A note on uniquely 10-colorable graphs

Matthias Kriesell

Department of Mathematics, TU Ilmenau, Ilmenau, Germany

Correspondence

Matthias Kriesell, Department of Mathematics, TU Ilmenau, Weimarer Straße 25, 98693 Ilmenau, Germany.
Email: matthias.kriesell@tu-ilmenau.de

Abstract

Hadwiger conjectured that every graph of chromatic number k admits a clique minor of order k. Here we prove for $k \leq 10$, that every graph of chromatic number k with a unique k-coloring (up to the color names) admits a clique minor of order k. The proof does not rely on the Four Color Theorem.

KEYWORDS

coloring, clique minor, hadwiger conjecture, kempe-coloring

Mathematical Subject Classification
05c15, 05c40

A clique minor of a (simple, finite, undirected) graph G is a set of connected, nonempty, pairwise disjoint, pairwise adjacent subsets of $V(G)$, where a set $A \subseteq V(G)$ is connected if $G[A]$ is connected, and disjoint $A, B \subseteq V(G)$ are adjacent if there exists an edge $x y \in E(G)$ with $x \in A$ and $y \in B$. An anticlique of G is a set of pairwise nonadjacent vertices, and a Kempecoloring of a graph G is a partition \mathfrak{C} into anticliques such that any two of them induce a connected subgraph in G. In particular,

$$
\begin{equation*}
\text { for } A \neq B \quad \text { from } \quad \mathfrak{C} \text {, every vertex from } A \text { has a neighbor in } B \text {. } \tag{*}
\end{equation*}
$$

The following facts are implicit in Section 4 from [2]. We add proofs for the sake of completeness. The order of a coloring as above is $|\mathfrak{C}|$

Lemma 1 (Kriesell [2]). Every graph G with a Kempe-coloring of order k satisfies $|E(G)| \geq(k-1)|V(G)|-\binom{k}{2}$, with equality if and only if every pair of members of every Kempe-coloring of order k induces a tree.

[^0]Proof. Let \mathfrak{C} be a Kempe-coloring of order k of G and $A \neq B$ from \mathfrak{C}; then $|E(G[A \cup B])| \geq|A|+|B|-1$ since $G[A \cup B]$ is a connected graph on $|A|+|B|$ vertices, with equality if and only if $G[A \cup B]$ is a tree. Since $G[A \cup B]$ and $G\left[A^{\prime} \cup B^{\prime}\right]$ are edgedisjoint for $\{A, B\} \neq\left\{A^{\prime}, B^{\prime}\right\}$ we get $|E(G)|=\sum|E(G[A \cup B])| \geq \sum(|A|+|B|-1)$, where the sums are taken over all subsets $\{A, B\}$ of \mathfrak{C} with $A \neq B$. Since every $X \in \mathfrak{C}$ occurs in exactly $k-1$ of these sets, the latter sum equals $(k-1)|V(G)|-\binom{k}{2}$, with equality if and only if every two members of \mathfrak{C} induce a tree, which proves the statement for \mathfrak{C}. As the latter bound is independent from the actual \mathfrak{C}, equality holds for \mathfrak{C} if and only if it holds for all Kempe-colorings of order k, which proves the Lemma.

Lemma 2 (Kriesell [2]). Every graph with a Kempe-coloring of order k is $(k-1)$-connected.
Proof. Let \mathfrak{C} be a Kempe-coloring of order k of a graph G. Then $|V(G)|>k-1$. Suppose, to the contrary, that there exists a separating vertex set T with $|T|<k-1$. Then there exist $A \neq B$ in \mathfrak{C} with $(A \cup B) \cap T=\varnothing$; since $G[A \cup B]$ is connected, $A \cup B \subseteq V(C)$ for some component C of $G-T$. Now take any $x \in V(G) \backslash(T \cup V(C))$. Then x is contained in some $Z \in \mathfrak{C}$ distinct from A (and B), but, obviously, x cannot have a neighbor in A, contradicting (*).

An (H, k)-cockade is recursively defined as any graph isomorphic to H or any graph that can be obtained by taking the union of two (H, k)-cockades whose intersection is a complete graph on k vertices. The following is the main result from [3].

Theorem 1 [Song and Thomas [3]). Every graph with $n>8$ vertices and at least $7 n-27$ edges has a clique minor of order 9 , unless it is isomorphic to $K_{2,2,2,3,3}$ or a $\left(K_{1,2,2,2,2,2}, 6\right)$-cockade.

Now we are prepared to prove the main statement of this note.
Theorem 2. Every graph with a Kempe-coloring of order 10 has a clique minor of order 10.
Proof. Let $A \neq B$ be two color classes of a Kempe-coloring \mathfrak{C} of order 10 of a graph G. Then $\mathfrak{C}^{\prime}:=\mathfrak{C} \backslash\{A, B\}$ is a Kempe-coloring of $G^{\prime}:=G-(A \cup B)$, of order 8. By Lemma 1, G^{\prime} is a graph on $n^{\prime} \geq 8$ vertices with at least $7 n^{\prime}-28$ edges.

If $n^{\prime}=8$ then $V\left(G^{\prime}\right)$ is a clique of order 8 , and, for every $x \in V\left(G^{\prime}\right), G[\{x\} \cup A]$ and $G[\{x\} \cup B]$ are stars centered at x; therefore, if $a b$ is any edge in $G[A \cup B], V\left(G^{\prime}\right) \cup\{a, b\}$ is a clique of order 10 . So we may assume that $n^{\prime} \geq 9$.

Now let z be a leaf of any spanning tree of $G[A \cup B]$ or, equivalently, such that $G[(A \cup B) \backslash\{z\}]$ is connected. Without loss of generality, we may assume that $z \in A$, otherwise we swap the roles of A, B. Every $C \in \mathfrak{C}^{\prime}$ contains a neighbor x_{C} of z in G by (*). If these eight vertices form a clique then one checks readily that $\left\{\left\{x_{C}\right\}: C \in \mathfrak{C}^{\prime}\right\} \cup\{\{z\},(A \cup B) \backslash\{z\}\}$ is a clique minor in G of order 10 (every vertex x_{C} has a neighbor in $B \subseteq(A \cup B) \backslash\{z\}$ by $\left(^{*}\right)$). Therefore, we may assume that z has two distinct nonadjacent neighbors x, y in $V\left(G^{\prime}\right)$.

If $G^{\prime}+x y$ has a clique minor \mathfrak{K} of order 9 then we may assume without loss of generality that x is contained in some member Q of \mathfrak{K}, as $G^{\prime}+x y$ is connected. Consequently, $(\mathfrak{K} \backslash\{Q\}) \cup\{Q \cup\{z\},(A \cup B) \backslash\{z\}\}$ is a clique minor of G of order ten (no matter whether Q contains y or not).

Hence we may assume that $G^{\prime}+x y$ has no clique minor of order 9 . As $G^{\prime}+x y$ has at least $n^{\prime} \geq 9$ vertices and at least $7 n^{\prime}-27$ edges, we know that $G^{\prime}+x y$ is one of the exceptional graphs in Theorem 1. By Lemma 2, G^{\prime} is 7 -connected. Therefore, $G^{\prime}+x y$ is 7connected; consequently, it cannot be the union of two graphs on more than 6 vertices each, meeting in less than seven vertices. It follows that $G^{\prime}+x y$ is isomorphic to either $K_{2,2,2,3,3}$ or $K_{1,2,2,2,2,2}$, and $n^{\prime}=11$ or $n^{\prime}=12$. Let \mathfrak{B} be the set of single-vertex-sets in \mathfrak{C}^{\prime}. From $n^{\prime} \geq|\mathfrak{B}|+2(8-|\mathfrak{B}|)$ we infer $|\mathfrak{B}| \geq 16-n^{\prime}$, and, as $G[P \cup Q]$ is a star centered at the only vertex from P for all $P \in \mathfrak{B}$ and $Q \in \mathfrak{C}^{\prime} \backslash\{P\}$, every vertex from $\bigcup \mathfrak{B}$ is adjacent to all others of G^{\prime}. Consequently, G^{\prime} - and hence $G^{\prime}+x y$ - has at least $16-n^{\prime} \geq 4$ many vertices adjacent to all others. However, $K_{2,2,2,3,3}$ has no vertex adjacent to all others, and $K_{1,2,2,2,2,2}$ has only one, a contradiction, proving the Theorem.

We may replace 10 in Theorem 2 by any nonnegative $k<10$: Suppose that G has a Kempe-coloring \mathfrak{C} of order k and consider the graph G^{+}obtained from G by adding new vertices a_{k+1}, \ldots, a_{10} and all edges from $a_{i}, i \in\{k+1, \ldots, 10\}$ to any other vertex $x \in V(G) \cup\left\{a_{k+1}, \ldots, a_{10}\right\}$. Then $\mathfrak{C}^{+}:=\mathfrak{C} \cup\left\{\left\{a_{k+1}\right\}, \ldots,\left\{a_{10}\right\}\right\}$ is a Kempe-coloring of G^{+}of order 10. By Theorem $1, G^{+}$has a clique minor \mathfrak{K}, and, as every a_{i} is contained in at most one member of \mathfrak{K}, the sets of \mathfrak{K} not containing any of a_{k+1}, \ldots, a_{10} form a clique minor of order at least k of G.

A k-coloring of G is a partition of $V(G)$ into at most k anticliques, and the chromatic number $\chi(G)$ is the minimum number k so that G admits a k-coloring. (Observe that if a graph G has a unique k-coloring then it has no $(k-1)$-coloring unless it is a complete graph on less than k vertices, so that, up to these exceptions, $\chi(G)=k$).

Hadwiger conjectured that every graph of chromatic number k admits a clique minor of order k [1]. From Theorem 2 we infer the following.

Theorem 3. For $k \leq 10$, every graph of chromatic number k with a unique k-coloring admits a clique minor of order k.

Proof. Let \mathfrak{C} be the unique k-coloring of G. Then \mathfrak{C} is a Kempe-coloring of order k (cf. [2]), and the statement follows from Theorem 2.

ACKNOWLEDGMENT

Open Access funding enabled and organized by Projekt DEAL.

REFERENCES

1. H. Hadwiger, Über eine Klassifikation der Streckenkomplexe, Vierteljahresschr. Naturforsch. Ges. Zürich 88 (1943), 133-142.
2. M. Kriesell, Unique colorability and clique minors, J. Graph Theory 85 (2017), 207-216.
3. Z. Song and R. Thomas, The extremal function for K_{9} minors, J. Comb. Theory B 96 (2006), 240-252.

How to cite this article: M. Kriesell, A note on uniquely 10-colorable graphs, J. Graph Theory 2021;98:24-26. https://doi.org/10.1002/jgt. 22679

[^0]: This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
 © 2021 The Authors. Journal of Graph Theory published by Wiley Periodicals LLC

