 

 

 

 

 

 

 

 

 

branching points and arbitrary load cases by (distributed) forces or moments can be assumed. Also, shear and lateral con- 

traction can be implemented into the model. Because of the continuity, a compliant mechanism can be subdivided into 

several sections. This leads to the opportunity of applying different theories specifically to individual sections of a mech- 

anism. Hence, sections with different aspect ratios can be modeled accordingly. In addition to this, the model is scalable 

when considered dimensionless. The BVP can be solved fast and accurate by modern solvers. Therefore, it is also suitable 

for parametric studies and synthesis and highly suitable for the implementation in graphical software tools. Apart from 

this, the theory exists for 2D and 3D scenarios. In contrast, the individual implementation for specific mechanisms can be 

complicated. Also, mathematical expressions for cross-sections, curvatures or the Young s modulus need to be obtained for 

each mechanism. Not only may the efficiency and accuracy of the applied BVP-solver largely depend on tolerances for the 

solution but also on initial guesses. 

The number of benefits from modeling compliant mechanisms utilizing BT and the limits of other modeling techniques 

are the foundation of the approach described in this paper. Some of the mentioned models can include the effects of shear,

lateral contraction or axial elongation. Usually, those models are applied for the whole mechanism. However, compliant 

mechanisms can include different elements of concentrated and distributed compliance with varying aspect ratios. These 

may require different effects to be considered. The authors do not know of any analytical approach that allows for the indi-

vidual consideration of those effects for specific sections of a compliant mechanism. The goal in this paper is to present the

different theories (pure bending, shear and lateral contraction) in a unified form and to make them applicable individually 

or in combination for specific sections of a compliant mechanism using BT. Recommendations are given as to when to use

which theory. 

Despite the large number of models and techniques, the applicability for an engineer with little experience in the design 

of compliant mechanisms may be limited due to a lack of simplified tools available. Building on the different theories 

mentioned, a graphical user interface is developed as a secondary goal of this paper, further referred to as CoMUI , that

enables the element-wise selection of the three different theories. 

In literature, there are very few, tangible or accessible tools to model and analyze mechanisms in a targeted manner, 

which is why time-consuming 3D FEM is often used. An overview of the design and calculation tools known to the authors

is shown in Table 1 . 

Some of these tools consist of an intuitive graphical user interface that runs without additional software (e.g. Vink System 

Design & Analysis ) or web-based calculators for single flexure hinges [31] . Furthermore, calculation scripts for flexure hinges

(FH) and specific compliant mechanisms (CM) based on Mathcad ® are available on the website of Janssen Precision Engi- 

neering ( JPE ). Their calculations are based on approximate design equations from [37] . Also, software scripts for MATLAB ®

are available, e.g. [36] . Many of the tools are focused on the synthesis of compliant mechanisms. These are often based on

the pseudo rigid-body model alone [18,21,34] or on topology optimization utilizing genetic algorithms [35] , finite elements 

method [36] , pseudo rigid-body models [38] or the chained beam constraint model [28] . With regard to topology optimiza-

tion, a great overview of educational computer tools is given in [39] . In addition, there is a software called FlexWorks TM from

the company FlexSys Inc. founded by Dr. Sridhar Kota that suggests a topology based on a required in- and output motion.

Many of the available tools for the analysis of compliant elements are only subject to specific flexure hinge contours (e.g. V 1 ,
3 
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J 2 , [31–33] ) or pre-designed compliant mechanisms (e.g. J 2 ,) while others offer more design possibilities (e.g. [18,19,21,34] ,

S 4 ). In eight of the thirteen applications found, pure bending is assumed in the respective model. Other ones include the ef-

fects of shear (S), lateral contraction (PS) or axial elongation (AE) in their models. Besides, for about half of the applications

in Table 1 , large deflections (LD) are considered. In seven applications not only the compliant elements but also the links

of a mechanism are considered deformable (DL) which is important in precision engineering. Six of the total applications 

enable the contour-specific design (CS) of flexure hinges. Apart from this, in about half of the applications, branched links 

(BL) are taken into account. Nevertheless, an extensive tool that implies all of the mentioned features combined into a single

application is not known to the authors. 

Hence, in this paper a software tool containing the given analytical approach is presented that enables an intuitive design, 

analysis and synthesis of compliant mechanisms. Based on the state-of-the-art modeling techniques for compliant mecha- 

nisms and the available applications for the flexure hinge and compliant mechanism design in Table 1 , the following aspects

are highlighted that should be addressed with the developed software CoMUI . 

• One drawback for some of the tools in Table 1 may be the limited graphical user interfaces. Therefore, the goal for CoMUI

is to provide an extensive interface for the intuitive and quick design of compliant mechanisms, an efficient analysis and 

a simple way to modify them. 
• As outlined, the deformation of the links between hinges is often neglected in many applications. In CoMUI , compliant 

mechanisms are described as continua to include those deformations. 
• Some of the previous tools may be limited to simple geometries. With the given model, arbitrary geometries can be 

considered. This includes flexure hinges with cut-out geometries of any given form and curved beams. 
• In some of the above-mentioned tools, only small deflections are considered which may limit an accurate analysis. For 

instance, compliant mechanisms with straight-line deformations may deviate in parasitic directions. Those deviations are 

only covered, when large deflections are considered. 
• Most of the tools are either limited to concentrated or distributed compliance. Certain compliant mechanisms can require 

a combination of the two which is why with CoMUI it is possible to incorporate both. 
• The analysis and synthesis of compliant mechanisms often relies on commercial computer-aided design (CAD) frame- 

works. In contrast, CoMUI is developed using the free and open source programming language Python . 
• Some of the tools in Table 1 consider shear, lateral contraction or axial elongation for the whole mechanism. In CoMUI

individual effects can be applied section-wise for the distinction between varying aspect ratios. 

In summary, due to the computing performance of modern numerical calculation software, the deformed state of a 

compliant mechanism can be calculated within fractions of a second using beam theory. The modeling legitimates both 

concentrated and distributed compliance, straight and curved segments as well as non-constant cross-sections, curvatures 

or variable material properties. Due to the efficiency of the analytical model and the adaptability to arbitrary plane mech- 

anisms, the solution approach is particularly suitable for the implementation in a software application. Nevertheless, the 

consideration of pure bending is insufficient for certain applications, because it is possible to deviate from Bernoulli ’s hy- 

potheses if arbitrary geometry specifications can be made. In Section 2 , first pure bending is considered in the analytical

model. Subsequently, in addition to bending, the influence of shear under large deflections is included and novel differential 

equations are formulated to put the theory into the same form as the given beam theory. Afterwards the effect of lateral

contraction is taken into account, too. The new approach allows to shift the limits of the previous model, so that beyond

thin beams also geometries with a larger height to length or width to length ratio can be considered. Because of the unified

equations for all three theories and the beams continuity, those theories can be applied for different sections of the mech-

anism individually. In Section 3 , an implementation of the derived models into a graphical user interface, based on Python 

is demonstrated. Finally, results obtained with the software application are verified by FEM simulation and measurement 

results from previous studies. Also, further mechanism examples and use cases of the software are shown. 

2. Analytical approach 

The analytical model is based on the theory for large deflections of rod-like structures [2] because of its versatility for

describing arbitrary shaped and oriented compliant mechanisms in plane. It has been applied to compliant mechanisms by 

the authors before, for example in [30] with great accordance compared to FEM simulations and measurements. In literature, 

rod-like structures are defined as beams whose cross-sectional dimensions are at least ten times smaller than their length 

or curvature radii [2] . Due to those limitations, previous investigations were focused on pure bending. With this paper, the

authors aim to include the effects of shear and lateral contraction for considering a wider range of possible geometries 

beyond those limits. 

2.1. Theory for large deflections of rod-like structures 

The mathematical model is derived from the deflected state of a single beam with a Young ’s modulus E, a length L , a

width w and a height H under the two direction-constant external forces and the external moment in Eq. 1 . Only direction-

constant and no follower forces are considered because compliant mechanisms are mostly actuated by linear actuators, e.g. 
4 
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Fig. 1. Beam in its undeflected and deflected state loaded with two external direction-constant forces � F x and � F y as well as an external moment � M e . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[40] . 

� F x = F x � e x , � F y = F y � e y , � M e = M e � e z (1) 

The beam shown in Fig. 1 is fixed at point A ∗ and loaded at the free end at point B ∗ resulting in the deflected state

due to the consideration of large deflections. The beam axis s is introduced in the deformed state. The validity of Hooke ’s

law, Saint- Venant ’s principle and Bernoulli ’s hypotheses are assumed. Due to the consideration of pure bending, the cross-

sections are perpendicular to the beam axis. A deflection angle θ results. The following system of differential equations is 

obtained: 

d M z 

d s 
= F x sin θ − F y cos θ, (2) 

d θ

d s 
= κ, with κ = 

M z 

EI z 
+ κ0 , (3) 

d x 

d s 
= cos θ, (4) 

d y 

d s 
= sin θ . (5) 

Therein, M z represents the resulting bending moment, κ0 represents the curvature in the undeformed state, κ represents the 

curvature in the deformed state and I z represents the second moment of inertia. The boundary conditions for the example 

in Fig. 1 are as follows: 

M(L ) = M e , θ (0) = 0 , x (0) = 0 , y (0) = 0 . (6)

With regard to the Eqs. 2 –6 , it should be noted that both forces F x and F y , the moment M e , the curvature in the undeformed

state κ0 = κ0 (s ) , the Young ’s modulus E = E(s ) and the second moment of inertia I z = I z (s ) represent parameters or func-

tions specific to a certain application and, moreover, may vary along the path of the rod axis s , as in case of flexure hinges

or curved beams. 

The system consists of first order, non-linear, non-autonomous, ordinary differential equations and often cannot be solved 

in an explicit analytical form, especially when κ0 , E or I z are not constant. For this reason, numerical approaches can be a

suitable option for accurately approximating a solution. 

A solution of the boundary value problem may be obtained numerically as described in Section 3 . The boundary condi-

tions can be changed as needed for a specific mechanism. 

2.2. Considering shear 

One of the main assumptions of the previous analytical model in the Eqs. 2 –5 is the fact that the cross-sectional dimen-

sions have to be at least ten times smaller than the length and the curvature radii of the beam [2] so that the consideration

of pure bending is sufficient for obtaining accurate results. 

In contrast, shorter beams that experience a considerable amount of deflection cannot be accurately calculated using 

pure bending. In that case, unlike the previous model it should not be assumed that the cross-sections remain perpendic- 

ular to the beam axis. Because of this, the additional deformation in the form of shear will be considered. The original

considerations of shear date back to the works of Prof. Timoshenko who considered shear deformation for small deflections 

[41] . Following, the effects of shear will be applied in the form of differential equations to be implemented into the existing

theory for large deflections of rod-like structures. 

Allowing additional beam deformation due to shear reduces the stiffness of the beam compared to calculations using 

Bernoulli ’s hypotheses. Therefore, higher deformations can be expected. In order to incorporate the deformation due to 

shear, pure shear without bending is considered first. Fig. 2 (a) is used for illustration. 

A shear angle gamma indicates the angle between the normal of the beam axis and the cross-section in the deformed

state. In contrast to normal stresses, shear stresses cannot be assumed as constant over the cross-sectional area. The shear 
5 
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Fig. 2. Deformation of a beam considering pure shear deformation – (a) beam in its undeflected and deflected state loaded with an external direction- 

constant force � F y , (b) shear stress distribution in the cross-section. 

Fig. 3. Deformation of a beam overlaying shear and bending deformation – (a) beam in its undeflected and deflected state loaded with two external 

direction-constant forces � F x and � F y as well as an external moment � M e , (b) magnification of the beams end. 

 

 

 

 

 

 

 

 

 

stresses at the boundary of the cross section are zero. In Fig. 2 (b) it is shown that the greatest shear stress occurs at the

beam axis. A correction is applied to the effective shear area A s = �A as a reduction of the cross-sectional area A of a beam

using a correction factor � . This factor is derived from the condition ”that the strain energies of the real and of the averaged

shear stress state generated during deformation are equal” [42] . For example, � = 
5 
6 applies to a rectangular cross-section 

[42] . The shear stress equation as a result of a shear force Q s (s ) in the beams cross-section is: 

τ (s ) = 

Q s (s ) 

A s (s ) 
= 

Q s (s ) 

�A (s ) 
. (7) 

From Hooke’s law a relation between shear stress and shear strain with the help of the shear modulus G follows. The shear

modulus G describes the ratio between the shear stress τ and the shear angle γ : 

τ = Gγ . (8) 

The connection of equation Eq. 7 and Eq. 8 results in a relation between shear force and shear angle: 

γ = 

Q s (s ) 

�A (s ) G 

. (9) 

Now the beam is considered by overlaying the bending deformation with the shear deformation. The resulting deflection is 

shown in Fig. 3 (a) and magnified in Fig. 3 (b). This shows which angles are of special importance. As before in the case of

the theory of large deflections of rod-like structures, the angle of the beam axis is called θ . 
An angle ϕ is introduced between the x -axis and the normal of the deformed cross-sectional area. Likewise, the shear 

angle between the cross-section normal in the deformed state and the beam axis tangent can be found again. Consequently, 

a relation of the three angles can be formulated: 

θ = ϕ + γ . (10) 

For the unloaded state Eq. 11 results analogously. 

θ0 = ϕ 0 + γ0 (11) 

Since there is no shear force in the unloaded state, γ0 = 0 and 
d γ0 
d s 

= 0 follows. The curvature of the beam axis is defined

as the derivative of the angle θ . For the unloaded state Eq. 12 follows. 

κ0 = 

d θ0 
d s 

= 

d ϕ 0 

d s 
(12) 

Next, to incorporate the material properties, the deformation equations are derived analogous to [2] from the strain ε 1 of a
beam fiber. The axial elongation is regarded as the change in length of the fiber d s f when deformed. This fiber is distanced

from the neutral fiber d s by the coordinate r 2 within the cross-section in the loaded state. Its length before the deformation

is given as d s f0 . Fig. 4 serves as an illustration. 
6 
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Fig. 4. Deformed state of a beam segment considering shear – 1: cross-section being orthogonal to the beam axis, 2: cross-section that has been orthogonal 

to the beam axis in the unloaded state, 3: beam element containing an element of length d s . 

 

 

 

The strain is obtained as follows: 

ε 1 = 

d s f − d s f0 

d s f0 
= 

(ρ∗ − r 2 ) d ϕ − (ρ0 − r 20 ) d θ0 
(ρ0 − r 20 ) d θ0 

. (13) 

Therein ρ is the curvature radius of the beam axis and ρ∗ the radius of the arc d ϕ. Furthermore, ρ0 reflects the curvature

radius in the unloaded state and r 20 the coordinate of the fiber d s f in the cross-section of the undeformed state (not shown).

It should be noted that r 20 and r 2 remain equal. The length of the beam axis remains constant, so the following applies: 

ρ0 d θ0 = ρd θ (14) 

From the geometric relationship Fig. 4 the following relationship can be formulated for d s : 

d s = ρ0 d θ0 = ρd θ = ρ∗d ϕ. (15) 

This results in: 

d ϕ 

d θ0 
= 

ρ0 

ρ∗ . (16) 

With Eq. 16 it follows from Eq. 13 that: 

ε 1 = 

ρ0 (ρ∗ − r 2 ) − ρ∗(ρ0 − r 2 ) 

ρ∗(ρ0 − r 2 ) 
. (17) 

A simplification leads to: 

ε 1 = 

r 2 
ρ0 − r 2 

· ρ∗ − ρ0 

ρ∗ . (18) 

Assuming that r 2 is much smaller than ρ0 , Eq. 18 results in: 

ε 1 = r 2 

(
1 

ρ0 

− 1 

ρ∗

)
. (19) 

The bending moment is given in [2] : 

M z = 

∫ 
(−r 2 σ1 ) d A (20) 

The stress is obtained by Hooke ’s law: 

σ1 = Eε 1 . (21) 

Using the strain from Eq. 19 this yields: 

M z = −
∫ (

r 2 Er 2 

(
1 

ρ0 

− 1 

ρ∗

))
d A = E 

(
1 

ρ∗ − 1 

ρ0 

)∫ 
r 2 2 d A. (22) 

Then follows with the knowledge of 
∫ 
r 2 
2 
d A = I z and with the information from Eq. 12 and Eq. 15 : 

M z = EI z 

(
1 

ρ∗ − 1 

ρ0 

)
= EI z 

(
d ϕ 

d s 
− κ0 

)
. (23) 

Lastly, the shear force Q s (s ) for the formulation of the angle γ ( Eq. 9 ) is needed. Because the shear force is defined in

plane with the cross section of the deformed beam, Eq. 24 is obtained. 

Q s (s ) = −F x sin ϕ + F y cos ϕ (24) 
7 
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Fig. 5. Plate in its undeflected and deflected state loaded with two external direction-constant line loads � q x , � q y and � m e (shown in gray). 

 

 

 

 

 

 

 

 

 

 

 

Finally, the system of differential equations is obtained. The main difference com pared to pure bending can bee seen be-

tween Eq. 3 and Eq. 26 : 

d M z 

d s 
= F x sin (ϕ + γ ) − F y cos (ϕ + γ ) , (25) 

d ϕ 

d s 
= 

M z 

EI z 
+ κ0 , (26) 

d x 

d s 
= cos (ϕ + γ ) , (27) 

d y 

d s 
= sin (ϕ + γ ) , (28) 

with γ = 

−F x sin ϕ + F y cos ϕ 

�AG 

. (29) 

The boundary conditions for the example in Fig. 3 are as follows: 

M(L ) = M e , ϕ(0) = 0 , x (0) = 0 , y (0) = 0 . (30)

2.3. Considering lateral contraction 

Due to the fact that in compliant mechanism often flexure hinges are implemented that exceed a width to length ratio

significantly greater than 0.1, a further discrepancy from Bernoulli ’s hypothesis that is only valid for thin beams is made. It

therefore seems obvious that the resulting effect of lateral contraction should be added to the equations. 

Following, the system of differential equations for pure bending is extended to include those effects. Strictly speaking, 

these geometries are not thin beams but rather plate-like structures for which some assumptions have to be made deviating 

from the theory of large deflections of rod-like structures (see [43] , [10] ). 

Up to now it was assumed that strains in the beam only occur in longitudinal direction ( � e 1 ). For structures with a greater

width to length ratio ( Fig. 5 ), the development of stresses in lateral direction is also taken into account. 

With a low height to length ratio deformations in � e 2 -direction are still unhindered, but not in � e 3 -direction due to the

large width. The lateral contraction in � e 3 -direction is hindered, that means a plane strain state results. If a beam segment

is subjected to longitudinal stress σ1 in addition to a lateral stress σ3 , the longitudinal elongation is reduced by the pro-

portionate lateral strains (e.g. [44] ). In the geometrically non-linear plate theory, the axial stress σ1 and the strains in the

� e 3 -direction ε 3 are related in the following way, which is derived from Hooke ’s law: 

ε 1 = 

1 

E 
(σ1 − νσ3 ) (31) 

ε 3 = 

1 

E 
(σ3 − νσ1 ) (32) 

Wide cross-sections require the assumption ε 3 = 0 , so that σ3 � = 0 [43] . Thus, from Eq. 31 and Eq. 32 follows: 

ε 1 = 

σ1 

E 
(1 − ν2 ) . (33) 

Fig. 5 shows the deformed state of a plate. The forces � F x and � F y as well as the moment � M e at the end of the plate are constant

over the width of the plate in the form of line loads � q x , � q y and � m e . Taking F x = q x w , F y = q y w and M e = m e w into account,
8 
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the system of differential equations for the hindrance of lateral contraction is formulated analogously to the Eqs. 2 –5 . The

difference lies only in the factor 1 − ν2 : 

d M z 

d s 
= F x sin θ − F y cos θ, (34) 

d θ

d s 
= κ, with κ = 

M z 

EI z 
(1 − ν2 ) + κ0 , (35) 

d x 

d s 
= cos θ, (36) 

d y 

d s 
= sin θ . (37) 

The boundary conditions in this case are identical to Eq. 6 . 

2.4. Calculation of elasto-kinematic properties 

After the system of differential equations is solved, solutions for the four equations M z (s ) , θ (s ) , x (s ) and y (s ) are available

for each point along the beam axis s . Using these results, it is possible to evaluate elasto-kinematic properties such as

displacements, angles and strains for each section. Displacements can be calculated using the resulting coordinates x and y 

in the deformed state and subtracting the specific coordinates in the undeformed state x 0 and y 0 . The orientation of each

point along s is given by the resulting angle θ . This result can be used to calculate hinge angles as the relative angle between

the beginning and the end of a flexure hinge. Elastic strains can be calculated at z = 0 using the bending moment M z (s )

with the according maximum distance from the beam axis to the outer fiber η(s ) within the cross section: 

| ε(s ) | = 

| M z (s ) | 
EI z (s ) 

η(s ) . (38) 

2.5. Geometric parameters and boundary conditions 

In this section important geometric parameters and necessary boundary conditions for the mechanism design are pre- 

sented. Because the mechanisms need to be designed as continua according to the analytical model, the beam axis of the

complaint mechanisms can only contain straight or curved sections of various cross-sections and must not contain any 

kinks. An arbitrary but continuous compliant mechanism may be composed by using the three basic building blocks, further 

referred to as elements, shown in Fig. 6. 

The two basic geometric parameters height H and width w apply for all three elements. The contour-specific parameters 

of the power function based contour are the minimum notch height h and the exponent n . Within the analytical model,

the cross section of these elements is implemented by I z which may also be I z (s ) with the according height function in

Eq. 39 [45] in case of the beam element with power function-based contour (Fig. 6 (c)). 

h (s ) = h + 2 n 
H − h 

L n 
| s | n , with n ∈ R , n > 1 (39)

While the axial dimension for both, the beam element with constant cross-section and the element with power function- 

based contour is defined by the length L , the length of the curved beam element may be calculated by specifying the

curvature angle α and the curvature radius ρ0 according to Eq. 40 . 

L = αρ0 (40) 

An arbitrary initial curvature can be implemented by a function κ0 = κ0 (s ) . Initial curvatures of circular shape (Fig. 6 (b))

can easily be realized with the curvature radius ρ0 : 

κ0 = 

1 

ρ0 

. (41) 

In summary, interconnecting an arbitrary amount and order of the three different elements and adjusting their geometry, 

allows to model a variety of compliant mechanisms. Each of these elements can represent a concentrated or distributed 

compliance, depending on the given dimensions of the mechanism. Furthermore, a combination between different elements 

is also possible. For example the elements in Fig. 6 (b) and (c) can be combined to obtain a curved flexure hinge. Thus, a

wide range of applications can be realized. 

It is also intended to provide a selection of different boundary conditions at both ends of the mechanism. This enables to

model frequent applications such as slider cranks, fixed or free ends. In addition, the position and orientation of the origin

of point A ∗ should also be variable. The selection of boundary conditions is shown in Fig. 7 . 
9 
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Fig. 6. Three different beam elements for designing a planar compliant mechanism – (a) beam element with constant cross-section, (b) curved beam 

element, (c) beam element with power-function based contour. 

Fig. 7. Sketched representation of the considered boundary conditions – (a) fixed support, (b) hinged support, (c) hinged support with slider in x -direction, 

(d) hinged support with slider in y -direction, (e) slider in x -direction, (f) slider in x -direction, (g) free end. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With respect to the chosen boundary conditions in Fig. 7 , no statically indeterminate systems are considered. Therefore, 

the support at point A ∗ is either considered fixed ( Fig. 7 (a)) or hinged ( Fig. 7 (b)). In the case of a fixed end at point A ∗,
the desired static determination is achieved for any selection of the boundary conditions for point B ∗. In contrast, when a

hinged support is chosen for point A ∗ the system is then statically determined, when any boundary condition except a free

end is chosen at point B ∗. When the boundary conditions are changed, Eq. 6 (resp. Eq. 30 ) has to be changed accordingly. 

2.6. Modeling procedure for transitions between elements 

Compliant mechanisms may contain an arbitrary combination and number of the different elements in Fig. 6 . In this

paper, two possible transitions between adjacent elements are considered. On one hand, the continuous transition from one 

element to the next (Fig. 8 (a)) and on the other hand the transition at a branching point K (Fig. 8 (b)). 

The rod axis s of a random mechanism with only continuous transitions is shown in Fig. 8 (a). The mechanism consists

of an arbitrary number of interconnected elements. The element at t-th position is defined by the parameters L t , H t , w t ,

h t , n t , κ0 , t , F x , t , F y , t and M e , t . The transition conditions between the two adjacent elements t and t + 1 at the coordinate

s = 

∑ t 
t=1 L t (point T ) are: 

M z , t+1 = M z , t + M e , t , θt+1 = θt , x t+1 = x t , y t+1 = y t . (42) 

Furthermore, for the consideration of branched mechanisms the approach from [30] is applied. When a branched mech- 

anism becomes necessary, three continuous beams result that are interconnected at the branching point K. Each of those 

beams is described with an individual beam axis s 1 , s 2 and s 3 . The system of differential equations is considered for each

beam individually. This means, that each of the individual beams can be comprised of an arbitrary number of elements 

with a continuous transition between them as described above. However, at the location of the branching point K, different 

transition conditions are applied. When assuming a total number of u elements for the first beam, the u -th element of the

first beam, the first element of the second beam and the first element of the third beam are connected at point K, located

at s 1 end = 

∑ u 
t=1 L t , s 2 = 0 and s 3 = 0 . The following transition conditions apply for the second beam: 

θ2 (0) = θ1 (s 1 end ) + θ20 , x 2 (0) = x 1 (s 1 end ) , y 2 = y 1 (s 1 end ) . (43)

The same applies for the third beam: 

θ3 (0) = θ1 (s 1 end ) + θ30 , x 3 (0) = x 1 (s 1 end ) , y 3 = y 1 (s 1 end ) . (44)

For branched mechanisms it is always assumed that the first beam originates at point A ∗ and the second beam ends at

point B ∗ for which boundary conditions are applied (cf. Fig. 12 ). The end of the third beam is always considered as a free

end. Introducing a branching point leads to further unknown system parameters which are compensated by an additional 

boundary condition for the bending moment M z, 3 at the free end of the third beam: 

M z, 3 (s 3 end ) = 0 (45) 

and by an additional transition condition at the branching point K: 

M z, 1 (s 1 end ) = M z, 2 (0) + M z, 3 (0) . (46) 

A more detailed breakdown of boundary and transition conditions for branched mechanisms is given in [30] . 
10 
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Fig. 8. Transition between adjacent links – (a) continuous transition of the rod axis s , (b) transition at a branching point K between three individual rod 

axes s 1 , s 2 and s 3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Program implementation 

The method for calculating compliant mechanisms as described above is well suited for the implementation into a graph- 

ical user interface due to reoccurring patterns in the mechanism design and solution process. The design of the regarded 

kinds of compliant mechanisms can be reduced to interconnecting beam elements with a constant cross-section, curved 

beam elements and beam elements with a flexure hinge contour. Assigning geometric Parameters to each element like 

lengths and curvature radii allows to create an arbitrary shaped continuous compliant mechanism. The implementation of a 

branching point offers further design possibilities. Adding boundary conditions and applying forces complements the design 

process. The presented graphical user interface is developed using the programming language Python as described in the 

following sections. 

3.1. Program structure of the Python-based graphical user interface 

Because of its accessibility, efficiency, readability and numerous available libraries like NumPy and SciPy for scientific 

computing, the realization of the given analytical method is implemented with the free and open-source programming 

language Python 3.6 . For the creation of a graphical user interface the free software Pyside2 for the Qt toolkit is applied that

includes a vast collection of widgets for building a GUI. 

The developed GUI is shown in Fig. 9 on the example of a slider-crank mechanism. The interface is categorized into three

main modules that are located on the upper left side of the GUI: the design of a compliant mechanism and its analysis

under given loads, the conduct of parametric studies and the synthesis as a target-specific evaluation of the performed 

parametric studies. On the right of the interface, the current mechanism design is plotted in its undeflected and – after 

the solution has been calculated – in its deflected state. Below, the parameters of the constructed mechanism are outlined 

in a table format for one beam or for three beams in case a branched mechanism has been designed. In this table the

geometric parameters of each element can be modified to achieve a desired shape of the mechanism. Also, forces in x -

and y -direction can be applied to any of the associated elements. Another important aspect is the possibility to change the

applied theory for each element individually between pure bending ( theory = 0 ), including shear ( theory = 1 ) or including

lateral contraction ( theory = 2 ). 

A flow chart of the implemented modules is given in Fig. 10 . At first, input parameters for the material of the mechanism

as well as the initial position within the coordinate system and boundary conditions for point A ∗ and point B ∗ can be

defined. A desired compliant mechanism can be created by adding the pre-defined building blocks as needed and adjusting 

their geometric parameters. Furthermore, a branching point may be added to split up a mechanism into three individual 

beams interconnected at point K. In such a case the boundary conditions are valid for point A ∗ at the beginning of beam 1

and point B ∗ at the end of beam 2. The end of beam 3 is chosen to be a free end in all applications. Forces may be applied to

the end point of any of all incorporated elements. The given design under the given loads can be analyzed by pressing the

analyze-button. After the analyze-button has been pressed and a solution was found, the resulting displacements, angles 

and elastic strains are outlined for each individual element on the right of the in- and output table. When parametric

studies should be performed, an arbitrary geometric or force parameter of any of the incorporated elements can be chosen 

within the parametric study module. An interval needs to be specified for the chosen parameter and the study can be

performed by pressing the run-button. When all designs are calculated, the results are outlined in an extra table and can

be exported to a text file. This allows further processing by other software. After a parametric study has been carried out it

may be necessary to find the optimum of the calculated modifications considering a specific design-goal. For this purpose, 

the synthesis module is provided wherein an objective function may be designed by choosing objectives for any element of 

any beam and related weighing factors. The optimum of the previously calculated parameter modifications is obtained. 
11 
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Fig. 9. Screenshot of the developed GUI on the example of a compliant slider-crank mechanism deflected at point B ∗ . 

Fig. 10. Structure of the three modules implemented in the given GUI. 
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Fig. 11. Flowchart of the solution process for the boundary value problem of a single analysis and parametric studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Mathematical implementation 

In the back end of the GUI the element-wise establishment of a mechanism design is interpreted as follows. Originating

at the initial position of the coordinate system all elements added to beam 1 are representing a section of the beam axis

s 1 . The different elements are distinguished according to their curvature-radii and their second moment of inertia I z that

depends on the geometry of an element. Thus, the assembly of individual elements does represent a continuous path of the

beam axis s 1 with the according transitions explained in Section 2.6 . This single beam represents the model in Fig. 1 . Forces

at any point along the beam axis and boundary conditions at the ends A ∗ and B ∗ complement the model. The boundary

conditions at both ends can randomly be combined as long as a statically determinate structure results. 

In case a branching point was added to a mechanism design, three self-contained beams result that each are continuous 

in the same way as described for beam 1. Unlike the case of only one continuous beam, the boundary conditions are defined

for the beginning of beam 1 (point A ∗) and the end of beam 2 (point B ∗). Due to the fact, that the end of beam 3 always

represents a free end, another boundary condition results at this location, namely M z3 (s 3 end ) = 0 . The three beams are

interconnected at a branching point K that is located at the end of beam 1. Their orientation relative to the end of beam

1 can be chosen by an orientation angle. As a consequence of the connection point, the initial conditions for beam 2 and

beam 3 are available as transition conditions explained in Section 2.6 . 

Given an arbitrary compliant mechanism design with or without a branching point, it is ensured that the number of 

boundary and transition conditions matches the number of unknown system parameters. Therefore, the present boundary 

value problem can be solved numerically for each beam with respect to the given transition and boundary conditions. 

For this purpose, a combination of a four-step Runge-Kutta method with a shooting method is suitable. Both functions are 

available within the SciPy library for the Python programming language. The Runge-Kutta method is applied by the function 

RK45 and the shooting method by the function fsolve analogously to the MATLAB ®-functions ode45 and fsolve . 

The solution process is shown in Fig. 11 . After the material, boundary conditions and geometry have been defined, the

unknown system parameters are identified depending on the boundary conditions and, if applicable, transition conditions. 

The unknown system parameters can be the support reaction forces and moments as well as the moments at the branching

point according to Eq. 46 . At first, an initial guess for the unknown system parameters is needed within the solution process.

Assuming the system parameters are stored in an array called v , an array for the initial conditions may be called v 0 . As an
initial guess within the software, an array of zeros is considered ( v 0 = 0 ). After an initial guess is made, the boundary value

problem becomes an initial value problem. Thereby, the differential equations are solved applying the four-step Runge- 

Kutta -method. Subsequently, the results of this calculation are compared to the boundary conditions. In case the boundary 

conditions are not met, the initial guess has to be changed. This change is done by the algorithm of the shooting method

implemented in the function fsolve . Afterwards another cycle of solving the differential equations is done. This process 

continues until the boundary and transition conditions are met within a specific tolerance. When those are finally met a 

single analysis is finished and results are obtained and the deformed state of the mechanism is plotted. 
13 
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Fig. 12. Example branched mechanisms with power function-based flexure hinges – (a) compliant slider-crank mechanism from [7] n 1 = 4 , n 2 = 8 , n 3 = 4 , 

(b) compliant parallel four-bar linkage from [30] with n 1 , ... , 4 = 6 . 

 

 

 

 

 

 

 

 

 

 

 

When parametric studies are carried out, the next parameter modification has to be calculated. The results for the system 

parameters v of one calculation can be used as initial conditions for the next modification to speed up the solution process.

If i was a counter for the iterations in a parametric study with i ∈ N 1 , the initial guess is called v 0 i and the related result is
called v i . The first calculation would be done according to Eq. 47 . 

v 01 = 0 . (47) 

The result of the first iteration will be v 1 . The second iteration can be performed with v 02 using the result of the previous
iteration according to the following equation: 

v 02 = v 1 . (48) 

For all following iterations the initial guess is generalized to Eq. 49 where the two previous results are used to formulate

an initial guess for the next iteration. 

v 0 i = v i −1 + v i −2 , for i > 2 (49) 

This method accelerates the solution process tremendously and also allows an iterative solution if a load case might be too

high for a single analysis because of numerical errors occurring. In such a case, the force may be applied step-wise so that

a solution can be found for the desired load. Once all parameter modifications are calculated, the results are filled into the

in- and output table at the bottom of the GUI ( Fig. 9 ) and, in case of a parametric study, within the according module. 

Afterwards, the synthesis module may be used. In this module an objective function can be created to evaluate the 

parametric study with respect to the desired optimum. In the given GUI, the objective function is minimized according to 

Eq. 50 . 

f 0 = min 

( 

k ∑ 

j=1 

W j ̃  q j −
p ∑ 

m = k +1 

W m ̃  q m 

) 

(50) 

A total of p objectives can be selected. The number of objectives to be minimized is k while p − k objectives may be max-

imized. The objectives ˜ q j and ˜ q m can represent the displacements u x , u y , the angle θ and the elastic strain ε max . Those

objectives may be selected for any end point of the available elements of a compliant mechanism design. Furthermore, 

weighing factors W j and W m may be applied to emphasize a certain criterion. 

Due to different physical values, the objectives are normalized. For the normalization a min-max feature scaling is utilized 

according to Eq. 51 on the example of q j based on the minimum and maximum values of the resulting data from the

parametric study. 

˜ q j = 

q j − min (q j ) 

max (q j ) − min (q j ) 
(51) 

4. Verification and application 

Following, compliant mechanism examples are investigated using the given models and the developed software CoMUI . 

First, the results are compared to FEM simulations and measurements from previous investigations ( [7] , [30] ) to verify the

implemented analytical model. Afterwards, further mechanism examples are considered for verification and to demonstrate 

the different modules of the GUI. 
14 
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Table 2 

Verification of the CoMUI -results on the example of the compliant slider-crank mechanism from [7] . 

Method F xB in N ε max in % u xC in μm u yC in μm u yP − u xP in μm δ in ◦

Results for a deflection of u xB = 2 mm: 

3D FEM 0.55 0.18 4.0 2052.7 1927.7 1.640 

Measurement - - - - 1911 . 7 ± 1 . 9 1.631 

MATLAB 0.56 0.17 3.7 2053.8 1929.1 1.640 

CoMUI 0.56 0.17 3.7 2053.8 1929.1 1.640 

Results for a deflection of u xB = 5 mm: 

3D FEM 1.52 0.47 20.1 5354.5 4999.6 4.188 

Measurement - - - - 4988 . 3 ± 7 . 0 - 

MATLAB 1.50 0.42 18.8 5356.7 5002.9 4.189 

CoMUI 1.50 0.42 18.8 5356.7 5002.9 4.189 

Table 3 

Verification of the CoMUI -results on the example of the compliant parallel four-bar link- 

age from [30] . 

Method F xC in N ε max in % | u yC | in μm Time in s 

3D FEM 1.443 0.41 613.6 3309 

Measurement 1.363 - 599.5 - 

MATLAB 1.367 0.43 613.7 19.9 

CoMUI 1.367 0.43 613.8 28.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Two compliant mechanisms from previous studies 

For a first verification, the results obtained using the analytical model implemented in the Python -based GUI, two exam- 

ple compliant mechanisms from previous studies are considered. Concentrated compliance in the form of flexure hinges is 

used in both mechanisms. The compliant slider-crank mechanism from [7] and the compliant parallel four-bar linkage from 

[30] are shown in Fig. 12 with the according elements necessary for modeling within the analysis module. In both cases,

a branching point K is added so that three beams result. The origin of the first beam is fixed at point A ∗. The slider-crank
mechanism in Fig. 12 (a) is modeled using a slider in x -direction and is deflected by a force in the same direction at point

B ∗. In case of the parallel four-bar linkage in Fig. 12 (b) point B ∗ is fixed and a force in x -direction is applied at the end

of the third beam in point C. In both publications the displacement was specified as an input. However, in the first version

of the given GUI it was decided that only forces are considered which is why the respective forces are iterated until the

desired displacement of ±10 mm is achieved in the following investigations for both mechanisms. 

The results from the previous publication for the compliant slider-crank mecahnism are given in Table 2 including the 

results obtained with the software CoMUI . The resulting force F xB due to the x -displacement, the maximum elastic strain

ε max , the stroke u yC , the straight-line deviation u xC , the linear position change of point P : u yP − u xP and the coupler rotation

angle δ are evaluated. For this mechanism example, the coupler rotation angle equals the rotation angle at the end of the

third beam. The results are given for the two different input displacements u xB = 2 mm and u xB = 5 mm. 

The results for the compliant parallel four-bar linkage are given in Table 3 . In this case, the resulting force F xC , the

maximum elastic strain ε max the guidance error u yC and the respective calculation times are evaluated. The results are given

for an input displacement of u xC = 10 mm. However, this example has been calculated using a total of 21 load steps. 

It can be seen that the Python -based results are in very good correlation with the previous calculations. They are almost

identical to the MATLAB® results because of the similar algorithms implemented. Compared to the measurement result in 

case of the complaint parallel four-bar linkage, the resulting force value is in even better correlation than the force value

obtained with 3D FEM simulations. 

The greatest advantage over 3D FEM simulations is the necessary calculation time which is also given in Table 3 . It

should be noted, that these times only include the calculation itself once the mechanism has already been designed, bound- 

ary conditions have been assigned and, in case of FEM, meshed. In previous investigations based on the analytical model, 

the establishment of the MATLAB®-models was a time-consuming task, too. Those models were established significantly 

faster than CAD and FEM models but were still complex. With CoMUI this is now much simpler. The design of compliant

mechanisms like the examples in Fig. 12 can be done by simply adding elements and changing their geometry in the table

format. The creation of such a mechanism is therefore vastly accelerated and can be achieved in a matter of seconds. 

4.2. The influence of pure bending, shear and lateral contraction 

To investigate the influence of the three different theories (pure bending - theory = 0 , shear - theory = 1 , lateral con-

traction - theory = 2 ), a parametric study is carried out to evaluate the dependency of the force F y from the parameters
˜ H = 

H 
L and ˜ w = 

w 
L for all three analytical models. For the parametric studies a single beam with rectangular cross-section 

as in Fig. 1 is considered. On one hand, only the parameter ˜ H is varied in the interval ˜ H = [0 . 1 , 1] while ˜ w = 0 . 1 remains
15 
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Fig. 13. Resulting force for a beam fixed at one end and deflected by a displacement of ˜ u y = 0 . 016 at the free end while – (a) varying the height ˜ H , 

(b) varying the width ˜ w . 

Fig. 14. Undeflected (gray) and deflected (black) state of a compliant slider-crank mechanism with distributed compliance and a flexure hinge with the 

hinge exponent n = 8 and 3D FEM mesh details. 

 

 

 

 

 

 

 

 

 

 

 

constant. On the other hand, the same study is performed by varying ˜ w in the interval ˜ w = [0 . 1 , 1] while ˜ H = 0 . 1 remains

constant. For comparison, the study is also performed in the form of a 3D FEM simulation using Solid186 hexahedral ele-

ments. The total number of elements for each parameter variation remains constant by specifying the number of divisions 

over the length, the height and the width of the beam. The number of divisions has been evaluated until the results con-

verged. 

First, the analytical model for pure bending ( theory = 0 ) is taken into account. The beams are deflected by a displacement

in y -direction of ˜ u y = 0 . 016 which equals a deflection angle of θ = 10 ◦. The same displacement is used as an input for the

other two analytical models. In case of the FEM simulations, the beams are deflected by a force on the face of the free end

until the same deflection of ˜ u y = 0 . 016 is reached. All resulting force values of the parametric study are shown in Fig. 13 . 

In Fig. 13 (a) the parameter ˜ H has been varied and in Fig. 13 (b) the parameter ˜ w . The force values are normalized to ˜ F y 
using the maximum resulting force. 

In Fig. 13 (a) it becomes clear that the influence of shear increases with higher ratios ˜ H . The analytical model including

shear ( theory = 1 ) coincides well with the FEM simulation results while the other two analytical models exceed a deviation

of 5% for ratios of ˜ H ≥ 0 . 3 . 

Similar facts can be concluded from the results in Fig. 13 (b). The higher the ratio of ˜ w is, the greater the effect of

lateral contraction becomes. The analytical model including lateral contraction ( theory = 2 ) yields better agreement with 

FEM simulation results compared to both other analytical models for ˜ w ≥ 0 . 48 . Before this ratio, theory = 2 yields higher

deviations than both other analytical models. 

4.3. Slider-crank mechanism with distributed compliance 

In the next example, the point-guidance slider-crank mechanism in Fig. 12 (a) is modified so that distributed compliance 

is present in the first beam by replacing both flexure hinges and the connection in between them by a single thin element

as depicted in Fig. 14 . 
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µ

Fig. 15. Analytical and FEM results for the slider-crank mechanism with distributed compliance loaded at point B ∗ with an input force F xB = -1 N to 1.5 N 

– (a) deflection u xB ∗ , (b) deflection u xC , (c) deflection u yC , (d) maximum elastic strain ε max . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The mechanism is deflected by an input force � F xB in point B 
∗ while point A ∗ remains fixed. In the following investigation

the input force is varied in an interval of -1 N to 1.5 N in steps of 0.01 N. The displacement of point B ∗ in x -direction, the

displacement of point C in x - and y -direction as well as the resulting maximum elastic strain ε max are evaluated by means

of the analytical model and 3D FEM simulations. 

The overall width of the mechanism is chosen as w = 6 mm. The element with distributed compliance (second element of

the first beam) is modeled as an element with constant cross-section with a length of L 12 = 60 mm and a height of H = 0 . 3

mm. The flexure hinge (sixth element of the second beam) on the other hand is modeled as an eighth order power function-

based contour with a minimum height of h = 0 . 3 mm and a contour length of L 26 = 10 mm. Concerning the material, the

aluminum alloy EN AW 7075 with a Young ’s modulus of 72 GPa is considered. 

First, the analytical calculation of the compliant slider-crank mechanism is performed assuming pure bending. However, 

when considering the width to length ratios of both compliant elements that experience the largest deformation, a ratio of 

˜ w = 0 . 1 results at the element with distributed compliance and ˜ w = 0 . 6 at the flexure hinge. With regard to the results of

Section 4.2 , it is advisable to apply the effects of lateral contraction ( theory = 2 ) within the flexure hinge only, while assum-

ing pure bending in all other elements. Hence, in addition to the results obtained with pure bending a second analytical

calculation is carried out applying lateral contraction in the flexure hinge. 

The results are compared to 3D FEM simulations because it is assumed that those are closest to reality due to a plane

strain state. The mechanism is meshed using Solid186 hexahedral elements with a size of 1 mm globally and refined at

the element with distributed compliance and the flexure hinge with an element size of 0.05 mm as shown in Fig. 14 . The

element size was studied until the results converged. 

The results of the calculations over the input force are given in Fig. 15 for all three scenarios. From the diagrams it

becomes clear that for all considered points, the deviations between the two different analytical theories and the 3D FEM 

simulations are in good correlation. However, when magnifying the results, the consideration of lateral contraction within 

the flexure hinge provides a significantly better correlation with the 3D FEM results. 

The absolute values and the relative deviations of both analytical models from the 3D FEM results for the force F xB =
1 . 5 N are given in Table 4 . In addition to the aforementioned displacements and maximum elastic strain the angle α has

been evaluated, too. For each result the deviation from 3D FEM simulations could drastically be reduced by applying lateral 

contraction within the flexure hinge only. 
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Table 4 

Results for the force F xB = 1 . 5 N and deviations of the calculation with pure bending and the calculation assuming 

lateral contraction at the flexure hinge from 3D FEM simulations. 

Method u xB in mm u xC in μm u yC in mm ε max in % α in ◦

3D FEM 10.886 –9.4 –12.887 0.54 9.72 

CoMUI ( theory = 0 at L 26 ) 11.093 –9.9 –13.182 0.50 9.88 

� deviation to 3D FEM 1.90% 5.32% 2.29% –7.41% 1.65% 

CoMUI ( theory = 2 at L 26 ) 10.820 –9.1 –12.795 0.53 9.61 

� deviation to 3D FEM –0.61% –3.19% –0.71% –1.85% –1.13% 

Fig. 16. Compliant guidance mechanism – (a) complete symmetric model in its undeflected (gray) and deflected (black) state, (b) half model consisting of 

8 sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4. An exemplary synthesis task for a compliant guidance mechanism 

Next, the compliant guidance mechanism with distributed compliance in Fig. 16 (a) is considered. Because of the dis- 

tributed compliance, pure bending ( theory = 0 ) is assumed. The mechanism is fixed at both ends A ∗ and B ∗ and is deflected

by a force � F y in its geometric center. Because of the axial symmetry, the model can be simplified into a half model depicted

in Fig. 16 (b). Therein, the boundary condition at point B ∗ is replaced by a slider in y -direction to simulate the same motion

behavior as the complete model. This boundary condition can be selected within the input module of the GUI. Also, only

half of the original force is considered. In that case, the compliant mechanism design is created by using a composition of

eight curved and straight beam elements starting at the origin in point A ∗. Using the analysis module, it can be shown that

the displacement in y direction at the point of force application is the same for both cases (a) and (b). 

With respect to a certain synthesis task for the given example, the largest possible y -displacement under a given load

could be of interest. This is demonstrated by changing the length L 4 of the fourth element along the beam axis s in the

interval from 2 mm to 10 mm in steps of 0.1 mm. This interval equals a total of 81 necessary calculations. The height and

width of the elements one to seven is H 1 , ... , 7 = 1 mm while the height of the eighth element is H 8 = 3 mm. The width

is constant along s by w 1 , ... , 8 = 1 mm. The lengths of the straight beam elements are chosen as follows: L 2 = L 6 = 3 mm,

L 8 = 0 . 3 mm. The curvature angles of the first and last curved beam elements are α1 = 90 ◦ and α7 = −90 ◦ whith curvature

radii of r 1 = r 7 = 2 mm. The curved elements three and five are modeled with α3 = −180 ◦, α5 = 180 ◦ and r 3 = r 5 = 1 mm.

As a material, the aluminum alloy ENAW7075 with a Young ’s modulus of 72 GPa is assumed. A constant force of F y = 50 N

is applied at the end of the eighth element. 

First, the mechanism design has to be done by adding elements and adjusting their geometry. In order to find the opti-

mum length L 4 within the given interval for the desired maximization of u y 8 , a parametric study is carried out within the

corresponding module. After setting up the parametric study and pressing the run-button, all modifications are calculated. 

The results are given in the embedded table and can be exported for any element of the mechanism. In this case, the data

is exported for the eighth element. 

The characteristic curve u y 8 (L 4 ) for the given example is evaluated using the exported data and plotted in Fig. 17 . Due to

the non-linear characteristics, it is non-trivial to find the optimum in advance. In fact, the synthesis module can be applied

after the parametric study has been performed. 

Once a parametric study has been carried out, the resulting data concerning displacements, angles and maximum elastic 

strains are obtained for each element of each individual beam and can be stored for further processing. It may then be

conceivable that an optimal solution for a special application will be sought. In that case, the synthesis module can be

applied. On the example of the guidance mechanism of Fig. 16 and the resulting data of the parametric study, the objective

of the synthesis is to maximize the y -displacement of the eighth element. For this purpose, the objective function f is
0 
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Fig. 17. Characteristic curve of the displacement of the eighth element in dependency of the length of the fourth element. 

Fig. 18. Optimum geometry for the compliant guidance mechanism with respect to the maximum y -displacement at point B ∗ . 

Fig. 19. Undeflected (gray) and deflected (black) state of a compliant gripper mechanism with power function-based flexure hinge contours of sixth order 

and detailed mesh in case of FEM simulations. 

 

 

 

 

 

 

selected and reduced to Eq. 52 as the maximization of u y 8 : 

f 0 = min (− ˜ u y 8 ) . (52) 

The result of the synthesis module yields the parameter L 4 = 5 . 2 mm as the optimum length of the fourth element for the

given objective to maximize the y -displacement of the eighth element. The result coincides with the data in Fig. 17 . The

optimum geometry is demonstrated in Fig. 18 . 

In summary, the design of the example guidance mechanism has been very intuitive by adding elements to the path of

the beam axis s and changing their geometry accordingly. It is easily possible to select the necessary boundary conditions 

for the given compliant mechanism. A parametric study can be performed by specifying one parameter ( L 4 in the example)

and choosing an interval for it. It should be mentioned, that the total of 81 calculations takes less than 40 seconds on an

average PC to highlight the efficiency. To find the optimum length L 4 with respect to the highest y -displacement at the end

point under a constant force, the synthesis module has been used to select the according objective. 
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Table 5 

CoMUI and FEM simulation results for the compliant gripper mechanism with pure bending considered in all elements 

of the mechanism. 

Method u xB in mm u xK in mm u yK in mm u xC in mm u yC in mm 

3D FEM –0.484 –0.014 –0.550 –1.402 –5.943 

CoMUI ( theory = 0 ) –0.512 –0.016 –0.582 –1.493 -6.285 

� deviation from 3D FEM 5.79% 14.29% 5.82% 6.49% 5.75% 

 

 

 

 

 

 

 

 

 

 

 

 

4.5. Compliant gripper mechanism 

Another application with a symmetrical design is the compliant gripper mechanism shown in Fig. 19 . Because of its

symmetry, the mechanism can be split in half and modeled as a mechanism with only one fixed end in point A ∗, one
branching point K and a slider in x -direction at point B ∗. 

The graphical user interface can be used for the design of the mechanism and for studying the dependency of the output

displacement u C from an input force � F xB . With this dependency, the gripping force for different sized objects can be deter-

mined. In the example, all three flexure hinges are modeled as sixth order power function-based contours with a minimum 

height of h = 0 . 3 mm and a contour length of L = 10 mm. Again, the width of the mechanism was chosen as w = 6 mm

which yields a ratio of ˜ w = 0 . 6 in the center of the flexure hinges. As in previous examples, the aluminum alloy EN AW

7075 with a Young ’s modulus of 72 GPa is considered. Assuming the force F xB = −4 N, the resulting displacements of the

points B ∗, K and C are given in Table 5 considering pure bending in the case of CoMUI . The results are compared to 3D FEM

simulations with the same specifications as in Section 4.3 . 

Based on the results it becomes clear that the analytical model is less stiff compared to 3D FEM and larger displacements

occur. This leads to deviations of around 6%. The deviation of more than 14% in case of u xK results because of the low

absolute values. 

According to Fig. 13 and the observations made in Table 4 , the given ratio ˜ w = 0 . 6 in the center of the flexure hinges

may be the reason for the resulting deviations compared to 3D FEM simulations when pure bending is considered. Better 

accordance may be achieved by applying the model that includes the effects of lateral contraction. To verify this, the cal-
Fig. 20. Further mechanism examples that have been calculated using CoMUI – top: different com pliant mechanisms, bottom: flexure hinge without and 

with initial curvature. 
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Table 6 

CoMUI and FEM simulation results for the compliant gripper mechanism with lateral contraction applied within the 

flexure hinge n 2 only. 

Method u xB in mm u xK in mm u yK in mm u xC in mm u yC in mm 

3D FEM –0.484 –0.014 –0.550 –1.402 –5.943 

CoMUI ( theory = 2 at n 2 ) –0.479 –0.014 –0.546 -1.392 -5.903 

�deviation from 3D FEM –1.03% N/A –0.73% –0.71% –0.67% 

 

 

 

 

 

 

culation is repeated by applying lateral contraction ( theory = 2 ) at the flexure hinge with the highest deformation, which

appears to be the hinge n 2 . All other sections are still calculated using pure bending ( theory = 0 ). 

The results from this investigation are given in Table 6 . It can be seen that the deviations between the analytical cal-

culation and the FEM simulation are drastically reduced when lateral contraction is considered at the flexure hinge with 

the highest deformation. The same behavior was observed for different mechanisms, too and needs further investigation in 

future research. 

4.6. Special application cases 

Apart from the examples given, a number of different mechanisms can be investigated with the help of the software. 

Some special application cases that have been calculated using CoMUI are shown in Fig. 20 . 

One specialty that should be mentioned is that each beam of a mechanism which incorporates crossed beams is consid- 

ered independent as shown in the upper center of Fig. 20 . This can be useful in the design of cross-axis flexure hinges (e.g.

[28] ). A connection between different beams is only realized when a branching point is introduced. Another possibility is 

the consideration of initially curved flexure hinges as shown on the bottom right of Fig. 20 . 

5. Conclusions 

With this contribution, the authors presented the theories for shear and lateral contraction in a unified form with the 

theory for large deflections of rod-like structures. By describing compliant mechanisms as continua it has been shown that 

the theories can be chosen individually for specific sections that may present various aspect ratios. The given model is ap-

plicable for compliant mechanisms including branched links, varying cross-sections, curvatures or material properties. Large 

deflections are considered and the boundary value problem can be solved numerically within a short time frame. Building 

on those theories, an intuitive and practical Python -based graphical user interface for the analysis and synthesis of com- 

pliant mechanisms has been developed. With the use of three different building blocks – beam elements with constant 

cross-section, curved beam elements and flexure hinges – a compliant mechanism can easily be designed. By adjusting their 

geometry, the compliance of each element can be influenced in a targeted manner. This allows good accessibility for an en-

gineer with little experience in the compliant mechanism analysis and synthesis. The range of applications was significantly 

increased by implementing a branching point. A multitude of possible boundary conditions allows a wide applicability to 

known mechanism examples. External loads can be applied, the deformed state of the mechanism is calculated and impor- 

tant elasto-kinematic properties like flexure hinge angles, displacements and elastic strains are evaluated. Furthermore, the 

possibility to carry out parametric studies allows to identify parameter dependencies and to find an optimal solution for a 

given task. The greatest advantage of the given GUI is the fast establishment of a mechanism design and the equally fast

analysis which can speed up the solution process immensely. The analytical solution has been verified by means of FEM 

simulations and measurements. It could be shown that the consideration of lateral contraction at the flexure hinge with the 

greatest deformation reduces deviations compared to FEM simulations for large width to length ratios. Those findings will 

be subject to future research. To better understand the functionality of the proposed tool, a demonstration video is provided 

as supplementary material. A download link to the software can be provided upon request to the corresponding author. 
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