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Abstract

Hadwiger conjectured that every graph of chromatic

number k admits a clique minor of order k. Here we

prove for k 10≤ , that every graph of chromatic num-

ber k with a unique k‐coloring (up to the color names)

admits a clique minor of order k. The proof does not

rely on the Four Color Theorem.
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A clique minor of a (simple, finite, undirected) graph G is a set of connected, nonempty,
pairwise disjoint, pairwise adjacent subsets ofV G( ), where a set A V G( )⊆ is connected ifG A[ ]

is connected, and disjoint A B V G, ( )⊆ are adjacent if there exists an edge xy E G( )∈ with
x A∈ and y B∈ . An anticlique of G is a set of pairwise nonadjacent vertices, and a Kempe‐
coloring of a graph G is a partition C into anticliques such that any two of them induce a
connected subgraph in G. In particular,

A B A Bfor from , every vertex from has a neighbor in .

(*)

C≠

The following facts are implicit in Section 4 from [2]. We add proofs for the sake of
completeness. The order of a coloring as above is | |C

Lemma 1 (Kriesell [2]). Every graph G with a Kempe‐coloring of order k satisfies

( )E G k V G| ( )| ( − 1)| ( )| −
k

2
≥ , with equality if and only if every pair of members of every

Kempe‐coloring of order k induces a tree.
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Proof. Let C be a Kempe‐coloring of order k of G and A B≠ from C; then
E G A B A B| ( [ ])| | | + | | − 1∪ ≥ since G A B[ ]∪ is a connected graph on A B| | + | | vertices,
with equality if and only if G A B[ ]∪ is a tree. Since G A B[ ]∪ and G A B[ ′ ′]∪ are edge‐
disjoint for A B A B{ , } { ′, ′}≠ we get E G E G A B| ( )| = | ( [ ])|∑ ∪ ≥ A B( + − 1)∑ ∣ ∣ ∣ ∣ , where
the sums are taken over all subsets A B{ , } of C with A B≠ . Since every X C∈ occurs in
exactly k − 1 of these sets, the latter sum equals ( )k V G( − 1)| ( )| −

k

2
, with equality if and

only if every two members of C induce a tree, which proves the statement for C. As the latter
bound is independent from the actual C, equality holds for C if and only if it holds for all
Kempe‐colorings of order k, which proves the Lemma. □

Lemma 2 (Kriesell [2]). Every graph with a Kempe‐coloring of order k is k( − 1)‐connected.

Proof. Let C be a Kempe‐coloring of order k of a graph G. Then V G k| ( )| > − 1.
Suppose, to the contrary, that there exists a separating vertex set T with T k| | < − 1.
Then there exist A B≠ in C with A B T( ) =∪ ∩ ∅; since G A B[ ]∪ is connected,
A B V C( )∪ ⊆ for some component C of G T− . Now take any x V G T V C( ) ( ( ))∈ ⧹ ∪ .
Then x is contained in some Z C∈ distinct from A (and B), but, obviously, x cannot have
a neighbor in A, contradicting (*). □

An H k( , )‐cockade is recursively defined as any graph isomorphic to H or any graph that
can be obtained by taking the union of two H k( , )‐cockades whose intersection is a complete
graph on k vertices. The following is the main result from [3].

Theorem 1 [Song and Thomas [3]). Every graph with n > 8 vertices and at least n7 − 27

edges has a clique minor of order 9, unless it is isomorphic to K2,2,2,3,3 or a K( , 6)1,2,2,2,2,2 ‐cockade.

Now we are prepared to prove the main statement of this note.

Theorem 2. Every graph with a Kempe‐coloring of order 10 has a clique minor of order 10.

Proof. Let A B≠ be two color classes of a Kempe‐coloring C of order 10 of a graph G.
Then A B′ { , }C C≔ ⧹ is a Kempe‐coloring of G G A B′ − ( )≔ ∪ , of order 8. By Lemma 1,
G′ is a graph on n′ 8≥ vertices with at least n7 ′ − 28 edges.

If n′ = 8 then V G( ′) is a clique of order 8, and, for every x V G G x A( ′), [{ } ]∈ ∪ and
G x B[{ } ]∪ are stars centered at x ; therefore, if ab is any edge inG A B[ ]∪ ,V G a b( ′) { , }∪

is a clique of order 10. So we may assume that n′ 9≥ .
Now let z be a leaf of any spanning tree of G A B[ ]∪ or, equivalently, such that

G A B z[( ) { }]∪ ⧹ is connected. Without loss of generality, we may assume that z A∈ ,
otherwise we swap the roles of A B, . EveryC ′C∈ contains a neighbor xC of z inG by (*).
If these eight vertices form a clique then one checks readily that
x C z A B z{{ }: ′} {{ }, ( ) { }}C C∈ ∪ ∪ ⧹ is a clique minor in G of order 10 (every vertex xC

has a neighbor in B A B z( ) { }⊆ ∪ ⧹ by (*)). Therefore, we may assume that z has two
distinct nonadjacent neighbors x y, in V G( ′).

If G xy′ + has a clique minor K of order 9 then we may assume without loss of
generality that x is contained in some member Q of K, as G xy′ + is connected.
Consequently, Q Q z A B z( { }) { { }, ( ) { }}K⧹ ∪ ∪ ∪ ⧹ is a clique minor of G of order ten (no
matter whether Q contains y or not).
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Hence we may assume that G xy′ + has no clique minor of order 9. As G xy′ + has at
least n′ 9≥ vertices and at least n7 ′ − 27 edges, we know that G xy′ + is one of the
exceptional graphs in Theorem 1. By Lemma 2,G′ is 7‐connected. Therefore,G xy′ + is 7‐
connected; consequently, it cannot be the union of two graphs on more than 6 vertices
each, meeting in less than seven vertices. It follows that G xy′ + is isomorphic to either
K2,2,2,3,3 or K1,2,2,2,2,2, and n′ = 11 or n′ = 12. Let B be the set of single‐vertex‐sets in ′C .
From n′ | | + 2(8 − )B B≥ ∣ ∣ we infer n| | 16 − ′B ≥ , and, as G P Q[ ]∪ is a star centered
at the only vertex from P for all P B∈ andQ P′ { }C∈ ⧹ , every vertex from B⋃ is adjacent
to all others of G′. Consequently, G′ — and hence G xy′ + — has at least n16 − ′ 4≥

many vertices adjacent to all others. However, K2,2,2,3,3 has no vertex adjacent to all
others, and K1,2,2,2,2,2 has only one, a contradiction, proving the Theorem. □

We may replace 10 in Theorem 2 by any nonnegative k < 10: Suppose that G has a
Kempe‐coloring C of order k and consider the graph G+ obtained from G by adding new
vertices a a, …,k+1 10 and all edges from a i k, { + 1, …, 10}i ∈ to any other vertex
x V G a a( ) { , …, }k+1 10∈ ∪ . Then a a{{ }, …, { }}k

+
+1 10C C≔ ∪ is a Kempe‐coloring of G+ of order

10. By Theorem 1,G+ has a clique minor K, and, as every ai is contained in at most one member
of K, the sets of K not containing any of a a, …,k+1 10 form a clique minor of order at least k ofG.

A k‐coloring of G is a partition of V G( ) into at most k anticliques, and the chromatic
number χ G( ) is the minimum number k so thatG admits a k‐coloring. (Observe that if a graph
G has a unique k‐coloring then it has no k( − 1)‐coloring unless it is a complete graph on less
than k vertices, so that, up to these exceptions, χ G k( ) = ).

Hadwiger conjectured that every graph of chromatic number k admits a clique minor of
order k [1]. From Theorem 2 we infer the following.

Theorem 3. For k 10≤ , every graph of chromatic number k with a unique k‐coloring
admits a clique minor of order k.

Proof. Let C be the unique k‐coloring of G. Then C is a Kempe‐coloring of order k (cf.
[2]), and the statement follows from Theorem 2. □
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