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admits a clique minor of order k. The proof does not
rely on the Four Color Theorem.
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A clique minor of a (simple, finite, undirected) graph G is a set of connected, nonempty,
pairwise disjoint, pairwise adjacent subsets of V' (G), where a set A C V (G) is connected if G [A]
is connected, and disjoint A, B C V(G) are adjacent if there exists an edge xy € E(G) with
x € A and y € B. An anticlique of G is a set of pairwise nonadjacent vertices, and a Kempe-
coloring of a graph G is a partition € into anticliques such that any two of them induce a
connected subgraph in G. In particular,

for A#B from ¢, everyvertexfrom A hasaneighborin B.
@)
The following facts are implicit in Section 4 from [2]. We add proofs for the sake of
completeness. The order of a coloring as above is |€]

Lemma 1 (Kriesell [2]). Every graph G with a Kempe-coloring of order k satisfies
E(G)l = (k — DIV(G)I — (I;) with equality if and only if every pair of members of every
Kempe-coloring of order k induces a tree.
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Proof. Let € be a Kempe-coloring of order k of G and A # B from ¢€; then
|IE(G[A U B])l > |Al + IBl — 1 since G[A U B] is a connected graph on |Al + |BI vertices,
with equality if and only if G[A U B] is a tree. Since G[A U B] and G[A’ U B’] are edge-
disjoint for {A, B} # {A’, B’} we get IE(G)l = YIE(G[A U B])I >>(|A| + |B| — 1), where
the sums are taken over all subsets {4, B} of € with A # B. Since every X € € occurs in
exactly k — 1 of these sets, the latter sum equals (k — 1)IV (G)l — (l; , with equality if and
only if every two members of € induce a tree, which proves the statement for €. As the latter
bound is independent from the actual &, equality holds for € if and only if it holds for all
Kempe-colorings of order k, which proves the Lemma. O

Lemma 2 (Kriesell [2]). Every graph with a Kempe-coloring of order k is (k — 1)-connected.

Proof. Let € be a Kempe-coloring of order k of a graph G. Then IV (G)l > k — 1.
Suppose, to the contrary, that there exists a separating vertex set T with IT| < k — 1.
Then there exist A # B in € with (AU B)N T = @; since G[A U B] is connected,
AU B C V(C) for some component C of G — T. Now take any x € V(G)\ (T U V (C)).
Then x is contained in some Z € € distinct from A (and B), but, obviously, x cannot have
a neighbor in A, contradicting (*). 1

An (H, k)-cockade is recursively defined as any graph isomorphic to H or any graph that
can be obtained by taking the union of two (H, k)-cockades whose intersection is a complete
graph on k vertices. The following is the main result from [3].

Theorem 1 [Song and Thomas [3]). Every graph with n > 8 vertices and at least 7n — 27
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Now we are prepared to prove the main statement of this note.
Theorem 2. Every graph with a Kempe-coloring of order 10 has a clique minor of order 10.

Proof. Let A # B be two color classes of a Kempe-coloring € of order 10 of a graph G.
Then ¢’ := €\ {A, B} is a Kempe-coloring of G’ :== G — (A U B), of order 8. By Lemma 1,
G’ is a graph on n’ > 8 vertices with at least 7n" — 28 edges.

If n’ = 8 then V(G’) is a clique of order 8, and, for every x € V(G’), G[{x} U A] and
G [{x} U B] are stars centered at x; therefore, if ab is any edge in G[A U B], V(G") U {a, b}
is a clique of order 10. So we may assume that n’ > 9.

Now let z be a leaf of any spanning tree of G[A U B] or, equivalently, such that
G[(A U B)\{z}] is connected. Without loss of generality, we may assume that z € A,
otherwise we swap the roles of A, B. Every C € €’ contains a neighbor x¢ of z in G by (*).
If these eight vertices form a clique then one checks readily that
{Ixcl: C e ¢'}u{{z}, (AU B)\{z}} is a clique minor in G of order 10 (every vertex xc
has a neighbor in B C (A U B)\ {z} by (*)). Therefore, we may assume that z has two
distinct nonadjacent neighbors x, y in V (G’).

If G’ + xy has a clique minor £ of order 9 then we may assume without loss of
generality that x is contained in some member Q of R, as G’ + xy is connected.
Consequently, (R\ {Q}) U {Q U {z}, (A U B)\ {z}} is a clique minor of G of order ten (no
matter whether Q contains y or not).
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Hence we may assume that G’ + xy has no clique minor of order 9. As G’ + xy has at
least n’ > 9 vertices and at least 7n’ — 27 edges, we know that G’ + xy is one of the
exceptional graphs in Theorem 1. By Lemma 2, G’ is 7-connected. Therefore, G’ + xy is 7-
connected; consequently, it cannot be the union of two graphs on more than 6 vertices
each, meeting in less than seven vertices. It follows that G’ 4+ xy is isomorphic to either
Fromn’' > 8| + 2(8 — |2B|) we infer 'B| > 16 — n’, and, as G[P U Q] is a star centered
at the only vertex from P for all P € B and Q € €'\ {P}, every vertex from (B is adjacent
to all others of G'. Consequently, G’ — and hence G’ + xy — has at least 16 — n’ > 4
many vertices adjacent to all others. However, K;,,33 has no vertex adjacent to all
others, and Kj ;22 has only one, a contradiction, proving the Theorem. O
We may replace 10 in Theorem 2 by any nonnegative k < 10: Suppose that G has a
Kempe-coloring € of order k and consider the graph G* obtained from G by adding new
vertices @41, ..., @0 and all edges from a;,ie{k+1,..,10} to any other vertex
x € V(G) U {ak41, -, d1o}. Then €1 := € U {{ax41}, -, {a10}} is @ Kempe-coloring of Gt of order
10. By Theorem 1, G* has a clique minor K, and, as every g; is contained in at most one member
of R, the sets of £ not containing any of ax41, ..., ajo form a clique minor of order at least k of G.

A k-coloring of G is a partition of V (G) into at most k anticliques, and the chromatic
number x (G) is the minimum number k so that G admits a k-coloring. (Observe that if a graph
G has a unique k-coloring then it has no (k — 1)-coloring unless it is a complete graph on less
than k vertices, so that, up to these exceptions, y(G) = k).

Hadwiger conjectured that every graph of chromatic number k admits a clique minor of
order k [1]. From Theorem 2 we infer the following.

Theorem 3. For k < 10, every graph of chromatic number k with a unique k-coloring
admits a clique minor of order k.

Proof. Let € be the unique k-coloring of G. Then € is a Kempe-coloring of order k (cf.
[2]), and the statement follows from Theorem 2. O
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